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Abstract 

Ants (Hymenoptera: Formicidae) in British Columbia are ubiquitous and abundant in 

most biogeoclimatic zones of the province, have a demonstrated role in ecological processes 

and are an important food source for many vertebrates such as birds and bears. The objective 

of my dissertation was to undertake the first broad examination of an ant community in BC, 

assess responses of the community to serai forest development and determine what habitat 

elements are associated with ant presence or absence. Ants are a challenging fauna to study, 

however, as their social structure and foraging strategies complicate sampling. I characterize 

the sampling issues associated with ants and develop a protocol to optimize field collection. 

Guided by this protocol, I examined the ant community of the sub-boreal forests of west-

central BC. I show that the structure of the ant community is strongly influenced by serai age 

which I suggest is indicative of temperature sensitivity in this fauna. The ant community 

increased in abundance and diversity, following the Individualistic Hypothesis of succession, 

until at least 13-15 yr post-harvest. The community then began to decline as canopy cover 

increased. Non-harvested stands, with mean summer litter temperatures of <10 °C, were 

found to be largely devoid of ants. Most ant species were also shown to utilize woody debris 

for nesting, which is shown to have a significantly higher mean temperature as compared to 

soil, and may be a thermal refugia for ants. Ants selected specific decay classes and usually 

larger pieces of woody debris for nesting, as shown by logistic regression. It was also 

evident that ants were more likely to be found within 50-m2 sampling units when members of 

the same species were also found there, likely indicative of secondary site colonization via 

budding from polygynous colonies. Artificial shading of wood used for nesting resulted in a 

reduction in utilization by ants supporting the hypothesis that insolative heating of woody 
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debris is critical for ants. Overall the ant fauna was shaped by factors related to temperature 

and the dependence upon woody debris is indicative of the thermal advantages of this 

resource. 
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Chapter 1. Introduction 

Global ant biomass is roughly equivalent to that of humanity (Holldobler and Wilson 

2009) and may constitute a greater biomass than any other non-domesticated terrestrial 

animal taxon. Currently, over 12,000 species are recognized (Bolton et al. 2006) although it 

is estimated that up to 10,000 additional species have not been described (Wilson 1987). 

Ants are generally considered thermophilic (Holldobler and Wilson 1990) making them 

particularly species-diverse and abundant in the tropics, semi-tropics and temperate zones. 

Although less species-diverse, they are also abundant at higher latitudes up to, and 

occasionally beyond the tree-line (Gregg 1972 Francoeur 1983). Ants are also abundant in 

both natural and anthropogenic landscapes, often being one of the most commonly seen 

epigaeic insects in urban environments. 

All known ants demonstrate a particular and complex form of social behaviour called 

eusociality. Eusocial animals are characterized by overlapping generations, shared care of 

their young, and the control of reproduction by only one or a few members of the colony, 

creating a functionally sterile worker class (Wilson 1971). Social behaviour appears to 

confer a number of advantages over non-social competitors as suggested by their dominance 

in many communities. For example, eusocial insects were found to comprise 75% of the 

total insect biomass in a study of biodiversity in a tropical rain forest (Fittkau and Klinge 

1973). Further, no major taxon (i.e., at least at the level of Family) of eusocial insects has 

been documented as extinct, nor are any known which are rare (Wilson 1987). 

The social behaviour of ants has often become highly specialized to exploit specific 

ecological niches. Examples include the highly coordinated group hunting by the Old World 

driver ants (Dorylus spp.) and New World army ants (Eciton spp.) (Kronauer et al. 2007), the 
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cultivation of fungi for food by the leaf-cutter ants (Atta and Acromyrmex spp.) (Seal and 

Tschinkel 2007), and the tending of honeydew excreting insects (mostly Hemiptera) in a 

manner analogous to dairy farming (Oliver et al. 2008). Social behaviour, however, can also 

be exploited either by other ants or other insects. For example, the genus Polyergus has 

evolved a form of obligatory slave-taking which makes these ants dependent upon raiding the 

natal nests of other ant species (usually Formica spp.). Foreign pupae are taken to their own 

nest, where they develop into workers that will act as functional slaves for the slave-taking 

species (Fischer-Blass et al. 2006; Bono et al. 2007). Other species of ants have taken the 

reliance on other species one step further by simply moving into the nests of other ant species 

and acting as social parasites (e.g., Formicoxenus spp. mMyrmica spp. nests) (Errand et al. 

1997). 

The complex behavioural adaptations that have arisen in ant species, remarkable 

because of the apparent limited repertoire of any individual ant, are created by the manner in 

which ants communicate among themselves. Fundamental to their social organizational 

strategy is the use of pheromones to both set priorities and provide directional information 

(Holldobler and Wilson 1990). The emergent organizational efficiency, flexible under 

changing conditions, has formed the basis of a modelling technique called Ant Colony 

Optimization (ACO) (Dorigo and Gambardella 1997). This offers a new approach to develop 

optimal solutions to complex problems using a heuristic decision-making process founded on 

the pheromone based organizational strategy of ants. Although this modelling technique has 

found utility in a variety of applications ranging from designing automated manufacturing 

plants (Tiwari et al. 2006) to the design of mechanical trusses (Kaveh et al. 2008), there may 
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be some irony in that it has also found its way back into the forest, as ACO is now being used 

to determine the optimal way to route logging trucks (Contreras et al. 2008). 

Much of the research on ants has occurred in ecosystems not typical to BC (e.g., 

tropical, sub-tropical, temperate eastern North American). In these studies, ants have been 

shown to to play a role in seed dispersal (Gorn et al. 2000; Heithaus 1981), grain 

consumption (Brown et al. 1979), decomposition (Haines 1978), defoliation (Cherrett 1968) 

and soil nutrient turnover (Wagner et al. 1997; Nkem 2000; Risch et al. 2005). Although 

some of these functions may also occur in higher latitude coniferous forests, for example, soil 

nutrient turnover (Frouz et al. 2003), two specific ecological roles have been well established 

in ecosystems more typical of this province. These are the roles played by ants as predators 

of invertebrates and, in turn, as prey themselves for many vertebrates. 

A study of ant predation, in a temperate meadow, determined that ants may remove 

up to 40% of the invertebrate prey biomass (Petal 1980). A direct count of the number of 

invertebrates being collected by three nests of Formica lugubris Zetterstedt, a European 

species artificially established in Quebec to examine their utility in the biocontrol of forests 

pests, found that, in a 10-min period, the three nests were each bringing in an average of 230 

invertebrate prey items (McNeil et al. 1978). Additional work has more closely linked ants 

to specific invertebrate forest pests. Camponotus herculeanus L. and Formica fusca L. ants 

were observed attacking larvae of the forest tent caterpillar (Malacosoma disstria Hiibner; 

Lepidoptera: Lasiocampidae) (Green and Sullivan 1950). Ants significantly reduced the 

number of western spruce budworm larvae (Choristoneura occidentalis Freeman; 

Lepidoptera: Tortricidae), on trees in which ants were allowed to forage as compared to trees 

in which ants were excluded (Campbell et al. 1983). Further, experimentally excluding ants 
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from small Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and western larch (Larix 

occidentalis Nutt)., trees resulted in a four times greater increase in injury from western 

spruce budworm (Carlson et al. 1984). Ants were also documented preying on eggs of the 

Douglas-fir tussock moth (Orgyia pseudotsugata (McDunnough); Lepidoptera: 

Lymantriidae), although study methodology was unable to quantify the predation rates 

specific to ants because of similar actions by birds (Torgersen and Mason 1987). The 

physical proximity of Formica aquilonia Yarrow ant colonies, was associated with reduced 

foliage loss in birch (Betula pubescens Ehrh)., during outbreaks of the autumnal moth 

(Epirrita (=Oporinia) autumnata (Borkhausen); Lepidoptera: Geometridae) (Laine and 

Niemela 1980). They reported that trees within a few metres of the nests had defoliation 

rates of slightly greater than 30% while trees 30-40 m from the ant nest had defoliation rates 

of 60-70%. Ant exclusion from young sycamore (Acer pseudoplatanus L.), not only 

increased defoliation (1-1.6% with ants as compared to 6-10% without ants) but ant-excluded 

trees had significantly lower weights and shoot heights (Whittaker and Warrington 1985). 

Thus, the documented role of ants in controlling pest populations should be considered by 

forest managers in the context of maintaining healthy forests, especially during times of 

climatic change when forests are stressed and susceptible to insect damage. 

Although ants are significant predators, they are also frequently prey to both 

invertebrates and vertebrates. Despite the nutritional content of ants being similar to that of 

other invertebrates (Redford and Dorea 1984), the social nature of ants creates a situation 

where large numbers of individuals are locally clustered. As a consequence, vertebrate 

myrmecophagy is common. In a literature review of the diet of 216 species of mammals, 53 

species were reported as consuming ants (Redford 1987). In particular, predators often focus 
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on either ant queens or the larvae/pupae which have a higher fat content (Redford and Dorea 

1984). 

Many species of birds are either generally dependent upon ants for food or require 

ants during the rearing of young. An examination of the stomachs of 108 species of birds in 

Utah found that 25 species contained ants (Knowlton et al. 1946). Ants are the primary food 

source for the pileated woodpecker (Dryocopus pileatus L.) (Beckwith and Bull 1985; 

Torgersen and Bull 1995) and, along with beetles, one of two food sources exclusively 

consumed by the northern flicker (Colaptes auratus L.) (Elchuk and Wiebe 2002). The 

Williamson's sapsucker (Sphyrapicus thyroideus (Cassin)), a species which in Canada is 

known only to occur in British Columbia, and was placed on Schedule 1 of the Species at 

Risk Act in 2006, is particularly dependent upon ants to successfully rear their young. The 

Williamson's sapsucker has been described as being more dependent upon ants during the 

breeding season than any other North American woodpecker (Beal 1911). 

Bears also make extensive use of ants in their diet. A study of black bear (Ursus 

americanus Pallas), scat in Montana between 1959 and 1960 found that ants were the most 

common animal remains identified, appearing overall in 45.3% of all scats (Tisch 1961). 

Similar results were reported in black bear scats in Alaska, where 31 % contained ants (Hatler 

1972), and in Wyoming where about half of black bear scats held ants between May and June 

(Irwin and Hammond 1985). Although ants were frequently found in the scats reported 

above, the volume of scat comprised by ants was quite variable. Volumes were reported as 

low as 2% (Irwin and Hammond 1985), between 6 and 25% (Hatler 1972) or up to 49.7% of 

scat (Raine and Kansas 1990). Fewer studies have been performed on Ursus arctos L., but 

grizzlies {U. arctos horribilis Ord), were frequently observed turning over rocks in search of 

5 



ants (Russell et al. 1979) and Eurasian brown bears (U. arctos arctos L.), were reported to 

have disturbed approximately half of all ant thatched mounds in a Scandinavian study 

(Elgmork and Unander 1999). Using stable isotope data, it was determined that meat 

(mammals) and ants comprised 20-40% of the diet of a population of plateau grizzly bears 

(U. arctos horribilis), in central British Columbia, just north of Prince George, although 

methodology did not allow a quantification of the percentage specific to ants (Ciarniello et 

al. 2007). Ant availability, however, is often considerable. In central Sweden, it was 

estimated that approximately 30.5-38.5 tonnes of ants were available for each brown bear (U. 

arctos arctos) (Swenson et al. 1999). 

Given the ecological roles of ants, the paucity of ant ecological research specific to 

BC may result in biologists missing important connections. The purpose of this dissertation 

was to provide the first broad ecological study of forest ant communities in the central-

interior of BC, and to assess the critical environmental elements that impact their presence or 

absence. There are some obvious limitations with such a study given the size of the central-

interior and the range in moisture regimes from east to west that arise from the Coastal and 

Rocky Mountain ranges. A comprehensive examination of ant communities in the many 

biogeoclimatic zones is almost impossible. In a forestry context, however, two inter-related 

themes do arise when considering the ant fauna of BC. These are the extensive use of wood 

as a nesting resource, as first documented by Lindgren and Maclsaac (2002), and the role of 

temperature as a limiting factor to the distribution and abundance of the thermophilic ants. 

These inter-related themes are central in this dissertation. Before those subjects can be 

considered, however, an examination of the efficacy, limitations and biases of sampling 
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methodologies must be considered in the context of the natural history of a socially organized 

insect. 

As ants are normally rearing young throughout the colony life-cycle, colonies are 

usually permanently or semi-permanently anchored in the landscape perennially, a 

characteristic more typical for plants than many terrestrial animals (Andersen 1995). 

Although anchored on the nest, foraging ants disperse through the local environment in 

search of resources. As many species within the sub-family Formicinae specialize in 

honeydew collection, mostly from sap-sucking herbivorous insects (e.g., aphids or scale 

insects in the Order Hemiptera) (Holldobler and Wilson 2009), these ants may form discrete 

trails between the colony and the honeydew source (Mclver and Yandell 1998). As a 

consequence, the distribution of foraging ants in the environment is often not random at the 

scale of the foraging colony, but densely and specifically routed, leading to problems in 

interpreting the significance of counts of individual ants at any given sampling point (e.g., a 

pitfall trap, or small area soil/litter sample). Thus, the purpose of the second chapter of my 

dissertation was to investigate the most commonly used methods for sampling ants, evaluate 

their efficacy and then examine the utility and limitations of the collected information. 

As noted earlier, ants are a thermophilic taxon, an attribute reflected in a strong 

latitudinal gradient in species diversity (Kusnezov 1957). For example, it was reported that 

there are approximately 2,233 species of ants in sub-Saharan Africa while all of Europe 

reports just 429 species (Holldobler and Wilson 1990). Currently, 82 species of ants have 

been confirmed in BC (Higgins and Lindgren 2009) with more species found in southern 

than in the northern BC. A study of the impacts of cattle grazing on ant communities near 

Oliver and Osoyoos (49°N), identified 31 species of ants in 13 genera (Heron 2001) while 19 
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species of ants from 7 genera were identified in the Prince George area (54°N) (Lindgren and 

Maclsaac 2002). Although four sub-families of ants are recognized within BC, two, the sub

families Myrmicinae and Formicinae, represent the majority of ant species with 79 of the 82 

species falling into either of these two taxa. 

Globally, the sub-family Myrmicinae is a dominant group exploiting forest litter 

(Holldobler and Wilson 2009). This is loosely true in BC as well, where these small-bodied, 

generally small-colony species, make extensive use of fine and coarse woody debris, as well 

as soil, especially soil under rocks, for nesting. Members of the cool climate specialist sub

family Formicinae are normally larger species (both in physical size of workers and size of 

colonies), making greater use of soil (often under rocks or with thatching) and coarse woody 

debris for nesting. It is suggested that this sub-family, one of the last to diversify in the early 

to middle Eocene (approximately 45 Ma), may have been unable to exploit filled niches in 

warmer climates because of the earlier diversification of other ant sub-families (i.e., the 

Ponerinae and Myrmicinae) (Holldobler and Wilson 2009). 

A geographical examination of ant community structure (i.e., from south to north) 

would be one method to approach the question of temperature sensitivity, but additional 

uncontrolled variables (e.g., moisture, vegetation, variable anthropogenic modifications) 

made this impractical. Thus, I examined the changes occurring within one ant community 

within forests of varying serai age where the developing canopy reduces the thermal energy 

reaching the ground. By limiting the study to a single biogeoclimatic zone (sub-boreal 

spruce, moist cold, variant 2) (Meidinger and Pojar 1991), the number of uncontrolled 

variables is reduced allowing for a better understanding of a single community. In Chapter 3, 
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I examined the ant communities within this biogeoclimatic zone in post-harvest (2-3, 8-10, 

13-15 and 23-25 y) as well as non-harvested stands. 

In tropical areas, ants may be arboreal, nesting directly within trees (e.g., Oecophylla 

spp., weaver ants of Africa and Australia) but most are associated with the soil. In fact, the 

evolution of the metapleural gland, an antimicrobial gland ants use to keep soil-based nests 

free of fungi and bacteria, is considered a key macroevolutionary characteristic, driving the 

divergence of ants from ancestral wasps (Holldobler and Wilson 1990). In BC, however, soil 

nesting is often modified or abandoned entirely, probably because of the cool soils common 

to all but the most southern regions of the province. 

Ants nesting in cool soil can improve their thermal environment by nesting directly 

under rocks (Van Pelt 1963) or by using thatching to build mounds (Coenen-StaP et al. 1980; 

Rosengren et al. 1987). Rocks, when exposed to the sun can rapidly gain heat as a 

consequence of their low specific heat, and hold some of that thermal energy during the night 

as a consequence of their mass (Cloudsley-Thompson 1956). Colonies of Formica 

neorufibarbis Emery, above the tree-line (3700-4000 masl) in Colorado, used rocks with a 

mean surface area of 145 ± 12 cm2 (SE), which were significantly larger than the average 

rocks present in the area, 80 ± 17 cm2 (SE), suggesting that the selection was not random 

(Billeck 2001). Ants that exploit this resource, however, may be limited in population 

growth by the number of suitable rocks and limited in colony growth by the area under the 

rocks (Thomas 2002). Given this, the utilization of rocks may be best suited to ant species 

with small colonies. In addition, the need for the rocks to be directly exposed to the sun 

(insolation) limits the habitats in which this expectation is met to areas of low vegetative 

growth (e.g., alpine) or well grazed grasslands. 
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Ants forming larger colonies often use thatching, that is, accumulation of dead plant 

material, to improve the thermal environment of their nests. Thatching enables the rapid 

shedding of precipitation which can act as a heat sink and creates a medium which can be 

quickly altered to maintain stable internal conditions (Coenen-Stap et al. 1980; Rosengren et 

al. 1987). Openings can be increased to dissipate heat or decreased to retain heat within the 

nest as conditions dictate. The face of the nest can also be shaped to maximize insolation. 

Thatching can be such an effective medium for holding heat that temperatures inside the nest 

can reach 27 °C even when the surface of the nest is covered by several centimetres of snow 

(Rosengren et al. 1987). 

With increasing latitude, soil may become less desirable for nesting, even with 

features such as rock or thatching, especially if the soil is moist. The high specific heat of 

water (Wenzl 1963), combined with cool temperatures, can lead to moist soil acting as a heat 

sink. This forces ants into the environment above the soil surface, which offers few nesting 

options. The leaf/needle litter layer and woody debris, however, are two potential niches. 

The thin litter layer in boreal and sub-boreal forests may offer marginal habitat to very small 

colonies that can tolerate the wide range in temperatures that would be expected in this 

environment. This may well be a possible nesting habitat for the minute Leptothorax spp. 

ants (sub-family Myrmicinae), but there is little evidence to suggest other species can exploit 

this niche. The other possible resource is woody debris. 

A review of the literature indicates that ant utilization of coarse woody debris (CWD) 

as a nesting resource is positively associated with increasing latitude or cooling climate. 

Further, as the strength of this relationship is most evident in higher latitudes, higher 

elevations or cooler climates, where little work has been done with ants, this process has not 
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been widely recognized. For example, although less than 10% of species use CWD as 

nesting habitat in Nevada (average latitude 38°N) (Wheeler GC and Wheeler J 1986), over 

35% used CWD in North Dakota (average latitude 48°N) (Wheeler GC and Wheeler J 1963) 

and just under 60% of species collected near Prince George, BC, were CWD-associated 

(latitude 53°N) (Lindgren and Maclsaac 2002). As noted above, the latitude effect is also 

mirrored by cooling climate from geographic location or elevation. Colorado, at the same 

approximate latitude as Nevada, has a much greater percentage of dead wood-associated ants. 

Thirty three percent of the ant fauna in Colorado are associated with woody debris (Gregg 

1963), as compared to under 10% in Nevada (Wheeler GC and Wheeler J 1986). Finally, 

work in Virginia (average latitude 37°30TST) above 1,050 masl, found that 41% of the ant 

fauna either preferred woody debris for nesting or frequently made use of this resource (Van 

Pelt 1963). Although this effect may also be influenced by variations in woody debris 

availability, the relative abundance of forested versus non-forested landscape, or competition 

from termites, the possibility of heat driving this relationship deserves consideration. 

Chapter 4 specifically modelled this relationship by examining the physical characteristics of 

wood that were associated with the presence or absence of the most locally common species 

of ants. 

Although ant communities do appear to be sensitive to cooling conditions, it is 

possible that factors other than temperature may play a role. If temperature is the primary 

force affecting change, it should be possible to specifically test for a response from ants to an 

artificially altered environment. In cool environments, insolation is likely a critical source of 

heat upon which ants are dependent. Even ants adapted to cool environments have been 

shown to need to maintain their larvae at temperatures no lower than 15 °C (Elmes and 
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Wardlaw 1983). Given this, the direct blocking of insolation by shading should reduce a 

critical source of heat needed for colony development. In Chapter 5,1 tested this hypothesis 

by building shading fences around two wood nesting species of ants to isolate this variable 

and assess the response of ants to a direct reduction in insolation and thus heat. 

The primary intent of my dissertation was to follow one ant community within BC as 

it responds to declining temperature and assess what environmental variables were most 

critical in explaining ant presence or absence. I hope that the ecological characterization of 

this ant community, will provide some insight into the broader ant communities within the 

province and act as a foundation for the development of further hypotheses. In addition, I 

believe that this work will serve as a basic reference for biologists working with other 

organisms that may interact with ants. Chapter 6, the synthesis, integrates the findings of 

each investigation into the few themes that most significantly affect the forest ants of west-

central BC. 
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Chapter 2. The efficacies and data limitations associated with sampling methodologies 

used for assessing ant communities1 

Abstract 

Despite the ubiquity of ants (Hymenoptera: Formicidae) in many habitats, sampling ants for 

ecological studies is problematic. Problems include biased estimates due to spatially focused 

foraging, an unknown relationship to absolute community structure information when using a 

common relative abundance sampling technique (pitfall traps), and a lack of habitat-specific 

rationales for differing sampling techniques. First, we considered a pitfall trap design, the 

Nordlander trap, in the specific context of sampling for ants. Four trap configurations (two 

Nordlander based, and two traditionally (Laurent) based), both with and without a raised 

cover, were tested in two different forest habitats. The Nordlander design without raised 

cover was equally efficacious to the Laurent design with cover, in sampling for total species 

richness, and showed no evidence of size-bias relative to the other designs tested. No 

vertebrates were captured in any of the pitfall trap designs used in this study. Second, the 

reliability of using individual capture rates in pitfall traps was tested experimentally. Traps 

were placed in a grid surrounding large thatching nests of the ant, Formica obscuripes, and 

the distribution of trapped foragers evaluated. The distribution was unique to each nest and 

highly patchy. Pitfall traps placed 10 m apart differed in capture rates by up to 120 

individuals, including traps equidistant from the nest, suggesting that the use of individual 

ant counts in pitfall traps does not provide representative information. We concluded that 

only presence/absence information should be used. Third, abundance estimates of ant 

community structure were made in a simple grassland ecosystem by both pitfall trapping 

1 First person plural is used throughout this chapter to reflect the contributions of others to both research design 
and field work. 
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(relative) and intensive area-based hand-sampling (absolute) for ant colonies, to compare the 

resulting community structure data. The most common ant collected in pitfall traps (relative 

abundance) was Tapinoma sessile, while the most common ant species identified by 

intensive hand-sampling (absolute abundance) for colonies was Lasius crypticus Wilson 

(Formicidae: Formicinae). Thus, ant community data obtained through relative sampling 

does not reflect the actual distribution of ant colonies, and should not be used as a proxy for 

absolute sampling estimates for this purpose. Finally, the efficacy of pitfall trapping and 

mini-Winkler extractors for litter sampling in estimating total species richness was compared 

in identical forest habitats. Estimates of total ant species richness by the incidence-based 

estimator (Chao2) were higher for pitfall sampling (10.55 ±0.15 SE species), than for mini-

Winkler litter sampling (9.0 ± 0.001 SE). Thus, pitfall trapping may be preferable to mini-

Winkler litter sampling in estimating total ant species richness in the cool moist forests of 

west-central British Columbia. 

Introduction 

Sampling methodology is one of the first issues that require consideration in any 

ecological study. Unless the organism of interest is easily identified and the area of study is 

small, determination of species population parameters will require some form of estimation 

derived from partial sampling of the area of interest (Southwood and Henderson 2000). The 

choice of sampling methodology should take into consideration the goals of the study, the 

efficiency of field installation (King and Porter 2005), as well as the efficacy and biases of 

each sampling technique in the context of both the natural history of the organism under 

study (Bestelmeyer et al. 2000) and the habitat in which the sampling technique is being used 
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(Koivula et al. 2003). In addition, each technique should be evaluated for undesirable 

environmental impacts. 

Pitfall trapping is a commonly used sampling methodology in ecological studies of 

ants (Hymenoptera: Formicidae). It is used for examining total species richness or 

community structure and is recommended by the Ants of the Leaf Litter (ALL) Protocol 

(Agosti et al. 2000). Pitfall traps usually consist of a round cup partially filled with a 

preservative solution, and placed into the ground with the lip flush to the surface (Laurent 

1917; Woodcock 2005). In addition, they usually include a separate raised cover to reduce 

the risk of trap flooding during rainfall and slow the evaporation of cup solutions. This 

design is popular because simple cups are cheap to purchase, sample 24 h a day, and are easy 

to set in place. The traditional raised covers can be cumbersome to carry into the field and 

position, however. Further, there is little standardization in pitfall trap design, and discussion 

relating to tailoring the design to a particular fauna is lacking. Vertebrate bycatch is 

commonly a problem with the traditional Laurent design leading to both ethical issues and 

the spoilage of trap contents by vertebrate remains (Pearce et al. 2005). 

The interpretation of pitfall trap catches is also an issue that requires consideration, 

especially given the natural history of ants. Ants are social insects that often form permanent 

to semi-permanent nest sites and forage within the surrounding habitat (Holldobler and 

Wilson 1990). Some species form discrete, narrow trails leading directly to resource patches. 

These trails can be densely packed with travelling workers while adjacent habitat is 

depauperate in ants (Sanders 1972; Mclver et al. 1997). To date, this problem has not been 

widely recognized in the context of pitfall traps, but it is of critical importance if 

consideration is given to relative abundance values based on the number of individual ants 
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captured by pitfall traps as is frequently done (Savolainen and Vepsalainen 1989; 

Bestelmeyer et al. 2000; Dunn et al. 2007). 

It is also worthwhile to consider the relationship between estimates of relative 

abundance and absolute abundance. Pitfall trapping is a sampling methodology intended for 

relative abundance data, which is considered a population measurement that cannot be 

defined in terms of unit area or volume (Southwood and Henderson 2000). This is contrasted 

with sampling methodologies intended to estimate the absolute abundance of populations per 

unit area or volume. It is frequently assumed, or forgotten, that trapping bias may skew 

species abundances as compared to their actual densities within a given habitat (Lang 2000; 

Schlick-Steiner et al. 2006). 

Although pitfall trapping is commonly used to sample ants, other methods are also 

frequently employed. The mini-Winkler litter extraction technique has been increasingly 

utilized and is also recommended by the ALL Protocol (Agosti et al. 2000). Mini-Winkler 

litter extractors are used to sample litter-associated ants from small fixed area plots, usually 1 

m2 or less (Olson 1991, Agosti et al. 2000). The literature varies with respect to reports of 

the comparative efficacies of pitfall trapping and mini-Winkler litter extractions in estimating 

total species richness. In addition, the use of baits to attract ants for the purpose of assessing 

community dominance over resources, is also commonly utilized. This technique was not 

studied here as initial experimentation was not successful in attracting ants in a reasonable 

period of time. 

The first objective of this study, therefore, was to examine the efficacies and biases of 

pitfall trap designs, with respect to total species richness and ant size. A modified design 

called the Nordlander pitfall trap (Nordlander 1987, Lemieux and Lindgren 1999), which 
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may offer some advantages in field use, was compared to the traditional Laurent pitfall trap 

with and without raised covers. Here the desire was to ensure it was equally efficacious in 

sampling for ant diversity as the Laurent design. The second objective of this study was to 

examine the precision of captures of individual ants in pitfall traps, by examining the 

distribution of ants in the immediate vicinity of large thatching nests of the western thatching 

ant, Formica obscuripes Forel (Formicidae: Formicinae). It was the third objective of this 

study to determine if the apparent ant community structure derived from a relative abundance 

estimation technique (i.e., pitfall trapping) is distinct from an absolute abundance technique 

(i.e., manual unit area sampling for ant colonies). Finally, the fourth purpose of this chapter 

was to examine the efficacies of pitfall trapping as compared to mini-Winkler litter sampling 

in estimating total species richness in the sub-boreal forests of British Columbia. 

Methods 

Pitfall trap efficacy 

We compared Nordlander and traditional Laurent pitfall traps, both with and without 

raised covers, with respect to sampling bias in ant size and total species richness (Figure 2.1). 

Nordlander pitfall traps consisted of 237-ml plastic cups with snap-on lids (VWR Scientific 

Products, Catalogue number 44333-002). Cups had an inner diameter of 7.5 cm and a 

circumference of 23.6 cm. Approximately twenty-five 6-mm holes were inserted around the 

upper circumference just below the rim using a standard one-hole hand paper-punch. 

Following Bestelmeyer et al. (2000), the pitfall traps used in my studies are of medium size 

and use propylene glycol rather than ethylene glycol as a preservative. Propylene glycol has a 

relatively low mammal toxicity, with an LD5o of 20 g/kg (oral rat) (MBI 2008a), while 
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ethylene glycol has an LD50 of 4.7 g/kg (oral rat) and is a demonstrated teratogen (MBI 

2008b). 

Holes were dug using a narrow garden trowel, and the cups placed into the ground 

such that the bottom of the holes were level with the surface of the soil/duff. A small amount 

of soil or moss was added to the top of the lid to reduce visibility to birds and mammals that 

might disturb the trap. Laurent pitfall traps consisted of the identical cups without the 

additional 6-mm holes or snap-on lids. These cups were positioned in the ground with the 

upper rim flush to the soil/duff surface (Figure 2.1). Raised covers consisted of a 20-cm 

square metal sheet with the corners bent down to hold the trap cover approximately 4.5 cm 

above the ground (Figure 2.1). A small amount of soil or moss was also added to the tops of 

the covers to reduce visibility to birds and mammals. Thus, four trap configurations were 

tested: Nordlander pitfall with no metal cover (NNC); Nordlander with metal cover (NWC); 

Laurent pitfall with no metal cover (LNC); Laurent with metal cover (LWC). Each trap was 

filled with approximately 80 ml of a solution of propylene glycol and water (25/75 by 

volume). 

Trap designs were tested at two locations. The first was at the University of British 

Columbia research forest at Knife Creek (52°33rN, 121°53.4'W, approximately 860 masl) 

located approximately 30 km south of Williams Lake, British Columbia. The study plot was 

in a non-harvested reserve site within the interior Douglas-fir biogeoclimatic zone and dry-

cold subzone, variant 3 (Meidinger and Pojar 1991). This stand was dominated by mature 

Douglas-fir {Pseudotsuga menziesii (Mirb.) Franco). The second test location was in a 15-yr 

post-harvest stand (54°28.8'N, 126°18'W, approximately 1,150 masl) near Topley, 

approximately 50 km east of Houston, BC. This test plot was located in the sub-boreal spruce 

18 



Figure 2.1 Pitfall trap designs tested at Knife Creek and Topley, BC. Each trap was filled 
with approximately 80 ml of preservative solution comprised of 25% propylene glycol and 
75% water. Photos show: a) Nordlander design with no cover (NNC); b) Nordlander design 
with cover (NWC) (Note: cover moved for purposes of illustration); c) Laurent design with 
no cover (LNC); d) Laurent design with cover (LWC). Pen provided for scale. 
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biogeoclimatic zone and moist-cool subzone, variant 2 (Meidinger and Pojar 1991) and was 

dominated by lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm). 

We laid out traps in randomized complete-block design at both sites. At the Knife 

Creek site, five replicates of each trap design were laid out with a distance of 10 m between 

traps and 25 m between replicate blocks. Traps were set on 6 June 2003 and removed two 

weeks later (n = 20). At the Topley site, an identical layout was used, although with 10 

replicates and sampling was conducted over a 4 wk period between 25 June and 23 July 2004 

(n = 40). 

We identified ants collected from the pitfall traps in the laboratory (see "Ant 

Identifications and Nomenclature" below for details). Following identification, each ant was 

measured for alitrunk length (in lateral view) and maximum head width (in dorsal view) to 

the nearest 0.1 mm using a calibrated 10X ocular scale on a dissecting microscope (model 

Nikon SMZ-2B). Alitrunk lengths and head widths derived from all individuals, of any 

given species in any one pitfall trap, were averaged, to reduce the risk that a few traps might 

skew the data due to oversampling a large number of worker ants on a foraging trail. 

We tested the data for homogeneity of variance using the Levene's test in STATA 

(Proc robvar) (STATA 9.2 ©1985-2007). Following this step, traps were compared for size 

bias in captures and differences in species richness by fixed-effects multiway ANOVA. 

Model variables included the trap type (Nordlander or Laurent), cover (with or without), 

interaction between trap type and cover, and replicate. Each site was tested independently. 

Catches in traps at the Topley site were collected twice, but were added together (pooled) for 

each individual trap for the analysis. 
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Relative abundance and the spatial distribution o/Formica obscuripes ants 

We examined the distribution of western thatching ant workers (F. obscuripes) in the 

immediate vicinity of their nest by sampling with Nordlander pitfall traps (NNC 

configuration, Figure 2.1). Five F. obscuripes nests, matched for approximate size and 

activity, were located on Becher's Prairie (51°58.2rN, 122°29.4'W, approximately 930 masl). 

Becher's Prairie is a cattle-grazed grassland within the interior Douglas-fir biogeoclimatic 

zone and very dry-mild subzone (Meidinger and Pojar 1991) approximately 50 km west of 

Williams Lake, BC. We surveyed the area around each nest to ensure that no other nests of 

the same species were within 100 m. Selected nests were separated by distances ranging 

from 162-788 m (average 448 m). Nordlander pitfall traps were placed each 10 m within a 

Cartesian coordinate 40x40-m grid centred on the nest such that there were 24 traps in total 

(no trap was placed directly on the nest in the center of the grid). These were set on 9-10 

August 2002, and remained open for 14 days. Ants captured by the pitfall traps were 

identified in the laboratory (see "Ant Identifications and Nomenclature" below for details). 

The total abundance of individual F. obscuripes captured was plotted spatially around 

the nest to qualitatively assess the pattern of distribution. The patterns arising from 

individual captures were visually assessed to determine if they were precise between nests. 

The range in captures for pitfalls equidistant to the nest was tabulated and examined for 

consistency. 

Relative and absolute abundance estimates of ant community structure 

We compared the relative abundance estimates of ant community structure derived 

from Nordlander pitfall trap (NNC design, see above) sampling to absolute abundance 

estimates derived from hand sampling for ant colonies in a structurally simple grassland 
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ecosystem. Sampling was performed at Becher's Prairie (see above for details). We laid out 

five Cartesian coordinate 12xl2-m plots along a transect within homogeneous grassland 

devoid of trees, with 50 m separating each plot. Pitfall traps were spaced 2 m apart within 

the 12xl2-m grids, with no trap closer than 2 m to the edge of the grid, for a total of 25 traps. 

Pitfall traps were set on 7-8 August 2002, and remained for two weeks. 

Following pitfall trap removal, we intensively hand-sampled the 12xl2-m grid for 

ants by lifting rocks and loosening vegetation. When ants were located, the number was 

recorded as one of three classes (Few: 1-5; Several > 5; or Colony), and their position 

within the grid were recorded. Only ant species for which a colony identification was 

possible (i.e., ant species which have colonies that may have multiple entrances spread across 

some area were excluded because of the difficulty in identifying a single colony) and only 

identifications of colonies (i.e., where ant numbers were recorded as a 'colony' as opposed to 

'few' or 'several') were included in the data analysis. For example, Formica subpolita Mayr, 

was frequently encountered during hand sampling but as this species may have deep nests 

with several access points within the grid, making identification of the number of colonies 

uncertain, they were not included in the data analysis. This was the only species recorded in 

this study that needed to be excluded. Counts were restricted to colonies because counts of 

individual ants can be highly variable depending upon weather (personal observation). 

Further, as the colony is conceptually the unit of organization, following the superorganism 

concept (Holldobler and Wilson 1990), for this taxon, it is a more appropriate metric for 

assessing ant density. 

We assessed the relative proportions of each ant species both by simple presence or 

absence in pitfall traps and by the total number of individual ants of a given species in all 
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traps in each plot. In the former, if 11 out of 25 pitfall traps contained a given species, that 

species was initially recorded as 0.44, which was then adjusted as a percentage of the total 

ant fauna for that plot. In the latter, the total number of individuals of a given species in all 

pitfall traps in each plot were tallied and then expressed as a percentage of the total ant fauna 

for that plot. Absolute abundances were assessed by total counts of colonies per unit area 

that were then adjusted to a percentage of the total ant fauna per plot. 

Data for each species were tested for homogeneity of variance using the Levene's test 

in STATA (Proc robvar) (STATA 9.2 ©1985-2007) then compared across the three 

sampling/tallying techniques by one-way ANOVA. Tests for differences between the three 

pairwise sampling/tallying techniques were performed using a post-hoc Bonferroni test 

(STATA 9.2 ©1985-2007) when the F-value was significant. 

Sampling for total species richness 

We sampled in three, 15-yr post-harvest sites within the sub-boreal spruce 

biogeoclimatic zone and moist-cold subzone, variant 2 (Meidinger and Pojar 1991) within 60 

km of Houston, BC (54°24'N, 126°40.2'W) between June and August of 2004 (Appendix 1). 

The distances between three sampling sites varied from 25 to 78 km. The site age and time of 

year were chosen to coincide with maximal ant colony presence and activity based on 

previous research in the area. We positioned within each site, a 1-ha sampling plot, in which 

contact with natural or anthropogenic boundaries (e.g., forest edges, streams, roads etc.) was 

minimized. The 1-ha plot was laid out in a Cartesian coordinate 25x25-m grid to facilitate 

the location of randomly chosen sampling sites. 

We set Nordlander pitfall traps (NNC configuration, see above) along four transects, 

each comprised of five traps, each separated by 20 m, for a total of 20 pitfall traps. Transect 
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initiation points and azimuths were randomly determined, but were not allowed to overlap. 

Traps were operated for two non-consecutive two wk periods between late June and early 

July and then late July and early August of 2004 (Appendix 2.1). 

Mini-Winkler litter extraction bags (Marizete Pereira dos Santos, Bahia-Brasil, CEP 

45 660 000, Brazil) consisted of an inner nylon mesh bag capable of holding approximately 2 

L of sample with 4-mm openings. This mesh bag was suspended on a metal frame entirely 

within a larger cotton enclosure, closed at the top, which funneled into a lower collection cup 

filled with approximately 80 ml of a 25% propylene glycol solution. 

We collected litter samples from 0.5-m2 sampling areas at randomly chosen locations 

within the 1-ha plots. Ten samples were taken twice from each 1-ha plot between late June 

and August of 2004 with at least two wks between subsequent sampling (Appendix 2.1). We 

laid out a 0.5-m2 frame at the randomly chosen sampling location, and surface material was 

scraped into the centre of the frame. Any twigs or clumps of earth were broken-up by hand 

and then filtered through a 1 -cm2 wire mesh within a sifting bag. Only material that passed 

through the sifting screen was used for the sample, which was then placed into a plastic bag 

and transported to the Houston Forest Products mill, Houston, BC. The sample was then 

added to the mini-Winkler bags and hung for approximately 48 h in a shed where they were 

protected from rain and wind. 

We assessed the efficacy of each sampling technique in estimating species richness 

by generating the Mao Tau expected species accumulation curves (Colwell 2006) for the 

samples, by a fitted logarithmic model (Soberon and Llorente 1993) and by the non-

parametric incidence based estimator Chao2 (Walthur and Martin 2001; Colwell 2006). As 

sample size varied with technique (pitfall trapping, n = 120; mini-Winkler soil extractions, n 
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= 60) due to other project objectives, each estimation for the pitfall traps was derived from 60 

randomly drawn samples from the total dataset to match the mini-Winkler sample size. We 

derived the expected species accumulation curve (i.e., the expected total species richness for 

any given sub-sampling effort within the full sampling protocol) using the rarified Mao Tau 

combinatorial algorithm (Mao et al. 2005) in Estimates (Colwell 2006). This was then fitted 

to a non-asymptotic logarithmic function (see below) using SigmaPlot Version 9.0 (Systat 

Software Inc., San Jose, California, U.S.A.) to allow for extrapolation of the expected species 

accumulation dataset. Following Soberon and Llorente (1993), the logarithmic function 

5(x) = 1/z ln(l + zax) was used to fit data, where x is the number of samples (pitfall 

traps or mini-Winkler litter extractions), S(x) is the number of species accumulated at a 

given x (Note: Soberon and Llorente (1993) described this equation as a function of 

sampling effort, specifically in units of time, here we use sample number as the unit of 

effort), and z and a are curve fitting parameters that control the rate of species accumulation 

(z is inversely proportional to accumulation while a is directly proportional to species 

accumulation). This model was then used to predict the number of samples required to add 

new species to the species list. In addition, the total species richness, as opposed to the 

observed species richness, was estimated by the incidence based estimator, Chao2, using 

Estimates (Colwell 2006). 

Ant identifications and nomenclature 

We followed ant species nomenclature as revised by Bolton et al. (2006) except 

where more recent revisions have been made. We identified ants to species using the keys of 

Wheeler and Wheeler (1963), Francoeur (1973), Wheeler and Wheeler (1986), Naumann et 
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al. (1999), and Hansen and Klotz (2005). Ants of the genus Myrmica were identified using 

an unpublished key provided by A. Francoeur . 

Results 

Pitfall trap efficacy 

Fifteen species of ants from seven genera were identified across all trap types at Knife 

Creek (Table 2.1). The greatest number of species collected was in the genus Formica with 

seven species in total. Formica aserva Forel (Formicidae: Formicinae) was the most 

commonly trapped species. On average, 3.5 species were recovered per trap (Table 2.2) and 

a total of 170 ants were collected in all traps over the single 2-wk sampling period. Eleven 

species of ants in four genera were identified in all trap types at the Topley site (Table 2.3). 

Again, the genus Formica was the most common, with six species, but Myrmica alaskensis 

Wheeler (Formicidae: Myrmicinae) was the most commonly collected ant species. A mean 

of 2.5 species were collected per trap (Table 2.2) across trap types, and a total of 516 ants 

were collected over the 4-wk sampling period. 

There were no significant differences among treatments (Nordlander with cover 

(NWC);Nordlander with no cover (NNC); Laurent with cover (LWC); Laurent with no cover 

(LNC)) at the Knife Creek site for captures of species per trap {F- 2.09; df = 7,16; P = 

0.14). At the Topley site, both model factors (i.e., trap type (Nordlander or Laurent), and 

cover (with or without)), showed statistically significant differences in species richness, but 

there was also a significant interaction between trap type and cover (F= 5.27; df = 1,38; P = 

0.003). This interaction was due to a reduction in catch by the Nordlander trap from a mean 

1 Centre de donnees sur la biodiversite du Quebec, Chicoutimi, Quebec 
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Table 2.1. Ant species captured by each of four pitfall trap designs at Knife Creek, British 
Columbia. The four pitfall designs were laid out randomly within five replicate blocks (n = 
20) between 6 to 20 June 2003. Presence is indicated by * . 

Species 

Aphaenogaster 
occidentalis 

Camponotus modoc 

Camponotus unk 1 

Formica argentea 

Formica aserva 

Formica fusca 

Formica neorufibarbis 

Formica oreas 

Formica podzolica 

Formica unk 1 

Lasius pallitarsis 

Leptothorax muscorum 

Myrmica alaskensis 

Myrmica fracticorn is 

Tapinoma sessile 

Total species richness 

Nordlander 

with no 
cover (NNC) 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

11 

with cover 
(NWC) 

• 

• 

• 

• 

* 

• 

• 

• 

• 

• 

10 

Laurent 

with no 
cover (LNC) 

• 

• 

• 

• 

• 

• 

• 

* 

• 

• 

10 

with cover 
(LWC) 

• 

• 

• 

• 

• 

* 

* 

• 

8 
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Table 2.2: Mean number of ant species collected (±SE) in each of four trap combinations in 
two test locations, Knife Creek and Topley, British Columbia. Knife Creek traps were laid 
out on 6 June, 2003 and collected on 20 June. Topley traps were laid out on 25 June 2004 
and sampled on 9 and 23 July. Number of sample traps = n. Variance in the number of 
sample traps arises from animal disturbance or unrelocated traps. 

Trap 
design 

Laurent 

Laurent 

Nordlander 

Nordlander 

All traps 

Cover 

Yes 

No 

Yes 

No 

Trap 
code 

LWC 

LNC 

NWC 

NNC 

n 

4 

5 

3 

4 

16 

Knife Creek 

Mean number of 
species per trap (±SE) 

2.7 (0.85) 

3.8 (0.2) 

3.2 (0.85) 

4.0 (0.08) 

3.5 (0.36) 

n 

10 

9 

10 

10 

39 

Topley 

Mean number of 
species per trap (±SE) 

2.8 (0.28) 

2.8 (0.35) 

1.6(0.21) 

2.8 (0.33) 

2.5(0.17) 
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Table 2.3. Ant species captured by each of four pitfall trap designs near Topley, British 
Columbia. The four pitfall designs were laid out randomly within ten replicate blocks which 
were sampled twice. Traps were put in place on 25 June and sampled on 9 and 23 July 2004. 
Presence indicated by * . 

Species number 

Camponotus 
herculeanus 

Formica accreta 

Formica argentea 

Formica aserva 

Formica fusca 

Formica hewitti 

Formica 
neoruflbarbis 

Leptothorax 
muscorum 

Nordlander 

with no cover 
(NNC) 

• 

• 

* 

* 

• 

* 

with cover 
(NWC) 

• 

* 

• 

• 

• 

Laurent 

With no cover 
(LNC) 

• 

• 

• 

• 

* 

• 

* 

* 

with cover 
(LWC) 

* 

• 

• 

• 

• 

• 

• 

Myrmica alaskensis 

Myrmica 
fracticornis 

Myrmica incompleta 

Total Species 
Richness 

10 10 



of 2.8 species to 1.6 species when combined with a cover. The cover had no effect on the 

Laurent trap captures. (Table 2.2). 

Head width and alitrunk length correlated strongly (r > 0.9 in both locations) so only 

one was used to assess trap type size bias. As head width has been shown to be a poor 

indicator of overall ant mass (Kaspari and Weiser 1999), alitrunk length was used in the 

analysis. Multiway ANOVA indicated no significant differences at the Knife Creek site for 

alitrunk length between trap types (F= 0.84; df = 1,16; P = 0.382), cover (F= 0.01; df = 

1,16; P = 0.915), or for trap type and cover interaction ( F = 0.05; df = 1,16; P = 0.826). This 

was also true for the Topley site ((trap types: F= 0.75; df = 1,16; P = 0.395), (cover: F = 

0.08; df= 1,16; P = 0.784), (trap type and cover interaction: F= 1.45; df= 1,16; P = 0.239)). 

Relative abundance and the spatial distribution o/Formica obscuripes ants 

The distribution of Formica obscuripes individuals in the immediate vicinity of their 

nests was unique to each nest and highly patchy (Figure 2.2). Areas of most concentrated 

captures differed for each nest. Most of the nests included large areas within the 40x40-m 

grid in which no F. obscuripes ants were captured despite a relatively close proximity of the 

traps to the nest. In particular, Nest 2 (Figure 2.2) collected only a single F. obscuripes ant in 

all grid pitfall traps despite the nest being normally active. Pitfall traps 10m apart varied 

greatly in the number of individuals captured. In one case, one trap collected 120 ants while 

an adjacent trap, 10 m away, collected only 13 (Figure 2.2, Nest 3). In another instance, one 

trap collected 39 ants while the adjacent pitfall 10m away collected none (Figure 2.2, Nest 1). 

The maximum range in captures across the 24 pitfall traps at each nest overall was: Nest 1, 

39; Nest 2, 1; Nest 3, 120; Nest 4, 24; Nest 5, 89. 
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Nest 1 Nest 2 

Figure 2.2. Three-dimensional column plots of the distribution of captured individual 
Formica obscuripes ants in Nordlander pitfall traps around 5 established nests at Becher's 
Prairie, a grassland ecosystem, in 2003. Nordlander pitfall traps were laid out each 10 m 
within a Cartesian 40x40-m grid for 14 days. Nest at position 0,0. Differing shade tones are 
used for visual contrast and do not represent any differences in the manipulated variable. 
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Relative and absolute abundance estimates of ant community structure 

Six species of ants, Tapinoma sessile (Say) (Formicidae: Dolichodinerae); Lasius 

crypticus Wilson, Formica obscuripes Forel, Formica subpolita Mayr (Formicidae: 

Formicinae), Leptothorax muscorum (Nylander), and Myrmica crassirugis Francoeur 

(Formicidae: Myrmicinae) were identified from the five 12x12 m plots laid out in this study. 

All 6 species were identified from both pitfall trap sampling and hand-sampling. Of these, 

F. subpolita, which appears to excavate nests into the soil with multiple access locations, was 

excluded from the final analysis because of the difficulty in confirming the number of 

individual colonies. 

The abundance determination of species within the ant community varied with both 

the sampling and analytical technique used to count ants and species (Figure 2.3). The most 

common ant collected in Nordlander pitfall traps (relative abundance), either assessed as 

simple presence/absence per trap per plot or in total individuals in all traps per plot, was 

Tapinoma sessile. The most common ant species identified by hand-sampling (absolute 

abundance) was Lasius crypticus. The least common species, by all methodologies, was 

Leptothorax muscorum. No colonies of/7, obscuripes were identified during hand sampling 

of the plots, but this species did turn up in traps in two of the plots that were approximately 

130 and 100 m from the nearest identified F. obscuripes nest, respectively. 

Comparison of hand sampling (absolute abundance) to presence/absence per trap and total 

individuals in all traps (relative abundance) per plot by one-way ANOVA indicated a 

species-specific relationship. There were no significant differences between absolute or 

relative abundances fori7, obscuripes {F= 0.89; df = 2, 12; P = 0.49), L. muscorum (F = 

1.21; df = 2, 12; P = 0.33) or T. sessile (F= 1.47; df = 2, 12; P = 0.27). Hand sampling 
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Figure 2.3. Apparent community structure, expressed as percentage abundance, of 5 species 
of ants at Becher's prairie, a grassland ecosystem, derived from relative and absolute 
abundance sampling of five 12x12 m plots in 2003. Relative abundance estimates 
(presence/absence frequency and total individuals per plot) were made using Nordlander 
pitfall traps which were laid out in a Cartesian grid each 2 m within each plot. Pitfall traps 
operated over a period of 2 wks. Absolute abundance estimates (colonies per plot) 
determined by hand sampling of the plots. 
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(absolute abundance), for L. crypticus, resulted in an abundance of just under 60% of the 

total assessed fauna, while pitfall trapping, by either simple presence/absence tallies or total 

individuals, indicated a relative abundance of under 20%. For this species, ANOVA across 

the three sampling/tallying techniques did indicate a significant difference (F= 10.61; df = 2, 

12; P = 0.002). Absolute and relative abundances were significantly different in all three 

pairwise comparisons. Both comparing hand-sampling for L. crypticus to tallies of 

presence/absence from pitfall traps (P = 0.007) as well as comparing hand-sampling to 

tallying the total number of individuals of this species collected by pitfall traps in each plot 

(P = 0.003) indicated significant differences. Analysis of Myrmica crassirugis across the 3 

sampling/tallying types also indicated a significant difference between groups (F= 3.98; df = 

2,12; P = 0.05). Hand-sampling (absolute abundance) and tallies of presence/absence in 

pitfall traps (relative abundance) (P = 0.05) were shown to be significantly different by post-

hoc Bonferroni analysis. Here the absolute community composition for M. crassirugis was 

approximately 6.2% as compared to an estimate of 24.5% derived from tallying 

presence/absence from pitfall traps. No significant difference was noted between hand-

sampling and total individuals in all traps per plot (P = 0.34). 

Sampling for total ant species richness 

Nordlander pitfall trap sampling yielded the greatest number of species as estimated 

within the collected samples (Mao Tau), as well as total estimated species (Chao2) when 

compared to mini-Winkler soil-litter sampling (Figure 2.4). An estimate of 10.3 species 

(95% CI: 9.8, 10.8) from 60 Nordlander pitfall samples, as compared to 9.5 species (95% CI: 

8.5, 10.1) for equivalent sampling with mini-Winklers (Table 2.4), indicating a small but 

significant difference, was derived from the logarithmic function modelled to the expected 
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Figure 2.4. Expected species accumulation curve (Mao Tau), fitted logarithmic function 
(S(x) = - ln(l + zax) to the expected species accumulation curve, and incidence based 
estimator (Chao2) approximation of total ant species richness derived from 60 Nordlander 
pitfall traps and 60 mini-Winkler litter samples collected in 2004. Sampling was performed 
in three, 15-yr post-harvest pine forest plots (sub-boreal spruce biogeoclimatic zone, moist 
cold sub-zone, variant 2 (Meidinger and Pojar 1991)). Mao Tau curve and Chao2 data 
calculated using Estimate S (Colwell 2006) while the logarithmic function follows Soberon 
and Llorente (1993). 
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Table 2.4. Logarithmic parameters (S(x) = 1/z * ln(l + zax)), statistical fit, and 
extrapolation of an observed mean species accumulation curve (Mao Tau, Estimate S) 
derived from Nordlander pitfall trap samples and mini-Winkler litter extraction samples (n = 
60). Samples collected within 60 km of Houston, BC, between June and August 2004. 

Nordlander pitfall 
trap1 

Mini-Winkler 
litter extractor 

Parameter 

z 
a 

z 
a 

Estimate 

0.6284 
16.8924 

0.5227 
4.5953 

SE 

0.0153 
1.9076 

0.0143 
0.4105 

t statistic 

41.057 
8.8554 

36.6645 
11.1934 

P value 

o
 

o
 

o
 

o
 

o
 

o
 

o
 

o
 

p
 

p
 

o
p

 
o

 
o

 
o

 
o

 
V 

V
 

V
 

V
 

lR2 = 0.9712; Adjusted R2 = 0.9707; Std Error Estimate = 0.2477; Estimated number of 
species at 60 samples = 10.27; Estimated number of additional samples, beyond 60, 
necessary to add one additional species = 53 
2 R2 = 0.9727; Adjusted R2 = 0.9722; Std Error Estimate = 0.2814; Estimated number of 
species at 60 samples = 9.52; Estimated number of additional samples, beyond 60, necessary 
to add one additional species = 42 
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species accumulation curve. Following the logarithmic function, it is estimated that an 

additional 53 Nordlander pitfall samples would be necessary to add one more species while 

mini-Winkler soil-litter sampling would require 42 more samples. Total species richness 

derived from 60 Nordlander pitfall samples was estimated at 10.55 ±0.15 (SE) species as 

compared to 9.0 ± 0.001 (SE) species for mini-Winkler soil-litter sampling, by the Chao2 

estimator. 

Discussion 

Pitfall trap efficacy 

Pitfall traps were first described in the literature by Laurent (1917). They are especially 

popular with entomologists working with epigaeic invertebrates because they are 

inexpensive, easy to install, and sample 24 hrs a day (Agosti et al. 2000; Schlick-Steiner et 

al. 2006). A great number of design variations have been reported on in the literature, 

assessing, for example, the effects of variations in trap diameter (Abenspergtraun and Steven 

1995; Work et al. 2002; Borgelt and New 2005), collecting fluid (Greenslade and Greenslade 

1971; Lemieux and Lindgren 1999; Koivula et al. 2003), lids (Phillips and Cobb 2005), and 

surrounding habitat structure (Koivula et al. 2003; Phillips and Cobb 2005). In addition, 

modifications to improve how pitfall samples are collected (Vogt and Harsh 2003) and to 

eliminate the problems of rainfall flooding (Porter 2005) have been examined. Several 

general reviews attempt to summarize the complex literature on this simple technique 

(Greenslade 1973; Adis 1979; Spence and Niemela 1994; Woodcock 2005), much of which 

is in turn reviewed in the specific context of ants for the ALL Protocol (Bestelmeyer et al. 

2000). 
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Largely ignored in the literature, however, is the problem of vertebrate bycatch. 

Traditional open pitfall traps, here called Laurent traps following Laurent (1917), can easily 

trap small vertebrates. The Nordlander pitfall trap (Nordlander 1987; Lemieux and Lindgren 

1999; Pearce et al. 2005) may provide a solution to this problem. As designed for this study, 

the only access is through the 6-mm holes, which should be large enough for all ants but too 

small to allow for vertebrate bycatch. 

No vertebrates were captured in any of the trap designs utilized at either of the two 

sites used in this study, so the relative performance of the two trap designs could not be 

directly assessed. Other studies have shown considerable benefits of the Nordlander design 

in this regard, however. Although vertebrate bycatch using the Nordlander design has been 

reported (Lemieux and Lindgren 1999; Pearce et al. 2005), two points are relevant. First, the 

entrance holes in both of these studies were 13 mm in diameter because of interest in 

capturing large carabid beetles, as contrasted with 6-mm in this experiment, intended for the 

capture of ants. Second, both papers reported a reduction in vertebrate captures as compared 

to the Laurent design (Note: the Laurent trap was called a Barber trap by Lemieux and 

Lindgren (1999)). Lemieux and Lindgren (1999) report that only a single vertebrate was 

captured in the Nordlander design, as compared to 13 in the Laurent design. Pearce et al. 

(2005) reported that only 5% of total vertebrate captures occurred in the Nordlander design 

when compared to Laurent and funnel style pitfall traps. Thus, the literature establishes an 

advantage to the Nordlander in this regard, and it is likely, although not established here that 

the smaller openings used in our study would be even more efficacious. The lack of 

vertebrate bycatch recorded for the Laurent pitfall traps of our study confound any certain 

conclusions here, however. It is likely that the smaller cup sizes used in our study as 
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compared other work (Lemieux and Lindgren 1999; Pearce et al. 2005) contributed to the 

reduction in vertebrate bycatch. Additional and extensive use of the Nordlander design in the 

other experiments detailed in this dissertation were also free of vertebrate bycatch. As 

vertebrate bycatch is a concern for institutional ethics committees in Canada operating under 

the guidelines established by the Canadian Council on Animal Care (CCAC 2005), the 

Nordlander pitfall trap is advantageous. Further, given the spoiling of trap contents by dead 

vertebrates, their elimination reduces sample loss. 

We found that the Nordlander design was no more difficult to install in the field than 

conventional pitfall traps, although Pearce et al. (2005) reported difficulty with this design. 

The Laurent design normally includes a physically separate cover fashioned from various 

materials (e.g., wood, metal, plastic etc.) to protect the trap from flooding during rainfall and 

reduce evaporation of the trapping fluid. As this cover is an additional component that may 

affect trap captures because of potential behavioural biases (positive and negative) for some 

insects to move under a cover, this feature was also studied in combination with the 

Nordlander trap. 

An interaction between pitfall trap design (Nordlander or Laurent) and the presence 

or absence of a cover, did show a significant effect on the number of species sampled at the 

Topley site. Both trap design and cover combined such that the Nordlander trap with cover 

sampled the least species as compared to all others (Table 2.2). In practice, however, the 

Nordlander is used without a cover. This latter design combination was equally efficacious 

(Table 2.2) as the Laurent with cover thus reducing concerns about trap efficacy. 

The results at the Knife Creek site indicated no significant differences between 

factors. This may be a result of the fewer replicates installed (5 vs 10) and shorter sample 
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period (2 vs 4 wk) at the Knife Creek site as compared to the Topley site, respectively. This, 

however, also failed to indicate a problem associated with the sampling efficacy of the 

Nordlander without cover. Further, despite the significant effect found at the Topley site for 

species richness, no effect was noted for ant size (alitrunk length), suggesting that trap 

designs did not differ with respect to their size bias. This was an initial, and fortunately 

unfounded, concern given the possibility that a large ant might perceive a 6-mm hole as 

constricting and therefore avoid an interaction. 

The Nordlander trap has several other advantages. First, there is no need to carry 

large covers into the field. Second, the small holes act to reduce the amount of debris blown 

into the trap, reducing the need to clean samples prior to specimen processing and decreasing 

the risk of captured invertebrates escaping the trap by crawling up debris (e.g., twigs). Third, 

with a small amount of moss or soil placed on the lid, the traps are inconspicuous, reducing 

interference by curious vertebrates. Fourth, if the traps are pulled out of the ground by a 

curious vertebrate, the solution is not directly accessible for ingestion through the open top 

characteristic of the Laurent design and will spill out through the holes reducing the risk of 

poisoning. Finally, these traps are no more expensive than any other pitfall cup design and 

the holes can be added quickly in the lab or field with a standard 6-mm hole paper-punch. 

Overall, we therefore recommend the Nordlander pitfall trap design (NNC) for ecological 

studies that involve sampling of epigaeic ants. 

Relative abundance and the spatial distribution o/Formica obscuripes ants 

The data derived from the trapping of epigaeic invertebrates is normally considered 

suitable for determination of relative abundance information (Southwood and Henderson 

2000). These data may be calculated from tallies of total individuals or from simple 
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presence-absence (incidence) observations. It is common in the myrmecological literature 

for tallies of total individuals captured to be used to derive relative abundance data 

(Savolainen and Vepsalainen 1989; Bestelmeyer et al. 2000; Parr and Chown 2001; Wang et 

al. 2001b; Schowalter et al. 2003; Borgelt and New 2005; Dunn et al. 2007). The natural 

history of ant species and the manner in which they are distributed in the environment, 

however, should make myrmecologists wary of this approach. 

Ants are social insects that usually create permanent to semi-permanent nests from 

which they forage. Foraging often results in the identification of resource rich patches (e.g., 

honeydew producing aphids) to which the colony recruits a great number of workers, often 

along well established trunk trails reinforced by pheromones (Sanders 1972; Holldobler and 

Wilson 1990; Mclver and Yandell 1998). This is especially the case for ant species that have 

large foraging territories (e.g., thatching ants (Mclver and Yandell 1998) or carpenter ants 

(Sanders 1972)), in which the distances required to reach resource-rich patches necessitate 

efficient travel. It would be expected that pitfall traps placed in close proximity or directly 

upon such a trail may accumulate a great number of individual ants, while an identical trap 

just a short distance away may sample few. Further, the capture of large numbers of 

individuals may not be indicative of suitable resources in the immediate vicinity (few metres 

or tens of metres) of the pitfall trap as these individuals may simply be travelling through to a 

distant resource. As noted previously in this study (Results: Relative and absolute 

abundance estimates of ant community structure) thatching ants, Formica obscuripes, were 

captured 100 and 130 m from the nearest identified nest. 

The patchy distribution of F. obscuripes around the five nests studied here suggest 

that the movement of workers is unique to each nest (Figure 2.2) as would be expected for an 
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ant focusing on the specific resources available within its foraging territory. In a Finnish 

study, (Savolainen and Vepsalainen 1989), two pitfall traps placed 5 m apart captured 30 and 

1813 individuals of the boreal ant, Formica polyctena Foerster, at a distance of 10 m from 

their nest, and 9 and 564 individuals at a distance of 60 m. This is consistent with the 

distribution in our study of F. obscuripes, which is ecologically similar to F. poly ctena 

(Figure 2.2). In one instance, one pitfall trap collected 13 ants, as compared to 120 

individuals in another pitfall trap just 10 m distant (Figure 2.2, Nest 3). Traps surrounding 

one active colony (Figure 2.2, Nest 2) yielded only a single individual throughout the entire 

40x40 m grid sampled by 24 pitfall traps. The likely explanation is that this colony had well 

established trunk trails leading out of the study grid and that the pitfall traps had not 

intercepted any of these. 

Some authors have attempted to resolve the problem of highly variable captures of 

individuals by mathematically transforming the abundance capture data. Attempts to reduce 

the problem of oversampling individuals in single pitfall traps have been made by using a 

square root transformation of the total individuals captured (Vanderwoude et al. 1997; 

Hamburg et al. 2004). Another approach was to use a natural logarithm transformation for 

the same purpose (Bestelmeyer 2000). Other solutions reported in the literature include 

taking the number of individuals of a given species in a pitfall trap and dividing them by the 

total number of individuals of all species in the same trap to determine a proportional 

occurrence per pitfall trap or by adjusting the raw abundance of individuals by multiplying 

them by the frequency of occurrence (Lindsey and Skinner 2001; Wang et al. 2001a). 

Although such transformations would reduce the extent of the problem, no biological 

rationale is provided to validate the specific transformations used. 
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Other authors, however, prefer to use frequency of occurrence data exclusively 

(Romero and Jaffe 1989; Osborn et al. 1999; Andersen et al. 2002; Martelli et al. 2004), 

where each species is tallied only as present or absent in each pitfall trap. This is a more 

cautious approach to interpreting pitfall trap data that gives consideration to the natural 

history of ants. It is supported by the distribution of F. obscuripes reported here. As such, it 

is adopted as the standard approach to quantifying ant communities in this dissertation where 

relative abundance data is used. 

Relative and absolute abundance estimates of ant community structure 

Absolute abundances are defined as population counts that arise from sampling a 

landscape or specific habitat per unit area or volume while relative abundances refer to 

sampling data that cannot be translated into taxon density estimates (Southwood and 

Henderson 2000). Ideally, ecological samples will allow for estimates of absolute abundance 

that, in turn, can be used to assess population densities and parameters such as biomass or life 

history tables (Schlick-Steiner et al. 2006). Unfortunately, this normally requires unit area or 

habitat area searches that often provide little data for large effort (Southwood and Henderson 

2000). In the case of small invertebrates such as ants, only small areas can be effectively 

sampled in such a quantitative manner because of difficulties in locating nests, especially 

small cryptic nests (Anderson 1997) unless the nesting characteristics allow for focused 

searching (e.g., species that nest in woody debris). As a consequence, sampling techniques 

are designed to concentrate on the taxon of interest such that relative abundances are derived 

that allow for comparisons of communities in space or time (Southwood and Henderson 

2000). The issue that needs to be identified, however, is the relationship between the 
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apparent community structure derived from relative abundance sampling and the less biased, 

at least in the context of ant colonies, estimates of absolute community structure. 

As pitfall traps are passive, they are activity-abundance biased, generating relative 

abundance data skewed in this direction (Lang 2000). Hand sampling per unit area, however, 

provides abundance estimates that can be used to assess the absolute community 

composition. In the case of ants, counts of ant colonies represent the most appropriate metric 

for assessing presence or absence given the theoretical consideration of the ant colony as a 

superorganism (Holldobler and Wilson 2009) and the observation that the apparent 

abundance of foraging ants varies greatly with weather, time of day and season. In this 

study, we chose a grassland ecosystem to compare the apparent community structure arising 

from these two sampling methodologies as this structurally simple ecosystem allows for 

accurate hand sampling of small areas. 

Most notable was the observation that of the 6 species encountered, Lasius crypticus 

was the most common ant colony in the context of absolute abundance, but was much less 

common when considered in the context of relative abundance (i.e., pitfall traps) (Figure 

2.3). This is likely because this species is reported to normally tend root aphids or 

mealybugs for honeydew (Wheeler and Wheeler 1963; Wheeler and Wheeler 1986) and is 

likely less epigaeic than other species. Tapinoma sessile (see Appendix III for comments on 

natural history) was the most relatively abundant species as determined from pitfall trapping, 

but less in absolute abundance (Figure 2.3), although not significantly. This species is an 

active epigaeic forager that recruits quickly to food resources, a characteristic that makes 

them a common and efficient house pest (Wheeler and Wheeler 1963). As pitfall traps are 

biased toward this behaviour, the high capture rates are to be expected. In addition, the 
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absolute abundance of Myrmica crassirugis also differed significantly from relative 

abundance as determined through tallying pitfall captures by presence-absence (Figure 2.3). 

Finally, it is notable that the absolute abundance of Formica obscuripes was zero despite 

these ants being recovered in pitfall traps. In our study area, F. obscuripes nests were 

spatially scattered at distances frequently greater than 100 m and were unlikely to be 

included in the small plots used for this study. This observation, however, illustrates a basic 

limitation of absolute abundance sampling in that intensive hand sampling is necessarily 

limited spatially and will miss large ant colonies that forage over large areas. Formica 

obscuripes was captured in pitfall traps in two of the plots which were 130 and 100 m from 

the nearest nest. In addition, one plot was just 40 m from the nearest F. obscuripes nest, yet 

no workers of this species were captured in any of the 25 pitfall traps. As noted earlier, this 

is indicative of the highly individualistic and patchy distribution of these ants. 

Our data show great variability with respect to the concordance of relative and 

absolute abundance estimates by different species of ants. It follows that myrmecologists 

need to understand that, depending on the ant species studied, relative abundance estimates 

do not necessarily reflect absolute abundances and that ant communities may be structured 

very differently from what may be derived from pitfall trapping. Consequently, unit area 

sampling for ant colonies should be the preferred sampling methodology where objectives 

and conditions permit. 

Sampling for total species richness 

The need to rapidly assess the total species richness of a given taxon in a defined area 

is central to many ecological and conservation based studies. Although a wide variety of 

techniques exist, three are particularly common in the myrmecological literature. These are 
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pitfall trapping, litter extraction (of which the mini-Winkler extractor is very common), and 

baiting (Bestelmeyer et al. 2000). The use of baits was found to be untenable in the low 

density ant communities typical in the cool-moist sub-boreal forests of west-central BC. 

Several attempts with this technique during the course of our study failed to attract any ants 

to randomly placed baits over a period of 30 min. Pitfall traps and mini-Winkler litter 

extractions are, however, potentially viable sampling methodologies for estimating total 

species richness in these forests. 

Nordlander pitfall trapping was shown to be more efficacious in both actual (i.e., Mao 

Tau) and estimated total species richness (i.e., Chao2) although the differences were not large 

(1-2 species for Mao Tau and Chao2, respectively). Logarithmic modelling of the Mao Tau 

species accumulation curve indicated, however, that it would require only 42 additional litter 

samples to add one more species to the species list while it would take 53 additional 

Nordlander pitfall trap samples. This is likely because the logarithmic model for the mini-

Winkler extractions does not appear to be as close to an asymptote as is the case for the 

Nordlander pitfall samples (Figure 2.4). Thus, both methodologies seem fairly similar in 

efficacy with respect to total species richness with a slight advantage to the Nordlander pitfall 

trap overall. Species collected by mini-Winkler extraction were entirely a sub-set of those 

collected by Nordlander pitfalls traps. It should be noted, however, that while 60 pitfall traps 

were randomly used in the analysis to be consistent with the 60 mini-Winkler litter samples 

collected, a total of 120 Nordlander pitfall traps were operated overall because of additional 

project objectives. The 120 Nordlander pitfall traps collected a total of 11 species as 

compared to 9 species in the 60 mini-Winklers. 
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To date, there have been no equivalent examinations of the efficacy of these sampling 

techniques in boreal or sub-boreal forests although the results of my study are generally 

consistent with the pattern reported for upland ecosystems in Florida (King and Porter 2005). 

The literature is not consistent in this regard, however. A study in a South African savanna 

reported greater species captures by pitfall traps (20 species captured per 15 pitfall trap 

samples with 62-mm diameter traps) as compared to mini-Winkler litter extractions (9 

species captured per 15 samples with 0.5-m2 soil samples) (Parr and Chown 2001). In 

contrast, others have found mini-Winkler litter extractions much more efficient at collecting 

species than pitfall trap sampling (Olson 1991; Fisher 1999; Martelli et al. 2004). In the 

tropical rainforests of eastern Madagascar one study recovered five times the number of 

species using mini-Winklers as compared to small pitfall traps (18-mm diameter) (Fisher 

1999). In the tropical forests of Costa Rica, using similar methodologies, another study did 

not discover as great a disparity between methods, but did report that mini-Winklers sampled 

87% of the total ant species captured as compared to 54% through pitfall traps (Olson 1991). 

This logically suggests that mini-Winkler soil extractions are particularly useful where a well 

developed litter ant fauna exists (e.g., tropical forests). In contrast, in temperate hardwood 

and pine forests in Tennessee it was found that litter sifting yielded 1.2-2.5 times the number 

of species as pitfall traps (Martelli et al. 2004). The poor performance of pitfall traps in this 

study may have arisen from the relatively short period (48 h) of trapping. Unfortunately, 

there is no standardization with respect to pitfall trap operation times which makes 

comparisons of alternative techniques difficult. Pitfall trap captures equal to or higher than 

mini-Winkler sampling have been reported, when traps were operated over 72 h (Parr and 

Chown 2001; King and Porter 2005). In our study, pitfall traps were operated for 2 wk 
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following Lemieux and Lindgren (1999), who used the same trap design (albeit larger) and 

operated in similar habitats. This seems appropriate for a relatively low density fauna typical 

in cool forests. 

Overall, mini-Winkler sampling appears to be more efficacious with respect to 

sampling species richness in tropical ecosystems where a large litter community of fairly 

small ant species is well established. In other ecosystems, comparisons between litter 

extraction and pitfall trapping may be distorted by the length of time pitfall traps are 

operating. Increasing the length of time pitfall traps are placed in the ground will naturally 

increase species captures without adding additional work for the field crew, making this 

technique generally more efficacious in any ecosystem lacking a well developed ant litter 

community. 

The time required to install pitfall traps in the field was not measured in this study. 

Thus, a quantitative comparison with litter extraction using mini-Winkler extractors could 

not be made. The number of steps involved in locating randomly placed sampling plots, 

collecting, sifting, and then filling extraction bags and hanging samples for mini-Winklers 

was clearly longer than positioning a transect and installing pitfall traps. One study did 

assess the time associated with the collecting and sorting of mini-Winkler samples and pitfall 

trap samples and reported that mini-Winkler samples took approximately 1 h of field work 

per sample as compared to approximately 45 min of field work per sample for pitfalls (King 

and Porter 2005). Another study, while not providing specific time measurements, indicated 

that mini-Winklers took more than twice as long in the field as compared to an equivalent 

number of pitfall traps (Parr and Chown 2001). This would be consistent with my experience 

in this study. One further consideration relating to mini-Winkler litter extractions is the 
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requirement for dry litter conditions. Ants, especially small species, will be trapped in the 

sample bags if the litter is wet, limiting extractions. Thus, planned field work can be 

disrupted by weather. It should be noted, however, that mini-Winkler extractions require 

only one visit to the field site, while pitfall trapping require at least two, one to install and 

one to collect. For sites with difficult access, this may be an important consideration. 

As all sampling methodologies will show some bias in the species sampled, it may be 

advisable to use more than one technique in any ecological study. Ant species collected by 

mini-Winkler extraction were reported to be an average of 2.5 mm long as compared to 3.5 

mm for pitfall trapping (Olson 1991). While this finding seems reasonable, as large bodied 

ants, that are typically fast moving, should be more likely to fall into pitfall traps and might 

in turn escape mini-Winkler sampling during the initial sifting stage, this result has not been 

replicated. Another study reported seeing a similar trend but noted a lack of statistical 

significance for this observation (Parr and Chown 2001). Ants species sizes were not 

measured in our study. 

Of the total species richness of 11, pitfall trap samples (n = 120) contained two 

unique species while no unique species were found by mini-Winkler sampling (n = 60). The 

disparity in sample sizes should be noted, however. In addition, the relatively low species 

diversity typical in the cool-moist forests of west-central BC necessarily reduces the pool of 

species that could be unique to a given methodology. In an upland Florida ecosystem with a 

total species richness of 94, working with equal sample sizes, 13 unique species were 

recovered from mini-Winkler samples as opposed to eight in pitfall trap samples (King and 

Porter 2005). In a South African savanna with a total species richness of 34, no unique 

species were reported from mini-Winkler samples (0.5 m which were equivalent to my 
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study) while 5 unique species were recovered from 62-mm diameter pitfall trap samples (Parr 

and Chown 2001). In hardwood and pine forests in Tennessee with a total species richness 

of 23, eight unique species were reported in mini-Winkler samples as compared to two in 

pitfall traps (Martelli et al. 2004). Pitfall captures were found to be entirely redundant to 

mini-Winkler litter samples in Madagascar where total species richness was 381 (Fisher 

1999). Finally, work in Costa Rica where total species richness was 135, recovered 62 

unique species from mini-Winkler samples as compared to 18 from pitfall traps (Olson 

1991). As pitfall traps are biased toward fast moving epigaeic invertebrates, it is not 

surprising that litter sampling is usually capturing more unique species, especially in 

tropical/sub-tropical habitats with a well developed litter fauna. In the cool forests where our 

study was conducted, all species of ants are more or less epigaeic. 

Most studies have shown both mini-Winkler litter sampling and pitfall trapping to 

produce unique species, suggesting that it is ideal to use both techniques when developing 

species diversity lists. Where a well established litter ant community is known to exist (e.g., 

tropical rain forests), mini-Winkler sampling is clearly superior to pitfall trapping. However, 

where this is not the case, pitfall sampling is often equal or superior to mini-Winkler 

sampling, especially if pitfall traps are allowed to remain in the ground for an extended 

period. In sub-boreal forests, the relatively species-impoverished ant fauna and poorly 

developed litter fauna suggest that pitfall trapping may be adequate for developing a total 

species richness estimate. 

Summary 

The Nordlander pitfall trap is well suited to sampling ants, demonstrating an equal 

efficacy in estimating species richness with no size related bias when compared to the 
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traditional Laurent pitfall trap. Given the association of this design with excluding vertebrate 

bycatch this pitfall trap configuration has been exclusively used for work in this dissertation. 

As ant distributions around nests have been shown to lack precision, captures of individuals 

(i.e., abundance information), is unreliable at the scale of individual pitfall traps. As a 

consequence, only incidence-based information should be derived from pitfall traps and this 

was the principle employed for all work presented here. Even with the constraint of deriving 

only incidence-based information from pitfall traps, it still must be recognized that this 

provides only relative abundance information, across traps, and that this may not reflect 

absolute abundances. As absolute abundance information has greater utility, where possible 

it should be collected. In the primary habitat (sub-boreal forest) examined in this 

dissertation, most ants are woody debris associated. This allows for efficient collection of 

absolute abundance information and thus, this formed the primary sampling technique used 

throughout this dissertation. Where pitfall traps are particularly valuable is in the estimation 

of total species richness. The work here demonstrated that they were slightly superior to 

mini-Winkler litter sampling for the same purpose. Given, however, that the literature 

suggests that habitat, especially litter development, can affect the relative efficacy of these 

two sampling techniques, any attempt to estimate total species richness in previously 

unstudied habitat, should employ both techniques. Overall, in this dissertation, only 

Nordlander pitfall traps and mini-Winkler litter extractors were utilized for the purpose of 

estimating total species richness, while unit area searches of woody debris were used to 

derive absolute abundance estimates of ant populations in the sub-boreal forests of west-

central British Columbia. 
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Chapter 3. The ant (Hymenoptera: Formicidae) communities of sub-boreal forests of 

west-central British Columbia1 

Abstract 

The objective of this study was to examine the ant community structure in the sub-

boreal forests of British Columbia and determine how this community structure differs in 

post-harvest forest stands of differing serai age. Ant communities were characterized in 

lodgepole pine-leading forests by hand-sampling of coarse woody debris (CWD), pitfall traps 

and mini-Winkler samples of forest floor litter over five serai ages. Seventeen species of ants 

were identified across all serai ages. Overall changes observed in the ant community were 

shown to relate to the "Individualistic Hypothesis" of successional theory, and are further 

shaped by species life history characteristics and environmental tolerances. The most 

common ant species found in this study were similar to the ant fauna identified in North 

American habitats known to be climatically marginal for ants. When compared to 

Fennoscandian ant communities, a common pattern of increasing ant abundance after 

disturbance followed by declining abundance with later serai age was noted. Two differences 

were apparent, however, with respect to the Fennoscandian ants. These were the greater use 

of CWD as a nesting substrate and the absence of soil-based thatching ants in sub-boreal 

forests of west-central British Columbia. The relative lack of CWD may be a factor 

explaining the paucity of CWD nesting ants in Fennoscandian forests while the higher soil 

moisture in the sub-boreal forests of BC may be an important factor in explaining the 

absence of soil-nesting ants. 

1 First person plural is used throughout this chapter to reflect the contributions of others to both research design 
and field work. 
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Introduction 

Ants are known to be a thermophilic fauna (Holldobler and Wilson 1990), which is 

evident by a decline in species diversity with increasing latitude (Kusnezov 1957). Although 

a recent taxonomic catalogue provides a global total of 11,477 extant species of ants (Bolton 

et al. 2006), only some 82 species were reported for British Columbia (Higgins and Lindgren 

2009). Despite this relative paucity in species diversity, ants are very common throughout 

most of BC, especially in the south (Naumann et al. 1999), and are rare only in cool and 

closed forest canopies (Higgins and Lindgren 2006). 

Although a few entomologists have collected ant species within BC in an attempt to 

develop a species list (Buckell 1927, 1932; Blacker 1992; Blades and Maier 1996), or 

establish habitat associations (Lindgren and Maclsaac 2002) almost no work has been done 

to characterize a localized ant community. The sole exception was a study to examine the 

impact of cattle grazing on ant communities in the extreme southern Okanagan region of BC 

(Heron 2001), which would not be expected to resemble, in structure or ecologically, an ant 

community in the sub-boreal forests of BC. Further, no studies have followed ant 

communities through serai change in BC. 

Examinations of ant communities with serai changes have also been rare in Canada. 

The only example of such research in Canada examined ant succession in the lichen-spruce 

forests of Quebec (Lafleur et al. 2006). In Fennoscandia, there has been more interest in 

successional changes in ant communities because of the belief that dominant thatching ants 

may play a keystone role in ecosystem processes in these forests (Punttila 1996; Savolainen 

et al. 1989; Seppa et al. 1995, Kilpelainen et al. 2005). The ant fauna of Fennoscandian 

forests, however, is quite different from that of the sub-boreal forests of BC. Thatching ants 

are not as dominant in BC as they are in Fennoscandia, and ants are seldom mentioned in 
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ecological surveys of Fennoscandian coarse woody debris (Jonsson and Kruys 2001). Dead 

wood, however, is a common nesting resource in the sub-boreal forests of BC (Lindgren and 

Maclsaac 2002; Higgins and Lindgren 2006). 

Thatching and the use of dead wood as nesting materials are both adaptations to 

improve the thermal conditions of nests in cool climates (Rosengren et al. 1987; Higgins and 

Lindgren 2006), suggesting that temperatures are affecting ant autecology. The decline in 

ground temperatures resulting from decreased insolation with advancing serai age (see 

Chapters 4 and 5) is also likely to affect the ant community. It was the primary purpose of 

our study to examine ant communities in forests of varying serai age, and consider those 

communities in the context of the ecological hypotheses forwarded to explain successional 

change. In addition, we compare these ant community assemblages to other habitats known 

to be climatically marginal for ants, including the boreal forests of Fennoscandia and North 

America. Finally, we provide some hypotheses for the observed differences, focusing on the 

importance of coarse woody debris and temperature. 

Methods 

We used records from Houston Forest Products (HFP, now West Fraser Mills Ltd., 

Houston, British Columbia), to identify non-harvested and post-harvested sites (serai ages: 2-

3, 8-10, 13-15, 23-25 yr) in lodgepole pine-leading (Pinus contorta Dougl. var. latifolia 

Engelm) stands within the sub-boreal spruce biogeoclimatic zone and moist-cold subzone, 

variant 2 (SBSmc2) (Meidinger and Pojar 1991). All post-harvest sites had been replanted 

by HFP with lodgepole pine because of the commercial potential of this species in the area. 

We identified a minimum of three replicate sites from each serai age within a 100-km radius 

of Houston, BC (54°24rN, 126°40'W). For non-harvested sites and 8-10 yr post-harvest sites, 
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four replicate sites were established. Replicate sites varied in distance from 5-100 km from 

each other. We then positioned a 1 -ha sampling plot within each site so that contact with 

natural or artificial boundaries (e.g., streams, roads, slopes) was minimized. The plots were 

reference-flagged as a Cartesian x,y grid with 25-m spacing. Sampling locations were 

determined using random x,y numbers and then paced off from the nearest flagged reference 

point. 

Our study was conducted between 2003 and 2005 (Appendix II) with all sampling for 

ants occurring between late June and mid-August. Non-harvested plots and 8-10 yr post-

harvest plots were sampled in 2003, 13-15 and 23-25 yy post-harvest plots in 2004, and 2-3 

years post-harvest plots in 2005. Sampling included hand-sampling of strip plots for coarse 

woody debris (CWD), pitfall trapping and mini-Winkler sampling of forest floor litter. 

Coarse woody debris was comprised of both downed woody debris (DWD) and stumps. 

Downed woody debris was defined as pieces of downed wood of any length with a large end 

diameter >10 cm. The threshold for inclusion of a stump was a cut end diameter of 10 cm. 

Downed woody debris and stumps were sampled within two 4xl00-m strip transects within 

each 1-ha sampling plot. Each strip consisted of two 4x50-m sub-strips positioned at right 

angles to each other and sharing a 10-m offset centre to avoid overlaps between strips. The 

centre point was randomly positioned within the 1-ha plot, but the 4x50-m strips were 

allowed to extend beyond the boundaries of the plot. 

Within each sampling strip, we opened CWD by hand and/or hatchet to locate and 

sample ant colonies. Ants were placed in 1.5-ml plastic snap-cap vials (Fisher Scientific, 

Fisherbrand, Cat No. 05-408-129) containing 95% ethanol for later identification in the 

laboratory. If possible, we collected at least 5 individuals from each colony. Data within 
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each strip were recorded by 4xl2.5-m subsections (50 m2), which were used as sampling 

units for the purpose of analysis. We assessed all pieces of DWD within the strip, regardless 

of ant presence or absence, for large-end diameter, large-end diameter at strip boundary, 

small-end diameter at strip boundary, length in strip, total length, percentage bark, and the 

decay class of the sapwood and heartwood (Maser et al. 1979). Equivalent measurements 

were also made on stumps when the centre point of the stump was located within the 

sampling strip. 

We monitored site temperatures using iButton® 1 Wire Thermocron® DS1921G 

dataloggers (Maxim Technologies, Dallas, TX). During the summer of 2005, one iButton 

temperature datalogger was randomly positioned within each 1-ha plot approximately 1 cm 

underneath the surface forest duff layer. We chose this depth to best measure the 

temperature which epigaeic foraging ants would be experiencing, while blocking direct 

insolation that might result in high radiative temperature readings. Temperatures were 

recorded on the dataloggers every 30 min between 8 July and 18 August. We then derived 

daily temperature and amplitude means by modelling site data to a sine curve using SAS 

(ProcNLIN) (SAS 9.1 ©2002-2008). 

Pitfall traps consisted of 237 mL plastic cups with a lid diameter of 8 cm. The pitfall 

design was modified from Nordlander (1987), as described in Chapter 2. 

We performed forest floor litter sampling for ants using the mini-Winkler litter 

sample bag extraction technique (Agosti et al. 2000). We collected two sets of 10 randomly 

placed surface litter samples (0.5 m2 ) with at least one month between sets. Surface litter 

was scraped loose by hand and trowel then sifted through a screen with an approximately 

2.5-cm mesh. Large debris was broken up by hand, as extensively as possible, and also 
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sifted. We then placed each sample in a mini-Winkler extraction bag, and the bags were 

hung in a utility shed for approximately 48 h at ambient temperatures to protect them from 

the weather and from being physically disturbed (Agosti et al. 2000). 

We compared study sites for relative species distributions by non-metric 

multidimensional scaling (NMDS) using PC-ORD, (Version 5, McCune and Mefford 1999). 

Non-metric multidimensional scaling separations, using the Sorensen (Bray-Curtis) distance 

measure, were performed three times independently to assess for local minima. Total species 

richness estimates, based on CWD sampling only and derived from pooled serai age replicate 

sites, were calculated with the incident based estimator, Chao2, using Estimates, Version 8 

(Colwell 2006) while the Shannon and Simpson Indices were calculated manually following 

Magurran(1988). 

Ants were identified to species as described in Chapter 2: Ant Identifications and 

Nomenclature. 

Results 

Distinct heterogeneity between serai ages, with the exception of 8-10 and 13-15 yr post-

harvest sites where some overlap was noted, was observed from non-metric multidimensional 

scaling (NMDS) of relative species distributions between study sites, derived from the hand 

sampling of CWD in strip plots (Figure 3.1). The heterogeneity among replicates within 

each serai age class, as determined subjectively from the plotted variability between sites in 

the two-dimensional space of the NMDS analysis, decreased between the earliest (i.e., 2-3 yr 

post-harvest) and mid-seral age of this study (13-15 yr post-harvest) and then increased in the 

two later serai ages (Table 3.1). A steady increase in species diversity through the first 4 
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Figure 3.1. Non-metric multidimensional scaling (Bray-Curtis distance measure) of relative 
species diversity within seventeen 1 -ha sampling plots, as determined by strip-plot sampling 
of coarse woody debris. Four plots were non-harvested (NH) although one is missing here as 
the complete absence of ants necessitated its exclusion, three were 2-3 yr post-harvest (2 yr), 
four 8-10 yr post-harvest (8 yr), three 13-15 yr post-harvest (15 yr), and three were 25 yr 
post-harvest (25 yr). Site replicates indicated by S1-S4 as appropriate. Sampling occurred 
from 2003-2005. 
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Table 3.1. Species diversity indices (Shannon index (H') and Simpson index (1/D)), and total 
species estimation (Chao2), for ant communities as determined by hand sampling of strip 
plots for coarse woody debris, in five serai ages of post-harvest and non-harvested plots in 
sub-boreal forests of west-central British Columbia from 2003-2005. 

Site serai age 
Number of Total number 

plots 
Shannon 

of samples Index (H') 
Simpson 

Index (1/D) 

Total species 
estimation 

Chao2 
(95% CI) 

2-3 yr 
post-harvest 

48 1.14 2.83 
4 

(4.0,4.3) 

8-10 yr 
post-harvest 

13-15 yr 
post-harvest 

4 

3 

64 

48 

1.39 

1.45 

2.83 

3.35 

9 
(9,9) 

12.9 
(10.3,34.7) 

23-25 yr 
post-harvest 

48 1.55 4.17 
10.9 

(8.3, 32.4) 

Non-
harvested 

64 0.54 1.41 3(3.0,3.3) 

59 



serai ages (i.e., from 2-3 yr to 23-25 yr post-harvest) was shown by Shannon's Index (H'), 

despite the estimation of total species richness peaking in the third serai age (13-15 yr post-

harvest), as determined by Chao2 (Table 3.1). In non-harvested sites where few ants were 

located, species diversity (H') drops to its lowest overall value (Figure 3.1). This pattern is 

mirrored by Simpson's dominance index (1/D). Total species richness grew through the 

earlier serai ages (i.e., 2-3 yr to 13-15 yr post-harvest) but then declined in older stands (23-

25 yr post-harvest and non-harvested stands) as indicated by Chao2 (Table 3.1), although the 

differences between 13-15 yr post-harvest and 23-25 yr post-harvest stands are not 

considered significant, as indicated by the confidence intervals (Table 3.1). 

The highest daily mean soil temperatures were recorded in the earliest serai age (2-3 

yr post-harvest) with temperatures just over 14 °C between June and August of 2005 (Table 

3.2). Mean temperatures declined steadily with serai age and were below 10 °C in non-

harvested plots. Although daily mean soil temperatures dropped approximately 5 °C over the 

5 serai ages, daily mean temperature amplitudes dropped by approximately 13 °C, indicating 

increasingly stable, but lower temperatures with increasing serai age. Datalogger failures 

occurred in one of the three 2-3 yr post-harvest plots, as well as in one of the four non-

harvested plots. 

Overall 17 species of ants were collected by all techniques used in this study (i.e., 

hand sampling of CWD in strip plots, Nordlander pitfall trapping, and mini-Winkler 

soil/litter sampling) (Table 3.3). Of these, 14 were found during CWD sampling, 12 by 

Nordlander pitfall trapping, and 10 by mini-Winkler soil/litter sampling. In all cases, except 

one, the species missed by each technique were uncommon. The one exception was 

Myrmica fracticornis Forel, which was commonly captured by Nordlander pitfall trapping 
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Table 3.2. Mean daily soil temperatures and temperature amplitudes taken over 40 days 
between July 8 and August 18, 2005 in five serai ages within the moist-cool sub-boreal 
(SBSmc2) forests of west-central British Columbia. Temperatures recorded by iButton® 
dataloggers each 30 minutes. 

Mean Temperature Mean Temperature 
(°C ± SE) Amplitude (°C ± SE) 

2-3 yr post harvest (n = 2) 

8-10 yr post harvest (n = 3) 

13-15 yr post harvest (n = 3) 

23-25 yr post harvest (n = 3) 

Non-harvested (n = 2) 

14.3 ±1.5 

12.5 ±0.1 

11.8 ± 0.3 

11.0 ±0.2 

9.4 ± 0.2 

17.7 ±8.5 

10.9 ±1.3 

9.3 ±0.5 

6.5 ±0.8 

4.7 ±0.1 



Table 3.3. Ant species (Hymenoptera: Formicidae) collected in the sub-boreal spruce, moist 
cold (SBSmc2) biogeoclimatic zone and subzone in British Columbia, Canada. Species list 
represent collections made from 2003-2005 in post harvest sites at ages 2-3, 8-10, 13-15, and 
23-25 yr as well as non-harvested sites. Taxonomy follows Bolton et al. (2006) except where 
more recent revisions were available. 

Family 
Sub-family 

Species group 
Species 

FORMICIDAE 
Myrmicinae 

Formicinae 

Leptothorax muscorum (Nylander) 
Myrmica alaskensis Wheeler 
Myrmica incompleta Provancher 
Myrmica detritinodis Forel 

Camponotus herculeanus (Linnaeus) 
Camponotus noveboracensis (Fitch) 
Lasius pallitarsis (Provancher) 
Lasius alienus (Foerster) 
Polyergus breviceps Emery 

Formica fusca group 
Formica accreta Francoeur 
Formica argentea Wheeler 
Formica fusca Linnaeus 
Formica hewitti Wheeler 
Formica neorufibarbis Emery 

Formica rufa group 
Formica dakotensis Emery 
Formica obscuriventris Mayr 

Formica sanguinea group 
Formica aserva Emery 
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(Table 3.4) and mini-Winkler litter extractions (Table 3.5), but not found within CWD. 

Myrmica fracticornis was captured in all stands except those that were non-harvested. In 13-

15 year post-harvest stands, for example, this species was captured in 30% of pitfall 

traps (n = 120) and 23% of mini-Winkler soil/litter extractions (n = 60). One species, 

Formica dakotensis Emery, captured by a pitfall trap, is a new record for BC although its 

presence is not surprising as it is known to occur in northwestern Alberta (Sharplin 1966, Wu 

and Wong 1987) and in the Yukon (Francoeur 1997). 

In all ant colonies identified during CWD sampling, five species comprised 90-95% 

of ants identified. These were Leptothorax muscorum (Nylander), Myrmica alaskensis 

Wheeler, Camponotus herculeanus (L.), Formica neorufibarbis Emery and F. aserva Forel 

(see Appendix III for more complete natural history notes) in order of overall colony 

abundance. Total observed species abundance, as determined by all sampling 

methodologies, was highest in the three mid serai ages (i.e., 8-10, 13-15, and 23-25 years 

post-harvest sites), varying over this time frame by only a single species within each 

sampling methodology (Table 3.6). 

Ant colony abundance varied with serai age (Figure 3.2). Established ant colonies in 

the 2-3 yr post-harvest plots consisted largely of small-bodied ant species with small-

population (less than 200 workers) colonies {L. muscorum and M. alaskensis). Maximum ant 

colony abundance was documented in the 13-15 yr post-harvest plots where colony densities 

reached approximately 10 per 50 m2. Ant colonies were rare in non-harvested plots, with 

approximately 0.3 colonies per 50 m2. In one non-harvested plot, no ant colonies were 

located at all. 
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Table 3.4. The percentage of pitfall traps capturing individuals of six species of ants across 
five serai ages in the sub-boreal spruce biogeoclimatic, moist-cold subzone, variant 2 
(SBSmc2) (Meidinger and Pojar 1991) forests of west-central BC. Pitfall trapping was 
conducted from 2003-2005. 

Serai Age Ant species 

Camponotus Formica Myrmica Leptothorax Formica Myrmica 
Herculeanus aserva alaskensis muscorum neorufibarbis detritinodis 

0.8 0 0.8 0 2.5 0.8 

5.0 31.9 15.0 10 21.3 10.0 

44.2 65.8 20.0 38.3 31.7 30.0 

47.5 18.3 29.2 10.8 4.2 19.2 

0 0.6 0.6 0.6 0.6 0 

2-3 yr 
post 

harvest 
(n = 2) 

8-10 yr 
post 

harvest 
(n = 3) 

13-15 yr 
post 

harvest 
(n = 3) 

23-25 yr 
post 

harvest 
(n = 3) 

Non-
harvested 

(n = 2) 
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Table 3.5. The percentage of mini-Winkler litter samples capturing individuals of six species 
of ants across five serai ages in the sub-boreal spruce biogeoclimatic, moist-cold subzone, 
variant 2 (SBSmc2) (Meidinger and Pojar 1991) forests of west-central BC. Mini-Winkler 
sampling was conducted from 2003-2005. 

Serai Age Ant species 

Camponotus Formica Myrmica Leptothorax Formica Myrmica 
Herculeanus aserva alaskensis muscorum neorufibarbis detritinodis 

2-3 yr post 
harvest 0 0 0 30 0 0 
(n = 2) 

8-10 yr 
post 

harvest 0 16.2 28.7 66.2 11.2 12.5 
(n = 3) 

13-15 yr 
post 

harvest 11.7 23.3 23.3 68.3 3.3 23.2 
(n = 3) 

23-25 yr 
post 

harvest 1.7 1.7 26.7 63.3 6.7 15.0 
(n = 3) 

Non-
h^eS},f 0 0 13.7 1.2 0 0 

(n = 2) 
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Table 3.6. The total number of species of ants captured by three sampling methods (mini-
Winkler litter extractions, Nordlander pitfall traps, coarse woody debris (CWD) hand 
sampling) across five serai ages in the sub-boreal spruce biogeoclimatic, moist-cold subzone, 
variant 2 (SBSmc2) (Meidinger and Pojar 1991) forests of west-central BC. Collections 
were conducted from 2003-2005. 

Serai age 

2-3 yr post-harvest 
(n = 2) 

8-10 yr post-harvest 
(n = 3) 

13-15 yr post-harvest 
(n = 3) 

23-25 yr post-harvest 
(n = 3) 

Non-harvested 
(n = 2) 

Total species 
(excluding species 

shared between serai 
ages) 

Hand sampling of 
CWD 

4 

8 

9 

8 

3 

14 

Sampling methods 

Nordlander pitfall 
traps 

5 

11 

11 

10 

6 

12 

Mini-Winkler litter 
extractions 

2 

8 

9 

8 

2 

10 
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Figure 3.2. The number of colonies of all species of ants nesting in coarse woody debris per 
50 m2 (±SE) in stands of five differing serai ages. All stands were located within the sub-
boreal spruce biogeoclimatic zone, moist-cold sub-zone, variant 2 (SBSmc2) forests of west-
central BC (Meidinger and Pojar 1991) and sampled from 2003-2005. 
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Both the overall size and composition (Figure 3.3) of the ant community in CWD 

varied with serai age. In the earliest serai age (2-3 yr post-harvest), L. muscorum was the 

most common species but the relative abundance of this species declined after the 13-15 yr 

post-harvest serai age. That decline is contrasted by an increase in the relative abundance of 

M. alaskensis, which was the most common species in non-harvested plots. These 2 species 

always accounted for greater than 60% of identified nests in CWD within each serai age. In 

the last serai age (non-harvested plots), M. alaskensis alone was responsible for over 90% of 

the total colonies identified (Figure 3.3). 

Camponotus herculeanus was present in the 2-3 yr post-harvest sites although all 

colonies located were young, consisting of a queen and several workers. The number of 

colonies identified increased with serai age, peaking in the 13-15 yr post-harvest plots with 

approximately one colony per 50 m2, and then declining. No mature colonies of C. 

herculeanus were located within the sampling strip-plots of non-harvested sites. Despite a 

low relative abundance of colonies, this species was common in pitfall traps in 13-15 and 23-

25 yr post-harvest sites, being found in 44% (n = 120) and 47% (n = 120) of pitfall traps 

respectively (Table 3.4). 

Colonies of F. aserva were first located in the second serai stage (8-10 yr post-

harvest). This species became slightly more common in the third serai stage (13-15 yr post-

harvest) reaching a density similar to C. herculeanus of almost 1 colony per 50 m . Formica 

aserva almost disappeared in the 23-25 yr old post-harvest stands, however, with only two 

colonies identified. Peak pitfall captures of this species were in 8-10 and 13-15 yr post-

harvest sites where they were found in 32% (n = 160) and 66% (n = 120) of pitfall traps 

respectively (Table 3.4). 
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Figure 3.3. The relative percent abundance (± SE) of ant species colonies and number of 
colonies per 50m (± SE) located within coarse woody debris in five serai ages in the sub-
boreal moist-cool, variant 2 (SBSmc2)(Meidinger and Pojar 1991) forests of west-central 
BC. 
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Although most species peaked in colony abundance in the 13-15 yr post-harvest sites 

(Figure 3.3), F. neorufibarbis did not. This species was present in the 2-3 yr post-harvest 

plots (0.06 colonies/50m2), became more common in the 8-10 yr post-harvest plots (0.86 

colonies/50m2), but then declined in abundance in the 13-15 yr post-harvest plots (0.27 

colonies/50m ), which was a time when the four other common species were increasing in 

abundance. Colony abundance remained at similar numbers in 23-25 yr post-harvest sites 

(0.31 colonies/50m ) and then this species also disappeared in the non-harvested sites. Mini-

Winkler captures also declined between 8-10 and 13-15 yr post-harvest sites withF. 

neorufibarbis present in 11% (n = 80) and 3% (n = 60) of samples, respectively (Table 3.5). 

Pitfall captures, however, did not decline between these serai ages. Formica neorufibarbis 

was found in 21% (n = 160) of pitfall traps in 8-10 yr post-harvest sites and 32% (n = 120) of 

pitfall traps in 13-15 yr post-harvest sites (Table 3.4). 

Overall, only a few colonies (n = 18) and species (n = 3) were located within coarse 

woody debris in the non-harvested sites. Total colony density for all ant species was 0.28 

colonies/50m2 in these sites. Only approximately 2% (n = 160) of all pitfall traps captured 

ants (Table 3.4). Mini-Winkler litter extractions were more successful with 15% (n = 80) 

yielding ants, of which all were M. alaskensis with the exception of a single discovery of L. 

muscorum (Table 3.5). 

Discussion 

NMDS and biodiversity indices 

The ant community assemblages were more homogeneous within serai age replicates 

despite the physical separation of some replicate sites by distances of approximately 115 km, 

as shown by non-metric multidimensional scaling (NMDS) (Figure 3.1). The only 
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exceptions were the 8-10 yr post-harvest and 13-15 yr post-harvest sites, where some overlap 

was evident. This latter observation may be explained as a consequence of a similar species 

assemblage differing largely in abundance, with the 13-15 yr post-harvest sites having a 

greater number of colonies (Figure 3.2). The heterogeneity that did exist within replicate 

serai ages decreased as the earliest serai age developed up to the 13-15 yr post-harvest sites, 

and then began to increase following this age (Figure 3.1). This may reflect some variation 

in how ant communities initially establish within newly available areas, compounded by low 

numbers, followed by a coalescing of community structure as most common colonizers 

arrive and establish over time. In serai ages later than 13-15 yr post-harvest, as thermal 

conditions begin to become less favourable (see below), the community begins to 

disassemble, but again, with each site following a relatively unique path. In viewing the 

NMDS figure (Figure 3.1) it is possible to interpret Axis 1 as reflecting species diversity, 

with fewer species to the right. Axis 2 may reflect a shift in species dominance, with 

Leptothorax muscorum toward the bottom and Myrmica alaskensis toward the top. 

Both Shannon's and Simpson's diversity indices, calculated from pooled serai age 

replicates, followed the same pattern with serai age despite the former being more sensitive 

to species diversity and the latter being more sensitive to evenness (Magurran 1988) (Table 

3.1). Although both the estimated total species richness, Chao2 (Table 3.1), and the density 

of ant colonies (Figure 3.2) peaked in the 13-15 yr post-harvest sites, both Shannon's (FT) 

and Simpson's (1/D) indices peaked in the 23-25 yr post-harvest sites. Despite the higher 

estimation of total species richness by Chao2, however, in 13-15 yr post-harvest sites as 

compared to the 23-25 yr post-harvest sites, the difference is not statistically significant (see 

95% CIs, Table 3.1), and an examination of the dataset suggests much greater evenness in the 

71 



23-25 yr post-harvest sites. This is likely weighting both diversity indices toward a higher 

value in the 23-25 yr post-harvest sites. 

Overall patterns of succession 

The process of ecological succession has been the subject of active research for over 

100 years. Initially, Gleason (1917) and Clements (1916) defined two competing views of 

this process, with Gleason's "Individualistic Hypothesis" becoming generally supported as 

environmental data became available (McCook 1994; Cook 1996). This hypothesis, now 

theory, suggests that succession is simply a process in which individual species respond (via 

presence or absence) to the prevailing abiotic site conditions. Since then, various 

modifications to the Individualistic Hypothesis have been proposed but the most influential 

have emphasized the varying roles of life history strategies (Drury and Nisbet 1973), species 

interactions (Connell and Slayter 1977) and evolved environmental tolerances (Pickett 1976). 

The overall pattern of ant community succession seen in this study is consistent with the 

Individualistic Hypothesis of Gleason (1917). Given the depauperate ant community present 

in the non-harvested sites of this study, the damage to soil and woody debris during 

harvesting (Higgins and Lindgren 2006), and the tendency of mated queens to select open 

areas for nest founding (Wilson and Hunt 1966, see Chapter 4), it is likely that ants found in 

early serai ages (i.e., 2-3 yr post-harvest) have arrived through queen dispersal from source 

areas in the surrounding landscape, which, in this study, was a mosaic of managed forest of 

varying serai age. 

It has been argued that most species that come to define later serai stages arrive early 

(Drury and Nisbet 1973). Of the 5 most common species of ants identified in this study, 4 

(C. herculeanus, M. alaskensis, L. muscorum and F. neorufibarbis) were located in the 2-3 yr 
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post-harvest sites. Only F. aserva may have required some facilitation (Connell and Slayter 

1977), to establish, as it is likely dependent upon ants of the species group Formica fusca 

(e.g., F. neorufibarbis) to exploit for nest founding (Francoeur 1983) (see below). 

As additional ant species were mostly rare, it is possible that either their densities in 

the 2-3 yr post-harvest sites were too low for detection or their arrival required dispersal from 

more distant sites, delaying their appearance. Rates of arthropod colonization have been 

shown to decline with distance from a source, especially for ants (Simberloff and Wilson 

1969). The current managed landscape with forests of differential serai ages, however, is 

likely more amenable to ant dispersal and colonization than the pre-anthropogenic landscape 

(DeLong and Tanner 1996), especially in the cool-moist forests of this study which had a 

mean fire return interval of 133 years (95% CI: 113-160 yr) (Steventon 2002). Closely 

packed and interconnected cutblocks would be expected to increase suitable habitat patches 

for the thermophilic ants (Holldobler and Wilson 1990), while reducing relatively 

inhospitable matrix (non-harvested forest) in the landscape. It should be noted, however, that 

this landscape would not have been so fragmented when the 23-25 yr post-harvest plots 

examined in this study were initially harvested. As a consequence, it is possible that the 

lower ant densities noted for these sites may have been influenced by a lower rate of initial 

colonization. Having said that, these sites were still likely close to anthropogenically opened 

landscape near local lumber mills, towns and ranches. 

This initial community, through succession, would then have been shaped by the 

individual life history strategies (e.g., colony life cycles, colony sizes) (Gleason 1917, Drury 

and Nisbet 1973) and the evolved environmental tolerances of each species (Pickett 1976). 

The attribute most likely to play a critical role in shaping the community structure by 
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interacting with life history strategies and evolved tolerances is temperature although other 

factors such as available prey cannot be conclusively discounted. Daily mean site litter 

temperatures (to which foraging ants would be exposed), between June and August, were 

highest in the earliest serai age (2-3 yr post-harvest) at approximately 14 °C and then steadily 

declined by approximately 1 °C with each later serai age (Table 3.2). This pattern was even 

more evident for daily mean litter temperature amplitudes, declining by 13 °C over the 5 

serai ages (Table 3.2). For a thermophilic taxon such as ants, it is likely that each species 

will have a minimum environmental temperature threshold which will cause them to fall out 

of the community. Whether that sensitivity is greatest to mean temperatures or to 

temperature amplitudes cannot be determined here. I would argue that temperatures (means 

or amplitudes) appear to be adequate until after the 13-15 yr post-harvest serai age. 

Camponotus herculeanus (see Appendix 1 for brief species natural history) was 

present as a pioneer species in the earliest serai stages showing strong dispersal ability. 

Solitary queens were frequently encountered in these sites although they were not included in 

the final tabulated data because their success in initiating a colony could not be verified. The 

noted initial decline in relative abundance after the first serai age (i.e., 2-3 yr post-harvest) 

would appear to be a consequence of colony establishment by other species with more rapid 

colony development life history strategies (Figure 3.3). The pattern of change in absolute 

abundance (i.e., the number of colonies per 50 m2) is typical of most of the species of ants 

followed in this study, that is, a steady rise in absolute abundance, peaking in 13-15 yr post-

harvest sites followed by a decline (Figure 3.3). This pattern is most likely shaped by 

temperature, which is presumably adequate over the first three serai ages but limiting in the 

last two (Table 3.2). The incidental discovery of a single mature colony outside of the 
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sampling area at one site indicates that this species can persist in these cool forests, albeit at 

low densities. 

The fact that C. herculeanus were the most frequently captured ants in pitfall traps in 

the 13-15 and 23-25 yr post-harvest sites (Table 3.4), in spite of a decline in the absolute 

abundance of colonies may suggest that while fewer colonies are persisting in 23-25 yr post-

harvest sites, those that did were larger and foraging more widely. It is probable that 

favourable local micro-environmental conditions (e.g., arising from increased insolation 

because of a single tree blow-down, a wetland edge, or from an elevation change) may allow 

a carpenter ant colony to persist in older serai ages (i.e., 23-25 yr and older). As individual 

C. herculeanus queens can reach ages of 20 yr or more (Holldobler and Wilson 1990), it is 

possible that colonies persisting in the 23-25 yr post-harvest stands initially established in 

early serai ages. The incidental observation of a mature C. herculeanus colony in older 

stands, as noted earlier, may be a consequence of micro-environmental thermal conditions 

meeting minimum colony needs, however, it might also suggest that queen replacement is 

occurring in some colonies. Camponotus herculeanus satellite colonies (queenless colonies 

that form around the periphery of a foraging area close to resources) will occasionally accept 

a queen and become a natal colony (Akre et al. 1994). This has not been documented in natal 

colonies directly but seems plausible, especially in colonies that have recently lost their 

queen, and would explain how a colony can exist in habitats where colony founding seems 

unlikely, even 20+ years earlier. Despite this possibility, clearly the presence of C. 

herculeanus in non-harvested forests is rare, at least in the biogeoclimatic subzone where we 

did our research. 
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The absence of Formica aserva (frequently reported in the literature by its junior 

synonym F. subnuda (Bolton et al. 2006)) in the earliest serai age may be an example of 

facilitation (Connell and Slayter 1977) modifying the Individualistic Hypothesis of 

succession. This species is a facultative slave taker (Francoeur 1983), usually initiating 

colonies as a parasite of a F. fusca species-group colony. Formica aserva queens typically 

initiate a colony by entering a F. fusca species-group colony, killing the queen, and assuming 

control over the workers (Punttila 1996), a type of dependent nest founding using parasitism 

(Stille 1996). In Finnish boreal forests, it was noted that fully one third of all species of ants 

used parasitic dependent nest founding (Punttila et al. 1991). Of the five most common ant 

species in my study, only F. aserva is known to initiate nests in this manner, however. 

Formica aserva is thus likely dependent upon the establishment of a suitable slave species 

prior to colony initiation. In my study, the most common potential slave within the F. fusca 

group was F. neorufibarbis. This species was present as a pioneer species in the earliest serai 

age and likely became a host to many F. aserva queens and subsequent colonies. Formica 

neorufibarbis slaves were twice identified within F. aserva nests during the course of this 

study, whereas none of the other F. fusca species-group present (F. accreta Francoeur, F. 

argentea Wheeler, F. fusca L, F. hewitti Wheeler) were ever encountered as slaves. It should 

be noted, however, that these latter species were not common and none were identified in the 

earliest serai age. 

Another modification to the Individualistic Hypothesis, evolved environmental 

tolerances (Pickett 1976), may also be evident in affecting the presence of F. aserva in the 

ant community of these forests. Formica aserva may be more sensitive to cooler conditions 

than any of the other common ant species in this community. The decline in absolute 
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abundance was dramatic between 13-15 yr post-harvest sites and 23-25 yr post-harvest sites 

(Figure 3.3). This was also reflected in pitfall traps (Table 3.4) and mini-Winkler (Table 3.5) 

captures although the decline was not as strong. This might suggest, as with C. herculeanus, 

that a few natal nests were present in suitable micro-sites where conditions were warmer, 

while workers were more tolerant of cooler conditions and able to forage in a cooler forest. 

It was reported that the raising of brood in the natal nest of a Myrmica spp. ant was the most 

sensitive stage in colony development, and that mean temperatures of 15 °C within the nest 

were the minimum tolerated (Elmes and Wardlaw 1983). Experimental manipulation of F. 

aserva nest temperatures by shading (see Chapter 5), support the hypothesis that the natal 

nest of this species is also highly temperature sensitive. 

The interaction between F. aserva and F. neorufibarbis may also explain the unusual 

pattern of abundance (relative to other species) demonstrated by F. neorufibarbis to serai 

change. The absolute abundance of F. neorufibarbis colonies increased through the first 2 

serai ages of this study (2-3 and 8-10 yr post-harvest) but were markedly reduced in third 

serai age (13-15 yr post-harvest) (Figure 3.3), a time when the abundance of the four other 

common ant species peaked. This depression in absolute abundance may arise from the nest 

founding behaviour of F. aserva described above, and subsequent slave raids by established 

F. aserva colonies (although these latter raids are considered infrequent for this species 

(Savolainen and Deslippe 2001)). Further, the absolute abundance of F. neorufibarbis 

colonies did not change between the 13-15 and 23-25 yr post-harvest sites, despite declining 

temperatures to which F. aserva appeared sensitive. This suggests that declining site 

temperature (Table 3.2) was not a likely reason for the decline in colony numbers between 8-

10 and 13-15 yr post-harvest, and that other factors such as parasitic dependent nest founding 
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by F. aserva may have been a factor. Thus, here the presence or absence of F. neorufibarbis 

may be an example of a species interaction (Connell and Slayter 1977) modifying the 

Individualistic Hypothesis of succession. 

The most abundant species in this study were Leptothorax muscorum (often reported 

in North American literature by its junior synonym L. canadensis Provancher) (Bolton et al. 

2006) and Myrmica alaskensis, both in the subfamily Myrmicinae. Both species, especially 

L. muscorum (Heinze 1993b), are physically small, do not form large colonies, and forage 

within approximately 2 m of their nest sites (Brian et al. 1965) (see Appendix 1.3). Thus, 

there is extensive space available in harvested sites for nest establishment and foraging. Both 

were pioneer species although L. muscorum was the most common in the earliest serai ages 

(2-3 yrto 13-15 yr post-harvest) (Figure 3.3). The opposite was true for M. alaskensis which 

increased in relative abundance with serai age and was the only ant regularly found in non-

harvested sites, despite a reduction in its absolute abundance in later serai ages (i.e., 23-25 yr 

post-harvest and non-harvested sites) as compared to earlier serai ages (Figure 3.3). The 

presence of Myrmica spp. ants in the oldest forests of both Fennoscandia (Punttila et al. 1991, 

1994) and Russia was noted (Dulsskii and Putyatina 2004). In both of these cases, it was not 

the only ant species capable of living in this habitat, however. Similarly, it was noted that 

Myrmica spp. ants were the most common ants in the oldest lichen-spruce forests of Quebec 

(Lafleur et al. 2006), and M. alaskensis was identified near the treeline in northern Canada 

(Francoeur 1983). Thus, Myrmica spp. ants, and M. alaskensis specifically, appear to be 

particularly cold tolerant. Despite this, M. alaskensis was still rare in non-harvested forests 

where daily mean litter temperatures were below 10 °C (Table 3.2), and on one occasion its 

presence was clearly associated with a small gap in the non-harvested forest canopy. 

78 



Overall, daily mean litter summer temperatures at or above 11 °C appear necessary for most 

species of ants in the sub-boreal forests of west-central British Columbia. 

The paucity of soil- and litter-nesting ants 

Throughout this study, no ant colonies were discovered directly in the soil. While 

gross examination of the soil and litter did not reveal obvious ant colonies (e.g., thatched 

mounds, soil crater nests, or nests under rocks), one species that may have been missed in 

this habitat was Myrmica fracticornis. This species was never discovered within CWD, yet it 

was captured in pitfall traps (Table 3.4) and mini-Winkler litter samples (Table 3.5) 

relatively frequently. This suggests that this ant is not associated with CWD, at least not 

within the size parameters defined in this study (i.e., >10 cm large end diameter). One study, 

near Prince George, BC, did record this species in very rotten wood with a mean diameter of 

4-8 cm, a size class not examined in my study (Lindgren and Maclsaac 2002). Myrmica 

fracticornis (often described in the literature by junior synonym, M. detritinodis Emery)was 

identified nesting in CWD (size was not defined) in the southern lichen-spruce forests of 

Quebec, but this was an infrequent nesting site as compared to non-CWD locations (e.g., 

under lichen, moss, fine litter, etc.) (Lafleur et al. 2006). In this latter study, a negative 

relationship between CWD percentage ground cover and the presence of M. detritinodis was 

noted. 

The rare capture (twice in eighty samples in 8-10 yr post-harvest sites) of more than a 

dozen of L. muscorum workers, with a queen in some mini-Winkler litter extractions, does 

suggest that this small ant (body length <5 mm), with colonies consisting of a few dozen 

workers (Heinze 1993a), was possibly nesting in fine woody debris, litter, or soil. These 

cannot be confirmed as colonies, however, as queens were frequently captured (e.g., eight 
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times in 80 samples in the 8-10 yr post-harvest sites) in the mini-Winkler litter extractions 

without workers. Consequently, the association between the queens and workers within the 

0.5m2 samples may be a coincidence. This species was associated with woody debris in 80% 

of identifications in one study (Lindgren and Maclsaac 2002), while others found this species 

to be entirely woody debris associated (Beique and Francoeur 1968; Lafleur et al. 2006). 

Work in recently clearcut and non-harvested forests along the central coast of Oregon, was 

unable to locate any soil or litter nesting ants (Nielsen 1986). All ant species discoveries 

were in wood. In central BC, near Prince George, where conditions are warmer and drier 

than those typical of forests in this study, it was reported that 12 of 19 species were woody 

debris associated (Lindgren and Maclsaac 2002). Overall, it seems likely that the large 

majority of the ant species are associated with CWD in the sub-boreal forests of west-central 

BC. 

Relationships to other communities 

A total of 39 species of ants were identified when sampling broadly over the boreal 

forest ecosystems of Quebec (Francoeur 2001). Given this, the 17 species (Table 3.3) we 

found in a single biogeoclimatic zone and sub-zone (sub-boreal spruce, moist cold, variant 2) 

(Meidinger and Pojar 1991) would appear to be unexceptional. Our results are also similar to 

a study in the southern lichen-spruce forests of Quebec where 13 species were identified 

(Lafleur et al. 2006). Further, studies in Finnish taiga (Punttila et al. 1994), and in old-

growth Russian forests (Dulsskii and Putyatina 2004), both identified 19 species of ants. 

In particular, the most common ant species identified in our study appears to be 

similar to fauna found in North American habitats known to be climatically marginal for 

ants. The 5 most common species identified (Leptothorax muscorum, Myrmica alaskensis, 
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Camponotus herculeanus, Formica neorufibarbis and Formica aserva) were all included 

within the 6 species found near the tree-line of Quebec (Francoeur 1983). Of 4 species of 

ants identified near Churchill, Manitoba, three (L. muscorum, F. neorufibarbis, and C. 

herculeanus) belonged to the 5 most common species of this study (Gregg 1972). The fourth 

species reported was Myrmica brevinodis Emery (a junior synonym of M. incompleta 

(Provancher) (Bolton et al. 2006) was also found in this study. Finally, in a study of ant 

pollination in the alpine tundra of Colorado, only two species, F. neorufibarbis and L. 

muscorum, were identified, both of which were common in our study (Petersen 1977). 

Although most species reported in these studies of climatically marginal habitat 

(Francoeur 1983, Gregg 1972, Petersen 1977) were also found in our study, their species lists 

did not correspond to the most climatically challenging habitat of our work, non-harvested 

forest, where few ants were recorded (Figure 3.3). These cited studies all report finding L. 

muscorum and F. neorufibarbis, whereas in our study, only 1 colony of L. muscorum and no 

colonies of F. neorufibarbis were found in coarse woody debris (CWD) in non-harvested 

forests. These species did appear, albeit rarely, in pitfall traps (0.6% of pitfalls for both 

species) (Table 3.4) and mini-Winkler samples (1.25% of mini-Winkler samples for L. 

muscorum but no captures of F. neorufibarbis) (Table 3.5) in non-harvested forests, however, 

indicating that they do persist at very low densities. Soil temperatures may offer an 

explanation for these disparities. It is possible that the alpine tundra (Petersen 1977), and 

more open forests at or near the tree-line (Francoeur 1983, Gregg 1972) allowed for greater 

insolation and higher temperatures in the soil than existed within the closed canopy of non-

harvested plots of this study (Table 3.2). Unfortunately, soil temperatures were not recorded 

in either of these studies. Working above 1000 masl in the Czech Republic, however, it was 
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demonstrated that insolative heating of the soil was greater where living vegetative biomass 

was lower (Tesar et al. 2008). 

Although Canadian studies equivalent to this project are lacking, there have been 

several studies examining changes in the ant fauna of Fennoscandia with serai age 

(Savolainen et al. 1989; Punttila et al. 1991; Punttila et al. 1994; Seppa et al. 1995; Punttila 

1996; Punttila and Haila 1996). The pattern of increasing ant colony abundance followed by 

a decline as seen in our study (Figure 3.3) was also noted (Punttila et al. 1991). 

Fennoscandian forests, however, appear to differ from the forests in this study in at least two 

ways. 

First, as noted above, it is immediately apparent upon examination of the ant fauna in 

our study that most species are nesting in wood. Coarse woody debris offers many 

advantages over soil-nesting in cool climates, especially in post-harvest sites where the water 

table is commonly elevated (Sun et al. 2001). Coarse woody debris has a low specific heat 

(1.23 kJ"1 kg"1 C"1 at 25 °C (Wenzl 1963)), which should allow it to gain heat quickly through 

insolation and then hold some of that heat through the night as a consequence of its mass. 

The material itself offers extensive nesting opportunities and allows a colony to move brood 

internally to maximize heat opportunities. It also elevates the colony above both the ground 

which, as noted above, is often wet (Ballard 2000; Sun et al. 2001), and low vegetation such 

as grass. 

This relationship between ants and CWD is not evident in Fennoscandia where a 

special publication comprehensively reviewing the ecology of woody debris rarely 

mentioned ants (Jonsson and Kruys 2001). Post-harvest CWD volumes in Fennoscandia, 

however, have been reported as much lower than is typical for managed Canadian forests. 
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Volumes in Sweden were reported on average at only 6.1 m3 ha"1 (Fridman and Walheim 

2000) as compared to our study, in which 8-10 year post-harvest sites had an average volume 

of 119.9 m3 ha"1. Such volumes are fairly typical for stands in BC (Lofroth 1998). Thus low 

volumes of CWD in Fennoscandian forests may be one part of the explanation for the lack of 

use of wood by ants. 

The second notable difference between the ant community in this study and those 

reported from Fennoscandian forests was the domination of mature forest sites by thatching 

ants of the Formica rufa species-group (Savolainen et al. 1989). These species are relatively 

large (typically >8 mm), abundant and capable of monopolizing resources through aggression 

(Savolainen et al. 1989). Although thatching ants of the F. rufa group (e.g., F. obscuripes, F. 

planipilis) are present in the drier and warmer forests in BC, they were not present in the 

forests examined in our study. Soil moisture may also be a factor here. The focal sites for 

our study were located within a moist biogeoclimatic subzone (Meidinger and Pojar 1991) as 

this was the most common biogeoclimatic subzone in this region. Further, clearcut 

harvesting has been documented to lead to a rise in soil moisture (Ballard 2000, Elliot et al. 

1998). Moist soil, especially in a cool, late serai forest can act as a heat sink for colonies 

initiating in or near the soil, thus removing soil-dependent species from the community. 

The paucity of thatching F. rufa group ants in some North American forests has been 

noted and several hypotheses have been suggested to explain this observation (Jurgensen et 

al. 2005). Among these are temperature, moisture, disturbance frequency, bear predation and 

competition from carpenter ants. Data on thatching nest densities in forests where they do 

occur in BC are lacking although anecdotal observations of their abundances suggest they 

may only reach densities that are typical for Fennoscandian forests under infrequent 
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circumstances (Mclver et al. 1997; Lindgren, unpublished data). They are certainly found in 

disturbed areas where bear predation is common and carpenter ants are present, although 

their interactions with the latter may merit closer examination. Tentatively, this suggests that 

moisture and temperature, especially in the soil, may be central in explaining their relative 

absence in British Columbian sub-boreal forests. Still, this is not entirely satisfactory and 

further investigation is warranted to answer this question. In particular, the interaction of 

moisture with temperature needs much more attention. 

The primary Formica spp. wood-nesting ant filling the general niche of thatching ants 

in our study was F. aserva. This species disappeared relatively early during serai 

advancement, however, presumably as a consequence of poor tolerance to declining 

temperatures, as noted earlier (also see Chapter 5). This leaves C. herculeanus as the only 

large, territorial and aggressive ant in these sub-boreal forests. Camponotus herculeanus 

does not appear capable of thriving in non-harvested sites either (Figure 3.3), however, 

leaving this niche mostly vacant. Thus, non-harvested forests in this cool region are largely 

devoid of ants with only the occasional colony of M. alaskensis or L. muscorum exploiting 

scattered suitable microsites. 

Summary 

Ant communities appear to thrive in the early serai ages created in the managed forest 

landscapes of the sub-boreal forests of west-central British Columbia. The ant communities 

are well defined by serai age and appear to show a predictable pattern of development, likely 

constrained by temperature as stands regenerate and closing canopies restrict insolation to the 

forest floor. Each species of ant has unique life history strategies and environmental 

tolerances that shape the overall ant community at each serai age. While large bodied and 
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aggressive ants such as F. aserva and C. herculeanus develop through early serai ages, as 

evidenced by pitfall trap captures, the most common colonies are small-bodied, small colony 

species such as L. muscorum and M. alaskensis. Only M. alaskensis appears marginally 

tolerant of the cold and moist conditions typical of non-harvested sites. This genus of ant has 

been documented as tolerant of similar cool forests in Quebec, Fennoscandia and Russia. 

We were unable to conclusively document any soil or litter nesting species in this 

study, unlike equivalent forests in Fennoscandia. The reason for this is still uncertain but the 

near absence of woody debris as a nesting alternative in Fennoscandian forests, and the cool 

temperatures and high soil moisture of forests in west-central BC may be factors. The use of 

coarse woody debris by most species of ants in this study is a defining characteristic of this 

fauna and is probably most advantageous as a mechanism to avoid nesting in soil. Overall 

the ant communities of these forests must confront a temperature limited environment and 

life history strategies must adapt to maximizing heat gain and avoiding heat loss. 
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Chapter 4. Critical habitat elements, with an emphasis on coarse woody debris, 

associated with ant presence or absence in the moist cold sub-boreal forests of the 

interior of British Columbia1 

Abstract 

Given both the ubiquity and ecological roles described for ants in British Columbia, 

an understanding of the habitat elements critical to predicting their presence is desirable. We 

used logistic regression to model the presence or absence of ants in sub-boreal lodgepole pine 

forests of west-central British Columbia. Methodological emphasis was placed on the 

association between ants and coarse woody debris (CWD) because of a high degree of 

utilization of this resource for nesting. Five species of ants, Camponotus herculeanus, 

Formica aserva, F. neorufibarbis, Leptothorax muscorum, and Myrmica alaskensis, 

comprised approximately 90% of all captures in samples of CWD within five serai ages (2-3, 

8-10, 13-15, 23-25 yr post-harvest, and non-harvested stands). Serai age, presence of other 

ant colonies of the same species, decay class of CWD, its surface area, and whether the wood 

was downed woody debris or a stump, were significant variables affecting ant presence or 

absence, as determined from logistic regression models. There was a 28% increase in the 

odds of locating an ant colony in woody debris for every 1 m2 increase in surface area. All 

species had an increased likelihood of being found within a 50-m2 sample if other colonies of 

the same species were present. In addition, where species showed a significant response, 

there was positive selection for older decay classes, and the utilization of stumps as 

compared to downed woody debris. These results are explained in the context of ant species 

autecology as it relates to living in cool climates. 

1 First person plural is used throughout this chapter to reflect the contributions of others to both research design 
and field work. 
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Introduction 

Predicting the presence or absence of species within their geographic range has been 

of interest to biologists for many years (Steinitz et al. 2005; Vojta 2005). In particular, 

presence-absence models are important to conservation biologists attempting to define 

critical habitat elements necessary for species protection (MacKenzie 2005; Littlewood and 

Young 2008) and increasingly, to identify habitats that may be open to the introduction of 

invasive species (Worner and Gervey 2006; Watts and Worner 2008). Such models are also 

of use to ecologists attempting to define the ecological niche of poorly understood species or 

species assemblages. 

Despite the ubiquity of ants in Canadian forests, and their linkage to many ecosystem 

processes (Gorn et al. 2000; Nkem 2000; Risch et al. 2005), there has been no attempt to 

define necessary habitat requirements through presence-absence modelling. Ecological work 

on the boreal ant fauna in Fennoscandia has been more extensive, but has been largely 

focused on ecological factors shaping community structure. For example, changes in ant 

community structure with serai advancement, has been described (Punttila et al.1991; 

Punttila et al. 1994; Punttila and Haila 1996), as well as adaptations to enhance ant survival 

in cool coniferous forests (Seppa et al. 1995; Punttila 1996). The effects of intra-taxon 

competition on community structure has also been investigated (Savolainen et al. 1989; 

Punttila et al. 1996). Unfortunately, no direct consideration has been given to what elements 

in the habitat are required for the ant community itself. 

The current inability to define the critical habitat elements required by ants in 

Canadian forests is concerning because of the many documented roles that ants are known to 

play in other ecosystems. In addition to pest control (Finnegan 1974; Torgersen and Mason 

1987; Way and Khoo 1992), these include soil-nutrient turnover (Wagner et al. 1997), seed 
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dispersal (Heithaus 1981; Gorn et al. 2000), grain consumption (Brown et al. 1979), and 

decomposition of organic material (Haines 1978). Ants have also been found to be an 

important food source for birds (Torgersen and Bull 1995) and large omnivorous vertebrates 

such as black (Noyce et al. 1997) and grizzly bears (Elgmork and Unander 1999; Swenson et 

al. 1999). 

A dependence of ants upon coarse woody debris (CWD) was emphasized by one 

study that identified 12 of 19 species near Prince George, in central British Columbia, using 

woody debris as a nesting medium (Lindgren and Maclsaac 2002). This apparent high rate 

of use makes this habitat element a prime candidate for closer examination to better define 

this association. The purpose of this study is to identify the critical habitat elements, with 

emphasis upon coarse woody debris (CWD), here separated into stumps and downed woody 

debris (DWD), that affect ant presence-absence in moist-cold sub-boreal lodgepole pine 

(Pinus contorta Dougl. var. latifolia Engelm) forests of the west-central interior of British 

Columbia. 

Methods 

We used records obtained from Houston Forest Products (West Fraser Mills Ltd., 

Houston, British Columbia), to identify non-harvested and post-harvested sites (serai ages: 2-

3, 8-10, 13-15, 23-25 years) in lodgepole pine-leading stands within the sub-boreal spruce 

(SBS) biogeoclimatic zone and moist-cold (SBSmc) subzone (Meidinger and Pojar 1991). 

More specific site information and methodologies for sampling ants in woody debris, 

monitoring site temperatures, and identifying ant species are provided in the Methods section 

for Chapter 3. 
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We used logistic regression to relate site variables to ant presence or absence. After 

assessing for correlations, model variables were identified by backwards stepwise logistic 

regression using STATA (Proc logit) (STATA 9.2 ©1985-2007), as no earlier studies existed 

to allow for a priori selection of potential model variables. Initial categorical variables 

included: nesting location (downed woody debris or stumps); serai age class (Note: serai age 

class (1-5) was chosen over mean site temperature for modelling because of concern that the 

use of temperature would give the appearance of a continuous variable, when, in fact, the 

data would consist of only a single temperature parameter characterizing the serai age. 

Temperature data were not collected for each piece of woody debris), and decay class. Initial 

continuous variables included: large end diameter; length (height in stumps); piece surface 

area; surface area of all woody debris within 50-m2 sample; percentage bark; number of 

colonies of the same species of ant within same piece of wood; number of colonies of same 

species of ant within 50-m2 sample; number of colonies of other species of ant within the 

same piece of wood; number of colonies of other species of ant within the 50-m2 sample. 

Where correlations exceeded 0.5 only one parameter was chosen for inclusion in the initial 

model. In addition, we dropped specific categorical classes if that class contained less than 

four data to avoid quasi-complete separation (Tables 4.1 and 4.2) (Menard 2002). Only 

parameters for which the P-value was <0.05, were maintained in the final model. A post-hoc 

analysis for co-linearity was performed on the final model parameters to ensure no values 

were <0.2. We assessed the accuracy of each final model by its Receiver Operating 

Characteristic (ROC) area under the curve (AUC) score following Swets (1988), given that 

the sampling methodology would be expected to have a high accuracy in measuring 

presence/absence. 
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Table 4.1. Number of colonies of five species of ants identified as nesting within five decay 
classes of coarse woody debris (following Maser et al. 1979). Sampling occurred across five 
serai ages of sub-boreal forest in west-central British Columbia from 2003-2005. Note: 
thirty-five pieces of CWD were lacking decay class data. 

Ant species Decay Class 

1 2 3 4 5 

Camponotus 
herculeanus 

Formica 
aserva 

Formica 
neorufibarbis 

Leptothorax 
muscorum 

Myrmica 
alaskensis 

absent 
present 

absent 
present 

absent 
present 

absent 
present 

absent 
present 

31 
0 

31 
0 

31 
0 

31 
0 

31 
0 

1268 
20 

1260 
18 

1248 
30 

1018 
260 

1182 
96 

815 
32 

815 
32 

826 
21 

687 
160 

699 
148 

192 
7 

194 
5 

192 
7 

183 
16 

152 
47 

8 
0 

8 
0 

7 
1 

7 
1 

6 
2 
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Table 4.2. Number of colonies of five species of ants identified as nesting within coarse 
woody debris across five serai ages of sub-boreal forest in west-central British Columbia 
from 2003-2005. 

Ant species Serai Age (yr) 

2-3 8-10 13-15 23-25 Non-
harvested 

Camponotus 
herculeanus 

Formica 
aserva 

Formica 
neorufibarbis 

Leptothorax 
muscorum 

Myrmica 
alaskensis 

absent 
present 

absent 
present 

absent 
present 

absent 
present 

absent 
present 

467 
6 

473 
0 

470 
3 

456 
17 

467 
6 

736 
20 

730 
26 

709 
47 

537 
219 

687 
69 

545 
24 

540 
29 

566 
3 

387 
182 

434 
135 

277 
13 

301 
1 

292 
10 

277 
25 

228 
74 

298 
0 

298 
0 

298 
0 

297 
1 

283 
15 
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Results 

In total, 14 species of ants were identified from the CWD sampling in this study (see 

Chapter 3, Table 3.3). Of these, five species (Camponotus herculeanus (L.), Formica aserva 

Forel, F. neorufibarbis Emery, Leptothorax muscorum (Nylander), and Myrmica alaskensis 

Wheeler) (see Appendix III for basic information relating to the natural history of these 

species) represented greater than 90% of all identifications. As a consequence, these species 

will be the focus of the results and discussion reported here. 

The highest mean daily soil temperatures were recorded in the earliest serai age (2-3 

yr post-harvest) with temperatures just over 14 °C (See Chaper 3, Table 3.2). Litter 

temperatures declined steadily with serai age and were below 10 °C in non-harvested plots. 

Daily mean amplitudes also dropped with increasing serai age. Mean amplitudes in 2-3 yr 

post-harvest plots were just under 18 °C although the standard error (8.5 °C) is high for these 

plots as one plot datalogger failed, reducing the number of plots providing data to two. A 

datalogger failure also occurred in one non-harvested plot where mean daily amplitudes were 

recorded below 5 °C from the two remaining plots. 

Assessment of the models developed for each of the five most common species as 

well as for all five species collectively, by their ROC AUC score, indicates that the models 

reliability can be considered as "confident" (ROC AUC score between 0.75 and 0.9 (Table 

4.3) except for the F. neorufibarbis model which had a ROC score of 0.72 (Swets 1988). 

Several patterns across species were evident from the logistic regression models 

(Table 4.3). The first was the strong response to serai age. Ant colonies (all species pooled) 

were more common in serai ages 8-10, 13-15 and 23-25 yr post-harvest, with the greatest 

abundance in 13-15 yr post-harvest plots (P = 1.63, P < 0.001) (Table 4.3). Colonies were 

least abundant in both 2-3 yr post-harvest plots (P = -1.48, P < 0.001) and non-harvested 
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plots (P = -1.93, P < 0.001). Only a total of 16 colonies of ants representing two species 

were identified in non-harvested plots (Table 4.2). The extent to which each species 

increased or decreased in colony numbers varied with each serai change although most, F. 

neorufibarbis excepted, followed the pattern noted above (Table 4.3). 

The second significant pattern was the relationship between the presence of other 

colonies of the same species within the 50 m2 sample in which the colony was identified. 

The odds of finding a member of a particular species always increased if other members of 

that species were present within the sample. This varied from a weak response for L. 

muscorum, which showed a 19% (i.e., a odds ratio of 1.19) increase (P < 0.001) in the odds 

of finding this species for each colony already located, to over 300% for F. aserva (P < 

0.001) (Table 4.3). 

This pattern was reversed for two species (C. herculeanus and F. aserva) when 

considering the presence of other species within the 50 m2 sampling unit. There was a weak 

5% reduction in the odds of finding C. herculeanus for each colony of another species 

identified but a stronger 59% reduction for F. aserva. When the spatial scale was reduced to 

the same piece of wood, three species, F. aserva, L. muscorum, and M. alaskensis, showed a 

decrease in the odds of their presence with each identification of another species. For 

example, there were 34% lower odds (P = 0.002) of finding a colony of M. alaskensis in a 

piece of wood for each colony of another species also located in that wood (Table 4.3). 

Three species (C. herculeanus, L. muscorum, F. aserva) responded positively to 

pieces of wood with a larger surface area. There was a 120% increase in the odds of finding 

C. herculeanus in pieces of wood with each increase in surface area of l m 2 ( P < 0.001) and 
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a 108% increase fori7, aserva {P = 0.008) (Table 4.3). Finally, two species (F. aserva, M. 

alaskensis) were both more likely to be found in stumps than in downed woody debris and 

found in wood of decay class 3 or 4 as compared to decay class 2, despite the abundance of 

wood in decay class 2 (Figure 4.1). Only one parameter that was included in the initial full 

models failed to show significance (P < 0.05) for any species. This was the number of 

colonies of the same species within the same piece of wood. 

Discussion 

The major objective of this study was to determine what environmental attributes, 

with an emphasis on woody debris, were significant in determining ant presence or absence. 

Accurate modelling of presence-absence has traditionally been considered difficult because 

of uncertainty in the veracity of absence data (Vojta 2005, Kery and Schmidt 2008), 

especially when modelling highly mobile vertebrate distributions. The solution has 

traditionally been to resample habitat to develop probabilities of absence (Mackenzie 2005). 

In the case of social insects such as ants, however, the ability to locate and accurately identify 

largely stationary colonies (Holldobler and Wilson 1990), especially when they are nesting in 

a readily identifiable substrate such as coarse woody debris, should reduce the risk associated 

with single sampling methodologies and make dichotomous modeling techniques such as 

logistic regression appropriate. 

A strong feature emerging from the regressions (Table 4.3), which has been extensively 

discussed in Chapter 3, is the effect of serai age on three of the five common species in this 

study. Formica neorufibarbis and F. aserva will be discussed later as they are the exceptions 

here, possibly because of their interdependence. We consider serai age as a proxy for 
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Figure 4.1. The mean relative distribution of decay classes (following Maser et al. 1979) in 
50m samples for coarse woody debris and stumps from 5 serai ages in the moist cold sub-
boreal (SBSmc2) forests of the west-central interior of British Columbia. Samples collected 
from 2003-2005. 
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temperature (see Chapter 5) through the decreased insolation associated with a developing 

forest canopy, and consider it one of the most important variables affecting the presence or 

absence of ants in these forests. Ant communities, overall, build through the first three serai 

ages (Table 4.2) where litter temperatures between June and August had means ranging from 

approximately 14 to 12 °C. As serai age progressed beyond this, the ant community began to 

decline. Non-harvested sites, where mean daily temperatures between June and August were 

below 10 °C, hosted virtually no ant colonies, suggesting that temperature appears to be the 

most powerful force shaping overall ant presence or absence. See Chapter 3 for a more 

complete discussion of this subject. 

Models were limited on occasion by complete or quasi-complete separation of data, 

that is, the complete or near absence of ants in specific serai ages (Table 4.2), which 

confounds logistic analysis, requiring that some serai ages be dropped for some species 

(Menard 2002). For example, F. aserva was completely absent in 2-3 yr post-harvest sites, 

increasingly common until reaching 13-15 yr post-harvest sites and then reduced to only 1 

record in 23-25 yr post-harvest sites (Table 4.2). Despite the rise and sudden decline with 

serai age, these comparisons had to be dropped from the models, making it appear serai age 

was not an important variable for this species. Subjectively, however, when considering all 

evidence, one can deduce that 2-3 yr post-harvest plots are devoid of this species due to 

insufficient time for colony founding, whereas approaching 23-35 yr, canopy closure has led 

to insufficient temperatures to sustain colonies of this highly thermophilic species. Hence, in 

cool sub-boreal forests, F. aserva is restricted to older severely disturbed areas, occurring 

only after canopy removal. 
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The second feature shared across all species was the increase in the odds of finding a 

9 

given species of ant if a colony of that same species has already been located within its 50 m 

sampling unit (i.e., there is clustering). One possible explanation for this is that four of the 

five common species of ants in this study are known to be polygynous (i.e., colonies contain 

multiple queens). Polygyny has been documented in F. aserva (Savolainen and Seppa 1996), 

F. neorufibarbis (Francoeur 1983; Billeck 2001, 2003), and is considered a general 

characteristic of Myrmica spp. (Elmes and Keller 1993), and Leptothorax spp. ants (Heinze 

1993b, Heinze et al. 1996). Species displaying this characteristic often, but not exclusively, 

reproduce through colony budding. Budding is a type of dependent nest founding (Stille 

1996), in which one or more newly mated queens, with workers, disperse by walking from 

their natal nest to a new nesting site (Heinz 1993b; Punttila et al. 1994). 

Polygyny may arise when the dispersal of solitary queens is associated with a high 

mortality risk, as is reported for cool climates (Rosengren et al. 1993). Solitary ants of 

Leptothorax spp. were shown to have a lower survival rate through the winter than those 

clustered in groups of 50 (Heinze et al. 1996). An as yet undescribed species of Leptothorax 

in eastern Canada {Leptothorax sp. A), in which many virgin queens were wingless, making 

colony foundation through budding obligatory, has been described (Heinze 1993b). 

Polygyny and subsequent budding would reduce the risk of colony extinction and allow the 

species employing this strategy to begin to spread within isolated suitable patches. It is 

important to note, however, that while budding is a dispersal option for many species of 

polygynous ants, it is unlikely to be exclusive, and dispersal by flight is also utilized (Cherix 

etal. 1991). 
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Finding additional colonies of C. herculeanus was also improved when other colonies 

were located (Table 4.3) despite the fact that this species is monogynous (Heinze and 

Holldobler 1994) except in rare circumstances (Akre et al. 1994). It is common, however, 

for this species to establish satellite colonies in which larvae and pupae may be raised, 

making it difficult to distinguish natal from satellite nests and giving the appearance of 

multiple colonies (Hansen and Klotz 2005). This form of polydomy may yield similar 

benefits to polygyny. It is also possible that as the forest matures, certain satellite nests may 

find themselves in thermally more suitable locations and the colony could shift the natal nest 

to that location. This has not been documented, although satellite nests of C. herculeanus 

have been shown to accept new queens and becoming natal in this manner (Akre et al. 1994). 

Although polygyny has been documented for F. aserva, the degree of polygyny is 

weak. An analysis of genetic relatedness within nests of this species in Alberta, adjusted for 

rates of multiple mating typical of its species-group, suggested an average of 1.3 queens per 

colony (Savolainen and Seppa 1996). Field observations reported by the same authors were 

consistent with this finding. Clustering, while it may be promoted by weak polygyny, likely 

also relates to the parasitic dependent nest founding behaviour which is believed to be 

common within the F. sanguinea species-group to which F. aserva belongs (Holldobler and 

Wilson 1990; Mori and Moli 1998). Newly mated queens of this species-group have been 

observed to initiate a colony by entering nests of ants within the F. fusca species-group, 

killing the resident queen, and taking over the existing foreign colony, especially incipient 

colonies. Formica neorufibarbis is a member of the F. fusca species-group and is the most 

likely host species for this form of parasitic dependent nest founding in this study area. As F. 

neorufibarbis is polygynous, its distribution through budding may then shape the initial 
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distribution of F. aserva, explaining the clustering illustrated in the regression model (Table 

4.3). Thus, it is most likely that the inclusion of the model parameter relating to the positive 

effect of the presence of the same species is an indicator of polygyny, polydomy, and/or 

parasitic dependent nest founding based on a polygynous host species. 

Although polygynous and polydomous colony expansions may be a common mode of 

colony spread in boreal forests, queen flights into new habitat is also common (Cherix et al. 

1991; Heinze 1993b; Punttila 1996) and the regression models may provide some 

information about habitat selection. Habitat selection during such flights has been little 

studied because of the difficulties in exactly anticipating the timing of mating flights and 

following queens as they disperse. In one rare study conducted in the eastern United States, 

it was determined that queens of the species Lasius neoniger Emery and Solenopsis molesta 

(Say) were usually capable of avoiding unsuitable habitat at the landscape element level (i.e., 

forest vs. meadow in this study) during their mating flights (Wilson and Hunt 1966). Of the 

thousands of mated L. neoniger queens observed in their study, only three were later found in 

the forest, leading to the hypothesis that a form of coarse- and fine-filter was used during the 

nuptial flight. It was suggested that queens landed randomly within a suitable landscape 

element (e.g., meadow), but once on the ground queens had to locate the best nesting site 

within a few meters or increase the risk of predation if they travelled any greater distance. 

At the coarse scale of landscape elements, solitary queens were never located in non-

harvested stands but were frequently recorded in early serai ages (e.g., no Camponotus 

queens were located in strip sampling in non-harvested sites but 18 were located in the 2-3 yr 

post-harvest sites). Rare colonies of L. muscorum and M. alaskensis were located in non-

harvested stands, but only where there were either small openings in the canopy or more 
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open forest structure, indicating that some queens must disperse within this landscape 

element and possibly select such openings at an intermediate scale. At the intermediate 50 

m2 scale in post-harvest sites, odds ratios derived from wood surface area (Table 4.3) did not 

show strong selection, indicating that it either may not be an important factor or is simply the 

wrong scale for selection. 

It was notable that one parameter only weakly expressed overall was an effect of the 

presence of different species within the 50 m2 sampling unit (Table 4.3). Camponotus 

herculeanus showed slight reduction (5% odds ratio) in the probability of cohabiting with 

other species at the 50 m sampling scale and only F. aserva indicated a strong negative 

response (59% odd ratio). It would be expected that there would be reduced odds of locating 

most ant species within the same 50 m2 sampling unit of other species, if competitive 

exclusion was structuring the community as has been documented in other ant communities 

(Savolainen and Vepsalainen 1988; Cerda et al.1997; Alinvi et al. 2008). This finding, in our 

study, would suggest that allospecific competition is not a significant factor, at least not at 

this scale. We would suggest that this might arise from the transient environmental 

conditions typical in these forests. Ants have only a few years before environmental 

conditions deteriorate (i.e., after 13-15 years post harvest) and may not be able to saturate the 

environment to an extent adequate to begin to show competition. It should be noted, 

however, that exclusion was evident for three species (F. aserva, M. alaskensis, and L. 

muscorum) at the level of the wood itself. In all three cases there was a reduced odds of 

finding each species if other species were present. Thus, some competition is evident at the 

nesting scale. It is likely that most colonies establish in uncolonized wood and then repel 

allospecific arrivals. 
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The physical characteristics of wood used for nesting (i.e., size, decay class, and use 

of downed wood debris or stumps) were not strongly selected for across all species. Further, 

wood use by F. aserva may be an artifact of an initial choice by its host species, F. 

neorufibarbis, complicating interpretation (see below). In general, however, where a 

significant selection of a given physical characteristic is evident in more than one species, the 

direction of selection is consistent across other species also showing selection. For example, 

some species select for wood of greater surface area but none prefer smaller pieces, and some 

species prefer the older decay classes (i.e., decay classes 3 or 4) but none prefer younger (i.e., 

decay classes 1 or 2). In both specific cases there appears to be a clear advantage to these 

choices. Larger pieces of wood would be ideal for larger species of ants with large colonies 

and older decay classes should be easier to excavate for nesting. Some autecological factors 

may explain why some species of ants did not show a significant selection for these 

characteristics. In the case of decay class, C. herculeanus, is a strong excavator and may not 

be dependent upon softer wood for nesting. In addition, the lack of preference demonstrated 

by L. muscorum might be explained by the minute size of these ants, where workers are thin 

and typically only 2.5-3.5 mm in total length. These ants are likely able to exploit tiny 

cavities beneath the bark or cracks unavailable to other species. Leptothorax spp. are known 

to be pioneer species in boreal forests (Punttila et al. 1994) and may be adapted to exploiting 

the early decay classes available following natural disturbances. Finally, some species 

selected stumps as compared to downed woody debris. The rationale for this choice is 

unclear, although I will suggest one possible advantage to this nesting medium in Chapter 5. 

The regression model for F. neorufibarbis was notable in that, only the presence of 

other ant colonies of the same species within 50 m2 was found to be a significant model 
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parameter. This species was also exceptional in lacking a unimodal distribution across serai 

ages (Table 4.2). It is possible that the paucity of significant associations is arising from a 

relationship with F. aserva, that is altering its distribution such that parameter associations 

are conflicting pre- and post-relationship. As noted earlier, F. aserva is believed to initiate 

colonies through parasitic nest founding, using F. neorufibarbis in these forests as its most 

common host. Parasitic nest founding may explain the lack of a unimodal abundance curve 

as the peak in the F. aserva population in 13-15 yr post-harvest stands depresses the F. 

neorufibarbis population. Parasitism might also result in a change of the type of wood used 

by F. neorufibarbis, by removing this species from their initial choice and restricting them to 

wood not used by F. aserva. The significance of parasitic nest founding could be tested by 

modelling F. neorufibarbis wood choice in the earliest serai age, prior to the appearance of F. 

aserva. Unfortunately, there were few F. neorufibarbis colonies in the 2-3 yr post-harvest 

plots (Table 4.2), making it impossible to model wood choice prior to the hypothesized 

contact with F. aserva. In support of this hypothesis, however, it was noted in Finland that a 

similar relationship did result in the host species being removed from presumed optimal 

habitat and restricted to sub-optimal habitat (Puntilla 1996). 

Summary 

Coarse woody debris is clearly a vital resource for the ant community in the sub-

boreal forests of west-central British Columbia. Although ants appear to be able to utilize a 

broad range of woody debris sizes and decay classes, it is clear that large pieces are preferred 

by many species, especially those forming larger colonies (e.g., C. herculeanus and F. 

aserva). Thus the retention of larger pieces of woody debris should be a management 

objective as ants are ecologically important from a number of perspectives (e.g., as food for 
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bears (Noyce et al. 1997; Elgmork and Unander 1999; Swenson et al. 1999) and birds 

(Torgersen and Bull 1995). Although the CWD volumes encountered in our study appear 

adequate for use by the ant fauna, concerns may arise from any significant reduction in post-

harvest CWD volumes. Sweden, with much lower post-harvest volumes as compared to 

British Columbia has already identified over 500 woody debris dependent invertebrates that 

are at risk of extirpation (Jonsell et al. 1998). Desire to reduce post-harvest CWD volumes, 

to increase wood fibre availability to emerging bio-energy corporations, should be considered 

with extreme caution if we want to protect the organisms dependent upon this resource and 

the ecological processes to which they are fundamental. 
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Chapter 5. The effect of shading on persistence of ant nests in dead-wood in a sub-

boreal forest1 

Abstract 

Ants are known to be a thermophilic fauna with relatively fewer species at higher 

latitudes. They are ubiquitous in the sub-boreal forests of west-central British Columbia in 

the early serai ages of forest succession, but individual species begin to disappear at varying 

serai ages as the canopy closes and insolation declines. In an experiment, we tested for the 

persistence of 2 wood-nesting ant species in response to reduced insolation through shading 

in an environment documented to support their normal habitation. Twenty nests of each ant 

species, Leptothorax muscorum in downed woody debris (DWD) and Formica aserva in 

stumps, were randomly divided into control and treatment pairs. The treatment nests were 

shaded using vertical sheets of landscape fabric placed on three sides for a period of 

approximately 2 months. Shaded DWD had a mean temperature approximately 2 °C lower 

than control DWD while shaded stumps were approximately 1.5 °C cooler than controls. At 

the end of the experiment, we opened all wood and examined them for colonies of each 

species. A statistically significant reduction in both L. muscorum and F. aserva colonies was 

discovered in shaded wood, as compared to controls, in a pattern consistent with the manner 

in which each species has been observed to respond to advancing serai age. Temperature 

monitoring during the experiment allowed for comparison of the thermal attributes of shaded 

and control DWD, stumps, and non-shaded soil. Mean soil temperatures were lower than 

either stumps or DWD, possibly explaining the near absence of soil-nesting ant species in 

1 First person plural is used throughout this chapter to reflect the contributions of others to both research design 
and field work. 



these forests. Stumps, in both treatments, were found to have a higher mean temperature and 

lower temperature amplitude than DWD despite similar volumes. 

Introduction 

Ants (Hymenoptera: Formicidae) are considered to be a thermophilic fauna 

(Holldobler and Wilson 1990). This is evident globally as a decline in species-diversity with 

increasing latitude (Kusnezov 1957) and elevation (Sanders et al. 2007). Such a decline is 

also evident within British Columbia. In the grasslands of southern British Columbia (49 

°N), Heron (2001) identified 31 species of ants from 13 genera. In the west-central interior 

of BC (54 °N), 17 species from 6 genera have been identified (See Chapter 3). Of these 17 

species, most are present primarily in early serai sites, where insolation reaches the ground, 

and hence ground temperatures are sufficiently high. The ant fauna in non-harvested forests, 

where little insolation reaches the ground, is almost non-existent in this region (Higgins and 

Lindgren 2006). 

In a study examining a variety of hypotheses regarding the inverse relationship 

between elevation and ant species diversity, it was concluded that only temperature-related 

hypotheses were relevant (Sanders et al. 2007). Ants found at higher latitudes have 

physiological adaptations to low temperatures that are distinct from those of southern ant 

communities. They respond more quickly to small increases in temperature, under cool 

conditions, as compared to ants from lower latitudes (Elmes and Wardlaw 1983; Nielsen et 

al. 1999). This adaptation is hypothesized to exploit what little heat may be available in a 

cool climate. This same adaptation was also reported within a single species collected from 

different latitudes (Elmes et al. 1999). The rate of larval development (Kipyatkov et al. 
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2004; Kipyatkov and Lopatina 2002), as well as body and colony size, are also influenced by 

temperature (Kaspari 2005). 

In addition to physiological and anatomical adaptations, behavioural adaptations are 

also evident in temperate climates. Variations in life-history strategies, such as an increasing 

frequency of dependent nest founding (Heinze 1993a; Seppa et al. 1995) have been noted for 

boreal ants. This strategy, highly variable in its specific form, involves the establishment of 

new nests with a pre-existing supply of workers and is thought to be an adaptation to the high 

rate of mortality associated with independent nest founding by solitary queens 

(haplometrosis) (Punttila and Haila 1996). In particular, solitary queens have been shown to 

have a high rate of mortality over the first winter in boreal forests (Heinze et al. 1996). As a 

consequence, ants in temperate climates appear to be under strong forces of natural selection 

to adapt to a more challenging environment. 

The choice of nesting substrate in temperate climates is another element in which 

maximizing potential heat gain should be a priority. Northern temperate soils can be cool, 

and potentially a heat sink, especially if they are moist. Nesting under small rocks or the 

building of thatching nests are two options for optimizing the thermal environment of the 

nest. Rocks have a low specific heat (0.75 kJ kg"1 °C for average minerals) and high thermal 

conductance (Hillel 2004) and can therefore gain heat quickly from insolation, unless they 

are shaded by vegetation. Although soil has approximately the same specific heat 

(0.8 kJ kg1 °C for dry soil) (Brady and Weil 2002) as rock, the low heat conductance of soils 

arising from their porous structure (Brady and Weil 2002) make rock a much better substrate 

for heat gain. Suitable rocks for nesting may not always be available, however. 
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Thatching, another option in cool soils, is a more elaborate and dynamic nesting 

medium that ants can modify to regulate heat. The low thermal conductance (i.e., high 

insulation properties) that would be expected of loose thatch, would allow metabolic heat 

generated by the ants to remain within the nest. It was reported that thatching ants can open 

or close passageways into their nests to control ventilation and thereby regulate internal 

temperatures (Rosengren et al. 1987). The primary problem for ants initiating a nest either 

under rock or building a thatched mound is that the nest must be started in soil. As 

environmental temperatures decline with increasing latitude or elevation, especially in areas 

with moist soil, ant communities appear to increasingly utilize dead wood as a nesting 

resource (Higgins and Lindgren 2006). Dead wood offers a number of desirable qualities for 

nesting. It is often elevated above the surrounding herbaceous vegetation as a consequence 

of its diameter, by spanning depressions in the forest floor, or by leaning against elevated 

rocks or across other pieces of coarse woody debris (CWD), increasing its insolation. It also 

has a low specific heat that enables it to gain heat quickly through the day (Wenzl 1963), and 

does not have the high moisture content typical of northern forest soils (Ballard 2000) that 

can act as a heat sink, especially post-harvest (Elliot et al. 1998; Makitalo and Hyvonen 

2004). Ants nesting in galleries constructed within wood will also be able to move brood to 

specific locations in which temperatures are ideal. The heat gain of wood, like rock, is 

dependent upon external sources, however. Wood can gain or lose heat through conduction 

with the soil, conduction and convection with the air, or through insolation (i.e., radiative 

heating). Insolation through exposure to the sun should be very important in cool early serai 

forests. 
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In this chapter, we experimentally explore the relationship between temperature and 

nest site selection, by two species of ants, Leptothorax muscorum (Nylander) and Formica 

aserva Forel (formerly F. subnuda Emery). Leptothorax muscorum and F. aserva are 

common members of the sub-boreal and boreal ant communities in Canada (Francoeur 1983, 

1997; Gregg 1972). Leptothorax muscorum (see Appendix III for more complete natural 

history) is a pioneer species in boreal forests (Punttila et al. 1994), and is common in CWD 

(Higgins and Lindgren 2006). These small ants, with workers not exceeding 5.0 mm 

(typically 2.5-3.5 mm), form colonies consisting of a few dozen workers, often with multiple 

queens (Heinze 1993a). As Leptothorax spp. colonies have been documented at densities of 

up to 4/m2 (Heinze 1994), suggesting a small foraging area, the discovery of foragers on 

woody debris is likely indicative that their natal nest is within that piece of wood. This 

allows for the probable identification of nesting sites in wood without destructive sampling. 

Formica aserva (see Appendix III for more complete natural history) in contrast is a 

larger ant with average worker size of approximately 6-8 mm (Naumann et al.1999) that 

forms colonies known to contain between 3,000-4,000 workers (Savolainen and Deslippe 

1996). This ant also frequently nests in CWD, especially stumps (Wu and Wong 1987, see 

Chapter 4) and is known to be a facultative slave-maker (Savolainen and Deslippe 2001). 

Firm tapping on wood hosting this species will result in aggressive swarming allowing nest 

site identification. 

As both species, L. muscorum and F. aserva, demonstrated a decline in abundance 

with increasing forest serai age (Chapter 3), we hypothesized that both species had a low 

tolerance to poor thermal conditions. In this chapter, we first tested the hypothesis that ant 

choice of woody debris over soil, as a nesting resource, was thermally driven. We predicted 
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that woody debris (both downed woody debris and stumps) would be warmer than soil. We 

then tested the hypothesis that insolation is an additional critical heat source for woody debris 

nesting ants, by reducing nest temperatures, through shading, and assessing the persistence of 

each species under such conditions. Finally, we report on some post-hoc findings regarding 

the relationship between downed woody debris and stump temperatures. 

Methods 

Shading o/Leptothorax muscorum colonies in downed woody debris 

We conducted this study between June and August of 2005 in a 15 yr-old post-harvest 

stand (53°58.2rN, 127°6.6'W) located in the sub-boreal spruce biogeoclimatic zone and 

moist-cold subzone (Meidinger and Pojar 1991), approximately 55 km south of Houston, 

British Columbia. Stand age and the time of year were selected to optimize ant colony 

abundance and activity respectively, based on previous research in this area. The stand was 

previously pine-leading and had been replanted by the harvesting licensee with lodgepole 

pine (Pinus contorta Dougl. var. latifolia Engelm.). 

We located 10 replicate pairs of pieces of downed woody debris (DWD), (i.e., CWD 

mostly in contact with the soil and exclusive of stumps), containing nests of L. muscorum for 

the examination of shading on colony persistence. One member of each pair was randomly 

selected as the control. As destructive sampling would have been necessary to confirm the 

presence of L. muscorum colonies in the wood, the presence of active workers on the surface 

of the wood was used as a proxy. Pieces of DWD lying closest to a 90° azimuth were 

selected because this position was parallel to the maximal sweep of the sun. Actual piece 

azimuths ranged from 68-108°. All pieces selected exceeded 2.5 m in length with a 

minimum large end diameter of 10 cm. We then cut these pieces to 2.5 m by a hand saw, 
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without altering the azimuth, to minimize piece disturbance. Pairs were located so that they 

were within 20 m of each other, and were matched as closely as possible for large end 

diameter. All pieces were of decay class 2, following Maser et al. (1979). Large and small 

end diameters were recorded, and the volume (V) and total surface area (lateral surface area 

with ends) (SA) were calculated as a geometric frustum (i.e., a truncated geometric cone): 

V = ~nh(ri + r2
2 + r ^ ) ; 

SA = TTCTI + r 2 ) ( V ( r ! - r 2 ) 2 + /i2) + (nr?) + (7rr2
2); 

where h is the length, ri is the large end diameter and X2 the small end diameter. This allowed 

for the determination of any significant differences in physical characteristics between 

shaded and control pieces and for comparison to monitored temperature profiles. 

The necessary height and length of the shading fence was determined from astronomical data 

obtained from the University of Oregon, Solar Radiation Monitoring Laboratory, Sun Path 

Chart Program (http://solardat.uoregon.edu/SunChartProgram.html). Data for the summer 

solstice (June 21) was used to determine the minimal azimuth of sunrise (45°), maximal 

azimuth of sunset (315°) as well as maximal solar elevation gain at local zenith (60°). These 

data were then used to determine the minimum height of the fencing fabric taking into 

account piece size and offset from a piece azimuth of 90°. 

We constructed the shading fences using landscape fabric (Easy Gardener 1.29 x 

15.2-m (4 x 50-foot) grey Heavy Duty Commercial Landscape Fabric, Model 25080MJC, 

for the bottom panel, and Easy Gardener 0.91 x 15.24 m (3 x 50 foot) black Heavy Duty 

Commercial Landscape Fabric, Model 22342MJC for the top panel) as the fencing material 

because of its high resistance to tearing. Polyvinyl chloride (PVC) conduit (3.2 cm (1.25 

inch) diameter), cut to approximately 60 cm in length with one angled end to ease entry into 
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the ground, were pounded into the ground around the selected woody debris and used to 

support and anchor 3.7 m long (12 foot), 2.6 cm (1.0 inch) diameter, steel EMT (electrical 

metal tubing) posts to hold the landscape fabric. PVC sleeves were also pounded into the 

ground around controls, but steel posts and landscape fabric were omitted. A fence length of 

3 m was used along the southern edge of each piece of woody debris with two sides to the 

east and west also 3m long. The fence was open to the north. Landscape fabric was added to 

the southern boundary to a minimum height of 2 m and held in place by plastic zip ties. This 

height was maintained for the southern 1.5 m of each side panel and then height was allowed 

to drop to 1.2 m for the remainder of the side panel. This configuration blocked any direct 

sunlight from reaching the woody debris. An approximate gap of 10 cm was provided at the 

bottom of the fence to allow for movement of air. 

Following a trial installation of 2 fences on 6 June, we discovered on 10 June that 

both had been destroyed by bear activity. These were repaired and left in place. As there 

was no further disturbance to the trial fences, all fences were put in place on 21 June. No 

additional damage occurred. 

We monitored the temperature of each piece of woody debris using iButton® 1 Wire 

Thermocron® DS1921G dataloggers (Maxim Technologies, Dallas, TX). One datalogger 

was placed within each piece of wood near the horizontal and vertical centre on the north 

facing side. To insert the dataloggers, first a cap approximately 3 cm2 in area and 1 cm deep 

was removed, intact from the wood by chisel. Once the cap was removed, a hole 1.8 mm 

wide was drilled toward the approximate centre of the wood piece. The datalogger was then 

inserted into the hole and a piece of softwood dowel 1.8 mm in diameter was cut to a length 

appropriate for each hole. The edges around the dowel were then closed by silicon sealant 
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which also served to seal the cap back in place. String glued to the datalogger ran out of the 

hole and edge of the cap to facilitate recovery. The dataloggers were programmed to record 

temperatures each thirty minutes between 06 July and 21 August of 2005. In order to 

monitor site soil temperatures, ten dataloggers were paired with L. muscorum and F. aserva 

treatments, in unshaded areas, at a depth of 10 cm following the protocol of Stathers and 

Spittlehouse (1990). Five of the ten dataloggers were randomly assigned to L. muscorum 

treatments and five to F. aserva treatments. They were programmed to record temperatures 

over the same time period as those placed in downed woody debris. One of the soil 

dataloggers failed over the course of the experiment. 

The experiment was terminated on 21 August of 2005, 61 days after the placement of 

the fences. Each piece of woody debris was destructively sampled by hatchet to count the 

number of L. muscorum colonies. A colony was defined as a cluster of more than 15 ants 

with no visible tunnels connecting to adjacent colonies. 

Shading o/Formica aserva colonies in stumps 

The methods and dates for testing the effect of shading on F. aserva colonies 

followed that of L. muscorum with a few modifications. First, although F. aserva uses both 

stumps and DWD as nesting material it is more common in stumps in this study area (see 

Chapter 4) and thus only stumps were examined. Second, stump volume was assessed by 

considering the stump as a geometric cylinder (i.e., from cut diameter and height) rather than 

a frustum, as used for DWD, because of the difficulties created by roots in accurately 

measuring basal diameters at ground level. Third, fence height and lengths were adjusted as 

appropriate for the size of the stumps. As the diameter of the stumps were much smaller than 

the 2.5-m DWD lengths used for L. muscorum, the southern edge of the fence shading the 
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stumps were never more than 1.5 m in length as compared to 3 m for pieces of DWD hosting 

L. muscorum. Fourth, given that stump diameters were often too large to reach the centre 

with available drill bits, dataloggers were placed within each stump 10 cm from the north 

lateral surface at the vertical midpoint. Fifth, at the end of the experiment, colonies were 

tallied as present when more than 100 workers with larvae and/or pupae were discovered. 

Most stumps were opened for examination by chainsaw as opposed to hatchet. 

Analysis of ant colony response to shading was performed with one-tailed paired t-

tests, given the hypothesis that shading would reduce ant colony abundance, using STATA 

(Proc ttest) (STATA 9.2 ©1985-2007). To ensure that the randomly assigned treatment 

groups did not differ significantly in wood volume or surface area, two-tailed paired t-tests 

were performed. 

Analysis of wood and soil temperature data 

We recovered all dataloggers (soil, downed woody debris, stumps) when the downed 

woody debris and stumps were opened to count ant colonies. Temperature measurements 

from each datalogger were obtained and the mean of each time synchronized record (n = 

2044 for each datalogger) was taken across dataloggers for each treatment. The resulting 

mean data were fitted to a sine curve using SigmaPlot (Proc Waveform, Sine, 4 Parameter) 

(SigmaPlot 11 ©2008). Mean amplitude and temperature parameters derived from the sine 

curves were used with the standard error and relevant t statistic (t (0.05,2044)) to determine 95% 

confidence intervals, which were then used to assess parameters for significant differences. 

A comparison of stump and downed woody debris temperatures 

Following tabulation of study data is was observed that mean stump temperatures 

appeared to be higher than those for DWD. Following this observation, stumps and DWD 
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were compared for volume and surface area, and then mean temperatures were assessed for 

significant differences using 95% confidence intervals. 

Results 

Soil, stump and downed woody debris temperatures 

Both means and amplitudes varied significantly between soil, control stumps and 

control DWD (Figure 5.1). The mean temperature of control stumps (13.5 °C ± 0.04 (SE)) 

were higher than control DWD (12.7 °C ± 0.06 (SE)) and soil (11.1 °C ± 0.02 (SE)). All 

three groups (soil, control stumps and control downed woody debris) significantly differed 

from each other as indicated by their 95% confidence intervals (Table 5.1). Temperature 

amplitude (one half full amplitude) means also varied significantly between control stumps 

(3.0 °C ± 0. 06 (SE)), control downed woody (5.9 °C ± 0.08 (SE)), and soil (1.0 °C ± 0.02 

(SE)). It should be noted that while control stumps had the highest mean temperature, 

control DWD had higher temperature amplitudes (Figure 5.1). As with temperature means, 

95% confidence intervals indicated a significant difference between all treatments. 

Shading o/Leptothorax muscorum colonies in downed woody debris 

No significant differences were found between the volumes {t = 1.01, df = 9, P = 

0.34) or total surface area (t = 0.98, df = 9, P= 0.74) of pieces of wood assigned to the control 

or shaded treatments (Table 5.2). Counts of colonies of Leptothorax muscorum in control 

and shaded pieces of woody debris at the end of the 61 days of shading, however, did differ 

significantly (t = 2.09, df = 9, P = 0.03) (Table 5.3). Shaded pieces of woody debris hosted a 

mean of 1.9 colonies of L. muscorum as compared to control pieces hosting 2.6 colonies. 

Sine modelled temperature profiles (Figure 5.2) show statistically significant declines in both 

amplitude and mean temperature (Table 5.1) in shaded pieces of DWD when compared to 
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Time (h) 

Soil 10 cm 
Downed Woody Debris 
Stump 

Figure 5.1. Soil (n = 9), control stump (n = 10), and control downed woody debris (n = 10) 
sine modelled temperature profiles collected over 42 days. Soil temperatures measured at a 
depth of 10 cm. Stump temperatures measured approximately 10 cm deep below the bark. 
Downed woody debris temperatures monitored approximately in the centre of the piece. 
Forty eight hours of modelled data shown here to allow curves to be compared. See Table 
5.1 for sine curve fit estimates. 
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Table 5.1: Sine curve coefficients and model fit estimates of woody debris (stumps and 
downed woody debris) and soil temperatures monitored over 42 days. Temperature 
measurements in replicates were time synchronized and models were fit to the mean of each 

time synchronized replicate. Data were fit to the model Y = A + B sin!? ̂  + D) where A is 

the mean temperature, B is one half the total amplitude, C is the period (constant at 24 hrs) 
and D is a horizontal fit parameter. All model and coefficient estimates were P < 0.001. 

A 95% 95% F 
Treatment ,<,„ , ^ F N Confidence . +CTA Confidence statistic R2 

Intervals ' Intervals (df) 

Stump: n ^ n r v n n c n ^ i n m rwk T O O O
 8 5 L 7 

(3,2044) 
control 13.5(0.04) 13.6,13.4 3.0(0.06) 3.2,2.9 0.56 

Stump: 628.1 
shaded 12.1(0.04) 12.2,12.0 2.6(0.06) 2.8,2.5 (3,2044) 0.48 

DWD: 1704.1 
control 12.7(0.06) 12.8,12.6 5.9(0.08) 6.1,5.8 (3,2044) 0.71 

DWD: 1102.2 
shaded 10.8(0.05) 10.9,10.8 4.1(0.07) 4.3,4.0 (3,2044) 0.62 

Soil 519.9 
11.1(0.02) 11.1,11.1 1.0(0.02) 1.0,0.9 (3,2044) 0.43 
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Table 5.2. Comparison of downed woody debris volumes (m3) and total surface area (m2) 
assigned to the control and shaded treatments. Volumes and surface areas were calculated as 
a frustum. Treatments compared by 2 tailed Mest. 

Treatment 

t df Probability 
Control Shaded 

Mean volume (m3±SE) 0.054 ±0.009 0.058 ±0.009 1.01 9 P = 0.34 

Mean total surface area 1.31 ± 0.11 1.36 ± 0.11 0.98 9 P = 0.74 
(m2±SE) 
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Table 5.3. The number of Leptothorax muscorum colonies in each paired control and shaded 
piece of woody debris after 61 days. A colony was counted when a cluster of more than 15 
ants were found without tunnels connecting to any adjacent colonies. Treatments compared 
by 1 tailed /-test (t = 2.09, df = 9, P = 0.03). 

Replicate Pair and overall 
mean 

Treatment 

Control Shaded 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Mean 

0 
3 
4 
3 
3 
2 
3 
2 
3 
3 

2.6 

1 
1 
3 
3 
1 
2 
3 
1 
1 
3 

1.9 
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Figure 5.2. Sine modelled temperature profile derived from pooled temperature data 
collected over 42 days from 10 replicate pairs of control and shaded pieces of downed woody 
debris hosting colonies of Leptothorax muscorum. Forty eight hours of modelled data are 
shown here. See Table 5.1 for sine curve fit estimates. 
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controls, as determined from 95% confidence intervals. Mean temperatures of shaded pieces 

were 1.9 °C cooler than controls and one-half daily amplitudes were 1.8 °C lower (Table 

5.1). 

Shading o/Formica aserva colonies in stumps. 

No significant differences were found between the volumes (t = 1.03, df = 9,P = 

0.33) or total surface area (t = 0.29, df = 9, P = 0.74) in contact with the air, of stumps 

assigned to the control or shaded treatments (Table 5.4). Shaded stumps lost their F. aserva 

colonies with only one exception, while 8 out of 10 control stumps retained their colonies 

over the 61 days of the experiment (t = 3.27, df = 9, P = 0.004) (Table 5.5). The one 

remaining colony in a shaded stump was also active in a stump immediately outside of the 

shading fence. 

Sine modelled temperature profiles (Figure 5.3), examined between treatments, show 

statistically significant differences in mean daily and one-half mean daily amplitudes, as 

determined from 95% confidence intervals. Shaded stumps were lower in both cases. The 

mean temperature of shaded stumps was 12.1 °C ± 0.04 (SE), compared to 13.5 °C ± 0.04 

(SE) for control stumps. One-half mean daily amplitudes were 2.6 °C ± 0.06 in shaded 

stumps as compared to 3.0 °C ± 0.06 in controls. 

A comparison of stump and downed woody debris temperatures 

Plotted temperature data for downed woody debris and stumps showed an unexpected 

difference between the two (Figure 5.4). Mean stump temperatures were significantly higher 

than those of DWD for both shaded and control treatments (Table 5.1), as determined from 

confidence intervals. Mean stump volumes (0.041 m3± 0.011 (SE)) were not significantly 
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Table 5.4. Comparison of stump volumes and total surface area in contact with the air (m2) 
assigned to the control and shaded treatments. Volumes and surface areas calculated as a 
cylinder. Means compared by 2 tailed Mest. 

Treatment 

t df Probability 

Control Shaded 

Mean volume (m3±SE) 0.05 ± 0.02 0.03 ± 0.01 1.03 9 P = 0.33 

Mean surface area 0.42 ±0.10 0.37 ± 0.07 0.29 9 P=0.74 
(m2±SE) 
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Table 5.5. The number of colonies of Formica aserva present in stumps assigned to either 
control or shaded treatments. Colonies were counted when more than 100 workers were 
observed and larvae and/or pupae were present. Treatments compared by paired 1 tailed ti
trate {t = 3.27, df = 9, P = 0.004). 

Replicate Pair and overall 
mean 

Treatment 

Control Shaded 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Mean 

1 
1 
1 
1 
1 
1 
0 
1 
0 
1 

0.8 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0.1 
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Figure 5.3. Sine modelled temperature profile derived from pooled temperature data 
collected over 42 days from 10 replicate pairs of control and shaded stumps hosting colonies 
of Formica aserva. Forty eight hours of modeled data are shown here. See Table 5.1 for 
sine curve fit estimates. 
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Figure 5.4. Relationship between total surface area in contact with the air and mean 
temperature in shaded and control stumps (n = 20) and downed woody debris (n = 20). 
Temperature data measured over 42 days. 



different from DWD volumes (0.056 m3 ± 0.006 (SE)) (t = 1.5, df = 38, P = 0.255), despite a 

significantly smaller mean surface area for stumps (0.39 m2± 0.06 (SE)) as compared to 

DWD (1.34 m2± 0.07 (SE)) (t = 9.79, df = 38, P < 0.001). Overall, control stumps were 0.8 

°C warmer than control DWD while shaded stumps were approximately 1.3 °C warmer than 

shaded DWD. 

Discussion 

Ants in North America appear to utilize wood, rather than soil, as a nesting resource 

as climate becomes more continental, or as elevation or latitude increase (Higgins and 

Lindgren 2006). Thus, it is probable that the thermal properties of wood must be 

advantageous with poor environmental thermal conditions. Our hypothesis that woody 

debris (both downed woody debris and stumps) would be warmer than soil was supported by 

the data (Figure 5.1). The very cool soil mean temperature (11 °C), especially in 

combination with moisture which is typical of the biogeoclimatic zone and subzone (SBSmc) 

(Meidinger and Pojar 1991), likely do not provide adequate heat for ant colony survival, 

driving the selection of woody debris. 

The most obvious thermal property of wood that would appear advantageous is its 

low specific heat (1.23 kJ"1 kg"1 C"1 at 25 °C), which would allow for rapid heat gain during 

the day (Wenzl 1963). This gain can occur conductively from air or soil, convectively from 

air, or through insolation from direct exposure to sunlight. It was our second hypothesis that 

the latter would be the most significant. The shading of nests in wood, despite resulting in a 

relatively modest reduction in mean temperature of approximately 1.5-2.0 °C in downed 

woody debris (DWD) (Table 5.3) and stumps (Table 5.6), elicited a significant negative 

response from both Leptothorax muscorum (Table 5.3) and Formica aserva (Table 5.5). This 
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supports the hypothesis that these ants are dependent on insolation to meet thermal 

requirements. In addition, the stronger negative response to shading observed for F. aserva 

is consistent with earlier work (Chapter 3 and 4), in which F. aserva exhibited a greater 

sensitivity to advancing serai age, and thus declining ground temperature, as compared to L. 

muscorum. 

Work in England (Pontin 1960) demonstrated a decreased survival rate for Lasius 

flavus (F.) and L. niger (L.) queens when they were placed in shaded field locations. In 

addition, Myrmica spp. ant larvae in European boreal forests were shown to require mean 

temperatures of at least 15 °C to develop normally (Elmes and Wardlaw 1983). Given that 

the mean temperature in control stumps was 13.5 °C and only 12.7 °C in control DWD 

between June and August, it suggests that the two ant species in this study are tolerant of 

cooler conditions than found by these authors for Myrmica spp. larvae, unless they are able to 

elevate localized temperatures within brood chambers. The paucity of ants nesting in the soil 

in the sub-boreal forests of this study, which, as noted, had a mean temperature of 11.0 °C, 

suggests that these ants must be very close to their thermal tolerance, that is, close to the 

minimum temperature needed to raise larvae, which is the most temperature sensitive life 

stage (Elmes and Wardlaw 1983). 

Ants normally move their larvae and pupae during the day to maintain the best 

possible temperatures for growth (Vanderplank 1960; Roces and Nunez 1989). The small 

colonies of L. muscorum observed in this study are normally only found near the surface of 

the wood with galleries mostly parallel to the wood grain. Thus, they cannot always move 

deeper into the wood during the night to gain heat as surface temperatures drop. The larger 

colonies of F. aserva often extensively tunnel through their woody nesting medium, 
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presumably allowing them to move both parallel to the wood surface but also more deeply 

into the wood to optimize thermal conditions. Thus, F. aserva should be able to maintain 

higher mean colony temperatures than L. muscorum. Despite this, F. aserva seems less 

tolerant of low temperatures. 

Endogenous metabolic heat production has been documented to significantly raise 

nest temperatures in species of ants producing thatched nests (Horstmann and Schmid 1986; 

Rosengren et al. 1987). Thatching nest temperatures have been shown to abruptly rise in the 

spring to temperatures reaching 30 °C, despite snow and ice covering the nest (Rosengren et 

al. 1987). In addition, thatching ants have been shown to be able to control temperature 

amplitudes to avoid excessive heating or cooling by opening or closing, respectively, nest 

entrances to alter ventilation (Horstmann and Schmid 1986). No equivalent research, 

however, has been performed on wood-nesting ants. Although this experiment was not 

designed to assess endogenous heat production, the large colony sizes of F. aserva and 

extensive tunneling, might be expected to create a heat signature in the stump if endogenous 

heat production is high. In the single case of a shaded stump hosting F. aserva at the end of 

this experiment, there was no grossly discernable difference in the mean temperature 

recorded in that stump (12.0 °C) as compared to the other nine stumps from which F. aserva 

colonies had departed (mean 12.1 °C). Nor were mean temperatures lower in the two control 

stumps that were not hosting ants (mean 14.3 °C), as should be expected if heat is being 

generated endogenously, as compared to the eight that were hosting ants (mean 13.3 °C). 

Given this, it seems unlikely that F. aserva is generating endogenous heat, at least not at the 

scale that affects overall stump temperature. The temperature dataloggers would not, 

however, have been able to detect localized effects of endogenous heat production within just 
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the brood chambers. Further, it is also unlikely that L. muscorum can generate significant 

metabolic heat given the minute size of these ants and the small colony sizes. Thus, these 

ants are likely dependent upon external heat sources, especially insolation. 

The incidental observation, following the planned analysis for this study, that both 

control and shaded stumps have significantly higher mean temperatures as compared to 

DWD in the same treatment, merits mention. Given the equivalent volumes of stumps and 

DWD in this study, but despite the lower surface area of stumps (Figure 5.4), the higher 

mean temperature for stumps, suggests that factors other than insolation are also important. 

We suggest that the higher mean temperatures in stumps arise because the extensive contact 

of the stump and roots with the soil, maintains the stump at thermal equilibrium with the soil. 

Thermal gain through insolation, on the exposed stump surface, may displace the 

equilibrium, but maintains a higher minimum stump temperature at night as compared to 

downed woody debris that lacks such extensive contact with the soil. The hypothesis of 

thermal equilibrium is supported by the observation that mean minimum stump temperatures 

did not go below mean minimum soil temperatures, unlike DWD (Figure 5.1). It should be 

noted, however, that it might also be possible that despite all wood in this study being 

assigned to decay class 2, some biological differences may exist between DWD and stumps 

that enhances microbial metabolic heat and causes the stumps to be warmer. The thermal 

equilibrium hypothesis noted above could be tested more accurately by placing temperature 

dataloggers in the soil immediately adjacent to temperature monitored stumps. 

The higher mean temperatures associated with stumps might also be hypothesized to 

have a positive biological affect, especially with respect to thermally constrained ants. Our 

data (Chapter 4) did not show a strong selction of stumps over downed woody debris as 
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might be predicted if stumps are thermally advantageous. As stumps, however, in their 

abundant, current, anthropomorphic form (i.e., cut face, low height, initially decay free 

form), are a relatively recent resource in the forests of BC, it would seem unlikely that ants 

could have an evolved preference either for or against stumps. Large scale industrial logging 

in west-central BC only began in the mid-1960s (Hols 1999). Prior to this, the major 

disturbance element was wildfire (DeLong and Tanner 2006) which does not produce stumps 

in the form associated with logging. If stumps are advantageous thermally, a 

microevolutionary behavioural shift may arise in the future. If so, this could be tested by 

inoculating stumps and DWD with ant colonies, or other organisms, and assessing the length 

of the life cycle. 

Summary 

As hypothesized, woody debris offers a warmer nesting environment as compared to soil in 

the cool-moist forests of west-central BC. This resource may be considered a thermal refugia 

for ants and possibility other species that find cool moist soil inhospitable. In addition, a 

reduction in insolation, and consequent reduction in temperature, had a strong negative effect 

on ant colony utilization of wood. The response of F. aserva was more pronounced than that 

of L. muscorum, which was consistent with earlier observations that F. aserva disappeared 

from the ant community, in response to advancing serai age, at an earlier time than L. 

muscorum. Thus, the dependence upon insolation suggests that both species thrive under 

disturbance conditions where the canopy is removed. The finding that stumps had a higher 

mean temperature was unexpected but may suggest that this relatively new woody debris 

resource is a better nesting choice for ants. No preference, however, was noted in related 

studies and it is possible that this resource is new enough that ants have not developed a 
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selective preference. The testing of colony development time in both DWD and stumps 

should answer this question. 
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Chapter 6. Synthesis 

"It appears ... that the expression animal life, is nearly synonymous with the 

expression, animal heat... The grand necessity, then, for our bodies, is to keep 

warm, to keep the vital heat in us." Thoreau, Walden 's Pond (1854). 

When Thoreau (1854) was speaking of heat in the context of an animals' life, he was 

framing an argument for what he considered to be the most fundamental necessity of life to 

both humans and other animals. He was inductively reasoning from observations that 

clothing, shelter and food were necessary to human life, and the confluent principle he found 

from each was that of heat, or at least heat in the sense that might be used in the 19l century. 

Thoreau uses the word heat mostly in the sense of a state of matter. Today, the most 

appropriate term would be temperature, which refers to the average kinetic energy contained 

within an object (Giancoli 1991). Heat, in its modern form, is a process, and refers to the 

transfer of kinetic energy between two objects. As discussed in Chapter 5, this occurs 

through convection, conduction and radiation. Esoteric terminology aside, the findings of 

this dissertation would have been no surprise to Thoreau, as much of the results here consider 

the choices of habitat, shelter, and life-history colony founding strategies made by ants in a 

temperature-limited environment. The need for heat gain appears to be critical in making 

those choices. 

Logistic regression, used to model ant presence or absence in the forests of this study 

highlighted these choices. Logistic regression is a multivariate maximum likelihood 

estimation technique designed to estimate dichotomous outcomes (Homer and Lemeshow 

1989). Although there has been movement toward blending this technique with information-

theoretic techniques such as the Akaike Information Criterion (AIC) (Rushton et al. 2004), 
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the lack of a priori knowledge of the system being modelled argued against that approach 

and toward a stepwise regression. Model discrimination for 4 of the 5 most common species 

of ants, as estimated by the Receiver Operating Characteristic (ROC), ranged between 0.78 

and 0.88, suggesting the models were 'confident' (Swets 1988). Overall the models 

identified serai age, some physical characteristics of woody debris, and the presence of other 

colonies of the same species, as variables associated with predicting ant presence or absence. 

All three are possibly related to the flux of heat. 

Serai age, to an ant, is a proxy for temperature, and was a common significant 

variable in logistic regression modeling. The mean litter temperatures recorded in the 2-3 

years post-harvest sites were the highest recorded for any post-harvest or non-harvested site 

in this study. Following this serai age, mean litter temperatures declined by approximately 1 

°C (Chapter 3) with each increase in serai age examined in this dissertation. The mean litter 

temperatures were approximately 14 °C through June and August in the 2-3 years post-

harvest sites. This mean temperature is above the general heuristic minimum for foraging 

ants of 10 °C (Holldobler and Wilson 1990), but actually below the temperature considered a 

minimum for developing pupae (15 °C) in a north European species ofMyrmica (Elmes and 

Wardlaw 1983). Despite this, the ant community appeared to thrive, at least over the first 13-

15 years post-harvest when mean litter temperatures had declined to approximately 12 °C 

(Chapter 3) and mean control downed woody debris temperatures were approximately 13 °C 

(Chapter 5). Given that these temperatures are below those reported as the minimum needed 

for pupae (Elmes and Wardlaw 1983), it suggests that monitored temperatures are either an 

underestimate of the actual temperatures experienced by ants, or that the ants in these forests 

are highly adapted physiologically to tolerate lower temperatures. I suggest that while it is 
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likely that ants seek out microhabitats that are warmer than those monitored in either the 

litter or woody debris, and that some limited metabolic heat may raise brood chamber 

temperatures (the generation of metabolic heat on a larger scale was not observed in these 

studies (Chapter 5)), that the temperature constrained environment evident in these forests 

would have created strong selective pressures on this ant fauna to adapt physiologically to 

cool conditions. Given the near complete absence of ants from non-harvested stands, and the 

response of ants to shading, which decreased mean nest temperatures by approximately 1.5 

°C (Chapter 5), we can observe that cool temperatures are strongly selecting against the 

survival of this fauna. Cool temperatures in regenerating sub-boreal forests is a major 

stressor for ants and any adaptation to increasing tolerance should be rapidly selected for 

within the species. 

An additional suite of variables that arose in the models related to nesting choice. Of 

the 17 species identified through all forms of sampling in my dissertation, 16 were either 

found in woody debris or known to use woody debris for nesting (Chapters 3 and 4). One 

pragmatic advantage of this relationship was that the localization of most of the ant fauna in 

woody debris allowed for absolute sampling techniques, per unit area, which was superior to 

only using relative abundance techniques (Chapter 2, Southwood and Henderson 2000). The 

fact that woody debris had higher temperatures than those recorded for the soil (Chapter 5), 

and likely had a lower moisture content typical of northern soils (Ballard 2000), especially 

post-harvest (Elliot et al. 1998; Makitalo and Hyvonen 2004), would seem to be the primary 

reasons for this choice. 

With respect to the choice of specific characteristics associated with woody debris, 

there were no universal preferences evident across all species. Three of the five species 
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showed a preference for larger pieces of wood and two species showed a preference for 

woody debris in decay class 3 and 4 as compared to decay class 2. Although wood of decay 

class 4 was uncommon, wood of decay class 2 and 3 was widely available making the use of 

later decay stages a genuine choice and likely a consequence of the easier access and ability 

to form galleries within this slightly softer wood. 

The finding that stumps were warmer than downed woody debris was unexpected 

(Chapter 5). Although control downed woody debris had higher mean maximum 

temperatures, control stumps had higher overall mean temperatures. I hypothesize that this is 

due to a higher base temperature arising from stumps coming to thermal equilibrium with the 

soil when air temperatures are low, a hypothesis supported by the observation that stump 

temperatures did not go below soil temperatures. Further, if higher mean temperatures are 

more significant than higher mean maximum temperatures to the ants, this should be a 

superior nesting resource. Although two species (F. aserva, and Myrmica alaskensis) did 

appear to show a preference for stumps, while other species showed no preference, it may 

simply be that stump selection is arising from characteristics other than heat. My doubts 

relating to ant choice of stumps because of heat, are based on the fact that stumps are a 

relatively recent resource associated with anthropogenic activities in sub-boreal forests. If 

stumps are a better nesting resource, this should be testable by examining the rates of colony 

growth and the formation of reproductive ants within colonies between stumps and downed 

woody debris. 

The enigma throughout this dissertation has been F. neoruflbarbis. This species was 

the only species that did not demonstrate a unimodal abundance distribution across serai 

ages, peak in abundance in the 13-15 yr post-harvest plots, or show more than one significant 
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association in the logistic regression model. I hypothesize that this is likely due to the 

parasitic nest founding strategy of F. aserva. Formica aserva is known to parasitize F. 

neorufibarbis during nest founding which may explain why F. aserva is not found in the 

earliest serai ages, before F. neorufibarbis colonies are established. Further it may explain 

why the peak in abundance of F. aserva is associated with a decline in F. neorufibarbis 

colonies and why the F. neorufibarbis population slightly rebounds after cool serai 

conditions cause a decline in F. aserva colonies (Chapter 5). Finally, F. aserva may displace 

F. neorufibarbis from its preferred woody debris choices for nesting, resulting in different 

woody debris associations for F. neorufibarbis pre- and post-parasitism. This may explain 

why no woody debris characteristics were found to be significant for this species. 

Although utilization of woody debris was high for the ant species followed in this 

study, it is not possible to ascertain what constitutes minimum woody debris requirements. 

This study was constrained to examine woody debris choice based on pre-existing options 

following normal harvesting operations. Not all decay classes were equally abundant nor 

were all size ranges. In particular, large pieces of woody debris were seldom present. It is 

not possible to know if certain species are absent from the stands of this study because of the 

lack of appropriate woody debris resources. For example, other species of Camponotus may 

exist in the landscape but might require larger pieces of woody debris than those available in 

these post-harvest stands. A lack of replicated burned stands of sufficient size to allow 

installation of plots within the study area landscape blocked my ability to examine the ant 

fauna associated with large volumes of woody debris created by natural disturbance. As a 

consequence, it is unknown if ants will simply choose the best of the options available, even 

if they are sub-optimal, or continue to search until a minimum is located. Camponotus spp. 
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queens are frequently found in very small pieces of wood (personal observation), indicating 

that carpenter ants do the former. 

Although the clear effect of declining temperatures on ant communities was evident 

with serai age, woody debris, as noted, was not a controlled variable. As a consequence, the 

response of the ant fauna to a complete loss of this resource could not be ascertained. It 

seems reasonable, however, that the complete removal or destruction (e.g., by crushing) of 

woody debris would have a dramatic effect upon the ant fauna. The apparent absence of any 

ants directly nesting in the soil (Chapter 3) suggests that few ants would be able to colonize 

post-harvest forest sites depleted of woody debris. This would then presumably and 

unpredictably affect the stand level invertebrate community given the role of ants as major 

predators of invertebrates (McNeil et al. 1978; Skinner 1980), and reduce food available to 

myrmecophagous birds (Torgersen and Bull 1995; Elchuk and Wiebe 2002) and bears (Raine 

and Kansas 1990; Elgmork and Unander 1999). 

Recently, there has been a move in the forestry scientific community away from 

considering woody debris as unsalvaged waste (Maser et al. 1979) and toward an 

appreciation that this resource plays important roles both forest ecological processes (Maser 

et al. 1994, Stevens 1997, Lofroth 1998) and as habitat for many species (Keisker 2000). 

Low volumes of woody debris post-harvest have been shown to affect biodiversity. In 

Sweden, a lack of woody debris has contributed to the red-listing of 542 wood-dependent 

invertebrates (Jonsell et al. 1998). This has led to one recommendation that dead wood 

retention following harvesting increase by at least 50% in Sweden before 2010 (Ehnstrom 

2001). Despite this, there are currently no clear guidelines for woody debris management 

that are not superseded by other management objectives. Further, the bio-energy industry is 
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placing a new value on this resource, potentially greatly reducing post-harvest woody debris 

volumes in the future. Without guidelines in place it is possible that we will follow the 

example of Sweden. 

The last broadly shared logistic model variable was that relating to the presence of 

other colonies of the same species within 50 m2. Although the connection of this variable to 

temperature may not be readily apparent, it is likely there. The clustering of ant colonies 

may be indicative of colony budding, a mechanism of colony founding in polygynous ants 

""most common in habitats with cold winters (Rosengren et al. 1993), or polydomy (Hansen 

and Klotz 2005), the formation of satellite nest colonies that seem to be an adaptation for the 

same purpose. Four of the five common ant species found in sub-boreal forests were 

polygynous and the fifth, Camponotus herculeanus, which is usually monogynous, is 

normally polydomous. High mortality rates for solitary queens during cold winters have 

been documented (Heinze et al. 1996). Physical crowding of individuals in nests has been 

shown to reduce the mortality of ants near the centre, however (Heinze et al. 1996). Hence, 

mortality from heat loss during the winter may have shaped a significant aspect of ant life 

history strategies in cold sub-boreal forests. 

Although thermal pressures have made many demands upon ants, current 

anthropogenic changes to the forests have been largely beneficial, from the perspective of an 

ant. The complete removal of the canopy during clearcut harvesting, clustering of harvested 

blocks, post-harvest woody debris volumes, and climate change may all be generally 

beneficial to ants. Clearcut harvesting, now the most common form of disturbance in the 

sub-boreal forests of BC (DeLong and Tanner 1996), completely removes the canopy and 

increases surface temperatures, a factor beneficial to ants. The closely packed cutblocks also 
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make dispersal easier. Heavy machinery operation over the cutblocks crush and splinter 

wood (Higgins and Lindgren 2006), improving nesting access for small species (e.g., 

Leptothorax spp.), but possibly destroying it for others (e.g., Camponotus spp.). Further, it is 

less likely that this wood will persist for as long as undamaged wood. Finally, as noted 

earlier, the creation of stumps may provide a resource thermally advantageous for ant colony 

growth. Examples of where harvesting may be detrimental to the ant community would 

include the large scale removal of all living biomass which draws up the water table (Sun et 

al. 2001) and the few pieces of large woody debris that remain on a post-harvest stand. It is 

in the latter case where harvesting operations most deviate from emulating natural 

disturbances. A comparison of regenerating naturally disturbed forests to anthropogenic 

forests would be informative. Overall, however, I suggest that ants appear to benefit from 

harvesting operations. 

Harvesting may not be the only anthropogenic process to alter the ecosystem in favor 

of ants. For a taxon as thermophilic as the ants, climate change is also likely to be largely 

beneficial although species assemblages would be expected to change. The BC Ministry of 

the Environment report on climate change (MOE 2007) indicates that summer temperatures 

in the Smithers area, close to Houston, the focal point of this study, have been increasing 

0.14 °C per decade since 1950 (note: this was not statistically significant at a = 0.05 although 

larger increases noted for winter, spring and mean annual temperatures were significant). 

This suggests an increase of almost 1 °C in summer temperatures since 1950, and the report 

estimates additional temperature increases of 2-3 °C by 2050, although these latter 

temperatures are mostly associated with winter. It is not possible to determine if climate 

change to date has altered the ant fauna of these forests as no historical data on ant 
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communities are available. Given the historically cooler climate, lack of harvesting, and the 

narrow thermal window for Formica aserva, however, it is possible that this ant was 

uncommon or absent 60 years ago. With increasing temperature, it is likely that new ant 

species will be introduced into the area, most likely species described for the Prince George 

area (Lindgren and Maclsaac 2002), which is connected to Houston by the Highway 16 

corridor. Environment Canada climate records for Prince George indicate a current mean 

temperature in June, July, and August 1 °C warmer than Topley, which is the nearest federal 

weather station to Houston (14.5 °C versus 13.5 °C). This small temperature difference has 

been shown repeatedly in this dissertation to be significant to the ant community. 

Given the relationship between the sub-boreal ant community and temperature 

developed in this dissertation, ants may have some utility as indicators of climate change. 

Andersen (1999) described ideal bioindicators as species-rich, functionally important, 

sensitive to environmental fluctuations, reliable and easy to identify. The ant community in 

the sub-boreal forests where my research was conducted are functionally important (e.g., as 

food for vertebrates and in pest control), have been shown in this dissertation to be sensitive 

to fluctuations in temperature (see Chapter 5), and are reliable (see Figure 3.1). Where they 

are less ideal are in species richness, the ease of identification, and, in my opinion, in 

sampling. The interpretation of data relating to ant community structure, derived from 

sampling, has been shown here to be complex, and requires a clear identification of 

objectives to ensure the best approach is used. Although it is tempting to advocate for a 

continuation of the primary sampling technique used in this dissertation, i.e., unit area 

sampling of CWD, I suspect that while new introductions to the area may increase CWD ant 

biodiversity, the most significant change will be the arrival of new soil nesting species. 
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Slight increases in soil temperatures from climate change, combined with lower soil moisture 

that may arise a few years into serai regeneration, may allow species nesting under rocks or 

those building thatch mounds to establish. How these will interact with the current 

community is unknown, but it may introduce more general competition into these forests. 

Given this, the use of pitfall traps within these forests to detect the arrival of soil nesting ants 

will most likely be the best methodology for detecting a shift in climate fundamental enough 

to restructure these communities. 

It is my hope that this dissertation provides a foundation for continued research on 

ants in BC. Although the ant community in this study appears to be strongly influenced by 

temperature, many of the patterns and relationships here may be applicable to ant 

communities in southern BC, they may be temporally shifted. In addition, the finding that 

woody debris acts as a form of thermal refugia for ants in these cool moist forests, is an 

observation that may have broader value. Taxa other than ants, may be residing only in 

woody debris. Their discovery and their relationships to ecosystem processes in the forests 

of BC are yet to be established. 
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Appendix I. Dates of pitfall trap and mini-Winkler sampling in 13-15 year post-harvest 
stands (pine-leading, sub-boreal spruce biogeoclimatic zone, moist-cold subzone, 
variant 2 (SBSmc2) (Meidinger and Pojarl991)) near Houston, BC. 

Site Name Pitfall Pitfall Mini- Mini-
Traps Set Traps Set Winklers Winklers 

One Two Set One Set Two 

Topley 30-Jun-04 03-Aug-04 23-Jul-04 05-Aug-04 
Fenton Creek 30-Jun-04 05-Aug-04 22-Jul-04 16-Aug-04 
NadinaWest 22-Jun-04 08-Aug-04 22-M-04 08-Aug-04 
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Appendix III: An inventory of the ants of this dissertation with natural history 
annotations relating to the most common species. 

Sub-family Formicinae 

The subfamily Formicinae comprise some of the ants most familiar to people living in 

temperate regions of the world, including carpenter ants and red wood ants. Most are 

medium (5-8 mm) or large ants (>8 mm) and are common in forests, grasslands and urban 

environments. Many members of this taxon tend honeydew excreting insects for a 

substantial portion of their diet. This sub-family is characterized by the replacement of a 

sting by a round, often nozzle-like acid-secreting opening called the acidopore, and a single 

scale-like petiole (an isolated segment between the alitrunk and abdomen) (Holldobler and 

Wilson 1990). The most common genera are Camponotus, Formica, and Lasius. 

Camponotus (Camponotus) herculeanus (Linnaeus) 

Camponotus herculeanus (Figure III. 1) is a medium to large ant, notably 

polymorphic, with minors and majors ranging in size from 6-13 mm (Hansen and Klotz 

2005). This species is considered to be circumpolar up to the treeline and is found in the 

north-eastern United States, as well as along the Rocky Mountains in the western United 

States, down to Mexico (Hansen and Klotz 2005). Where it is largely absent in North 

America it appears to be replaced by C. pennsylvanicus. 

As is typical for polymorphic species, C. herculeanus is normally monogynous. 

Multiple queens have been identified in some nests but they had clearly defined internal 

territories within the nests (Holldobler 1962). Laboratory cultures, initiated with multiple 

queens, maintained a polygynous but territorial internal nest structure only for a few months 

or years before queens attacked each other reducing the nest to a monogynous nature. It has 
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Figure III. 1. A Camponotus herculeanus nest with workers and pupae exposed in an opened 
nest within woody debris. Approximate worker length is 9 mm. Photo taken in a 15-yr post-
harvest site approximately 50 km south of Houston on 10 July, 2005. Photo credit: R. 
Higgins. 

164 



been reported from laboratory observations, that queens can live in excess of 10 yr 

(Holldobler and Wilson 1990). 

As is typical for many species in this large genus, Camponotus herculeanus normally 

nests in woody debris, hence the common generic name 'carpenter ants.' Rare colonies have 

been reported in soil, however (Francoeur 1983). Mature colonies may range in size from 

3,000 to 12,000 workers and some consider this species a major cause of structural damage 

in buildings throughout its range (Hansen and Klotz 2005). Established colonies will 

normally form satellite colonies throughout their territory in which larvae and pupae may be 

raised, making it difficult to distinguish between the natal and satellite colonies. It has been 

reported that this species is nocturnal (Hansen and Klotz 2005), although this may reflect a 

preference for cool conditions. We have certainly observed this species actively foraging 

during the day. 

Reproductives are normally maintained within the nest over the winter, unlike most 

species which do not begin to lay reproductive eggs in the spring. This allows C. 

herculeanus to initiate mating flights early in the year (e.g., late May or early June) (Sanders 

1970). It was reported that 50-75% of solitary queens die during hibernation over the first 

winter (Heinze and Holldobler 1994). 

Camponotus herculeanus is omnivorous, frequently tending aphids (especially giant 

conifer aphids, Cinara spp. in British Columbia) for their energy-rich honey-dew, but also 

predaceous upon forest arthropods. Nests of C. herculeanus are frequently targeted for food 

by black and grizzly bears in BC (unpublished personal observations). 

Other species of Camponotus collected in this study include: 

Camponotus noveboracensis (Fitch), (Location-Houston); 
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Camponotus modoc Wheeler W.M., (Location-Knife Creek). 
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Formica aserva Forel (formerly F. subnuda Emery) 

Formica aserva (Figure III. 2) is a medium to large ant, 6-9 mm long, that belongs to 

the Formica sanguinea species-group (Naumann et al. 1999). It is aggressive and when a 

nest is disturbed, workers will quickly swarm, bite and spray formic acid. While four species 

within this species group are recorded in British Columbia (Naumann et al. 1999), F. aserva, 

is by far the most common. Superficially, however, this ant is similar in coloration and size 

to several members of the F. rufa species-group, the so-called 'red wood ants,' of which, 

many are common throughout British Columbia. 

Formica aserva is only known from North America where its distribution is described 

as ranging across the continent, including the Yukon and Alaska (Creighton 1950). It was 

not discovered in Churchill (Gregg 1972) unlike the other four species described in this 

Appendix. Specimens have also been described from Washington and California at both 

high and low elevations (Ward 2009), but Coovert (2005) notes that he does not believe it 

occurs in Ohio. Thus, the distribution of this species appears to be northern, short of the 

treeline, across Canada, and extending south into western United States. 

Formica aserva forms colonies in a variety of locations. This species has been 

described as nesting in "mineral and organic matter, in heavy or open deciduous and 

coniferous woods, or in fully exposed biotypes such as pasture (Francoeur 1983)." It is 

commonly found nesting in woody debris, where it may or may not pile thatching around the 

wood (Talbot 1985). Colony sizes were estimated at 3,000-4,000 (Savolainen and Deslippe 

1996). 
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Figure III.2. Formica aserva workers moving pupae in a newly opened nest. Estimated 
worker length approximately 8 mm. Photo taken in a 15-yr post-harvest site approximately 
50 km south of Houston on 09 July, 2005. Photo credit: R. Higgins. 



Members of the F. sanguinea species-group are characterized by parasitic dependent 

nest founding (Holldobler and Wilson 1990). This form of nest founding involves the queen 

invading the nest of another species, normally a member of the F.fusca species-group, 

killing the native queen or queens, and then beginning to lay eggs that will be tended and fed 

as they develop into larvae by the parasitized species. Formica aserva is known to parasitize 

Formica neorufibarbis Emery, F. subaenescens Emery, F. argentea Wheeler, and F.fusca L. 

(Wheeler GC and Wheeler J 1963; Francoeur 1983). 

Facultative slave taking is also characteristic of this species-group. This behaviour 

involves established F. sanguinea species-group nests attacking the nests of other species 

(again, normally members of the F.fusca species-group), killing any workers attempting to 

defend the nest, and then carrying away pupae to their own nest. These pupae eclose in the 

F. sanguinea species-group nest and then begin to work for the slave-taking species. 

Detailed descriptions of slave raids initiated by F. sanguinea subintegra have been made 

(Talbot and Kennedy 1940). It is generally thought, however, that once F. aserva has 

established a nest it does not continue to engage in slave-raids as frequently as other 

members of this species-group. It has been noted that the Dufour's gland, a 'propaganda' 

gland used to secrete pheromones inducing panic among attacked species, is smaller in F. 

aserva than in other members of the F. sanguinea species-group (Savolainen and Deslippe 

2001). 

Like C. herculeanus, Formica aserva is omnivorous, tending aphids or preying upon 

forest arthropods. Nests of F. aserva are frequently targeted for food by black and grizzly 

bears in BC (unpublished pers. obs.). 
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While F. aserva is the only member of the Formica sanguinea species group 

collected in the work for this dissertation, it is easily mistaken for members of the Formica 

rufa species group with which it shares similar coloration and size. Members of the Formica 

rufa species group collected in this dissertation include: 

Formica dakotensis Emery (Location-Houston. This is the first identification of this species 

in British Columbia), 

Formica obscuripes Forel (Location-Becher's Prairie), 

Formica obscuriventris Mayr (Location-Houston), 

Formica oreas Wheeler W.M. (Location-Knife Creek). 
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Formica neorufibarbis Emery 

Formica neorufibarbis (Figure III.3) is a medium sized ant, approximately 5-6 mm in 

length. It is a common member of the Formica fusca species-group, and is often encountered 

in urban environments. 

This species is reported as broadly distributed throughout North America (Wheeler 

GC and Wheeler J 1986). It is known from northern Alaska to northern Newfoundland but 

also found as far south as New Mexico, Arizona and California. It was reported in Churchill, 

Manitoba (Gregg 1972), and reported as common at the treeline (Francoeur 1983). This 

species was identified in northern sandy soils and in open spruce-lichen forests (Francoeur 

1983). It has been suggested that F. podzolica replaces F. neorufibarbis in similar habitats 

farther south (Francoeur 1983). 

Although colonies in northern Quebec were reported as consisting of a few hundred 

individuals (Francoeur 1983), colonies in Colorado were reported as reaching 21,000 

workers (Billeck 2001). In both locations, however, the colonies were normally polygynous. 

In North Dakota it was reported that all colonies were in woody debris (Wheeler GC and 

Wheeler J 1963). Francoeur (1983) reports finding this species only occasionally in wood, 

with most colonies under stones or in sandy terraces, although his work was at the treeline. 

Pupae of this species are commonly taken away to become slaves within the nests of 

facultative or obligate slave-taking species (e.g., F. aserva, Polyergus breviceps Emery). 

Formica neorufibarbis is reported as seldom aggressive with other species of ants and does 

not defend its territory (Billeck 2001). 

The diet of Formica neorufibarbis is similar to that of C. herculeanus and F. aserva, 

including predation (personal observations and Figure III.3). 
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Figure III.3. A Formica neorufibarbis worker dragging a, still living, carabid beetle, 
Synuchus impunctatus (Say). Approximate worker length is 6 mm. Photo taken in a 10-yr 
post-harvest site approximately 75 km north-east of Houston on 07 July, 2005. Photo credit: 
R. Higgins. 

172 



There are many species within the Formica fusca species group to which this ant 

belongs, however its coloration is fairly unique, similar only to Formica subpolita which has 

a much glossier integument. Most other members of this species group lack reddish 

coloration, and are mostly black or black/brown. Other members of this species group 

collected for this dissertation include: 

Formica accreta Francoeur (Location-Houston); 

Formica argentea Wheeler W.M. (Location-Knife Creek, Houston); 

Formica fusca Linnaeus (Location-Knife Creek, Houston); 

Formica hewitti Wheeler (Location-Houston); 

Formica podzolica Francoeur (Location-Knife Creek); 

Formica subpolita Mayr (Location-Becher's Prairie). 

The genera Lasius and Polyergus are closely related to Formica but easily 

distinguished either microscopically or to an experienced observer. Species of these genera 

collected during the work for this dissertation include: 

Lasius alienus (Foerster), (Location-Houston); 

Lasius crypticus Wilson, (Location-Becher's Prairie); 

Lasius pallitarsis (Provancher), (Location-Houston); 

Polyergus breviceps Emery, (Location-Houston). 
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Sub-family Myrmicinae 

Members of this sub-family are typically smaller, both shorter and thinner, and form 

smaller colonies than most members of the sub-family Formicinae. They range in size from 

3-7mm with colonies of perhaps a few dozen to a few hundred individuals. The Myrmicinae 

are characterized by the possession of a sting, although it is too small in most species in 

British Columbia to break the human epidermis. They also possess two isolated petioles (as 

opposed to one in the Formicinae) between the alitrunk and abdomen (Holldobler and Wilson 

1990). Common genera are Leptothorax and Myrmica. 

Leptothorax muscorum (Nylander) 

Leptothorax muscorum (Figure III.4) is considered a species complex that is 

circumpolar (Heinze et al. 1996). While some authors consider this species in Canada as L. 

canadensis, (Brown 1955, Heinze et al. 1996) this combination is not officially recognized 

(Bolton et al. 2006). Unfortunately, no comprehensive keys exist for the identification of 

species within this genus in Canada. Four species are listed as occurring in BC but that 

would almost certainly be an underestimate (Naumann et al. 1999). 

Workers of this minute species are seldom greater than 5 mm in length, usually 2.5-

3.5 mm. Colonies are small, usually consisting of a few dozen workers (Heinze 1993a), 

although some nest populations can reach 100 or more (Francoeur 1983). The boreal 

Leptothorax spp. are considered to be usually polygynous (i.e., multiple queens), with both 

nest founding by single and multiple queens as well as the later acceptance of additional 

queens (secondary polygyny) into established nests (Heinze 1993b). Secondary queen 

acceptance, however, may not always be successful, as illustrated (Figure III.4), where 

Leptothorax muscorum workers encountered by the author were found to be killing a queen 

on the surface of a piece of downed woody debris. 
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Figure III.4. Leptothorax muscorum workers killing a queen on the surface of a piece of 
downed woody debris. Photo taken in a 15-yr post-harvest stand approximately 50 km south 
of Houston on 03 August, 2005. Estimated worker length is approximately 4 mm. Photo 
credit: R. Higgins. 
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Leptothorax muscorum is described as nesting in almost any type of woody debris, 

ranging from twigs to large pieces of coarse woody debris (Francoeur (983). We have found 

this species in twigs similar in size to a pencil as well as under rocks, directly in the soil in 

warm grasslands. 

The most northerly location at which it has been located is at Kidluit Bay, Richards 

Island NWT (69 32'N 133 47'W) (Brown 1955). It was also described in Churchill, 

Manitoba (Gregg 1972) and has been associated with cold conditions (Wheeler GC and 

Wheeler J 1986). While many ant species move into the ground during the winter, this 

species remains within woody debris (Heinze et al. 1996). When temperatures within nests 

overwintering in Russia were monitored, outside temperatures dropped to a nadir of-57 °C, 

while nest temperatures did not drop below -25 °C because of snow cover (Berman et al. 

1982). Laboratory work indicated that permanent damage to hibernating larvae did not occur 

until temperatures reached -41°C. 

Reproductive alates (i.e., winged queens and males) were observed on July 19th in New 

Hampshire (Brown 1955). 

We could find no records indicating preferred food resources. Presumably it feeds 

upon microarthropods or small arthropod eggs in woody debris or forest litter. It is recorded 

as being occasionally found in proximity to C. herculeanus and F. neorufibarbis (Wheeler 

GC and Wheeler J 1986) which may suggest it steals food from these species. 

Of the ants collected during the course of this dissertation, L. muscorum is the 

smallest and rarely confused with other genera. This genus, however, is in need of 

taxonomic revision. 
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Myrmica alaskensis Wheeler W.M. (formerly M. kuschei) 

Myrmica alaskensis (Figure III. 5) is a thin, small to medium sized ant (5-6 mm) that 

has seldom been mentioned in the literature. This may be the result of inadequate and 

incomplete species keys available for this genus. Francoeur (1983), after examining material 

collected by Gregg (1972) in Churchill, Manitoba, reported that Gregg misidentified this ant 

as M. brevinodis. It is unclear how many identifications of M. brevinodis (now recognized as 

M. incompleta) (Bolton et al. 2006) might be M. alaskensis. The publication, "The Ants of 

the Idaho National Laboratory," make no attempt to identify this taxon below the level of 

genus (Clark and Blom 2005). 

This species is reported as present in moist boreal forests across North America from 

Labrador to Alaska (Francoeur 1983). Its nests are described as occurring in "organic and 

mineral soil, within a small hummock of Polytrichum spp. or dead wood, such as decaying 

stumps covered by mosses," (Francoeur 1983). It is not reported in the Ants of North Dakota 

(Wheeler GC and Wheeler J 1963), the Ants of Nevada (Wheeler GC and Wheeler J 1986), 

the Ants of Ohio (Coovert 2005), and the AntWeb website (Ward 2009) at the University of 

California, only records this species in Alaska, suggesting this is a cool climate specialist. 

Myrmica spp. ants have been extensively examined in Europe and are generally 

considered polygynous (Elmes and Wardlaw 1993). Extensive work on the adaptations of 

members of this genus, although not M. alaskensis, to cool climates, has been performed on 

the Russian fauna by V.E. Kipyatkov. 

We could find no records indicating preferred food resources. As with Leptothorax 

muscorum, this species is most likely feeding upon microarthropods or small arthropod eggs. 
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Figure III. 5. A Myrmica alaskensis worker moving a larva in a recently opened nest within 
woody debris. Approximate worker length is 5 mm. Photo taken in a 15-yr post-harvest site 
approximately 50 km south of Houston on 09 July, 2005. Photo credit: R. Higgins. 



Species within this genus are taxonomically challenging. Other species within this genera 

that were collected during the course of the work for this dissertation include: 

Myrmica crassirugis Francoeur, (Location-Becher's Prairie) (Note: the taxonomic 

description of this species made use, in part, of the specimens collected in this work 

(Franceour 2007)). 

Myrmica incompleta Provancher, (Location-Houston); 

Myrmica fracticornis Forel, (Location-Knife Creek, Houston). 

This genus does have a similar appearance to the genus Aphaenogaster although the 

shape of the alitrunk is distinctly different. The only member of this latter genus to be 

collected by sampling for this dissertation was: 

Aphaenogaster occidentalis (Emery), (Location-Knife Creek). 
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Sub-family Dolichoderinae 

In British Columbia only two species belong to this sub-family, Tapinoma sessile 

(Say) (Figure III.6) and Liometopum luctuosum Wheeler,W.M. In the samples collected for 

this dissertation only Tapinoma sessile was identified, at both the Knife Creek and Becher's 

Prairie sites. While this sub-family is often referred to as the Dominant Dolichoderinae by 

myrmecologists working in the tropics and sub-tropics, it is clearly not a dominant sub

family in BC and is largely replaced by the Formicinae. In the course of this study, 

Tapinoma sessile, a minute ant (2.5-4 mm) was identified nesting in twigs, at the base of 

bunchgrass, under rocks and within cattle dung. A common name for this species is odorous 

house ant. As implied, it is a frequent house pest, infesting residential and commercial 

kitchens, noted for forming narrow foraging columns toward any food source. 

Members of this sub-family are characterized by a slit-like opening at the end of the 

gaster and a reduced petiole that attaches ventrally to the abdomen (Holldobler and Wilson 

1990). 
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Figure III.6. Tapinoma sessile moving larvae within a nest. Approximate worker size 3.5 
mm. Photo taken in the Williams Lake river valley, 20 April, 2005. Photo credit: R. Higgins. 
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