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ABSTRACT 

Large-scale ecosystem maps are essential tools for managers of forest-related 

activities. In British Columbia, the prevailing approach for ecosystem mapping has been to 

use an expert system that captures expert knowledge in the form of a belief matrix. In this 

project, I replaced the belief matrix with a Bayesian network in an attempt to overcome some 

of the drawbacks of the belief-matrix approach. I created a Bayesian-network knowledge 

base applied to an area encompassing Prince Rupert and part of the following three 

biogeoclimatic units: Coastal Western Hemlock Very Wet Maritime Montane, Coastal 

Western Hemlock Very Wet Maritime Submontane and, Coastal Western Hemlock Very Wet 

Hypermaritime Central. Using each knowledge base, I produced a map of grouped site 

series. Accuracy assessments performed on each of the maps of grouped site series revealed 

that the maps poorly predicted the spatial distribution of rare and very wet site-series groups. 

The results of the map-accuracy assessment, however, were consistent with those resulting 

from a belief-matrix approach. I considered the Bayesian-network knowledge bases easier to 

develop, interpret and update than belief matrices. 
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1 INTRODUCTION 

It is essential for land managers to have information regarding the nature and 

distribution of ecosystems to manage forest-dependant activities. In order to facilitate this 

need, a working definition of ecosystems is required, including inventories of the 

components that comprise ecosystems, and an understanding of the spatial pattern of 

ecosystems, their formation and interrelationship. 

Hierarchical systems that classify land based on ecological principles have been 

developed for scales ranging from global to local. At the global scale, also referred to as 

small-scale, several researchers have developed ecological land classifications using a 

bioclimatic approach: e.g., Udvardy (1975), Walter and Box (1976), and Bailey (1989a; 

1989b). In the United States, Drisco11(1984), Omernik (1987), and Cleland et al. (1997) 

developed ecologically-based classifications at the regional scale. In New Zealand, Huser 

(1999) proposed a hierarchical ecosystem-classification scheme ranging from the regional 

scale to the local scale, also referred to as large scale. In Canada, nation-wide ecosystem 

classifications have been created by Wiken (1986), the Ecological Stratification Working 

Group (1996), and Marshall and Schuts (1999). Large-scale ecological-classification 

schemes have been presented in the United States (Barnes et al. 1982), New Brunswick 

(Zelazny eta!. 1989), Ontario (Jones 1983; Sims eta!. 1989; Chambers eta!. 1997), 

Manitoba (Zolaneski eta!. 1995) Saskatchewan (Beckingham et al. 1996b) and Alberta 

(Beckingham & Archibald 1996; Klappstein & Corns 1996; Beckingham et al. 1996a). In 

the province of British Columbia, Pojar et al. (1987) formalized the Biogeoclimatic 

. Ecosystem Classification (BEC) approach to ecosystem classification. 
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The BEC system is an integrated hierarchical classification scheme that combines 

climate, vegetation and site classifications. Ecosystems ranging in scale from regional to 

local are defined using zonal (climatic) concepts and the vegetation of zonal climax or near-

climax ecosystems. In the BEC scheme, the basic unit of zonal or climatic classification is 

the subzone. Grouping subzones forms zones, while subzone divisions define variants (Pojar 

et al. 1987). Site series, which are the largest-scale ecosystems unit of the BEC system, are 

defined within variants, or subzones if variants are not described for a subzone. Site-series 

units describe all land areas that are capable of supporting a specific climax vegetation within 

a climatic area (subzone or variant) (Pojar et al. 1987). 

The ecosystem-forming model ofPojar et al. (1987) is based on the vegetation and 

soil-formation theory of Major (1951): vegetation and soils are products of climate, 

organisms, topography, parent material, and time. Plants and soil, considered 

simultaneously, integrate all the components of an ecosystem and reflect ecosystem 

formation. As a result, an ecological unit can be described by the plant community (a 

volume of relatively uniform vegetation) and the soil polypedon (a volume, to the depth of 

the solum, of relatively uniform soil) upon which the plant community occurs (Pojar et al. 

1991). 

Delineating the geographical distribution of the ecological units that belong to an 

ecological classification scheme is broadly referred to as ecosystem, or ecological, mapping. 

The approaches used to delineate ecological units on the landscape are very similar to those 

employed in vegetation (Skidmore 1989; Kimes et al. 1996; Carpenter et al. 1997; Carpenter 

et al. 1999; Miller & Franklin 2002; Linderman et al. 2004) and soils mapping (McCracken 

& Cate 1986; Burrough 1989; Moore et al. 1993; Skidmore et al. 1996; MacMillan et al. 
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2000; Zhu et al. 2001; Qi & Zhu 2003). This is because all three domains rely on similar 

relationships between topography, climate, parent material, qrganisms and time (Jenny 1941; 

Major 1951; Pojar et al. 1987). In addition, large-scale mapping techniques employed in 

each domain have evolved similarly over time (Scull et al. 2003). 

Traditionally, large-scale ecosystem-, soil- and vegetation-mapping were derived 

through a site-survey approach (Scull et al. 2003). This mapping approach involved 

conducting intensive field surveys over the entire area to be mapped. Although the survey 

approach is useful for small spatial extents, high costs and time are required to conduct 

intensive field surveys over large areas. Instead, most current mapping projects oflarge-

scale units over large spatial extents must rely on information gathered remotely. 

For at least two decades large-scale ecosystem, soil and vegetation mapping projects 

covering large extents were based on manual procedures for delineating ecological units from 

remotely gathered aerial photos (Klinka & Skoda 1977; Mitchell & Eremko 1987; RIC 1998; 

Scull et al. 2003). This required a human interpreter to view and analyze aerial photographs 

and infer the classification units using visible landscape attributes such as slope gradient, 

slope position, surface curvature, drainage and vegetation (RIC 1998). Recognizing the high 

cost ($3.00- $8.00/ha) and time required to manually produce large-scale ecosystem maps 

from aerial photos, however, research began to focus on producing maps using computer-

based predictive approaches (Mulder & Corns 1994; Biggs et al. 1997; Jones et al. 1999). 

Computer-based approaches were seen as an attractive alternative to ecosystem maps derived 

from aerial photo due to their low reliance on field surveys and low costs, which ranged from 

$0.20 to $2.00/ha (Biggs et al. 1997). 
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In BC, procedures that use a computer to stratify the landscape into large-scale 

ecological units are referred to as predictive ecosystem mapping (PEM) (Jones eta/. 1999). 

Only BC (RIC 1999) and Alberta (Mulder & Corns 1994; Beckingham eta/. 1999) generate 

large-scale, ecosystem-unit maps using computer-based predictive approaches, although 

ecosystem-Classification systems exist that define large-scale ecological units in the United 

States (Cleland et a/. 1997) and New Zealand (Huser 1999), BC (Pojar eta/. 1987), Alberta 

(Beckingham & Archibald 1996; Klappstein & Corns 1996; Beckingham eta/. 1996a), 

Saskatchewan (Beckingham eta/. 1996b ), Manitoba (Zolaneski eta/. 1995), Ontario 

(Chambers eta/. 1997) and New Brunswick (Zelazny eta/. 1989). 

Although the application of computer-based predictive approaches to large-scale, 

ecological-unit mapping is limited, it is closely related to the field of predictive vegetation 

mapping, and predictive soil mapping. All these terrain-related predictive-mapping domains 

usually start with the development of a numerical or statistical model of the relationship 

between environmental variables and ecosystem properties, which is then applied to a 

geographic database to create a predictive map (Jones eta/. 1999). The methods used to 

predict ecosystem, soil and vegetation distribution could generally be divided into five 

separate types: statistical, geostatistical, artificial neural networks, decision trees and expert 

systems (Scull eta/. 2003). 

1.1 STATISTICAL METHODS 

Statistical methods are used to explore and model the relationship between 

quantifiable environmental variables and ecological properties to create predictive maps 

(Scull eta/. 2003). Statistical models that have successfully been applied to predictive soils 
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mapping include linear regression (Moore eta!. 1993), logistic regression (King eta!. 1999), 

and exponential regression (Bell eta!. 2000). Miller and Franklin (2002) successfully 

applied generalized linear models to predictive vegetation mapping, and Beckingham et a!. 

(1999) used a combination oflinear regression and correspondence analysis to successfully 

predict ecological unit distribution. 

Most statistical methods, excluding generalized linear models, however, are limited 

by their assumption that the data are normally distributed (Scull eta!. 2003). It is more likely 

that the mapped units do not fit a normal distribution, but rather fit a multinomial distribution 

(Foody 2002a). Statistical methods are also limited by their high data requirements. Also, 

the inflexibility of these statistical methods prevent integration with a variety of potential 

data sources, such as expert knowledge (Scull eta!. 2003). 

1.2 GEOSTATISTICAL METHODS 

Similar to statis~ical methods, geostatistical methods are another approach employed 

in creating predictive maps. Geostatistical methods are a form of statistics that deal with 

spatial data and interpolation (Scull eta!. 2003). Their primary purpose is to spatially 

interpolate values for locations where values are not known using locations where values are 

known. Kriging, which was developed by Krige (1963), is the main approach used for 

interpolation ofunknown values. Using this approach, geostatistics have been applied to 

predictive soil mapping through the work of such authors as: Burgess and Webster (1980), 

Burrough (1989), McBratney eta!. (1991), Webster (1994), and McBratney eta!. (2000). 

Criticisms of geostatistic methods, however, include their heavy reliance on data, 

requiring mapping projects to have a large number of closely spaced data points. 
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Geostatistical methods work best in simple terrain because they rely on a high amount of 

spatial autocorrelation, but perform poorly in complex terrain where there are abrupt changes 

in environmental variables (Zhu 1997). Furthermore, like traditional statistics, geostatistics 

do not incorporate expert knowledge (Scull et al. 2003). 

1.3 ARTIFICIAL NEURAL NETWORK METHODS 

Artificial neural networks (ANNs) are another method employed in the creation of 

ecosystem, soil and vegetation maps through predictive methods. ANNs are a type of 

classification model that attempt to emulate the learning process of the human neural 

network (Atkinson & Tatnall1997). The term artificial neural network is really a broad term 

that encompasses a number of approaches that attempt to emulate the neural network process. 

ANN models first start by creating relationships between a set of known attributes mapped 

and a set of known outcomes. This data set, which is commonly referred to as a training data 

set, trains the neural network to establish relationships between the known attributes and the 

known outcomes. The artificial neural network can then be used to predict outcomes from 

known attributes once it has established the relationships using the training data (Atkinson & 

Tatnall 1997). The most commonly used ANN technique for vegetation mapping is the 

multilayer perception neural network, but other successfully employed techniques include the 

self-organizing feature-map neural network and the adaptive-resonance-theory network 

(Atkinson & Tatnall1997; Carpenter et al. 1999; Foody 1999). 

The popularity of ANNs has stemmed from their ability to integrate data acquired at a 

low level of precision, to handle categorical and continuous data sources, and their freedom 

from linear or simple non-linear distribution assumptions (Atkinson & Tatnall1997; Zhang 
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& Foody 2001). The process of training an ANN is computationally intensive and can take 

considerable time, but once trained an ANN can quickly process new input data (Kimes et al. 

1996). Criticism of ANNs include their potential to terminate model development at a "local 

minimum" and produce a sub-optimal model (Kanellopoulos & Wilkinson 1997). On the 

other hand, ANNs can also produce a model that "over-fits" the training data and produces 

poor predictions on other independent data sets (Park & Vlek 2002; Qi & Zhu 2003). The 

potential of over-fitting to the training data increases as the training data increasingly 

misrepresents the conditions in the data set to be classified (Qi & Zhu 2003). 

ANNs have been applied extensively to land-cover classification and predictive-

vegetation mapping, primarily where satellite imagery was the main component of the 

geographic database. Kimes et al. (1996) used a multilayer perception neural-network to 

create a model of forest age using Landsat satellite imagery and topographic data. Linderman 

et al. (2004) successfully used Landsat Thematic Mapper imagery to predict the presence of 

understory bamboo. Carpenter et al. (1997; 1999) successfully applied adaptive-resonance-

theory networks to vegetation mapping using Landsat remote sensing imagery and digital 

terrain data. 

The application of ANNs to predictive soil mapping has been less extensive. Qi and 

Zhu (2003) used neural networks to model the relationships between existing soil maps and 

terrain variables. Park and Vlek (2002) compared the performance of neural networks, 

regression trees and general linear models at predicting soil variability using soil type, 

vegetation attributes and terrain attributes. 
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1.4 DECISION TREE ANALYSIS 

Decision-tree (DT) analysis is similar to the ANN approach to predictive mapping. 

However, DT analysis uses a multi-stage approach when making a prediction, unlike ANNs, 

which use all the attributes simultaneously and make a single prediction. The prediction 

process is considered a chain of simple decisions, where tests are applied at each node and 

each branch represents the resulting decision path. The "leaves" (or branch termini) of the 

tree represent the prediction labels (Pal & Mather 2003). 

Like artificial neural networks, decision trees are developed using a training data set 

and then applied to a data set of attributes for which predictions are to be generated (Qi & 

Zhu 2003). Manually "pruning" the tree is often required to prevent the DT from overfitting 

the training data and to reduce tree complexity (Qi & Zhu 2003; Pal & Mather 2003). Tree 

pruning is accomplished by merging two leaf nodes into a single node, usually under the 

direction of expert knowledge (Qi & Zhu 2003). 

Advantages of DT analysis over traditional statistical methods include: its ability to 

handle missing data values and outliers, capture nonadditive and nonlinear behaviour, the 

lack of assumptions about the data distribution, and ease of updating when new data become 

available (Moore et al. 1991). Also, expert knowledge can be indirectly applied to DTs 

through tree pruning. This highlights a significant advantage DTs have over neural 

networks. With DT methods, the relationships established between the input variables and 

the predicted outcomes are explicit and interpretable by the analyst, unlike neural networks 

where the relationships are hidden. This explicit presentation of the relationships can help 

the expert understand which environmental variables influence the relationship between input 
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and output variables and make adjustments to the tree structure if necessary (Pal & Mather 

2003). 

DT models, however, are negatively affected by outliers and can produce very 

different results if outliers are included. Maps produced using DTs are more likely to retain 

the spatial pattern of the input data because DT models partition the data using one input 

variable at a time (Miller & Franklin 2002). Pal and Mather (2003) also found that the 

classification accuracy of decision-tree methods decreased relative to neural networks when 

the number of input variables used during the model training step exceeded 25. They still 

achieved high classification accuracy (86%) when classifying land-cover type from satellite 

imagery. Cialella et al. (1997) applied decision-tree analysis to predictive soil mapping to 

model soil drainage from satellite imagery and digital elevation models. 

1.5 EXPERT SYSTEMS 

Expert systems differ substantially from the statistical, geostatistical, ANN, and 

decision-tree approaches to predictive mapping. They are computer programs that are built 

using a human expert's knowledge to simulate the expert's reasoning (Stock 1987). fu 

predictive mapping the purpose of an expert system is to capture the information a surveyor 

accumulates while working in the field and integrate that knowledge into a predictive model 

(McCracken & Cate 1986, as cited in Scull et al. 2003). Expert systems are generally 

comprised of data, a knowledge base, and an inference engine (Skidmore et al. 1996). The 

knowledge base contains a set of rules or decisions that define the relationships between the 

input variables and the output prediction (Stock 1987). The inference engine applies the 
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input data, which would comprise the GIS database in the case ofPEM, to the knowledge 

base to infer a solution, which in the case ofPEM would be the ecological unit. 

What makes expert systems different from conventional statistical methods is their 

ability to store qualitative information and that, essentially, they are meta-models where the 

knowledge is separate from the model (Davis 1993). This allows expert models to apply the 

relevant input at different stages ofthe modelling process, and allows for the input to be 

updated easily (Scull eta/. 2003). 

Expert systems offer many benefits over traditional statistical approaches. Some of 

these advantages include the ability to integrate qualitative information (Scull et al. 2003), 

the ability to integrate expertise from multiple sources (Renooij 2001), the ability to capture 

knowledge before it becomes unavailable, and improved knowledge transfer to novice 

domain specialists (Zhu et al. 2001). Despite these advantages, the expert system does have 

some limitations. These limitations include being unsuitable in areas where there is little 

expert knowledge regarding the relationships between input variable and output conditions 

(Scull eta/. 2003), and that experts may have difficulty expressing their own expertise or 

eliciting a set of rules without bias (Renooij 2001). 

A criticism of decisions derived from expert opinion is that the result is unfalsifiable 

because it contains unknown assumptions, limitations and accuracy (Scull et al. 2003). For 

the results from expert systems to be falsifiable the elicitation of expert knowledge must be 

presented transparently and explicitly (Varis & Kuikka 1997). 

Expert systems have been applied to a wide range of predictive-mapping projects. 

Examples include forest-fire modelling (Davis et al. 1986), forest-vegetation mapping 
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(Skidmore 1989), forest-soil mapping (Skidmore et al. 1991 ), terrain mapping (MacMillan et 

al. 2000; Schmidt & Hewitt 2004), mineral exploration (D'Ercole et al. 2000), and land-use 

planning (Zhu et al. 1998). These may employ one of four types of knowledge bases, as 

described below. 

Rule-Based Knowledge Base 

Most expert systems use a rule-based knowledge method. In a rule-based system, the 

relationships between the input variables and output predictions are derived through a series 

of if-then-else statements. Simple rule-based knowledge bases are binary, where a condition 

is either true or false; partially-true and partially-false conditions are not allowed. In a rule-

based expert system there are two general methods in which the inference engine can make a 

decision: forward chaining or backward chaining (Moon 1999). ·In forward chaining, the 

inference engine compares the attributes of the unknown object to the rule base until arriving 

at a prediction. This approach is sometimes referred to as data-driven reasoning. In 

backward chaining, a prediction is hypothesised for an unknown object and the inference 

compares the attributes of the unknown object to the attributes of the prediction. This 

approach is sometimes referred to as goal-driven reasoning (Teng & Fairbairn 2000). 

Belief Matrix Knowledge Base 

A less popular knowledge-base method used in expert-based systems is that of the 

belief or decision matrix. The belief matrix records the belief that an event will occur given a 

set of conditions (Moon 1999; Hailu & Sommer 1999). For example, in PEM, a belief 

matrix would record the belief that an ecological unit occurs on slopes over 50%. The values 

in a belief matrix can be any positive or negative value, where a highly positive value 
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indicates a high belief that an event could occur given a condition, and a highly negative 

value indicates a low belief or impossibility that an event could occur. The inference engine 

produces a prediction by summing, for each possible output class, the belief values 

associated with the input conditions. High sums ofbeliefvalues indicate high belief that the 

output event occurs given the input conditions, while low belief-value sums indicate low 

belief. 

Fuzzy Logic Network Knowledge Base 

A third type of knowledge-base method used in expert based systems is that ofthe 

fuzzy-logic network. The fuzzy-logic network uses the theory of fuzzy logic, which attempts 

to recognize the concept of partial truth developed by Zadeh (1965). The theory of fuzzy 

logic permits an object to belong to more than one class, recognizing that objects in nature 

rarely fit exactly the classification types to which they are assigned (Scull eta!. 2003). The 

fuzzy-logic network extends the rule-based knowledge base to include partial membership to 

decision paths. When the inference engine processes the input variables through a fuzzy-

logic network, the output is a membership value, usually ranging from zero to one, for each 

possible output class. Membership values of zero indicate no membership while values of 

one indicate full membership. 

Bayesian Network Knowledge Base 

Lastly, Bayesian networks (BN) are another common type of knowledge-base method 

used in expert-based systems. Bayesian networks, also known as belief networks, Bayesian 

belief networks, Bayes networks and causal probabilistic networks, were first introduced to 

probability-based decision-systems through the work ofPearl (1988). BNs are so called 
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because they commit to Bayes' rule for probabilistic inference. This rule, developed by 

mathematician and theologian Reverend Thomas Bayes, generally states that our belief that 

an event will occur is based on the number oftimes the event has or hasn't occurred in the 

past given similar conditions. Bayesian methods have been gaining use in applied science, 

including ecology. Fisheries biology and management has, by far, seen the greatest use of 

Bayesian methods (Marcot et al. 2001). There has been to date, however, no application of 

Bayesian networks to predictive ecosystem mapping. 

Bayesian networks, like fuzzy-logic networks, are numerical models that are 

primarily built as graphical networks, sometimes referred to as directed-acrylic graphs 

(Jensen 1996). Bayesian networks consist of the following: a set of variables, also referred to 

as nodes, which have a finite set of mutually exclusive states, and a set of directed edges, or 

links, among the variables. When focusing on a single node, parent nodes are those nodes 

that are at the beginning of a link, which is pointing at the node of interest. Child nodes are 

those nodes that are at the end of a link, which is exiting the node of interest. BNs cannot 

contain feedback loops, where the child of a node is also the node's parent or grandparent in 

some way (Jensen 1996). Those nodes that have no parent are commonly referred to as root 

or input nodes, while those nodes with no children are referred to as leaf or output nodes 

(Freidman et al. 1997). 

Bayesian networks are similar to belief matrices, however, instead ofthe knowledge 

base containing a single large table, the BN simplifies the problem by breaking the single 

large table into several smaller tables. A conditional-probability table is associated with each 

variable with parents, while an unconditional-probability table is associated with each 

variable with no parent (Jensen 1996). A complete Bayesian network (i.e., nodes, links and 
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conditional probabilities) can wholly be defined using expert knowledge. When the 

inference engine processes input variables through a Bayesian network the output is a 

posterior-probability distribution for the output variable, which contains the occurrence 

likelihood of each output class. 

A simple Bayesian network could be envisioned as one parent node, which could 

represent some environmental variable such as soil moisture (SM), and one child node, such 

as site series (SS). 

SM 

ss 

According to Bayes theorem: 

P(SS ISM)= P(SM I SS)P(SS) 
P(SM) 

Using this theorem, the probability of a given site-series (SS) outcome given soil 

moisture (SM) is dependent on the likelihood of SM given a specific value of SS (P(SMjSS)) 

and on the prior probabilities of both SS (P(SS)) and SM (P(SM)). The result is the 

"posterior" probability for site series (SS). 

An important aspect of Bayesian networks is the ability to update the conditional 

probabilities using a "learning" algorithm such as "expectation maximization" (Dempster et 
a/. 1977). Learning generally involves using observations to update the conditional 

probabilities of some or all of non-parent nodes to reflect the conditions encountered in the 
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observations (Plach 1999). The values for variables that have no findings are determined 

through causal inference (Norsys 1997). 

1.6 HARD VERSUS SOFT CLASSIFICATION 

Statistical, geostatistical, ANNs, decision-trees, and expert-systems approaches to 

predictive mapping can all produce hard classifications (sometimes referred to as crisp 

classifications). Some of these approaches can also produce soft classifications (sometimes 

referred to as fuzzy classifications). In a hard classification, only one output class is 

permitted per observation or location. Soft classification, however, allows an observation or 

location to belong to several or all possible output classes. The soft-classification result 

records how strongly an observation or location represents each class (MacMillan et a/. 

2000). Bayesian networks and fuzzy-logic models are both examples of approaches that can 

produce both hard and soft classifications. 

Predictive-mapping projects are increasingly producing soft-classification results 

(MacMillan eta/. 2000; Zhang & Foody 2001; Foody 2002a; Foody 2002b). Soft 

classification can capture prediction uncertainty whether it is a result of class-definition 

(thematic) uncertainty or spatial uncertainty (Zhang & Foody2001). In predictive mapping, 

there are mainly two advantages that soft classification has over hard classification. Firstly, 

many predictive-mapping projects attempt to map concepts that are not discretely defined 

within the landscape. Instead, many class concepts occur as a continuum across the 

landscape, which overlap with other class concepts. For example, when mapping landscape 

elements such as ridge, hill, valley, etc., rarely do these semantically defined features occur 

discretely or mutually exclusively across the landscape. Some locations will strongly match 
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the semantic definition of a ridge, some locations will weakly match the concept of a ridge, 

although some locations will not match the concept of a ridge at all. Also, a location may 

weakly represent the concept of a ridge but strongly represent the semantic definition of a 

hill. Soft classification can capture this continuum of landscape features that are non-

mutually exclusive, but hard classification can not. The second advantage of soft 

classification involves the scale of the observation or input data. If the scale or resolution of 

the input data is such that a boundary separating two different feature classes occurs within 

the minimum-mappable area, then soft classification can capture the proportional occurrence 

of each class within that area. The occurrence of multiple features within the minimum-

mappable area is affected by the latter's size. The larger the minimum-mappable area the 

greater the chance that more than one class exists within its area boundary. This is 

sometimes referred to as a "mixed pixel" in satellite-imagery classification, because more 

than one feature can exist within an image pixel (Foody 1996). 

Similar to soft-classification output, which allows the outputs to contain fuzzy 

membership, is the semantic-import model of Burrough (1989), which allows the inputs to 

contain fuzzy membership. Using the semantic-import model, the hard thresholds between 

classes can be converted to fuzzy boundaries. For example, in a hard classification the 

classification of slope gradient into flat and sloped would occur at a single slope-gradient 

value. Using the semantic-import model, the belief that a location belongs to either the flat 

or sloped class would vary according to a range of slope-gradient values. With the semantic.-

import inodel, instead of the transition between sloped and flat being determined by a single 

value, the transition from one class to another occurs over a zone defined by two values (ST1 

and ST2 in Figure 1). The advantage of the semantic-import model over the hard-class 
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approach is that the semantic-import model captures the uncertainty inherent in the semantic 

definition oflandscape features (Burrough 1989). This uncertainty in class membership may 

result from either the continuous nature of the input or the varying semantic definitions of the 

input classes. 

"0 
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0 ~ ........................... .J.,_··· J 
sh . sr2 slope gradient 

Figure 1 -A graphical representation of the semantic-import model used to define the relationship 
between slope gradient and the semantic descriptions of flat and sloping. Slope gradients 
between zero and STJ are considered flat, and slope gradients greater than ST2 are 
considered sloping. As slope gradients increase from STJ to ST2, the likelihood that the 
slope is considered flat decreases linearly to zero while the likelihood that the slope is 
considered sloping increases linearly to. one. Flat and sloping semantic-descriptions are 
considered equally likely at the mid-point between STJ and ST2, although both likelihoods 
are 0.5 . 

Although maps resulting from soft classification are gaining popularity, in some 

circumstances it may be most appropriate to produce a hard classification. For example, 

decision makers often find probability distributions unclear and prefer a single answer upon 

which to make decisions. In addition, accuracy-assessment procedures are often based on 

hard-classification results. To this end, it is not necessary to solely produce hard-

classification results, but rather the results from a soft-classification model can be 

"hardened". Classification "hardening" often involves taking the dominant class from each 

soft-classification result (Foody 1996). This usually means choosing the class with the 
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highest likelihood (Skidmore et a/. 1996), but in the case of fuzzy logic, the dominant class is 

the class with the highest membership value (Zhang & Foody 2001). 

1.7 ACCURACY ASSESSMENT 

Most assessments of map accuracy are built around hard-classification results. The 

contingency table, which is also known as the contingency matrix, error matrix and 

confusion matrix, is currently at the core of accuracy-assessment procedures for land-cover 

classification and is used extensively for accuracy assessment in the field of remote-sensing 

classification (Congalton & Story 1986; Foody 2002b ). The contingency table is simply a 

square array that relates the number of sample units assigned to a particular class in one 

classification relative to the number of sample units assigned to a particular class in another 

classification (Congalton & Green 1999). Contingency tables are almost exclusively applied 

to hard-classification results, because they are unable to handle soft-classification results. 

Commonly, one of the classifications is considered correct and is assigned to the matrix 

columns while the predicted classification is assigned to the matrix rows. The major 

diagonal then indicates the agreement between the two data sets. 

The contingency table is an effective way to portray individual accuracies of each 

class along with both the errors of inclusion (commission errors) and errors of exclusion 

(omission errors). Commission errors result from putting an area into a class to which it does 

not belong: committing the act of getting it wrong. Omission errors result from excluding an 

area from a class to which it does belong: omitting the act of getting it right. Omission and 

commission errors are related, because every error is both an omission from the correct class 

and a commission to the incorrect class. Other accuracy-assessment measures commonly 
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derived the contingency matrix are: percentage correct, producer's accuracy, user's accuracy 

and kappa analysis (Congalton & Story 1986). 

Percentage correct is commonly used to represent overall map accuracy (Congalton 

& Story 1986). To derive this measurement the diagonal elements of the contingency table 

are summed and divided by the total number of samples. 

Producer's accuracy is a class-specific accuracy-assessment measure that reports 

how well a specific landscape feature can be mapped (Congalton & Story 1986). Its 

calculation involves taking the total number of correctly classified samples in a class and 

dividing by the total number of reference samples in the same class. The result indicates the 

probability that a sample is placed in the correct class, expressed as a percentage. The 

producer's accuracy for each class essentially measures the error of omission; the proportion 

of samples that are omitted from the correct class, where the error of omission is equal to one 

minus the producer's accuracy. 

User's accuracy is a class-specific accuracy-assessment measure that essentially 

measures the error of commission. It is closely related to the producer's accuracy because 

every error of omission in one class is an error of commission into another class. The user's 

accuracy is so named because it measures the reliability that the map actually represents what 

is really on the ground. It is calculated by taking the total number of correctly classified 

samples in a class and dividing by the total number of samples that are placed in that class. 

The percentage generated by this calculation indicates to the map user the probability that a 

location on the classified map actually represents that category on the ground (Congalton & 

Story 1986). 
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Kappa analysis is a discrete multivariate technique that expresses the degree of 

agreement between two classifications while compensating for chance agreement (Congalton 

& Green 1999). The result of performing a Kappa analysis is a KHAT statistic, also denoted 

K, which is an estimate of Kappa. 

The KHAT statistic was introduced into the field of land-cover classification through 

the work ofCongalton and Mead (1983), and has been used extensively to assess the 

accuracy of land-cover classifications derived from remotely sensed imagery (Foody 2002b ). 

KHAT values range from -1 to 1. Positive values KHAT values, however, should be 

expected, because there should be a greater than random, or chance, agreement between the 

classification map and observation data. Congalton and Green (1999) suggest using three 

KHAT value classes to express agreement. KHAT values greater than 0.8 represent strong 

agreement, values between 0.4 and 0.8 represent moderate agreement and values less than 

0.4 represent poor agreement. In addition to the KHAT statistic, the KHAT variance 

(Congalton & Green 1999) and Z statistic (Devore 2000) can be calculated to determine ifthe 

generated classification map is significantly greater than a random, or chance, classification. 

For map accuracy assessment, Congalton and Green (1999) recommend 50 reference 

samples per class, however, they also recognize that it may not be possible to obtain 50 

samples for rare classes. In the case of rare classes it is acceptable to collect less than 50 

samples as long as a minimum number of samples collected per class (Congalton & Green 

1999). If obtaining 50 samples per class is not possible then Congalton & Green (1999) 

recommend a balance between the project's time and cost limitations, and the need to 

adequately populate the contingency matrix. 
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1.8 STATEMENT OF THE PROBLEM AND OBJECTNES 

In BC, ecosystem maps have been applied most widely to forest-related management 

activities. Managers of forest-related activities routinely rely on detailed, large-scale 

ecosystem maps where the base ecological unit typically occupies no more than 10 ha. 

Forest-development planning, wildlife-habitat suitability/capability mapping, and 

ecologically-based yield analysis with site-based site-index curves are all example uses of 

large-scale ecosystem maps for forest-related management (Biggs et al. 1997). 

During the past six years, predictive mapping of large-scale ecological units has been 

developing in BC to meet the management needs of forest-related activities. All of the 

completed PEM projects have attempted to predict the spatial distribution of site-series 

ecological units from the biogeoclimatic ecosystem-classification scheme ofBC. The first 

pilot projects ~overed small areas and employed expert-based systems, utilising either a rule-

based or a belief-matrix knowledge-base approach (Jones 1999). Since that beginning, over 

40 PEM projects have been completed. Although plans exist to complete large-scale 

ecosystem mapping of the entire province, the completed projects now cover approximately 

15% of the province's land base- primarily in non-coastal regions. Of the 32 completed 

project reports available for review, 28 reported using an expert-based system with a belief-

matrix knowledge base. Each of the completed projects have first stratified the landscape 

using the mapping method of Eng and Meidinger (1999), which delineates biogeoclimatic 

subzone/variants, and then developed a separate expert-based system for each 

subzone/variant stratum. 
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All of the completed large-scale predictive ecosystem maps have been evaluated 

using the 65% correct de facto standard established by Meidinger (2003). Based on the 

review of completed projects, results of map-accuracy assessment have been mixed, with 

approximately half of the mapped BEC-subzone/variants only just meeting the 65% correct 

target. Approximately 25% of the mapped subzone/variants achieved percent-correct scores 

well above the 65% target and approximately 25% did not meet this target. Achieving 65% 

correct targets, however, does not guarantee the applicability of the map product to all forest-

related management activities. Meidinger's (2003) 65% correct criterion was established to 

evaluate whether a large-scale predictive ecosystem map could be included in a timber 

supply analysis. A predictive site-series map may not be suitable for such purposes as 

establishing silviculture prescriptions or identifying rare ecosystems, especially if the map 

only just achieves the 65% correct target. 

Efforts to create large-scale predictive-ecosystem maps in BC (e.g., Jones 1999; 

Timberline Forest Inventory Consultants Ltd. 2000; Rosen et al. 2001; Atticus Resource 

Consulting Ltd. 2001; Ketcheson et al. 2001a; Ketcheson et al. 2001b; Ketcheson et al. 

2001c; Jones & McGregor 2002; Sulyma & Alward 2004; Jones 2004), however, have 

encotintered several key problems, specifically: 1) the procedure used to model the 

relationships between environmental variables and ecological units has been difficult to 

understand for anyone other than those individuals who created the model; 2) the model of 

the relationships between environmental variables and ecological units could not be 

automatically updated with field observations; and 3) the resulting spatial database did not 

report prediction uncertainty. 
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To address the problems encountered by earlier PEM projects, and to meet the 

demand for large-scale ecosystem maps by managers of forest-related activities, this project 

aimed to develop and evaluate a modelling procedure that: 

1) predicted the spatial distribution of large-scale ecological units, with a minimum 65% 

correct, through the incorporation of expert knowledge, but still allowing automated 

model adjustment based on field gathered observations; 

2) improved the interpretability of the ecological relationships for users other than the 

ecologist used to develop the model; and 

3) retained prediction uncertainty. 
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2 METHODS 

2.1 STUDY AREA 

The study area was located along the west coast of mainland BC, centred around 

Work Channel, and falling roughly between 54°4'N 130°31 'Wand 54°49'N 129°51 'W 

(Figure 2). The study area was approximately 150,000 ha and was situated between Portland 

Inlet and the mouth of the Skeena River. It was defined by the biogeoclimatic 

subzone/variant units: Coastal Western Hemlock Very Wet Maritime Montane (CWHvm2), 

Coastal Western Hemlock Very Wet Maritime Submontane (CWHvm1), and Coastal 

Western Hemlock Very Wet Hypermaritime Central (CWHvh2), that fell within six BC 

Ministry of Sustainable Resource Management landscape units: Tuck, Kaien, Quottoon, 

Khutzeymateen, Somerville and Union. 

I chose this study area for two reasons. Firstly, the area appeared to contain an 

adequate amount of georeferenced field data to aid model development and perform accuracy 

assessment. Secondly, the study area overlapped with the North Coast PEM Project study · 

area (Jones 2003), which was a previously completed PEM project that employed a belief 

matrix expert system. I felt that overlapping with a previously completed PEM project 

would increase the availability of the GIS data required to build the GIS database. 

The study area lies within the Coast and Mountains Ecoprovince of the Humid 

Maritime and Highlands Ecodivision of the B.C. Ministry of Sustainable Resource 

Management's (MSRM) ecoregional classification (Demarchi 1995). The climate is 

generally temperate and rainy with typically warm summers. The climate is dominated by 

24 



() 

I 

.. (j) 

0 

.. - I!) 

,_ 

c. 

z 
Q 

-

...._ 

- KWIN"AMASS 

Pf:AK f 

,_ 

Study Area BEC Units ~ 

C\NH vh 2 j C\NH vm 1 

C\NH vm 2 

Figure 2 - The study area which was used to conduct large-scale predictive ecosystem mapping. 
The study area was comprised of the CWHvm2, CWHvml and CWHvh2 BEC units 
within the BC Ministry of Sustainable Resource Management Tuck, Kaien, Quottoon, 
Khutzeymateen, Somerville and Union landscape units. It was approximately 150,000 ha 
and centred on Work Channel in North-Coastal BC. 
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the arrival of frontal systems from the Pacific Ocean and their subsequent lifting over the 

Coast Mountains. As a result, rain is abundant throughout the year, but markedly lower in 

the summer months. Ecoprovinces are divided into ecoregions, and the study area 

overlapped with both the Coastal-Gap Ecoregion and the Northern Coastal Mountains 

Ecoregion. The Northern Coastal Mountains Ecoregion, which comprises the northern third 

of the study area, contains typically large, rugged, ice-capped mountains that rise sharply 

from the ocean. The Coastal Gap Ecoregion portion of the project area contains somewhat 

lower and more rounded mountains, although valley sides are still rugged and steep 

(Campbell eta/. 1990). 

Starting at sea level, the Coastal Western Hemlock (CWH) zone occupies elevations 

less than 600 m near the ocean and less than 800 ni inland. Western hemlock (Tsuga 

heterophylla) is usually the most common tree species although western redcedar (Thuja 

plicata) is abundant throughout the Coastal Gap Ecoregion. Amabilis fir (Abies amabilis) 

and yellow-cedar (Chamaecyparis nootkatensis) are both found in wetter sites, but with 

arnabilis fir dominating the zone's high elevations and northern latitudes. Douglas-fir 

(Pseudotsuga menziesii) is abundant in drier parts of the zone, which lie south of the study 

area (Meidinger & Pojar 1991). 

The hypermaritime portion of the study area contains two distinct areas: the lowland 

areas and the mountainous areas. The lowland area is dominated by subdued terrain 

occurring adjacent to the ocean, while the mountainous area is dominated by rounded 

mountains occurring adjacent to Work Channel (Banner eta/. 1993). Bog woodlands, bog 

forests and swamp forests occur extensively in the low-lying areas of the CWHvh2. These 
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sites are characterized by extremely wet soils with poor nutrient availability and poor soil-

moisture transmissivity, especially at low slope gradient. The upland sites of the CWHvh2 

are dominated by wet and mesic soils with good soil transmissivity (Banner eta!. 1993). 

The maritime portion of the study area occurs inland from the CWHvh2 and is 

dominated by large rugged mountains. In the CWHvm2 and CWHvm1 BEC units, which 

occur in the maritime climate, soil transmissivity is generally constant with slope gradient. 

This is in contrast to the CWHvh2, which has extremely low soil-moisture transmissivity on 

low slope gradients (Banner eta!. 1993). 

The subalpine elevations that lie above the CWH zone are occupied by the Mountain 

Hemlock (MH) and Alpine Tundra (AT) biogeoclimatic zones (Meidinger & Pojar 1991). 

The MH zone was excluded from the study area due to a lack of field data. The AT zone was 

excluded because it typically contains very little forest and did not fit with the project's 

objective of producing ecosystem maps that aid the management of forest related activities. 

2.2 METHODS OVERVIEW 

I used a multistage methodology (Figure 3) to create the expert system and meet the 

objectives in this study. Identifying the required GIS database layers was my primary step in 

the methodology. To verify the spatial and thematic accuracy of the GIS layers I used expert 

opinion and comparisons to other spatial-data sets. 

To build the Bayesian-network knowledge base I used Norsys Software Corporation's 

Netica (version 2.17) software application (Norsys 1997). Building a Bayesian network in 

Netica generally involved creating: 1) input, output and intermediate nodes, 2) links between 
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Figure 3- This diagram illustrates the methodology used to meet the objectives of this study. There 
were three general sections in the methodology that also comprises most expert systems: 
create the database, develop the knowledge base and perform inference. 

28 



the nodes 3) classes for each node, and 4) conditional-probability tables. 

I created an initial Bayesian network to predict soil-moisture and soil-nutrient 

regimes. I made a preliminary site-series-group prediction by adding a node to reflect the 

edatopic-grid relationships between soil-moisture and soil-nutrient regimes in each BEC 

subzone/variant. By adding new nodes and node relationship, I adjusted the initial site-

series-group prediction, which was derived from the edatopic grid. Using the advice ofthe 

ecological-domain expert, I adjusted the conditional probabilities by assessing those posterior 

probabilities that reflect the entire study-area input conditions. 

I used two procedures to test the knowledge base: 1) visual assessment of a map of 

predicted site-series group that covered a portion of the study area, and 2) comparison of 

predicted site-series group with a reference-data set. Ifthe results of either of these two 

testing procedures were not satisfactory then the knowledge base received further 

conditional-probability value adjustments. 

Using Netica as the inference engine, I processed the entire GIS database through the 

knowledge base to generate a final predictive ecosystem map. To assess the accuracy ofthe 

final ecosystem maps, I compared the map results to an independent reference-data set using 

several statistical procedures in Microsoft Excel 97. 

2.3 GIS DATABASE DEVELOPMENT 

Prior to Bayesian-network knowledge base construction, the ecological-domain 

expert, Del Meidinger of the BC Ministry ofForests, and I reviewed a belief matrix 

developed for the North Coast PEM Project by Jones (2003). Although encompassing a 
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larger geographic area and a greater number ofBEC subzone/variants, the North Coast PEM 

Project contained predictive site-series mapping of the CWHvm2, CWHvm1 and CWHvh2 

BEC units. This review of the North Coast PEM Project allowed us to understand how 

existing and modelled GIS layers influenced site-series prediction, and which GIS layers 

could be available for the Bayesian-network knowledge base. 

Based on that review, we identified 14 GIS layers that we considered ecologically 

significant for site-series prediction. Four of these layers were directly available from an 

existing GIS database (described below). The remaining 10 were a product of applying 

spatial models to existing GIS databases (described below). 

The four GIS layers directly available from an existing GIS database were forest-

stand age, forest-stand height, forest-stand species, and forest-stand crown closure. I 

acquired all four forest-stand attributes from the B.C. Ministry of Sustainable Resource 

Management's (MSRM) vegetation resource inventory (VRI) GIS database. 

The 10 GIS layers that were a product of applying spatial models to existing GIS 

databases were: ridge, hill, river bench, lake/wetland bench, gully, slope gradient, bedrock, 

stream density, ocean wind, and toe slope. I derived these GIS layers using the same logic as 

Jones (2003). Using Arc/Info version 8.3 GIS software from Environmental Systems 

Research Institute. (ESRI), I created a triangulated irregular network (TIN) from MSRM's 

terrain resource information management (TRIM) digital elevation points and air-photo-

interpreted ridges and gullies. I modelled the GIS layers of slope gradient, ridge, river bench, 

lake/wetland bench, and gully using the TIN digital terrain model (DTM) (Table 1). 
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Table 1- A summary of the Jones (2003) rule-based logic used to create the TIN/DEM dependant 
GIS layers used in this project. 

GIS Layer Rule-Based Logic 

Slope Gradient 
A natural component of a TIN. Slope gradient measures the maximum rate of 

change in elevation across the triangle. 

Ridge - TIN polygons with a slope gradient greater than 40% and that were 

Ridge 
adjacent and within 20m of a TRIM ridge 

Ridge Buffers - TIN polygons with a slope gradient greater than 40% and that 

were between 20m to 40m of a TRIM ridge 

Low River Bench - TIN polygons with a slope gradient less than 5% and that 

were adjacent and within 1OOm of a fourth order TRIM definite stream 

High River Bench - TIN polygons with a slope gradient less than 5% and 

River Bench 
between 1OOm and 200m from a fourth order TRIM definite stream 

River Terrace - TIN polygons with a slope gradient between 5% and 10% and 

that were between 200m and 500m from a fourth order TRIM definite stream. 

Or, polygons with a slope gradient less than 10% and that were between 500m 

and 1 OOOm from a fourth order TRIM definite stream. 

Gully - TIN polygons with a slope gradient greater than 30% and that were 

Gully 
adjacent and within 20m of a TRIM gully 

Gully Buffer - TIN polygons with a slope gradient greater than 30% and that 

were between 20m and 40m of a TRIM gully 

Lake/Wetland . TIN polygons with a slope gradient less than 5% and that were adjacent and 

Bench within 200m of a TRIM lake or wetland 

Hill - Hills were derived from TRIM contour lines. A hill was represented by 

the largest outside contour line, that would form a closed area, and was less than 

Hill or equal to 1200m in length, but which was not a depression. 

Hill Buffer - TIN polygons with a slope greater than 30% slope gradient and 

were adjacent and within 40m of a hill polygon 

Using a digital elevation model, a location was considered to be a toe slope if 

Toe Slope slope gradient was less than 25% and was down-slope and within 100 metres of 

an area with a slope gradient greater than 40% 
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Toe slope was gen erated from a raster digital elevation model (DEM), which was 

produced from the TIN (T able 1 ). During the creation of aDEM from a TIN, I set the raster 

resolution at 625m2
, or 1/ 1 6 ha, which was the product of a 25 x 25 m pixel. I chose this size 

because it approximated t he minimum geographic spacing between TRIM elevation points 

along ridge and gully terr ain features. This resolution also matched the MSRM provincial 

raster DEM product. The remaining GIS layers that I created using Jones (2003) procedures 

were not derived directly from a TIN or DEM but were generated from other data sources 

(Table 2). 

Table 2 - The GIS layers o fbedrock, stream density, and ocean wind, which were derived using the 
nes (2003), were not derived solely from the TIN or raster DEM, but procedures of Jo 

rather depended on other data sources. 

GIS Layer 

Bedrock 

Stream Density 

Ocean Wind 

Procedu re 

The B.C. Ministry of Energy and Mines' 1 :250000 bedrock geology GIS 

database was reclassified into 5 classes: limestone, volcanic, rich, intermediate, 

and poor. 

The len 

polygon. 

gth ofMSRM TRIM stream that intersects a stream density "base-unit" 

The "base-unit" polygon was defined by the intersection ofVRI 

with TIN slope gradient polygons that has been simplified into five 

nd with TIN slope-aspect polygons that has been simplified into two 

polygons 

classes, a 

classes. 

Those ar eas of land that were eastwardly visible from a sea-levelline running 

middle of Chatham Sound, to a maximum elevation of 50 m. down the 

In addition to thos eGIS layers generated using the procedures of Jones (2003), the 

ecological-domain expert and I identified five other GIS layers useful in predicting site 

series. These GIS layers were floodplains, fans, soil moisture, shoreline and a continuous 

landform-elements layer. 
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The floodplains layer and the continuous-landform-elements layer, which delineates 

ridges, shoulders, spurs, hollows, back-slopes, terraces, foot-slopes and valley-bottoms, were 

created to supplement the individual GIS landform layers (ridge, gully, hill-top, etc.) and the 

river-benches layer that were derived using the Jones (2003) procedures. This 

supplementation was conducted due to the ecological-domain expert's concern with some of 

the Jones (2003) procedures used to generate landform elements and river floodplains (see 

Figure 4 for an example). The ecological-domain expert and I felt that by incorporating two 

methods ofmodelling landform elements and river floodplains within the knowledge base v.;e 

could increase our chances of successfully predicting the location of landform elements and 

river floodplains. 

I modelled floodplains, fans and soil moisture in the GIS software application SELES 

(Spatially Explicit Landscape Event Simulator), which was available from Gowlland 

Technologies Inc., using routines developed by Fall (2002). To generate these knowledge 

base inputs, I used the same DEM that was used to generate the toe slopes. 

I used the SELES' floodplain model (Fall 2002) to generate floodplains . Moving · 

outward from the location of approximate fourth-order streams, the floodplain model 

accumulated cost at a rate of (1 +percent slope gradient) 1.5 until the cost exceeded 100. I 

divided the resulting floodplain-cost layer into low-river bench, high-river bench and river 

terrace based on a visual comparison with air photos, satellite imagery and DEM terrain. I 

considered floodplain-cost values less than 10 to represent low-river benches; cost values 

between 10 and 35 to represent high-river benches; and cost values greater than 35 to 

represent river terraces. 
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Kilometres 
1 2 

~=~-..........L--~.c...~~ ~~~~~..JI (c) 
Figure 4- This sample map (a) demonstrates the difference between the upper-landform elements as 

defined by Jones (2003) (b) and the upper-landform elements as defined by the 
continuous-landform-elements layer (c). After reviewing the results of the Jones (2003) 
ridges and hill layers (b), the ecological-domain expert and I felt that these layers were 
underestimating upper-landform elements (convex areas that shed water). Additional 
upper-landform elements (c) were identified using the continuous-landform-elements 
layer, which was based on the Schmidt and Hewitt (2004) procedure. 
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I delineated alluvial fans using the SELES alluvial-fan model (Fall2002). The model 

first identifies confluence points between medium-sized streams and floodplains or larger 

bodies of water. Starting from these confluence points, the fan model spreads across slope 

gradients between 10% and 20% without accumulating cost. Cost will accumulate if slope 

gradients exceed 20% or drop below 10%. To control fan size, I set the maximum allowable 

accumulated-cost to be 500 or 1000 m from the confluence point. 

I estimated soil moisture using the SELES soil-moisture model (Fall 2002), which 

implements the SINMAP algorithm developed by Packet al. (1998). In the SINMAP soil 

moisture algorithm, a raster cell's soil moisture is related to the amount of upstream area that 

is feeding into the cell and the cell's slope (Packet al. 1998). Although this algorithm can 

incorporate local rates of soil transmissivity and recharge, these rates were unknown within 

the study area. Consequently, the default values were used for transmissivity and recharge. 

I created the shoreline GIS layer using raster analysis functions in Arc/info. This GIS 

layer represented all areas less than 5 m above-sea-level that were adjacent to the ocean. 

Based on the advice of the ecological-domain expert, I chose 5 m because it approximated 

the influence of tidewater and large ocean swells on the shoreline. 

I developed the layer of continuous landform elements using an approach similar to 

Schmidt and Hewitt (2004), which uses the semantic-import model of Burrough (1989). 

Using the raster DEM, each cell was assigned a membership value for the landform 

elements: ridges, shoulders, spurs, hollows, back-slopes, terraces, foot-slopes and valley-

bottoms. To assign membership values, however, I used a Bayesian network, instead of the 

fuzzy-logic approach used by Schmidt and Hewitt (2004). The follow section describes the 
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Bayesian network of continuous landform elements, which was created for this study. 

During this description, and during subsequent descriptions of Bayesian networks, node 

names will be displayed in bold and node classes will be displayed with an underline. 

Using the Schmidt and Hewitt (2004) approach, six GIS input layers were required to 

produce the continuous-landform-elements layer: tangential curvature (Dikau 1989), profile 

curvature (Dikau 1989), maximum and minimum curvature (Wood 1996), slope gradient and 

terrain context. I generated each of the four types of curvature, plus slope gradient, using 

Wood's (1996) multi-scale geomorphic characterization ofDEMs. I created terrain context, 

which describes whether a raster cell was a valley or hill, using the TOPHA T function of 

Rodriguez et al. (2002). 

Using the logic of Schmidt and Hewitt (see Figure 3 in Schmidt & Hewitt 2004), I 

used combinations of tangential curvature (TangentialCurve) and profile curvature 

(ProfileCurve) to assign sloping areas into one of nine local form elements: shoulder 

(Shoulder), shoulder slope (ShoulderSlope), hollow shoulder (HollowShoulder), spur (Spur), 

planar spur (PlanarSpur), hollow (Hollow), spur foot (SpurFoot), foot slope (FootSlope) and 

hollow foot (HollowFoot). This combination of tangential curvature and profile curvature 

was represented in the Landform BN by the SlopingShape node, which was conditional on 

the TangentialCurve node and the ProfileCurve node (Figure 5). Again using the logic of 

Schmidt and Hewitt (see Figure 3 in Schmidt & Hewitt 2004), I used combinations of 

maximum curvature (MaxCurve) and minimum curvature (MinCurve) to assign flat areas 

into one of six local form elements: peak (Peak), ridge (Ridge), plain (Plain), saddle (Saddle), 

channel (Channel) and pit (Pit). Figure 5 depicts this relationship, with the FlatShape node 

being conditional on the MaxCurve and the MinCurve nodes. 
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TangenttaiCurve PronteCurve MaxCurve MlnCurve 
Convex 100 Convex 100 Convex 100 Convex 100 
straight 0 i ! i Straight 0 i i i straight 0 ! i i Straight 0 i ! ! 
Cone~ 0 i I i Concave 0 i i i Concave 0 i i ! Concave 0 i ! I 

; ; i ; i i I ' i ! i 

\ ,I "' I 
SlopingShape SlopeGradientDegrees FlatShape 

Shoulder 100 Flat 10~ I Peak 100 ' i i ! 
ShoulderS lope 0 ! Sloping Ridge 0 
HolloWShoulder 0 Plain 0 
Spur 0 Saddle 0 
PlanarSiope 0 Channel 0 
Hollow 0 Pit 0 ! 
SpurFoot 0 / FootSiope 0 
HollowFoot 0 FormEiement 

~ Shoulder 100 ' 
ShoulderSiope 0 
HolloWShoulder 0 
Spur 0 
PlanarSiope 0 
Hollow 0 
SpurFoot 0 
FootSiope 0 
HollowFoot 0 
Peak 0 
Ridge 0 

TerralnContext Plain 0 
Hill 0 ' Saddle 0 ; ' ; 
HIIISiope 100 Channel 0 
Valley 0 ' PH 0 j ' 

~ I 
LandformEiement 

Ridge 0 ' 
Shoulder 25.0 ... 
BackSiope 0 I 

Hollow 0 i 
Spur 75.0 i 

-!-~. 
Terrace 0 i l ' l FootSiope 0 ; ; 
ValleyBollom 0 ! 1 i 

Figure 5 - The Bayesian network of continuous landform elements, which was developed in Netica 
version 2.17, was developed to predict the spatial arrangement of landform elements. 
In this diagram, the boxes represent nodes and the arrows represent the relationship 
between nodes. The input nodes, which represent GIS database layers and are not related 
to a parent node, were TangentialCurve, ProfileCurve, MaxCurve, MinCurve, 
SlopeGradientDegrees and Terrain Context. The output node, which is not related to a 
child node, was LandformEiement. The remaining nodes, which were SlopingShape, 
FlatShape, and FormElement, were intermediate nodes. The conditional probability 
tables for the intermediate nodes and output nodes were defined using expert opinion and 
the logic of Schmidt and Hewitt (2004). For each node, the node name is provided at the 
top of the box with the node classes listed on the left. The thick horizontal black bars and 
proceeding number indicate the probability, or belief, that a class occurs given the parent-
node conditions. For example, given that the form-element node (FormElement) was 
100% Shoulder and the terrain-context node (TerrainContext) was Hillslope, there was 
25% probability that the landform element (LandformEiement) was Shoulder and 75% 
probability that it was Spur. 
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Once each raster cell was assigned to either a sloping-form element or a flat-form 

element through the FormElement node, I assigned each cell a landform-element probability 

(LandformElement) based on terrain context (TerrainContext) and FormElement. The 

result was that each cell had a probability ofbelonging to each of the eight landform 

elements: Ridge, Shoulder, Backslope, Hollow, Spur, Terrace, Footslope and Valley Bottom. 

To produce these fuzzy landform-element probabilities I incorporated some uncertainty into 

the LandformElement node's conditional probabilities (Table 3). In Table 3 and Figure 5, 

for example, if a cell had a Shoulder FormElement and fell on a Hillslope in 

TerrainContext, then the cell was considered to have a 75% probability ofbeing called a 

Spur LandformElement and a 25% probability of being called a Shoulder. 

To capture the uncertainty in defining flat, slope or curved, I used the semantic-

import model ofBurrough (1989) for each of the input nodes. The semantic-import models 

allowed the BN inputs to reflect the class uncertainty, or fuzzy membership, resulting from 

either the continuous nature of the input or the varying semantic definitions of the input 

classes. Table 4 lists the thresholds I used to convert the continuous input values into soft 

classes. I heuristically determined these thresholds by visually assessing the spatial 

arrangement of each class relative to terrain. I ran the continuous-landform-element BN three 

times to capture the multiple spatial scales at which a semantically-defined landform element 

can exist. Each time I used a different search-window radius for curvature and slope 

gradient: 49 m, 74 m and 99 m. During all three runs, the search-window radius for the 
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Table 3- The conditional-probability table used to define the relationship between landform elements, terrain context and form elements. 
This table determines the probability of occurrence of each landform-element class given the input conditions of terrain context and 
form element. For example, if the TerrainContext was Hill and FormElement was Shoulder then there was a 60% probability that 
LandformElement node was Ridge and a 40% that it was Shoulder 

Terrain- LandformElements 
Context FormElement 

Ridge Shoulder BackSlot;2e Hollow St;2Ur Terrace FootSlot;2e Valley Bottom 
Hill Shoulder 0.6 0.4 0 0 0 0 0 0 
Hill ShoulderSlot;2e 0 1 0 0 0 0 0 0 
Hill HollowShoulder 0 0.6 0 0.4 0 0 0 0 
Hill St;2ur 0.6 0.2 0 0 0.2 0 0 0 
Hill PlanarSlot;2e 0 0 1 0 0 0 0 0 
Hill Hollow 0 0 0 1 0 0 0 0 
Hill St;2urFoot 0.6 0 0 0 0.4 0 0 0 
Hill FootSlot;2e 0 0 1 0 0 0 0 0 
Hill Hollow Foot 0 0 0.4 0.6 0 0 0 0 
Hill Peak 1 0 0 0 0 0 0 0 
Hill Ridge 1 0 0 0 0 0 0 0 
Hill Plain 1 0 0 0 0 0 0 0 
Hill Saddle 0.5 0 0 0.5 0 0 0 0 
Hill Channel 0 0 0 1 0 0 0 0 
Hill Pit 0 0 0 1 0 0 0 0 
HillSlot;2e Shoulder 0 0.25 0 0 0.75 0 0 0 
HillSlot;2e ShoulderSlot;2e 0 0.25 0.75 0 0 0 0 0 
HillSlot;2e HollowShoulder 0 0.25 0 0.75 0 0 0 0 
HillSlot;2e St;2ur 0 0 0 0 1 0 0 0 
HillSlot;2e PlanarSlot;2e 0 0 1 0 0 0 0 0 
HillSlot;2e Hollow 0 0 0 1 0 0 0 0 
HillSlot;2e St;2urFoot 0 0 0 0 0.75 0 0.25 0 
HillSlot;2e FootSlot;2e 0 0 0.75 0 0 0 0.25 0 
HillSlot;2e Hollow Foot 0 0 0 0.75 0 0 0.25 0 
Hil1Slot;2e Peak 0.25 0 0 0 0.75 0 0 0 
Hil1Slot;2e Ridge 0.25 0 0 0 0.75 0 0 0 
Hil1Slot;2e Plain 0 0 0 0 0 1 0 0 
Hil1Slot;2e Saddle 0 0 0 0.5 0 0.5 0 0 
HillSlot;2e Channel 0 0 0 1 0 0 0 0 
Hi11Slot;2e Pit 0 0 0 0.5 0 0.5 0 0 
Valley Shoulder 0 0 0 0 0.75 0 0.25 0 
Valley ShoulderSlot;2e 0 0 0 0 0.5 0 0.5 0 
Valley HollowShoulder 0 0 0 0.35 0.35 0 0.3 0 
Valley St;2Ur 0 0 0 0 0.5 0 0.5 0 
Valley PlanarSlot;2e 0 0 0.5 0 0 0 0.5 0 
Valley Hollow 0 0 0 0.35 0 0 0.65 0 
Valley St;2urFoot 0 0 0 0 0.25 0 0.75 0 
Valley FootSlot;2e 0 0 0 0 0 0 1 0 
Valley HollowFoot 0 0 0 0.25 0 0 0.75 0 
Valley Peak 0 0 0 0 0.1 0 0 0.9 
Valley Ridge 0 0 0 0 0.1 0 0 0.9 
Valley Plain 0 0 0 0 0 0 0 1 
Valley Saddle 0 0 0 0.1 0.1 0 0 0.8 
Valley Channel 0 0 0 0 0 0 0 1 
Valley Pit 0 0 0 0 0 0 0 1 
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terrain context node remained fixed at 1875 m. My choice of search-window radii, which 

attempted to capture the scale that site series were influenced by local terrain geometry, was 

based on the advice and opinion of the ecological-domain expert. I created the final layer of 

continuous landform elements by taking the arithmetic mean from the output of the three 

continuous-landform-element runs. 

Table 4 - The heuristic rule-base used to convert input values into fuzzy landform attributes. 
For example, slope gradients less than 4° had full membership to the Flat class. 
Membership to the Flat class decreased linearly to zero between 4° and 6° slope-gradient. 
Above 6° slope-gradient there was no membership to the Flat class. 

Threshold 
Node Class 

Full Membership No Membership 

Curvature (Tangential, Concave < -0.002 > -0.0004 

Profile, Minimum and Straight > -0.0004 and < 0.0004 < -0.002 and > 0.002 
Maximum) Convex > 0.002 < 0.0004 

Flat < 4 > 6 
SlopeGradientDegree 

Sloping > 6 < 4 

Valley < -0.6 > -0.3 

Terrain Context Hillslope or Plain > -0.3 and < 0 < -0.6 and > 0.4 

Hill > 0.4 < 0 

I combined all of the separate input GIS layers into a single GIS database using a raster data 

model. The raster-cell dimensions were matched to the SELES raster dimensions, which 

were 25 x 25 m. I converted the vector data sets ofbedrock, stream density, forest-stand 

height, forest-stand age, forest-stand crown-closure and forest-stand species to raster using a 

majority rule. With a majority rule, the value of a raster cell reflects the vector polygon that 

occupies the largest portion of the cell. Table 5 summarizes the GIS database's contents 

along with comments regarding each layer's accuracy as it may pertain towards predicting 

site series. Figure 6 illustrates the varying spatial scales of the GIS input layers. 
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Table 5 - A list of the data layers contained within the GIS database, along with comments 
regarding each layer's ability to assist site series prediction. 

GIS Layer Confidence in the GIS layer's spatial and thematic content 
with respect to the needs of site series prediction 

Ridge High for sharp ridges 

Hill Top Medium- identifies some but not all 

Gully High 

River Floodplains Low 

Lake/Wetland Benches Low 

Slope Gradient High 

Bedrock Low 

Stream Density Medium 

Ocean Wind Medium 

Shoreline High 

Toe Slope Low 

SELES Floodplains Medium 

SELES Alluvial Fans Low 

SELES Soil Moisture Medium in high relief areas, low in low relief areas 

Continuous Landform Elements Medium 

Forest Tree Age High (but low for old age trees) 

Forest Tree Height High 

Forest Tree Crown Closure High 

Forest Tree Species High 
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Landform Elements 

0 Ridge - BackSiope Spur - FootSiope 

- Shoulder - Hollow - Terrace - ValleyBottom 
c=:J acean 

Forest Crown Closure 

0-5% - 46-55% 0 Ocean 

6-15% - 56~5% 
16-25% - 66-75% 

25-35% - 76-85% 

- 36-45% - 66-95% 
-96-100% 

0 

SELES Soil Moisture 

0 Dry - Wet 0 Outside the study area 

- Mesic - Very Wet 

Bedrock Geology 
Limestone 0 Rich Mineralogy 0 Outside the study area 

0 Volcanics c:J Intermediate Mineralogy 

- Poor Mineralogy 

5 10 

Kilometres 

Figure 6- Four examples of the GIS data layers used to create the database used in this study. This 
diagram highlights the different spatial scales that occurred within the GIS database. 
For example, the landform-elements layer has a large-spatial scale and the bedrock-
geology layer has a small-spatial scale. 
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contents along with comments regarding each layer's accuracy as it may pertain towards 

predicting site series. Figure 6 illustrates the varying spatial scales of the GIS input layers. 

Slope-aspect is considered an important ecological factor in relation to site series in 

some area of the province, however, the ecological domain expert did not consider slope-

aspect ecologically important within the study area. The high latitude and the presence of 

heavy cloud cover for most of the year effectively removes the influence that sun-incidence 

angle can have on soil moisture within the study area. 

2.4 KNOWLEDGE BASE CONSTRUCTION 

Similar to the traditional approach of predictive site-series mapping (RIC 1999), I 

first stratified the study area using the BC Ministry of Forest's medium-scale subzone/variant 

mapping of the biogeoclimatic ecosystem classification. I constructed a separate site-series 

knowledge base for each of the three resulting strata (CWHvrn2, CWHvml and CWHvh2) 

using the advice and knowledge oflocal ecological-domain expert, Del Meidinger. 

A review of the input GIS database contents revealed that, based on the ecological-

domain expert's opinion, the spatial and thematic accuracy of the GIS database was not 

sufficient to accurately map all of the site-series units. The solution was to group similar site 

.series into site-series groups. Although not desirable, site-series grouping is not uncommon 

in predictive site-series mapping (Timberline Forest Inventory Consultants Ltd. 2000; Jones 

2003; Jones 2004). Grouping site series reduced the total number of mapped units from 42 

down to 23, and resulted in six site-series groups for CWHvrn2 (Table 6), seven site-series 

groups for CWHvml (Table 7), and 10 site-series groups for CWHvh2 (Table 8). 
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Table 6- Site-series groups used for the CWHvm2 BEC unit. CWHvm2 site-series units of 
Meidinger and Pojar (1991) were grouped into simpler units due to the low thematic and 
spatial accuracy of some GIS layers. 

Original Site Series Final Site-Series Group 

01 - HwBa- Blueberry 
01 

06- HwBa - Deer fern 

02 - HwPl - Cladina 
03 

03 - HwCw - Salal 

04 - CwHw- Sword fern 

05 - BaCw- Foamflower 05 

08- BaSa- Devil's club 

09- CwYc- Goldthread (Bog forest) 09 

10 - Pl - Sphagnum (Bog woodland) 10 

U - CwSs - Skunk cabbage (Swamp forest) 11 
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Table 7 - Site-series groups used for the CWHvrn1 BEC unit. CWHvrn1 site-series units of 
Meidinger and Pojar (1991) were grouped into simpler units due to the low thematic and 
spatial accuracy of some GIS layers. 

Original Site Series Final Site-Series Group 

01 - HwBa- Blueberry 
01 

06- HwBa- Deer fern 

02 - HwPl - Cladina 
03 

03 - HwCw - Salal 

04 - CwHw - Sword fern 

05 - BaCw - Foamflower 05 

08 - BaS a - Devil ' s club 

09 - Ss - Salmonberry (high fluvial bench) 

10 - Act- Red-osier dogwood (middle fluvial bench) 09 

11 - Act - Willow (low fluvial benches) 

12- CwYc - Go1dthread (bog forest) 12 

13 - P1 - Sphagnum (bog woodland) 13 

14- CwSs - Skunk cabbage (swamp forest) 14 
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Table 8 - Site-series groups used for the CWHvh2 BEC unit. CWHvh2 site-series units of 
Meidinger and Pojar (1991) were grouped into simpler units due to the low thematic and 
spatial accuracy of some GIS layers. 

Original Site Series Final Site Series-Group 

01 - CwHw - Salal 01 

02- PlYc - Rhacomitrium 
03 

03 - CwYc - Salal 

04 - HwSs - Lanky moss 04 

05 - CwSs - Sword fern 

06 - CwSs - Foamflower 07 

07 - CwSs- Devil's club 

08 - Ss - Lily-of-the-valley (high fluvial benches) 

09 - Ss - Trisetum (middle fluvial benches) 08 

10 - Dr - Lily-of-the-valley (low fluvial benches) 

11- CwYc- Goldthread (bog forest) 11 

12 - PlYc- Sphagnum (bog woodland) 12 

13 - CwSs- Skunk cabbage (swamp forest) 13 

14 - Ss - Salal (Rock headlands and beach plains) 

15 - Ss - Kindbergia (old beach plains) 
14 

16- Ss- Reedgrass (rocky headlands, colluvium, and old dunes) 

17- Ss - Swordfem (marine terraces and scarps) 

18- Ss- Slough sedge (strongly fluctuating brackish water table) 
18 

19 - Ss- Pacific crab apple (sites affected by brackish water) 
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Predicting soil moisture and soil nutrient regimes 

My first step in creating the BN knowledge bases was to predict soil-moisture and 

soil-nutrient regimes using the variables in the GIS database. I developed a preliminary 

influence diagram using the ecological-domain expert' s opinion on the relationships between 

soil-moisture regime, soil-nutrient regime and the layers in the GIS database (Figure 7 and 

Figure 8). To turn the influence diagram into a BN, I added classes to each of the variables 

using the ecological-domain expert's advice. I also merged the two influence diagrams into 

one BN and allowed the soil-moisture and soil-nutrient sub-models to share common 

variables (Figure 9). I populated each of the conditional probability tables using the 

ecological-domain expert's advice and supplemented with information published in the site 

identification field guide (Banner et al. 1993). 

In the soil-moisture-regime sub-model (Figure 7) I used two environmental factors 

that, based on the advice of the ecological-domain expert, were believed to be related to soil-

moisture regime: terrain shape, and surface-visible waters. I estimated the component of soil 

moisture that was related to terrain shape through the Ground Wetness intermediate node, 

while the component of soil moisture that was related to surface-visible water was estimated 

through the Surface Wetness intermediate node. 

To predict soil wetness related to terrain shape (Ground Wetness), I used a 

combination of variables that described terrain shape or position (Landform Elements, Hill, 

Ridge, SELES Floodplain, Lake/Wetland Bench, River Bench, Toe Slope and Gully) and 

SELES soil moisture (Flow Accumulation Wetness) . I divided the landscape into areas that 
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I considered water shedding (UpSlopePos - upland areas where water is moving out quicker 

than being replenished), water accumulating (LowSlopePos - lowland areas where water is 

moving out slower than being replenished), benches adjacent to water bodies (Bench), and 

areas between upland and lowland (Mid Flat Landform). For each combination of upper-

slope position, mid-slope position, lower-slope position and bench, I assigned a conditional 

probability of belonging to each class in the Terrain Position Wetness intermediate node. 

To produce Ground Wetness, I created a conditional-probability table ,which took into 

account the Terrain Position Wetness intermediate node and the SELES' soil moisture 

input node (Flow Accumulation Wetness). 

Water visible on the earth's surface, such as streams and rivers, was the other 

environmental factor that the ecological-domain expert and I believed reflected soil moisture. 

I estimated surface-visible soil moisture (Surface Wetness) using local stream density 

combined with slope gradient, where higher stream density was assumed to signify greater 

soil moisture. · When comparing areas of equal stream density, however, areas of high slope 

would be drier than areas of low slope. 

To estimate soil-nutrient regime (Figure 8) I used two environmental factors that, 

based on the ecological-domain expert's opinion,, were believed to influence soil-nutrient 

regime. These environmental factors were: soil seepage (Seepag~ with Flow Accum) and 

soil richness (Soil Richness). Seepage was used as an influence on soil richness because it 

was believed that increased seepage contributes to increased soil richness. 

I derived the seepage intermediate node (Seepage with Flow Accum) from lowland, 

bench, high stream-density and high flow-accumulation areas because, based on the advice of 
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the ecological-domain expert, high soil-moisture levels affect seepage rates. I used two 

stages to estimate seepage rates: first seepage (Seepage) was estimated from the intermediate 

nodes representing low-terrain position (LowSiopePos), fluvial benches (Bench) and 

surface-visible soil-moisture (Surface Wetness). This estimate of seepage was subsequently 

modified by the SELES estimate of soil moisture (Flow Accumulation Wetness) to produce 

a final seepage estimate (Seepage with Flow Accum). 

The other influence on soil-nutrient regime was soil richness. Based on the opinion 

of the ecological-domain expert, soil richness was related to four environmental variables: 

alluvial fans, slope gradient, underlying bedrock and forest. I created an initial soil-richness 

intermediate node (Soil Richness) using slope (Slope Group), bedrock geology (Bedrock 

Group) and forest productivity (Site Productivity). The ecological-domain expert defined 

the conditional probabilities for this initial soil-richness node. Based on the ecological-

domain expert's opinion, forest productivity was given far greater influence on the 

conditional probabilities of soil richness than bedrock geology or slope. Slope was 

considered to have only a slight influence on soil richness, and bedrock geology was mapped 

at such a coarse scale that confidence in its predictions was low. Generally, areas of high 

forest productivity were considered by the ecological-domain expert to have high soil 

richness, and areas of low forest productivity were considered to have low soil richness. 

Forest productivity was seen by the ecological-domain expert as an important effect 

of soil richness. Unlike any of the previous intermediate nodes, however, which relied on 

terrain variables, the estimate of forest productivity (Site Productivity) relied solely on the 

MSRM VRI forest vegetation inventory. Using classes of forest-stand age (Age Group), 

height (Height Group) and crown closure (Crown Closure Group), the ecological-domain 
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expert assigned each class combination a probability of being high (SP High), medium 

(SP Medium) or low productivity (SP Low). The ecological-domain expert's belief was 

that forested areas with short, old-aged trees with open crown-closure indicated areas of low 

productivity, while areas with medium or old-aged tall trees with closed crowns indicated 

areas of high productivity. 

Once the initial soil-richness node (Soil Richness) was defined, I added the influence 

of alluvial fans (Fans) on soil richness to produce a final soil-richness node (Richness with 

Fans). Although occurring infrequently across the landscape, alluvial fans were seen by the 

ecological-domain expert as an important indicator of rich soils. To reflect this belief, I 

created the conditional-probability table for Richness with Fans with increased probability 

of rich soils occurring on sites with alluvial fans. 

Once I built theBN knowledge base to predict soil-moisture and soil-nutrient 

regimes, I adjusted the conditional-probability tables to reflect the unique attributes of each 

BEC subzone/variant. In the CWHvml and CWHvm2 BEC units, I considered the soil 

transmissivity to be uniform across the landscape. In the CWHvh2, however, many of the 

areas of low slope-gradient hold moisture due to their low soil-transmissivity. To reflect this 

difference in soil transmissivity between the hypermaritime BEC subzone/variants and the 

maritime BEC subzone/variants, I adjusted the implementation ofthe SINMAP algorithm in 

SELES to increase the influence of low slope gradients on soil moisture. This adjustment 

allowed the SELES flow-accumulation GIS layers to reflect the ecological-domain expert's 

belief that low slope-gradients within the CWHvh2 BEC unit were much wetter than low 

slopes in the either the CWHvml or CWHvm2 BEC units. 
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In addition to the changes to the soil-moisture algorithm in the CWHvh2, I also 

adjusted two of the nodes required to predict soil nutrient in the CWHvh2. I gave the Crown 

Closure Group and the Site Productivity intermediate nodes an additional class to 

distinguish sites with very sparse crown closure. 

Adding a node to reflect the edatopic grid 

Once I developed a BN knowledge base for each BEC subzone/variant to reflect the 

ecological-domain expert's initial beliefs around soil moisture and soil nutrient, I used the 

domain expert's advice and the edatopic grids (Figure 1 0) to combine soil-moisture and soil-

nutrient regimes into an initial site-series-group prediction (Site Series Edatopic) (Figure 

11). Although I used soil-moisture and soil-nutrient regimes to place each location in the 

appropriate general area on the edatopic grid, the ecological-domain expert recognized that 

other variables were required to adjust site-series prediction. Adjustments were necessary 

either because of inaccuracies in the soil-moisture and soil-nutrient sections of the model, or 

because more than one site-series group could occur at a given edatopic-grid position. Based 

on advice from the ecological-domain expert I used such variables as vegetation, slope, 

floodplain and shoreline to refine the site-series prediction. For each BEC subzone/variant, 

the BN knowledge base required different adjustments to the post-edatopic site-series 

prediction depending on the unique environmental conditions of each BEC subzone/variant. 
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Soil Nutrient Regime 
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Figure 10 - Edatopic grids and corresponding site-series groups used for the CWHvml, CWhvm2 
and CWHvh2 Bayesian networks. Some areas of the edatopic grids were comprised of 
only one site-series group. For example, only site-series-group 10 in the CWHvm2 was 
comprised of poor soil-nutrient and very wet soil-moisture. Some areas of the edatopic 
grids, however, were comprised of more than one site-series group. For example, site-
series groups 12 and 18 in the CWHvh2 were both comprised of poor soil nutrient and 
very wet soil moisture. 
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Soil Moisture Soil Nutrient 
SM Dry 26.2 SN Poor 38.4 
SM Mesic 52.4 SN Medium 38.7 
SM Wet 20.2 SN Rich 20.0 
SM VeryWet 1.19 SN VeryRich 2.87 

Site Series Edatopic 
SSE 01 45 2 
SSE 03 23.5 
SSE 05 22.9 
SSE 09 7.24 
SSE 10 0.43 
SSE 11 0.67 

Figure 11 - The portion of the CWHvm2 Bayesian-network, which illustrates the relationship 
between site-series group (Site Series Edatopic), soil-moisture regime (Soil Moisture) 
and soil-nutrient regime (Soil Nutrient). A description of the node format and 
nomenclature can be found in Figure 5. 

Adding nodes to adjust the estimation of site-series group 

The BN knowledge base for the CWHvm2 required the fewest post-edatopic 

adjustments to site-series group. Based on the ecological-domain expert ' s advice, I 

incorporated slope gradient (Slope group2) (Figure 12) and forest vegetation (Site 

Productivity and Species Influence) (Figure 13) directly into the site-series-group 

prediction. Slope gradient was used to express the ecological-domain expert's belief that the 

05 site-series group occurred on sites with rich soil and moderate to high slope gradient, and 

the 11 site-series group occurred on sites with rich soil and little to no slope gradient. In 

addition, slope was used to differentiate site-series groups with poor/medium soils, such as 

03 that occurred on sites with high slope gradient, from 09 and 10 that occurred on low slope 

gradients. The influence of forest vegetation on the prediction of site-series group was 
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":.... " Site Series Edotopic 
SSE01 45.2 • '• 
SSE 03 23.5 - Slope Group2 
SSE 05 22.9 - SG2 Oto1 0 2. 96 
SSE 09 7.24 I SG2 1 1to35 18.1 • i SSE10 0.43 SG2 36plus 78.9 
SSE11 0.67 / 

~ / / 
Site Series Slope Modifier 
sss 01 47.0 ~-sss 03 23.5 ~ sss 05 22.4 • sss 09 5.65. 
SSS 10 0.28 
sss 11 1 1 6 

I 
Figure 12 - The portion of the Bayesian network for the CWHvrn2, which illustrates the influence of 

slope (Slope Group2) on the previous estimation of site-series-group (Site Series 
Edatopic) to produce a new prediction of site-series group (Site Series Slope Modifier). 
A description of the node format and nomenclature can be found in Figure 5. 

Site Series Slope Modifier 
sss 01 
sss 03 
SSS 05 
sss 09 
SSS10 
sss 11 

47.0 ~'-1 
215~ i 
22.4. 1 
5.65. i 
0.28 i 
1.16 i 

Site Series Veg Modifier 
SSV 01 413 .... 
ssv 03 25.5 - · 
SSV 05 20.7 • 
SSV 09 7.98 1 
SSV 1 0 0.67 
SSV 11 1 77 

Site Productivity • _.--
f-=-::-:-::-:------::-:-:-r-~---,--r..-

SPHigh 21.8 ~1 1 : 
SP Medium 31 7 ~ 1 , 
SP Low 44.5 .. 1 

Species Influence 
Poplar 1 4.3 ~ 
LodgepoleOid 1 3.3 ~ 
SpruceOid 1 13 ~ 

I ---- YellowCedar 1 4.3 .. 
~ Nolnfluence 44.7 ~.• 

Figure 13 - The portion of the Bayesian network for the CWHvrn2, which illustrates the influence of 
forest-stand productivity (Site Productivity) and forest-stand species (Species Influence) 
on the previous estimation of site-series group (Site Series Slope Modifier) to produce a 
final estimation of site-series group (Site Series Veg Modifier) for the CWHvrn2. A 
description of the node format and nomenclature can be found in Figure 5. 
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more complex. In general, the presence of old and low-productivity lodgepole pine (Pinus 

contorta var. contorta) was believed by the ecological-domain expert to often occur on 03, 

09 and 10 site-series groups. Sites with highly productive lodgepole pine were more often on 

01 site-series group. Sites that were highly productive and contained Sitka spruce (Picea 

sitchensis) were more likely to be 05 site-series group, and the low-productivity sites with 

Sitka spruce were more likely to be 11. The presence of highly productive yellow-cedar 

usually signified 01 site-series group. 

The BN knowledge base for the CWHvm1 incorporated similar beliefs as the 

CWHvm2 with respect to the probability that certain site-series groups were associated with 

certain slope gradients and forest vegetation. Tree species was used similarly in the 

CWHvm1 as in the CWHvm2, but, based on the ecological-domain expert's opinion, I added 

amabilis fir, poplar (Populus balsamifera) and red alder (Alnus rubra) to the list of 

vegetation species. It was the ecological-domain expert's opinion that both poplar and red 

alder helped to predict the occurrence of 09 site-series group. The 09 site-series group 

occurred on similar slopes and soil-moisture/nutrient regimes as the 14 site-series group, but 

was associated with fluvial benches that were commonly vegetated with mature red alder and 

poplar. 

In the BN knowledge base ofthe CWHvm1, I incorporated river floodplains 

(Floodplain) directly into the estimation of site-series group to further refine the prediction 

of site-series group 09 (Figure 14). I gave low floodplains (LowerFloodplain) a high 

probability ofbeing 09 site-series group, high floodplains (HighFloodplain) a medium 

probability ofbeing 09, and glacial floodplains (GlacialFloodplain) a low probability of 

being 09. 
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\\ • / 
Site Series Veg Modifier 
SSV 01 34 .3 ~ 
SSV 03 17.5 ~ 

Floodplain SSV 05 19.8 ~ r--GlaciaiFioodpl. .. 1.03 SSV 09 19.0 ~ 
HighFioodplain 0.82 SSV 12 5.26 
LowerFioodplain 0.38 SSV 13 0.98 
NotFioodplain 97.8 SSV 14 3.13 

""' ""'~ Site Series Fluvial Modifier 
SSF01 34.3 -· SSF03 17.5 : SSF05 19.6 
SSF09 19.2 • SSF12 5.26 
SSF13 0.98 
SSF14 3.09 

Figure 14 - The portion of the Bayesian network for the CWHvml , which illustrates the influence of 
floodplains (Floodplain) on the previous estimate of site-series group (Site Series Veg 
Modifier) to produce a final estimate of site-series group (Site Series Fluvial Modifier) 
for the CWHvml. A description of the node format and nomenclature can be found in 
Figure 5. 

I developed the BN knowledge base of the CWHvh2 to incorporate slope gradient, 

vegetation and floodplains variables directly into the site-series-group prediction. I defined 

conditional-probability tables for these relationships using the ecological-domain expert's 

opinion. I also incorporated shoreline effects directly into the prediction of site-series group 

(Figure 15). I converted to site-series group 14, all site-series groups occurring in areas 

affected by the ocean wind input layer (Salt Spray Shoreline). In addition, based on the 

ecological-domain expert's advice and the CWHvh2 edatopic grid (Figure 1 0), I increased 

the probability that a site was site-series group 18 if it occurred on an existing very wet site 

(site-series groups 12 and 13) in a gully adjacent to the ocean (Gully Adjacent to 

Shoreline). 
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Low Area Adjacent to Shor ... 
LowShoreNot 98.5 
LowShore 1.50 

Salt Spray Shoreline 
WindShoreN ot 95.9 
WindShore 4.06 

Gully Adjacent to Shoreline 
ShoreCreekNot 99.9 
ShoreCreek .061 

Site Series Fluvial Modifier 
SSF 01 18.5 
SSF 03 10.7 
SSF 0<1 1 <1 .2 
SSF 07 11 .6 
SSF08 .055 
SSF11 2<1.<1 
SSF1 2 770 
SSF1 3 12.8 

Site Series Shore Mod ... 
SSSh 01 17.8 
SSSh 03 10.3 
SSSh 04 13.7 
SSSh 07 11.1 
SSSh DB .052 
SSSh 11 23.4!--
SSSh 12 7.39 
SSSh 13 12.3 
SSSh 14 4.06 
SSSh 18 .014 

Figure 15 - The Bayesian network for the CWHvh2, which illustrates the influence of ocean wind 
(Salt Spray Shoreline) and ocean estuaries (Gully Adjacent to Shore) on the previous 
estimation of site-series group (Site Series Fluvial Modifier) to produce a final estimation 
of site-series group (Site Series Shore Modifier) for the CWHvh2. A description of the 
node format and nomenclature can be found in Figure 5. 

Adjusting the knowledge base conditional probabilities 

I populated each input node with an unconditional-probability distribution, which 

represented the proportion that each input class occurred within the corresponding BEC 

subzone/variant. These unconditional probabilities aided model adjustment because the 

posterior distributions generated by each of the intermediate nodes could then reflect the 

relative abundance of each class within the BEC subzone/variant (see the "probability bars" 

of each node in Figures 7, 8, 9, 10, 11 , 12, and 13 ). If the posterior distribution of an 

intermediate node did not reflect the relative distribution of the classes within the study area 

then this signalled the possible need to revise the node's conditional-probability table. 
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For example, in Figure 9, which contains the unconditional probabilities for the 

CWHvm2 BEC unit, 0.28% of the area has slopes ofO% (S 0), 2.68% of the area has slopes 

from 1% to 10% (S lto10), 18.1% of the area has slopes from 11% to 35% (S 11to35), 34.4% 

of the area has slope from 36% to 60% (S 36to60), 22.5% of the area has slopes from 61% to 

80% (S 61to80), and 22% of the area has slopes greater than 80% (S 81plus). Based on the 

unconditional probabilities of Slope Class and the conditional probabilities of Slope Group, 

the posterior probabilities of the Slope Group classes were 12% Gentle slope and 88% Very 

Steep slope. If the posterior-probability values for Slope Group did not reflect expert 

opinion then I would adjust the conditional-probability values for Slope Group in 

consultation with ecological-domain expert. 

Although the posterior probabilities that resulted from the BEC subzone/variant's 

unconditional-probability tables reflected the relative abundance of each class within the 

BEC subzone/variant, they did not portray the spatial arrangement of each class. To assess 

the spatial distribution of the intermediate- and leaf-nodes' posterior-probabilities, I routinely 

generated maps using a sample of the GIS database as input. The ecological-domain expert 

and I visually interpreted the maps generated from intermediate- and leaf-nodes' posterior-

probabilities to assess how well the knowledge bases were predicting the spatial distribution 

of the intermediate- and leaf-nodes' classes. If the spatial arrangement of a node's classes 

did not reflect the ecological-domain expert's expectation then I revised the conditional 

probabilities using the advice of the ecological-domain expert. 
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Testing the knowledge base 

I tested the spatial output from the knowledge bases against spatially explicit 

reference data once the knowledge base appeared to produce predictions that spatially 

matched the expectation of the ecological-domain expert. To test the knowledge bases of the 

CWHvml and CWHvm2, I randomly selected 68 raster cells from an area in which I had 

stereo air-photo coverage. For each randomly located point, I identified the corresponding 

location on the air photos. Using air-photo interpretation, the ecological-domain expert 

estimated the site-series group occurring at each randomly selected point. For the CWHvh2. 

I created 32 randomly distributed points, but I augmented these with 59 site-series field plots 

gathered for a previous project conducted in the CWHvh2 (Banner eta/. 2004). These field 

plots occurred in two spatially distinct clusters, with each cluster employing a grid-sampling 

plan ranging from 100 m to 200 m spacing. 

By comparing the knowledge base estimation of site-series group with the air-photo-

interpreted and field-gathered predictions it was possible to assess how well the knowledge 

base predicted site-series group. I conducted the comparison between the map's site-series 

group and the site-series group interpreted from air-photos using a simple hard classification. 

For each sample point, I chose the site-series group with the highest probability from the map 

and the dominant site-series group from the photo. To rate knowledge base performance I 

simply tallied the number of times that the highest-probability site-series-group prediction 

matched the dominant air-photo interpretation. If the knowledge base correctly predicted 

site-series group greater than 65% of the time then I made no additional adjustments to the 

knowledge base. If the testing results were low, however, I did make additional adjustments 

to the conditional-probability table. I based these additional adjustments on both evidence 
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resulting from the test analysis and further visual analysis. All of the conditional-probability 

adjustments I made were reviewed by the ecological-domain expert prior to further map 

generation. 

I repeated this process of adjusting the conditional-probability values, making visual 

assessments, and testing against reference data until the adjustments, believed to be required 

to increase accuracy, were no longer resulting in increased prediction success. Visual 

assessment of the preliminary results from the knowledge bases for the CWHvm2 and 

CWHvm1 revealed that the conditional-probability values required only minor adjustment. 

After the first round of testing using the testing reference data, the CWHvm2 knowledge base 

required no adjustments to the conditional-probability tables, however, the CWHvm 1 

required some adjustments to increase the successful prediction of the 09 site-series group. 

Final testing of knowledge bases for the CWHvm2 and CHWvm1 indicated that the 

CWHvm2 knowledge base achieved a 92% successful prediction rate for the 14 air-photo 

reference points, while the CWHvm1 knowledge base correctly predicted 72% of the 54 air-

photo reference points. 

The CWHvh2 knowledge base, however, required extensive adjustments due to either 

visual assessment or the results generated from the testing procedure. In total the CWHvh2 

was tested and adjusted three times, but never achieved the 65% successful prediction rate. 

At best, the CWHvh2 knowledge base was successful in predicting site-series group on 59% 

of the test sites. At this point, I used all three BN knowledge bases to generate a final site-

series-group map for each of the three BEC subzone/variants in the study area. 
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2.5 FINAL MAP GENERATION 

I created a soft-classification map of site-series group from the input GIS database by 

passing each individual cell in the input database through the appropriate CWHvh2, 

CWHvm1 and CWHvm2 knowledge base. The resulting map of fuzzy site-series groups 

recorded the probability of site-series-group occurrence within each raster cell. I created a 

hard classification of site-series group by choosing the site-series group with the highest 

probability within each raster cell. 

2.6 MAP ACCURACY ASSESSMENT 

To assess map accuracy, I compared reference data, which were comprised of site-

series-group information gathered from georeferenced field observations, to geographically 

equivalent areas on the map of predicted site-series group. In total, I used 286 reference 

points for accuracy assessment: 92 in the CWHvm2, 161 in the CWHvm1, and 33 in the 

CWHvh2. These field observations were gathered for the North Coast PEM Project (Jones 

2003) using a cluster-sampling plan. 

For each point in the reference data, I compared the site-series group in the reference · 

data to the site-series-group prediction at the same location on the map. I used a simple hard 

classification for this comparison. For each point in the reference data, I chose the dominant 

site-series group, and for each point on the map, I chose the site-series group with the highest 

probability. I constructed a contingency table from these map/reference-data comparisons 

for each BEC subzone/variant. From these contingency tables, I generated several accuracy-

assessment measures: percentage correct, producer's accuracy, user's accuracy and Kappa 
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analysis. I used an a= 0.05 level of significance throughout these test for inferring statistical 

significance. 

In conjunction with each contingency matrix, I constructed a separate matrix that 

recorded the average posterior-probability from the site-series group with the highest 

probability. The content of this matrix revealed the knowledge base's confidence when 

predicting the most-probable site-series group. For example, if the contingency matrix 

records that five samples were 01 in the reference data and most likely 01 in the map, an 

average posterior-probability value of 0. 7 for this combination would indicate that the 

knowledge base was 70% confident that these locations were 01. 
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3 RESULTS 

3.1 KNOWLEDGE BASE STRUCTURE 

The Bayesian-network knowledge base for the CWHvm2 was composed of 46 nodes, 

58 links and 2179 conditional probabilities (Figure 16). Of the 46 nodes in the network, 17 

nodes were input nodes, which represented the layers in the GIS database, and one node was 

an output node, which represented the final estimation of site-series group (Site Series V eg 

Modifier). Based on the input nodes' unconditional probability values for the entire study 

area, the posterior probabilities for the final estimation of site-series groups -01 (SSV 01 ), -

03 (SSV 03), -05 (SSV 05), -09 (SSV 09), -10 (SSV 10) and -11 (SSV 11), were 46.4%, 

25.9%, 20.8%, 4.79%, 0.5% and 1.7%, respectively. 

The Bayesian-network knowledge base for the CWHvm1 was composed of 47 nodes, 

60 links and 2759 conditional probabilities (Figure 17). Of the 47 nodes in the network, 17 

nodes were input nodes, which represented the layers in the GIS database, and one node was 

an output node, which represented the final estimation of site-series group (Site Series 

Fluvial Modifier). Based on the input nodes' unconditional-probability values for the entire 

study area, the posterior probabilities for the final estimation of site-series groups -01 (SSF 

01), -03 (SSF 03), -05 (SSF 05), -09 (SSF 09), -12 (SSF 12), -13 (SSF 13) and -14 (SSF 

14), were 42.6%, 16.3%, 25%, 6%, 5.5%, 0.4% and 4.2%, respectively. 

The Bayesian-network knowledge base for the CWHvh2 was composed of 50 nodes, 

64links and 3725 conditionalprobabilities (Figure 18). Of the 50 nodes in the network, 19 

nodes were input nodes, which represented the layers in the GIS database, and one node was 
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an output node, which represented the final estimation of site-series group (Site Series Shore 

Modifier). Based on the input nodes' unconditional-probability values for the entire study 

area, the posterior probabilities for site-series groups -01 (SSSh 01), -03 (SSSh 03), -04 

(SSSh 04), - 07 (SSSh 07), -08 (SSSh 08), -11 (SSSh 11), -12 (SSSh 12), -13 (SSSh 13),-

14 (SSSh 14) and -18 (SSSh 18), were 20.2%, 10.6%, 14%, 8.5%, 0.04%, 28%, 9.3%, 5.2%, 

4.1% and 0.01 %, respectively. 

3.2 PREDICTIVE ECOSYSTEM MAPS 

Figure 19 ilhistrates the spatial arrangement of those site-series groups with the 

highest probability value within each raster cell. The spatial arrangement reveals the general 

location of each of the predicted site-series-groups and their abundance within the landscape. 

Figure 20 and Figure 21 provide detailed views of a section of the study area, with the 

intention of demonstrating the relative terrain position of the predicted site series groups. 

Within the CWHvm2, 01 was the most abundant site-series group and situated mid-

slope. The second most abundant site-series group was 03, which was situated at higher 

elevations within large valleys. The third most abundant site-series group was 05, which was 

placed close to rivers and streams. The 09 and 10 site-series groups occurred only in small 

isolated areas at lower elevations within the valleys. 

Within the CWHvm1, like the CWHvm2, 01 was the most abundant site-series group, 

followed by 03 and 05. With respect to the relative spatial position of these three leading 

site-series groups, 01 site-series group was placed on mid-slopes, 03 was placed at higher 
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Figure 19 - An overview map of predicted site-series groups in all three BEC subzone/variants in the study area. This map shows the relative 
position and abundance of each of the predicted site-series groups within each of the three BEC subzone/variants. The red "viewpoint" 
boxes indicate the spatial extent of the perspective view in Figure 20 and Figure 21. 
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elevations within the large valleys, and 05 was placed close to small rivers. The 09 site-

series group was situated along the bottom of larger valleys while 13 and 14 appeared higher 

up the valley sides than 09. 

Within the CWHvh2, the low relief areas were defined by the dominance of site-

series-groups 11, 12 and 13, while the 01, 03, 04 and 07 site-series-groups dominated the 

mountainous areas. Site-series-group 14, which was related to offshore winds, occurred 

along the western coastline of the study area. 

3.3 MAP ACCURACY ASSESSMENT 

The map of predicted site..;series group for the CWHvm2 obtained an overall 

percentage correct of 47.8%, with a 95% confidence interval of± 9.8%. Producer's accuracy 

varied from 0% to 65.6% and user's accuracy varied from 0% to 59.1% (Table 9). The 

Kappa analysis produced a KHAT of0.249 with a variance of0.006, producing a Z-score of 

3.28 (p = 0.001). Average posterior probabilities for the predicted site-series groups ranged 

from 0% to 55% (Table 1 0). For those map-accuracy points where there was a match 

between the site-series-group value in the reference data and in the map, the average 

posterior probabilities ranged from 0% to 59.4%. 

The map of predicted site-series group for the CWHvm1 obtained an overall 

percentage correct of50.3%, with a 95% confidence interval of± 7.4%. Producer's accuracy 

varied from 0% to 73.8% and user's accuracy varied from 0% to 82.8% (Table 11). The 

Kappa analysis produced a KHAT of0.37 with a variance of0.022, producing a Z-score of 

2.51 (p = 0.012). Average posterior probabilities for the predicted site-series groups ranged 

from 0% to 53.7% (Table 12). For those map-accuracy points where there was a match 
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Table 9 - The accuracy-assessment contingency-matrix for the CWHvm2, which includes percentage 
correct, user' s and producer ' s accuracy. 

Map Site Series 
Reference Site Series Group 

User's 
Group 01 03 05 09 10 11 Total Accuracy 

01 21 4 18 I 1 2 47 44.7% 

03 5 13 1 0 3 0 22 59.1 % 

05 6 3 10 0 0 3 22 45.4% 

09 0 0 0 0 0 0 0 0.0% 

10 0 0 0 0 0 0 0 0.0% 

11 0 0 0 1 0 0 1 0.0% 

Total 32 20 29 2 4 5 92 

Producer's 65.6% 65.0% 34.5% 0.0% 0.0% 0.0% Accuracy 

Percentage Correct 47.8% 1 

Table 10 - The matrix of average posterior probabilities for the CWHvm2, which includes the 
average posterior probabilities for each mapped site-series group. 

Map Site Series Reference Site Series Group 
Group 

01 03 05 09 12 14 Average 

01 0.484 0.511 0.500 0.560 0.468 0.459 0.493 

03 0.534 0.594 0.516 0 0.400 0 0.550 

05 0.493 0.456 0.436 0 0 0.466 0.458 

09 0 0 0 0 0 0 0.000 

10 0 0 0 0 0 0 0.000 

14 0 0 0 0.290 0 0 0.290 
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Table 11 - The accuracy-assessment contingency-matrix for the CWHvml , which includes 
percentage correct, user's and producer's accuracy. 

Map Site Series Reference Site Series Group 
User's 

Group 
01 03 05 09 12 13 14 Total Accuracy 

01 31 12 15 2 8 0 4 72 43.1 % 

03 6 10 0 0 1 4 0 21 47.6% 

05 4 0 24 1 0 0 0 29 82.8% 

09 1 0 7 9 0 0 7 24 37.5% 

12 0 0 0 0 0 1 0 1 0.0% 

13 0 0 0 0 0 0 0 0 0.0% 

14 0 0 1 3 3 0 7 14 50.0% 

Total 42 22 47 15 12 5 18 161 

Producer's 73.8% 45.4% 51.1 % 60.0% 0.0% 0.0% 38.9% Accuracy 

Percentage 50.3% Correct 

Table 12 - The matrix of average posterior probabilities for the CWHvm1, which includes the 
average posterior probabilities for each mapped site-series group. 

Map Site Series Reference Site Series Group 
Group 

01 03 05 09 12 13 14 Average 

01 0.435 0.441 0.423 0.368 0.420 0 0.346 0.425 

03 0.469 0.548 0 0 0.820 0.543 0 0.537 

05 0.488 0 0.423 0.380 0 0 0 0.431 

09 0.371 0 0.506 0.451 0 0 0.474 0.470 

12 0 0 0 0 0 0.408 0 0.408 

13 0 0 0 0 0 0 0 0 

14 0 0 0.426 0.306 0.365 0 0.355 0.352 
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from 0% to 53.7% (Table 12). For those map-accuracy points where there was a match 

between the site-series-group value in the reference data and in the map, the average 

posterior probabilities ranged from 0% to 54.8%. 

The map of predicted site-series group for the CWHvh2 obtained an overall 

percentage correct of33.3%, with a 95% confidence interval of± 15.2%. Producer's 

accuracy varied from 0% to 60% and user's accuracy varied from 0% to 100% (Table 13). 

The Kappa analysis produced a KHAT of 0.199 with a variance of 0.294, producing a Z-

score of0.366 (p = 0.714). Average posterior probabilities for the predicted site-series 

groups ranged from 0% to 57.6% (Table 14). For those map-accuracy points where there 

was a match between the reference data and the map site-series-group values, the average 

posterior probabilities ranged from 0% to 54.6%. 
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4 DISCUSSION 

One of the objectives of this project was to develop an approach to map large-scale 

ecological units that incorporated expert knowledge. It was anticipated that this objective 

would be met by using Bayesian networks as the knowledge base of an expert-based system. 

Bayesian networks also held promise of being a good way to allow an ecological-domain 

expert to build a model that could capture prediction uncertainty when describing the 

relationships between environmental variables and site series. 

Unfortunately, none oft~e maps of site-series group produced by this study correctly 

predicted the spatial locations of even 65% of the known site-series groups. Results from the 

accuracy assessment procedures performed within the CWHvm2 unit indicated that the 

predictive-ecosystem map was only fairly representing the spatial distribution of site-series 

group. The predictive ecosystem map for the CWHvm2 obtained an overall percentage 

correct of 47.8%, with a 95% confidence interval of± 9.8. This indicated that the map 

performed fairly well, but fell short of the target of 65% established by Meidinger (2003). 

This result, however, was higher than the result obtained by the North Coast PEM Project, 

which used a belief-matrix knowledge base. The North Coast PEM Project, although 

utilizing slightly different site-series groupings, achieved an overall percentage correct of 

21% in the CWHvm2 (Meidinger 2004). 

According to the contingency matrix for the CWHvm2 (Table 9), the map 

successfully identified the 01 and 03 site-series groups, with producer's accuracies of 65.6% 

and 65% respectively. The map, however, performed poorly at identifying the remaining 

site-series groups, with 05 being successfully predicted only 34.5% ofthe time and 09, 10 
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and 11 not predicted at all relative to the reference data. Results of the CWHvrn2 user's 

accuracy assessment revealed that several of the site-series groups were assigned to the 

wrong unit. A large number ofthe samples identified as 01 on the map were identified as 05 

in the reference data. This was similar for the 05, where the map falsely predicted the 01 

site-series groups as 05. These errors of commission were confirmed by the low user's 

accuracy values (Table 9). The map was also unable to identify any ofthe 09 or 10 units 

within the reference data, and unable to correctly identify any 11 units within the reference 

data. 

Although the KHAT value of 0.249 indicated that the map poorly predicted site-series 

group, the KHAT variance was 0.006. This meant that, although the map was unable to meet 

the 65% overall percent correct, the map was significantly better than chance agreement. 

Evaluation of the average posterior probabilities generated by the BN for each of the 

site-series groups mapped in the CWHvrn2 (Table 10) revealed that each site-series group 

was predicted with differing levels of confidence. The 03 site-series group was predicted 

with the highest confidence, with an average posterior probability of 55%, but none of the 

other site-series groups were predicted with high confidence. The 01 and 05 site-series 

groups were mapped with confidence levels of 49.3% and 45.8% respectively, while 14 was 

predicted with the lowest confidence: 29.2%. Site-series-groups 09 and 10 were not 

predicted at all in relation to the reference data, resulting in 0% confidence for both. 

Results from the accuracy assessment procedures for the CWHvml indicated that the 

predictive ecosystem map only partially represented the spatial distribution of site-series 

group (Table 11 ). The overall percentage correct of 50.3%, with a 95% confidence interval 
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of± 7 .4, indicated that the map performed fairly well at predicting site-series group, but, as 

with the CWHvm2, fell short ofthe target of 65%. This result, however, was similar to the 

result obtained by the North Coast PEM Project, which achieved an overall percentage 

correct of 50% for the CWHvm1 using similar site-series groups (Meidinger 2004). 

According to the contingency matrix for the CWHvm1 (Table 11 ), the map of site-

series group did successfully identify the 01, with a high producer's accuracy of73.8%. The 

map, however, achieved only moderate success when predicting the 09, 05 and 03 sites-series 

groups, with producer's accuracy results of 60%, 51.1% and 45.4% respectively. The map 

poorly predicted the 14 site-series group, with only 38.9% producer's accuracy, and was 

unable to predict any of the 12 or 13 site-series groups. Results of the user's accuracy 

assessment revealed that several of the site-series groups were assigned to the wrong unit. 

The user's accuracy results for both 03 and 14 were moderate, with approximately half the 

mapped sites actually representing the reference data. Although the producer's accuracy for 

01 was high, a large number of the accuracy assessment points identified as 01 on the map 

were identified as 05 or 03 in the reference data, resulting in a low user's accuracy value for 

the 01 sites-series group. The same was true for the 09, where the map falsely predicted the 

05 and 14 site-series groups to be 09. The map was also unable to identify any 13 site-series 

groups within the reference data, and unable to correctly identify any 12 site-series groups 

within the reference data. 

The KHAT value of0.37 suggests that the map poorly/fairly predicted site series 

group. However, a KHAT variance of 0.022 meant that, like the site-series-group map for 

the CWHvm2, the map was significantly better than chance agreement, although the map 

was unable to meet the 65% overall percent correct. 
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The average posterior probabilities generated by the BN were roughly equivalent for 

each of the site-series groups that were mapped in the CWHvm1 (Table 12), although none 

of the site-series groups were predicted with high confidence. Like the CWHvm2, the 03 

site-series group was predicted with the highest confidence, with an average posterior-

probability of 53.7%. The remaining site-series groups, with the exception of 13, were 

predicted with moderately low confidence, with values ranging from 35.2% to 47%. Site-

series-group 13 was not predicted at all with respect to the reference data, resulting in 0% 

confidence. 

An overall percentage-correct value of33.3%, with a 95% confidence interval of± 

15.2%, indicated that the CWHvh2 map poorly predicted site-series group, and fell well short 

of the target of 65%. Again, this result was similar to the result obtained by the North Coast 

PEM Project, which achieved an overall percentage correct of 38% in the CWHvh2 using 

similar site-series groups (Meidinger 2004). 

The map of site-series group for the CWHvh2 performed well when identifying 07 

and moderately well when identifying 01, with producer's accuracies of 85.7% and 60% 

respectively. The map, however, performed poorly when identifying the remaining site-

series groups. The 03 and 04 site-series groups obtained producer's accuracies of only 20% 

and 16. 7%, respectively, and site-series-groups 11, 12 and 13 were never. identified correctly 

with respect to the reference data. The 08, 14 and 18 site-series groups could not generate 

producer's accuracy values greater than zero because these site-series groups were not 

present in the reference data. The user's accuracy for the 07 site-series group was fair, with 

approximately half the mapped 07 sites actually representing 07 in the reference data (Table 

13). Several of the other site-series groups, however, were assigned to the incorrect unit. 
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Although the producer's accuracy for 01 was high, a large number of the accuracy-

assessment points identified as 01 on the map were identified as 11 in the reference data. 

The 04, 11, 12 and 13 site-series groups were overestimated on the map, which resulted in 

low user's accuracy. The user's accuracy results for site-series groups 08, 14 and 18 were 

understandably zero because they were not present in the reference data. The KHAT value 

of 0.199 indicated that the map poorly predicted site-series group. In addition, due to the low 

number of reference-data points per site-series group, the comparison between map and 

reference data produced a high KHAT variance value: 0.294. This meant that not only was 

the site-series-group map not able to meet the 65% overall percent correct target but the map 

was not significantly better than chance agreement. 

The average posterior probabilities for the site-series groups in the CWHvh2 (Table 

14) can roughly be broken into three categories: those site-series groups that were not 

predicted at all, those that were predicted with low confidence, and those that were predicted 

with moderate confidence. Site-series-groups, 08, 13, 14 and 18, were predicted with 0% 

confidence because they were never predicted to be the dominant site-series group at the 

reference-data locations. Site-series-groups, 01, 03, 04 and 12, were all predicted to be the 

dominant site-series group with a low level of confidence, with confidence values ranging 

from 34% to 38.8%. The 07 and 11 site-series groups were predicted to be the dominant site-

series group with moderate confidence, with confidence values of 57.6% and 52.9%, 

respectively. 

During the accuracy assessment procedures, the georeferenced reference-data were 

considered correct in both spatial accuracy and thematic content. The impact of this 

assumption was that, because accuracy-assessment results were relative to the reference data, 
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the accuracy-assessment results indicated how well the generated map represented the 

reference data, not how well the map represented what was actually on the ground. The 

spatial juxtaposition of the predicted-site-series groups for the CWHvm2 and CWHvm1, 

however, were similar to the landscape profiles presented in the field guide of Banner eta/. 

(1993). The knowledge bases for the CWHvm2 and CWHvm1 were considered to be 

performing well at predicting the most common site-series groups, based on the ecological-

domain expert's visual interpretation of relative position and abundance of each site-series 

group within the final ecosystem maps (Figure 19) and the perspective view (Figure 20). 

The relative terrain positions of the predicted site-series groups in the CWHvh2 

generally match the landscape profiles that were presented in the Banner eta/. (1993) field 

guide for site-interpretation. Based on ecological-domain expert's visual interpretation of 

relative position and abundance of each site-series group within the final ecosystem maps 

(Figure 19) and the perspective view (Figure 21), the CWHvh2 knowledge base appeared to 

perform fairly at predicting the most common site-series groups. The 07 site-series group 

occurred at lower elevations on moderate slopes while the 03 occurred at higher elevations. 

Site-series-groups 01 and 04 were between the 07 and 03, with 04 tending towards steeper 

slopes than 01. Site-series-groups 11 and 12 were found on low-slope areas with 12 being 

found closer to water bodies than 11. Observation that the 03 site-series group was being 

placed in the upland areas within complexes of 11 and 12, however, was disconcerting. 

According to the ecological-domain expert, these areas of03 within 12/13 should have a 

higher probability of being 01 rather than 03. This indicated that the knowledge base was 

underestimating the soil moisture of these upland areas within larger lowland complexes. 
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Comparison of the row totals to the column totals in all three contingency matrices 

revealed that 01 site-series group was overestimated in all three BEC subzone/variants. In 

the CWHvm2 and CWHvm1 maps, this overestimation was to the detriment of the second 

most common site-series group- 05 . While there was overestimation of the 01 on the map, 

there was also underestimation of some site-series groups. Generally, those site-series 

groups being underestimated and incorrectly mapped had very wet soil moisture regime and 

occurred infrequently in the reference data. The underestimation ofthese very wet site-series 

groups may in part be due to the scale of the GIS data. 

If these very wet units occurred in small isolated areas then the input GIS data may 

not have contained adequate spatial resolution to detect the environmental conditions 

required to delineate these units. For example, site-series-group 13 in the CWHvh2 usually 

covers no more than a couple of hectares and is commonly associated with depressions with 

low forest productivity. Although the minimum spacing between TRIM elevation points was 

25m, the average was roughly 75 m, making it difficult to detect small one- or two-hectare 

depressions. In addition, forest-cover polygons had an average polygon area of 12 ha in the 

study area and did not delineate small one- or two-hectare features. A common technique 

used in past PEM projects was to indicate that some small-unmapped sites were present 

within some larger ecological units (Jones 2003). For example, units mapped as site-series 

01 in the CWHvh2 of Jones (2003) actually contained approximately 90%-01 and 10%-11. 

Evaluation of the off-diagonal elements in all three contingency matrices revealed 

that generally, errors occurred as a result of a cell being incorrectly assigned to the adjacent 

unit in the edatopic grid. For example, 01 site-series group, which was adjacent to 03, 05 and 

09 groups in the edatopic grid of CWHvm2, was commonly misidentified as either 03 or 05 
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site-series group. Although this was an encouraging sign that the knowledge base was 

producing results close to the correct location on the edatopic grid, the level of 

misclassification was considered high. The solution employed by previous predictive-

mapping projects that map site-series was to improve classification accuracy by grouping 

site-series units into larger site-series groups (Jones 2003). A further grouping of site-series 

groups was not considered a reasonable solution in the current project because the knowledge 

bases already incorporated groups of site series. 

In the CWHvh2, the original 01 and the 04 site series ofBanner et al. (1993) occupy 

adjacent areas on the edatopic grid and exist within similar environmental conditions. 

During development of the CWHvh2 knowledge base, it was recognised that the GIS 

database may not be detailed enough to separate the 01 site series from the 04. Although 

these two similar site series were not grouped during CWHvh2 model development, they 

could have been grouped within the Bayesian network through the creation of an alternate 

output node. 

In retrospect, it may have been best to create the knowledge bases with the intent to 

predict site series, not grouped site-series. As a last step in the Bayesian network 

development, an alternate output node could have been added, which grouped together those 

ecologically similar site series that the knowledge base was having difficulty differentiating. 

This alternate approach could also ease future knowledge base updating. For example, with 

the current knowledge bases, which group site-series from the onset, if new data become 

available that can differentiate previously grouped site-series then many of the conditional 

probability tables involving site-series group would need to be altered. Ifthe Bayesian 

knowledge base was created with the intention to predict site series then the final site-series-
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grouping node would be the only node requiring an alteration to the number of site-series 

classes. 

Although the BN knowledge bases were constructed solely from expert opinion, the 

results of the accuracy assessment procedures were lower than anticipated, especially, given 

the moderately-high agreement between the CWHvm2 and CWHvml testing-data set and the 

test maps. This disparity between the results of knowledge base testing and the accuracy 

assessment results could be partially explained by the different methodologies used to collect 

the two sets of reference data. The reference data used for accuracy assessment was 

comprised of site-series observations collected through ground surveys, while the set of 

reference data used for testing was collected using air-photo interpretation. Although both 

sets of data were gathered using sampling plans that intended to capture the proportional 

occurrence of each site series within the study area, the testing set contained a higher 

proportion of points in the more common site-series groups than did the accuracy assessment 

set. This increase in the more common site-series groups in the set of testing reference data 

may have contributed to the high percent-correct scores during knowledge base testing. 

Disagreement between the results ofknowledge base testing and the results of map-accuracy 

assessment could have been reduced using the same sampling plan to gather the reference 

data for knowledge base testing and accuracy assessment of the map. 

A review of the matrices that recorded the average posterior-probabilities for each of 

the site-series groups revealed that none of the most likely site-series-groups were predicted 

with high confidence. In all three BEC subzone/variants, the average confidence values for 

the most-likely site-series group were around 0.4 or 0.5. These values indicated that rarely 

was there a clear majority in the soft-classification results at each location. Although 
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disappointingly low, these confidence values reflected how difficult it was to determine a 

location's site-series group, given the information provided in the input GIS database. The 

ecological-domain expert often indicated that conditional-probability values should be 

lowered to compensate for a lack of confidence in either the input GIS database or 

subsequent intermediate nodes. Thus, lowering the conditional-probability values leads to a 

reduction in prediction confidence. 

The accuracy assessment results and confidence values revealed the knowledge base 

and GIS database performed poorly together when making an estimate of site-series group. 

The overall percentage-correct results, which were produced using the site-series group with 

the highest probability at each location, indicated that the dominant site-series group was 

correctly identified by the knowledge base at less-than 50% of the reference data locations. 

The low posterior-probability values further highlighted the poor performance of the 

knowledge base. Rarely did the knowledge base confidently predict the correct site-series 

group from the input ·GIS database. In addition to the low percent-correct and confidence 

values, the user's accuracy results were poor for almost each site-series group. 

The methods employed in this project did not produce a large-scale ecosystem 

classification map that met the needs of forest-related management activities. With low 

percent-correct results and low prediction confidence, the maps produced by this study would 

not be suitable for forest management activities that rely on a minimum 65% correct 

estimation of either site-series or the site-series groups created in this study. For example, 

the resulting maps would not be suitable for timber supply analysis, identifying the location 

of rare ecosystems, or silviculture prescriptions. 
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As with all expert systems, the results and knowledge base were closely linked to the 

opinion of the expert. This could make it difficult to replicate the results without using the 

same experts involved in the initial model development. It also makes it difficult to assess 

the model's sensitivities, especially if the model is not explicitly and transparently presenting 

the assumptions and decisions made by the domain expert. The Bayesian-networks 

developed for this study, however, explicitly and transparently captured and presented the 

assumptions and decisions made by the ecological-domain expert. The chances of 

successfully replicating the process of estimating site-series group from the GIS input layers 

are greatly improved by the Bayesian network's transparency. 

The BN was successful at capturing and expressing ecological knowledge with 

respect to the relationships between environmental variables and site-series group. The 

opportunity to create intermediate nodes, which were ecologically meaningful to the 

ecological-domain expert, allowed the ecological-domain expert to focus on only a few 

ecological interactions at a time. The task of generating conditional probabilities for 

intermediate nodes that were derived from either multiple parent nodes or parent nodes with 

multiple classes, however, was sometimes daunting. For example, the number of conditional 

probabilities required for a node with two classes and two parent nodes, each with two 

classes, equals eight (2 x 2 x 2). A node with six classes and two parents, each with four 

classes, however, required the definition of96 (6 x 4 x 4) conditional probabilities. 

Although nodes with a large number of conditional probabilities existed within the 

three Bayesian networks, no nodes had more than three parent nodes. By keeping the 

number of parent nodes to a minimum, the ecological-domain expert could focus on a few 

environmental factors at a time. This was an improvement over the belief-matrix method of 
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large-scale ecosystem mapping, where the knowledge base could be comprised of a single 

table requiring 2000 or more defined weights (e.g., Timberline Forest Inventory Consultants 

Ltd. 2000; Rosen eta/. 2001; Atticus Resource Consulting Ltd. 2001; Jones 2003; 

Timberline Forest Inventory Consultants Ltd. 2004). Although the total number of 

conditional probabilities within the three BN knowledge bases ranged from 2179 to 3725, 

partitioning the ecological influences into smaller, independent interactions made model 

parameterization manageable for the ecological-domain expert. 

One difficulty with regards to the parameterization of the Bayesian network's 

conditional-probability tables, however, was the requirement to enter conditional 

probabilities for all combinations of the parent-node classes. This meant that conditional 

probabilities would be required for environmental conditions that seem mutually exclusive. 

For example, the Ground Wetness node was dependent on parent nodes that defined terrain 

position: upper-terrain position (UpSlopePos), mid-terrain position (Mid Flat Landform), 

lower-terrain position (LowSlopePos), and fluvial benches (Bench). Sometimes it was easy 

entering the conditional probabilities for Ground Wetness, such as when the input 

combination was: upper-terrain position (MS Up), not mid-terrain position (MidFlatNot), 

not lower-terrain position (MS LowNot) and not fluvial bench @enchNot). With this input 

combination, the Ground Wetness was given 100% probability ofbeing ill:y. It was more 

difficult, however, to enter conditional-probabilities values for Ground Wetness when the 

combination of input conditions was: upper-terrain position (MS Up), mid-terrain position 

(MidFlat), lower-terrain position (MS Low) and high bench (BenchHigh). Each one these 

input conditions is associated with a different level of ground wetness. As a result, with this 

combination of input conditions, there was less certainty that wetness could be ascribed to 
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only one Ground Wetness class. To capture this uncertainty, Ground Wetness was given a 

20% probability of being wet and an 80% probability of being very wet for this combination 

of input conditions. 

In previous projects conducted in BC involving large-scale predictive ecosystem 

mapping, each GIS database layer could only contain a single value for each location 

(Ketcheson et al. 2001a; Ketcheson et al. 2001b; Ketcheson et al. 2001c; Jones & McGregor 

2002; Jones 2003). The ability of the Bayesian network knowledge base to accept fuzzy 

classified GIS data inputs was seen as an advantage over previously employed methods for 

predictive-site-series mapping. The BN was able to· capture the continuous nature of the 

Landform Elements input node, which was generated by the continuous-landform-elements 

BN. The BN was also able to capture the composition of tree species within a forest-

vegetation stand through the forest-species input node (Species). Other input nodes, such as 

Age Class, Crown Closure Class and Height Class could be extend~d to use this technique 

of accepting data as a soft classification rather than a hard classification. 

In all three of the BN knowledge bases created to estimate site-series group, some 

input and intermediate nodes were parents to more than one child node. For example, in all 

three models the Lower Landform intermediate node was used to help define floodplains 

(Floodplain), toe slopes (Toe), low-terrain position (LowSlopePos) and alluvial fans (Fan). 

This produced a messy and confusing looking network with links crossing each other and 

pointing different directions, rather than a simple dendritic structure, which progresses from 

input to output with all links pointing in the same general direction. The use of input and 

intermediate nodes for multiple conditional-probability tables, however, reduced variable 

redundancy within the network. 
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Previous projects of large-scale predictive ecosystem mapping conducted in BC, 

which employed the belief-matrix knowledge base, were unable to use automated procedures 

to update the knowledge base to reflect field observations (Jones & McGregor 2002; Jones 

2003). Bayesian networks, however, are able to incorporate relationships derived either 

statistically and from an expert. At the outset of this project, however, it was recognized that 

model development would rely primarily on expert opinion because the availability of useful 

reference data was low. 

Although the study area was partially chosen because of reference-data availability, 

examination of the reference data during model development revealed that not all site-series 

groups were adequately sampled. Future projects of large-scale predictive mapping should 

ensure that an adequate representative sample of reference data be acquired, preferably, 

specifically for the predictive-mapping project. 

Additional field gathered reference-data would have proved useful at many stages-

during model development, not necessarily to substitute expert opinion with statistical 

models, but to aid the expert's decision making process. Field data, which recorded site 

series and were georeferenced, would have proved useful for both model testing and 

increasing the number of reference points available for accuracy assessment. For example, 

the disparity between the results of the knowledge base testing, which ranged from 59% to 

92% correct, and the results of the map-accuracy assessment, which ranged from 33% to 

48% correct, highlighted the difficulty of accurately interpreting site series from air photos. 

The results of knowledge base testing may have matched the results of map-accuracy 

assessment if knowledge base testing was conducted using reference points that were field 

gathered rather than air photo interpreted. 
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The lack of reference data for map-accuracy assessment hindered adequate map-

accuracy assessment, especially when assessing those site-series groups occurring 

infrequently on the landscape. Although the CWHvml and CWHvm2 had a large number of 

reference plots in the common site-series groups, there were a low number of reference 

points in the uncommon sites. There were very few reference points in each site-series 

groups of the CWHvh2, due to the low number of CWHvh2 field plots gathered by Jones 

(2003) that overlapped with the study area. This low number ofCWHvh2 field plots 

contributed to the high kappa variance. In all three of the developed Bayesian networks, 

some site-series groups were not present in the reference data, preventing accuracy 

assessment of these site-series groups. 

Field data, which recorded the environmental conditions estimated by some or all of 

the BN nodes, would have allowed additional knowledge base adjustments. It would have 

been possible to perform some exploratory analysis into the relationships between 

environmental factors and site-series groups using this kind of reference data. Using such 

techniques as cluster analysis and regression it may have been possible to see how relevant 

each node was to the estimation of site-series group, and remove those nodes with little or no 

significance prior to model construction. 

Reference data would have possibly been useful during conditional-probability 

adjustment and construction of the input GIS database. All of the input and intermediate 

nodes in the Bayesian networks were meant to represent measurable environmental factors 

(e.g., Soil Moisture and Gully). Although the thematic and spatial accuracy of some input 

nodes were known (i.e. those nodes derived from the Ministry of Sustainable Resource 

Management's vegetation resource inventory), this information was unknown both for the 
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GIS modelled input nodes and the intermediate nodes. Thematic and spatial accuracy 

assessment of these nodes was based solely on visual comparison to other informative data 

sources, such as air photos, water body/course mapping or digital elevation models. 

Consequently, little was known about the input or intermediate nodes' ability to accurately 

portray their respective themes. Reference data could have identified either those input GIS 

models needing adjustment or the conditional-probability tables needing adjustment. 

One of the objectives of this project was to create a model that could be updated 

automatically using field data. This objective was achieved by using Bayesian networks, 

which allow the conditional probabilities to be automatically adjusted using expectation-

maximization algorithm. Unfortunately, this procedure was not possible to conduct without 

reference data, which recorded the environmental conditions estimated by the intermediate 

nodes. However, by directing future field-sampling plans to collect those environmental 

conditions modelled in the knowledge bases, it would be possible to continuously update the 

conditional probabilities, as new sampling data becomes available. 
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5 CONCLUSION AND RECOMMENDATIONS 

The overall goal of this project was to develop and test a large-scale ecosystem 

classification mapping method that met the needs of forest-related management activities in 

British Columbia. The approach employed was an expert-based system built around a 

Bayesian-network knowledge base. This approach, however, did not meet the project's 

overall goal because not all three of the objectives were accomplished successfully. None of 

the large-scale ecosystem maps produced for the study area's biogeoclimatic variants 

achieved the accuracy assessment result of 65% correct. The approach, however, did 

successfully achieve the other two study objectives. 

Bayesian networks, with their graphical components of nodes and links, offered to the 

ecological-domain expert an easy to use interface to express the interaction between 

ecological factors. The graphical nature of Bayesian networks also improved the 

interpretability of the ecological interactions. The ability to create intermediate, or summary 

nodes, between the model's inputs and outputs allowed the domain expert to reduce the 

complexity of the problem and allowed the ecologist to focus on only a few interactions at a 

time. 

Bayesian networks have the capacity to be updated and adjusted automatically using 

data gathered from field observations or air-photo interpretation. Due to a lack of 

supplementary field data, however, the Bayesian-network knowledge bases developed for 

each ofthe three BEC subzone/variants within the study area were defined solely using 

expert opinion. Similar site series were grouped to compensate for the lack of spatial 

resolution in the input GIS database required to discern individual site series. Even with this 
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site-series grouping, however, the accuracy assessment results indicated that the resulting 

predictive ecosystem maps poorly predicted the dominant site-series group. 

Despite the lower than expected results from the. accuracy assessment, the Bayesian-

network approach could still be considered a viable approach to predict large-scale ecological 

units given some improvements to the procedure. Future attempts to apply Bayesian 

networks to predictive mapping of site series should consider applying some of the 

suggestions summarized below. Changes to each of the modelling stages, GIS database 

construction, knowledge base construction, and accuracy assessment, could improve site 

series prediction. 

To potentially improve the successful prediction of site series, all GIS database layers 

should be verified using georeferenced points that are gathered through field observations or 

air-photo interpretation. Performing exploratory statistical analysis on the relationships 

between the GIS layers and site series could help reduce knowledge base complexity by 

identifying those GIS layers exhibiting a relationship with site series. 

Model updates could be easier if the knowledge base was designed to predict site 

series, with site-series groups added as an alternate output node. To aid knowledge base 

development there should be a representative georeferenced sample of site-series points. 

Additionally, a representative georeferenced sample of each of the intermediate nodes would 

be beneficial. These samples could be used to inform the ecologist of the need to change the 

conditional-probability tables, or to automatically update the conditional-probability tables 

through the expectation-maximization algorithm. 
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To ensure that the data set used to test the knowledge base adequately represents the 

data set used to assess map accuracy, both sets of data should come from the same sampling 

plan. The data set used to test the knowledge base should be a subset of all the samples, 

while the data set used to assess map accuracy should be comprised of the remaining 

samples. 

Although the focus of the PEM work conducted in BC over the past six years has 

involved the use ofbeliefmatrices, Bayesian networks can offer a viable and advantageous 

alternative approach. Further pilot studies incorporating some or all of the recommendations 

suggested herein should result in large-scale ecological-unit maps that meet or exceed map 

accuracies obtained through the belief-matrix approach. Exploration of the Bayesian-

network approach should continue with an overall goal of producing the most accurate large-

scale predictive-ecosystem maps possible for managing forest-related activities. 
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