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Abstract 

Several important issues of El Nino-Southern Oscillation (ENSO) predictability were 

studied using the latest version of the Zebiak-Cane model, singular vector (SV) analysis, 

ensemble hindcast, and information theory for the period of 148 years, e.g., the dominant 

factors controlling ENSO prediction skills, the useful precursors of forecast skill, ensemble 

construction and probabilistic verification. 

More precisely, there are four main sections in this thesis. 1) A fully physically-based 

tangent linear model was constructed for the Zebiak-Cane model and a singular vector (SV) 

analysis for the 148 year (1856-2003) was performed. It was found that the leading SVs are 

less sensitive to initial conditions while singular values and final perturbation patterns 

exhibit a strong sensitivity to initial conditions. The dynamical diagnosis shows that the total 

linear and nonlinear heating terms play opposite roles in controlling the optimal perturbation 

growth. 2) Relationships between the singular values and actual prediction skill measures 

were investigated. At decadal/interdecadal time scales, an inverse relationship exists between 

the leading singular value (SI) and correlation-based skill measures whereas an in-phase 

relationship exists between the SI and MSE-based skill measures. However, SI is not a good 

predictor of prediction skill at shorter time scales and for individual predictions. An 

offsetting effect was found between linear and nonlinear perturbation growth rates, which 

have opposite contributions to the S1. 3) Ensemble and probabilistic ENSO predictions were 

performed for the 148 yrs. Four typical ensemble construction strategies were investigated. 

Results suggest that "reliability" is more sensitive to choice of ensemble construction 

strategy than "resolution". The fourth strategy produces the most reliable and skillful ENSO 
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probabilistic prediction, benefiting from the contribution of the stochastic optimal winds and 

singular vector of SSTA. 4) Information and ensemble-based potential predictability 

measures are explored on multiple time scales. Relative entropy is better than predictive 

information (PI) and predictive power (PP) in quantifying the correlation-based prediction 

skill; whereas PI/PP is a better indicator in estimating mean square error (MSE)-based 

prediction skill. 
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Chapter 1: Introduction 

1.1. ENSO Predictability 

El Nino/La Nina and the Southern Oscillation (ENSO), a coupled atmosphere-ocean 

interaction in the tropical Pacific Ocean, is the strongest interannual variability in the climate 

system. It happens in the tropical Pacific Ocean with a time period of 2-7 years and has 

global climatic, ecological, and social impacts. ENSO influences the mid-latitude regions 

through teleconnections and through ocean current anomalies. Significant impacts of ENSO 

on Canadian natural resources and the environment have been documented in a variety of 

areas including water resources, agriculture, forestry, fisheries, power utilities, coastal zones 

and other climate sensitive sectors of the Canadian economy (e.g., Hsieh et. al., 1999; 2003). 

For example, during El Nino, temperatures in the BC interior, especially in winter, are above 

normal and summer precipitation is typically below normal. Mountain pine beetle and forest 

fires are the two major natural disturbance agents in interior forests. Warm winter is 

favorable to mountain pine beetle survival and may lead to increases in lodgepole pine 

mortality. At the same time fire risk increases under warm and dry summer conditions. 

ENSO Predictability is referred to as the extent to which it is possible to predict ENSO 

events. Generally, there are two sources that limit ENSO predictability: (i) uncertainty in 

initial conditions, and the chaotic behavior of the nonlinear dynamics of the coupled system 

(e.g., Jin et al. 1994; Chen et al. 2004); and (ii) atmospheric noise (i.e. weather events) and 

other high-frequency variations such as westerly wind bursts and the Madden-Julian 

oscillation (e.g., Penland and Sardeshmukh 1995; Kleeman and Moore 1997; Vecchi and 
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Harrison 2003; Moore et al. 2006; Gebbie et al. 2007). In addition, model errors in the 

parameterizations of physical and dynamical processes also have impacts on the 

predictability. The first factor is referred to as the first kind of predictability, which is related 

to the nonlinear interactions and related instabilities within a chaotic system. And the second 

kind of predictability depends on the boundary conditions relevant for the system, such as 

the external atmospheric forcing. Some studies have suggested that the model-based 

prediction of ENSO depends more on the initial conditions than on unpredictable 

atmospheric noise (i.e., Tang and Hsieh 2003; Chen et al. 2004). 

Significant progress has been made in understanding and predicting ENSO over the past 

decades. Many models with different levels of complexity such as simple models, 

intermediate coupled model, hybrid models and fully coupled general circulation models 

(GCM), have reached a correlation skill of 0.5 for predictions of 6-12 months or longer. 

However, some important issues still remain and are challenging to the ENSO community, 

including some important issues: i) Identifying the optimal growth of initial errors; ii) 

Estimating the prediction uncertainty; and iii) Seeking good measures of potential 

predictability that do not make use of observations, by which the degree of confidence that 

can be placed in an individual forecast can be assessed. 

The first kind of predictability issue is inherent to the nature of ENSO prediction, the 

future evolution of the system depends critically on the initial state from which it started. A 

widely used strategy in studying the initial error growth is through the singular vector (SV) 

analysis, a mathematical method to measure the optimal error growth of nonlinear dynamic 

systems (an introduction to the SV analysis method will be given in section 2.3). The earliest 
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work using SV to explore the atmospheric prediction error growth due to uncertainties in 

initial conditions was documented in Lorenz (1965). In recent years, a number of models 

were used to explore the initial error growth of ENSO prediction using the SV analysis 

method. Chen et al. (1997) used the Battisti (1988) version of the Zebiak-Cane (ZC) model 

to calculate the SV and found that the optimal perturbation pattern consists of an east-west 

dipole in the entire tropical Pacific basin superimposed on a north-south dipole in the eastern 

tropical Pacific. Xue (1997a, b) constructed a forward tangent linear model for the ZC model 

using a Markov model and multi-variable EOF method performed on the reduced model 

physical space. Their SV spatial distribution was similar to that in Chen et al. (1997). Fan et 

al. (2000), using a different intermediate complexity coupled model, found that optimal error 

growth depends critically on the seasonal cycle and ENSO phase as well as the lead time of 

prediction. Tang (2006) studied the ENSO Predictability using a fully coupled GCM model 

and discussed some deficiencies in the GCM and their possible influences on SV growth. 

A crucial component of any prediction system is the ability to estimate the predictive skill 

of a forecast so that the uncertainty of an individual forecast can be quantitatively estimated 

practically. This issue is often studied by using ensemble predictions, i.e., repeating a 

prediction many times, each time perturbing the initial conditions of a forecast model. A 

review of ensemble construction method is presented in section 1.2. Through ensemble 

prediction, the shape of the forecast probability density function (PDF) that describes the 

prediction uncertainty can be estimated. Under the assumption of a Gaussian process, a PDF 

can be characterized by its mean and variance, i.e. ensemble mean and ensemble spread. 

Another important task in predictability study is to seek good measures of potential 
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prediction skill measures that do not make use of observations and actual prediction skills 

that are evaluated using observations, by which the degree of confidence that can be placed 

in an individual forecast can be assessed. Traditionally, the ensemble mean, ensemble spread 

and the ensemble ratio of signal-to-noise (ensemble mean over ensemble spread) are widely 

used as the measures of potential predictability to estimate the predictive skill a priori (e.g., 

Buizza and Palmer 1998; Moore and Kleeman 1998; Scherrer et al. 2004; Tang et al. 2008a). 

However, these ensemble measures have often met with challenges and limitations (Tang et 

al. 2005; Tang et al. 2007; Tang et al. 2008a, 2008b). In recent years, new ideas from 

information theory have made their appearance to examine ENSO and seasonal climate 

predictability, and many information-based measures have been used to quantify the 

predictability, such as information entropy, relative entropy, predictive information, mutual 

information (Schneider and Griffies 1999; Kleeman 2002, 2008; Tippett et al. 2004; Tang et 

al. 2005, 2008b; DelSole 2004, 2005, 2007, 2008). 

While these issues have been addressed and studied for some years, all these 

aforementioned studies focused on a period of 20-30 years, so that the period available to 

test predictability covers rather few ENSO cycles (typically 10 or less), which precludes 

statistically robust conclusions. Chen et al. (2004) used KAPLAN SSTA reanalysis data and 

the LDE05 version of the ZC model (LDE05 hereafter) to perform a 148 years hindcast 

between 1856 and 2003. They successfully predicted almost all prominent El Nino events 

during this period at lead times of up to two years. Tang et al (2008b) further analyzed the 

interdecadal variation in ENSO prediction skill from 1881-2000 using multiple models. 

These retrospective ENSO predictions allow us to achieve a robust and stable study of 
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statistical predictability of ENSO. In this thesis, ENSO predictability will be explored in a 

period of over 100 years. Focus will be placed on exploring the optimal error growth of 

ENSO prediction and potential predictability, as well their relationship and 

decadal/interdecadal variations. With long-term SV analysis and corresponding retrospective 

ENSO ensemble prediction, it is expected that some new findings and understanding in 

ENSO predictability can be made. 

1.2. Ensemble and probabilistic ENSO predictions 

Ensemble forecasting has been widely used to explore the uncertainty of weather and 

climate predictions. Compared with a deterministic (single run) forecast, an ensemble 

forecast has many advantages. First, ensemble averaging acts as a nonlinear filter; it removes 

less predictable parts, and keeps more predictable features among the ensemble members 

(e.g., Leith 1974). A properly designed ensemble has higher skill than that of individual 

ensemble members in a statistical sense (Toth and Kalnay 1997). Second, ensemble 

prediction provides a practical tool for estimating the possible uncertainties in a forecast 

system. Ensemble forecasts can provide additional information, such as the probability 

density function (PDF) of a forecast, ensemble-based potential skill measures (i.e. ensemble 

mean, ensemble spread, and ensemble ratio), and probabilistic skill measures, which are 

useful in decision making. It is shown that probability forecasts have greater potential 

economic value than corresponding single deterministic forecasts with uncertain accuracy 

(e.g., Palmer 2000). 
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1.2.1. Ensemble Construction Strategies 

Generally two kinds of strategies are used to produce optimal perturbations for ensemble-

based ENSO predictability studies: i) perturbation of the initial conditions; ii) perturbations 

in the stochastic atmospheric noise through the whole forecast period. In addition, 

considering that model errors exist in physical/dynamical parameterizations, perturbation 

can be applied on model parameters, or using a multiple model ensembles approach (e.g. 

Kirtman and Min 2009). The first kind of strategy was often used by SV analysis (e.g., 

Lorenz 1965; Chen et al. 1997; Xue et al. 1997a, b; Battisti 1988; Fan et al. 2000; Cai et al. 

2003, Tang et al. 2006) whereas the latter was performed in the framework of the stochastic 

optimal theory (e.g., Kleeman and Moore 1997, Moore and Kleeman 1998, 1999; Tang et al. 

2005). Significant progress has been made in using these optimal perturbations to study 

ENSO predictability as cited above. However these previous studies mainly focused on the 

optimal error growth of ENSO deterministic predictions. The impact of perturbation 

construction on the ensemble probabilistic predictions has not been well addressed, 

especially using long-term retrospective ensemble predictions over periods as long as 100 

years. In this study, we will explore this issue using SV-based perturbation methods. So far, 

the SV method itself has not been well examined in the framework of ENSO ensemble 

probabilistic prediction. One reason is that the SV analysis needs a tangent linear model 

(TLM), which is often technically difficult to produce. Another reason is the lack of long-

term forcing data for initializing predictions, so that previous retrospective predictions were 

limited to a short period of 20-40 years, with a rather limited number of ENSO cycles. This 

may preclude statistically robust conclusions. In this thesis, a fully physically-based TLM 
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will be constructed for the LDE05 model, and singular vector analyses will be performed for 

the 148 year period from 1856-2003. The SV analysis will make it possible to construct 

ensemble predictions with the LDE05 model, so that the shape of the forecast probability 

density function (PDF) that describes the prediction uncertainty can be estimated, and the 

probabilistic nature of ENSO predictability can be explored. 

Another issue is the role of stochastic atmospheric noise in ensemble ENSO predictions. 

It has been well recognized that stochastic atmospheric forcing associated with synoptic-to-

intra-seasonal variability is critical in forming, developing and maintaining ENSO cycles 

(e.g., Penland and Sardeshmukh 1995; Kleeman and Moore 1997; Eckert and Latif 1997; 

Blanke et al. 1997; Kirtman and Schopf 1998; Moore and Kleeman 1999; Thompson and 

Battisti 2000; Fluegel et al. 2004; Moore et al. 2006; Philip and van Oldenborgh 2009; 

Eisenman et al. 2005; Gebbie et al. 2007; Tziperman and Yu 2007; Zavala-Garay et al. 2003; 

Perez et al. 2005; Zhang et al. 2008). These studies consider that the high-frequency 

synoptic-scale atmospheric motion (i.e. weather events) and other high-frequency variations 

such as westerly wind bursts and the Madden-Julian oscillation (MJO) provide stochastic 

forcing to the ENSO modes and hence acting as a limit to the predictability. However, it is 

not very clear so far how the stochastic atmospheric noise impacts ENSO probabilistic 

predictions. 

1.2.2. Verification for Ensemble-Based Probabilistic Prediction 

An important task associated with ensemble construction is to evaluate an ensemble-

based probabilistic prediction system by probabilistic verification methods, from which the 
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performance of the prediction system and the ensemble construction method can be 

quantitatively evaluated. Probabilistic verification is known as an important complement to 

deterministic verification, which provides a useful and quantitative way to measure 

uncertainty (Palmer 2000; Kirtman 2003). In contrast with the traditional prediction skill 

measures such as anomaly correlation (R) skill and root mean squared error (RMSE) skill, 

the verification of an ensemble-based probabilistic forecast system focuses on measuring 

two properties: reliability and resolution, which are the two most important characteristics of 

a probabilistic forecast system (Toth et al. 2003). 

An introduction of these properties and probabilistic verification methods will be 

described in Section 4.4. 

1.3. Information-based Measures of Potential Predictability 

We now give a review of information-based measures of potential predictability; for 

further details, consult DelSole (2004) and Tang et al. (2008a). Information-based potential 

predictability measures the difference between two probability distributions: the forecast 

distribution p(v | 0) and climatological distribution q(v). 

p{y | ©) = jp(v | i)p(i | 0)di (1.9) 

Here, conditional probability p(A\B) denotes the probability of A event when B event has 

happened. /, 0 , and v denotes the initial state, the corresponding observation (at initial time 

t), and forecast (at time t+At) respectively. Eq. (1.9) means that the forecast distribution 

p(v | 0) can be theoretically obtained by the initial analysis probability p(i | 0) and the 
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transition probability p{v \ i) of a perfect model system. 

The climatological distribution q(v) can be obtained by the long term forecast run 

(average) or observations. If the variable v is completely unpredictable, the forecast and 

climatological distributions will be identical, i.e. p(v \ ®) = q(v). 

Entropy is a measure of dispersion level (e.g. uncertainty). The entropy of a continuous 

distribution p(x) is defined as 

H(x) = -$p(x)\np(x)dx, (1.10) 

where the integral is understood to be a multiple integral over the domain of x. The larger 

entropy is associated with smaller probability and larger uncertainty. 

A natural measure of predictability is the predictive information (PI), defined as the 

difference between the entropy of the climatological and forecast distributions: 

PI = H(v)-H(v\e) (1.11) 

Consider (1.10), then 

PI = -jq(v)\n[q(v)]dv + J/?(v|©)ln[p(v| ®)]dv . (1.12) 

The first term on the rhs of Eq. (1.12) denotes the entropy of the prior distribution q(v) 

(climatological distribution), measuring the uncertainty of a prior time when no extra 

information is provided from observation or model; whereas the second term represents the 
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entropy of the posterior distribution p(v \ &) (forecast distribution), measuring the 

uncertainty after the observation and associated prediction becomes available. Thus a large 

PI indicates that the posterior uncertainty will decrease because of useful information being 

provided by a prediction (e.g., the larger p(v | ©) the smaller uncertainty), that is, the 

prediction is likely to be reliable (Tang et. al. 2008c). 

An alternative measure of the difference between two distributions is relative entropy 

(RE), 

RE= jp(v\®)ln ̂ ( V | 0 ) U (1.13) 
q(y) 

where q denotes the climatological distribution, and/? is that for the prediction. 

In the case where the PDFs are Gaussian distribution, which is a good approximation in 

many practical cases (including ENSO prediction), the relative entropy may be calculated 

exactly in terms of the predictive and climatological variances, and the difference between 

their means. The resulting analytical expression for the relative entropy R is given by 

(Kleeman 2002, Tang et al. 2008c): 

RE = -\ln 
det(crg

2) 

det(oj) +^kK2r ']+K-^) rK2r 'k-^)-4 o-i4) 

where, q and/? are the climatological and predictive covariance matrices respectively; //?and 

jup are the climatological and predictive mean state vectors of the system, and n is the 

number of degree of freedom. R is composed of two components: (i) a reduction in 
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climatological uncertainty by the prediction [the first two terms plus the last term on the 

right-hand side of (1.14)] and (ii) a difference in the predictive and climatological means [the 

third term on the rhs of (1.14)]. These components can be interpreted respectively as the 

dispersion and signal components of the utility of a prediction (Kleeman, 2002). A large 

value of R indicates that more information that is different from the climatological 

distribution is being supplied by the prediction, which could be interpreted as making it 

more reliable (Tang et al. 2008a). 

For a Gaussian distribution, a univariate state vector with a climatological mean of zero, 

the covariance matrices are scalar variances in (1.14). R, PI, and predictive power (PP) can 

be simplified as (DelSole 2004): 

PI = -\n 
2 

f^\ 

K°pj 

(1.15) 

RE = -
2 

In 
a9 <*, 

PI + -
2 

Dispersion Signal 

•1 + 
EM2 

a„ (1.16) 

PP = \- (1.17) 

A key difference between relative entropy (RE) and predictive information PI is that 

relative entropy RE vanishes if and only if the forecast and climatological distributions are 

identical (i.e., same mean and spread). Remarkably, predictive information and relative 
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entropy are invariant with respect to linear transformations of the state. The average of 

relative entropy and the average of predictive information have precisely the same value 

when averaged over all observations. This quantity is known as mutual information (MI) 

(DelSole 2004). 

1.4. Objectives and Outline 

The thesis study is being carried out through a seminal ENSO prediction model, i.e., 

Zebiak-Cane (ZC) model. For long retrospective predictions, a historic sea surface 

temperature of the past 148 years from 1856-2003 has been assimilated into the coupled 

model. An ensemble strategy that has been widely used to explore the uncertainty of weather 

and climate prediction will be used for quantitatively measure the information provided by 

predictions. To construct ensemble predictions, SV-based optimal perturbation methods will 

be used based on the singular vector (SV) analysis of the 148 years. A newly developed set 

of theoretical tools will be used to explore some essential issues related to ENSO prediction 

and predictability including the dominant precursors of forecast skill and the degree of 

confidence that can be placed in an individual forecast. Emphasis will be placed on using 

long-term retrospective ENSO prediction to derive stable and robust conclusion and findings. 

Since current studies of ENSO predictability usually use hindcasts of 20-30 years, the period 

available to test predictability covers rather few ENSO cycles (typically 10 or less) 

precluding statistically robust conclusions. 

The long-term objective of my research is to significantly improve our capability in 

predicting ENSO/climate variability and in using ENSO/climate prediction. The short-term 
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specific objectives of this research are: 

i) Construct a tangent linear model TLM of the original ZC model for SV analysis. 

ii) Perform SV analysis over the 148 years. The main characteristics of the leading SV, final 

pattern, and perturbation growth rate will be investigated for the 148 years from 1856 to 

2003. The controlling factors and mechanisms of perturbation growth rates will be 

discussed. 

iii) Explore long-term variability of singular values and its relationship with actual 

predictability measures. The relationship has very practical significance and offers a 

practical means of estimating the potential predictability and the confidence level of an 

individual prediction. The relationship between singular value and real predictability has 

not been addressed in previous studies of ENSO predictability due to the lack of 

sufficiently long retrospective prediction and corresponding SV analysis. 

iv) Carry out ensemble retrospective forecast of ENSO for 148 years from 1856-2003. A 

reliable and high resolution prediction system is fundamental in making ensemble and 

probabilistic ENSO predictions, and also important in investigating ENSO predictability 

with potential predictability measures. A perfect model will be convenient in applying 

the information theory to obtain information-based potential predictability measures. 

Thus, toward this objective, several ensemble construction strategies will be discussed 

and their predictions will be verified by probabilistic verification methods. 

v) Use information theory to derive robust measures of the uncertainty of ENSO predictions, 

and to identify the mechanisms responsible for the uncertainties of ENSO predictions, in 

order to find some good information-based and ensemble-based potential predictability 
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measures of ENSO prediction and exploring their relationships with actual prediction 

skill measures. 

This thesis comprises four main chapters 2-5 to achieve the aforementioned goals. In 

Chapter 2, a TLM model is constructed for the ZC model, and SV analyses are performed for 

the 148 years and the controlling factors of perturbation growth are discussed. The third 

chapter explores the relationships of singular value and actual prediction skill. Emphasis is 

on discussing the scale-dependent features of the SI -skill relationship and explaining the 

good relationships between linear/nonlinear growth rate and actual prediction skills. In 

Chapter four, several typical ensemble construction methods are applied in ensemble 

predictions. Using probabilistic verification methods, the best method from the 

SVlsst+SOlwinds was identified, indicting the important role of stochastic optimal 

perturbation at long lead times. Chapter 5 explores the relationships of potential 

predictability measures and actual prediction skill on multiple time scales. The controlling 

factors leading to a good potential measure are given in this chapter. Chapter 6 presents a 

summary of the principal results obtained in the thesis and some suggestions for future work. 
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Chapter 2: Further Analysis of Singular Vector and ENSO Predictability 

in the Lamont Model — Part I: Singular Vector and the Control Factors 

Cheng Y, Tang Y, Zhou X, Jackson P, Chen D (2009) Further analysis of singular vector and 

ENSO predictability in the Lamont model—Part I: singular vector and the control factors. 

Climate Dynamics. DOI 10.1007/s00382-009-0595-7. 

Published version is available at: 

http://www.springerlink.com/content/p328671887136108/ 
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2.1. Introduction 

ENSO is the strongest interannual variability in the global climate system. It happens in the 

tropical Pacific Ocean with a period of 2-7 years and has world-wide climatic, ecological, and 

social impacts. Significant progress has been made in understanding and predicting ENSO over 

the past few decades. At present, there are many ENSO prediction models with differing levels 

of complexity, including intermediate coupled models, hybrid coupled models and fully 

coupled general circulation models (GCM). When measured by the anomaly correlation 

between the predicted and observed sea surface temperature anomalies (SSTA) in the eastern 

Pacific, these models generally have prediction skills as measured by the correlation over 0.5 

for lead times of 6-12 months (Latif 1998; Kirtman et al. 2002; Chen and Cane 2008). However, 

some important issues still remain unsolved such as the relationship between potential 

predictability and the actual prediction skill and the control factors of predictability. 

A widely used strategy in studying initial perturbation growth is through singular vector 

(SV) analysis, a method to describe optimal perturbation growth. The earliest work using SV 

analysis to explore the growth of initial errors was documented in Lorenz (1965). In recent 

years, a number of models have been used to explore optimal perturbation growth of ENSO 

predictions using SV analysis. Chen et al. (1997) used the Battisti (1988) version of Zebiak-

Cane (ZC) model to calculate the SV and found that the optimal perturbation pattern consists of 

an east-west dipole in the entire tropical Pacific basin superimposed on a north-south dipole in 

the eastern tropical Pacific. Xue et al. (1997a, b) constructed a tangent linear model in an EOF-

reduced space for the ZC model via the Markov method. Their SV spatial distribution was 

similar to that of Chen et al. (1997). Fan et al. (2000), using a different intermediate complexity 
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coupled model, found that the optimal perturbation growth depends critically on the seasonal 

cycle and ENSO phase as well as the prediction lead time. Tang et al. (2006) studied ENSO 

potential predictability using a fully coupled GCM and discussed some deficiencies in the GCM 

and their possible influences on SV growth. Zhou et al. (2008) explored the impact of 

atmospheric nonlinearity on the optimal perturbation growth by comparing SVs of two ENSO 

models that have the same oceanic model coupled, respectively, to a linear and a nonlinear 

statistical atmospheric model. 

However, there are still challenging issues concerning optimal perturbation growth that 

warrant further investigation. First, all of the above studies focused on a period of only 20-40 

years, with a rather limited number of ENSO cycles, basically precluding statistically robust 

conclusions. A longer-term SV analysis would result in more robust ensemble feature of SV. 

Second, it has been well recognized that the actual predictability of ENSO has striking 

decadal/interdecadal variations (e.g., Chen et al. 2004; Tang et al. 2008a). One might be able to 

shed light on the mechanism of decadal/interdecadal variation in ENSO predictability by 

exploring decadal/interdecadal variation of the optimal perturbation growth by SV analysis. 

Obviously, the SV analysis for only a 20-40 year period, as performed previously, is unable to 

achieve this goal. Third, it has been of great interest to identify the sources and processes that 

limit the predictability of ENSO. Nonlinearity and stochastic noise are generally thought to be 

two most important factors limiting ENSO predictability. One effective method to explore the 

importance of nonlinearity in ENSO predictability might be to examine the relative roles that 

linear and nonlinear processes play in optimal perturbation growth, which has not been well 

addressed in previous studies. Finally, the relationship between optimal perturbation growth and 

the actual model prediction skill, i.e., between the potential predictability and actual 
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predictability, should be examined under a framework of statistically robust analysis. 

Thus, further SV analysis is required to more fully understand optimal perturbation growth 

and ENSO predictability. In this first part of a two paper study of ENSO predictability, the first 

three challenges discussed above are addressed. In part two of the study, we will focus on actual 

model prediction skills and their relationship to optimal perturbation growth over a long-term 

period, which will provide insights on mechanisms of ENSO predictability. Recently, Chen et al. 

(2004) used KAPLAN sea surface temperature anomaly (SSTA) reanalysis data and the ZC 

model (LDE05 version) to perform a 148 year hindcast experiment for the period of 1856-2003. 

They successfully predicted all of the prominent El Nino events during this period at lead times 

of up to two years, with the SST being the only data used for model initialization. Tang et al 

(2008a) further analyzed the interdecadal variation in ENSO prediction skill from 1881-2000 

using multiple models. These retrospective ENSO predictions allow us to achieve a robust and 

stable study of statistical predictability of ENSO. 

In the present paper, we perform SV analysis for the ZC model version LDE05, from 1856-

2003 using a newly constructed tangent linear model (TLM), then explore ENSO predictability 

using SV analysis. To our knowledge, this study is the first attempt to explore optimal 

perturbation growth of ENSO predictions by SV analysis for a period over 100 years. Emphasis 

will be placed on the first three aforementioned issues, in particular, investigating possible 

control factors and mechanisms responsible for variations in the SV. Section 2.2 briefly 

introduces the LDE05 model, the construction of the tangent linear model, and the SV method. 

Section 2.3 presents the optimal perturbation growth pattern and perturbation growth rate by SV 

analysis. In section 2.4, the variability of SSTA is dynamically diagnosed and the dominant 
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factors controlling the perturbation growth, i.e. nonlinear heating (NH) and linear heating (LH), 

are discussed, followed by a conclusion and discussion in section 2.5. 

2.2 Methods 

2.2.1. Zebiak-Cane Model LDE05 Version 

The model used in this study is the Zebiak and Cane model (Zebiak and Cane 1987; hereafter 

ZC), which has been widely applied for ENSO simulation and prediction. LDE05 is the latest 

version of the ZC model (Chen et al. 2004). The atmosphere dynamics follows Gill (1980) 

using steady-state, linear shallow-water equations. The circulation is forced by a heating 

anomaly which depends on the SST anomaly and moisture convergence. The ocean dynamics 

uses the reduced-gravity model, and ocean currents were generated by spinning up the model 

with monthly wind. The thermodynamics describe the SST anomaly and heat flux change. The 

model time-step is 10 days. The spatial region is focused on the tropical Pacific Ocean (124 °E-

80 °W; 28.75 °S - 28.75 °N). The grid for ocean dynamics is 2° longitude 0.5° latitude, and the 

grid for SST physics and the atmospheric model is 5.625° longitude 2° latitude. 

The SSTA dataset used in this study is a reconstructed analysis data by Kaplan (1998) with 

the period from January 1856 to December 2003. It is only an oceanic dataset available for 

initializing long-term retrospective ENSO prediction over 100 years. With the initialization of 

the SSTA dataset, the LDE05 model successfully predicted all of the prominent El Nino events 

during at lead times of up to two years, and achieved a good hindcast skill (e.g., Chen et al. 

2004; Tang et al. 2008). Note that in the coupled initialization procedure of the LDEO forecast 

system, assimilated SST data are not simply putting a constraint on the ocean model with SST 
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observations; they translate to surface wind field and subsurface ocean memory. 

There are two model output statistics (MOS) schemes to correct model bias in the LDE05. 

One scheme is for SST, and the other is applied to thermocline depth and winds. Bias correction 

terms are given at each time step (Chen et al. 2000). With the two statistical bias correction 

schemes, the imbalance among those model variables (e.g., SST, thermocline depth, and winds) 

due to SST assimilation or perturbation of initial SST in the framework of ensemble can be 

expected to quickly adjust during the prediction period. 

2.2.2. Data and Model Initialization 

The SSTA dataset used in this study is the reconstructed analysis of Kaplan (1998) for the 

extended period of 1856-2003. It is the only the initial data in the current retrospective study, 

identical to that in Chen et al. (2004). Initialized with this monthly analysis, a forecast with lead 

times up to 24 months was made from each month of the 148-yr period. The same data set was 

also used to verify the model predictions. The skillful retrospective predictions initialized by 

this historic SST data from Jan. 1856-Dec. 2003 was shown in Chen et al. (2004) and Tang et al. 

(2008a). The reason is like that given in Chen et al. (2004) as follows. "The LDE05 model has 

a higher predictive skill when multiple data sets—sea level, winds, SST—are used for 

initialization, and its skill decreases only slightly when assimilating only SST data. We have to 

rely on SST data here because tropical Pacific sea level observations are virtually non-existent 

before 1970, and historic wind information is sparse and poorly calibrated. Note that in the 

coupled initialization procedure of the LDEO forecast system, assimilated SST data are not 

simply putting a constraint on the ocean model with SST observations; they translate to surface 

wind field and subsurface ocean memory." 
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There are two bias correction (MOS) schemes included in the LDE05 model. One MOS 

scheme is for SSTA, the bias correction term is given at each time step based on regression 

multiple variables EOF as discussed in Chen et al. (2000). Another one is for thermocline depth, 

currents and winds. With these online statistical bias correction schemes, the balance of those 

variables can be achieved during the prediction period of the LDE05 model. 

2.2.3. Construction of the tangent linear model TLM for the ZC model 

To study the evolution of initial error, the linearized operator L of original nonlinear model, 

i.e., the tangent linear model TLM should be required. In this study, the TAPENADE, an 

Automatic Differentiation Engine*, was used to construct the TLM from the original ZC model. 

To ensure the constructed TLM is correct, a test procedure was performed as below: 

i) A small perturbation was added to the initial condition of TLM and the original model 

respectively. The final patterns from two models were compared after 6-month model 

integration. The results show that there is little difference between the two final patterns. 

ii) The singular vectors derived from the TLM were compared with the SVs in Chen et al. 

(1997) and Xue et al. (1997a). Their similarity verifies the correctness of the TLM 

2.2.4. Theory of Singular Vector Analysis 

The evolution of a small perturbation X of the initial state vectors of a nonlinear dynamical 

model can be represented as: 

* www-sop.inria.fr/tropics/tapenade.html 
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^-LX (2.1) 

where L is the linearized operator of the nonlinear model. At time t + At ̂  the solution to Eq. 

(2.1) is given by, 

X(t + At) = R(t, At)X(t) (2.2) 

R, a function of time and the lead time, is often called the propagator and represents the 

perturbation growth matrices. From (1.1) and (1.2), 

fAlLdt) R(t,At) = exd Ldt] (2.3) 

For the whole model domain, the amplitude of perturbation growth is defined as below, 

_ \\X(t + At)\\ _ (X(t + At),X(t + At))1'2 

l*(0| (X(t),X(t))U2 

(2.4) 
_ (RX(t),RX(t))U2 _ (X(t),R'RX(t))U2 

1/2 / ^r, ^ ^r, N \ " 2 

(X(t),X(t)) (X(t),X(t)) 

Where < > denotes the inner product, R is the transpose of R. An L-square norm is used in Eq. 

(1.4). The eigenvector (E) of R*R is the SV of R, representing the perturbation growth patterns. 

Thus the SV can be obtained by two methods: the empirical orthogonal function (EOF) analysis 

for R*R matrix or singular value decomposition (SVD) analysis. In this study, we use the second 

method, 

R = FAE* (2.5) 
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Where A is a real, positive, diagonal matrix; E and F are orthonormal (unitary) matrices. The 

columns of E and F are SVs and final patterns (FP). From (1.5), we can see the relationship 

between the first SV mode (E}) and the first final pattern FP mode (Fi): 

R(t,^t)El=AlFl (2.6) 

Aj is the largest singular value in the A matrix, representing the amplitude (rate) of the 

optimal perturbation growth (Ej). 

Generally, there are two approaches for SV analysis: a direct method and an indirect method. 

The direct method derives the linearized operator L in (2.1) and its adjoint operator from the 

original nonlinear model, i.e., the tangent linear model (TLM) and the adjoint model (AM), 

both being used for calculating the derivative and gradient of model state variables. The 

procedure of the direct method is to run the original model, TLM, and AM simultaneously 

together with an SVD (Singular value decomposition) algorithm. The application of the direct 

method can be found in the literature (e.g., Moore and Kleeman 1996; Li et al. 2005). The 

indirect method uses two steps to get the propagator (R) in (2.2). The first step is to integrate the 

original model from initial time to several months later (i.e. the optimal period) and to record 

the final state Xf. In the second step, small perturbations, denoted by Xt, are added in the initial 

field of the original model and the original model runs grid by grid. The final state, denoted by 

Xf, is recorded. The perturbation growth during the optimal period, denoted by Xf is the 

difference between Xf and Xf and the propagator R is thus (Xf -Xf)Xi'. The maximum possible 

perturbation growth is the first (largest) singular value of the propagator R. The initial and final 

patterns that accomplish this perturbation growth are the right and left singular vectors ofR. 
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In this study, we propose a mixed algorithm for SV analysis, in which the TLM model was 

directly constructed from the original ZC model but only used for producing R. The advantage 

of this mixed algorithm is that it maintains the computational accuracy by using TLM and 

avoids the technical difficulty inherent in producing the AM model. In implementation, given a 

perturbation onto a model grid, the TLM model integrates forward once; so that the TLM model 

runs as many times as the number of model grids. The initial SSTA perturbation is 0.05°C, 

about 1% of the original SSTA amplitude. It should be noted that the SVs are not very sensitive 

to the amplitude of initial perturbations when the initial perturbation varies between ± 0.25 °C 

for SSTA, ± 2 m/s for zonal and meridional wind anomalies, and + 2 m for thermocline depth 

anomaly (H). The total perturbation growth during the optimal period (Xj) is actually a final 

pattern responding to the initial perturbation (Xt). The relationship between the Xf and th e Xt 

can be described by (2.7), i.e. 

R(t,t + At)Xi=Xf (2.7) 

To avoid calculating the inverse matrix X*, the initial perturbation is fixed at 0.05°C, thus 

Xt is a diagonal matrix with all diagonal elements equal to 0.05 °C. 

R(t,t + At) = ^ - (2.8) 
0.05 

Finally, from Eq. (2.5), we can find the SVs, final patterns, and singular values. 

2.3. SV analysis over 148 years 
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2.3.1 Variations of the first SV and the final pattern 

First, we only consider initial uncertainties in SST. The SV analysis is performed every 

month at the optimal period of 6 months (i.e., 6-month lead) for 1856-2003, using the TLM and 

SVD method, as discussed in section 2.2. In each SV analysis, the optimal perturbation growth 

pattern (the first singular vector, SV1), final pattern, and perturbation growth rates (singular 

values) are obtained. Fig. 2.1a and Fig.2.1b show the averaged SV1 and the corresponding final 

pattern at 6-month lead time over 148 years. As can be seen, the SV1 is dominated by a west-

east dipole in the tropical Pacific Ocean: one center located south of the equator in the eastern 

tropical Pacific Ocean and the other located in the central Pacific Ocean near 150W (Fig. 2.1a). 

Such a dipole structure favorable for the perturbation growth is probably inherent in ENSO 

dynamics. For example, the zonal SSTA gradient at the equatorial eastern Pacific weakens local 

upwelling and intensifies the warm Kelvin waves propagating eastward according to the 

delayed oscillator theory (Suarez and Schopf 1988). The warm eastward propagating Kelvin 

waves bring warm waters to the eastern Pacific Ocean and further intensify the anomalies, 

finally leading to an El Nino-like pattern as shown in Fig. 2.1b. Fig. 2.1a and Fig. 2.1b are 

similar to that in the SV1 and FP of the Battisti coupled atmosphere-ocean model (Chen et al. 

1997) and an older version of the ZC model (Xue et al. 1997a). 

In a coupled ocean-atmosphere model, initial uncertainties may come from the atmosphere 

as well. To examine the sensitivity of the SV1 and the final pattern to uncertainties in the 

atmosphere, we repeated the above SV analysis but included perturbations on the initial 

conditions of both the SSTA and anomalous wind (zonal wind U and meridional wind V). The 

initial perturbation of winds is 0.05 m/s in Fig. 2.2c. The results show that the spatial 
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distributions of the new SV1 (Fig. 2.2a) and the final pattern of SSTA (Fig. 2.2b) are similar to 

those shown in Fig. 2.1a and Fig. 2.1b, indicating the SV1 and the final pattern of SSTA are 

mainly determined by the uncertainty in SST itself. This similarity is because the stochastic 

atmospheric noise is not included in the ZC model and uncertainties in winds are highly related 

to those in SST, thereby, they can be well represented by SST uncertainties. The adjustment of 

the atmosphere to ocean variables such as SST and upper ocean heat content is fast, making the 

atmosphere a "slave" to the ocean at monthly or longer time scales. Warm SST causes 

atmospheric convection, resulting in a convergence of mass in the atmosphere on both sides of 

the equator as shown in Fig. 2.2c, the SV1 of winds. Correspondingly, the final pattern of winds 

shows a strong association with El Nino. For example, large westerly wind anomalies prevail 

over the central equatorial Pacific. The close relationship between SST and the surface wind 

stress over the tropical Pacific has been documented in many studies. The tropical atmosphere 

responds to large-scale SST anomalies in a coherent and reproducible way; the tropical flow 

patterns, especially over the open ocean, are so strongly determined by the underlying SST that 

they show little sensitivity to changes in the initial conditions of the atmosphere (e.g., Stern and 

Miyakoda, 1995; Shukla 1998). Vialard et al. (2005) performed a series of ensemble forecasts 

by the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting 

system using wind, SST perturbation and random perturbation to the atmosphere during the 

forecast, individually and collectively. Their results suggested that the uncertainties in SST 

determine the spread of ensemble forecasts during the first two months of the forecast, while 

perturbations of the wind stress or atmospheric internal variability alone underestimate the 

perturbation growth during the early months of the forecast. Therefore these results suggest that 

ENSO predictability depends more on initial conditions in SST than in atmospheric winds. 
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However, the air-sea coupled components are much deterministic than the uncoupled 

atmospheric noise, thus, to a certain extent, uncertainties are supposed to be originated from 

such noise. Because the atmospheric noise component is not fully considered in the ZC model, 

it leaves room to improve the ENSO predictability by including stochastic atmospheric noise. A 

more useful forecast strategy might be to perform ensemble predictions and evaluate the 

uncertainties of the forecast system and ENSO predictability using probabilistic methods (Chen 

and Cane, 2008). And the SV method is one of the widely used ensemble construction methods 

to generate the probabilistic weather forecasts. 

It has been found in previous work that the SV1 is not sensitive to initial conditions in many 

models (i.e., Chen et al., 1997; Xue et al., 1997a). It is of interest to further explore the 

sensitivity of SV1 to initial conditions using a long-term analysis. To do this, we calculated 

spatial correlations between the 148-yr averaged SV1 and each individual SV1, which measures 

the similarity among individual SVls. The result is shown in Fig. 2.3. For most cases (over 

80%), the spatial correlation coefficients are over 0.80, with an overall average of 0.85 for all 

initial conditions (148x 12 months). Even though the majorities (80%) of SVls are similar, it is 

interesting to know the differences of initial patterns for those (20%) SV outliers from majority 

SVs. Composite maps of SV1 are made for those 80% and 20% cases, as shown in Fig. 2.4a 

and Fig. 2.4b, respectively. As can be seen in Fig. 2.4, the difference between the two SV1 

patterns is small, only manifested in the equatorial western Pacific. The strong spatial similarity 

in Fig. 2.3 and small difference in Fig. 2.4 indicate that SV1 is indeed insensitive to initial 

conditions in the ZC model. A stable SV1 pattern will be useful in ensemble construction to 

improve the resolution of ensemble-based probabilistic forecasts. 
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SV1 is also insensitive to the background SST of the ENSO phase. Based on a threshold of 

+/- 0.5°C of NIN03.4 SSTA (SSTA over the region 5°S-5°N, 120°W-170°W), El Nino and La 

Nina events are defined when the threshold is met for a minimum of 5 consecutive months. The 

peak phase and the onset phase of La Nina are further defined by NIN03.4 SSTA<-1.2°C and -

0.5 °C <NIN03.4 SSTA<-1.0°C, respectively. The neutral ENSO state, onset of El Nino, and 

the peak El Nino phase are defined by |NIN03.4 SSTA|<0.5 °C, 0.5 °C <NIN03.4 SSTA<1.0°C, 

and NIN03.4 SSTA>1.5 °C, respectively. For each stage, a composite SV1 and a corresponding 

final pattern over 148 years are presented in Fig. 2.5. All SVls in different ENSO stages have a 

similar west-east dipole pattern in the equatorial Pacific and with very similar amplitude. The 

spatial coverage of final patterns, however, slightly varies with ENSO phases. As seen in Figs. 

2.5b2-d2, at the onset and neutral ENSO stages, final patterns span over almost all the 

equatorial Pacific; whereas at peak ENSO stages final patterns shrink and are confined to the 

east side of the dateline. Fig. 2.6 shows the SV1 of thermocline depth anomaly (H) and their 

final patterns for different ENSO phases. Similar to SSTA, the leading SV mode of thermocline 

is not sensitive to ENSO background, as expected. After six months, the final patterns show 

some differences among ENSO phases, although the major features remain consistence, i.e., 

thermocline deepening in the east and shoaling in the west. 

It is of interest to explore the variability of SV1 and final pattern at interdecadal time scales. 

Based on the prediction skill presented in Chen et al. (2004) and Tang et al. (2008), we selected 

two 40-yr SVls and final patterns from the 148-yr SV1 results. The model forecast correlation 

skill in the 40-yr period of 1876-1895 and 1976-1995 was high; and another 40-yr period is 

1916-1955, with a low correlation skill. It was found that the composite SV1 and final pattern 

in two high prediction skill periods are very similar to each other with the averages shown in 
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Fig. 2.7a and Fig. 2.7c. As expected, the SV1 of 1916-1955 shown in Fig. 2.7b is also very 

similar to Fig. 2.7a due to the fact that SV1 is not sensitive to initial conditions. In contrast to 

this time invariant feature of SV1, final pattern changes significantly between high and low 

prediction skill periods. As seen in Fig. 2.7, the final pattern has a weaker perturbation growth 

amplitude and a smaller spatial coverage in the high correlation skill period; final pattern in the 

low correlation skill period is more than twice as large as the final pattern in the high skill 

period. Therefore, there is an inverse relationship between the prediction skill of the model and 

the amplitude of final pattern on the interdecadal time scale. 

2.3.2 Variations of the singular value 

The first singular value (SI) represents the fastest perturbation growth rate. Shown in Fig. 

2.8 are the 148-yr averaged Sis over all initial conditions for different calendar months and lead 

times (1, 3, 6 and 9 months). Note that in Fig. 2.8, Sis are from the SV analysis with 

perturbation of only SSTA. The amplitude of Sis with perturbations of both the SSTA and 

anomalous winds is almost the same as that of Fig. 2.8, therefore, not shown here. As can be 

seen in Fig. 2.8, large Sis often occur at their verification time (the end of the forecast) from 

August to October in corresponding predictions starting in the boreal spring or summer. For 

example, the maximum SI occurs in September or October for 3, 6, and 9-month leads, 

corresponding to the starting month of June, March and February, respectively. This seasonal 

dependence in perturbation growth might explain why ENSO prediction skill often drops 

remarkably when prediction periods start from the boreal spring and pass through the boreal 

spring and summer, i.e., the 'Spring Barrier'. Jin et al. (2008) recently performed 22-yr 

retrospective ENSO predictions using ten different coupled GCMs. Their results show that the 
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skill of forecasts that start in February or May drops faster than that of forecasts that start in 

August or November because predictions starting from February or May contain more events in 

the decaying phase of ENSO. Based on dynamics, the "Spring Barrier" is probably due to the 

fact that the Intertropical Convergence Zone (ITCZ) is closest to the equator during the spring, 

sustaining the unstable condition, and the ocean-atmosphere interaction is strong during the 

summer due to the relatively large vertical temperature gradient and ocean upwelling (e.g., Xue 

et al. 1997a). In addition, Fig. 2.8 shows that the magnitude of SI increases with the lead time 

as expected. 

It is interesting to explore whether SI shows interannual or even longer time scale 

variability given the existence of decadal/interdecadal variations of ENSO prediction skill (e.g., 

Kirtman and Schopf 1998; Tang et al. 2008; Chen et al. 2004). A low-pass filter (2-yr) based on 

the Fourier transform (FFT) has been applied to the SI of 6-month leads and the NIN03.4 

SSTA index to address interannual and longer signals. The two filtered time series are shown in 

Fig. 2.9a and Fig. 2.9b. As can be seen, they have both visible interannual and longer time scale 

variability. The interannual and decadal/interdecadal variability of SI and the NIN03.4 SSTA 

index can be further verified by the wavelet analysis shown in Fig. 2.9c and Fig. 2.9d. The local 

significant period varies between 2 and 20 years during the whole period from 1856-2003, 

including the ENSO interannual time scales (2-8 yr) and the decadal/interdecadal modulation of 

ENSO. On the interannual time scale, the significant time period of SI tends to shift from a 

longer time scale to a shorter time scale. For example, the significant time period shifted from 

8-yr to 3-yr between 1870 and 1900; this phenomenon reoccurred between 1900 and 1960. 

When comparing Fig. 2.9c with the wavelet power spectrum of the NIN03.4 index in Fig. 2.9d, 

similar shifting characteristics are found indicating that the changes in the significant periods of 
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the perturbation growth rate was associated with changes in the ENSO signal (spectrum power 

of NIN03.4) on the interannual time scale. It also indicates that ENSO tended to happen more 

frequently in recent decades and has a higher frequency of error occurrence. However, on the 

decadal/interdecadal time scales, Fig. 2.9c and Fig. 2.9d show that the power spectrums of SI 

and NIN03.4 were not consistent in most of the time period except during the time period of 

1900-1920 and around 1980. ENSO decadal/interdecadal signals were relatively weak between 

1945 and 1975 while the spectrum power of the perturbation growth was significantly stronger 

over this period. 

To examine relationships between NIN03.4 SSTA index and the SI, in particular their local 

relative phases, in time frequency space, the cross-wavelet analysis method (Grinsted et al. 

2004) is applied for Nini3.4 SSTA and SI. The temporal variation of cross wavelet power 

spectrum is shown in Fig. 2.10, where the relative phase relationship is shown as arrows, with 

in-phase pointing right, anti-phase pointing left, and NIN03.4 SSTA index leading SI by 90° 

pointing straight down. As can be seen, both the phase synchrony and phase asynchrony 

between the two series can be observed at different time scales from decades to decades. For 

example, in-phase relationships are visible at the interannual time scales from 1880-1920 and 

1940-1950 whereas the anti-phase relationships occurred at decadal/interdecadal time scales 

from 1900-1940 and 1960-1980. The anti-phase feature at decadal/interdecadal scales is in 

agreement with the ENSO predictability study in Tang et al. (2008) using multiple models, 

where they found that at decadal/interdecadal scales, strong ENSO events were related to small 

perturbation growth rates and vice versa. In addition, at interannual time sales, the significant 

periods seem gradually shifted to shorter scales from 1880-2000, which is probably due to the 

enhancement of ENSO variability in amplitude and frequency with time during the past 100 
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years. We will further discuss the relationships between ENSO signals and perturbation growth 

rate in part II of this work. 

Many recent 20-30 yrs interval SV analyses concluded that: i) a small perturbation growth 

rate often occurs during an ENSO peak phase; and ii) the larger perturbation growth rate shows 

in the neutral and onset/breakdown stages of ENSO (Chen et al. 1997; Xue et al. 1997a; Tang et 

al. 2006; Zhou et al. 2008). Cai et al. (2003) obtained similar results when they analyzed the 

perturbation growth rate of the ZC model using a very long period breeding vector analysis. For 

comparison, we examined the above features of perturbation growth rate and ENSO phase over 

148 yrs, resulting in a similar plot to Fig. 2.5 in Cai et al. (2003), as shown in Fig. 2.11. The 

ENSO events are binned into 18 categories between -2°C and 2.5°C with a 0.5°C interval based 

on the NIN03.4 SSTA index or NIN03 SSTA index (5°S-5°N, 90°W-150°W). The mean SI of 

each category is shown as a function of the ENSO phase and the SSTA tendency. As shown in 

Fig. 2.11a, where 18 bars represent the 18 categories from the left to right, bins 1-9 have 

positive tendencies of SSTA and bins 10-18 have negative tendencies. In addition, bins 1-3 and 

16-18 are at cold ENSO phase, bins 4-5 and 14-15 are at neutral phase, and bins 6-13 are at 

warm phase. The small perturbation growth rate occurs at the peak ENSO stage (peak El Nino 

and La Nina, bins 8-10 and 1,18, respectively). While the large perturbation growth occurs 

prior to the decay phase of El Nino (bins 11-13) and during the transition period from a cold to 

a warm state (bins 3-5). These results are generally consistent with former SV studies (e.g., 

Chen et al. 1997; Xue et al. 1997a) and breeding vector results (e.g., Cai et al. 2003; Tang and 

Deng 2009) and further confirm the sensitivity of perturbation growth on ENSO phase. In the 

next section, we will identify and investigate the possible physical processes controlling the 

perturbation (error) growth in the ZC model. 
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2.4. Physical processes of perturbation growth in the ZC model 

The evolutions of the model initial perturbations and ENSO signals are simultaneously 

controlled by internal dynamical and thermodynamical processes of the model such as the 

horizontal advection and vertical mixing. To explore underlying physical processes of the 

model perturbation growth, we decomposed the model SSTA variations into linear terms and 

nonlinear terms following the definition of An and Jin (2004), and performed several sensitivity 

experiments of SV analysis to investigate the contribution of individual term to the original 

total perturbation growth. 

The governing equation of SSTA in the ZC model can be written as below 

—=-£>.vr-t/-v(r+r)-[M(ff+r)-M(^)]—MQV+W)—«r (2.9) 
dt dZ dZ 

where T'(T), U'(U), and W'(W) are anomalies (mean) of SST, surface layer currents, and 

vertical velocity, respectively, and a is a thermal damping coefficient. The first two terms on 

the right hand side of (9) are the horizontal advection terms. The third and fourth terms 

represent the effects of anomalous upwelling in the presence of the mean vertical temperature 

gradient — , and the total upwelling in the presence of the anomalous vertical temperature 
dz 

dT 
gradient , respectively. The final term is a linear damping term, which can be interpreted as 

dz 

the change of SSTA due to the heat exchange between ocean and atmosphere. M(x) is a step 

function: M(x) = x if x > 0 ; M(x) = 0 if x < 0 which brings a cooling effect when there is 

upwelling and no effect otherwise since downward motion causes no change in SSTA. 
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If we consider the linear and nonlinear heating effects of horizontal advection and vertical 

advection (upwelling or downwelling), Eq. (9) can be expressed as: 

^ = -uT;-u'fx-uX-vT;-v%-vX 

-M(W)T;-\M(W + W')-M(W)}7Z (2.10) 

- \M(w + w') - M(w)\z' - aT 

where T, u, v, and w are SST, zonal, meridional, and vertical current velocities, respectively. 

The overbar and prime denote the climatological mean and anomaly, respectively. The 

underlined terms are nonlinear heating (NH) and the remaining terms are linear heating (LH), 

following the definition of An and Jin (2004). The linear and nonlinear heating terms can 

further be subdivided into the horizontal linear (HL), the horizontal nonlinear (HN), the vertical 

linear (WL), and the vertical nonlinear (WN), respectively. The linear dumping term is 

considered in the horizontal linear term (HL). 

To identify the contribution of each individual heating term to the original perturbation 

growth, we performed SV analysis for each linear and nonlinear term over 148 years 

respectively. Note that the nonlinear heating terms have been linearized in the TLM, the 

nonlinear perturbation/perturbation growth mentioned hereafter are actually the linearized 

nonlinear perturbation contributions. The SV analysis of each term is similar to the original 

analysis described in section 2.2 except that the perturbation growth of SST (i.e., Xf'm Eq. 2.7) 

was replaced by the perturbation growth of an individual heating term obtained from the TLM. 

This is confirmed by the results obtained using tangent linear model, where the original SV1 is 

used as initial condition X; for integration of tangent linear model. It was found that SVls of 

these heating terms are similar to the original SV1 as shown in Fig. 2.1a. This is because the 
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solution of maximizing total perturbation growth rate A in Eq. (2.4) is equivalent to the solution 

of maximizing growth rate of each individual term. The final patterns of these terms are subject 

to their physical processes, representing the perturbation contribution from each heating term. 

The final pattern of each term from SV analysis is actually equivalent to the response of 

corresponding term {Xj) to the original SV1 (X,) by (Eq. 2.7). The 148-yr averaged final patterns 

for the linear and nonlinear terms are given in the left and the right panel of Fig. 2.12, 

respectively. The final pattern of the total horizontal linear heating (Fig. 2.12e) is very similar to 

the original final pattern in Fig. 2.1b. There are two positive perturbation growth regions in the 

tropical equatorial Pacific, located in the central Pacific Ocean and the eastern Pacific, 

respectively. The former center in the central Pacific near 150°W, where the strong atmosphere-

ocean interactions and large instability conditions often occur, is formed as a result of the 

horizontal linear perturbation growth (see Fig. 2.12a). The perturbation growth in the eastern 

Pacific is clearly related to the vertical linear term (Fig. 2.12c), indicating that the optimal 

growth in the eastern Pacific Ocean is mainly due to the vertical linear upwelling/downwelling 

term. This vertical linear optimal growth is probably due to an inaccurate parameterization of 

the vertical mixing process. The high spatial similarity of the final patterns of the total linear 

and horizontal linear optimal growth suggests the linear heating perturbation growth dominates 

the total model perturbation growth. However, if we ignore the perturbation contribution of the 

nonlinear process, the perturbation growth in the central Pacific would be much stronger than 

the perturbation growth in the original final pattern. This large perturbation growth in the linear 

process implies that there must be some offset effects (negative optimal growth) in the total 

nonlinear heating processes that reduce the large linear perturbation growth. We can see this 

reduction in the total nonlinear perturbation in Fig. 2.12f: there is a negative perturbation 
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growth center in the central Pacific near the dateline region where it can partly offset the 

positive perturbation growth in the total linear perturbation. Therefore, both the linear 

perturbation growth and nonlinear perturbation growth are important in the central Pacific. The 

total nonlinear error can be further decomposed by the horizontal nonlinear term and the 

vertical nonlinear term shown in Fig. 2.12b and Fig. 2.12d. There is a large negative 

perturbation growth region in the central Pacific in the horizontal nonlinear term, which is 

similar to the total nonlinear perturbation growth pattern shown in Fig. 2.12f; meanwhile, a 

relatively weak positive perturbation growth is shown in the vertical nonlinear term in the 

central Pacific (Fig. 2.12d). Therefore, the total nonlinear negative error is mainly the result of 

the horizontal nonlinear term. Comparing Fig. 2.12e with Fig. 2.12f shows the perturbation 

growth contribution of the total linear heating is 3-4 times larger than the contribution of the 

nonlinear heating (note that the perturbation growth rates were included in FPs). Therefore, 

total model errors are mainly caused by the linear advection heating process, but the linear 

process can be partially offset by the nonlinear process which has a negative error contribution, 

especially in the central Pacific. 

To compare the error contributions of individual linear/nonlinear heating terms, the seasonal 

variations of these perturbation growth rates are given as a function of the forecast verification 

time (Fig. 2.13). As expected, the horizontal linear heating term (HL) makes the largest 

contribution to the original growth rate SI, and shows a consistent seasonal variation with 

original perturbation growth SI. The vertical linear heating (WL) and horizontal nonlinear 

heating (HN) have comparable error contributions, but they are much smaller than horizontal 

linear perturbation growth (HL). Comparing the vertical nonlinear perturbation growth (WN) 

with the other three terms shows that the vertical nonlinear perturbation growth is the smallest 
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contributor with very weak seasonal variations. To visualize the linear and nonlinear error 

contributions more clearly, seasonal variations of the perturbation growth rates are given in Fig. 

2.13b. The perturbation growth of the total linear term is about twice as large as the total 

nonlinear perturbation growth, which confirms again that the original total perturbation growth 

SI is mainly determined by the linear process, and the nonlinear process contributes to a 

smaller and negative perturbation growth. An offsetting effect between the linear and nonlinear 

terms explains why the horizontal perturbation growth rate HL is larger than the original 

perturbation growth rate S1. 

To further understand underlying mechanisms of linear and nonlinear perturbation growth, 

we performed several EOF analyses for individual linear/nonlinear heating terms to look for 

dominating physical processes that control the variation of total heating, and investigate the 

relationship between the perturbation growth rate and the corresponding heating term. These 

individual heating terms were obtained from the integration of the original model again over the 

period of 1856-2003. For the total linear heating process, the first EOF mode, accounting for 

73.1 % of total variance, shows an ENSO-like pattern (Fig. 2.14c). Comparing this EOF mode 

of total linear heating with the horizontal linear heating (Fig. 2.14a) and vertical linear heating 

(Fig. 2.14b), reveals that the warming in the equatorial central and eastern Pacific is from the 

contribution of anomalous horizontal linear heating, and the warming along the coastal zone is 

mainly due to vertical linear heating. From the corresponding principal components (PCs) 

shown in Figs. 2.14d-f, linear heating is more likely to cause warming as indicated by dominant 

positive values in the PCs. Figs. 2.15a-c are the first EOF modes of the horizontal, vertical, and 

total nonlinear heating terms respectively. Their corresponding PCs are given in Figs. 2.15d-f. 

EOF analyses show a cooling and warming pattern for horizontal and vertical nonlinear terms 
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in Fig. 2.15a and Fig. 2.15b, respectively. Considering that all PCs are positive and that the 

horizontal nonlinear PC has a larger amplitude than the vertical nonlinear term, the total 

nonlinear heating NH can be explained by the horizontal cooling effect as shown in Fig. 2.15c. 

Xue et al. (1997a) obtained similar results from an older version of the ZC model with a shorter 

time period, and concluded that the horizontal nonlinear advection is mostly a cooling effect 

and the vertical advection is mostly a warming effect, namely that, the vertical nonlinear 

advection always strengthens warm SST anomalies but diminishes cold SST anomalies in the 

eastern Pacific. 

These nonlinear vertical warming and horizontal cooling effects can be further explained 

mathematically by Eq. (10) together with the final patterns of SSTA and the wind field in Fig. 

2.2. For example, during an El Nino event, the easterly trade wind is weakened and a westerly 

current anomaly (u > 0 ) occurs in the central Pacific. Meanwhile, the horizontal SSTA 

warming increases from the west to the east showing a positive zonal SSTA gradient (Tx > 0). 

Thus, the horizontal nonlinear advection (-u'Tx < 0) contributes a cooling effect in the central 

Pacific. This horizontal nonlinear cooling/dumping effect in the ZC model is in agreement with 

An and Jin's report (2004) that during the developing phase of El Nino, both the anomalous 

zonal temperature gradient and the anomalous zonal current in the surface layer are positive, 

which leads to a negative nonlinear zonal advection. On the other hand, a weakening of 

upwelling (w'< 0) and a stronger warming at the sea surface than in lower layers (T2 > 0) are 

found in the ZC model (opposite w' and 71 in observations in An and Jin (2004)). Therefore, 

the nonlinear vertical mixing (-w'Tz > 0 ) contributes to a warming effect in the central Pacific, 

which can partly offset the horizontal nonlinear cooling. For La Nina events, in the central 
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Pacific u < 0 , Tx < 0 along with a strengthened upwelling, w'> 0 , and a cooling sea surface 

Tz < 0. Therefore, the horizontal nonlinear cooling and vertical nonlinear warming are valid. 

However, comparing the horizontal and vertical nonlinear heating terms in the ZC model 

with that from the observations in An and Jin (2004) shows some physical deficiencies of the 

ZC model: i) The model's vertical nonlinear term does not show a great enough warming effect 

to offset the horizontal nonlinear cooling contribution, therefore, the net nonlinear heating is a 

cooling effect, whereas, in the observations of An and Jin (2004) the vertical nonlinear warming 

dominates the net nonlinear heating; ii) The vertical nonlinear warming in the model is located 

in the central Pacific, while the warming dominated in the eastern Pacific near the cold tongue 

region in An and Jin (2004); iii) Although there is an out-of-phase relationship between the 

upwelling (w' ) and the vertical temperature gradient (Tz = SSTA - Tsub) through the ENSO 

cycle in the model, both signs of the vertical motion and the temperature gradient in the model 

are opposite to observations. The model has a weakening of upwelling (w' <0) in El Nino 

events and the subsurface warming is smaller than the surface wanning T_>0. However, there 

is a strong warm water upwelling occurring in the eastern Pacific in the observations, especially 

for those strong El Nino events after 1980. An et al. (2005) compared nonlinear heating terms 

in 10 coupled models and found only one model gave the correct simulation. Most models did 

not represent both the location and strength or even the sign of the nonlinear vertical warming. 

This model bias in the internal model dynamics and physical processes certainly will cause 

perturbation growth but that is beyond the scope of this paper. 

The spatial patterns of linear and nonlinear heating terms revealed by EOF analysis are very 

similar to their corresponding final patterns of perturbation growth. Furthermore, over 148 yrs, 
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significant positive correlations have been found between each PC and its corresponding 

singular value. Strong linear heating is associated with a faster positive perturbation growth 

while strong nonlinear heating leads to a faster negative perturbation growth. For example, the 

correlation coefficients between PCs of linear terms HL/WL/total linear and their 

corresponding singular values are 0.56/0.46/0.44 over 148 yrs, which are all statistically 

significant at the 99% confidence level. The correlation coefficients between PCs of nonlinear 

terms HN/WN/total nonlinear and their singular values are 0.54/0.66/0.46, respectively. Very 

high spatial similarity and temporal correlations between each perturbation growth rate and the 

corresponding heating term suggest that the linear perturbation growth (LI) and nonlinear 

perturbation growth rate (Nl) are highly related to the linear/nonlinear physical processes 

themselves. Comparing Fig. 2.15 with Fig. 2.14 reveals that the total linear heating makes a 

larger contribution to the total heating, leading to the finding that linear processes contribute 

more to the total perturbation growth than nonlinear processes as found in Fig. 2.13. 

2.5. Conclusion 

It is important to identify a statistically robust SV analysis of ENSO prediction models. The 

relationship between singular value and ENSO predictability has not been sufficiently 

addressed in previous studies of ENSO predictability due to a lack of long term retrospective 

prediction and corresponding SV analysis. In this work, a tangent linear model is constructed 

for the latest ZC model version LDE05 to study perturbation growth and ENSO predictability 

for the past 148 years from 1856-2003. It provides a substantial account of the error growth rate 

and spatial patterns in LDE05 from seasonal to interdecadal time scales. 

From the 148-yr singular vector analyses by our new constructed physical-based TLM, the 
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long-term averaged first singular vector SV1 is a west-east dipole spanning the equatorial 

Pacific with centers located in the east and the central Pacific Ocean. Comparing the SV1 of 

LDOE5 with that of the previous SV studies (i.e., Chen et al. 1997; Xue et al., 1997a), we find 

that the north-south dipole in the older ZC model version in the eastern Pacific is missing, 

which might be due to improvements in the ZC model (i.e., model dependent). A spatial 

correlation between the monthly SVls and the 148-yr averaged SV1 agrees with previously 

published results showing that SV1 is less sensitive to model initial conditions while there is a 

strong sensitivity of singular values to initial conditions. The faster model perturbation growth 

during spring/summer is probably caused by the stronger atmosphere-ocean interaction. Besides 

the seasonal variations, the leading singular value, SI, has significant periods ranging 2-20 

years as seen in the wavelet analysis. On the interannual time scales, the significant time scales 

of SI and the ENSO signal occasionally shifted from longer periods to shorter periods during 

the 148 years. 

The relative contribution of linear and nonlinear heating to SI has not so far been addressed 

well. In this study, we also conducted SV analysis for each individual heating term in the SST 

governing equation. SV analyses on the individual linear and linearized nonlinear terms reveal 

that the model optimal perturbation growth is mainly from linear heating terms. The total linear 

optimal perturbation growth is twice as large as the total nonlinear term. The final optimal 

perturbation growth pattern of an individual heating term has a similar spatial pattern as the EOF 

pattern of the heating term. In addition, significant correlations have been found between the 

perturbation growth rate of each term and corresponding PC-1 of the EOF analysis for the 

individual heating terms. Therefore, the singular value of each heating term depends significantly 

on the heating term itself. The perturbation growth in the central equatorial Pacific, where strong 
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atmosphere-ocean interaction occurs, is dominated by a positive perturbation growth from the 

horizontal linear term. The perturbation growth in the eastern Pacific is dominated by vertical 

linear mixing, which is probably related to inaccurate parameterization of the mixing process. 

A robust and stable optimal error growth pattern, SV1, and the optimal error growth rate, SI, 

over 148 years will be useful indicators of potential predictability. Further discussion of the 

relationship between potential predictability that does not use observations, and the model 

prediction skills indicated by correlation and root mean square error (RJVISE) from a comparison 

with observations will be presented in Part II of this study. The relationship will offer a practical 

means of estimating the confidence level of ENSO prediction using the dynamical model. In 

addition, the SVls obtained in the present study provide an optimal tool to construct ensemble 

predictions, i.e., repeating a prediction many times by perturbing the initial conditions of a 

forecast model with SVs and random noise each time. Through statistical predictability theory and 

ensemble prediction of the past 148 years, the shape of the forecast probability density function 

(PDF) that describes the prediction uncertainty can be estimated, and the nature of ENSO 

predictability explored in the chapters 3-5 of this study. 
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Fig. 2.1 The first singular vector (SV) and the first final pattern of SSTA averaged in the 148 

years, a) the first singular vector (SV) of SSTA; b) the first final pattern of SSTA. (SV1 & FP 

explain 32 % of the variance of R in the SVD analysis using Eq. 2.5) (Unit: °C) 
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Fig. 2.2 Same as Fig.2.1 but perturbing both SSTA (°C) and wind field (m/s). a) The first 

singular vector of SSTA; b) the first final pattern of SSTA; c) the first singular vector of the 

wind field; d) the first final pattern of the wind field. 

44 



Ph.D. Dissertation: University of Northern British Columbia 

11 1 1 1 1 1 1 1 r 

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 
year 

ŝ 
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correlation coefficient. For example, 20% of SV samples have the spatial correlation less than 

the spatial correlation of 0.8. 

0.5 0.6 0.7 0.8 0.9 1 
i, 20% of samples < 0.8 

45 



Y. Cheng: ENSO ensemble prediction and predictability 

( a ) 80% SV, SST 

ION 

5fM 

EQ 

—0.08.. .^ 

-« 0.04. 
o.oe 

i t* - O.OB- *-—_.~'S'T^.rrr^.v^', 

150E 180 150W 120W 90V 

ION 

(b) 20% SV, SST 

Fig. 2.4 a) Composite SV1 of SSTA (°C) for (a) high spatial similarity cases (80% of total SV1) 

and (b) low spatial similarity (20% of total SV1). 
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Fig. 2.5 the first SV of SSTA (°C) starting from the phase of al) peak La Nina; bl) onset of La 

Nina; cl) Neutral; dl) onset of El Nino; el) Peak El Nino. The corresponding final pattern after 

6 months is shown in the right panel a2-e2. The averaged perturbation growth rate SI of each 

stage is marked in the title captions. 
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Fig. 2.6 Same as Fig. 2.5 but for thermocline depth anomaly (H) (unit: m). 
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Verification month 

Fig. 2.8 Seasonal variations of the first singular values SI against the prediction target time at 

different lead time, 1, 3, 6 and 9 months (from bottom to top respectively) averaged over 148 

years. 
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Fig. 2.9 Time series of the low-pass filtered (>24 months) a) the first singular value (SI) and b) 

the NIN03.4 index used for the wavelet analysis. Wavelet power spectrum of c) SI and d) 

NIN03.4 using the Morlet wavelet. The thick contour encloses regions of greater than 95% 

confidence, using a red-noise background spectrum. The solid smooth curves in the left and 

right corners indicate the edge effects become important. 
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Fig. 2.10 The cross-wavelet analysis for NIN03.4 SSTA index and the singular value SI. The 

thick contour encloses regions of greater than 95% confidence, using a red-noise background 

spectrum. The relative phase relationship is shown as arrows, with in-phase pointing right, anti

phase pointing left, and NIN03.4 SSTA index leading SI by 90° pointing straight down. 
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Fig. 2.11 Mean SI (in solid star curve) as a function of the background ENSO phase, a) The bar 

curve is the NIN03.4 index of the composite background ENSO cycle (SI is divided by 2); b) 

same as a) but using NIN03 index. 
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a) Horizontal Linear (HL) b) Horizontal nonlinear (HN) 

Fig. 2.12 Final patterns for linear and nonlinear heating terms averaged in 148 years: a) the 

final pattern of horizontal linear heating (HL); b) the final pattern of horizontal nonlinear 

heating; c) the final pattern of vertical linear heating (WL); d) the final pattern of vertical 

nonlinear heating(WN); e) the final pattern of total linear heating (HL+WL); f) the final pattern 

of total nonlinear heating(HN+WN).(Unit: °C) 
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Fig. 2.13 The seasonal variation of singular values for linear and nonlinear heating terms a) 

horizontal linear heating (HL, solid line), vertical linear heating (WL, dash line), horizontal 

nonlinear heating (HN, solid star line), and vertical nonlinear heating (WN, dash dot line). The 

original singular values (open circles); b) singular values for the linear heating (solid star line), 

nonlinear heating (dash dot line). 
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Fig. 2.14 EOF analyses for linear heating terms in Eq. (10). From top to bottom, Figures in the 

left panel are the EOF-1 spatial patterns of a) horizontal linear (HL), b) vertical linear (WL) and 

c) total linear heating (HL+WL). Their corresponding PCs are in the right panel. (Unit: 

°C/month) 
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Fig. 2.15 Same as Fig. 2.14 but EOF analyses results for nonlinear heating terms. Figures from 

top to bottom are a) horizontal nonlinear (FIN), b) vertical nonlinear (WN) and c) total 

nonlinear heating (FIN+WN). 
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Chapter 3: Further Analysis of Singular Vector and ENSO Predictability in 

the Lamont Model — Part II: Singular value and predictability 

Cheng Y, Tang Y, Jackson P, Chen D, Zhou X, Deng Z (2009) Further analysis of singular 

vector and ENSO predictability in the Lamont model—Part II: Singular Value and predictability. 

Climate Dynamics, DOI: 10.1007/s00382-009-0728-z. 

Published version is available at: 
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3.1. Introduction 

ENSO predictability displays multiple time scales in numerical models, including the 

seasonal, interannual, and decadal/interdecadal time scales. On the seasonal time scale, ENSO 

forecast skills in many models decline significantly in the boreal spring with apparent skill 

recovery in subsequent seasons, showing the "spring barrier" phenomenon (e.g., Jin et al., 

2008). On the interannual time scales (2-7 yrs), ENSO prediction skills are associated with 

ENSO phase and ENSO intensity, namely, strong ENSO events have high prediction skills, 

while the neutral ENSO states have poor prediction skills (e.g., Tang et al. 2005; 2008a); The 

growth phases of both the warm and cold events are better predicted than the corresponding 

decaying phases in many coupled ENSO forecast models (e.g., Jin et al. 2008). These features 

of ENSO predictability also occur in the Zebiak-Cane model (Zebiak and Cane 1987; Chen et al, 

2004; hereafter ZC); for example, the warm and cold events are equally predictable while near 

normal conditions are harder to predict (Chen and Cane 2008). On the decadal/interdecadal 

time scales, ENSO predictability has apparent decadal/interdecadal variations (e.g. Wang 1995; 

Kirtman and Schopf 1998; Latif et al. 1998; Chen et al. 2004; Tang et al. 2008a). Tang et al. 

(2008a) explored ENSO predictability using three models and long term retrospective 

predictions. Consistent results and conclusions were found in the three models with different 

complexity, namely, higher prediction skills for the late 19th century and late 20th century, and 

lower skills for the period of 1916-1955. These consistent relationships found in the three 

models offer valuable insight to some important issues of ENSO predictability on the longer 

time scales. 

Typically, there are two hypotheses responsible for the loss of predictability with forecast 
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lead time. The first argues that the loss of predictability is due to the chaotic behavior of the 

nonlinear dynamics of the coupled system (e.g., Jin et al. 1994; Chen et al. 2004), whereas the 

second attributes it to the stochastic nature of the coupled system characterized by weather 

noise and other high-frequency variations, such as westerly wind bursts and the Madden-Julian 

oscillation (e.g., Kirtman and Schopf 1998; Penland and Sardeshmukh 1995; Kleeman and 

Moore 1997; Moore and Kleeman 1999; Vecchi and Harrison 2003; Moore et al. 2006; Gebbie 

et al. 2007; Jin et al. 2007). It is still not clear to date which regime plays the dominant role in 

controlling the variation of ENSO predictability. 

Singular vector analysis (SV) is a powerful tool to study predictability because the optimal 

perturbation growth suggests the intrinsic limits of prediction skill. The SV has been widely 

used to study the loss of ENSO predictability due to initial error/perturbation growth (i.e., 

Lorenz 1965; Chen et al. 1997; Xue et al. 1997a, b; Fan et al. 2000; Tang et al. 2006; Zhou et al. 

2008). These SV analyses showed that the perturbation growth rate (i.e. singular value) is 

sensitive to the seasonal cycle, ENSO phase, and ENSO signals. However, all of the above 

studies focused on a period of only 20-40 years, with a rather limited number of ENSO cycles, 

basically precluding statistically robust conclusions. In theory, an inverse relationship could be 

expected between the leading growth rate and the ENSO predictability. Due to a lack of long 

term retrospective prediction and corresponding SV analysis, however, the relationship between 

the singular value and ENSO predictability has not been sufficiently addressed, and especially 

has not been validated by actual prediction skill measures in previous SV studies. Chen et al. 

(2004) performed a retrospective forecast experiment spanning the past 148 years, using only 

reconstructed SST data for model initialization. At a 6-month lead, the model was able to 

predict most of the warm and cold events occurred during this long period, especially for the 
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relatively large ENSO events. Using the long-term reconstructed SST data and the ZC model 

LDE05 version, we recently completed a long-term SV analysis and corresponding 

retrospective ENSO prediction for the period from 1856-2003. In part I of this work (Chapter 2), 

we constructed a fully physically-based tangent linear model (TLM) for the ZC model, 

explored the variations of singular vectors and singular values in the time scales from seasons 

to decades, and examined the control factors responsible for SV variations over the 148 years. A 

robust and stable optimal perturbation growth pattern and the optimal perturbation growth rate 

for the 148 years were obtained in part I, which could be useful indicators of predictability. To 

extend this work, the present study focuses on exploring the relationships between the optimal 

perturbation growth rate, a potential measure of predictability which does not make use of 

observations, and ENSO actual prediction skills that do make use of observation, for the 148 

years at multiple time scales ranging from the interannual time scale to decadal/interdecadal 

time scale. The identified relationship has a theoretical contribution to predictability study using 

SV, and a practical significance in estimating the confidence that we can place in future 

predictions using the same ENSO forecast model. 

In section 2.2.1, we present a brief introduction to the LDE05 model and the metrics used 

to measure actual ENSO prediction skill. The relationships between these prediction skill 

metrics and the perturbation growth rates are discussed in section 3.3 and section 3.4. The 

relationships between the actual prediction skill, perturbation growth rate, and ENSO signals 

are analyzed in section 3.5, followed by a conclusion and discussion in section 3.6. 

3.2. Methods 

A fully physically-based tangent linear model (TLM) was constructed for the LDOE5 
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model and singular vector analysis performed for the 148-year period from 1856 to 2003, as 

shown in Chapter 2. From the long-term SV analyses, the leading singular value (SI) that 

represents the optimal perturbation growth rate of forecast SSTA, the linear component of SI 

(denoted by LI), and the nonlinear component of SI (denoted by Nl) for the 148 years have 

been obtained. We will use these perturbation growth rates as the potential predictability 

measures to investigate their relationship with several actual prediction skill measures for the 

LDE05 model. The actual prediction skill metrics are discussed in section 3.2. 

3.2.1 Metrics of Actual Prediction Skill 

Traditionally, the actual prediction skill of ENSO is measured by anomaly correlation 

coefficient (R) and the mean square error (MSE) between predicted the Nino3.4 SSTA index 

(averaged over 5°N to 5°S, from 170°W to 120°W) against the observed counterpart. 

ft[Tl
p(f)-MPlTl

0(t)-ft°] 
*(0= i M

 2 • (3-D 

Jt[T,P(t)-M»] ^l[77(0-//°] 

MSE(t) = -?-rit(Tl
p (0 - T° (tj) (3.2) 

i v - i t r 

where Tis the index of NIN03.4 SSTA, t is the lead time of the prediction from 1 to 12 months, 

Tp is the predicted NIN03.4 SSTA, and T" is corresponding observed counterpart, subscript i 

the initial time of prediction (/' = 1, . . . , N); fi" is the mean of the forecasts, //" is the mean of 

observations. N is the number of samples used over 148 years in this study, a total of 148 x 12 
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(vV=1776) forecasts, initialized from January 1856 to December 2003, were run starting at one 

month interval (1 January, 1 February ...1 December), and continued for 12 months for the ZC 

model. SST assimilation was used to initialize the forecasts as discussed in Chen et al. (2004). 

The seasonal cycle has always been removed from forecasts and observations prior to 

measuring prediction skill. To evaluate an individual prediction skill, the mean square error of 

individual prediction (MSEIP) is used for all leads up to 12 months, as defined in Tang et al. 

(2008a, b), 

MSEIP, = - L ' f (7 / (0 -77(0) (3.3) 
12 ,=1 

3.2.2 Cross-Wavelet Analyses 

The Cross-wavelet transform (XWT) method is used for examining relationships between 

two time series in time-frequency space (e.g., Grinsted et al. 2004). From the XWT analysis, 

the common power and relative phase can be revealed. The phase differences between two 

variables are depicted by the direction of a vector, with in-phase pointing right, anti-phase 

pointing left, and the first variable leading the second by 90° pointing straight down. In this 

study, a continuous XWT technique with the Morlet wavelet as the mother function was applied. 

Monte Carlo methods are used to assess the statistical significance against a red noise 

background. The standard software package of cross-wavelet transform is available online . 

Further details on XWT analysis can be found in Grinsted et al. (2004) and Torrence and 

Compo(1998). 

* http://www.pol.ac.uk/home/research/waveletcoherence 
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3.3. The Singular Value and ENSO Predictability 

As a potential predictability measure, the optimal perturbation growth rate (SI) presumably 

has an inverse relationship to the actual model prediction skill, namely, when SI is large, the 

predictability is low and vice versa. Such a perception has been applied in studying potential 

predictability of ENSO using the theory of optimal perturbation growth (e. g., Moore and 

Kleeman 1998; Moore et al. 2006; Tang et al. 2006). However, the relationship between SI and 

the actual prediction skill measures such as the anomaly correlation (R) and mean square error 

(MSE) to date has not been well examined due to a lack of long-term retrospective ENSO 

predictions and corresponding SV analysis, as discussed in the introduction. Different from 

previous SV studies, we will focus on discussing relationship for individual forecasts rather 

than an overall feature, which offers useful potential metric in estimating the performance of a 

forecast when verification data is absent. In the next section, the relationships between singular 

value and actual prediction skill metrics will be investigated at various time scales for the 

period of 148 years from 1856 to 2003. 

3.3.1 Si-Predictability Relationship on the Decadal/Interdecadal Time Scale 

Firstly, we examine the relationship between the perturbation growth rate SI and the ENSO 

prediction skills at the decadal/interdecadal time scales. All the skill measures presented in 

Section 3.2 are used, including anomaly correlation (R), MSE, and MSEIR The correlation 

preliminarily evaluates the phase differences between the forecasts and observations, while the 

MSE and MSEIP quantify the amplitude departure between the forecasts and the observations. 

Unless otherwise indicated, the predicted and observed Nino3.4 SSTA indices are used to 
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evaluate these actual prediction skills in this study. The SI was calculated with the optimal 

period of 9-months. As found in chapter 2, the fastest perturbation growth rate (maximum SI) 

occurs at a 9-month lead in the LED05 model. Correspondingly, the prediction correlation skill 

and MSE skill vary slowly with lead time after 9-month leads (Chen et al., 2004; Chen and 

Cane, 2008). This motivates us to choose the SI of 9-month lead in the following discussions. 

To examine the relationship of S1 to predictability on the interdecadal time scales, a running 

window of 25-yr was applied to the SI and the actual prediction skill measures, namely that, 

they were evaluated at each window of 25 years, starting from January 1856 and moving 

forward by 1 month each time until December 2003. Since R and MSE are a function of lead 

time, their values averaged over lead times of 1-12 months are presented in Fig. 3.1. As can be 

seen in Fig. 3.1, on the interdecadal time scale over the 148 years, there is an inverse 

relationship between the SI and the correlation skill (R) and an in-phase relationship between 

SI and the MSE. These relationships are consistent with the conventional concept of SI and 

predictability, namely, when the SI is small, prediction skill was good, i.e., high correlation 

skill R and small MSE-based skill; whereas when the SI was large, the opposite situation 

occurs. Note that the averaged MSEIP over a running window is equivalent to the averaged 

MSE over all lead times, as suggested by Eq. (3.2) and (3.3). 

The running mean method used above may not be able to present objectively a full 

spectrum of the relationship between SI and predictability; for example, the relationship is 

probably sensitive to the length of running window. To explore the decadal/interdecadal 

relationships, further we extract low-frequency components using the fast Fourier transform 

(FFT) filter. Shown in Fig. 3.2a are low-frequency components of SI and the MSEIP, obtained 
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by a 10-yr low-pass FFT filter. Generally, Fig. 3.2a confirms the in-phase relationship in Fig. 

3.1b, with a significant positive correlation coefficient of 0.4 over the 148 yrs between the SI 

and MSEIP. A further scrutiny to Fig. 3.2a reveals that the in-phase relationship has 

decadal/interdecadal variation. Fig. 3.2b shows the correlation coefficient between the filtered 

SI and MSEIP, computed using the running window of 25 yrs over the 148 yrs. As can be seen, 

the in-phase relationship between SI and MSEIP was much stronger during the late 19l and 

20 centuries than during the periods from 1910-1920 and 1940-1955. In following discussions, 

we will see that the in-phase relationship between SI and predictability is most probably due to 

decadal variation in ENSO signals. 

3.3.2 SI - Predictability Relationship on Interannual Time Scales 

In the proceeding section, an in-phase relationship was found between the SI and MSE 

skill metric at long time scales greater than decade. A further analysis explores whether such an 

in-phase relationship exists at interannual time scales and for individual forecast cases. Shown 

in Fig. 3.3 is the scatter plot of SI against MSEIP, where a 2-7 yr FFT filter has been applied to 

both variables to extract their interannual variability. Fig. 3.3 indicates large uncertainties in the 

relationship between SI and MSEIP, suggesting that, on the interannual time scales, the optimal 

error growth rate SI might not be a good indicator of actual model skill. 

3.3.3 SI - Predictability Relationship on All Time Scales 

For all time scales ranging from seasons to decades, the relationship between SI and 

predictability is measured using all original samples without filtering, as shown in Fig. 3.4 and 

the second column of Table 3.1. Here, MSE and R were evaluated in a period as a function of 
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lead time, making them unavailable in Table 3.1. As shown in Fig. 3.4, a large uncertainty 

exists in the relationship between SI and MSEIP, with a low correlation value of 0.16. 

In summary, the relationship between SI and predictability is complex, dependent on time 

scales and the target of evaluation. At decadal time scales, SI has an in-phase relationship to 

MSE and an inverse relationship to correlation skill; whereas at interannual time scales and for 

individual forecasts, the relationships between SI and prediction skill measures have larger 

uncertainties. Thus SI might not be the best indicator of predictability. In next section, we will 

further explore SI and propose a better measure for quantifying potential predictability. 

3.4. The Linear/Nonlinear Perturbation Growth Rates and the Actual 

Predictability 

As analyzed in the proceeding section, there are significant uncertainties in the relationship 

between SI and predictability at interannual time scales and for individual initial conditions. 

Conceptually, a good relationship between them should be expected since SI quantitatively 

measure the fastest error growth. However, the potential predictability measure SI is the fastest 

error growth rate, which might not always indicate the actual predictability in the actual 

forecasts. Thus, it is interesting to explore additional possible reasons responsible for the 

uncertainties of SI and actual predictability, in particular, to identify better measures of 

potential predictability than SI. 

Practically, the perturbation growth, denoted by SS, can be decomposed into the 
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perturbation growth due to the linear heating (LH), SL, and that due to the nonlinear heating+ 

(NH),<W, namely; 

SS = SL + SN (3.4) 

SS, SL, and SN are the final perturbation growth at the lead time of 9-month, obtained by 

the TLM with the SV1 as the initial perturbations. In chapter 2, we found that there is a strong 

inverse relationship (with a correlation coefficient of -0.81) between SL and SN in the central 

and eastern Pacific; the linear perturbation growth SL is about twice as large as SN in amplitude, 

and SN is always negative whereas SL is positive in most time. Thus, the strong inverse 

relationship between linear and nonlinear perturbation growth can be approximately depicted as 

below 

SN*bSL, (3.5) 

where b is a constant value with -1<6<0. 

Applying the L-2 norm on (3.5) and (3.4), respectively, we have 

\\SN\\ « \b\ • \\SL\\ = -b\\SL\\. (3.6) 

||<S?| = \6L + SN\\ = \SL + bSL\\ + AS = (1 + b)\\SL\\ + AS = \\SL\\ + b\\SL\\ + AS (3.7) 

In (3.7), the AS1 is the residual term arising from the approximations in (3.5) and (3.6), 

+ Note that the nonlinear heating term has been linearized in the TLM, thus the nonlinear 
perturbation growth used in this paper, unless otherwise indicated, means the perturbation 
growth due to the nonlinear heating term linearized in the TLM. 
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representing the perturbation growth due to the interaction of linear and nonlinear heating. The 

value of 1+b is always positive due to of the condition -l<b<0. Thus, 

\\SS\\ = \\SL\\-\\8N\\ +AS (3.8) 

Based on the definition of perturbation growth rate (singular value), the total optimal 

perturbation growth rate SI can be decomposed into the contribution of LH (referred to as 

linear growth rate LI) and the contribution of NH (referred to as nonlinear growth rate Nl), 

given by (3.8), namely, 

Sl = L\-Nl + AS = Ll + NNl + AS, (3.9) 

where NN1 =-7Vl, a negative value representing a negative/offsetting contribution of NH to 

SI. In following analysis, we will find that the AS is small compared with LI andNNl. 

Shown in Fig. 3.5a-c are scatter plots of LI, NN1 and AS against SI for the period from 

1856-2003; where AS is obtained by S1-(L1+NN1). As can be seen, the contribution of AS to 

SI is rather small (ranging from 0 to 5 with the mean value of 2.0 in Fig. 3.5c), and SI is 

mainly determined by the sum of the perturbation growth rates LI and NN1. Fig. 3.5a-c 

indicates that LI and NN1 have an offset effect or an opposite contribution on SI, i.e., a 

positive relationship between LI and SI in contrast to an inverse relationship between NN1 

and SI. Such an offsetting effect might be a preliminary reason why SI is not a good indicator 

of actual prediction skill as found above. In other words, either LI or NN1 might be expected 

to have a better relationship with actual prediction skills than SI. 

A strong anti-correlation between LI and NN1 stems from the underlying dynamical 
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processes (i.e. linear heating LH and nonlinear heating NH) as argued above. To illustrate the 

strong inverse relationship between LH and NH, a scatter plot of NH against LH is given in Fig. 

i.5d, where the LH/NH is the averaged linear/nonlinear heating at the NIN03.4 region over the 

lead times from 1 to 9 months for individual forecasts. A strong inverse correlation between LH 

and NH is visible with a significant correlation coefficient value of-0.89. As seen in Fig. 3.5d, 

the LH mainly has a warming effect in about 72% of forecasts for the 148 yrs, whereas the NH 

always contributes to a cooling effect. The cooling effect of the NH becomes stronger as the 

warming effect of LH increases, leading to a strong offsetting effect between LH and NH in 

most cases. Due to the strong offsetting effect in the underlying dynamical processes, the total 

heating (LH+NH) has a poor relationship with the total error growth S1 with a small correlation 

coefficient of 0.13. 

Table 3.1 shows the correlation coefficients between the actual prediction skill MSEIP and 

potential predictability measure L1/NN1 (the third and fourth column). As can be seen, both LI 

and NN1 have stronger relationships to prediction skills than SI, indicating NN1 or LI to be a 

better measure of potential predictability in the ZC model. A comparison between these 

correlation coefficients reveals that the LI and NN1 have opposite relationships to 

predictability, as displayed by a positive correlation coefficient for LI but a negative value for 

NN1. This offset effect might explain well why there is a relatively small correlation value 

between SI and predictability as shown in Table 3.1. From the sign of correlation coefficients, 

one can infer that the positive SI - MSEIP relationship is mainly determined by the positive LI 

- MSEIP relationship. 

Shown in Fig. 3.6 are scatter plots of LI and NN1 against the prediction skill MSEIP. Like 
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Fig. 3.3, a 2-7 yr FFT filter was applied here for each variable to address interannual time scales. 

In contrast to the large uncertainties in the relationship of SI - predictability as shown in Fig. 

3.3, Fig. 3.6 shows visible relationship of L1/NN1 -predictability. The correlation coefficients 

between L1/NN1 and prediction skills are all statistically significant at the confidence level of 

95%, as shown in the upper-left corner of each panel. An opposite relationship between Ll -

MSEIP and NN1- MSEIP can be observed in Fig. 3.6, showing an offset effect of LI and NN1 

on predictability, as found earlier in Table 3.1. Thus, Fig. 3.6 explains the large uncertainties in 

SI - predictability in Fig. 3.3, and also indicates that either LI or NN1 is a better measure of 

potential predictability than SI. 

A further analysis is placed on the relationship between the LH/NH and actual prediction skill. 

Table 3.1 includes the correlation coefficients between the averaged LH/NH over the optimal 

period of 9 months and the actual prediction skill. As shown in the fifth and sixth columns of 

Table 3.1, LH and NH significantly correlate with MSEIP, namely, when LH/NH is strong, the 

MSEIP skill is large and vice versa. Again, the NH has always a cooling effect as 

aforementioned, thus the negative sign of its correlation coefficient in Table 3.1 imply the link 

of stronger cooling and the larger MSEIP. This explains the relationships between the L1/NN1 

and the prediction skill. These results are in agreement with our previous findings that both the 

model linear/nonlinear perturbation growth rate and the linear/nonlinear heating term are 

controlled by the underlying linear/nonlinear processes, respectively. 

To illustrate the time-scale-dependent characteristics of the relationship between 

perturbation growth rates and MSEIP, we performed cross-wavelet analyses for them as shown 

in Fig. 3.7. The in-phase relationship is presented by arrows pointing right, whereas the anti-
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phase (or inverse) relationship is displayed by arrows pointing left. The thick contour encloses 

regions of greater than 95% confidence, using a red-noise background spectrum. Several 

features can be revealed by Fig. 3.7. First, the scale-dependent feature of the SI - MSEIP 

relationships is seen in Fig. 3.7a. At longer time scales >10 yrs, a strong in-phase relationship is 

displayed in the SI - MSEIP for the periods of 1860-1940 and 1970-2000 (Fig. 3.7a), which is 

in agreement with the decadal variations of correlation coefficients in Fig. 3.2b. At shorter time 

scales <10 yrs, wavelet analysis reveals additional scale-dependent relationships. For example, 

at 6-10 yrs time scale, anti-phase relationships are shown in two time periods of 1890-1910 and 

1970-1980, which are opposite to the in-phase relationships displayed at decadal/interdecadal 

time scales. For 2-6 yrs time scale, in-phase relationships occurred again but confined in 1860-

1900 and around 1960. This scale-dependent relationship is consistent with the results shown in 

section 3.3. Second, at all time scales, the SI - MSEIP relationship (Fig. 3.7a) looks more like 

the LI - MSEIP relationship (Fig. 3.7b) than the NN1 - MSEIP (Fig. 3.7c). This similarity is 

because that the contribution of LH to SSTA is about twice as much as the NH (In chapter 2), 

thereby the original SI - MSEIP relationship is mainly determined by the LI - MSEIP 

relationship. Third, at interannual time scales, the LI (NN1) shows a more frequently consistent 

in-phase (anti-phase) relationship with MSEIP, suggesting LI or NN1 is a better measure than 

SI. Furthermore, the NN1 - MSEIP relationship (Fig. 3.7c) is consistently inverse for almost 

over all the time scales. It does not have the scale-dependent feature like that in SI - skill (Fig. 

3.7b) and LI - skill (Fig. 3.7b), where in-phase and anti-phase relationship change alternatively 

from time to time. This unique feature of the NN1 - skill relationship suggests that NN1 is a 

more reliable measure of potential predictability. It should be noted that the NH has much 

smaller contribution to SSTA, but NN1 has a consistently significant anti-phase relationship 
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with MSEIP skill at all time scales, suggesting that a strong negative perturbation growth is 

related to a large MSEIP. Another feature shown in Fig. 3.7 is that, at interannual time scale, the 

LI and NN1 brings a strong offsetting effect on MSEIP (opposite arrow direction) during the 

period from 1910-1960, leading to a large uncertainty in the relationship between SI and 

MSEIP as shown in Fig. 3.3. 

3.5. ENSO Signals, the Optimal Error Growth Rates, and Predictability 

It has been suggested in many recent studies that ENSO predictability is strongly associated 

with signal components present in initial fields (e.g., Peng and Kumar 2005; Tang et al. 2005, 

2008a; Moore et al. 2006). Often, a stronger ENSO event is easier to predict than a neutral 

event. At the decadal/interdecadal time scales, Tang et al. (2008a) compared retrospective 

ENSO predictions of 120 years from three models and found that, at the decadal/interdecadal 

time scales, high correlation skills often occurred at the time periods with strong ENSO events 

whereas low correlation skills occurred at weak ENSO periods. The positive relationship 

between ENSO signals and the correlation skill was explained in Kleeman (2002), Tang et al. 

(2005), and Tang (2008a), using information theory. They argued that the extra information 

provided by the forecast, called prediction utility, is highly associated with the signals present 

in the initial conditions. As the ENSO signal is stronger, more extra information will be 

produced compared with the climatological forecast, which leads to a more skillful and reliable 

forecast. However, the ENSO signal and predictability at shorter time scales, i.e., interannual 

time scales, has not been well addressed. In this section, we will examine relationships between 

the ENSO signal and the optimal growth rates at time scales ranging from interannual time 

scale to decadal/interdecadal time scales. 
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An inverse relationship has been suggested between the optimal perturbation growth and 

the intensity of ENSO variability, in some recent SV and breeding vector analyses: a small 

perturbation growth rate SI often occurs during an ENSO peak phase, and the larger 

perturbation growth rate SI appears in the neutral and onset/breakdown stages of ENSO (Chen 

et al. 1997; Xue et al. 1997a; Tang et al. 2005; Cai et al. 2003; Zhou et al. 2008). These works 

identified the inverse relationship either using a comparison of the maximum SI against the 

intensity of ENSO variability or using an analytical solution of the delay oscillator model. 

A metric to measure the intensity of the ENSO signal should be defined. Tang et al. (2008a) 

proposed three measures to quantify the intensity of ENSO over a time period including: i) the 

variance of NIN03.4 SSTA index, ii) the variance of the first EOF mode, and iii) total spectrum 

power at frequencies of 2-5 years. Tang et al. (2008a) shows that the three measures produce 

similar decadal/interdecadal variation of ENSO signal. In Part I of this work (In chapter 2); 

ENSO signal was defined by the absolute value of NIN03.4 SSTA index. In the present study, 

we use the same definition to measure the intensity of ENSO signal to be consistent with Part I. 

The relationships between S1/NN1/L1 and ENSO signals are displayed in Fig. 3.8 using 

cross-wavelet analyses. At the decadal/interdecadal time scales, the LI and NN1 have stronger 

relationships to ENSO signals than the SI, especially for the period from 1880 tol910 and 

around 1980. This is especially true for the NN1 - signal relationship which holds for almost all 

the periods from 1880-1980. At the decadal/interdecadal time scales, the SI - signal 

relationship in Fig. 3.8a is determined by both LI and NN1. As can be seen, the anti-phase NN1 

- signal relation cancels the in-phase LI - signal relationship completely in 1860-1900 and 

partly in the 1980s and later. Therefore, both LI and NN1 have important contributions to the 
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original SI - signal relationship at decadal/interdecadal time scales. These features are 

furthered revealed in plots of variations in S1/NN1/L1 against signal as shown in Fig. 3.9. 

On the interannual time scales, the relationship between SI and ENSO signals is not clear in 

Fig. 3.8a. The in-phase and anti-phase relationships occur randomly from decade to decade. On 

the other hand, for most periods during the 148 years, the Ll-signal and NNl-signal show 

consistently good in-phase and anti-phase relationship, namely, a strong ENSO signal is 

associated with a large LI (small NN1) while a weak ENSO signal corresponds with a small LI 

(large NN1). Especially, the NN1 - signal relationship is most significant during the 148 years 

at both decadal and interannual time scales. 

The relatively good relationship between NN1/L1 and ENSO signals can be further 

demonstrated in the plots of variations in NN1/L1/S1 against ENSO signals. Shown in Fig. 3.9 

are these variations at decadal time scale. As can be seen, a much better relationship between 

NN1 - ENSO signals can be identified, which explains the importance of nonlinear heating in 

ENSO variability and predictability as found in other studies (e.g., Tang and Deng 2009). For 

interannual time scale, we also found that the ENSO signal is more related to NN1 than to 

others (not shown). 

3.6. Conclusion 

In this study, we investigated ENSO predictability using the optimal perturbation growth 

and long-term retrospective hindcasts using the ZC model. Emphasis was placed on exploring 

the relationship between potential predictability measured by the optimal perturbation growth 

rates and actual hindcast skill for long-period from 1856 - 2003. A good measure of potential 
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predictability is useful practically because it can estimate the prediction skill without using the 

observations, and offer a practical means of estimating the confidence level of an individual 

prediction. 

To find the best measure of potential predictability, three metrics obtained from SV analyses 

in chapter 2 have been examined at different time scales, including the leading singular value 

SI, the linear (LI) and linearized nonlinear (Nl) components of SI. The LI and Nl reflect the 

optimal perturbation growth of the linear and nonlinear heating terms in the SST governing 

equation of the ZC model. The measures of actual prediction skill include correlation 

coefficient, MSE, and mean square error of individual prediction (MSEIP). Generally, at 

decadal/interdecadal time scales, our findings from the long-period analysis of 148 years 

confirmed the theoretical perception that S1 has an inverse relationship with correlation-based 

skill, and a positive relationship with MSE-based skills. However, at shorter time scales, e.g., 

interannual time scales, and for individual forecast cases, there are large uncertainties in the 

relationship between SI and actual prediction skills, which prevents the SI from being a good 

measure of potential predictability. 

Several reasons are probably responsible for the small correlation between SI and actual 

predictability. First, SI is a collective error growth jointly contributed by the linear and 

nonlinear processes. A strong inverse relationship between LH and NH might cause an 

unrealistic offsetting contribution to SI, as indicated by strong anti-correlation between LI and 

NN1, biasing the relationship between SI and prediction skill. Instead, LI or NN1, removing 

the offsetting influence, might better characterize the relationship between potential skill and 

actual skill. Second, S1/L1/NN1 is a potential measure, and represents the optimal/fastest error 
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growth rate but such an extreme situation does not always happen in the realistic forecasts. 

Therefore, even under the perfect model scenario, they still may not have a very good 

relationship with the actual predictability. SI represents a more extreme situation than NN1 and 

LI since it contains LI, NN1, probably leading to worse relationship to actual skill. Third, the 

relationship between potential and actual skill is also influenced by model bias inherent to 

model internal dynamics and physical processes. The model is always not perfect. The SI 

involves more physical processes than either LI or NN1, thus the model bias can more easily 

impact SI than L1/NN1, more biasing the relationship between potential predictability and 

actual prediction skill. 

An important finding in this work is that the linear/nonlinear perturbation growth rate LI 

and NN1 are better measures of potential predictability than the optimal perturbation growth 

rate SI in terms of the capability of estimating the actual prediction skills. Among the three 

potential measures, NN1 has a consistent relationship with actual prediction skills for all time 

scales. Uncertainty in the relationship between SI and prediction skill measure is due to an 

offsetting effect of linear heating and nonlinear heating on the optimal perturbation growth, 

causing an opposite relationship between LI-predictability and NN1-predictability. 

A practical application of this study is to use LI and NN1 to characterize potential 

predictability. It was also found that the residual term in Eq. (3.9) has small contribution to the 

SI, allowing to use the sum of LI and NN1 to replace SI. The analysis of LI and NN1 can be 

applied to all time scales and is suitable for individual cases and overall features. It should be 

noted that a high correlation skill and a large MSE value can occur simultaneously, namely one 

prediction is good in phase but poor in magnitude. This is most probably due to the nature of 
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prediction target whose variance is large. It is well recognized that strong El Nino events might 

be easier to predict than normal events but the prediction errors in amplitude often are larger for 

strong ENSO events. Thus, it might be necessary to draw conclusions and summarize findings 

from the two different predictability measures. 

The perturbation growth rate L1/NN1 depends on the nature of initial conditions and the 

internal dynamical processes (i.e., linear and nonlinear heating). The latter often controls the 

intensity of ENSO variability. Due to the offsetting effect of linear and nonlinear heating on 

ENSO variability and the time-scale dependent nature of these dynamical processes, the 

relationship between SI and ENSO signals depends on both the time periods and time scale 

(e.g., Fig. 3.8). For example, an inverse relationship can be identified on the interannual time 

scales over the recent decades (after 1960s), consistent with those documented in previous BV 

and SV studies. However this inverse relationship does not hold well for other periods and for 

other time scales. In contrast to the uncertain SI-signal relationship, the NN1 shows a 

consistent inverse relationship with ENSO signals for all periods and time scales. 

Several cautions should be borne in mind. First, the SV analyses and retrospective hindcasts 

are often model-dependent, suggesting that the results and conclusion drawn from this work 

might not be generalized. More models are required to fully generalize these conclusions. 

Second, some physical processes are either simplified or missing in the ZC model. For example, 

stochastic atmospheric noise is not considered in this model. Stochastic forcing has been 

thought to be a main source to limit ENSO predictability. Thus, the predictive skill shown in the 

ZC model might be a lower bound of ENSO actual prediction skill (Chen and Cane 2008). 

Third, the total nonlinear heating NH always contributes to a cooling effect in the ZC model, 
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which is opposite to the observation as discussed in An and Jin (2004) where the vertical 

nonlinear warming dominates the total nonlinear heating term. This is due mainly to model 

unrealistic simulation of the zonal current anomaly. Thus, some results found in this work may 

be model dependent. However, the unrealistic simulation of NH is common in current ENSO 

prediction models. Comparing nonlinear heating terms in ten coupled models reveals that only 

one model gave the correct simulation of NH and others fail to represent both the location and 

strength or even the sign of the nonlinear vertical warming (An et al. 2005). Fourth, the results 

and conclusions in this study might be also dependent on the metrics of actual prediction skill. 

In this study, we explored ENSO predictability using correlation-based and MSE-based 

measures, especially MSEIP. When the chosen metrics have been widely used in the field of 

predictability study, they might not be able completely characterize all properties of 

predictability. Finally, we used a running window of 25-yr to analyze interdecadal variations in 

predictability and other variables. The window length of 25-yr was arbitrary and subjective 

although several sensitivity experiments with different window lengths did not essentially 

change the aforementioned results. These concerns need to be addressed through more 

comprehensive analyses. 

Nevertheless, this work explored ENSO statistical predictability over the past 148 years, 

providing insights on ENSO predictability, especially offering a practical means to estimate the 

confidence level for individual forecasts for the ZC model. An investigation of individual error 

growth rates i.e. the linear perturbation growth LI and the nonlinear perturbation growth Nl 

from their controlling processes (the underlying linear and nonlinear advections) offer the better 

potential measures for ENSO predictability. Since the perturbation growth LI and Nl are 

determined by the underlying linear and nonlinear dynamical processes respectively, these 
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processes are fundamental reasons that contribute to the strong relationships of 

signal/perturbation growth and ENSO predictability. For example, the relationship between Nl 

and forecast skill probably is the result of two known relationship: i) relation between ENSO 

magnitude and forecast skill, ii) relation between the nonlinear heating and ENSO magnitude. 
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Fig. 3.1 Interdecadal variations of a) anomaly correlation coefficient (R) and the singular value 

(SI); b) MSE and SI. A 25-yr running window was applied on all data at each month from Jan. 

1856 to Dec. 2003. MSE measures are averaged over lead times of 1-12 months. 
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Fig. 3.2 a) Decadal/interdecadal variations of MSEIP and singular value (SI). A 10-yr low-pass 

FFT filter method was applied on these skill measures, b) Temporal variations of the correlation 

coefficient between SI and MSEIP over the 148 years, correlation coefficients were calculated 

in a 25-year running window. 
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Fig. 3.3 The relationships between the singular value SI and the actual predictability measures 

at interannual time scales using a 2-7-yr FFT filter. SI against MSEIP. 
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Fig. 3.4 Same as Fig. 3.3 but for all time scales without using an FFT filter. 
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Fig. 3.5 Scatter plots give the relationships of the linear (LI), nonlinear (NN1), and the total 

(SI) perturbation growth rates, a) LI against SI. b) NN1 against SI. c) S1-(L1+NN1) against 

S1. d) Linear heating LH and nonlinear heating NH (K/month) 
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Fig. 3.6 The relationships between the linear/nonlinear singular values and the prediction skill 

MSEIP at interannual time scales using a 2-7-yr FFT filter, a) LI against MSEIP; b) NN1 

against MSEIP. 
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Fig. 3.7. The cross-wavelet analysis for the singular values S1/L1/NN1 and actual prediction 

skill MSEIP. a) SI and MSEIP; b) LI and MSEIP; c) NN1 and MSEIP. The thick contour 

encloses regions of greater than 95% confidence, using a red-noise background spectrum. The 

relative phase relationship is shown as arrows, with in-phase pointing right, anti-phase pointing 

left, and singular values leading skills by 90° pointing straight down. (A 2-yr FFT filter was 

applied on all data before performing the cross-wavelet analyses). 
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Fig. 3.8 The cross-wavelet analysis for ENSO signal (|NIN03.4|) and the singular values SI, 

Ll.andNNl. 
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Fig. 3.9 Decadal/interdecadal variations of ENSO signal (|NIN03.4|; the solid line) and 

perturbation growth rates (dash lines): a) the linear perturbation grow rate (LI); b) the 

linearized nonlinear perturbation growth rate (NN1); c) the total perturbation growth rate SI. A 

10-yr low-pass filter has been applied. 
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Table 3.1 Correlation coefficients of potential predictability measures and actual predictability 

measure. The actual predictability measure is MSEIP, whereas the potential predictability 

measures include the leading singular value (SI), the linear perturbation growth rate (LI) and 

the nonlinear perturbation growth rate (NN1). The LH and NH represent the linear heating and 

nonlinear heating items in SST governing equation, averaged over the NIN03.4 region and 

over the optimal period of 12 months. 

MSEIP 

SI 

0.16 

LI 

0.33 

NN1 

-0.36 

LH 

0.58 

NH 

-0.51 
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Chapter 4: Ensemble Construction and Verification of the Probabilistic 

ENSO Prediction in the LDE05 Model 

Cheng Y, Tang Y, Jackson P, Chen D, and Deng Z (2009) Ensemble Construction and 

Verification of the Probabilistic ENSO Prediction in the LDE05 Model (submitted to J. 

Climate on September 25, 2009, revised in January 2010). 
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4.1. Introduction 

The loss of ENSO predictability in a numerical model generally depends on uncertainties 

due to i) errors in the initial conditions, ii) model errors, and iii) unexpected external stochastic 

noise (e.g., Moore and Kleeman 1998). These uncertainties develop during the forecast period 

as lead time increases, eventually rendering the forecast no better than climatology. As a 

response to the limitations imposed by these uncertainties, a more useful forecast strategy is to 

perform ensemble predictions and evaluate the uncertainties of the forecast system using 

probabilistic methods (Chen and Cane, 2008). 

To perform an ensemble-based ENSO probabilistic forecast, the crucial issue is to design a 

reliable and high resolution ensemble prediction strategy that should include the major 

uncertainties of a forecast system. Many strategies have been used in the ensemble 

construction of weather forecasts and seasonal climate predictions. For example, some 

strategies are dynamically constrained methods such as breeding-vector (BV; Toth and Kalnay 

1993), the ensemble transform (ET; an improved version of the BV; Bishop and Toth 1999; 

Wei et al. 2008), and the singular vector (SV; e.g., Lorenz 1965; Palmer 1993), they are used to 

optimally perturb the initial conditions for constructing ensemble forecasts. Other methods are 

also used to obtain the "best" initial conditions in ensemble constructions: the ensemble 

Kalman filter (ENKF; Evensen 1994; Evensen 2003), the ensemble transform Kalman filter 

(ETKF; Bishop 2001; Wang and Bishop 2003), and the perturbed observation (PO; 

Houtekamer and Derome 1995). Using the three-parameter Lorenz (1963) model, Anderson 

(1997) found that random perturbations produce more skillful ensembles than BV and SV. 

Houtekamer and Derome (1995) found little difference in the quality of the ensemble mean 

92 



Ph.D. Dissertation: University of Northern British Columbia 

forecasts between the BV, SV, and PO methods using a quasigeostrophic model. Hamill et al. 

(2000) compared BV, SV, and PO in a quasigeostrophic channel model. They found that the PO 

method is better than the BV and SV method. Descamps and Talagrand (2007) compared four 

strategies in the Lorenz (1963) model and a three-level atmospheric model and concluded that 

the relative performance, from best to worst, of these strategies was in the order EnKF > 

ETKF > BV > SV. 

Significant progress has been made in using these optimal perturbations to study ENSO 

predictability as cited above. However these previous studies mainly focused on the optimal 

error growth of ENSO deterministic predictions. The impact of perturbation construction on 

the ensemble probabilistic predictions has not been well addressed, especially using long-term 

retrospective ensemble predictions over periods as long as 100 years. In this study, we will 

explore this issue using SV-based perturbation methods. So far, the SV method itself has not 

been well examined in the framework of ENSO ensemble probabilistic prediction. One reason 

is that the SV analysis needs tangent linear model (TLM), which is often technically difficult. 

Another reason is the lack of a long-term forcing data for initializing predictions, so that 

previous retrospective predictions were limited to a short period of 20-40 years, with a rather 

limited number of ENSO cycles. This may preclude statistically robust conclusions. Chen et al. 

(2004) used KAPLAN SSTA reanalysis data and the ZC model (LDE05 version) to perform a 

148 year hindcast experiment for the period of 1856-2003. They successfully predicted all of 

the prominent El Nino events during this period at lead times of up to two years, with the SST 

being the only data used for model initialization. Tang et al (2008a) further analyzed the 

interdecadal variation in ENSO prediction skill from 1881-2000 using multiple models. These 

retrospective ENSO predictions not only allow us to achieve a robust and stable study of 
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statistical predictability of ENSO but also demonstrated that the long-term SSTA data are of 

good quality. Recently, a fully physically-based TLM was constructed for the LDE05 model, 

and singular vector analyses were performed for the 148 year period from 1856-2003 in Cheng 

et al. (2009). The long-term SVs obtained in Cheng et al. (2009) makes it possible to construct 

ensemble predictions with the LDE05 model, so that the shape of the forecast probability 

density function (PDF) that describes the prediction uncertainty can be estimated, and the 

probabilistic nature of ENSO predictability can be explored. 

Another issue is the role of stochastic atmospheric noise in ensemble ENSO predictions. It 

has been well recognized that stochastic atmospheric forcing associated with synoptic-to-intra-

seasonal variability is critical in forming, developing and maintaining ENSO cycles (e.g., 

Penland and Sardeshmukh 1995; Kleeman and Moore 1997; Eckert and Latif 1997; Blanke et 

al. 1997; Kirtman and Schopf 1998; Moore and Kleeman 1999; Thompson and Battisti 2000; 

Fluegel et al. 2004; Moore et al. 2006; Philip and van Oldenborgh 2009; Eisenman et al. 2005; 

Gebbie et al. 2007; Tziperman and Yu 2007; Zavala-Garay et al. 2003; Perez et al. 2005; Zhang 

et al. 2008). These studies consider that the high-frequency synoptic-scale atmospheric motion 

(i.e. weather events) and other high-frequency variations such as westerly wind bursts and the 

Madden-Julian oscillation (MJO) provide stochastic forcing to the ENSO modes and hence 

acting as a limit to the predictability. However, it is not very clear so far how the stochastic 

atmospheric noise impacts ENSO probabilistic predictions. 

An important task associated with ensemble construction is to evaluate an ensemble-based 

probabilistic prediction system by probabilistic verification methods, from which the 

performance of the prediction system and the ensemble construction method can be 

quantitatively evaluated. Probabilistic verification is known as an important complement to 
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deterministic verification, which provides a useful and quantitative way to measure uncertainty 

(Palmer 2000; Kirtman 2003). In contrast with the traditional prediction skill measures such as 

anomaly correlation (R) skill and root mean squared error (RMSE) skill, the verification of an 

ensemble-based probabilistic forecast system focuses on measuring two properties: reliability 

and resolution, which are the two most important characteristics of a probabilistic forecast 

system (Toth et al. 2003). An introduction of these properties and the probabilistic verification 

methods will be described in section 4.4. 

This study will introduce both initial condition uncertainty and additive stochastic 

atmospheric noise into the LDE05 model and examine their impacts on ENSO probabilistic 

prediction. It is unrealistic to evaluate all ensemble construction methods available for ENSO 

probabilistic prediction, thus we focus on evaluating four methods, chosen based on previous 

studies as referred to above: (i) initial condition perturbation using the singular vector (SV) of 

SSTA (SVl_sst); (ii) realistic stochastic winds as a continuous external forcing during the 

forecast period (UV_realstoc); (iii) stochastic optimal winds (S01_wind) as a continuous 

external forcing during the forecast period; (iv) a combination of the first method SVl_sst and 

the third method SOlwind (S01_wind+SVl_sst). Several probabilistic verification methods 

are used to evaluate the reliability and resolution of ensemble-based probabilistic ENSO 

predictions, including the reliability diagram (RD) and the Brier skill score (BSS), the ranked 

probability score (RPS), and the ranked probability skill score (RPSS). Emphasis is placed on 

assessing which ensemble construction method provides more reliable and higher resolution 

probabilistic ENSO predictions. 

This Chapter is structured as follows: Section 4.2 briefly introduces the LDE05 model, and 

the metrics of ensemble prediction skill. Section 4.3 discusses the four ensemble construction 
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methods used in this study. Section 4.4 gives the introduction of probabilistic forecast 

verification methods. Section 4.5 presents the ensemble prediction results followed by a 

conclusion and discussion in section 4.6. 

4.2. Metrics for Ensemble Prediction Deterministic Skill 

Several ensemble construction schemes are designed in this study, focusing on different 

aspects of uncertainties related to the predictability, i.e., the initial conditions and stochastically 

external forcing. These ensemble retrospective ENSO predictions were performed by 

perturbing SST or wind, or both, using a given method as described in section 4.3. The model 

is initialized by only the assimilation of SST every month for 1856-2003 from Chen et al. 

(2004), thus a total of 148 years x 12 months/year (=1776) forecast initial conditions were 

obtained. From each initial time, an ensemble forecast was performed with the ensemble size 

(M) of 100, and for a period of 24 months. Thus, there are a total of 1776 months x 100 

members x 24 months lead-time (=4262400) forecasts for the ensemble experiment of a given 

ensemble construction method. 

In this study, we use the error of the ensemble mean (RMSEEM) and ensemble spread to 

assess ensemble deterministic prediction skill, defined by, 

SPREAD(i,t) = \-^f\Tl
p{m,t)-EM(i,t)] (4.1) 

1 M=100 

EM(U) = —YTi
p(m,t) (4.2) 

where EM is the ensemble mean, a function of initial time / and lead time t. Mis ensemble size, 
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i.e. 100 here. T is the index of Nino3.4 SSTA, the superscripts^ and o denote predictions 

(forecasts) and observations respectively; TV is the number of initial conditions used (N=1776). 

1 i=N 

SPRDif) = — £ SPREAD(i, t) (4.3) 

where the SPRD in (4.3) is the averaged ensemble spread over all the initial times, it is a 

function of lead-time (t) only. 

4.3. Strategies of Ensemble Construction 

4.3.1 Perturbation of Initial Condition with Singular vector (SV) of SSTA 

In chapter 2, singular vector (SV) analysis was performed for the period 1856-2003 using 

the LDE05 model. The leading singular vectors (SVls), representing the optimal growth 

pattern of initial perturbations/errors, were obtained by perturbing the constructed tangent 

linear model (TLM) of the LDE05 model. It was found that the first singular vectors of SSTA 

are dominated by a west-east dipole spanning most of the equatorial Pacific, with one center 

located in the east and the other in the central Pacific. The SVls are less sensitive to initial 

conditions, i.e., are independent of seasons and decades. Thus, we will use the 148-year 

averaged SV1 of SSTA (denoted by SVl s s t ) to perturb all initial conditions. As found in 

chapter 2, the fastest perturbation growth rate occurs at a 9-12-month lead in the LED05 

model. Correspondingly, the prediction RMSE skill varies slowly with lead time after 12-

month leads (Chen et al. 2004; Chen and Cane 2008). This motivates us to choose the SVl_sst 

of the 12-month lead in the following discussions. Note that the ensemble construction by two 

or more SV patterns does not show higher resolution or reliability than that constructed from 
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the SV1 alone (not shown), thus only the SV1-based ensemble is used, so that we perturbed the 

initial model SST by the SVl_sst pattern. The construction of initial perturbation (Y) can be 

expressed by (4.4), where random numbers (X) were normalized, and a is a constant value 

controlling the perturbation magnitude, set to 0.25 here according to Karspeck et al. (2006). 

Y=SVl_sstxXxa (4.4) 

4.3.2 Realistic Stochastic Winds 

In this study, we use two methods to generate the stochastic wind perturbations: high 

frequency (< 90 days) realistic winds, and stochastic optimal winds. The first of these, denoted 

by UV_realstoc, is our second ensemble construction strategy. A dataset of the atmospheric 

high frequency components were first obtained by applying a 3-month high-pass filter to the 

NCEP daily wind dataset from 1948-2000 (Deng and Tang 2008). This dataset, referred to as 

the noise dataset, realistically represents all possible temporal and spatial characteristics of 

atmospheric noise. Then, the atmospheric model (winds) is perturbed using the high frequency 

winds, randomly drawn from the noise dataset, at each model time step (10 days). 

4.3.3 Stochastic Optimal perturbation 

The spatial structure of initial perturbations has an important effect on the ensemble 

forecasts. The third method used for ensemble construction in this study is the stochastic 

optimal (SO) mode perturbation (Farrell and Ioannou 1993; Kleeman and Moore 1997; Moore 

et al. 2006; Tang et al. 2005; Tang et al. 2008b). Instead the realistic high frequency winds that 

might not generate optimal perturbation growth, we used the leading SO mode of winds 

(SOlwind) to perturb the model through the entire forecast period. As discussed in Tang et al. 
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(2005; 2008b), for white noise in time, the SOs are the eigenvectors of the operator S: 

S=^R\0,t)R(0,t)dt. (4.5) 

Here x is the forecast interval of interest, set at 24 months in this study, R(0, t) is the 

forward tangent propagator of the TLM that advances the state vector of the system from time 

0 to time t, R (0,t) is the transpose of R(0, t). A detailed description of the SO can be found in 

Moore et al. (2006), Tang et al. (2005), and Tang et al. (2008). Specifically, at each initial time, 

the perturbation was held constant for a total of 30 days, as a continuous wind perturbation 

following Karspeck et al. (2006), and then a new temporally uncorrelated perturbation was 

applied. The perturbations were controlled by (4.4) but using S01_wind instead of SVlsst, 

where X is still a normalized random number; and a = 0.7 equivalent to the RMSE of winds 

anomaly of 0.7 m/s, obtained using sensitivity experiments based on the first verification 

principle Eq. (4.6) described in section 4.4. 

4.3.4 Combination of Stochastic Optimal and Initial SSTA Perturbations 

The fourth ensemble construction method is denoted by SOlwind+SVlsst, including the 

SVlsst perturbation at initial conditions and the SOlwind during the whole forecast period. 

Thus, two key sources of uncertainties were included in the SOlwind+SVlsst method. 

Comparisons between the S01_wind+SVl_sst method against the SVlsst method and the 

SOlwind method, reflect relative importance of the uncertainty from the SOlwind and from 

the SVlsst in ensemble probabilistic predictions. 
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4.4. Verification Principles of Probabilistic Forecasts 

ENSO probabilistic forecasts are made for three categories in this study: La Nina, Neutral, 

and El Nino. The category classification follows the definition+ used by the IRI ENSO forecast 

system, where the LDE05 model is one of the forecast models used routinely for ENSO 

probabilistic forecast. Specifically, three ENSO categories are defined by the observed 

NIN03.4 SSTA binned at its climatological frequency of 25%, 50%, and 25%, respectively, 

which approximately match the common historical ENSO events during 1950-2002. 

It is necessary to mention key properties of a probabilistic system here. A probabilistic 

forecast system has two key attributes: (i) Reliability, defined by statistical consistency 

between forecast probability ( Pf the proportion of ensemble members that indicate the 

occurrence of an event) and the corresponding observed frequencies (P0) over the long time 

period (Toth et al. 2003). For example, the forecast system for precipitation is reliable if the 

proportion of occurrences of rain is close toi>0. However, reliability alone is not sufficient for a 

probabilistic forecast system. For example, a system always forecasting the climatological 

probability (Pc) of the event is reliable but not useful because the system would not provide 

any forecast information beyond climatology. Thus another key property of a probabilistic 

system is also required: (ii) Resolution, measures the difference between observed 

frequenciesP0 and climatological probability^ (Murphy, 1973) Compared to thePc, a larger 

P0 indicates a higher resolution of the forecast system. Note/^ is obtained by compiling a set 

of cases for rain forecasts with Pf , P0 depends on Pf implicitly. 

+http://portal.iri.columbia.edu/portal/server.pt?open=512&objID=945&PageID=0&cached=true&mode=2&userID=2 
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To achieve a reliable and high resolution ensemble-based probabilistic ENSO forecast, 

several principles used to measure the two properties are applied to evaluate our ensemble 

construction methods as discussed below. 

4.4.1. Ensemble Spread and Error of Ensemble Mean 

If the observation is statistically indistinguishable from the ensemble members, then the 

error of the ensemble mean (i.e., RMSEEM) must close to the mean distance of the individual 

members from their mean (i.e. ensemble standard deviation or SPRD) (Buizza 1997; 

Stephenson and Doblas-Reyes 2000; Toth et al. 2003). In addition, the RMSEEM is 

comparable to the RMSE of the deterministic forecast ( RMSECTL ), obtained from the 

unperturbed initial condition. However, when nonlinearity becomes pronounced with increased 

lead time, the ensemble prediction could be better than the control forecast (Toth and Kalnay 

1997). Furthermore, the standard deviation of the observed SSTA distribution over a long time 

period indicates the upper limit of RMSE for ENSO climatological predictions. With the 

observed NIN03.4 SSTA index for the period of 1856-2003, the standard deviation value is 

0.71. 

Thus, if an ensemble forecast system has good resolution, over a long time period, the 

following relationship is valid: 

SPRD * RMSEEM < RMSE CTL< 0.71 (4.6) 

Note the SPRD in Eq. (4.6) is a function of lead time (t) only. 
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4.4.2. Reliability diagram (RD) 

The traditional reliability diagram (RD; Wilks 1995) is often used to evaluate the reliability 

of probability forecast with two categories: the observed relative frequency of event occurrence 

(P0) and the forecast probabilities (Pf). The P0 is calculated at a set of forecast probabilities 

from 0-100% in 10% intervals. The reliability diagram is a plot of P0 against/^ . If the forecast 

is perfectly reliable, the P0 should be similar to Pf . The RD method is good at evaluating and 

calibrating the reliability of a two-category (Yes/No) forecast. It also can be applied for a 

multicategory forecast by examining the reliability of individual categories separately. Also, 

one can evaluate the reliability by another method, the multicategory reliability diagram 

(MCRD) method (Hamill 1997). 

4.4.3. The Brier Score 

The Brier score (BS; e.g., Wilks 1995) is a commonly used verification measure for 

assessing the accuracy of probability forecasts. It is the mean squared error between the 

forecast probability and the observed frequency over the verification period. 

BS=^i(P.-0:Y (4-7) 

Where N is the number of total verification samples (N=1776 here), P ; is the forecast 

probability and O, is a value 1 or 0 depending on whether the event occurred or not. Similar to 

the deterministic prediction skill RMSE, a smaller BS indicates a good forecast system. 

The BS can be decomposed into three items: reliability (REL), resolution (RES), and 
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uncertainty (UNC) as follows (e.g. Wilks 1995) 

BS = 
1 K=\Q 

_V V k=\ 

REL 

-
l K=\0 

RES 

+ [5(1 -S)] 

UNC 

(4.8) 

Over the verification period, the observed frequency of occurrence P0 can be partitioned into K 

bins (K=10 in this study) according to the forecast Pf. Pj\ is the averaged forecast probability at 

bin k. Pok is the corresponding observed frequency, s is the climatological probability (the base 

rate) that is independent of the forecast system. The uncertainty term UNC and base rate s are 

obtained from the long term observed data. For the cold, neutral, and warm ENSO category, 

UNC equals to 3/16, 4/16, 3/16 respectively according to the IRI definition mentioned earlier. 

nk is the number of the forecast and observation pairs located in an individual bin k. The first 

term reliability RES on the rhs of Eq. (4.8) is actually equal to the mean squared deviation of 

the reliability curve from the diagonal line in RD plot. A smaller reliability term REL indicates 

a better consistency between P^ and Ok, which results in a smaller BS and a more reliable 

probabilistic prediction skill. The second term resolution RES is equivalent to the variance of 

observed distribution. RES measures the ability of a forecast system to discern situations where 

the frequency of the occurrence of the event is different from the base rate s. Note that the RES 

term has a negative sign, but it is often used without the negative sign, as a positive-oriented 

measure. 

A good Brier score occurs at a large RES item and a small REL, corresponding a high 

resolution and good reliability. The ideally perfect RES value equals to the uncertainty item 

UNC that gives the upper limit of the predictability of the probabilistic prediction system. 
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In order to compare the Brier score to that for a reference forecast system BSref , it is 

convenient to define the Brier skill score (BSS; Wilks 1995). 

BSS = l—— (4.9) 
BSref 

If the climatological forecast is taken as reference prediction, BSref-UNC = s{\-s). 

BSS is positively oriented. It has the range of -co to 1. A negative BSS indicates that the 

forecast is less accurate than the climatology forecast. BSS equals to one for a perfect system, 

and zero for a system that performs like the climatology forecast. 

From Eq. (4.8), Eq. (4.9) can be rewritten as 

UNC UNC res el 

In Eq. (4.10), Brel and Bresare named as the reliability term and resolution term of the BSS 

score. Brd is negatively oriented and Bres is positively oriented, that is in consistent with the 

signs of the RES and REL in the BS score. Bres = 1 and Brel = 0 indicate a perfect forecast 

system. 

4.4.4 The RPS Score 

The ranked probability score (RPS; Epstein 1969; Murphy 1969; Murphy 1971) is another 

commonly used skill (resolution) measure for probabilistic forecasts, defined in terms of the 

squared differences between the cumulative probabilities in the forecast and observation 

vectors. 
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3 / / 

RPS(t,i) = ̂ \ ^Pk(t,i)-^Ok(t,i) (4.11) 
/=1 V k=\ k=\ J 

where Pu is the forecast probability assigned to the /th category and Ok=\ when the observation 

falls into /th category and 0 otherwise. The ranked probability skill score (RPSS; Wilks 1995) 

is defined using the RPS and a reference forecast defined to have zero skill. Here, the 

climatological forecast is used as the reference forecast. 

RPSS = \ ^ — (4.12) 

where RPScUm is the RPS of climatological forecast. RPS/RPSS scores are functions of lead 

time (t) and initial time (/'). 

In summary, a good ensemble-based probabilistic forecast system should have: (i) 

Ensemble spread (SPRD) close to the RMSEEM, and the RMSE of the control deterministic 

forecast, as given in Eq. (4.6); (ii) Probabilistic forecasts must be reliable, as measured by the 

reliability diagram and the reliability term of the Brier skill score (i.e. Brd); (iii) A skillful 

probabilistic forecast system should have good resolution measured by the resolution term of 

the BSS score, (i.e. Bm). In addition, a skillful probabilistic forecast should have a small RPS, 

a large BSS/RPSS score. 
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4.5. Results 

4.5.1 Ensemble Spread 

We begin by first examining whether ensemble prediction experiments can satisfy the first 

principle Eq. (4.6). The SPRDs of four ensemble experiments are compared against the RMSE 

of the control run (RMSECTL) and the RMSE of ensemble mean (RMSEEM) (Figs. 4.1 a-d). As 

discussed in section 4.1, the first principle offers a measure to judge that whether an ensemble 

construction can include sufficient uncertainties of the model. In Fig. 4.1a, although the 

RMSEEM for the S V l s s t method is close to the RMSECTL and the standard deviation of the 

climatological forecast (0.71; the blue dash dot line), the ensemble SPRD underestimates the 

model uncertainty significantly. Of note is the decrease in ensemble SPRD at lead times of 10-

17 months, suggesting a limitation of using linear SV theory in ensemble construction over 

long lead times. Thus, the S V l s s t method might not be a good ensemble construction strategy 

for the long-term ENSO ensemble predictions. Note that ensemble SPRD depends on the 

amplitude of random numbers applied on the SV1 pattern. Here a is set to 0.25 in Eq. (4.4) to 

represent realistic uncertainty of the initial SSTA (0.25 °C; e.g., Karspeck et al. 2006). 

Certainly, a large SPRD can be obtained by increasing a, but that results in a larger SPRD than 

the RMSECTL and RMSEEM at the lead time of 6 months (Fig. 4.2), still violating Eq. (4.6). 

In the second ensemble construction method (UV_realstoc), the high-frequency realistic 

stochastic winds are used during the forecast period. The current LDE05 model is free of 

atmospheric random forcing, thus using realistic stochastic winds could potentially improve 

ENSO predictability. Unfortunately, the UVrealstoc method also underestimates the model 

error/uncertainty, showing a small SPRD far away from the RMSECTL and the standard 
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deviation of the climatological forecast in Fig. 4.1b. Increase in the magnitude of external 

forcing can produce a large spread as shown in Fig. 4.3, however, artificial adjustment of the 

strength of stochastic winds results in unrealistic stochastic forcing. For example, the spread is 

close to the R M S E C T L when the perturbation magnitude is increased to three times of the 

original NCEP winds in Fig. 4.3. This is in agreement with the result from the LDOE4 model 

in Karspeck et al. (2006), where a sufficient spread could not be obtained until using an 

unrealistic strong wind forcing, with a standard deviation of 10 m/s. Fig. 4.4 shows that if the 

stochastic winds are unrealistically large (e.g. a strong wind perturbation 3.0 times as large as 

the original NCEP winds), the anomaly correlation skill R and RMSE degrade in spite of a 

large SPRD. An unrealistic strong wind perturbation may bias the model system and produce a 

large dynamical imbalance. Thus, the second strategy fails to construct a good ensemble 

forecast either. 

In summary, both the S V l s s t and the UV_realstoc methods cannot introduce sufficient 

uncertainties that we expects for a good ensemble construction. For the SVl_sst method, large 

differences between the SPRD and RMSECTL at longer lead times suggest that the perturbation 

introduced at the initial SSTA cannot effectively persist through the forecast period due to 

dispersion. For the UV_realstoc method, uncertainty estimated from the high frequent 

components of NCEP winds cannot produce sufficient prediction uncertainties or errors due to 

the random nature of the perturbation spatial structure. As mentioned in section 4.3.3 and in the 

introduction section, the spatial structure of stochastic wind perturbation is important in 

ensemble construction. 

In the third experiment, we used the stochastic optimal mode to construct the ensemble 

prediction for the period from 1856-2003, as discussed in Kleeman and Moore (1997) and in 
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section 4.3.3. To achieve this, we first calculated the leading SO mode of winds (denoted by 

S01_wind) for each calendar month for the optimal period of 24 months over the 148-yr 

period. It was found that the spatial pattern of the SOlwind is not sensitive to initial 

conditions, thus the average SOI wind pattern over all initial conditions, as shown in Fig. 4.5, 

was used for the ensemble construction. Similar to the SV1 of SSTA, the S01_wind 

contributes to about 30-40% of the total variance. As seen in Fig. 4.5, there is a strong 

convergence region of winds centered at 140 °W and a divergence at the cold tongue region of 

the eastern tropical Pacific. That such a structure is favorable for perturbation growth is 

probably inherent in ENSO dynamics. For example, this pattern generates corresponding 

downwelling and upwelling in the eastern tropical Pacific, and induces warm eastward-

propagating Kelvin waves and cold westward-propagating Rossby waves, which in turn 

impacts on ENSO variability according to the delayed oscillator theory (Suarez and Schopf 

1988). Fig. 4.1c shows the SPRD variation as a function of lead time, generated by the 

SOlwind method. As can be seen, the RMSEEM, SPRD from this method are closer to the 

RMSECTL and the standard deviation of ENSO climatological prediction (0.71) than the first 

two methods, satisfying the first principle Eq. (4.6). Comparison of Fig. 4.1b with Fig. 4.1c 

suggests the importance of the spatial structure of perturbation in ensemble construction. Note 

that the perturbation magnitude used here is much smaller than that of UVjrealstoc (0.7 m/s 

against 2.5m/s). 

The fourth perturbation ensemble construction method (S01_wind+SVl_sst) is to combine 

the SV1_SST and the S01_wind perturbations. In terms of the first principle Eq. (4.6), the 

ensemble spread produced by this method is the best, as shown in Fig. 4.Id. Compared with 

the SOlwind and the SVlsst method, the SPRD from S01_wind+SVl_sst method is the 
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closest to the RMSEEM and RMSECTL, showing the important effect of both the S V I S S T and 

the SOlwind perturbation on the ensemble spread. Especially, SV1_SST perturbation mainly 

impacts the spread of short-leading times whereas S01_wind likely dominates the ensemble 

spread of long-leading times. 

4.5.2 Reliability 

The second principle, "reliability", is examined by the reliability diagram (RD) method. 

The forecasted/observed SSTA are grouped into three categories representing the cold, neutral, 

and warm ENSO states, as defined at the beginning of section 4.4. In each ENSO category, a 

RD curve is made by using the forecast probability Pf at 11 intervals of 0, 10%, ..., 100% 

against the corresponding observed relative frequency P0 over the 148 years. The diagonal line 

in a RD diagram indicates a perfect reliable system, i.e. Pf-P0-

RD diagrams are shown in Fig. 4.6 for the four ensemble construction methods and at three 

different lead times: 6, 9, and 12 months. The RD curves from the first two ensemble 

construction methods cross the diagonal line from the upper-left to bottom-right showing poor 

reliability (Figs. 4.6 a-b). These features are probably due to the low "resolution" of the first 

two methods. Note that the resolution of probabilistic forecasts can also be approximately 

estimated in the reliability diagram. According to the definition of resolution in Section 4.4, the 

resolution is determined by the difference between P0 and PQ. When a RD curve becomes 

flattened, it is closer to its climatological probability values (that is, P0 tends to be close to the 

Pc, 0.25/0.5/0.25 for the cold/neutral/warm category, respectively). For the last two ensemble 

construction methods, in Figs. 4.5 c-d, reliability is greatly improved, since the RD curves 

oscillate around the diagonal lines, especially for the fourth method SOlwind+SVls s t . 
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Reliability can be quantified using the reliability component of the Brier skill score (Bref, 

Wilks 1995). Fig. 4.7 shows the reliability scores for four ensemble experiments for the three 

ENSO categories. Again, the two SO-based ensemble construction methods provide more 

reliable results (i.e. smaller reliability scores) than the other two methods over all lead times 

and in all categories. Comparing the reliability scores of SOlwind with the 

S01_wind+SVl_sst, the later method is superior, due to the contribution of the SVl_sst at 

short lead times. Thus, both the RD analysis and the reliability score demonstrate that the 

importance of the stochastic optimal winds in the ensemble construction. 

To illustrate the role of ensemble SPRD on reliability, it is more convenient to use the 

verification rank histogram. A rank histogram diagram is another way to present the reliability 

of an ensemble forecast system. The underlying reason is that the observation and ensemble 

members in a reliable ensemble system are subject to an identical probability distribution. In a 

rank histogram, each of the M+l intervals, defined by an ordered M ensemble members, 

includes two open ended intervals. A reliability system would be equally likely to contain the 

observed value (Toth et al. 2003). In a small SPRD case as seen in Fig. 4.7, the rank histogram 

plot displays "U" type distribution. Observations fall more frequently on the first and the last 

categories and rarely show in the middle categories. This is because for a small SPRD case, the 

observation will often be an outlier in the distribution of ensemble members, implying that 

ensemble relative frequency will be a poor approximation to the probability. In a good SPRD 

case, as seen in Fig. 4.8, the rank histogram shows a homogenous distribution, i.e. the 

frequency distribution is around the perfect percentage line, indicating the consistency of 

forecast and observed distributions (a good reliability). Thus, an ensemble system with good 

ensemble SPRD will result in a reliable probabilistic forecast system. 
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4.5.3 Resolution 

To examine the resolution of the four ensemble construction methods, Fig. 4.10 displays 

the resolution terms of the BSS score (Bres) for the warm, cold, and neutral ENSO states, as a 

function of lead time. Two common features can be seen: (i) The Bres scores for the warm and 

cold ENSO events are greater than those of the neutral ENSO state for a given lead time, and 

resolution drops faster at the neutral ENSO state than the others, indicating that El Nino and La 

Nina events are more predictable than neutral events. This signal-dependent characteristic of 

ENSO predictability is in agreement with many studies (e.g., Chen and Cane 2008; Tang et al. 

2008a). (ii) Compared with the large differences of reliability terms among four methods in Fig. 

4.7, resolution terms for four methods only show slight difference, although their SPRD are 

visibly different in Fig. 4.1. This implies that SPRD is more related to reliability than 

resolution. In other words, the reliability of ENSO probabilistic forecast is more sensitive to 

choice of ensemble construction strategy than does the resolution. 

According to the definition of resolution, a more skillful probabilistic forecast system 

requires a larger difference between the observed distribution and the climatological 

distribution. Because observations are arranged in different bins based on the forecast 

probability, resolution measures ability of a forecast system to discern types of events. It seems 

there is no explicit relationship between the ensemble SPRD and the resolution. For example, 

in an extreme case, if ensemble SPRD and ensemble mean are invariant over the verification 

period, the ensemble system will have a poor "resolution" no matter how large (or small) the 

SPRD is. In this specific case, because the system provides a constant forecast probability in 

each ENSO category, forecasts and observations will be aggregated in one bin, the observed 
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frequency will be equal to the base rate, and the resolution will be zero. Under this 

consideration, the temporal variability of ensemble spread, rather than the SPRD itself, may 

play an important role in determining the resolution. 

4.5.4 Overall Probabilistic Skill 

The overall performance of the four ensemble construction methods is evaluated by BSS 

score and RPS/RPSS score. The BSS score includes the joint contribution of reliability and 

resolution at each ENSO category. The RPS and RPSS are accumulated skill scores for all 

categories. Fig. 4.11 presents BSS for four ensemble methods at cold, neutral, and warm ENSO 

states. As seen, the SOlwind and SOlwind+SVlsst methods provide better skill scores 

than the SVl_sst and UV_realstoc method, indicating the important role of stochastic optimal 

winds in improving probabilistic skill. The larger BSS scores in the last two methods mainly 

benefit from the better reliability terms in Fig. 4.7, because four experiments have the similar 

resolution terms as seen in Fig. 4.10. In addition, the SOlwind+SVlsst method shows a 

larger BSS score than the S01_wind method at short lead time, due to the smaller reliability 

term of the SVl_sst method at short lead time. Fig. 4.11 also indicates the upper limit of ENSO 

predictability of the LDE05 model using BSS score. Warm and cold ENSO events are 

predictable for lead times of 2 years or longer, whereas the neutral ENSO state reaches its 

lowest predictability at the lead time of 10 months (i.e., at the lead time longer than 10 months, 

the BSS is negative, indicating the system has no skill at longer lead times). 

The RPS and RPSS scores measure the distance between the probability of the forecast and 

observation similar to the RJV1SE value, but in probabilistic sense. From the definition of RPS, 

the range of RPS score is between 0 (the perfect forecast) and 1. The RPSS score is zero or 
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positive if the forecast skill equal to or exceeds that of the climatological probabilities, while a 

negative RPSS represents that the forecast skill is worse than climatology (e.g., Mason 2004). 

A smaller RPS or a larger RPSS score indicates higher predictability. To compare the skill of 

the four ensemble methods, individual RPS and RPSS scores were calculated over 148 years 

for lead times from 0 to 24 months. The averaged RPS and RPSS score over the 148 years are 

given in Fig. 4.12. The S01_wind+SVl_sst method has the smallest RPS score and largest 

RPSS score: it provides a more skillful forecast than the other methods. It is worth noting that 

the RPSS scores shown in Fig. 4.12 are averaged over three ENSO categories for lead times of 

0-24 month over the 148 years, thus, although the averaged RPSS scores have negative values 

at lead times >5 months, for individual forecasts of warm or cool events the skill score can 

have positive RPSS scores. 

In summary, Fig. 4.11 and Fig. 4.12 indicate that the fourth ensemble construction method 

S O l w i n d + S V l s s t is superior to the other three, providing the highest probabilistic prediction 

skill. Also, the third method SOlwind has relatively higher prediction skill than the first and 

the second methods. Thus, we have demonstrated that the stochastic optimal winds play 

important roles in constructing ensemble prediction in the LDOE5 model. 

4.6. Conclusion and discussion 

Skillful ENSO predictions will assist in the management of natural resources and the 

environment. Significant progress has been made in ENSO prediction over the past few 

decades (e.g., Latif et al. 1998; Shukla et. al. 2000; Goddard et. al. 2001). Currently there are a 

few ENSO prediction models issuing routine predictions (e.g., IRI at 

http://portal.iri.columbia.edu), including statistical models, intermediate complexity dynamical 
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models, hybrid coupled models, and fully coupled general circulation models. However, some 

important issues still remain and are challenging to the ENSO and seasonal climate prediction 

community. One specific issue is the measures of the uncertainties in ENSO prediction. 

An ideal approach to deal with prediction uncertainty is to issue probabilistic prediction, 

which has been widely applied in weather forecasting. Compared with weather probabilistic 

forecasting, ENSO probabilistic prediction has not been well addressed. Probabilistic 

predictions are typically generated by ensemble prediction methods. Thus an interesting 

question is: which ensemble construction method can lead to the best ENSO probabilistic 

model? In this study, we explored four typical ensemble construction methods through the 

LDOE5 model. A long term retrospective ensemble prediction was carried out for the past 148 

years (1856-2003) for each ensemble construction method. The performance of probabilistic 

prediction is measured using several probabilistic verification methods (the spread principle, 

ROC, RD and the reliability score, RPS, and RPSS). The reliability, resolution, and the 

amplitude of the ensemble spread were considered as the key principles to evaluate the 

performance of ensemble construction methods. 

It was found that the SVl_sst ensemble construction method and the realistic stochastic 

winds method UV_realstoc failed to generate reliable and high resolution probabilistic 

predictions because they characterize insufficient uncertainties in the model, resulting in small 

ensemble spreads. Meanwhile, their lower reliability and poor resolution are revealed by 

several probabilistic methods including: reliability diagrams, reliability scores, ROC scores and 

RPS/RPSS scores. The small spreads in both of the SVlsst and UVrealstoc methods are 

probably due to the limitation of linear SV theory at the longer lead times and due to the 

random nature of spatial structure in the high-frequency realistic winds, respectively. To 
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overcome the small spread issue, stochastic optimal perturbation of winds were applied over 

the whole forecast period in the last two SO-based methods. After removing the spread issue, 

the two SO-based methods exhibit good reliability in probabilistic measures. 

In some specific cases, a good reliability system does not warrant skillful forecasts. For 

example, an unrealistic strong wind perturbation also can provide a good reliability, but it has a 

poor prediction skill because that an unrealistic wind perturbation could bias the model 

dynamics. Nevertheless, a good reliability prediction is useful to obtain high ENSO 

probabilistic skill (e.g. BSS and RPSS). Among four ensemble construction methods, BSS and 

RPSS indicate that the S O l w i n d + S V l s s t ensemble construction method is superior to the 

other three. Also, the third method SOlwind has a higher BSS score than the first and the 

second methods, indicating the stochastic optimal winds play important roles in constructing 

ensemble prediction in the LDOE5 model. The skillful perturbation method benefits from the 

good reliability at longer lead times contributed by the stochastic optimal winds and at shorter 

times by the SV1_ SSTA. Furthermore, because the "resolution" is similar to each other in the 

four experiments and there are large differences in the reliability term, suggesting that ENSO 

probabilistic prediction skill more relies on the reliability term than on the resolution term. 

One interesting finding in this study is the great importance of stochastic forcing on ENSO 

probabilistic prediction. Generally, there are two kinds of sources that limit ENSO 

predictability: the chaotic behavior of the nonlinear dynamics of the coupled system (e.g., Jin 

et al. 1994; Chen et al. 2004); and the stochastic nature of the coupled system characterized by 

weather noise and other high-frequency variations, such as westerly wind bursts and Madden-

Julian Oscillation (e.g., Penland and Sardeshmukh 1995; Kleeman and Moore 1997; Moore et 

al 2006; Gebbie et al. 2007). It is still not clear which source plays the more dominant role. 
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Thus, the importance of stochastic forcing on ENSO probabilistic prediction provides insight 

on this central question challenging the ENSO community. 

Several cautions should be borne in mind. First, we only investigated four ensemble 

construction methods. Recent studies of Ham et al. (2009), Zheng et al. (2009) suggested that 

the ENKF data assimilation approach is good ensemble construction method that can provide 

reliable and high resolution ensemble predictions. Thus further comparisons of the SO-based 

methods with other methods such as ENKF and ET methods are expected. Second, we only 

perturbed two variables (i.e. the SSTA and anomalous winds), other variables could also have 

important impacts on ENSO predictability. For example, Karspeck et al. (2006) suggested that 

thermocline depth (HI) or subsurface temperature (Te) has large impacts on error growth and 

predictability in the LDE04 model. However, because SSTA is the only initial conditions used 

in the LDE05 model, choosing the errors and uncertainties from SVl_sst at the initial time and 

using S01_wind to represent external atmospheric wind noise seems to be a reasonable way of 

perturbing the LDE05 model. 
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Fig. 4.1 Root mean square error (RMSE) of NIN03.4 SSTA for the control run (CTL, circle), 

ensemble mean (RMSEEM, '+'), along with ensemble spread (SPRD, star), and climatological 

standard deviation of SSTA (dash-dot line) as a function of lead time (month), averaged over 

1856-2003. a) RMSE & SPRD for SVlsst method; b) UVrealstoc; c) S01_wind method; d) 

SOI wind+SVl sst method. 
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Fig. 4.2 Same as Fig. 4.1 but for the first ensemble construction method SV1_SST, with a larger 

SSTA initial perturbation magnitude (1.5 times of that in the Fig. 4.1 a) 
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Fig. 4.3 A sensitivity study for the SPRD by adjusting the strength of stochastic winds in the 

second ensemble construction method. The perturbation magnitude varies from 0.5 to 3.0 times 

of that of NCEP high-frequency winds. 
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Fig. 4.4 a) Anomaly correlation skill (R) from the control run (open line), ensemble mean 

forecast with different level of stochastic wind perturbation (0.5, 1, 2, 3 times) than the realistic 

NCEP winds, b) Same as a), but for RMSE. 
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Fig. 4.5 The 148-yr averaged leading mode of the stochastic optimal (SO) winds (m/s). This 

mode explains the 30-40% of the original variance of S in Eq. (4.5). 
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Fig. 4.6 al-a3) Reliability diagram (RD) for the first ensemble construction method: SVl_sst, 

at lead times of 6, 9, 12 months. In each plot, three reliability curves represent three ENSO 

categories: Warm (circle), neutral (star), and cold events (square). These are calculated based on 

100-member ensemble hindcasts for all months over the 1856-2003. bl-b3) for the second 

method: UV_realstoc; cl-c3) S01_wind; dl-d3) S01_wind+SVl_sst. 
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Fig. 4.7 The reliability term Brei of the Brier skill score as a function of lead time for the four 

ensemble prediction experiments at a) warm, b) cold, and c) neutral ENSO categories as 
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Fig. 4.8 Analysis rank histograms for a small SPRD case (i.e. the second ensemble construction 

method UV_realstoc using the original high frequency winds) at different lead times 3, 6, 9, 12, 

15, and 24 months. In a 100 ensemble members, the perfect percentage is 1.0% (dash line). 
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Fig. 4.9 Same as Fig.4.8 but for a good/sufficient SPRD case, with a strong wind perturbation 

(3 times of the original high-frequency NCEP winds). 
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Fig. 4.10 a) The ranked probability score (RPS) as a function of lead time for three ensemble 

construction methods, b) Same as a) but for the ranked probability skill score (RPSS). (Star: 

SVl_sst; dash-dot: UV_realstoc; square: S01_wind; diamond: S01_wind+SVl_sst). 

126 



Ph.D. Dissertation: University of Northern British Columbia 

a) Warm 

0.4 k-

b) Cold c) Neutrai 

5 10 15 20 
Lead (month) 

S 10 15 20 
Lead (month) 

5 10 15 20 

Lead (month) 

Fig. 4.11 Same as Fig. 4.7 but for the resolution term Bres of the Brier skill score. Bres is 

positively oriented.. 
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Fig.4.12 Same as Fig. 4.7 but for the Brier skill score (BSS). BSS is positively oriented. 
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Fig. 4.13 a) The ranked probability score (RPS) as a function of lead time for four ensemble 

construction methods, b) Same as a) but for the ranked probability skill score (RPSS). 
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Chapter 5: ENSO Ensemble Prediction in the L D E 0 5 Model from 1856-2003: 

Potential Predictability vs Real Skill 

Cheng Y, Tang Y, Chen D, Jackson P (2009) Ensemble Construction and Verification of the 

Probabilistic ENSO Prediction in the LDE05 Model, (submitted to Climate Dynamics, in 

January 2009). 
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5.1. Introduction 

Predictability is the study of the extent to which events can be predicted (e.g., DeSole 2004). 

Generally, there are two groups of predictability measures; one is actual measures that make use 

of observations, and the other one is potential predictability measures that do not make use of 

observations. For actual measures, e.g. the mean square error (MSE) skill indicates the mean 

square difference between forecasts and observations over the verification time period. MSE 

increases with lead time and asymptotically approaches a "saturation" value. The saturation 

value is equivalent to the mean square difference between two randomly chosen fields from the 

system (e.g., DeSole 2004). 

An important task in ENSO predictability study is to quantitatively estimate predictability 

by potential predictability measures, by which the degree of confidence that can be placed in an 

individual forecast can be assessed (Moor and Kleeman 1998; Tang et al. 2008a). Traditionally, 

ensemble-based potential predictability measures include: ensemble mean (EM), ensemble 

spread (ES), and ensemble ratio (ER; the ratio of |EM| over ES) (e.g., Buizza and Palmer 1998; 

Moore and Kleeman 1998; Scherrer et al. 2004). A large ES generally suggests a relatively low 

predictability in ensemble weather forecast. However, these ensemble potential measures have 

often met with challenges and limitations in quantifying ENSO and climate prediction skill (e.g., 

Kumar et al. 2000; Tang et al. 2005; Tang et al. 2007; Tang et al. 2008a, b). Using 20-yr 

retrospective predictions of two hybrid ENSO models, Tang et al. (2008b) found that ensemble 

spread ES is not a good predictor in quantifying climate prediction skill in comparison with the 
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ensemble mean square (EM2). 

Recently, new ideas from information theory have made their appearance to examine 

ENSO and seasonal climate predictability (e.g. DelSole and Tippett 2007). Several information-

based potential measures have been used to qualify the potential predictability, such as relative 

entropy (RE), predictive information (PI), predictive power (PP), and mutual information (MI) 

(Schneider and Griffies 1999; Kleeman 2002, 2008; Tippett et al. 2004; Tang et al. 2005, 2008a; 

DelSole 2004, 2005; DelSole and Tippett 2007, 2008). Like the ensemble-based potential 

prediction skill metrics, information-based skill metrics also have the advantage that measures 

predictability without the use of observations. 

Information-based measures have several important characteristics. First, for a normally 

distributed, stationary, Markov process, predictability declines monotonically with the length of 

the forecast due to chaos (Kleeman 2002; DelSole 2004; Tang et al. 2008a). Second, at a given 

lead time, the averaged RE and PI over a long time period should be identical, equal to MI 

(DelSole and Tippett 2007). MI indicates the overall prediction skill of a forecast system. Tang 

et al. (2008a) firstly examined these characteristics of information-based potential predictability 

measures for ENSO retrospective predictions using two realistic hybrid models. Their results 

show that the aforementioned characteristics of information-based measures generally held well 

in their ENSO models. However, their study only focused on 18 years from 1881-1998, so that 

the period available to test predictability covers rather limited ENSO cycles (typically 3-5), 

basically precluding statistically robust conclusions. In addition, it has been well recognized 
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that the actual predictability of ENSO has striking decadal/interdecadal variations (e.g., Chen et 

al. 2004; Tang et al. 2008). One might be able to shed light on the mechanism of 

decadal/interdecadal variation in ENSO predictability by exploring decadal/interdecadal 

variation of potential predictability. Obviously, the previous analysis for only an 18-yr period is 

unable to achieve this goal. 

Chen et al. (2004) used KAPLAN sea surface temperature anomaly (SSTA) reanalysis data 

and the ZC model version LDE05 (LDE05 hereafter) to perform a 148 year hindcast 

experiment for the period of 1856-2003. They successfully predicted all of the prominent El 

Ninos during this period at lead times of up to two years, with the SSTA being the only data 

used for model initialization. Tang et al (2008c) further analyzed the interdecadal variation in 

ENSO prediction skill from 1881-2000 using multiple models. These retrospective ENSO 

predictions allow us to achieve a robust and stable study of potential predictability of ENSO 

and investigate the decadal/interdecadal variation of ENSO potential predictability. 

In this paper, we will explore the information-based and ensemble-based potential 

predictability for ENSO using the long-term retrospective ensemble predictions from 1856-

2003 with the LDE05 model. Relationships between actual prediction skill measures and 

potential predictability measures at various time scales from interannual to decades will be 

investigated. Some theoretical properties of the information-based predictability measures will 

be examined by a long-term LDE05 ensemble prediction over 100 years. With such a long-

term retrospective ENSO ensemble prediction, some new findings and understandings in ENSO 
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predictability can be expected. 

This chapter is structured as follows: Section 5.2 briefly describes the LDE05 model and 

the method of ensemble construction. Section 5.3 gives the definitions of the actual skill 

measures, ensemble-based potential predictability measures, and information-based potential 

predictability measures. Section 5.4 examines the information-based potential predictability 

measures using the 148-yr retrospective ensemble prediction, in comparisons with previous 

findings found in Tang et al. (2008a). Section 5.5 discusses the relationship of information-

based potential predictability measures and actual prediction skill at different time scales. 

Section 5.6 discusses the control factor of information-based potential predictability measures 

and followed by the summary in section 5.7. 

5.2. The Strategy of Ensemble Construction 

The strategy of ensemble construction in this study attempts to reflect two major sources of 

uncertainties in ENSO prediction: uncertainty in the initial condition and external stochastic 

atmospheric noise during the forecast period (e.g., Moore and Kleeman 1998). Thus, a joint 

perturbation, composed of the leading singular vector of SST (SVlss t ) perturbation at initial 

condition and the leading stochastic optimal perturbation of winds (S01_wind) during the 

whole forecast period (denoted by S V l s s t +S01_wind), was applied to construct ensemble 

predictions. The SVl_sst and SOlwind represent the optimal growth of perturbation due to 

uncertainties in both initial SSTA and atmospheric transients, respectively. They were obtained 
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by perturbing the tangent linear model (TLM) of the LDE05 model outlined in chapter 2 and 3. 

It was found that this joint perturbation is able to provide reliable and high resolution ENSO 

probabilistic forecasts by the LDE05 model, where the reliability was validated by the 

reliability diagram (i.e., measuring the consistency between forecast distribution and the 

corresponding observed distribution) and the resolution (i.e., the difference between observed 

relative frequency and probability of the climatological forecast) was measured by the Brier 

skill score (BSS; e.g., Wilks 1995), RPS (the ranked probability score; Epstein 1969; Murphy 

1969; Murphy 1971), and RPSS (the ranked probability skill score; Wilks 1995). The details of 

the ensemble construction by this joint perturbation and resultant probability prediction can be 

found in chapter 4. 

The model is initialized by the assimilation of SST every month for 1856-2003 (Chen et al. 

2004), thus a total of 148 years x 12 months/year (=1776) forecast initial conditions were 

obtained. From each initial time, an ensemble forecast was performed with the ensemble size 

(M) of 100, and leading time of 24 months. Thus, there are a total of 1776x 100x24 (4262400) 

forecasts for the ensemble experiment. 
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5.3. Prediction skill Metrics 

5.3.1 Metrics of Actual Prediction Skill 

The correlation-based skill and MSE-based skill are used to measure deterministic 

prediction skill. The overall skill of ensemble mean predictions over the 148 yrs is measured by 

anomaly correlation (R) and root mean square error (RMSE) (e.g., Scherrer et al. 2004). For an 

individual prediction, its skill is evaluated by the correlation and MSE, calculated using the 

individual forecast of the entire lead time of 24 months, called correlation and MSE of 

individual prediction (CIP and MSEIP), as in Moore and Kleeman (1998) and Tang et al. 

(2008a). In this study, the predicted Nino3.4 SSTA index (averaged over 5°N to 5°S, from 

170°W to 120°W) and its observation counterpart are used to evaluate the ENSO prediction 

skill. 

5.3.2 Ensemble-based Measures of Potential Predictability 

Ensemble mean (EM), ensemble spread (ES), and ensemble ratio (ER) are common 

ensemble-based measures of potential predictability that do not make use of observations.. 

1 M=100 

EM(i,t)=—^Tp(i,t,m) (5.1) 

ES(i,t) = J-^-1fj[Tp(i,t,m)-EM(i,t)}2 (5.2) 
\ M — I ,„=i 
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ER(i,t)= ES(U) (5.3) 
EM(i,t) 

where EM, ES, and ER are a function of initial time i and lead time t. M is ensemble size, i.e. 

100 here. T is the index of Nino3.4 SSTA, the superscripts^ and o denote predictions (forecasts) 

and observations respectively; N is the number of initial conditions used (N=1776). Note that 

instead of using the EM, the square of ensemble mean, denoted by EM2, is used as a potential 

skill measure in this study since it is a better indicative of the magnitude of ENSO signal as 

suggested in Tang et al. (2008a). 

The information-based predictability measures are introduced in Chapter 1.3. The actual 

prediction measures and potential predictability measures used in this study are summarized in 

Table 5.1, as functions of initial time, lead time, or both. R, RMSE, CIP, MSEIP are actual 

prediction skill measures because they depend on observation whereas EM2, ES, ER, RE, PI, 

and PP are potential predictability skill measures that do not involve observation data. 

5.4. Characteristics of Information-based Measures of the LDE05 Model 

5.4.1 The general characteristics of RE, PI, and PP 

We first explore the properties of the information-based potential predictability measures 

through the long-term ENSO ensemble forecast with the LDE05 model. Fig. 5.1 shows the 

information-based measures RE, PI, and PP at the Nino3.4 SSTA index, as a function of lead 
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time and initial condition, for the time period from 1960 to 2003\ In Fig. 5.1, several features 

are displayed similar to those presented in Tang et al. (2008a), where a shorter period ENSO 

hindcasts from 1981-1998 were obtained by two hybrid ENSO models. These common features 

are (i) Large RE peaks are related to strong ENSOs. For example, strong El Ninos that occurred 

in 1972/73, 1982/83, and 1997/98, and La Ninas in 1974/75, 1988/89, and 1999/2000 can be 

identified by the strong peaks in the RE plot (Fig. 5.1a). On the other hand, it is difficult to 

connect ENSO variability with PI or PP since large PI and PP occurred frequently in Figs. 5.1b-

c. (ii) RE declines significantly as lead time of prediction increases, whereas PI and PP display 

relatively smooth variations with lead time and initial conditions. Mathematically, according to 

definitions of RE, PI, PP in (1.15)-(1.17), a primary explanation for the reduction of these 

information-based predictability with lead time is related to decreasing of the signal component 

(SC) or decreasing the dispersion component (DC, which is inversely determined by the ES). 

These features in Fig. 5.1 are consistent with that presented in Tang et al. (2008a), confirming 

that the RE is a better indicator of ENSO variability than PI/PP. This is mainly due to the 

properties of these measures, i.e., RE depends more on the signal component SC while PI or PP 

depends only on dispersion component DC. We will give detail discussions on this point in 

section 6. In addition, it has been argued that if the initial signal of the prediction is strong, 

more extra information can be provided from the forecast comparing with the climatological 

forecast, leading to a more skillful and reliable forecast (Kleeman 2002; Tang 2005; Tang 

1 We performed the analysis for the entire period from 1856-2003 but only plotted the short period from 

1961-2003 in Fig. 1 just for a clearer presentation. 
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2008a). 

An interesting feature of the PP/PI can be found when the lead time of prediction is 

increased to 24 months in Figs. 5.1e-f (the two bottom plots in Fig. 5.1), which was absent in 

Tang et al (2008a) where they only explored results within 12-month lead times. As seen in Figs. 

5.1e-f, the large and small PI/PP slopes occur annually, indicating a strong seasonal variability 

of the PI and PP. Along each slope, the PIs/PPs started from different initial time (/') and varied 

with different lead time (t). However, PIs/PPs are actually corresponded to the same verification 

time [the time at the end of the forecast or the target time (v), i.e. v=i+i\. The occurrences of the 

slops in the PI/PP plot are related to the ensemble spread ES. As defined in Eq. (1.15) and 

(1.17), PI or PP depends only on the standard deviation of forecast {<j p) or the ensemble spread 

ES. This point can be verified by Fig. 5.2a, where similar feature of seasonal variability indeed 

exists in the ES plot. Large ESs occur at target times between boreal autumn and winter, while 

small ESs occur at spring and summer. This strong seasonal variability characteristic of ES can 

be more clearly indicated in Fig. 5.2b, where the x-axis is target month. A similar feature was 

presented in Karspeck et al. (2006) when they studied variations of the ES by an older version 

of the ZC model (version LDE04). They suggested that the seasonal variability of ES is 

consistent with the seasonal cycle in ENSO signals. More precisely, a large ES occurs in the 

boreal autumn and winter when the SST variability is strong in the equatorial Pacific Ocean, 

whereas a small ES occurs during the boreal spring and early summer with a weaker SST 

variability. They suggested that ES can be better presented as a function of the calendar month 
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at the target month of the forecast (regardless of the lead time) than as a function of the 

initialization month. 

An inverse relationship between ES and ENSO initial signals has been reported in some 

previous works, which was explained by the delayed oscillator mechanism (e.g., Cai et al. 2003; 

Zhou et al. 2008), i.e. a large (small) error growth occurs with weak (strong) signals at the 

initial time. To further see this, we binned ES according to the value of Nino3.4 SSTA index at 

initial times in Fig. 5.3a. As can be seen an inverse ES - signal relationship can be observed for 

lead times until 18 months, which is consistent with previous studies. However, if ES is 

grouped by SSTA at the target time, opposite features appear as displayed in Fig. 5.3b, i.e., ES 

increases with the magnitude of the Nino3.4 SSTA. The strong target-time-dependent features 

are also found in actual prediction skills such as anomaly correlation and RMSE as shown in 

Figs. 5.4a-b, where small correlation and small RMSE skills occur during the target times in the 

boreal spring and summer while both large correlation and RMSE skills appear during the fall 

and winter. A target-seasonal-dependent feature of correlation skill was also reported by Saha et 

al. (2006) using the National Centers for Environmental Prediction (NCEP) climate forecast 

system (CFS), where the SST forecasts show lower correlation skills from April to August with 

a significant correlation skill dropping at the target month in April, corresponding to the well-

known "spring barrier" phenomenon. In the LDE05 model, although the spring barrier was 

found relatively weak in the 148-yr retrospective forecasts (Chen et al. 2004), it still exists in 

our ensemble mean forecasts. As shown in Fig. 5.4a, higher correlation skills occur during 
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boreal autumn and winter, and the correlation skill drops sharply in April or May, and especially 

true for the lead times less than 12 months. 

In Fig. 5.4b, however, the spring barrier is not shown in the RMSE skill. Instead, small 

RMSEs occur during the target time of the summer. This is most probably related to the feature 

of the seasonal variation of SSTA variability and its association with the magnitude of RMSE. 

Usually the Nino3.4 SSTA has relatively small variability (variance) in spring and summer, 

leading to relatively small RMSEs intrinsically. To remove this inherent impact from 

climatological variance, we use the "relative RMSE" measure (i.e. the ratio between RMSE and 

the RMSE of the climatological prediction) instead of RMSE, and obtained Fig. 5.5. Clearly, 

Fig. 5.5 shows significant increasing of the relative RMSE during the boreal spring, which is 

very consistent with the correlation skill in Fig. 5.4a. 

Similar target-time-dependent features are also presented more or less in the ensemble-

based and information-based predictability measures in Figs. 5.4c-f. The high similarity 

between PP and ES is as expected because that PP depends on ES and they have an inverse 

relationship according to the definition of PP. Thus, the PP/ES has the strong target dependent 

feature as RMSE. A smaller/larger EM2 is related to the ENSO signals at the target season, 

which may explain the smaller/larger correlation skill in Fig. 5.4a, because the anomaly 

correlation skill is often associated with ENSO signals. Among these potential skill measures, 

the RE shows unique features from others. RE is not very sensitive to the target season as the 

others, and it does not have very strong spring barrier. These features can be explained by the 
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definition of RE, where the common target-season-dependent features of EM2 and ES in Fig. 

5.4c and Fig. 5.4d could be efficiently removed by the "ratio" operator. 

It is a widely-used strategy to study ENSO predictability as a function of initial time as 

presented in literatures. The above results suggest the importance of the target time of 

prediction in ENSO predictability. In particular, the target-time-dependent feature displayed 

here might not be a model-dependent as reported in CFS ensemble prediction (Saha et al. 2006). 

A further analysis using more ENSO models is required for this issue. 

5.4.2 Characteristic of Mutual Information 

We return to the discussion of the overall features of information predictability measures. 

According to information theory, the averaged value of RE and PI over a long time period 

should be close to each other, approaching to an overall potential predictability measure, called 

the mutual information (MI). MI, as a function of lead time, is an indicator of the overall 

predictability of the target variable in a forecast model. This property is held well in present 

ensemble predictions of the LDE05 model. In Fig. 5.6a, two sets of Mis that were computed 

from the averaged RE and PI respectively indeed have very close values at any given lead times. 

In addition, the Mis decrease smoothly as lead time increases, holding the monotonical property 

perfectly, and asymptotically approach to the minimum value. At lead times of 9-month and 

longer, the Mis varies very smoothly, suggesting ENSO predictability quickly approaches the 

minimum at lead times around 9-12 months and it keeps at that level until 2-yr for the LDE05 
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model. 

Figs. 5.6c-d show strong relationships between MI and the actual prediction skill (anomaly 

correlation skill and RMSE skill). Large Mis are related to small RMSEs but high correlation 

skill, and vice versa. The monotonical property of MI and its good relations with actual 

prediction skills indicate that MI is a good indicator of overall predictability. 

For Gaussian variables, MI follows a theoretical relationship with correlation skill R as 

below (Desole 2004), 

MI,h = -0 .5 In( l -# 2 ) . (5.4) 

To examine (5.4) for the LDE05 model, the MI obtained from the averaged RE and PI are 

compared with the estimated MI from actual R. As seen in Fig. 5.6b, except for the three largest 

Mis (corresponding the lead times of 1-3 months), the estimated Mis are very close to the Mis 

from the averaged RE/PI. The scattered points are distributed along the "perfect" diagonal line 

from lead times of 4-24 months. The reason of difference between potential MI and estimated 

MI at short lead times is not clear, but the largest three MI points are related to the high 

correlation skills of short lead times (1-3 months), at which the ensemble spread may be not 

fully developed, leading to a large RE/PI. A comparison of the LDE05 model with the hybrid 

models in Tang et al. (2008a) reveals that the LDE05 model provides a much better validation 

for (5.4). 
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Eq. (5.4) can be used to estimate a correlation skill (i?,/,) when observations are not available. 

Fig. 5.7a is the scatter plot between the actual correlation R and Rth obtained using the averaged 

RE/PI. Compared with the perfect Rth-R relationship (i.e. the diagonal line in Fig. 5.7a), the 

averaged RE gives a better Rth-R relationship than the averaged PI, especially at lead times 

longer than 15 months when there is low predictability. However, the estimated correlation skill 

R,h by the averaged RE always offers a larger skill than the actual correlation R, and meanwhile, 

the estimated correlation skill Rth by the averaged PI tends to underestimate the actual 

predictability, both estimated relationships departing from the perfect relationship (the diagonal 

line) but almost distributing symmetrically around the diagonal line at lead times less than 15 

months. Thus, a revised Rth-R relationship is suggested here by averaging the two RthS from RE 

and PI. The new Rth-R relationship is shown in Fig. 5.7b. As can be seen, the revised Rth-R 

relationship is almost perfectly along the diagonal line at the lead time 4-18 months, providing 

a good potential correlation skill for the LDE05 model. For short lead times of 1-3 months, the 

Rth-R relationship is not good, probably due to relatively small ensemble spread at the 

beginning of prediction. 
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5.5. Relationship of Potential Predictability Measure and Actual Prediction 

Skill 

5.5.1 The Relationship on the Decadal/Interdecadal Time Scale 

In the proceeding section, we examined some important features and properties of 

information-based measures as well as their capability in characterizing actual prediction skill. 

In this section, we further examine the relationship of information-based measure (RE, PI, and 

PP) and actual prediction skill (CIP and MSEIP) on the time scales from interannual to decades. 

The identified relationship may have a theoretical contribution to ENSO predictability study, 

and a practical significance in estimating the confidence that we can place in future predictions 

using the same ENSO forecast model. 

A running window of 25-yr was applied to the information-based measures and the actual 

prediction skill measures, namely that, they were evaluated at each window of 25 years, starting 

from January 1856 and moving forward by 1 month each time until December 2003. As can be 

seen in the left panel of Fig. 5.8, on the decadal/interdecadal time scale, there is an in-phase 

relationship between the RE/PI/PP and the correlation skill (CIP) with a correlation coefficient 

of 0.88/0.36/0.45, respectively. The best in-phase relationship is between RE and CIP, 

suggesting RE to be a good indicative of actual correlation skill at decadal/interdecadal scales. 

The strong relationship between RE and CIP is due mainly to the large contribution of signal 

component to RE, which is absent in PI/PP. The significant role of ENSO signal in prediction 
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skill has been addressed in Tang et al. (2008a), in which they found that correlation skill is 

associated with the variations of ENSO signals for the 100 year from 1881-2000. For example, 

the strong ENSO signal time periods such as the ends of 19th century and the late two decades 

of the 20th century have higher correlation skill, whereas the weak ENSO signal periods have 

low correlation skill. 

On the other hand, the MSEIP has weak relations with the information-based predictability 

measures at the long time scales, especially with PI/PP, as seen in the right panel of Fig. 5.8. A 

poor relationship of PI/PP and MSEIP is seen which is mainly due to their strong time-scale-

dependent nature; we will discuss this point in the next section (i.e. they have strong 

relationships only at the shorter interannual time scales in Fig. 5.10 and Fig. 5.1 Id). 

The running mean method used above may not be able to present objectively a full 

spectrum of the relationship between RE/PI/PP and predictability; for example, the relationship 

is probably sensitive to the length of running window. To further explore the 

decadal/interdecadal relationships, we extract low-frequency components (>10 years) using the 

fast Fourier transform (FFT) filter. Shown in the left panel of Fig. 5.9 are the 

decadal/interdecadal variations of the low-frequency components of RE/PI/PP along with the 

correlation skill CIP. In-phase relationships can be seen between RE/PI/PP and CIP, with 

positive correlation coefficient of 0.68/0.4/0.4, respectively. Similar to Fig. 5.8al, when the REs 

were large during the late 19th and the late 20th centuries, the correlation skill CIP were high; 

while when REs were small during time periods from 1910-1955, the correlation skill scores 
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were low. Compared with PI and PP, the RE has the closest in-phase relationship with the 

correlation skill CIP. On the other hand, the right panel of Fig. 5.9 depicts the weak/poor 

relationship of RE/PI/PP and MSEIP on decadal/interdecadal time scale. In addition, FFT gives 

an in-phase RE-MSEIP with correlation coefficient of 0.21, which is opposite to the Fig. 5.8a2 

using the running mean method. It further implies the uncertain relation between RE and 

MSEIP on the longer time scale. Therefore, Fig. 5.8 and Fig. 5.9 indicate that the RE has a good 

in-phase relationship with the correlation skill CIP on the decadal/interdecadal time scales, and 

all information-based potential measures do not have clear relation with the MSEIP skill 

measure on the long time scales. 

5.5.2 The Relationship on Interannual Time Scales 

A further analysis explores whether such a good in-phase relationship of RE and CIP exists 

at interannual time scales and for individual forecast cases. Shown in Fig. 5.10 is the scatter 

plot of RE/PI/PP against CIP and MSEIP, where a 2-7 yr FFT filter has been applied to all 

variables to extract their interannual variability. Fig. 5.10 shows significant in-phase 

relationships between RE/PI/PP and CIP with correlation coefficient of 0.46/0.34/0.35; and 

significant inverse relationships are seen between the RE/PI/PP and MSEIP with correlation 

coefficient -0.36/-0.36/-0.38, respectively. Compared with the poor relationship between 

MSEIP and RE/PI/PP in Figs. 5.8-9, Fig. 5.10 suggests that the MSE-related relationships are 

highly time-scale-dependent. On the interannual time scale, RE/PI/PP is a good indicator of 

prediction skill. A large RE/PI/PP is associated with a large correlation skill and a low MSE 
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skill, and vice versa. 

5.5.3. The Relationship on All Time Scales 

On all time scales from seasonal to decades, scatter plots of information-based measures 

(RE, PI, and PP) and actual deterministic measures (CIP and MSEIP) are given in Fig. 5.11 

using all original samples without filtering. Again, among three information-based measures, 

RE has the best relationship with CIP with a significantly high correlation coefficient of 0.51. A 

comparison of these results between the LDE05 model and two hybrid models in Tang et al. 

(2008a) reveals that the LDE05 model offers a higher correlation coefficient between CIP and 

RE. In addition, there are still some uncertain relationships in Fig. 5.Hal. This uncertain 

relation is consistent with the "triangular relationship" found in previous studies (e.g. Tang et al. 

2005, 2008a), namely, when RE is large, correlation prediction skill was high; whereas when 

the RE was smaller, the RE-CIP relationship has more uncertainties. A small RE is related to 

weak ENSO signal and large model error, which has a smaller signal-to-noise ratio and thus a 

lower predictability. 

On all time scales, Fig. 5.11a2 also shows a triangular relationship between MSEIP and RE, 

i.e. when RE is large, the RMSE is small; whereas when RE is small, the MSEIP is uncertain. 

This uncertain relationship of RE-MSEIP is probably due to the fact that the RE-MSEIP 

relationship is scale-dependent. For example, they have a weak in-phase relation with 

correlation coefficient of 0.21 on the decadal/interdecadal time scale in Fig. 5.9a2, but an 
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inverse relationship at the interannual time scale in Fig. 5.10a2 with a correlation coefficient of 

-0.36. One the other hand, it's interesting to see an inverse relationship between MSEIP and 

PI/PP in Fig. 5.11 b2 or Fig. 5.11c2 with a negative correlation coefficient of-0.27/-0.30 (even 

better than RE-MSEIP relation). In the following section we will further discuss the scale-

dependent relationship in more detail by the cross-wavelet analysis. 

5.5.4 Cross-wavelet Analyses For Potential Measures and Actual Measures 

The Cross-wavelet transform (XWT) method is used to examine relationships between two 

time series in time-frequency space (e.g., Grinsted et al. 2004). From the XWT analysis, the 

common power and relative phase can be revealed. The phase differences between two 

variables are depicted by the direction of a vector, with in-phase pointing right, anti-phase 

pointing left, and the first variable leading the second by 90° pointing straight down. In this 

study, a continuous XWT technique with the Morlet wavelet as the mother function was applied. 

Monte Carlo methods are used to assess the statistical significance against a red noise 

background. The standard software package of cross-wavelet transform is available online+ 

(Grinsted et al. 2004). Further details on XWT analysis can be found in Grinsted et al. (2004) 

and Torrence and Compo (1998). 

To further illustrate characteristics of relationships between information-based predictability 

(RE, PI) and actual skill (CIP and MSEIP) at various time scales, cross-wavelet analyses were 

+ http://www.pol.ac.uk/home/research/waveletcoherence 
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performed and given in Figs. 5.12a-d. The PI has XWT Plots very similar to the PP thus it is not 

shown here. The thick contour in Fig. 5.12 encloses regions of greater than 95% confidence, 

using a red-noise background spectrum. Generally, in-phase relationships (arrow pointing right) 

can be seen for information-based measures RE/PI and CIP in Fig. 5.12a and Fig. 5.12c, 

respectively. They are well consistent with the proceeding results that RE is superior to PI/PP as 

an indicator of prediction skill. At time scales longer than 10-yr, a strong in-phase relationship 

is found in the RE-CIPplot over 100-yr (Fig. 5.12al). On the interannual time scale, in-phase 

relationship of RE/PI-CIP is also seen, but the relationship varies significantly from time to 

time and seems related to the variability of ENSO signals. There is even no identified 

relationship during the weak ENSO period from 1920-1950 on the interannual time scale, while 

strong correlations occurred in the two strong ENSO signal periods (1880-1920 and 1960-2000), 

indicating that the RE-CIP relationship depends highly on ENSO signals. 

In contrast to the consistent in-phase relationship between CIP and RE/PI at all time scales, 

the relationship between RE and MSEIP exhibits scale-dependent features (Fig. 5.12b). At 

interannual time scale, an out-phase relationship is often seen from period to period, while at 

decadal/interdecadal time scale, strong in-phase relationship occurred in the periods of 1930-

1950 and 1960-1980. These opposite relationships at the short and the long time scales lead to 

the poor/weak overall relationship between RE and MSEIP as shown in Fig. 5.1 la2. The PI-

MSEIP XWT plot also have strong scale-dependent features, showing without close 

relationship at longer time scales but a strong inverse relationship at interannual time scales 
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Thus, in contrast to the overall poor RE-MSEIP relationship, scale-dependent relationships 

between PI/PP and MSEIP lead to a good overall inverse relationship. These results are 

consistent with Figs. 5.11b2-c2, where PI/PP has a stronger inverse relationship with MSEIP 

than RE at all time scales. Therefore, PI/PP probably is a better potential measure than RE in 

assessing the MSE skill for individual forecasts. 

5.6. The Control Factor of Potential Measures 

From proceeding sections, we found that RE has better relationships with CIP than PI or PP. 

To explain this good relationship, RE is decomposed into the signal component (SC) and 

dispersion component (DC) according to (18). A 2-yr running mean method was applied on the 

data focusing on examining the variations on longer time scales (>2yr). Fig. 5.13 shows the 

temporal variations of RE, SC, and DC during the 148 years. Decadal/interdecadal variability 

can be seen in time series of RE and SC while DC shows very weak variability after applying 

the 2-yr running mean. During the higher SC periods (i.e. the end of 19th century and the end of 

the 20l century), the signal component term SC is very larger than DC; whereas during the 

weaker SC period (i.e. 1910-1940), DC and SC have comparable contributions to RE. 

Therefore, the variations of phase and amplitude of RE are mainly determined by the signal part 

SC or EM2 or ENSO signals; but DC is still important when ENSO signals are weak. The 

significant contribution of ENSO signal to ENSO predictability is in agreement with many 

recent ENSO predictability studies (e.g., Tang et al. 2008a), that is, stronger ENSOs have the 

higher prediction skill. The fundamental reason for decadal/interdecadal ENSO predictability 
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are still not very clear, but the strength of ENSO signal is a key factor (e.g., Tang et al. 2008a). 

To further illustrate the important role of signal component SC, temporal variations of RE, 

PI, and PP are displayed in Fig. 5.14 along with the temporal variations of ENSO signal defined 

alternatively by absolute value of the observed NIN03.4 SSTA index at the target time at a 

given lead time of e.g. 6-month lead. As can be seen, all ENSO events and temporal variations 

of ENSO signals can be well identified by RE, with a significant high correlation coefficient of 

0.74 over the 148 yrs. Again, RE shows the closest relationship with signal than PI and PP, as 

indicated by its definition. Similar results can be obtained at other lead times (not shown). 

Because SC and DC are two important factors that determines predictability measures, it is 

reasonable to classify all those measures in Table 1 into two groups: (i) signal factor (EM2, ER, 

RE, CIP) and (ii) dispersion factor (ES, PI, PP, MSEIP). High correlation coefficients can be 

found between signal factors and correlation skill, and between dispersion factors and MSE 

skill, as shown in Table 5.2. 

The signal component SC or EM2 plays a key role in determining RE-CIP relationship. 

Without the contribution of ES, the EM2-CIP relationship in Fig. 5.12e can still keep the main 

features of the RE-CIP in Fig. 5.12a on the interannual time scale. However, if a measure of 

potential predictability consider both the DC and SC components, as indicated by RE and ER, it 

is better than one that only considers either DC or SC. In other word, a good potential measure 

should include joint contributions of signal and spread in assessing the correlation-based skill, 
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e.g. ER and RE. 

For a MSE-based skill measure, due to the offsetting scale-dependent relationships of 

ER/RE and MSEIP as shown in Fig. 5.12, ER/RE could not be superior to PI/PP, especially on 

all time scales and for individual predictions. 

5.7. Discussion and Summary 

One important task of ENSO predictability study is to seek good potential predictability 

measures, by which the uncertainty of individual prediction skill can be estimated without 

involving observations. In this study, the newly developed information-based potential 

measures (RE, PI, and PP) and the classic ensemble-based potential measures (EM2, ES, and 

ES) are explored based on their capability in quantifying the actual prediction skill (CIP and 

MSEIP) using long-term ensemble predictions by the LDE05 model. Emphasis was placed on 

stable and robust relationship between potential predictability and actual prediction skill at 

various time scales. The relationship has practical significance and offers a practical means of 

estimating the confidence level of individual predictions. The decadal/interdecadal relationship 

between potential predictability and actual predictability has not been addressed in previous 

studies of ENSO predictability due to the lack of sufficient long retrospective predictions. 

In this study, the ensemble was produced by using the optimal initial perturbation of 

SV1SST and the perturbation of the stochastic optimal winds field during the forecast period. 

It was found that other ensemble construction methods such as using either the SV1_SSTA or 
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the realistic stochastic wind could not offer reliable ensemble predictions by the LDE05 model 

(chapter 3). From the analysis of the 148-yr ensemble prediction, a good in-phase relationship 

is found between relative entropy RE and correlation skill CIP at multi-time-scale (i.e. from 

interannual to decadal/interdecadal time scales). The mutual information is a good measure for 

overall prediction skill. Different from Weather forecast, the signal component in ENSO 

predictions is much stronger than the dispersion component (noise), thus the predictability is 

dominated by ENSO signals. 

RE is determined mainly by the signal component SC in ENSO predictions, but the 

dispersion component DC can play an important role in the predictability of weak ENSO 

periods during which the SC is comparable with DC. In terms of comparison with the 

ensemble-based predictability measures, RE and ER have comparable relations with the actual 

correlation skill CIP, probably because both consider ENSO signal and noise (i.e. ensemble 

spread ES). 

Through the cross-wavelet analyses, we confirm that RE has a consistent strong in-phase 

relationship with the correlation skill CIP at time scales from interannual to decades. RE has an 

in-phase relationship with MSEIP on the long decadal/interdecadal time scales, but shows an 

inverse relationship with MSEIP on the interannual time scales. Thus, the RE-MSEIP 

relationship is highly time-scale-dependent. On the other hand, PI/PP does not show significant 

scale-dependent features with MSEIP. Therefore, at all time scales and for individual forecasts, 

either PI or PP can be a better predictability measure than RE for the MSE-based skill. In a 
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practical predictability evaluation, all information measures RE and PI/PP should be explored 

because they characterizes actual prediction skill from different aspects. 

One interesting result found in this study is that the prediction correlation skill, RMSE, ES 

and PP/PI at lead times less than 12 months highly depends on target time. We identified that 

similar features are consistent with those shown in the NCEP CFS model or the LDE04 model. 

Usually the correlation, EM2, RMSE, and ES are relatively high when the target time is in 

boreal winter and fall, whereas the low skills occur at the target time of boreal spring and 

summer. 

There exists the 'spring barrier' in LED05 prediction, i.e., the correlation skill drops 

significantly while prediction in the boreal spring. The spring barrier is not obvious in RMSE 

skill, simply because the ENSO variability (e.g., SSTA variance) often is weak in boreal spring, 

leading to small value of RMSE at this season intrinsically. This can be confirmed by using the 

relative RMSE, which removes the inherent impact of ENSO variability, to examine the MSE-

based prediction skill as a function of target time. As shown in Fig. 5.5, the relative RMSE 

clearly has spring barrier feature like correlation skill. The spring barrier is also striking in 

potential predictability measures PI/PP/ES, if we remove the inherent impact of ENSO 

variability like RMSE (not shown). In contrast to the strong spring barrier phenomena in the 

actual predictability correlation and the relative RMSE, and the potential predictability 

measures PI/PP, ES, EM2, a weaker spring barrier is found in the RE, showing the advantage of 

including both the signal and noise components. 
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Cautions should be borne in mind. The results and findings present in this study are based 

on the LED05 model and the chosen metrics of skill, thus they might be model and metrics 

dependent. For example, we explored ENSO predictability using CIP and MSEIP to measure 

prediction skill in this study. When the chosen metrics have been widely used in the field of 

predictability study, they might not be able completely characterize all properties of 

predictability. These concerns need to be addressed through more comprehensive analyses. 

Nevertheless, this work is the first exploration of ENSO information-based potential 

predictability over the past one and half century, providing insights on ENSO predictability, 

especially offering a practical means to estimate the confidence level for individual forecasts. 
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Table 5.1 Summarization of prediction skill measures used in this study. Prediction skill 

measures are as functions of either lead time (t) or initial time (/'), or both. 

Actual skill measure 

Potential 

skill measure 

Ensemble_based 

measure 

Information_based 

measure 

R(0 

EM2(f, i) 

RE(/, /) 

RMSE(0 

ES(f, 0 

PI(i, 0 

CIP(O 

ER(Y, 0 

PPtt 0 

MSEIP(0 

/ 

MI(0 
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Table 5.2 Correlation coefficients between actual prediction skill and potential prediction skill 

over the 148 years (from January 1856 to December 2003) 

CIP 

MSEIP 

EM2 

0.51 

-0.05 

ER 

0.51 

-0.07 

RE 

0.51 

-0.06 

ES 

-0.28 

0.29 

PI 

0.26 

-0.26 

PP 

0.28 

-0.27 
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Fig.5.1. The left panel: al) Relative entropy (RE), bl) predictive information (PI), and cl) 

predictive power (PP) of the Nino3.4 SSTA index as a function of initial time of each prediction 

and lead time (months), from Jan. 1960 to Dec. 2003 for the LDE05 model. The right panel: 

same as the left panel, but for lead time from 1-24-month. 
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a) Ensemble spread 

1993 1994 1995 
Initial lime 

b) Ensemble spread 

1994 1995 
Verification lime 

Fig. 5.2 a) Ensemble spread (ES) for time period from Jan. 1990 to Dec.1998 as a function of 

lead time (month) and initial time; b) same as a) but ensemble spread as a function of 

verification time. 
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Fig. 5.3 a) Ensemble spread (°C) as a function of NIN03.4 SSTA index at lead times of 6, 9..., 

24 month, respectively. ES is binned by SSTA at the initial time, b) Same as a) but at the target 

time. 
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a) Correlation b) RMSE 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Oct Nov Dec 

c)EM2 d)ES 
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i}ln(RE) t)PP 
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Target time 

Jan Feb Mar Apr May Jun Jul 

Target time 

Sep Oct Nov Dec 

Fig. 5.4 a) Anomaly correlation of the LDE05 ensemble mean forecasts of the monthly mean 

Nino3.4 SSTA over the 148-yr time period, as a function of target month (horizontal) and lead 

(vertical; in months); b) Same as a) but for RMSE; c) EM2; d) ES; e) log(RE); f) PP. 
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Target Time 

Fig. 5.5 Same as Fig. 5.4 but using a relative RMSE skill measure, defined by the RMSE over 

the RMSE of the climatological prediction. The climatological RMSE is as function of the 

calendar months. 
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a) 
• averaged RE 
o averaged PI 

SS*SSS888SSSSSSSo^S 

10 15 
Lead (month) 

20 25 0 1 2 3 4 
Estimated Ml from correlation 

Fig. 5.6 a) Variation of MI calculated by averaged RE and PI over all initial conditions as 

functions of lead times; b) MI from averaged RE and PI against the estimated MI from 

correlation skill using Eq. (5.4). c) Averaged RE and PI versus RMSE skill; d) Averaged RE 

and PP versus correlation skill. 
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Fig. 5.7 The estimated correlation skill calculated by Eq. (5.4) against the actual skill. In a) MI 

is obtained by averaged RE and averaged PI, respectively and in b) MI is obtained by the mean 

values of the averaged RE and averaged PI. 

165 



Y. Cheng: ENSO ensemble prediction and predictability 
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Fig. 5.8. Left panel: decadal/interdecadal variations of al) RE and CIP; bl) PI and CIP; cl) PP 

and CIP. Right panel: decadal/interdecadal variations of a2) RE and MSEIP; b2) PI and MSEIP; 

c2) PP and MSEIP (A 25-yr running window has been applied for all data). 
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Fig. 5.9. Left panel: decadal/interdecadal variations of al) RE and CIP; bl) PI and CIP; cl) PP 

and CIP. Right panel: decadal/interdecadal variations of a2) RE and MSEIP; b2) PI and MSEIP; 

c2) PP and MSEIP (A 10-yr low-pass FFT filter has been applied). 
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Fig. 5.10. Left panel: scatter plots of the individual correlation skill CIP against al) RE; bl) PI; 

cl) PP. Right panel: scatter plots of the individual MSE-based skill MSEIP against a2) RE; b2) 

PI; c2) PP (at interannual time scales using a 2-7-yr FFT filter). 
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Fig. 5.11 Left panel: the correlation skill CIP against al) RE; bl) PI; cl) PP. Right panel: 

MSEIP against a2) RE; b2) PI; c2) PP. 
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Fig. 5.12. The cross-wavelet analysis for i potential measures and deterministic prediction skill 

measures, a) RE and CIP; b); RE and MSEIP; c) PI and CIP; d) PI and MSEIP; e) EM2 and CIP; 

f) EM2 and CIP; g) ER and CIP; h) ER and MSEIP. The thick contour encloses regions of 

greater than 95% confidence, using a red-noise background spectrum. The relative phase 

relationship is shown as arrows, with in-phase pointing right, anti-phase pointing left and 

information-based measures leading actual skill measures by 90° pointing straight down. 
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RE, SC, and DC 

Fig. 5.13. Temporal variations of relative entropy (RE; solid), the signal component (SC; 

solid thick line) and the dispersion component (DC; dash) of RE. (A 2-yr running mean 

method was applied on the data). 
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Fig. 5.14. Variations of a) RE, b) PI, and c) PP at the lead time of 6-month along with the 

time series of absolute value of the NIN03.4 index of SSTA. (A 2-yr running mean method 

was applied). 
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Chapter 6: Conclusion and Discussion 

This thesis focused on some key issues related to ENSO predictability for the period of 

148 yrs (1856-2003) using the LDE05 model. A number of new findings and conclusions on 

ENSO predictability were obtained through SV analysis, ensemble prediction, and the 

relationship between actual predictability and potential predictability, as summarized below. 

6.1. Thesis Summary 

To study the first kind of predictability (i.e., the loss of predictability due to uncertainty 

of the initial conditions in the chaotic system), a fully physically-based tangent linear model 

was constructed for the ZC model, based on which singular vector (SV) analysis was 

performed for the last 148 years. The results show that the leading SV (SV1) is dominated by 

a west-east dipole spanning the equatorial Pacific with one center located in the east and the 

other at the dateline. The spatial distribution of SV1 is less sensitive to initial conditions 

while the singular values are very sensitive to initial conditions. This property of the SV 

offers a useful way in ensemble construction and ensemble predictions for the ZC model. On 

the other hand, the singular value and final pattern represent the amplitude and spatial 

pattern of error/perturbation growth; they are very sensitive to initial conditions. With this 

property of final pattern and singular value, further SV analyses were performed to identify 

the perturbation growth of individual thermodynamical heating processes. Through these SV 

analyses, dynamical control factors of error/perturbation growth in the LDE05 model were 

obtained. It was found that: i) the total linear heating causes a warming effect and controls 

two positive perturbation growth regions: one in the central Pacific and the other in the 
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eastern Pacific; whereas the total linearized nonlinear advection brings a dumping effect 

controlling the negative perturbation growth in the central Pacific; ii) the dynamical 

diagnosis shows that the total linear and nonlinear heating terms play opposite roles in 

controlling the optimal perturbation growth, and that the linear optimal perturbation is more 

than twice as large as the nonlinear one for the ZC model. 

In chapter 3, relationships of total perturbation growth rate SI, linear perturbation 

growth rate LI and nonlinear perturbation growth rate Nl and actual prediction skills were 

investigated on multiple time scales from seasonal to decades over the 148 yrs. The SI 

shows a strong scale-dependent feature with the actual prediction skill which prevents it 

from being a good indicator of ENSO predictability. On the interdecadal time scale, there is 

larger model error growth associated with lower model skill and weaker ENSO signals. 

However, on the shorter time scales, the SI does not have close relations with the actual 

prediction skills. The fundamental reason for this was revealed by cross-wavelet analysis and 

mathematical methods as well. There exists a strong offsetting effect in the underlying linear 

and nonlinear error growth rates. The offsetting effect is represented by S1«L1-N1. The 

"negative" perturbation growth rate -Nl (denoted as NN1) probably is the consequence of 

the unrealistic nonlinear dumping in the LDE05 model. Although the correlations of the 

actual prediction skill to both the LI and the NN1 are good, their opposite signs lead to a 

weak relationship between SI and actual prediction skill. Therefore, either LI or N1/NN1 is 

better than SI in measuring actual prediction skill for the LDE05 model. 

A good ensemble construction strategy is required to generate a reliable and high 

resolution ENSO ensemble-based probabilistic prediction, which is a key issue in studying 
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ENSO predictability. Furthermore, a reliable ensemble prediction system is an indispensable 

basis for studying potential predictability. Without a good ensemble construction method, 

ensemble-based and information-based potential predictability measures would be 

questionable. Therefore, in chapter 4, ensemble-based probabilistic ENSO predictions were 

performed with four typical ensemble construction strategies. Several probabilistic 

prediction verification measures/scores were used to examine the two key properties of our 

probabilistic predictions, i.e. reliability and resolution. It was found that the stochastic 

optimal winds contribute to a more reliable and higher resolution probabilistic ENSO 

prediction, leading to significantly improved RMSE skill and ranked probability score (RPS) 

at longer lead times. It indicates the important role of atmospheric stochastic forcing in 

improving ENSO predictability in the LDE05 model at longer lead times. More models 

experiments and other construction strategies are needed to further verify this point in future 

studies. 

In Chapter 5, relationships of these potential predictability measures and actual 

predictability measures were investigated on multiple time scales from interannual to 

decadal using information theory and ensemble predictions. The object of this chapter is to 

find reliable and robust potential measures of ENSO predictability from ensemble 

predictions, which do not make use of observations; instead, these measures rely on the 

quality of ensemble predictions (i.e. ensemble mean/ensemble mean square, ensemble 

spread). As aforementioned, these potential predictability measures were obtained based on a 

reliable and high resolution ensemble construction method (i.e. a joint perturbation method 

SVl_sst+S01_winds from chapter 4). It was found that relative entropy (RE) is better than 

predictive information (PI) and predictive power (PP) in quantifying the correlation-based 
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prediction skill; whereas PI/PP is a better indicator in estimating mean square error (MSE)-

based prediction skill. RE is dominated by the signal component but the dispersion 

component has comparable contribution during weak ENSO periods. The best potential 

predictability measures are validated by long-term statistical analyses (i.e. cross-wavelet 

analyses, FFT filter, running methods); time scale-dependent features were revealed for the 

relationships of potential and actual predictability measures. We found that the primary 

reason of the weak relationship between RE and MSE skill is due to the time-scale-

dependent property of the RE-MSE relationship, i.e., they have an inverse relationship at 

interannual time scale but an in-phase relationship at decadal/interdecadal time scale. 

Similarly, the ensemble ratio (ER) offers the best ensemble-based potential measure to 

indicate correlation predictability than the EM2 and ES. 

In addition, target-time-dependent and spring barrier features were identified using 

correlation skill, RMSE, ES and PP/PI. Similar features are consistent with those shown in 

the NCEP CFS model or the LDE04 model. On the other hand, the RE/ER does not have as 

strong a target-dependent feature as the other potential predictability measures because it 

includes both signal and noise components, representing the ratio of signal to noise. 
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6.2. Discussion 

The SV analyses and retrospective hindcasts are often model-dependent, suggesting that 

the results and conclusion drawn from this work might not be generalized. More models are 

required to fully generalize these conclusions. It is also necessary to further examine these 

results and relationships in operational ENSO forecasts. 

Recently, another ensemble construction method was shown its ability to generate 

reliable and high resolution ensemble ENSO predictions based on an intermediate coupled 

model (ICM) in Zheng et al. (2009). A data assimilation-based ensemble Kalman filter 

(EnKF) method was applied as a good ensemble construction method for an intermediate 

coupled model. And a linear, first-order Markov stochastic model is embedded within the 

SST anomaly model of the ICM to represent the model uncertainties of forecasted SSTA. 

The improvement of ensemble prediction skills is very significant. Therefore, it may be 

necessary to test other ensemble construction methods in the ZC model in future studies. 

As shown in Chapter 5, the "spring barrier" effect has a large impact on ENSO 

predictability, but the mechanism of this phenomenon has not been addressed in this study. 

Considering that the spring barrier is a common issue in many models, it needs to be 

explored in future work. In our study, the SV is a linear optimal perturbation pattern because 

it is obtained by SV analysis and with the tangent linear model. On the other hand, there 

could exist a nonlinear optimal perturbation in ENSO models as proposed by Mu et al. 

(2003), namely, the conditional optimal perturbation (CNOP). Mu et al. (2007) found that the 

CNOP-type error has a significant season-dependent evolution, and suggested that the 

CNOP-type errors can be considered as one of candidate errors that cause the spring 
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predictability barrier. Xu and Duan (2008) investigated CNOP in the ZC model and 

suggested that the CNOP yields a larger error growth in strong ENSOs than does a linear SV. 

Some physical processes are either simplified or missing in the ZC model. For example, 

stochastic atmospheric noise is not considered in this model. Stochastic forcing has been 

thought to be a main source to limit ENSO predictability. Thus, the predictive skill shown in 

the ZC model might be a lower bound of ENSO actual prediction skill (Chen and Cane 

2008). We identified the potential model error from this study: i.e., the total nonlinear 

heating always contributes to a dumping effect in the ZC model, which is opposite to the 

observation as discussed in An and Jin (2004), the vertical nonlinear warming should 

dominate the total nonlinear heating term. This is mainly due to unrealistic model simulation 

of the zonal current anomaly. Therefore, more accurate parameterizations of these 

thermodynamical processes in the ZC model will be helpful in improving the predictability. 

Nevertheless, this work is the first long-term (>100 years) SV analysis study that 

explored ENSO predictability, and especially offered a practical means (linear and nonlinear 

singular values) to estimate the confidence level for individual forecasts The controlling 

dynamical factors for individual error growth rates were investigated. Several ensemble 

construction methods were verified by probabilistic verification methods, from which a 

reliable and high resolution ensemble construction method was proposed for the ZC model. 

Finally, through ensemble predictions and with the newly developed information theory, we 

verified some potential predictability measures i.e. relative entropy and ensemble ratio have 

close relations with correlation skill; meanwhile, PI/PP has close relation with MSE-based 

prediction skill measures. 
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