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ABSTRACT

Large-scale ecosystem maps are essential tools for managers of forest-related
activities. In British Columbia, the prevailing approach for ecosystem mapping has been to
use an expert system that captures expert knowledge in the form of a belief matrix. In this
project, I replaced the belief matrix with a Bayesian network in an attempt to overcome some
of the drawbacks of the belief-matrix approach. I created a Bayesian-network knowledge
base applied to an area encompassing Prince Rupert and part of the following three
biogeoclimatic units: Coastal Western Hemlock Very Wet Maritime Montane, Coastal
Western Hemlock Very Wet Maritime Submontane and, Coastal Western Hemlock Very Wet
Hypermaritime Cehtral. Using each knowledge base, I produced a map of grouped site
series. Accuracy assessments performed on each of the maps of grouped site series revealed
that the maps poofly predicted the spatial distribution of rare and very wet site-series groups.
The results of the rriap-aécuracy assessment, however, were consistent with those resulting
from a belief-matrix approach. I considered the Bayesian-network knowledge bases easiér to

develop, interpret and update than belief matrices.
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1 INTRODUCTION

It is essential for land managers to have information regarding the nature and
distribution of ecosystems to manage forest-dependant activities. In order to facilitate this
need, a working definition of ecosystems is required, including inventories of the
components that comprise ecosystems, and an understanding of the spatial pattern of

ecosystems, their formation and interrelationship.

Hierarchical systems that classify land based on ecological principles have been
developed for scales ranging from global to local. At the global scale, also referred to as
small-scale, several researchers have developed ecological land classifications using a
bioclimatic approach: e.g., Udvardy (1975), Walter and Box (1976), and Bailey (1989a;
1989b). In the Umted States, Driscoll (1984), Omermnik (1987), and Cleland et al. (1997)
developed ecologically-based classifications at the regional scale. In New Zealand, Huser
(1 999) proposed a hierarchical ecosystem-classification scheme ranging from the regional
scale to the locai.scale, also referred to as large scale. In Canada, nation-wide ecosystem
classifications have been created by Wiken (1986), the Ecological Stratification Workiﬁg
Group (1996), and Marshall and Schuts (1999). Large-scale ecological-classification
-schemes have been presented in the United States (Barnes ef al. 1982), New Brunswick
(Zelazny et al. 1989), Ontario (Jones 1983; Sims ez al. 1989; Chambers et al. 1997),
Manitoba (Zolaneski ef al. 1995) Saskatchewan (Beckingham et al. 1996b). and Alberta
(Beckingham & Archibald 1996; Kl.appst)e‘in & Corns 1996; Beckingham et al. 1996a). In
the province of British Columbia; Pojar et al. (1987) formalized the Biogeoclimatic

- Ecosystem Classification (BEC) approach to ecosystem classification.



The BEC system is an integrated hierarchical classiﬁcation scheme that combines
climate, vegetation and site classifications. Ecosystems ranging in scale from regional to
local are déﬁned using zonal (climatic) concepts and the vegetation of zonal climgx or near-
climax ecosystems. In the BEC scheme, the basic unit of zonal or climatic classification is
the subzone. Grouping subzones forms zones, while subzone divisions define variants (Pojar
et al. 1987). Site series, which are the largest-scale ecosystems unit of the BEC system, are
defined within variants, or subzones if variants are not described for a subzone. Site-series
units describe all land areas that are capable of supporting a specific climax vegetation within

a climatic area (subzone or variant) (Pojar et al. 1987).

The ecosystem-forming mbdel of Pojar et al. (1987) is based on the vegetation and
soil-formation theory of Major (1951): vegetation and soils are products of climate,
organisms, topography, parent material, and time. Plants and soil, considered
simultaneously, integrate all the components of an ecosystem and reflect ecosystem
formation. As a result, an ecological unit can be described by the plant community (a
volume of relatively uniform vegetation) and the soil polypedon (a volume, to the dépth of
the solurﬁ, of relatively uniform soil) upon which the plant community occurs (Pojar et al.

1991).

Delineating the geographical distribution of the ecological units that belong to an
écological classification scheme is broadly referred to as ecosystem, or ecological, mapping.
The approaches used to delineate ecological units on the landscape are very similar to those
employed in vegetation (Skidmore 1989; Kimes et al. 1996; Carpenter et al. 1997; Carpenter
et al. 1999; Miller & Franklin 2002; Linderman et al. 2004) and soils mapping (McCracken

& Cate 1986; Burrough 1989; Moore et al. 1993; Skidmore et al. 1996; MacMillan et al.



2000; Zhu et al. 2001; Qi & Zhu 2003). This is because all three domains rely on similar
relationships between topography, climate, parent material, organisms and time (Jenny 1941;
Major 1951; Pojar et al. 1987). In addition, large-scale mapping techniques employed in

each domain have evolved similarly over time (Scull et al. 2003).

Traditionally, large-scale ecosystem-, soil- and vegetation-mapping were derived
through a site-survey approach (Scull e al. 2003). This mapping approach involved
conducting intensivé field surveys over the entire area to be mapped. Although the survey
approach is useful for small spatial extents, high costs and time are required to conduct
intensive field surveys over large areas. Instead, most current mapping projects of large-

scale units over large spatial extents must rely on information gathered remotely.

For at least two decades large-scale ecosystem, soil and vegetation mapping projects
covering large extents were based on manual procedures for delineating ecological units from
remotely gathered aerial photos (Klinka & Skoda 1977; Mitchell & Eremko 1987; RIC 1998;
Scull et al. 2003). This required a human interpréter to view and analyze aerial photographs
and infer the classification units using visible landscape attributes such as slope gradient,
slope position, surface curvature, drainage and vegetation (RIC 1998). Recognizing the high
cost ($3.00 - $8.00/ha) and time required to manpally produce large-scale ecosystem maps _
from aerial photos, however, research began to focus on producing maps u.sing computer-
based predictive approaches (Mulder & Corns 1994; Biggs et al. 1997; Jones et al. 1999).
Computer-based approaches were seen as an attractive alternative to ecosystem maps derived
from aerial photo due to their low reliance on field surveys and low costs, which ranged from -

$0.20 to $2.00/ha (Biggs et al. 1997).



In BC, procedures that use a computer to stratify the landscape into large-scale
ecological units are referred to as predictive ecosystem mapping (PEM) (Jones ef al. 1999).
Only BC (RIC 1999) and Alberta (Mulder & Corns 1994; Beckingham et al. 1999) generate
large-scale, ecosystem-unit maps using computer-based predictive approaches, although
ecosystem-classification systems exist that define large-scale ecological units in the United
States (Cleland et al. 1997) and New Zealand (Huser 1999), BC (Pojar et al. 1987), Alberta
(Beckingham & Archibald 1996; Klappstein & Corns 1996; Beckingham et al. 1996a),
Saskatchewan (Beckingham ef al. 1996b), Manitoba (Zolaneski et al. 1995), Ontario

(Chambers et al. 1997) and New Brunswick (Zelazny et al. 1989).

Although the application of computer-based predictive approaches to large-scale,
ecological-unit mapping is limited, it is closely related to the field of predictive vegetation
mapping, and predictive soil mapping. All these terrain-related predict-ive-mépping dc;mains
usually start with the development of a numerical or statistical model of the relationship
between environmental variables and ecosystem properties, which is then applied to a
geographic database to create a predictive map (Jones et al. 1999); The methods used to
predict ecosystem, soil and vegetation distribution could generally be divided into five
separate types: statistical, geostatistical, artificial neural networks, decision trees and expert

systems (Scull et al. 2003).

1.1 STATISTICAL METHODS

~ Statistical methods are used to explore and model the relationship between
quantifiable environmental variables and ecological properties to create predictive maps

(Scull et al. 2003). Statistical models that have successfully been applied to predictive soils



mapping include linear regression (Moore et al. 1993), logistic regression (King et al. 1999),
and exponential regression (Bell et al. 2000). Miller and Franklin (2002) successfully
applied generalized linear models to predictive vegetation mapping, and Beckingham ef al.
(1999) used a combination of linear regression and correspondence analysis to successfully

predict ecological unit distribution.

Most statistical methods, excluding generalized linear models, however, are limited
by their assumption that the data are normally distributed (Scull ez al. 2003). It is more likely
that the mapped units do not fit a normal distribution, but rather fit a multinomial distribution
(Foody 2002a). Statistical methods are also limited by their high data requirements. Also,
the inﬂexibility of these statistical methods prevent integration with a variety of potential

data sources, such as expert knowledge (Scull et al. 2003).

1.2 GEOSTATISTICAL METHODS

Similar to statistical methods, geostatistical methods are another approach employed
in creating predictive maps. Geostatistical methods are a form of statistics that deal with
spatial data and interpolation (Scull et al. 2003). Their primary purpose is to spatially
interpolate values for locations where values are not known using locations where values are
known. Kriging, which was developed by Krige (1963), is the main approach used for
interj)olation of unknown values. Using this approach, geostatistics have been applied to
predictive soil mapping through the work of such authors as: Burgess and Webster (1980),

Burrough (1989), McBratney et al. (1991), Webster (1994), and McBratney et al. (2000).

Criticisms of geostatistic methods, however, include their heavy reliance on data,

requiring mapping projects to have a large number of closely spaced data points.



Geostatistical methods work best in simple terrain because they rely on a high amount of
spatial autocorrelation, but perform poorly in complex terrain where there are abrupt changes
in environmental variables (Zhu 1997). Furthermore, like traditional statistics, geostatistics

do not incorporate expert knowledgé (Scull et al. 2003).

1.3 ARTIFICIAL NEURAL NETWORK METHODS

Artificial neural networks (ANNs) are another method employed in the creation of
ecosystem, soil and vegetation maps through predictive methods. ANNs are a type of
classification model that attempt to emulate the learning process of the human neural
network (Atkinson & Tatnall 1997). The term artificial neural network is really a broad term
that encompasses a number of approaches that attempt to emulate the neural -network process.
ANN models first start by creating relationships between a set of known attributes mapped
and a set of known outcomes. This data set, which is commonly referred to as a trainipg data
set, trains the neural network to establish relationsﬁps bet§veen the known attributes and the
known outcomes. The artificial neural network can then be used to predict outcomes from
known attributes once it has established the relationships using the training data (Atkinson &
Tatnall 1997). The most commonly used ANN technique for vegetation mapping is the
multilayer perception neural network, but other successfully employed techniques include the
self-organizing feature-map neural network and the adaptive-resonance-theory network

(Atkinson & Tatnall 1997; Carpenter et al. 1999; Foody 1999).

The popularity of ANNs has stemmed from their ability to integrate data acquired at a
low level of precision, to handle categorical and continuous data sources, and their freedom

from linear or simple non-linear distribution assumptions (Atkinson & Tatnall 1997; Zhang



& Foody 2001). The process of training an ANN is computationally intensive and can take
considerable time, but once trained an ANN can quickly process new input data (Kimes et al.
1996). Criticism of ANNs include their potential to terminate model development at a “local
minimum” and produce a sub-optimal model (Kanellopoulos & Wilkinson 1997). On the
other hand, ANNs éan also produce a model that “over-fits” the tr.aining data and produces
poor predictions on other independent data sets (Park & Vlek 2002; Qi & Zhu 2003). The
potential of over-fitting to the training data increases as the training data increasingly

misrepresents the conditions in the data set to be classified (Qi & Zhu 2003).

ANNSs have been applied extensively to land-cover classification and predictive-
vegetation mapping, primarily where satellite imagery was the main coﬁbonent of the V
geographic database. Kimes et al. (i996) used a multilayer perception neural-network to
create a model of forest age using Landsat satellite imagery and topdgraphic data. Linderman
et al. (2004) successfully used Landsat Thematic Mapper imagery to predict the éresence of
understory bamboo. Carpenter ef al. (1997; 1999) successfﬁlly applied adaptive;resonance-
theory networks to vegetation mapping using Landsat remote sensing imagery and digital

terrain data.

The application of ANNSs to predictive soil mapping has been less extensive. Qi and
Zhu (2003) used neural networks to model the relationships between existingAs.oil maps and
terrain variables. Park and Vlek (2002) compared the performance of neural networks,
regression trees and general linear models at predicting soil variability using soil type,

vegetation attributes and terrain attributes.



1.4 DECISION TREE ANALYSIS

Decision-tree (DT) analysis is similar to the ANN approach to predictive mapping.
However, DT analysis uses a multi-stage approach when making a prediction, unlike ANNS,
which use all the attributes simultaneously and make a single prediction. The prediction
process is considered a chain of simple decisions, where tests are applied at each node and
each branch represents the r;sulting decision path. The “leaves” (or branch termini) of the

tree represent the prediction labels (Pal & Mather 2003).

Like artificial neural networks, decision trees are developed using a training data set
and then applied to a data set of attributes for which predictions are to be generated (Qi &
1 Zhu 2003). Manually “pruning” the tree is often required to prevent the DT from overfitting
the training data and to reduce tree complexity (Qi & Zhu 2003; Pal & Mather 2003). Tree
pruniﬂg is accomplished by merging two leaf nodes into a single node, usually under the

direction of expert knowledge (Qi & Zhu 2003).

Advantages of DT analysis over traditional statistical methods include: its ability to
handle missing data values and outliers, capture nonadditive and nonlinear behaviour, the
lack of assumptions about the data distribution, and ease of updating when new data become
available (Moore et al. 1991). Also, expert knowledge can be indirectly applied to DTs
through tree pruning. This highlights a significant advantage DTs have over neural
networks. With DT methods, the relationships established between the input variables and
the predicted outcomes are explicit and interpretable by the analyst, unlike neural networks
where the relationships are hidden. This explicit presentation of the relationships can help

the expert understand which environmental variables influence the relationship between input.



and output variables and make adjustments to the tree structure if necessary (Pal & Mather

2003).

DT models, however, are negatively affected by outliers and can produce very
different results if outliers are included. Maps produced using DTs are more likely to retain
the spatial pattern of the input data because DT models partition the data using one input
variable ata time (Miller & Franklin 2002). Pal and Mather (2003) also found that the
classification accuracy of decision-tree methods decreased relative to neural networks when
the nuﬁber of input variables used during the model training step exceeded 25. They still
achieved high classification accuracy (86%) when classifying land-cover type from satellite
imagery. Ci'alella et al. (1997) applied decision-tree analysis to predictive soil mapping to

model soil drainage from satellite imagery and digital elevation models.

1.5 EXPERT SYSTEMS

Expert systems differ substantially from the statistical, geostatistical, ANN, and
decieion—tree approaches to predictive mapping. They are computer programs that are built
using a human expert’s knowledge to simulate the expert’s reasoning (Stock 1987); In
predictive mapping the purpose of an expert system is to capture the information a surveyor
accumulates while working in the field and integrate that knowledge into a predictive model
(McCracken & Cate 1986, as cited in Scull et al. 2003). Expert systems are generally
comprised of data, a knowledge base, and an inference engine (Skidmore et al. 1996). The
knowledge base contains a set of rules or decisions that define the relationships between the

input variables and the output prediction (Stock 1987). The inference engine applies the



input data, which would comprise the GIS database in the case of PEM, to the knowledge

base to infer a solution, which in the case of PEM would be the ecological unit.

What makes expert éystems different from conventional statistical methods is their
ability to store qualitative information and that, essentially, they are meta-models where the
knowledge is separate from the model (Davis 1993). This allows expert models to apply the
relevant input at different stages of the modelling process, and allows for the input to be

updated easily (Scull et al. 2003).

Expert systems oﬁer many benefits over traditional statistical approaches. Some of
these advantages include the ability to integrate qualitative information (Scull ez al. 2003),
the ability to integrate expertise from multiple sources (Renooij 2001), the ability to capture
knowledge before it becomes unavailable, and improved knowledge transfer to novice
domain specialists (Zhu et al. 2001). Despite these advantages, the expert system does have
some limitations. These limitations include being unsuitable in areas where there is little
expert knowledge regarding the relationships between input variable and output conditions
(Scull ez al. 2003), and that experts may have difficulty expreésing their own expertise or

eliciting a set of rules without bias (Renooij 2001).

A criticism of decisions derived from expert opinion is that the result is unfalsifiable
because it contains unknown assumptions, limitations and accuracy (Scull et al. 2003). For
the results from expert systems to be falsifiable the elicitation of expert knowledge must be

presented transparently and explicitly (Varis & Kuikka 1997).

Expert systems have been applied to a wide range of predictive-mapping projects.

Examples include forest-fire modelling (Davis et al. 1986), forest-vegetation mapping
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(Skidmore 1989), forest-soil mapping (Skidmore et al. 1991), terrain mapping (MacMillan et
al. 2000; Schmidt & Hewitt 2004), mineral exploration (D'Ercole ez al. 2000), and land-use
planning (Zhu ef al. 1998). These may employ one of four types of knowledge bases, as

described below.

Rule-Based Knowledge Base

Most expert systems use a rule-based knowledge method. In a rule-based system, the
relationships between the input variables and output predictions are derived through a series
of if-then-else statements. Simple rule-based knowledge bases are binary, where a condition
ié either true or false; partially-true and partially-false conditions are not allowed. In a rule-
based expert system there are two general methods in which the inference engine can make a
decision: forward chaining or backward chaining (Moon 1999). ‘In forward chaining, the
inference engine compares the attributes of the unknown object to the rule base until arriving
at a prediction. This approach is sometimes referred to as data-driven reasoning. In
backward chaining, a prediction is hypothesised for an unknown object and the inference
compares the attributes of the unknown object to the attributes of the prediction. This

approach is sometimes referred to as goal-driven reasoning (Teng & Fairbairn 2000).

Belief Matrix Knowledge Base

A less popular knowledge-base method used in expert-based systems is that of the
belief or decision matrix. The belief matrix records the belief that an event will occur given a
set of conditions (Moon 1999; Hailu & Sommer 1999). For example, in PEM, a belief
matrix would record the belief that an ecological unit occurs on slopes over 50%. The values

in a belief matrix can be any positive or negative value, where a highly positive value

11



indicates a high belief that an event could occur given a condition, and a highly negative
value indicates a low belief or impossibility that an event could occur. The inference engine
produces a prediction by summing, for each possible output class, the belief values
associated with the input conditions. High sums of belief values indicate high belief that the
output event occurs given the input conditions, while low belief-value sums indicate low

belief.

Fuzzy Logic Network Knowledge Base

A third type of knowledge-base method used in expert based systems is that of the
fuzzy-logic network. The fuzzy-logic network uses the theory of fuzzy logic, which attempts
to recognize the concept of partial truth developed by Zadeh (1965). The theory of fuzzy
logic permits an object to belong to more than one class, fecognizing that objects in nature
rarely fit exactly the classification types to which they are assigned (Scull et al. 2003). The
fuzzy-logic network extends the rule-based knowledge base to include partial membership to
decision paths. When the inference engine processes the input variébles through a fuzzy-
logic network, the output is a membership value, usually ranging from zero to one, for each
possible output cléss. Membership values of zero indicéte no merhbership while values of

one indicate full membership.

Bayesian Network Knowledge Base

Lastly, Bayesian networks (BN) are another common type of knowledge-base method
used in expert-based systems. Bayesian networks, also known as belief networks, Bayesian
belief networks, Bayes networks and causal probabilistic networks, were first introduced to

probability-based decision-systems through the work of Pearl (1988). BN are so called
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because they commit to Bayes’ rule for probabilistic inference. This rule, developed by
mathematician and theolégian Reverend Thomas Bayes, generally states that our belief that
an event will occur is based on the number of times the event has or hasn’t occurred in the
past given similar conditions. Bayesian methods have been gaining use in applied science,
including ecology. Fisheries biology and management has, by far, seen the greatest use of
Bayesian methods (Marcot et al. 2001). There has been to date, however, no application of

Bayesian networks to predictive ecosystem mapping.

Bayesian networks, like fuzzy-logic networks, are numerical models that are
primarily built as graphical networks, sometimes referred to as directed-acrylic graphs
(Jensen 1996). Bayesian networks consist of the following: a set of variables, also referred to
as nodés, which have a finite set of mutually exclusive states, and a set of directed edges, or
links, among the variables. When focusing on a single node, parent nodes ére those nodes
that are at the beginning of a link, which is pointing at the node of interest. Child nodes are
those nodes that are at the end of a link, which is exiting the node of interest. BNs cannot
contain feedback loops, where the child of a node is also the node’s parent or graﬁdparent in
some way (Jensen 1996). Thoée nodes that have no parent are commonly referred to as root
or input nodes, while those nodes with no children are referred to as leaf or outpufnodes

(Freidman et al. 1997).

Bayesian networks are similar to belief matrices, hoWeVer, instead of the knowledge
base containing a single large table, the BN simplifies the problem i‘)y breaking the single
large table into several smaller tables. A conditional-probability table is associated with each
variable with parents, while an unconditional-probability table is associated with each

variable with no parent (Jensen 1996). A complete Bayesian network (i.e., nodes, links and
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conditional probabilities) can wholly be defined using expert knowledge. When the
inference engine processes input variables through a Bayesian network the output is a
posterior-probability distribution for the output variable, which contains the occurrence

likelihood of each output class.

A simple Bayesian network could be envisioned as one parent node, which could

represent some environmental variable such as soil moisture (SM), and one child node, such

P(SM | SS)P(SS)
P(SM)

as site series (SS).

According to Bayes theorem:

P(SS | SM) =
Using this theorem, the probability of a given site-series (SS) outcome given soil
moisture (SM) is dependent on the likelihood of SM given a specific value of SS (P(SM|SS))
and on the prior probabilities of both SS (P(SS)) and SM (P(SM)). The result is the

“posterior"’ probability for site series (SS).

An important aspect of Bayesian networks is the ability to update the conditional
probabilities using a “learning” algorithm such as “expectation maximization” (Dempster et
~al. 1977). Learning generally involves using observations to update the conditional

probabilities of some or all of non-parent nodes to reflect the conditions encountered in the
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observations (Plach 1999). The values for variables that have no findings are determined

through causal inference (Norsys 1997).

1.6 HARD VERSUS SOFT CLASSIFICATION

Statistical, geostatistical, ANNS, decision-trees, and expert-systems approaches to
predictive mapping can all prodube hard classifications (sometimes referred to as crisp
classifications). Some of these approaches can also produce soft classifications (sometimes
referred to as fuzzy classifications). In a hard classification, only one output class is
permitted per observation or location. Soft classification, however, allows an observation or
location to belong to several or all possible output classes. The soﬁ-classiﬁcafion result
records how strongly an observation or location represents each class (MacMillan et al.
2000). Bayesian networks and ﬁlzzy-iogic models are both examples of approaches that can

produce both hard and soft classifications.

Predictive-mapping projects are increasingly producing soft-classification results
(MacMillan et al. 2000; Zhang & Foody 2001; Foody 2002a; Foody 2002b). Soft
classification can capture prediction uncertainty whether it is a result of class-definition
(thematic) uncertainty or spatial uncertainty (Zhang & Foody 2001). In predictive mapping,
there are mainly two advantages that soft classification has over hard classiﬁcation. Firstiy,
many predictive-mapping proj eéts attempt to map concepts that are not discretely defined
within the landscape. Instead, many class concepts occur as a continuum across the
landscape, which overlap with other class concepts. For example, when mapping landscape
. elements such as ridge, hill, valley, etc., rarely do these semantically defined features occur

discretely or mutually exclusively across the landscape. Some locations will strongly match
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the semantic definition of a ridge, some locations will weakly match the concept of a ridge,
although some locations will not match the concept of a ridge at éll. Also, a location may
weakly represent the concept of a ridge but strongly represent the semantic definition of a
hill. Soft classification can caﬁture this continuum of landscape features that are non-
mutually exclusive, but hard classification can not. The second advantage of soft
classification involves the scale of the observation or input data. If the scale or resolution of
the input data is such that a boundary separating two different feature classes occurs within
the minimum-mappable area, then soft classification can captﬁre the proportional occurrence
of each class within that area. The occurrence of multiple features within the minimum-
mappable area is affected by the latter’s size. The larger the minimum-mappable area the
greater the chance that more than one class exists within its area boundary. This is
sometimes referred to as a “mixed pixel” in satellite-imagery claésiﬁcation, because more

than one feature can exist within an image pixel (Foody 1996).

Similar to soﬁ-classiﬁcatioﬁ output, which allows the ourputs to contain fuzzy
membership, is the semantic-import model of Burrough (1989), which allows the inputs to
contain fuzzy membership. Using the semantic-import model, the hard thresholds between
classes can be converted to fuzzy boundaries. For example, in a hard classiﬁcation the
classification of slope gradient into flat and sloped would occur at a single slope-gradient
value. Using the semantic-import model, the belief that a location belongs to either the flat
or sloped class would vary according to a range of slope-gradient values. With thg semantic-
import model, instead of the transition between sloped and flat being determined by a single
value, the transition from one class to another occurs over a éone defined by two values (ST;

and ST; in Figure 1). The advantage of the semantic-import model over the hard-class
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approach is that the semantic-import model captures the uncertainty inherent in the semantic
definition of landscape features (Burrough 1989). This uncertainty in class membership may
result from either the continuous nature of the input or the varying semantic definitions of the

input classes.

flat sloping

iNmagEaEns®
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likelihood
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Figure 1 — A graphical representation of the semantic-import model used to define the relationship
between slope gradient and the semantic descriptions of flat and sloping. Slope gradients
between zero and ST/ are considered flat, and slope gradients greater than S72 are
considered sloping. As slope gradients increase from S71 to S72, the likelihood that the

_slope is considered flat decreases linearly to zero while the likelihood that the slope is
considered sloping increases linearly to.one. Flat and sloping semantic-descriptions are -

considered equally likely at the mid-point between STI and ST2, although both likelihoods
are 0.5, :

Although maps resulting from soft classification are gaining popularity, in some
cifcumstances it may be most appropriéte to produce a hard classification. For example,
decision makers often find probability distributions unclear' and prefer a single answer upon
which to make decisions. In addition, accuracy-assessment procedures are often based on
hard-classification results. To this end, it is not necessary to sblely produce hard-
classiﬁcatioﬁ results, but rather the results from a soft-classification model can be
“hardened”. Classification “hardening” often involves taking the dominant class from each

soft-classification result (Foody 1996). This usually means choosing the class with the
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highest likelihood (Skidmore et al. 1996), but in the case of fuzzy logic, the dominant class is

the class with the highest membership value (Zhang & Foody 2001).

1.7 ACCURACY ASSESSMENT

Most assessments of map accuracy are built around hard-classification results. The
contingency table, which is also known as the contingency matrix, error matrix and
confusion matﬁx, is currently at the core of accuracy-assessment procedures for land-cover
classification and is used extensively for accuracy assessment in the field of remote-sensihg
classification (Congalton & Story 1986; Foody 2002b). The contingency tablé is simply a
square array that relates the number Aof sample units assigned to a particular class in one
classification relative to the number of sample units assigned to a particular class in another
classification (Congalton & Green 1999). Contingency tables are almost exclusively applied
to hard-classification results, because they are unable to handle soft-classification results.
Commonly, one of the classifications is considered correct and is assigned to the matrix
columns while the predicted classification is assigned to the matrix rows. The major

diagonal then indicates the agreement between the two data sets.

The contingency table is an effective way to portray individual accuracies of each
class along with both the errors of inclusion (commission errors) and errors of exélusion |
(omission errors). Commission errors result from putting an area into' a class to which it does
not belong: committing the act of getting it wrong. Omission errors result from excluding an
area from a class to which 1t does belong: omitting the act of getting it right. Omission and
commission errors are related, because every error is both an omission from the correct class

and a commission to the incorrect class. Other accuracy-assessment measures commonly
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derived the contingency matrix are: percentage correct, producer’s accuracy, user’s accuracy

and kappa analysis (Congalton & Story 1986).

Percentage correct is commonly used to represent overall map accuracy (Congalton
& Story 1986). To derive this measurement the diagonal elements of the contingency table

are summed and divided by the total number of samples.

Producer’s accuracy is a class—speciﬁc accuracy-assessment measure »that reports |
how well a specific landscape feature can be mapped (Congalton & Story 1986). Its
calculation involves taking the total number of correctly classified samples in a class and
dividing by the total number of referen;:e samples in the same class. The result indicates the
probability that a sample is placed in the correct class, expressed as a percentage. The
producer’s accuracy for each class essentially measures the error of omission; tﬁe proportion
of samples that are omitted from the correct class, where the error of omission is equal to one

minus the producer’s accuracy.

User’s accuracy is a class-specific accuracy-assessment measure that essentially
measures the error of commission. It is closely related to the producer’s accufacy because
every error of omission in one class is an error of commission into another class. The user’s
accuracy is so named because it measures the reliability thét the map actually represents what
is really on the ground. It is calculated by taking the total number of correctly classified
samples in a class and dividing by the total number of samples that are placed in that class.
The percentage generated by this calculation indicates to the map user the probability that a
location on the classified map actually represents that category on the ground (Congalton &

Story 1986).
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Kappa analysis is a discrete multivariate technique that expresses the degree of
agfeement between two classifications while compensating for chance agreement (Congalton

& Green 1999). The result of performing a Kappa analysis is a KHAT statistic, also denoted

K, which is an estimate of Kappa.

The KHAT statistic was introduced into the field of land-cover classification through
the work of Congalton and Mead (1983), and has been used extensively to assess the |
accuracy of land-cover classifications derived from remotely sensed imagery (Foody 2002b).
KHAT values range from —1 to 1. Positive values KHAT values, however, should be
expected, because there should be a greater than random, or chance, agreement between the
classification map and observation data. Congalton and Green (1999) suggest using three
KHAT value classes to express agreement. KHAT values greater than 0.8 represent strong
agreement, values between 0.4 and 0.8 represent moderate agreemént and values less than
0.4 represent poor agreement. In addition to the KHAT sfatistic, the KHAT variance
(Congalton & Green 1999) and Z statistic (Devore 2000) can be calculated to determine if the

generated classification map is significantly greater than a random, or chance, classification.

For map accuracy assessment, Congalton and Green (1999) recommend 50 reference
samples per class, however, they also recognize_ that it may not be possible to obtain 50
samples for rare classes. In the case of rare classes it is acceptable to collect less than 50
samples as long as a minimum number of samples collected pér class (Congalton & Greén
1999). If obtaining 50 samples per class is not possible then Congalton & Green (1999)
recommend a t;alance between the project’s time and cost limitations, and the need to

adequately populate the contingency matrix.
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1.8 STATEMENT OF THE PROBLEM AND OBJECTIVES

In BC, ecosystem maps have been applied most widely to forest-related management
activities. Managers of forest-related activities routinely rely on detailed, large-scale
ecosystem maps where the base ecological unit typically occupies no more than 10 ha.
Forest-development planning, wildlife-habitat suitability/capability mapping, and
ecologically-based yield analysis with site-based site-index curves are all example uses of

large-scale ecosystem maps for forest-related management (Biggs et al. 1997).

During the past six years, predictive mapping of large-scale ecological units has been
developing in BC to meet the management needs of forest-related actiyities. All of the
completed PEM projects have attempted to predict the spatial distribution of site-series
ecological units from the biogeoclimatic ecosystem-classification scheme of BC.. The first
pilot projects covered small areas and employed expert-based systems, utilising either a rule-
based or a belief-matrix knowledge-base approach (Jones 1999). Since that beginning, over
40 PEM projects have been completed. Although plans exist to comple@e large-scale
ecosystem mapping of the entire province, the completed proj ects now cover approximately
15% of the province’s land base — primarily in non-coastal regions. Of the 32 completed
project reports available for review, 28 reported using an expert-based system with a belief-
métrix knowledge base. Each of the completed projects have first stratified the landscape
using the mapping method of Eng and Meidinger (1999), which delineates biogeoclimatic
subzone/variants, and then developed a separate expert-based system for each

subzone/variant stratum.
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All of the completed large-scale predictive ecosystem maps have been evaluated
using the 65% correct de facto standard established by Meidinger (2003). Based on the
review of completed projects, results of map-accuracy assessment have been mixed, with
appréximately half of the mapped BEC-subzone/variants only just meeting the 65% correct
target. Approximately 25% of the mapped subzone/variants achieved percent-correct scores
well above tile 65% target and approximately 25% did not meet this target. Achieving 65%
correct targets, however, does not guarantee the applicability of the map product to all forest-
related management activities. Meidinger’s (2003) 65% correct criterion was established to
evaluate whether a large-scale predictive ecosystem map could be included in a timber
supply analysis. A predictive site-series map may not be suitable for such purposes as
~ establishing silviculture prescriptions or identifying rare ecosystems, especially if the map

only just achieves the 65% correct target.

Efforts to create large-scale predictive-ecosystem maps in BC (e.g., Jones 1999;
Timberline Forest Inventory Consultants Ltd. 2000; Rosen et al. 2001; Atticus Resource
Consulting Ltd. 2001; Ketcheson ef al. 2001a; Ketcheson et al. 2001b; Ketcheson et al.
'2001c; Jones & McGregor 2002; Sulyma & Alward 2004; Jones 2004), however, have
encountered several key problems, specifically: 1) the procedure used td model the
relationships between environmental variables and ecological units has been difficult to
understand for anyone other than those individuals who created the model; 2) the model of
the relationships between environmental variables and ecological units could not be
automatiéally updated with field observations; and 3) the resulting spatial database did not

report prediction uncertainty.
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To address the problems encountered by earlier PEM projects, and to meet the
demand for large-scale ecosystem maps by managers of forest-related activities, this project

aimed to develop and evaluate a modelling procedure that:

1) predicted the spatial distribution of large-scale ecological units, with a minimum 65%
correct, through the incorporation of expert knowledge, but still allowing automated

model adjustment based on field gathered observations;

2) improved the interpretability of the ecological relationships for users other than the

ecologist used to develop the model; and

3) retained prediction uncertainty.
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2 METHODS

2.1 STUDY AREA

The study area was located along the west coast of mainland BC, centred around
Work Channel, and falling roughly between 54°4’N 130°31’W and 54°49°N 129°5.1 W
(Figure 2). The study area was approximately 150,000 ha and was situated between Portland
Inlet and the mouth of the Skeena River. It was defined by the biogeoclimatic
subzone/variant units: Coastal Western Hemlock Very Wet Maritime Montane (CWHvm2),
Coastal Western Hemlock Very Wet Maritime Submontane (CWHvm1), and Coastal
Western Hemlock Very Wet Hypermaritime Central (CWHvh2), that fell within six BC
Ministry of Sustéinable Resource Management landscape units: Tuqk, Kaien, Quottoon,

Khutzeymateen, Somerville and Union.

- I chose this smdy area for two reasons. Firstly, the area appeared to contain an
adequate amount of georeferenced field data to aid model development and perform accuracy
assessment. Secondly, the study area overlapped wjth the North Coast PEM Project study
area (Jones 2003), which was a previously completed PEM project that employed a belief
matri); expert system. [ felt that overlapping with a previously completed PEM project

would increase the availability of the GIS data required to build the GIS database.

The study area lies within the Coast and Mountains Ecoprovince of the Humid
Maritime and Highlands Ecodivision of the B.C. Ministry of Sustainable Resource
Management’s (MSRM) ecoregional classification (Demarchi 1995). The climate is

generally temperate and rainy with typically warm summers. The climate is dominated by
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Figure 2 — The study area which was used to conduct large-scale predictive ecosystem mapping.
The study area was comprised of the CWHvm2, CWHvm1 and CWHvh2 BEC units
within the BC Ministry of Sustainable Resource Management Tuck, Kaien, Quottoon,

Khutzeymateen, Somerville and Union landscape units. It was approximately 150,000 ha
and centred on Work Channel in North-Coastal BC.
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the arrival of ﬁoﬁtal systems from the Pacific Ocean and their subsequent lifting over the
Coast Mountains. As a result, rain is abundant throughout the year, but markédly lower in
the summer months. Ecoprovinces are divided into ecoregions, and the study area
overlapped with both the Coastal-Gap Ecoregion and the Northern Coastal Mountains
Ecorégion. The Northern Coastal Mountains Ecoregion, which comprises the northern third
of the study area, contéins typically large, rugged, ice-capped mountains that rise sharply
from the ocean. The Coastal Gap Ecoregion portion of the project area contains somewhat
lower and more rounded mountains, although valley sides are still rugged and steep

(Campbell et al. 1990).

Startiﬁg at sea levél, the Coastal Western Hemlock (CWH) zone occupies elevations
less than 600 m near the ocean and less than 800 m inland. Western hemlock (7Tsuga
heterophylla) is usually the ﬁost common tree species although western redcedar (7Thuja
plicata) is abundant thrbughout the Coastal Gap Ecoregion. Amabilis fir (4bies amdbilis)
and yéllow—cedar (Chamaecyparis nootkatensis) afe both found in wetter sites, but with
amabilis fir dominating the zone’s high elevations and northern latitudes. Douglas-fir
(Pseudotsuga menziesii) is abundant in drier parts of the 2one, which lie south of the study

- area (Meidinger & Pojar 1991).

The hypermaritime portion of the study area contains two distinct areas: the lowland
areas and the mountainous areas. The lowland area is dominated by subdued terrain
occurring adjacent to the ocean; while the mountainous area is dominated by rounded
mountains occurring adjacent to Work Channel (Banner ef al. 1993). Bog woodlands, bog

forests and swamp forests occur extensively in the low-lying areas of the CWHvh2. These
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sites are characterized by extremely wet soils with poor nutrient availability and poor soil-
moisture transmissivity, especially at low slope gradient. The upland sites of the CWHvh2

are dominated by wet and mesic soils with good soil transmissivity (Banner et al. 1993).

The maritime portion of the study area occurs inland from the CWHvh2 and is
dominated by large rugged mountains. In the CWHvm2 and CWHvm1 BEC units, which
occur in the maritime climate, soil transmissivity is generally constant with slope gradient.
This is in contrast to the CWHvh2, which has extremely low soil-moisture transmissivity on

low slope gradients (Banner et al. 1993).

The subalpine elevations that lie above the CWH zone are occupied by the Mountain
Hemlock (MH) and Alpine Tundra (AT) biogeoclimatic zoﬁes (Meidinger & Pojar-1991).
The MH zone was excluded from the study area due to a lack of field data. The AT zone was
excluded because it typically contains very little forest and did not fit with the project’s

objective of producing ecosystem maps that aid the management of forest related activities.

2.2 METHODS OVERVIEW

I used a multistage methodology (Figure 3) to create the expert system and meet the
objectives in this study. Identifying the required GIS database layers was my primary step in
the methodology. To verify the spatial and thematic accuracy of the GIS layers I used expert

opinion and comparisons to other spatial-data sets.

To build the Bayesian-network knowledge base I used Norsys Software Corporation’s
Netica (version 2.17) software application (Norsys 1997). Building a Bayesian network in

Netica generally involved creating: 1) input, output and intermediate nodes, 2) links between
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Figure 3 — This diagram illustrates the methodology used to meet the objectives of this study. There
were three general sections in the methodology that also comprises most expert systems:
create the database, develop the knowledge base and perform inference.
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the nodes 3) classes for each node, and 4) conditional-probability tables.

I created an‘iriitial Bayesian network to predict soil-moisture and soil-nutrient
_regimes. 1 made a preliminary site-series-group prediction by adding a node to reflect the

| edatopic-grid relationships between soil—moisﬁue and soil-nutrient reginies in each BEC

subzone/variant. By adding new nodes and node relationship, I adjusted the initial site-

series-group prediction, which was derived from the edatopic grid. Using the advice of the

ecological-domain expert, I adjusted the conditional probabilities by assessing those posterior

probabilities that reflect the entire study-area input conditions.

I used two procedures to test the knowledge base: 1) 'visual assessment of a map of
predicted site-series group that covered a portion of the study area, and 2) comparison of
predicted site-series group with a reference-data set. If the results of either of these two
testing procedures were not satisfactory thgn the knowledge base ;eceived further

conditional-probability value adjustments.

Using Netica as the inference engine, I processed the entire GIS database through the
knowledge base to generate a final predictive ecosystem map. To assess the accuracy of the
final ecosystem maps, I compared the map results to an independent reference-data set using

several statistical procedures in Microsoft Excel 97.

2.3 GIS DATABASE DEVELOPMENT

Prior to Bayesian-network knowledge base construction, the ecological-domain
expert, Del Meidinger of the BC Ministry of Forests, and T reviewed a belief matrix

developed for the North Coast PEM Project by Jones (2003). Although encompassing a
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larger geographic area and a greater number of BEC subzone/variants, the North Coast PEM
Project contained predictive site—séries mapping of the CWHvm2, CWHvm1 and CWHvh2
BEC units. This review of the North Coast PEM Project allowed us to understand how
existing and modelled GIS layers influenced site-series prediction, and which GIS layers

could be available for the Bayesian-network knowledge base.

Based on that reiriew, we identified 14 GIS layers that we considered ecologically
significant for site-series prediction. Four of these layers were directly available from an
existing GIS database (described below). The remaining 10 were a product of applying

spatial models to existing GIS databases (described below).

The four GIS layers directly available from an existing GIS database were forest-
stand age, forest-stand height, forest-stand species, and forest-stand crown closure. I
acquired all four forest-stand attributes from the B.C. Ministry of Sustainable Resource

Management’s (MSRM) vegetation resource inventory (VRI) GIS database.

The 10 GIS layers that were a product of applying spatial models to existing GIS
databases were: ridge, hill, river bench, lake/wetland bench, gully, slope gradient, bedrock,
stream density, ocean wind, and toe slope. Iderived these GIS layers using the same logic as
Jones (2003). Using Arc/Info version 8.3 GIS software from Environmental Systems
Research Institute (ESRI), I created a triangulated irregular network (TIN) from MSRM’s
terrain resource information management (TRIM) digital elevation points and air-photo-
interpretéd ridges and gullies. I modelled the GIS layers of slope gradient, ridge, river bench,

lake/wetland bench, and gully using the TIN digital terrain model (DTM) (Table 1).
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Table 1 — A summary of the Jones (2003) rule-based logic used to create the TIN/DEM dependant
GIS layers used in this project.

GIS Layer

Rule-Based Logic

Slope Gradient

A natural component of a TIN. Slope gradient measures the maximum rate of

change in elevation across the triangle.

Ridge

Ridge - TIN polygons with a slope gradient greater than 40% and that were
adjacent and within 20m of a TRIM ridge

Ridge Buffers - TIN polygons with a slope gradient greater than 40% and that
were between 20m to 40m of a TRIM ridge

River Bench

Low River Bench - TIN polygons with a slope gradient less than 5% and that
were adjacent and within 100m of a fourth order TRIM definite stream

High River Bench - TIN polygons with a slope gradient less than 5% and
between 100m and 200m from a fourth order TRIM definite stream

River Terrace - TIN polygons with a slope gradient between 5% and 10% and
that were between 200m and 500m from a fourth order TRIM definite stream.
Or, polygons with a slope gradient less than 10% and that were between 500m
and 1000m from a fourth order TRIM definite stream.

Gully

Gully - TIN polygons with a slope gradient greater than 30% and that were
adjacent and within 20m of a TRIM gully

Gully Buffer - TIN polygons with a slope gradient greater than 30% and that
were between 20m and 40m of a TRIM gully '

Bench

Lake/Wetland .

TIN polygons with a slope gradient less than 5% and that were adjacent and
within 200m of a TRIM lake or wetland

Hill

Hill - Hills were derived from TRIM contour lines. A hill was represented by
the largest outside contour line, that would form a closed area, and was less than

or equal to 1200m in length, but which was not a depression.

Hill Buffer - TIN polygons with a slope greater than 30% slope gradient and

were adjacent and within 40m of a hill polygon

Toe Slope

Using a digital elevation model, a location was considered to be a toe slope if
slope gradient was less than 25% and was down-slope and within 100 metres of

an area with a slope gradient greater than 40%
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Toe slope was generated from a raster digital elevation model (DEM), which was
produced from the TIN (Table 1). During the creation of a DEM from a TIN, I set the raster
resolution at 625 m?, or '/i ha, which was the product of a 25 x 25 m pixel. I chose this size
because it approximated the minimum geographic spacing between TRIM ele_vatiori points
along ridge and gully terrain features. This resolution also matched the MSRM provincial
raster DEM product. The remaining GIS layers that I created using Jones (2003) procedures
were not derived directly from a T]N or DEM but were generated from other data sources

(Table 2).

Table 2 — The GIS layers of bedrock, stream density, and ocean wind, which were derived using the
procedures of Jones (2003), were not derived solely from the TIN or raster DEM, but
rather depended on other data sources.

GIS Layer Procedure

The B.C. Ministry of Energy and Mines’ 1:250000 bedrock geology GIS
Bedrock database was reclassified into 5 classes: limestone, volcanic, rich, intermediate,

and poor.

The length of MSRM TRIM stream that intersects a stream density “base-unit”
>polygon. The “base-unit” polygon was defined by the intersection of VRI
Stream Density | polygons with TIN slope gradient polygons that has been simplified into five
classes, and with TIN slope-aspect polygons that has been simplified into two

classes.

Those areas of land that were eastwardly visible from a sea-level line running
Ocean Wind : -
down the middie of Chatham Sound, to a maximum elevation of 50 m.

In addition to those GIS layers generated using the procedures of Jones (2003), the
ecological-domain expert and I identified five other GIS layers useful in predicting site
series. These GIS layers were floodplains, fans, soil moisture, shoreline and a continuous

landform-elements layer.
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The floodplains layer and the continuous—landfonn—element's layer, which delineates
ridges, shoulders, spurs, hollows, back-slopes, terraces, foot-slopes and valley-bottoms, were
created to supplement the individual GIS landform layers (ridge, gully, hill-top, etc.) and the
river-benches layer that were derived using the Jones (2003) procedures. This
supplementation was conducted due to the ecological-domain exp.ert’s concern with some of
the Jones (2003) procedures used to generate landform elements and river floodplains (see
Figure 4 for an example). The ecological-domain expert and I felt that by incorporating two
methods of modelling landform elements and river floodplains within the knowledge base we
could increase our chances of successfully predicting the location of landform elements and

river floodplains.

1 modelled floodplains, fans and soil moisture in the GIS software application SELES
(Spatially Explicit Landscape Event Simulator), which was available from Gowlland
Technologies Inc., using routines developed by Fall (2002). To generate these knowledge

base inputs, I used the same DEM that was used to generate the toe slopes.

I used the SELES’ floodplain model (Fall 2002) to generate ﬂoodplains.' Moving
outward from the l(_)cation of approximate fourth-order streams, the floodplain model
accumqlated cost at a rate of (1 + percent slope gradient)l's until the cost exceeded 100. 1
divided the resulting floodplain-cost layer into low-river bench, high-river bench and river
terrace based on a visual comparison with air photos, satellite imagery and DEM terrain. I

“considered floodplain-cost values less than 10 to represent low-river benches; cost values
between 10 and 35 to represent high-river benches; and cost values greater than 35 to

represent river terraces.
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Figure 4 — This sample map (a) demonstrates the difference between the upper-landform elements as
defined by Jones (2003) (b) and the upper-landform elements as defined by the
continuous-landform-elements layer (c). After reviewing the results of the Jones (2003)
ridges and hill layers (b), the ecological-domain expert and I felt that these layers were
underestimating upper-landform elements (convex areas that shed water). Additional
upper-landform elements (c) were identified using the continuous-landform-elements
layer, which was based on the Schmidt and Hewitt (2004) procedure.
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I delineated alluvial fans using the SELES alluvial-faﬁ model (Fall 2002). The model
first identifies confluence points between medium-sized streams and floodplains or larger
bodies of water. Starting from these confluence points, the fan model spreads across slope
gradients between 10% and 20% without accumulating cost. Cost will accumulate if slope
gradients exceed 20% or drop below 10%. To control fan size, I set the maximum allowable

accumulated-cost to be 500 or 1000 m from the confluence point.

I estimated s.oil moisture usihg the SELES soil-moisture model (Fall 2002), which
impléments the SINMAP algorithm developed by Pack et al. (1998). In the SINMAP soil
moisture algorithm, a raster cell’s .soil moisture is related to the amount of upstream area that
- is feeding into the cell and the cell’s slope (Pack et al. 1998). Although this algorithm can
incorporate local rates of soil transmissivity and recharge, these rates were unknown witlﬁn

the study area. Consequently, the default values were used for transmissivity and recharge.

I created the shoreline GIS layer using raster analysis functions in Arc/info. This GIS
layer represented all areas less than 5 m above-sea-level that were adjacent to the ocean.
Based on the advice of the ecological-domain expert, I chose 5 m because it approximated

the influence of tidewater and large ocean swells on the shoreline.

I developed the layer of continuous landform elements using an approach similar to
- Schmidt and Hewitt (2004), which uses the semantic-import model of Bufrough (1989).
Using the raster DEM, each cell was assigned a membership value for the landform
elements: ridges, shoulders, spurs, hollows, back-slopes, terraces, foot-slopes and valley-
bottoms. To assign membership values, however, I used a Bayesian network, instead of the

fuzzy-logic approach used by Schmidt and Hewitt (2004). The follow section describes the
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Bayesian network of continuous landform elements, which was created for this study.
During this description, and during subsequent descriptions of Bayesian networks, node

names will be displayed in bold and node classes will be displayed with an underline.

Using the Schmidt and Hewitt (2004) approach, six GIS input layers were required to
prodlice the continuous-landform-elements layer: tangential curvature (Dikau 1989), profile
curvature (Dikau 1989), maximum and minimum curvature (Wood 1996), slope gradient and
terrain context. I generated each of the four types of curvature, plus slope gradient, using
Wood’s (1996) multi-scale geomorphic characterization of DEMs. I created terrain context,
which describes whether a raster cell was a valley or hill, using the TOPHAT function of |

Rodriguez ef al. (2002).

Using the logic of Schmidt and Hewitt (see Figure 3 in Schmidt & Hewitt 2004), I
used combinations of tangential curvature (TangentialCurve) and profile curvature
(ProfileCurve) to assign sloping areas into one of nine local form elements: shoulder

(Shoulder), shoulder slope (ShoulderSlope), hollow shoulder (HollowShoulder), spur (Spur),

planar spur (PlanarSpur), hollow (Hollow), spur foot (SpurFoot), foot slope (FootSlope) and

hollow foot (HollowFoot). This combination of tangential curvature and profile curvature
was represented in the Landform BN by the SlopingShape node, which was conditional on
the TangentialCurve node and the ProﬁleCurve.node (Figure 5). Again using the logic of
Schmidt and Hewi& (see Figure 3 in Schmidt & Hewitt 2004), I used combinations of
maximum curvature (MaxCurve) and minimum curvature (MinCurve) to assign flat areas
into one of six local form elements: peak (Peak), ridge (Ridge), plain (Plain), saddle (Saddle),
channel (Channel) and pit (Pit). Figure 5 depicts this relationship, with the FlatShape node

being conditional on the MaxCurve and the MinCurve nodes.
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Figure 5 — The Bayesian network of continuous landform elements, which was developed in Netica
version 2.17, was developed to predict the spatial arrangement of landform elements.
In this diagram, the boxes represent nodes and the arrows represent the relationship
between nodes. The input nodes, which represent GIS database layers and are not related
to a parent node, were TangentialCurve, ProfileCurve, MaxCurve, MinCurve,
SlopeGradientDegrees and TerrainContext. The output node, which is not related to a
child node, was LandformElement. The remaining nodes, which were SlopingShape,
FlatShape, and FormElement, were intermediate nodes. The conditional probability
tables for the intermediate nodes and output nodes were defined using expert opinion and
the logic of Schmidt and Hewitt (2004). For each node, the node name is provided at the
top of the box with the node classes listed on the left. The thick horizontal black bars and
proceeding number indicate the probability, or belief, that a class occurs given the parent-
node conditions. For example, given that the form-element node (FormElement) was
100% Shoulder and the terrain-context node (TerrainContext) was Hillslope, there was
25% probability that the landform element (LandformElement) was Shoulder and 75%
probability that it was Spur.
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Once each raster cell was assigned to either a sloping-form element or a flat-form
element through the FormElement node, I assigned each cell a landform-element probability
‘(LandformElement) based on terrain context (TerrainContext) and FormElement. The
result was that each cell had a probability of belonging to each of the eight landfoﬁn

elements: Ridgé, Shoulder, Backslope, Hollow, Spur, Terrace, Footslope and Valley Bottom.

To produce thesevfuzzy landform-element probabilities I incorporated some uncertainty into
the LandformElement node’s conditional probabilities (Table 3). In Table 3 and Figure 5,
for example, if a cell had a Shoulder FormElement and fell on a Hillslope in
TerrainContext, then the cell was considered to ilave a 75% probability of being called a

Spur LandformElement and a 25% probability of being called a Shoulder.

To capture the uncertainty in defining flat, slope or curved, I used the semantic-
import model of Burrough (1989) for each of the input nodes. The semantic-import models
allowed the BN inpﬁts to reflect the class uncertainty, or fuzzy membership, resulting from
either the continuoﬁs nature of the input or the varying semantic definitions of the input

_classes. Table 4 lists the thresholds I used to convert the continuous input values into soft
classes. Iheuristically determined these thresholds by visually assessing the spatial
arrangement of each class relative to terrain. I ran the continuous-landform-element BN three
times to capture the multiple spatial scales at which a semantically-defined landform element
can exist. Each time I used a different search-window rédius for curvature and slope

gradient: 49 m, 74 m and 99 m. During all three runs, the search-window radius for the
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Table 3 — The conditional-probability table used to define the relationship between landform elements, terrain context and form elements.
This table determines the probability of occurrence of each landform-element class given the input conditions of terrain context and

form element. For example, if the TerrainContext was Hill and FormElement was Shoulder then there was a 60% probability that
LandformElement node was Ridge and a 40% that it was Shoulder.

Terrain. LandformElements
Context FormElement ‘

Ridge  Shoulder BackSlope Hollow Spur  Terrace FootSlope ValleyBottom
Hill Shoulder 0.6 0.4 0 0 0 0 0 0
Hill ShoulderSlope 0 1 0 0 0 0 0 0
Hill HollowShoulder 0 0.6 0 0.4 0 0 0 0
Hill Spur 0.6 0.2 0 0 0.2 0 0 0
Hill PlanarSlope 0 0 1 0 0 0 0 0
Hill Hollow 0 0 0 1 0 0 0 0
Hill SpurFoot 0.6 0 0 0 04 0 0 0
Hill FootSlope 0 0 1 0 0 0 0 0
Hill HollowFoot 0 0 04 0.6 0 0 0 0
Hill Peak 1 0 0 0 0 0 0 0
Hill Ridge 1 0 0 0 0 0 0 0
Hill Plain 1 0 0 0 0 0 0 0
Hill Saddle 0.5 0 0 0.5 0 0 0 0
Hill Channel 0 0 0 1 0 0 0 0
Hill Pit 0 0 0 1 0 0 0 0
HillSlope Shoulder 0 0.25 0 0 0.75 0 0 0
HiliSlope ShoulderSlope 0 0.25 0.75 0 0 0 0 0
HillSlope HollowShoulder 0 0.25 0 0.75 0 0 0 0
HillSlope Spur 0 0 0 0 1 0 0 0
HillSlope PlanarSlope 0 0 1 0 0 0 0 0
HillSlope Hollow 0 0 0 1 0 0 0 0
HillSlope SpurFoot 0 0 0 0 0.75 0 0.25 0
HillSlope FootSlope 0 0 0.75 0 0 0 0.25 0
HillSlope HollowFoot 0 0 0 0.75 0 0 0.25 0
HillSlope Peak 0.25 0 0 0 0.75 0 0 0
HillSlope Ridge 0.25 0 0 0 0.75 0 0 0
HillSlope Plain 0 0 0 0 0 1 0 0
HillSlope Saddle 0 0 0 0.5 0 0.5 0 0
HillSlope Channel 0 0 0 1 0 0 0 0
HillSlope Pit 0 0 0 0.5 0 0.5 0 0
Valley Shoulder 0 0 0 0 0.75 0 0.25 0
Valley ShoulderSlope 0 0 0 0 0.5 0 0.5 0
Valley HollowShoulder 0 0 0 0.35 0.35 0 0.3 0
Valley Spur 0 0 0 0 0.5 0 0.5 0
Valley PlanarSlope 0 0 0.5 0 0 0 0.5 0
Valley Hollow 0 0 0 0.35 0 0 0.65 0
Valley SpurFoot 0 0 0 0 0.25 0 0.75 0
Valley FootSlope 0 0 0 0 0 1 0
Valley HollowFoot 0 0 0 0.25 0 0.75 0
Valley Peak 0 0 0 0 0.1 0 0 0.9
Valley Ridge 0 0 0 0 0.1 0 0 0.9
Valley Plain 0 0 0 0 0 0 0 1
Valley Saddle 0 0 0 0.1 0.1 0 0 0.8
Valley Channel 0 0 0 0 0 0 1
Valley Pit 0 0 0 0 0 0 0 1




terrain context node remained fixed at 1875 m. My choice of search-window radii, which
attempted to capture the scale that site series were influenced by local terrain geometry, was
based on the advice and opinion of the ecological-domain expert. I creatéd the final layer of
continuous landform elements by taking the arithmetic mean from the 6utput of the three

continuous-landform-element runs.

Table 4 — The heuristic rule-base used to convert input values into fuzzy landform attributes.
For example, slope gradients less than 4° had full membership to the Flat class.
Membership to the Flat class decreased linearly to zero between 4° and 6° slope-gradient.
Above 6° slope-gradient there was no membership to the Flat class.

Threshold
Node Class
Full Membership No Membership

Curvature (Tangential, | Concave <-0.002 > -0.0004
Profile, Minimum and | Strajght >-0.0004 and < 0.0004 | <-0.002 and > 0.002
D) Convex > 0.002 <0.0004
: Flat <4 >6
SlopeGradientDegree '

Sloping >6 <4

Valley <-0.6 >0.3
TerrainContext Hillslope or Plain >-03and <0 <-0.6and>04

Hill >0.4 <0

I combined all of the separate input GIS layers into a single GIS database using a raster data
model. The raster-cell dimensions were matched to the SELES raster dimensions, which
were 25 x25m. 1 convei'ted the vector data sets of bedrock, stream density, forest-stand
height, forest-stand age, forest-stand crown-closure and forest-stand species to raster using a
majority rule. With a majority rule, the value of a raster cell reflects the vector polygon that
occupies the largest portion of the cell. Table 5 summarizes the GIS database’s contents
along with comments regarding each layer’s accuracy as it may pertain towards predicting

site series. Figure 6 illustrates the varying spatial scales of the GIS input layers.
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Table 5 — A list of the data layers contained within the GIS database, along with comments
regarding each layer’s ability to assist site series prediction.

GIS Layer C?nﬁdence in the GIS layer’§ spati.al and t!lel‘natic content
. with respect to the needs of site series prediction
Ridge High for sharp ridges
Hill Top Medium - identifies some but not all
Gully High
River Floodplains Low
Lake/Wetland Benches Low
Slope Gradient High
Bedrock .Low
Stream Density Medium
Ocean Wind Medium
| Shoreline High
Toe Slope _ Low .
SELES Floodplains | Medium
SELES Alluvial Fans Low
SELES Soil Moisture Medium in high relief areas, low in low relief areas
Continuous Landform Elements Medium
Forest Tree Age High (but low for old age trees)
Forest Tree Height High
Forest Tree Crown Closure High
Forest Tree Species High
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Figure 6 — Four examples of the GIS data layers used to create the database used in this study. This
diagram highlights the different spatial scales that occurred within the GIS database.
For example, the landform-elements layer has a large-spatial scale and the bedrock-
geology layer has a small-spatial scale.
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contents along with comments regarding each layer’s accuracy as it may pertain towards

predicting site series. Figure 6 illustrates the varying spatial scales of the GIS input layers.

Slope-aspect is considered an important ecological factor in relation to site series in
some area of the province, however, the ecological domain expert did not consider slope-
aspect ecologically important within the study area. The high latitude and the presence of
heavy cloud cover for nﬁost of the year effectively removes the influence that sun-incidence -

angle can have on soil moisture within the study area.
2.4 KNOWLEDGE BASE CONSTRUCTION

Similar to the traditional approach of predictive site-series mapping (RIC 1999), I
first stratified the study area using the BC Ministry of Forest’s medium-scale subzone/variant
mapping of the biogeoclimatic ecosystem classification. I constructed a separate site-series
knowledge base for each of the three resulting strata (CWHvm2, CWHvm1 and CWHvh2)

using the advice and knowledge of local ecological-domain expert, Del Meidinger.

- A review of the input GIS database contents revealed that, based on the ecological-
domain expert’s opinion, the spatial and thematic accuracy of the GIS database was not
sufficient to accurately map all of the site-series units. The solﬁtion was to group similar site
series into site-series groups. Although not desirable, site-series grouping is not uncommon
in predictive site-series mapping (Timberline Forest Inventory Consultants Ltd. 2000; Jones
2003; Jones 2004). ‘Grouping site series reduced the total number of mapped units from 42
down to 23, and resulted in six site-series groups for CWHvm2 (Table 6), seven site-series

groups for CWHvm1 (Table 7), and 10 site-series groups for CWHvh2 (Table 8).
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Table 6 — Site-series groups used for the CWHvm2 BEC unit. CWHvm2 site-series units of
Meidinger and Pojar (1991) were grouped into simpler units due to the low thematic and

spatial accuracy of some GIS layers.

Original Site Series Final Site-Series Group
01 — HwBa — Blueberry i
| 06 — HwBa — Deer fern

02 — HwP1 - Cladina o5

03 — HwCw — Salal

04 — CwHw — Sword fern

05 — BaCw — Foamflower 05

08 — BaSa — Devil’s club

09 — CwYc — Goldthread (Bog forest) 09

10 - PI - Sphagnum (Bog woodland) 5
11

11 — CwSs — Skunk cabbage (Swamp forest)
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Table 7 — Site-series groups used for the CWHvm1 BEC unit. CWHvm]1 site-series units of
Meidinger and Pojar (1991) were grouped into simpler units due to the low thematic and

spatial accuracy of some GIS layers.

Original Site Series Final Site-Series Group
01 — HwBa — Blueberry
06 — HwBa — Deer fern "
02 — HwPl - Cladina

03
03 — HwCw — Salal
04 — CwHw — Sword fern
05 — BaCw — Foamflower 05
08 — BaSa — Devil’s club
09— Ss— Salmonbe:ry (high fluvial bench)
10 ~ Act —~ Red-osier dogwood (middle fluvial bench) 09
11 — Act — Willow (low fluvial benches)
12 — CwYc — Goldthread (bog forest) 12
13 — P1 - Sphagnum (bog woodland) 13
14 — CwSs — Skunk cabbage (swamp forest) 14
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Table 8 — Site-series groups used for the CWHvh2 BEC unit. CWHvh2 site-series units of
Meidinger and Pojar (1991) were grouped into simpler units due to the low thematic and

spatial accuracy of some GIS layers.

19 — Ss — Pacific crab apple (sites affected by brackish water)

Original Site Series Final Site Series;Group
01 - CwHw — Salal 01
02 - P1Yc — Rhacomitrium

03
03 —CwYc — Salal
04 — HwSs — Lanky moss 04
05 ~ CwSs — Sword fern
06 —~ CwSs — Foamflower 07 .
07 — CwSs — Devil’s club
08 — Ss — Lily-of-the-valley (high fluvial benches)
09 — Ss — Trisetum (middle fluvial benches) 08
10 — Dr — Lily-of-the-valley (low fluvial benches)
11 - CwYc¢ — Goldthread (bog forest) 11
12 — P1Yc — Sphagnum (bog woodland) 12
13 — CwSs — Skunk cabbage (swamp forest) 13
14 — Ss — Salal (Rock headlands and beach plains)
15 ~ Ss — Kindbergia (old beach plams)
16 —Ss— Reedgrass (rocky headlands, colluv1um, and old dunes) “
17 — Ss — Swordfern (manne terraces and scarps)
18 — Ss ~ Slough sedge (strongly fluctuating brackish water table)

18
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Predicting soil moisture and soil nutrient regimes

My first step in creating the BN knowledge bases was to predict soil-moisture and
soil-nutrient regimes using the variables in the GIS database. I developed a preliminary
influence diagram using the ecolc;gical-domain expert’s opinion on the relationships between
soil-moisture‘regime, soil-nutrient regime and the layers in the GIS database (Figure 7 and
Figufe 8). To turn the influence diagram into a BN, I added classes to each of the variables
using the écological—domain expert’s advice. I also merged the two influence diagrams into
one BN and allowed the soil-moisture and soil-nutrient sub-models to share common
variables (Figure 9). I populated each of the conditional probability tables using the
- ecological-domain expert’s advice and supplemented with information published in the site

identification field guide (Banner et al. 1993).

In the soil-moisture-regime sub-model (Figure 7) I used two environmental factors
that, based on the advice of the ecological-domain expert, were believed to be related to soil-
moisture regime: terrain shape, and surface-visible waters. I estimated the component of soil
moisture that was related to terrain shape through the Ground Wetness intermediate node,
while the component of soil moisture that was related to surface-visible water was estimated

through the Surface Wetness intermediate node.

To predict soil wetness related to terrain shape (Ground Wetness), I used a
combination of variables that described terrain shape or position (Landform Elements, Hill,
Ridge, SELES Floodplain, Lake/Wetland Bench, River Bench, Toe Slope and Gully) and

SELES soil moisture (Flow Accumulation Wetness). I divided the landscape into areas that

47



8y

‘Sopou uasmiaq sdiysuone)al oy juasaidos

smolry ‘sapou pajejar Surdnosd £Aq sspou yndino pue sspou ndur usamiaq diysuonerar ayy Fuikyjdurs £q djsy sspou ajerpauIsiul

sy} pue sIake] ejep SIO) ay3 Juasaidar sapou yndut oY) °G amSB1, Ul YI0MISU-URISIARE SIUSWS[-ULIOJpUR] 3y} JO uondiIossp ay) oI
-ow391 SIMSIOW-[108 pue Apnys SIY) Ul pasn aseqejep SIH 9y} Usamiaq diysuoneas ayy ure(dxs 0} pajeaio weiderp souanfyul Y — £ omS1y

SINSION 1108

SSOUIBAA ©0BLNG

(SSeUiepn pUnoIS) )

(sseuiem uonenNWNodY Mol ) (SO DR UEe D)

dnois) edo|s

Aiino
s0dedojgmo] ¥
sse|D edo|g
. wiojpue 1ejd pIn g
sodedojsdn
!
wJojpuen Jeddn F
d 801 83738
(ebpiy) SueWe|3 Wigjpue] WiojpueT] Jemo’)

youeq JeAly

(youeg puepemenet)

uejdpoold $3138



6y

‘sapou pajeral Surdnoi8 £q sopou ndino pue sopou ndur usamioq dysuoneas oy Juikjjduns £q dioy sopou ojerpouLIajul
oy pue s19ke] eyep SIO oy yussardos sopou jndur oy ‘¢ amSB1] Ul JIOMIOU-URISIARY SIUSLID[S-ULIOJpUR] 31} JO uondLIosap ayj ayI']
*oWiI391 JUSINNU-[I0S Pue APMYs SIY} UL PIsn aseqelep SIH oyl Usamidq diysuone[a1 oy} ure[dxs 03 pajeald weidelp Soudn[Jul oy — § 9andi

JUSIINN Jlog

(wnooy moj4 Yim ebedees )

SUB - YUM SSBUYOlY

ue4
(sseulem uogeINWNOOY MOI )
Sseuyadiy {los
ued 3138
dnoip by AUARONPOI4 8BNS
S0 4adoigmo ‘
sse|n eby ) dnoun) »ooipeg A/a
dnoD) SINSOID UMOID
q 2 2 v dnoss) WybieH dnoix) edo|s
3d0.ipeg
SSe|D 8INS0jD UMOID
sse(0 ybieyH
sse|) edo|g

siuswe|3 wlojpueT]

(youeg Jony ) {Goueg puegepmene)

{ieidpooid s3138



0¢

*¢ 2In31, Ul punoj 2q UBD 2INJB[IUSWIOU PUE JBULIOJ 9pou Y3 Jo uondiiosap v 'sanijiqeqoid [euonipuod
pUE S3sSE[0 JO 195 B USAIS Sem opouU Uora “YI0m)dU UeIsoAeg € ojul wesFerp 20uan[jul oY) winy of g 2ing1] pue £ amG1] ul swelde1p aouanjjul SWI3a1 JUALHNU-[I0S PUL SWIFI JINISTOW-[108 Y} FUIUIqUIOD
£q pa1eaId sem JI0MISU SIYL “3UN DI TWAHMD Y} UIYIIM SOWIFI JUSLINU-[I0S PUB 2INISIOW-[(0S PUB ‘Apnis SIY} Ul pasn S19A.] Blep S[O) dY) Udam)aq sdIysuonie]al 3y dUIJap 0} pasn JIomlau ueisaheq sy [, — ¢ 3131

P62 UIHAIBA NS 860 1BMAIBA NS
102 YInd NS il 18A WS
e 08 Wnipapy NS LbS ASBW WS
7 gC 1004 NS zee Ag NS
WwaunN j10g aimstiop [105
9gs  sndiszv
S8l 0GZOMPLY
9€0  OPLONZLY
€80 0ZLOMOLY
€60 00LOMBY
WL 089y i
10 090Ub Y 020 18AVAIBA SMD
892  OpOMZV 2€2 18/, SMOD
291 020N ¥ 809 IS8 SMD
120 v £l Al SAMD
ssu|) aby - SSAUJaM Punoln
AR o]
220 YorgAiaa Sy g g oNdaag 55 0Ey  BMAUBASTIES
A J g9l yord sy winooy Mo|J QM sbudaag 9102 194 53135
225 bunopvy S8 wnipspw Sy - L'e§ JIsa 5135
P2 PIA W - GGy Jood sY ; 0Bl Ags313s
)26 SINBWY SUT 4 Yl SSaUYay SSAU)BAA UONB|NWNIDY MO|4
dnaoig) aby

T{iZz 4oHIees S SB6 10Nued
|, Swogdass g £50 ued BAVIBA MO
+0 001039620 p— GG oNdsag g ue4 1@
+0 56019800 bLO WA abodaag TN SIS
510 580392 00 m“wm_ ssmw_mm - N A0 A0
860 §.019900 w.mv ._oo—um N N SSaulap, UONSod urena] [ 085 19NdN SKW p'06 1ONSbprY
(8L S909530 : . * Skz  yngdn SW 899 Jngebpry
026 §508r 00 ssauyory |10 “ N . ioimgy)| dn sw 162 abprg
§22  GrOIMEDD 886 1ONUed 53135 N “soqadojsd abpi
BLE  SE29200 \ AN 2L ue4 53135 | N\ AN defaisen prd
06 52009100 o Rods s 53135 AN
BOL 51999 LEE WNIPBN IS AN \
ssB|) mm.mzmo_o :Wh.oooo g 1e B I /// 286 IONIIH
: g
AuAnanpoid auis o ﬁz\wbﬁm AN AN S0 gl
: s N bSO HH
ber s £25 IoNMIT S N "H
Y — w.ww: apA 8Jupn e InamIISH ™ )
bl Paso0 a0 19M 27845 = coe  MOTSN N\ .
w5z uadp ) sododoismon AN = 66 ONIBIPIN
' H
dnoig ainso|) umoi) / 970 YoI4PIN
886 10Nyauag ulojpusTel4 PIN
- gel  eywsnd|p a3 850 moyouag
¢80 100d4g 088 deeI3KIBA S 3I5  BYWEPOZAS 0ew ubiHyousg
1189 =LH T chh__dY8 im0zl apuey g 2 BYWOZON OS PED SIBMS1lDUSH T/ 1ONAIND T 1onpadd
T oo dnoug yooipag dnoig adoig - r |/ Bywp ds youag P51 naAIng AN Wmm z_m_&m
w0y MOYSH Ausuaq weang ME A9 mwmm _ozwmw AN wiojpue 1addn
dnoiny ybiapy 11"
ELYN
4
yd
2/6 1ONB80L 53135 95 JONiaMD
10 sndsan 082 801 53135 MWW za;L
sl T B
695 9rOISE H Imma.m umsﬂﬁ_% 090I9€ § 7% e/ dpooioN A\\\\\ 4/
mm_ LEOWBZH T e mu.:uu_u>¢m SEQLLS 950  ure|dpoojqiamon 0L WONOGASIRA
2PE B2ONZH wiem 3Ty SuUQISBWN WY ol s seo uredpoojgybiy 2eL edojgiooy
592 BLOHLH —ora - 0s i1 |gen  uedpooj4eioen 920 RN
wwmm _“:Q_wn Jooiped ssu|) adojsg uie|dpool4 642 indg
bEZ #MOJ(0H
sse|] ybiay - t mmgcz  adogyoeq
wmmm %ﬂﬁmwm »“M 997621 189 18pinoys
e yBiHyouag Ay 55 JONUOUSE AT 080 h_uﬁu%%_&wamﬂ“:mu._um £3¢ 2Bprg
260 s98us | yousg ANy 9110 youag A 080 ueidpooipayBIH S3138 Sjuswa|j wiojpue
Susg pUEnaMaTa 0cL  uredpoo|4emoT 537135
Yyauag Jany 42usd puspemSAe] w5 Um|dPOOIION ST13S
urejdpooid S313S




I considered water shedding (UpSlopePos - upland areas where water is moving out quicker
than being replenished), water accumulating (L.owSlopePos - lowland areas where water is
moving out slower than being replenished), benches adjacent to water bodies (Bench), and
areas between upland and lowland (Mid Fl#t Landform). For each combination of upper-
slope position, mid-slope position, lower-slope position and bench, I assigned a conditional
probability of belonging to each class in the Terrain Position Wetness intermediate node.
To produce Ground Wetness, [ created a conditional-probability table ,which took into
account the Terrain Position Wetness intermediate node and the SELES’ soil moisture

input node (Flow Accumulation Wetness).

Water visible on the earth’s surface, such as streams and rivers, was the other
environmental factor that the ecolo gical—domain expert and I believed reﬂe‘cted soil moisture.
I estimated surface-visible soil moisture (Surface Wetness) using local stream density
combined with slope gradient, where higher stream density was assﬁmed to signify greater
soil moisture. When comparing areas of equal stream density, however, areas of high slope

would be drier than areas of low slope.

To estimate soil-nutrient regime (Figure 8) I used two environmental factors that,
based on the ecological-domain expert’s opinion, were believed to influence soil-nutrient
regirﬁe. These environmental factors were: soil seepage (Seepage with Flow Accum) and
soil richness (Soil Richness). Seepage was used as an influence on soil richness because it

was believed that increased seepage contributes to increased soil richness.

I derived the seepage intermediate node (Seepage with Flow Accum) from lowland,

bench, high stream-density and high flow-accumulation areas because, based on the advice of
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the ecological-domain expert, high soil-moisture levels affect seepage rates. Iused two
stages to estimate seepage rates: first seepage (Seepage) was estimated from the intermediate
nodes representing low-terrain position (LowSlopePos), fluvial benches (Bench) and
surface-visible soil-moisture (Surface Wetness). This estimate of seepage was subsequently
modified by the SELES estimate of soil moisture (Flow Accumulation Wetness) to produce

a final seepage estimate (Seepage with Flow Accum).

The other influence on soil-nutrient regime was soil richness. Based on the opinibn
of the ecological-domain expert, spil richness was related to four environmental variables:
alluvial fans, slope gradient, underlying bedrock and forest. I created an initial soil-richness
intermediate node (Soil Richness) using slope (Slope Group), bedrock geology (Bedrock
Group) and forest productivity (Site Productivity). The ecological-domain expert defined
the conditional probabilitie;s. for this initial soil-richness node. Based on the ecological-
domain expert’s opinion, forest productivity was given far greater influence on the
~ conditional probabilities of soil richness than bedrock geology or slope. Slope was
considered to have only a slight influence on soil richness, and bedrock geology was mapped
at such a coarse scale that confidence in its predictions was low. Generally, areas of high
forest productivity were considered by the ecological-domain expert to have high soil

richness, and areas of low forest productivity were considered to have low soil richness.

Forest productivity was seen by the ecological-domain expert as an important effect
of soil richness. Unlike any of the previous intermediate nodes, however, which relied on
terrain Vériables, the estimate of forest productivity (Site Productivity) relied solely on the
MSRM VRI forest vegetation inventqry. Using classes of forest-stand age (Age Group),

height (Height Group) and crown closure (Crown Closure Group), the ecological-domain
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expert assigned each class combination a probability of being high (SP_High), medium
(SP Mediﬁm) or low productivity (SP_Low). The ecological-domain expert’s belief was
that forested areas with short, old-aged trees with open crown-closure indicated areas of low

productivity, while areas with medium or old-aged tall trees with closed crowns indicated

areas of high productivity.

Once the initial soil-richness node (Soil Richness) was defined, I added the influence
of alluvial fans (Fans) or; soil richness to produce a final soil-richness node (Richness with
Fans). Although occurring infrequently across the landscape, alluvial fans were seen by the
ecological-domain expert as an important indicator of rich soils. To reflect this belief, I
created the conditional-probability table for Richness with Fans with increased probability

of rich soils occurring on sites with alluvial fans.

‘Once I built the BN knowledge base to predict soil-moisture and soil-nutrient
regimes, I adjusted the conditional-probability tables to reflect the unique attributes of each
BEC subzone/variant. In the CWHvm1 and CWHvm2 BEC units, I considered the soil
transmissivity to be uniform across the landscape. In the CWHvh2, however, many of the
areas of low slope-gradient hold moisture due to their low soil-transmissivity. To reflect this
difference in soil transmissivity between the hypermaritime BEC subzone/variants and the
maritime BEC subzone/variants, I adjusted the implementation of the SINMAP algorithm in
SELES to increase the inﬂuenc;e of low slope gradients on soil moisture. This adjustment
allowed the SELES flow-accumulation GIS layers to reflect the ecological-domain expert’s
belief that low ‘slope-gradients within the CWHvh2 BEC unit were much wetter than low

slopes in the either the CWHvm1 or CWHvm2 BEC units.
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In addition to the changes to the soil-moisture algorithm in the CWHvh2, I also
adjusted two of the nodes required to predict soil nutrient in the CWHvh2. I gave the Crown
Closure Group and the Site Productivity intermediate nodes an additional class to

distinguish sites with very sparse crown closure.

Adding a node to reflect the edatopic grid

Once I developed a BN, knowledge base for each BEC subzone/variant to reflect the
ecological-domain expert’s initial beliefs around soil moisture and soil nutrient, T used the
dorhéin expert’s advice and the edatopic grids (Figure 10) to combine soil-moisture and soil-
nufrient regimes into an initial site-series-group prediction (Site Series Edatopic) (Figure
11). Although I used soil-moisture and soil-nutrient regimes to place each location in the
appropriate general area on the edatopic grid, the ecological-domain expert recognized that
other variables were required to adjust site-series prediction. Adjustments were necessary
either because of inaccuracies in the soil-moisture and soil-nutrient sections of the model, or
because more than one site-serieé group could occur at a given edatopic-grid position. Based
on advice from the ecological-domain expert I used such variables as vegetation, slope,
floodplain and shoreline to refine the site-series prediction. For each BEC subzone/variant,
the BN knowledge base required different adjustments to the post-edatopic site-séﬁes

prediction depending on the unique environmental conditions of each BEC subzone/variant.
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Figure 10 — Edatopic grids and corresponding site-series groups used for the CWHvm1, CWhvm2
and CWHvh2 Bayesian networks. Some areas of the edatopic grids were comprised of
only one site-series group. For example, only site-series-group 10 in the CWHvm2 was
comprised of poor soil-nutrient and very wet soil-moisture. Some areas of the edatopic
grids, however, were comprised of more than one site-series group. For example, site-
series groups 12 and 18 in the CWHvh2 were both comprised of poor soil nutrient and
very wet soil moisture.
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Soil Moisture Soil Nutrient

SM Dry 26.2 SN Poor 384
SM Mesic 524 SN Medium 387
SM Wet 202 SN Rich 20.0
SM Verywet 1.19 SNVeryRich 2.87

Site Series Edatopic

SSE0 452
S3E03 235
S3E05 229
SSE03 724
3SE10 043
33E11  0.67

Figure 11 — The portion of the CWHvm2 Bayesian-network, which illustrates the relationship
between site-series group (Site Series Edatopic), soil-moisture regime (Soil Moisture)
and soil-nutrient regime (Soil Nutrient). A description of the node format and
nomenclature can be found in Figure 5.

Adding nodes to adjust the estimation of site-series group

The BN knowledge base for the CWHvm?2 required the fewest post-edatopic
adjustments to site-series group. Based on the ecological-domain expert’s advice, 1
incorporated slope gradient (Slope group2) (Figure 12) and forest vegetation (Site
Productivity and Species Influence) (Figure 13) directly into the site-series-group
prediction. Slope gradient was used to express the ecological-domain expert’s belief that the
05 site-series group occurred on sites with rich soil and moderate to high slope gradient, and
the 11 site-series group occurred on sites with rich soil and little to no slope gradient. In
addition, slope was used to differentiate site-series groups with poor/medium soils, such as
03 that occurred on sites with high slope gradient, from 09 and 10 that occurred on low slope

gradients. The influence of forest vegetation on the prediction of site-series group was
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Site Series Edatoplc

SSE01 452
SSE03 235 Slope Group2
SSE05 229 SG20to10 296} !
SSE09 724 SG211t035 181
SSE10 043 SG2 36plus 789
SSE11 067 v
¥

Site Series Slope Modufler

SSS 01 470

SSS03 235

SSS 05 224

SSS 09 5.65

SSS10 0.28

SSS11 1.16

1

Figure 12 — The portion of the Bayesian network for the CWHvm2, which illustrates the influence of
slope (Slope Group2) on the previous estimation of site-series-group (Site Series
Edatopic) to produce a new prediction of site-series group (Site Series Slope Modifier).
A description of the node format and nomenclature can be found in Figure 5.

! y vy

Site Series Slope Modifler Site Productivity "]
sss ! 47.0 i SPHigh 21 8 i

SS5S 03 235 SP Medium 337

SS5S 05 224 SP Law 445

58508 5.65

8SS10 0.28

33881 116

g

Species Inﬂuence
Poplar 143 m :
y LodgepoleDld 133 ‘T
SpruceOid 133
Site Series Veg Modmer YellowCedar 143
Ssvoi 233 / Nolnfluence 447
SSv 03 25.5 s
SSv 05 207
SSv0g 7.98

SSV'10 067
SSV 11 1.77)

Figure 13 — The portion of the Bayesian network for the CWHvm2, which illustrates the influence of
forest-stand productivity (Site Productivity) and forest-stand species (Species Influence)
on the previous estimation of site-series group (Site Series Slope Modifier) to produce a
final estimation of site-series group (Site Series Veg Modifier) for the CWHvm2. A
description of the node format and nomenclature can be found in Figure 5.
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more complex. In general, the presence of old and low-productivity lodgepole pine (Pinus
contorta var. contorta) was believed by the ecological-domain expert to often occur on 03,
09 and 10 site-series groups. Sites with highly productive lodgepole pine were more often on
01 site-series group. Sites that were highly productive and contained Sitka spruce (Picea
sitchensis) were more likely to be 05 site-series group, and the low-productivity sites with
Sitka spruce were more likely to be 11. The presence of highly pfoductive yellow-cedar

| usually signified 01 site-series group.

The BN knowledge base for the CWHvm1 incorporated similar beliefs as the
CWHvm2 with respect to the probability that certain site-series groups were associated with
certain slope gradients and forest vegetation. Tree species was used similarly in the
CWHvml as in the CWHvm?2, but, based on the ecological-domain expert’s opinion, I added
amabilis fir, poplar (Populus balsamifera) and red alder (4lnus rubra) ;0 the list of
vegetation species. It was the ecological-domain expért’s opinion that both poplar and red
alder helped to predict the occurrence of 09 site-series group. The 09 site-series group |
occurred on similar slopes and soil-moisture/nutrient regimes as the 14 site-series group, but
was associated with fluvial benches that were commonly vegetated with mature red alder and

poplar.

In the BN knowledge base of the CWHvml, I incorporated river floodplains

(Floodplain) directly into the estimation of site-series group to further refine the prediction

of site-series group 09 (Figure 14). I gave low floodplains (LowerFloodplain) a high

- probability of being 09 site-series group, high floodplains (HighFloodplain) a medium

probability of being 09, and glacial floodplains (GlacialFloodplain) a low probability of

being 09.
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Floodplain

GlacialFloodpl... 1.03
HighFloodplain  0.82
LowerFloodplain 0.38
NotFloodplain -~ 978

S3v 09 19.0
33V 12 5.26
S8V13 0.8
35v14 313

Site Series Veg Modifier
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S8V 05 19.8 qJ

kA
Site Series Fluvial Modifier
SSF 01 343 i
SSF 03 175
SSF05 196
SSF09 192
SSF12 5.26
SSF13 0.98
SSF14 3.09

Figure 14 — The portion of the Bayesian network for the CWHvm1, which illustrates the influence of

floodplains (Floodplain) on the previous estimate of site-series group (Site Series Veg

Maodifier) to produce a final estimate of site-series group (Site Series Fluvial Modifier)

for the CWHvml. A description of the node format and nomenclature can be found in

Figure 5.

I developed the BN knowledge base of the CWHvh2 to incorporate slope gradient,

vegetation and floodplains variables directly into the site-series-group prediction. I defined

conditional-probability tables for these relationships using the ecological-domain expert’s

opinion. I also incorporated shoreline effects directly into the prediction of site-series group

(Figure 15). I converted to site-series group 14, all site-series groups occurring in areas
affected by the ocean wind input layer (Salt Spray Shoreline). In addition, based on the
ecological-domain expert’s advice and the CWHvh2 edatopic grid (Figure 10), [ increased
the probability that a site was site-series group 18 if it occurred on an existing very wet site

(site-series groups 12 and 13) in a gully adjacent to the ocean (Gully Adjacent to

Shoreline).
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ShoreCreek 061) § ¢ SSF 11 24.4
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SS8Sho1 178
SSSho3 103
SSSh04 137
SSSho7 114
SS8Sho8 052
SSSh11 234
SSsh12 739
S88Sh13 123
SSSh14 406
SSSh18 014

Figure 15 — The Bayesian network for the CWHvh2, which illustrates the influence of ocean wind
(Salt Spray Shoreline) and ocean estuaries (Gully Adjacent to Shore) on the previous
estimation of site-series group (Site Series Fluvial Modifier) to produce a final estimation
of site-series group (Site Series Shore Modifier) for the CWHvh2. A description of the
node format and nomenclature can be found in Figure 5.

Adjusting the knowledge base conditional probabilities

I populated each input node with an unconditional-probability distribution, which
represented the proportion that each input class occurred within the corresponding BEC
subzone/variant. These unconditional probabilities aided model adjustment because the
posterior distributions generated by each of the intermediate nodes could then reflect the
relative abundance of each class within the BEC subzone/variant (see the “probability bars”
of each node in Figures 7, 8, 9, 10, 11, 12, and 13). If the posterior distribution of an
intermediate node did not reflect the relative distribution of the classes within the study area

then this signalled the possible need to revise the node’s conditional-probability table.
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For exampie, in Figure 9, which contains the unconditional probabiiities for the
CWHvm2 BEC unit, 0.28% of the area has slopes of 0% (S _0), 2.68% of the area has'slopes
from 1% to 10% (S 1t010), 18.1% of the area has slopes from 11% to 35% (S 11t035), 34.4%
of the area has slope from 36% to 60% (S 36t060), 22.5% of the area has slopes from 61% to
80% (S 61t080), and 22% of the area has slopes greater than 80% (S 81plus). Based on the
unconditional probabilities of Slope Class and the conditional probabilities of Slope Group,
the posterior probabilities of the Slope Group classes were 12% Gentle slope and 88% Very
Steep slope. If the posterior-probability values for Slope Group did not reflect expert
opinion then I would adjust the conditional-probability values fof Slope Group in-

consultation with ecological-domain expert.

Although.the posterior probabilities that resulted from the BEC subzone/variant’s
unconditionai-probability tables reflected fhe relative abuﬁdance of each class within the
BEC subzone/variant, they did not portray the spatial arrangement of each class. To assess
the spatial distribution of the intermediate- and leaf-nodes’ posterior-probabilities, I routinely
generated mapé using a sample of the GIS database as input. The ecological-domain expert
and 1 visually interpreted the maps generated from intermediate- and leaf-nodes’ posteﬁor-
probabilities to assess how well the knowledge bases were predicting the spatial distribution
of the intermediate- and leaf-nodes’ classes. If the spatial arrangement of a node’s classes
did not reflect the ecological-domain expert’s expectation then I revised the conditional

probabilities using the advice of the ecological-domain expert.
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Testing the knowledge base

I tested the spatial output from the knowledge bases against spatially explici.t
reference data once the knowledge base appeared to produce predictions that spatially
matched the expectation of the ecological-domain expert. To test the knowledge bases of the
CWHvml and CWHvm2, I randomly selected 68 raster cells from an area in which I had
stereo air-photo coverage. For each randomly located point, I identified the corresponding
location on the air photos. Using air-photo interpretation, the ecological-domain expert

estimated the site-series group occurring at each randomly selected point. For the CWHvh2.
I created 32 randomly distributed points, but I augmented these with 59 site-seﬁes field plots
gathered for a previous project cénducted in the CWHvh2 (Banner et al. 2004). These field
plots occurred in two spatially distinct clusters, with each cluster employing a grid-sampling

plan ranging from 100 m to 200 m spacing.

By comparing the knowledge base estimation of site-series group with the air-photo-
interpreted and field-gathered predictions it was possible to assess how well the knowledge
base predicted site-series group. I conducted the comparison between the map’s site-series
groﬁp and the site-series group interpreted from air-photos using a simple hard classification.

For each sample point, I chose the site-series group with the highest probability from the map
and the dominant site-series group from the photo. To rate knowledge basg performance [
simply tallied the number of times that the highest-probability sit‘e-sen'es—group prediction
matched the dominant air-photo interpretation. If the knowledge base correctly predicted
site-series group greater than 65% of the time then I made no additional adjustrne;lts to the-
knowledge base. If the testing résults were low, however, I did make additional adjustments

to the conditional-probability table. Ibased these additional adjustments on both evidence
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resulting from the test analysis and further visual analysis. All of the conditional-probability
adjustments I made were reviewed by the ecological-domain expert prior to further map

generation.

I repeated this process of adjusting the conditiona}-probability values, making visual
assessments, and testing against reference data until the adjustments, believed to be required
io increase accuracy, were no longer resulting in increased prediction success. Visual
assessment of the preliminary results from thé knowledge bases for the CWHvm2 and
CWHvml revealed that the conditional-probability values required only minor a;ljusunent.

* After the first round of testing using the testing reference data, the CWHvm2 knowledge base
required no adjustments to the conditional-probability tables, however, the CWHvml1
required some adjustments to increase the successful prediction of the 09 sife—series group.
Final testing of knowledge bases for the CWHvm2 apd CHWvm1 indicated that the
CWHvm?2 knowledge base achieved a 92% successful prediction rate for the 14 air-photo
reference poiﬁts, while the CWHvm1 knowledge base correctly predicted 72% of the 54 air; |

photo reference points.

The CWHvh2 knowledge base, however, required extensive adjustments due to either
visual assessment or the results generated from the testing procedure. In total the CWHvh2
was tested and adjusted three times, but never achieved the 65% successful prediction rate.
At best, the CWHvh2 knowledge base was successful in predicting site-series group on 59%
of the test sites. At this point, I uééd all three BN knowledge bases to generate a final site-

series-group map for each of the three BEC subzone/variants in the study area.
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2.5 TFINAL MAP GENERATION

I created a soft-classification map of site-series group from the input GIS database by
passing each individual cell in the input database through the appropriate CWHvh2,
CWHvm1 and CWHvm2 knowledge base. The resulting map of fuzzy site-series groups
recorded the probability of site-series-group occurrence within each raster cell. I created a
hard classification of site-series group by choosing the site-series group with the highest

probability within each raster cell.

2.6 MAP ACCURACY ASSESSMENT

To aséess map accuracy, I compared reference data, which were coﬁlpﬁsed of site-
series-group information gathered from georeferenced field observations, to geog;‘aphically
equivalent areas on the map of predicted site-series group. In total, I used 286 reference
points for accuracy assessment: 92 in the CWHvm2, 161 in the CWHvm1, and 33 in the
CWHvh2. These field observations were gathered for the North Coast PEM Project (Jones

- 2003) using a cluster-sampling plan.

For each point _in the reference data, I compared the site-series group in the reference
data to the site-series-group prediction at the same location on the map. I used a simple hard
cclassification for this compan'so_n. For each point in the reference data, I chose the dominant
site-series group, and for each point on the map, I chose the site-series group with the highest
probability. I constructed a contingency table from these map/reference-data comparisons
for each BEC subzone/variant. From these contingency tables, I generated several accuracy-

assessment measures: percentage correct, producer’s accuracy, user’s accuracy and Kappa
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analysis. I used an o= 0.05 level of significance throughout these test for inferring statistical

significance.

Iﬁ conjunction with each contingency matrix.,' I constructed a separate matrix that
recorded the average posterior-probability from the site-series group with the highest
probability. The content of this matﬁx revealed the knowledge base’s confidence when
predicting the most-probable site-series group. For example, if the contingency matrix
records that five samples were 01 in the reference data and most likely 01 in the map, an
average posterior-probability value of 0.7 for this combination would indicate that the

knov_vledge base was 70% confident that these locations were 01.
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3 RESULTS

3.1 KNOWLEDGE BASE STRUCTURE

The Bayesian-network knowledgé base for the CWHvm2 was composed of 46 nodes,
58 links and 2179 conditional probabilities (Figure 16). Of the 46 nodes in the network, 17
nodes were input nodes, which represented the layers in the GIS database, and one node was
an output node, which represented the final estimation of site-series group (Site Series Veg
Modifier). Based on the input nodes’ unconditional probability valués for the entire study
area, the posterior probabilities for the final estimation of site-series groups —01 (SSV 01), —

03 (SSV_03), -05 (SSV 05), —09 (SSV_09), 10 (SSV 10) and ~11 (SSV 11), were 46.4%,

25.9%, 20.8%, 4.79%, 0.5% and 1.7%, respectively.

The Bayesian-network knowledge base for the CWHvm1 was composed of 47 nodes,
60 links and 2759 conditional probabilities (Figure 17). Of the 47 nodes in the network, 17
nodes were input nodes, which represented the layers in the GIS database, and one node was
-an output node, which represented the final estimation of site-series group (Site Series
Fluvial Modifier). Based on the input nodes’ unconditional-probability values for the entire

study area, the posterior probabilities for the final estimation of site-series groups —01 (SSF

~ 01), 03 (SSF 03), —05 (SSF 05), —09 (SSF 09), —12 (SSF 12), —-13 (SSF_13) and —-14 (SSF

14), were 42.6%, 16.3%, 25%, 6%, 5.5%, 0.4% and 4.2%, respectivély.

The Bayesian-network knowledge base for the CWHvh2 was composed of 50 nodes,
64 links and 3725. conditional probabilities (Figure 18). Of the 50 nodes in the network, 19

nodes were input nodes, which represented the layers in the GIS database, and one node was
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an output node, which represented the final estimation of site-series group (Site Series Shore
Modifier). Based on the input nodes’ unconditional-probability values for the entire study -
area, the posterior probabilities for site-series groups —01 (SSSh 01), —03 (SSSh 03), —04

(SSSh 04), -07 (SSSh 07), —08 (SSSh 08), 11 (SSSh 11), —12 (SSSh 12), -13 (SSSh 13), —

14 (SSSh 14) and —18 (SSSh 18), were 20.2%, 10.6%, 14%, 8.5%, 0.04%, 28%, 9.3%, 5.2%,

4.1% and 0.01%, respectively.

3.2 PREDICTIVE ECOSYSTEM MAPS

Figure 19 illustrates the spatial arrangement of those site-series groups with the
highest probability value within each raster cell. The spatial arrangement reveals the general
location of each of the predicted site-seﬁes—groups and their abundance within the landscape.
Figure 20 and Figure 21 provide detailed views of a section of the study area, with the

intention of demonstrating the relative terrain position of the predicted site series groups.

Within the CWHvm2, 01 was the most abundant site-series group and situated mid-
slope. The second most abundant site-series group was 03, which was situated at higher
elevations within large valleys. The third most abundant site-series group was 05, which was
placed close to rivers and streams. The 09 and 10 site-series groups occurred only in small

isolated areas at lower elevations within the valleys.

Within the CWHvml, like the CWHvm2, 01 was the most abundant site-series group,
followed by 03 and 05. With respect to the relative spatial position of these three leading

site-series groups, 01 site-series group was placed on mid-slopes, 03 was placed at higher
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Figure 19 — An overview map of predicted site-series groups in all three BEC subzone/variants in the study area. This map shows the relative
position and abundance of each of the predicted site-series groups within each of the three BEC subzone/variants. The red “viewpoint”

boxes indicate the spatial extent of the perspective view in Figure 20 and Figure 21.
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elevations within the large valleys, and 05 was placed close to small rivers. The 09 site-
series group was situated along the bottom of larger valleys while 13 and 14 appeared higher

up the valley sides than 09.

- Within the CWHvh2, the low relief areas were defined by the dominance of site-
series-groups 11, 12 and 13, while the 01, 03, 04 and 07 site-Series-groups dominated the
mountainous areas. Site-series-group 14, which was related to offshore winds, occurred

along the western coastline of the study area.

3.3 MAP ACCURACY ASSESSMENT

The map of pfedicted site-series group for the CWHvm2 obtained an overall
percentage correct of 47.8%, with a 95% confidence interval of + 9.8%. Producer’s adcuracy
varied from 0% to 65.6% and user’s accuracy varied from 0% to 59.1% (Table 9). The
Kappa aﬁalysis produced a KHAT of 0.249 with a variance of 0.006, producing a Z-scofe of
3.28 (p = 0.001). Average posterior probabilities f;)r the prédicted site-series groups ranged
from 0% to 55% (Table 10). For those map-accuracy points where there was a match
between the site-series-group value in the reference data and in the map, the average

posterior probabilities ranged from 0% to 59.4%.

The map of predicted site-series group for the CWHvm1 obtained an overall
percentage correct of 50.3%, with a ‘95 % confidence interval of + 7.4%. Producer’s accuracy
varied from 0% to 73.8% and user’s accuracy varied from 0% to 82.8% (Table 11). The
Kappa analysis produced a KHAT of 0.37 with a variance of 0.022, producing a Z-score of
2.51 (p = 0.012). Average posterior probabilities for the predicted site-series groups ranged

from 0% to 53.7% (Table 12). For those map-accuracy points where there was a match
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Table 9 — The accuracy-assessment contingency-matrix for the CWHvm2, which includes percentage
correct, user’s and producer’s accuracy.

Map Sie Series Reference Site Series Group —_—
Group 01 03 05 09 10 11 Total| Accuracy
01 21 4 18 1 1 2 47 44.7%
03 5 13 1 0 3 0 22 59.1%
05 6 3 10 0 0 3 22 45.4%
09 0 0 0 0 0 0 0 0.0%
10 0 0 0 0 0 0 0 0.0%
11 0 0 0 1 0 0 1 0.0%
Total 32 20 29 2 4 5 92

gzzg‘r‘;‘c’;'s 65.6% 650% 34.5% 0.0% 00% 0.0%

Percentage Correct |47.8%

Table 10 — The matrix of average posterior probabilities for the CWHvm?2, which includes the
average posterior probabilities for each mapped site-series group.

Map Site Series Reference Site Series Group

farmip 01 03 05 09 12 14 AvEngE
01 0484 0511 0500 0560 0468  0.459 0.493
03 0.534 0.594 0516 0 0.400 0 0.550
05 0493 0456  0.436 0 0 0.466 0.458
09 0 0 0 0 0 0 0.000
10 0 0 0 0 0 0 0.000
14 0 0 0 0.290 0 0 0.290
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Table 11 — The accuracy-assessment contingency-matrix for the CWHvm1, which includes
percentage correct, user’s and producer’s accuracy.

Map Site Series Reference Site Series Group User's
s 01 03 05 09 12 13 14 Tousl) ' Aoy
01 i 2 s L2 & W 4 72l 3.1%
03 & "MW o o 1 4 0 21 47.6%
05 4 o @ 1 o w 0 29 828%
09 1 o 7 R o o 7 24 37.5%
12 o o o o W 1 0 1 0.0%
13 o o o0 o o HE o 0 0.0%
14 o 0 r a3 o . 14 50.0%
Total o 2 A O 12, . B B 161

i’c‘zg‘r‘;‘;'s 73.8% 45.4% 51.1% 60.0% 0.0% 0.0% 38.9%

Percentage 50.3%

Correct

Table 12 — The matrix of average posterior probabilities for the CWHvm1, which includes the
average posterior probabilities for each mapped site-series group.

Map Site Series Reference Site Series Group

sy 01 03 05 09 12 13 14 AwETAES
01 0435 0441 0423 0368 0420 0 0346 0.425
03 0469 0548 0 0 080 0543 0 0.537
05 0488 0 0423 0380 0 0 0 0.431
09 0371 0 0506 0451 0 0 0474 0.470
12 0 0 0 0 0 0408 0 0.408
13 0 0 0 0 0 0 0 0
14 0 0 0426 0306 0365 0 0355 0.352
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from 0% to 53.7% (Table 12). For those map-accuracy points where there was a match
between the site-series-group value in the reference data and in the map, the average

posterior probabilities ranged from 0% to 54.8%.

The map of predicted site-series group for the CWHvh2 obtained an overall

percentage correct of 33.3%, with a 95% confidence interval of + 15.2%. Producer’s

~accuracy varied from 0% to 60% and user’s accuracy varied from 0% to 100% (Table 13).

The Kappa analysis produced a KHAT of 0.199 with a variance of 0.294, producing a Z-
 score of 0.366 (r = 0.714). Average posterior probabilities for the predicted site-series

groups ranged from 0% to 57.6% (Table 14). For those map-accuracy points where there
was a match between the reference data and the map site-series-group values, the éverage

posterior probabilities ranged from 0% to 54.6%.
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4 DISCUSSION

One of the objectives of this project was to develoi) an épproach to map large-scale
ecological units that incorporated expert knowledge. It was anticipéted that this objective
would be met by using Bayesian networks as the knowledge base of an expert-based system.
" Bayesian ﬁetworks also held promise of being a good way to allow an ecological-domain
expert to build a model that could capture prediction uncertainty when describing the

relationships between environmental variables and site series.

‘Unfortunately, none of the maps of site—s;:ries group produced by this study correctly
predicted the spatial locations of even 65% of the known site-series groups. Results from the
accuracy assessment procedures performed within the CWHvm2 unit indicated thét the
predictive-ecosystem map was only fairly representing the spatial distribution of site-series
group. The predictive ecosystem map for the CWHvm?2 obtained an overall percentage
correct of 47.8%, with a 95% confidence interval of + 9.8. This indicated that the map
performed fairly well, but fell short of the target of 65% established by Meidinger (2003).
This result, however, was higher than the result obtained by the North Coast PEM Project, |
which used a belief-matrix knowledge base. The North Coast PEM Project, although
utilizing slightly different site-series groupings, achieved an overall percentage correct of

21% in the CWHvm2 (Meidinger 2004).

According to the contingency matrix for the CWHvm?2 (Table 9), the map
successfully identified the 01 and 03 site-series groups, with producer’s accuracies of 65.6%
and 65% respectively. The map, however, performed poorly at identifying the remaining

site-series groups, with 05 being successfully predicted only 34.5% of the time and 09, 10
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and 11 not pr;edicted at all relative to the reference data. Results of the CWHvm2 user’s
accuracy assessment revealed that several of the site-series groups were assigned to the
wrong unit. A large number of the samples identified as 01 on-the map were identified as 05
in the reference data. This was similar for the 05, where the map falsely predicted the 01
site-éeries groups as 05. These errors of commission were confirmed by the low user’é
éccuracy values (Table 9). The map was also unable to identify any of the 09 or 10 units
within the reference data, and unable to correctly identify any 11 units within the reference

data.

Although the KHAT value of 0.249 indicated that the map poorly predicted site-series
group, the KHAT variance was 0.006. This meant that, although the map was unable to meet

the 65% overall percent correct, the map was significantly better than chance agreement.

Evaluation of the average posterior probabilities generated by the BN for each of the
site-series groups mapped in the CWHvm2 (Table 10) revealed that each site-series group
was predictéd with differing levels of confidence. The 03 site-series group was predicted
with the highest confidence, with an average posterior probability of 55%, but none of the
other site-series groups were predicted with high confidence. The 01 and 05 site-seriés

- groups were mapped with confidence levels of 49.3% and 45.8% respectively, while 14 was
predicted with the lowest confidence: 29.2%. Site-series-groups 09 and 10 were not

prédicted at all in relation to the reference data, resulting in 0% confidence for both.

Results from the accuracy assessment procedures for the CWHvm1 indicated that the
predictive ecosystem map only partially represented the spatial distribution of site-series

group (Table 11). The overall percentage correct of 50.3%, with a 95% confidence interval
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“of + 7.4, indicated that the map performed fairly well at predicting site-series group, but, as
with the CWHvm2, fell short of the target of 65%. This result, however, was similar to the
result obtained by the North Coast PEM Project, which achieved an overall percentage

correct of 50% for the CWHvm1 using similar site-series groups (Meidinger 2004).

According to the contingency matrix for the CWvai (Table 11), the map of sifé-
series group did successfully identify the 01, with a high producer’s accuracy of 73.8%. The
map, however, achieved only moderate success when predicting the 09, 05 and 03 sites-series

| groups, with producer’s accuracy results of 60%, 51.1% and 45.4% respectively. The map
poorly predicted the 14 site-series group, with only 38.9% producer’s accuracy, and was
unable to predict any of the 12 or 13 site-series groups. Results of the user’s accuracy
assessment revealed that several of the site-series groups were assigned to the wrong unit.
The user’s accuracy results for both 03 and 14 were moderate, with approximately half the
mapped sites actually representing the reference data. Although the producer’s abcuracy for
01 was high, a large number of the accuracy assessment points identified as 01 on the map
were identified as 05 or 03 in the reference data, resuiting in a low user’s accuracy value for
the 01 sites-series group. The same was true for the 09, where the map falsely predicted the
05 and 14 site-series groups to be 09. The map was also unable to identify any 13 site-series
groups within the reference data, énd unable to correctly identify any 12 site-series groups

within the reference data.

The KHAT value of 0.37 suggests that the map poorly/fairly predicted site series
group. However, a KHAT variance of 0.022 meant that, like the site-series-group map for
" the CWHvm2, the map was significantly better than chance Aagreement, although the map

was unable to meet the 65% overall percent correct.
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The average posterior probabilities generated by the BN were roughly equivalent for
each of the site-series groups that were mapped in the CWHvm1 (Table 12), although none
of the site-series groups were predicted with high confidence. Like the CWHvm2, the 03
site-series group was predicted with the highest confidence, with an average posterior-
probability of 53.7%. The remaining site-series groups, with the exception of 13, were
predicted with moderately low confidence, with values ranging from 35.2% to 47%. Site-
series-group 13 Was not predicted at all with respect to the reference data, resulting in 0%

confidence.

An overall percentage-correct value of 33.3%, with a 95% confidence interval of +
15.2%, indicated that the CWHvh2 map poorly predicted site-series group, and fell well short
of the target of 65%. Again, this result was similar to the result obtained by the North Coast
PEM Project, which achieved an overall percentage correct of 38% in the CWHvh2 using

similar site-series groups (Meidinger 2004).

The map of site-series group for the CWHvh2 performed well when identifying 07
and moderately well when identifying 01, with producer’s accuracies of 85.7% and 60%
respectively. The map, however, performed poorly when 1;dentifying the remaining site-
series groups. The 03 and 04 site-series groups obtaiﬁed producer’s accuracies of only 20%
and 16.7%, respectively, and site-seﬁes—groups 11, 12 and 13 were nevef, identified correctly
with respect to the reference data. The 08, 14 and 18 site-series groups could not generate
producer’s accurac.y values greater than zero because these site-series groups were not
present in tile reference data. The user’s accuracy for the 07 site-series group was fair, with
approximately half the mapped 07 sites actually representing 07 in the reference data (Table

13). Several of the other site-series groups, however, were assigned to the incorrect unit.
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Although the producer’s accuracy for 01 was high, a large number of the accuracy-
assessment points identified as 01 on the map were identified as 11 in the reference data.

The 04, 11, 12 and 13 site-series groups were overestimated on the map, which resulted in
low user’s accuracy. The user’s accuracy results for site-series groups 08, 14 and 18 were
understandably zero because they were not present in the reference data. The KHAT value
of 0.199 indicated that the map poorly predicted site-series group. In addition, due to the low
number of reference-data points per site-series group, the comparison between map and
reference data produced a high KHAT variance value: 0.294. This meant that not only was
the site-series-group map not able to meet the 65% overall pércent correct target but the map

was not significantly better than chance agreement.

The average posterior probabilities for the site-series groups in the CWHvh2 (Table
- 14) can roughly be broken into three categories: those site-series groups that were not
predicted at all, those .that were predicted with low confidence, and those that were predicted
with moderate confidence. Site-series-groups, 08, 13, 14 and 18, were predicted with 0%
confidence because they were never predicted to be the dominant site-series group at thé
reference-data locations. Site-series-groups, 01, 03, 04 and 12, were all predicted to be the
dominant site-series gréup with a low level of confidence, with confidence values ranging
from 34% to 38.8%. The 07 and 11 site-series groups were predicted to be the dominant site-
series group with moderate confidence, with confidence values of 57.6% and 52.9%,

respectively.

During the accuracy assessment procedures, the georeferenced reference-data were
considered correct in both spatial accuracy and thematic content. The impact of this

assumption was that, because accuracy-assessment results were relative to the reference data,
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the accuracy-assessment results indicated how well the generated map represented the
reference data, not how well the map represented what was actually on the ground. The
spatial juxtaposition of the predicted-site-series groups for the CWHvm2 and CWHvml1,
however, were similar to the landscape profiles presented in the field guide of Banner et al.
( 1993). The knowledge bases for the CWHvm2 and CWHvm1 were considered to be
performing well at preciicting the most common site-series groups, based on the ecological-
domain expert’s visual interpretation of relative position and abundance of each site-series

group within the final ecosystem maps (Figure 19) and the perspective view (Figure 20).

The relative terrain positions of the predicted site-seﬁes groups in the CWHvh2
generally match the landscape profiles that were presented in the Banner et al. (1993) field
guide for site-interpretation. Based on ecological-domain expert’s visual interpretation of
relative position and abundance of each site-series group within the final ecosystem maps
(Figure 19) and the perspective view (Figure 21), the CWHvh2 knowledge base appeared to
perform fairly at predicting the most common site-series groups. The 07 site-éeﬁes group
occurred at lower elevations on moderate slopes while the 03 occurred at higher elevations.
Site-series- groups- 01 and 04 were between the 07 and 03, with 04 tending towards steeper
slopes than 01. Site-series-groups 11 and 12 were found on low-slope areas with 12 bejng
found closer to water bodies than 11. Observation that the 03 site—serie§ group was being
placed in the upland areas within complexes of 11 and 12, however, was disconcerting,.
According to the ecological-domain expert, these areas of 03 within 12/13 should have a
higher probability of being 01 rather than 03. This indicated that the knowledge base was

underestimating the soil moisture of these upland areas within larger lowland complexes.
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Comparison of the row totals to the column totals in all three'contingency matrices
revealed that 01 site-series group was overestimated in all three BEC subzone/variants. In
the CWHvm2 and CWval maps, this overestimation was to the detriment of the second
most common site_—series group — 05. While there was overestimation of the 01 on the map,
there was also underestimation of some site-series groups. Generally, those site-series
groups being underestimated and incorrectly mapped had very wet soil moisture regime and
occurred infrequently in the reference data. The underestimation of these very wet site-series

groups may in part be due to the scale of the GIS data.

If these very wet units occurred in small isolated areas then the input GIS data may
not have contained adequate spatial resolution to detect ihe environmental»conditions
required to delineate these unjts.' For example, site-series-group 13 in the CWHvh2 usually
covers no more than a couple of hectares and is commonly associated with depressions with
low forest productivity. Although the minimum spacing between TRIM ele\}at-ion points was
25 m, the average was roughly 75 m, making it difficult to detect small one- or two-hectare
depressions. In addition, forest-cover polygons had an average polygon area of 12 ha in the
study area and did not delineate small one- or two-hectare features. A common technique
used in past PEM projects was to indicate that some small-unmapped sites were present
within soime larger ecological units (Jones 2003). For example, units mapped as site-series

01 in the CWHvh2 of Jones (2003) actually contained approximately 90% —01 and 10% —11.

Evaluation of the off-diagonal elements in all three contingency matrices revealed
that generally, errors occurred as a result of a cell being incorrectly assigned to the adjacent
unit in the edatopic grid. For example, 01 site-series group, which was adjacent to 03, 05 and

09 groups in the edatopic grid of CWHvm2, was commonly misidentified as either 03 or 05
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site-series group. Although this was an encouraging sign that the knowlédge base was
producing results close to the correct location on the edatopic grid, the level of
misclassification was considered high. The solution empldyed by previous predictive-
mapping projects that map site-series was to improve classification accuracy by grouping
site-series units into larger site-series groups (Jones 2003). A further groﬁping of site-series
groups was not considered a reasonable solution in the current project because the knowledge

bases already incorporated groups of site series.

In the CWHvh2, the original 01 and the 04 site series of Banner ef al. (1993) occupy
' adjacent areas on the edatopic grid and exist within simila; environmental conditions.
During development of the CWHvh2 knowledge base, it was recognised that the GIS
database may not be detailed enough to separate the 01 site series from the 04. Although
these two similar site series were not grouped during CWHvh2 quel development, they
could have been grouped within the Bayesian network through the creation of an alternate

output node.

In re&oSpect, it may have been best to create the knowledge béses with the intent to
predict site series, not grouped site—seri-es._ As a last step in the Bayesian network
development, an alternate output node could have been added, which grouped together those
ecologically similar site series that the knowledge base was having difficulty differentiating.
This alternate approach could also ease future knowledge base updating. 'For_ example, with
the current knowledge bases, which group site-series from the onset, if new data become
available that can differentiate previously grouped site-series then many of the conditional
probability tables involving site-series group would need to be altered. If the Bayesian

knowledge base was created with the intention to predict site series then the final site-series-
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grouping node would be the only node requiring an alteration to the number of site-series

classes.

Although the BN knowledge bases were constructed solely from expert opinion, the
results of the accuracy assessment procedures were lower than anticipated, especially, given
the moderately-high égreement between the CWHvm2 and CWHvm1 testing-data set and the
test maps. This disparity between the results of knowledge base testing and the accuracy |
assessment results could be partially explained by the different methodologies used to collect
the two sets of reference data. The reference data used for accuracy assessment was
comprised of site-series observations collected through ground surveys, while the set of
reference data used for testing was collected using air-photo interprétation. Although both
sets of data were gathered using sampling plans that intended to capture th;: proportional
occurrence of each site series within the study area, the testing set contained a higher
proportion of points in the more common site-series groups than did the accuracy assessment
set. This increase in the more common site-series groups in the set of testing reference data
may have contributed to the high percent-correct scores during knowledge base testing.
‘Disagreement between the results of knowledge base testing anci the results of map-accuracy

assessment could have been reduced using the same sampling plan to gather the reference

data for knowledge base testing and accuracy assessment of the map.

A review of the matrices that recorded the average posterior-probabilities for each of
- the site-series groups revealed that none of the most likely site-series-groups were predicted

with high confidence. In all three BEC subzone/variants, the average confidence values for

the most-likely site-series group were around 0.4 or 0.5. These values indicated that rarely

was there a clear majority in the soft-classification results at each location. Although
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disappointingly low, these confidence values reflected how difficult it was to Vdetermine a
location’s site-series group, given the information provided in the input GIS database. The
ecological-domain expert often indicated that conditional-probability values should be
lowered to compensate for a lack of confidence in either the input GIS database or
subsequent intermediate nodes. Thus, lowering the conditional-probability values leads to a

reduction in prediction confidence.

The accuracy assessment results and confidence values revealed the knowledge base
and GIS database performed poorly together when making an estimate of site-series group.
The overall percentage-correct results, which were produced using the site-series group with
the highest probability at each location, indicated that the dominant site-series group was
correctly identified by the knowledge base at less-than 50% of the reference data locations.
The low posterior-probability values further highlighted the poor performance ;)f the
knowledge base. Rarely did the knowledge base confidently predict the correct site-series
group from the input GIS database. In addition to the low percent-correct and confidence

values, the user’s accuracy results were poor for almost each site-series group.

The methods employed in this project did not produce a large-scale ecosystem
classification map that met the needs of forest-related management activities. With low
percent-correct results and low prediction confidence, the maps produced by this study would
not be suitable for forest management activities that rely on a minimum 65% correct
estimation of either site-series or the site-series groups created in this study. For example,
the resulting maps would not be suitable for timber supply analysis, identifying the location

of rare ecosystems, or silviculture prescriptions.
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As with all expert systems, the results and knowledge base were closely linked to the
opinion of the expert. This could make it difficult to replicate the results without using the
same experts involved in the initial model development. It also makes it difficult to assess
the model’s sensitivities, especially if the model is not explicitly and transparently presenting
the assumptions and decisions made by the domain .expel’t. The Bayesian-networks
developed for this study, however, explicitly and transparently captured and presented the
assumptions and decisions made by the écological-domain expert. The chances of
successfully replicating the process of estimating site-series group from the GIS input layers

are greatly improved by the Bayesian network’s transparency.

The BN was successful at capturing and expressing ecological knowledge with
respect to the relationships between environmental variables and site-series group. The
opportunity to create intermediate nodes, whi;:h were ecologically meaniﬁgﬁll to the
ecological-domain expert, allowed the ecological-domain expert to focus on only a few
ecological interactions at a time. The task of generating conditional probabilities for
intermediate nodes that were derived from either multiple parent nodes or parent nodes with
multiple classes, however, was sometimes daunting. For example, the number of conditional
probabilities required for a node with two classes and two parent nodes, each with two
classes, equals eight (2 x 2 x 2). A node with six classes and tv;zo parents, each with four

classes, however, required the definition of 96 (6 x 4 x 4) conditional probabilities.

Although nodes with a large number of conditional probabilities existed within the
three Bayesian networks, no nodes had more than three parent nodes. By keeping the
number of parent nodes to a minimum, the ecological-domain expert could focus on a few

environmental factors at a time. This was an improvement over the belief-matrix method of
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large-scale ecosystem mapping, where the knowledge base could be comprised of a single
table requiring 2000 or more defined weights (e.g., Timberline Forest Inventory Consultants
Ltd. 2000; Rosen et al. 2001; Atticus Resource Consulting Ltd. 2001; Jones 2003;
Timberline Forest Inventory Consultants Ltd. 2004). Although the total number of
conditional probabilities within the three BN knowledge bases ranged from 2179 to 3725,
partitioning the ecological influences into smaller, independent interactions made model

parameterization manageable for the ecological-domain expert.

One difficulty with regards to the parameterizatién of the Bayesian network’s
conditional-probability fables, however, was the requirement to enter conditional
probabilitiesAfor all combinations of the parent-node classes. This meant that conditional
probabilities would be required for environmental conditions that seem mutually exclusive.
For example, the Ground Wetness node was dependent on parent nodes that defined terrain
position: upper-terrain position (UpSlopePos), mid-terrain position (Mid .Flat Landform),
lower-terrain position (LowSlopePos), and fluvial benches (Bench). Sometimes it was easy
entering the conditional probabilities for Ground Wetness, éuch as when the input
combination was: upper-terrain position (MS_Up), not mid-terrain posiﬁon (MidFlatNot),
not lower-terrain position (MS IDWNot) and not fluvial bench (BenchNot). With this input
combination, the Ground Wetness was given 100% probability of being dry. It was more |
difficult, however, to enter conditional-probabilities values for Ground Wetness when the
combination of input conditions was: upper-terrain position (MS Up), mid-terrain position
(MidFlat), lower-terrain position (MS _Low) and high bench (BenchHigh). Each one these
input conditions is associated with a different level of ground wetness. As‘ a result, with this

combination of input conditions, there was less certainty that wetness could be ascribed to
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only one Ground Wetness class. To capture this uncertainty, Ground Wetness was given a
20% probability of being wet and an 80% probability of being very wet for this combination

of input conditions.

In previous projects »conducted in BC involving large-scale predictive ecosystem
mapping, each GIS database layer could only contain a single value for each location
(Ketcheson et al. 2001a; Ketcheson et al. 2001b; Ketcheson et al. 2001¢; Jones & McGregor
2002; Jones 2003). The ability of the Bayesian network knowledge base to accept fuzzy
classified GIS data inputs was seen as an advantage over previously employed methods for
predictive-site-series mapping. The BN was able to'capture the continuous nature of the
Landform Elements input node, which was generated by the continuous-landform-elements
BN. The BN was also able to capture the composition of tree species within a forest-
vegetation stand through the forest-species input node (Species). Other input nodes, such as
Age Class, Crown Closure Class and Height Class could be extended to use this technique

of accepting data as a soft classification rather than a hard classification.

In all three of the BN knowledge bases created to estimate site-series group, some
input and intermediate nodes were parents to more than one child node. For example, in all
three models the Lower Landform intermediate node was used to help define floodplains
(Floodplain), toe slopes (Toe), low-terrain position (LowSlopePos) and alluvial fans (Fan).
This produced a messy and confusing looking network with links crossing each other and
pointing different directions, rather than a simple dendritic structure, which progresses from
input to output with all links pointing in the same general direction. The use of input an&
intermediate nodes for multiple conditional-probability tables, however, reduced variable

redundancy within the network.
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Previous projects of large-scale predictive ecosystem mapping conducted in BC,
which employed the belief-matrix knowledge base, were unable to use automated procedures
to update the knowledge base to reflect field observations (Jones & McGregor 2002; Jones
2003). Bayesian networks, however, are able to incorporate relationships derived either
‘statistically and from an expert. At the outset of this project, however, it was recognized that
model development would rely primarily on expert opinion because the availability of useful

reference data was low.

Although the study area was partially chosen because of reference-data availability,
examination of the reference data during model development revealed that not all site-series
groups were adequately sampled. Future projects of large-seale predictive mapping should -
ensure that an adequate representative sample of reference data be acquired, preferably,

specifically for the predictive-mapping project.

Additional field gathered reference-data wduld have proved useful at many stages
during model development, not necessarily to substitute expert opinion with statistical
models,.but to aid the expert’s decision making procees. Field data, which recorded site
series an(i were georeferenced, would have proved useful for both model testing and
increasing the number of reference points available for accuracy assessment. For example,
the dispaﬁty between the results of the knowledge base testing, which ranged from 59% to
92% correct, and the results of the map-accuracy assessment, which ranged from 33% to
48% correct, highlighted the difﬁculty. of accurately interpreting site series from air photos.
The results of knowledge base testing may have matched the results of map-accuracy

assessment if knowledge base testing was conducted using reference points that were field

gathered rather than air photo interpreted.
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The lack of reference data for map-accuracy assessment hindered ad.equate map-
accuracy assessment, especially when assessing those site-series groups occurring
infrequently on the landscape. Although the CWHvm1 and CWHvm?2 had a large number of
reference plots in the common site-series groups, there were a low ﬁumber of reference
points in the uncommon sites. There were very few reference points in each site-series
groups of the CWHvh2, due to the low number of CWHvh2 field plots gathered by Jones
(2003) that ovérlapped with the study area. This low number of CWHvh2 field plots
contributed to the high kappa variance. In all three of the developed Bayesian networks,
some site-series groups were not present in the reference data, preventing accuracy

assessment of these site-series groups.

Field data, which recorded the environmental conditions estimated by some or all of
the BN nodes, would have allowed additionél knowledge base adjustments. It would have
been possible to perform some exploratory analysis into the relationships between
environmental factors and site-series groups using this kind of reference data. Using such
techniques as cluster analysis and regression it may have been possible to see how relevant
each node was to the estimation of site-series group, and remove those nodes with little or no

significance prior to model construction.

Reference data would have possibly been useful during conditional-probability
adjustment and construction of the input GIS database. All of the input and intermediate
nodes in the Bayesian networks were meant to represent measurable environmental factors
(e.g., Soil Moisture and Gully). Although the thematic and spatial accuracy of some input
nodes were known (i.e. those nodes derived from the Ministry of Sustainable Resource

Management’s vegetation resource inventory), this information was unknown both for the
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GIS modelled input nodes and the intermediate nodes. Thematic and spatial accuracy
assessment of these nodes was based solely on visual comparison to other informative data
sources, such as air photos, water body/course mapping or digital elevation models.
Consequently, little was kpown about the input or intermediate nodes’ ability to accurately
portray their respective themes. Reference data could have identified either those input GIS

models needing adjustment or the conditional-probability tables needing adjustment.

One of the objectives of this project was to create a model that could be updated
automatically usiﬁg field data. This objective was achieved by using Bayésian networks,
.which allow the conditional probabilities to be automatically adjusted using expectation-
maximization algoﬁm. Unfortunately, this procedure was not possible to conduct without
reference data, which recorded the environmeﬁtal conditions estimated by the intennediate
nodes. However, By directing future field-sampling plans to collect those environmental
conditions modelled in the knowledge bases, it would be possible to continuously update the

conditional probabilities, as new sampling data becomes available.
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5 CONCLUSION AND RECOMMENDATIONS

The overall goal of this project was to develop and test a large-scale ecosystem
classification mapping method that met the needs of forest-related management activities in
British Columbia. The approach employed was an expert-based system built around a
Bayesian-network knowledge base. This approach, however, did not meet the project’s '
overall goal because not all three of the objectives were accomplished successfully. None of
the large-scale ecosystem maps produced for the study area’s biogeoclimatic variants
achieved the accuracy assessment result of 65% correct. The approach, however, did

successfully achieve the other two study objectives.

Bayesian networks, with their graphical components of nodes and links, offered to the
ecological-domain expert an easy to use interface to express the interaction between
ecological factors. The graphical nature of Bayesian networks also improved the
interpretability of tﬁe ecological interactions. The ability to create intermediate, or summary
nodes, between the model’s inputs and outputs allowed the domain expert to reduce the
complexity of the probiem and allowed the ecologist to focus on only a few interactions at a

time.

Bayesian networks have the cé.pacity to be updated and adjusted automatically using
data gathered from field observations or air-photo interpretation; Due to a lack of
supplementary field dﬁta, however, the Bayesian-network knowledge bases developed for
each of the three BEC subzone/variants within the study é.rea were defined solely using
expert opinion. Similar site series were grouped to compensate for the lack of spatial

resolution in the input GIS database required to discern individual site series. Even with this
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site-series grouping, however, the accuracy assessment results indicated that the resulting

predictive ecosystem maps poorly predicted the dominant site-series group.

Despite the lower than expected results from the accuracy assessment, the Bayesian-
network approach could still be considered a viable approach to predict large-scale ecological
units given some improvements to the procedure. Future attempts to apply Bayesian
networks to predictive mapping of site series should consider applying some of the
suggestions summarized below. Changes to each of the modelling stages, GIS database
construction, knowledge base construction, and accuracy assessment, could improve site

series prediction.

To potentially improve the successful prediction of site series, all GIS database layers
should be verified using georeferenced points that are gathered through field observations or
air-photo interpretation. Performing exploratory statistical analysis on the relationships
between the GIS layers and site series could help reduce knowledge base cqmplexity by

identifying those GIS layers exhibiting a relationship with site seﬁes.

Model updates could be easier if the knowledge base was designed t6 predict site
series, with site-series groups added as an alternate output node. To aid knowledge base
development there should be a representati\./e georeferenced sample of site-series points.
Additionally, a representative georeferenced sample of each of the intermediaté nodes would
be benéﬁcial. These samples could be used to inform the ecologist of the need to cilange the
éonditionékprobability tables, or to automatically update the conditional-probability tables

through the expectation-maximization algorithm.
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To ensure that the data set used to test the knowledge base adequately represents the
data set used to assess map accuracy, -both sets of data should come from the same sampling
plan. The data set used to test the knowledge base should be a subset of all the samples,
while the data set used to assess map accuracy should be comprised of the remaining

samples.

Although the focus of the PEM work conducted in BC over the past six years has
involved the use of belief matrices, Bayesian networks can offer a viable and advantageous
alternative approach. Further pilot studies incorporating some or all of the recommendations
suggested herein should result in large-scale ecological-unit maps that meet or exceed map
accuracies obtained through the belief-matrix approach. Exploration of the Bayesian-
network approach should continue with an overall goal of producing the moét accurate large-

scale predictive-ecosystem maps possible for managing forest-related activities.
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