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Abstract 

The impacts of petroleum hydrocarbon (PHC) contaminants in northern forest soils are not 

well understood from either eco-toxicological or microbial ecological perspectives. The 

purpose of this research was to examine interactions between PHCs and ecto- (ECM) and 

ericoid (ERM) mycorrhizal communities at the rhizosphere scale, where microbial activities 

underpin processes such as decomposition, carbon and nutrient cycling, and primary 

production at landscape scales. Several methodological approaches were simultaneously 

used to assess changes in physical, chemical and biological properties of plant-soil systems 

treated with ecologically relevant concentrations (i.e. ~7-22 tonnes ha"1) of PHCs. From 

microscopy and community fingerprinting (LH-PCR) studies, we found few differences in 

community structure attributable to PHC contamination. PHC treatment also did not appear 

to alter broad patterns of C metabolism for either bacterial (CLPP) or ECM fungal (laccase 

assay) communities. Habitat changes, which generally included increased C:N ratios, 

slightly more acidic pH, and hydrophobicity or water-logging in organic and mineral layers, 

respectively, did not appear to inhibit microbial communities. Together, these findings point 

to resilience within intact mycorrhizal systems, mainly due to sorption of PHCs within 

organic soil layers and protective properties of the mycorrhizosphere habitat. Soil PHC 

analysis (GC-FID) showed a general decrease in contaminant levels 16 weeks after PHC 

treatment, indicating an intrinsic capacity for biodegradation within the soil communities. 

ECMs appeared to play a vital role in this process through provision of habitat and co-

substrates for heterotrophic bacterial communities (i.e. mycorrhizosphere effect) and via 

secretion of laccase, which opens aromatic ring structures for subsequent bacterial attack. 

These results emphasize the importance of synergistic functions among microbial guilds with 
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respect to ecological processes. Finally, we found that the spatial patterns of mycorrhizal 

communities within the rhizosphere depended primarily on properties of the host plant and 

soil environment. The extent that different properties influenced community structure varied 

between the three groups of microorganisms. This systems approach addressed fundamental 

questions in mycorrhizal ecology by considering PHC pollution as a form of environmental 

disturbance. Conservation of the integrity of mycorrhizal systems in contaminated forest soils 

may be key for sustainable management in terms of ecosystem resilience and remediation. 
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Introduction 

The ubiquity and enormous biomass of mycorrhizal systems (i.e. plant-fungal symbioses and 

bacterial communities associated with the mycorrhizosphere) in northern forest soils implies 

a key role in forest ecosystem processes. Although recent studies have revealed enormous 

taxonomic and genetic diversity of mycorrhizal communities associated with certain plants in 

some ecosystems, the specific activities of individual or groups of taxa and their 

contributions to processes across heterogeneous landscapes are not well understood. The 

complexity of the soil environment and the multifunctional nature of many microorganisms 

have made it difficult to predict how ecosystems may respond to environmental disturbances 

such as soil contamination with crude oil. Very little is currently known regarding the fate 

and impacts of petroleum hydrocarbon (PHC) contaminants in forest soil ecosystems. 

The purpose of this research was to examine interactions between PHCs and mycorrhizal 

communities in plant-soil systems, where different guilds of microorganisms interact within 

the larger trophic group tightly linked to decomposition, carbon and nutrient cycling, and 

primary production. The microbial groups assessed in the current study include ecto- (ECM) 

and ericoid (ERM) mycorrhizal fungi and associated bacterial communities. A combination 

of methodological approaches were simultaneously used to gain a better understanding of the 

physical, chemical and biological changes that occurred in the rhizosphere following 

contamination with ecologically relevant (i.e. equivalent to several tonnes per hectare) levels 

of oil. The specific objectives of each study are summarized in the following paragraphs for 

each of the five thesis chapters. All chapters are written in the first person plural in 

recognition of contributions of others to this work. 
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Chapter 1 is a review of literature from several different fields, including botany, mycology, 

microbial ecology, soil science, and environmental toxicology. This synthesis is presented 

from the perspective of mycorrhizal systems, which represent the structural and functional 

interface between decomposition and primary production processes in northern forest 

ecosystems. It is an attempt to form linkages between the often disparate bits of knowledge 

that contribute to the current understanding of the fate of PHCs in boreal forest soils in both 

ecological and toxicological contexts. The literature review helped to inform the direction of 

research presented in the subsequent chapters. This paper was published in Biological 

Reviews (Robertson et ah, 2007). 

A fundamental question is addressed in Chapter 2: does PHC contamination of forest soils 

negatively impact established (or establishing) mycorrhizal systems? We hypothesized that 

the structure (composition) and diversity (richness and relative abundance) of ECM/ ERM 

fungal and associated bacterial communities would be altered in response to PHC treatment, 

either via soil habitat changes, chemical toxicity, or altered C or nutrient regimes. We further 

expected that systems with different host plant (e.g. root structure and exudation patterns) or 

soil properties (e.g. previous PHC contamination history or high lignin content) would 

contain mycorrhizal communities adapted to PHC contamination conditions to varying 

extents. Using a bioassay (single- and double-plant systems established in reconstructed 

forest soil layers in pots), morphological and molecular (LH-PCR) techniques were used to 

assess changes in mycorrhizal community structure in response to different PHC 

concentrations over 16 weeks. Laccase assays were also conducted to assess changes in 
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enzyme activity associated with PHC treatment. Results of these assessments are discussed 

in terms of ecological integrity and remediation/ restoration. 

Chapter 3 focuses on the indirect role of the mycorrhizosphere in the biodegradation process 

(i.e. provision of habitat for consortia of bacteria involved in metabolizing PHCs) and 

examines effects of PHCs on structure and metabolic function of bacterial communities. We 

hypothesized that indigenous bacterial communities would have the capacity for PHC 

biodegradation, at least for the smaller fraction PHCs, and that this capacity would be 

enhanced in the presence of mycorrhizal root systems that provide C substrates (exudates) for 

co-metabolism. In addition, we expected that the mycorrhizosphere would provide some 

protection of bacterial communities from potentially toxic effects of some PHC chemicals. 

Single-, double- and no-plant systems were treated with the highest PHC level (i.e. 219 mg 

cm"2) tested previously. GC-FID analysis was used to determine concentration of PHCs (in 4 

fractions) in soil layers at 1 and 16 weeks; soil layers were analyzed for C:N ratio and pH. 

Genotypic profiles of root-associated bacterial communities were assessed using LH-PCR 

analysis; metabolic profiles were based on C substrate use after 7 weeks. These results are 

discussed in terms of the mycorrhizosphere effect, functional redundancy, and syntrophic 

biodegradation of PHCs. 

In Chapter 4, the relative contributions of plant and soil properties to spatial distribution 

patterns of ecto- (ECM) and ericoid (ERM) mycorrhizal fungi as well as root-associated 

bacterial communities inhabiting the shared rhizosphere of pine (ECM host) and lingonberry 

(ERM host) were investigated in PHC-treated and control systems. Community profiles (i.e. 
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based on the relative abundance of all genotypes) were generated for all root systems using 

LH-PCR and primers targeting the ITS (fungi) and 16S (bacteria) regions of ribosomal DNA. 

ECM composition, relative abundance and variation between soil layers were also assessed 

using light microscopy. Spatial distribution patterns of the three groups of microorganisms 

(i.e. ECM and ERM fungi and associated bacteria) are compared and discussed with respect 

to habitat and niche considerations in the plant-soil systems. 

Final conclusions and considerations for future research are presented in Chapter 5. It is a 

general discussion along several themes that emerged during analyses in the three data 

chapters, including the rhizosphere as an ecological unit, system resilience to disturbance, 

syntrophic biodegradation of PHCs, functional redundancy within and between trophic 

groups, importance of scale, variation and uncertainty in ecological data, and ecological 

foundations for sustainable forest management. 

Robertson, S.J., McGill, W.B., Massicotte, H.B. and Rutherford, P.M. (2007) Petroleum 
hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. 
Biological Reviews 82: 213-240. 
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Chapter 1: Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal 
ecosystems perspective 

Abstract 

The importance of developing multi-disciplinary approaches to solving problems relating to 

anthropogenic pollution is now clearly appreciated by the scientific community, and this is 

especially evident in boreal ecosystems exposed to escalating threats of petroleum 

hydrocarbon (PHC) contamination through expanded natural resource extraction activities. 

This review aims to synthesize information regarding the fate and behaviour of PHCs in 

boreal forest soils in both ecological and sustainable management contexts. From this, we 

hope to evaluate potential management strategies, identify gaps in knowledge and guide 

future research. Our central premise is that mycorrhizal systems, the ubiquitous root 

symbiotic fungi and associated food-web communities, occupy the structural and functional 

interface between decomposition and primary production in northern forest ecosystems (i.e. 

underpin survival and productivity of the ecosystem as a whole), and, as such, are an 

appropriate focal point for such a synthesis. We provide pertinent basic information about 

mycorrhizas, followed by insights into the ecology of ecto- and ericoid mycorrhizal systems. 

Next, we review the fate and behaviour of PHCs in forest soils, with an emphasis on 

interactions with mycorrhizal fungi and associated bacteria. Finally, we summarize 

implications for ecosystem management. Although we have gained tremendous insights into 

understanding linkages between ecosystem functions and the various aspects of mycorrhizal 

diversity, very little is known regarding rhizosphere communities in PHC-contaminated soils. 

This makes it difficult to translate ecological knowledge into environmental management 

strategies. Further research is required to determine which fungal symbionts are likely to 
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survive and compete in various ecosystems, whether certain fungal - plant associations gain 

in ecological importance following contamination events, and how PHC contamination may 

interfere with processes of nutrient acquisition and exchange and metabolic processes. 

Research is also needed to assess whether the metabolic capacity for intrinsic decomposition 

exists in these ecosystems, taking into account ecological variables such as presence of other 

organisms (and their involvement in syntrophic biodegradation), bioavailability and toxicity 

of mixtures of PHCs, and physical changes to the soil environment. 

Key words: ectomycorrhiza, ericoid mycorrhiza, mycorrhizal ecosystems, boreal forest soils, 

ecosystem processes, petroleum hydrocarbons, soil pollution, biodegradation, 

bioremediation. 
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Introduction 

Boreal and sub-boreal forest ecosystems include arctic, sub-arctic and northern mid-latitude 

forest regions that are dominated by a cold climate and are able to support only a few 

coniferous and broadleaf tree genera (Burton et al., 2003). Petroleum hydrocarbons (PHCs) 

are complex mixtures of aliphatic, alicyclic and aromatic compounds (Miller and Herman, 

1997; Potter and Simmons, 1998) plus constituents that contain N, S or O in addition to H 

and C. PHCs may find their way into terrestrial ecosystems by surface spills or leaks from 

pipelines or storage tanks. The microbial ecology of boreal forest ecosystems, with or 

without PHCs, is incompletely understood. It is known, however, that symbiotic fungi 

colonize and extend beyond the roots of dominant plant species, thereby forming an 

intimately interwoven belowground mycorrhizal system. Mycorrhizal fungi account for most 

of the microbial biomass in organic soil horizons (Lundstrom et al., 2000; Dahlberg, 2001). 

The traditional role of individual symbioses involves the exchange of soil nutrients for 

carbohydrates fixed through plant photosynthesis (Smith and Read, 1997). Nutrients are 

obtained from inorganic sources inaccessible to plants or accessible, but more readily 

obtained, by the mycobiont. However, some mycorrhizal systems appear to possess well-

developed saprotrophic capabilities (i.e. oxidative and hydrolytic enzyme systems) that 

mobilize nutrients from organic sources. Such capabilities may have developed through 

selection in ecosystems characterized by slow decomposition and retention of nutrients in 

organic polymers (Hibbett et al., 2000; Burke and Cairney, 2002; Cairney and Meharg, 2002; 

Read and Perez-Moreno, 2003). Mycorrhizal systems capable of metabolizing exogenous 

organic compounds therefore may be candidates for use in remediation of soils contaminated 

with PHCs. 
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Mycorrhizal fungal mycelia and surrounding soil (i.e. mycorrhizosphere) provide suitable 

habitats for diverse communities of microorganisms due to increased availability of high-

energy metabolic substrates and surfaces for colonization (Sarand et al., 2000; Sen, 2003; 

Heinonsalo et al., 2004). This enhances bacterial decomposition of plant materials because 

mycelia provide a path, together with associated water films, through which bacteria can 

migrate to substrates in micropores. Metabolic synergism between fungal and bacterial 

members of soil communities ensures that virtually all organic compounds are subject to 

biotransformation (if available to decomposer organisms) and that nutrients and energy-rich 

compounds are exchanged between plants and the soil environment via mycorrhizal fungal 

networks (Simard et ah, 1997; Read and Perez-Moreno, 2003; Diaz, 2004; Heinonsalo et al., 

2004). Consequently, in addition to their direct transformation of organic compounds, 

mycorrhizal systems may indirectly enhance degradation of PHCs in soil by modifying the 

structure of associated bacterial communities (Cairney and Meharg, 2002). 

Oil extraction, refinement and transportation activities in boreal regions have resulted in 

surface and near-subsurface soil contamination with PHCs including crude (or synthetic 

crude) oil, gasoline, diesel and creosote (Kanaly and Harayama, 2000). The current standard 

against which environmental impacts are evaluated is sustainability (maintenance of 

ecological integrity) using various ecological indicators as measures. Sustainability requires 

management strategies for large areas and long periods of time that satisfy diverse 

environmental, social and economic needs (Burton et al, 2003). The relationship between 

soil microbial communities and ecosystem processes (e.g. decomposition and 
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biogeochemical cycling) provides insights into how communities and ecosystems respond to 

environmental change. Microbial diversity (the variety of taxonomic, genetic and functional 

characteristics of organisms) helps sustain terrestrial ecosystems by conferring ecosystem 

stability (the ability to withstand change), resilience (the ability to recover from change) and 

resistance (the inherent capacity to withstand disturbance) (Andren and Balandreau, 1999; 

Tiedje et al, 1999; Nannipieri et al, 2003; Swaminathan, 2003; Fitter et al., 2005). Lower 

diversity or higher specialization occurs in disturbed soil systems due to: (1) extinction of 

populations that lack sufficient tolerance to the change imposed, and/or (2) selective 

enrichment of populations that tolerate or thrive under the new conditions (Diaz, 2004; 

Hofman et al., 2004). To understand the basis of community differences associated with 

changes in environmental conditions, it is necessary to integrate the functional properties and 

environmental requirements or tolerances of communities with processes at an ecosystem 

level (Bengtsson, 1998; Cairney, 1999; Dahlberg, 2001; Read and Perez-Moreno, 2003). 

The potential toxicity of some PHCs to human, plant and animal receptors is used in 

managing contaminated sites, but the physical, chemical and biological impacts on soil 

microbial communities are less extensively studied and used (Miller and Herman, 1997; 

Nicolotti and Egli, 1998). Controlled experiments have provided valuable information 

regarding the toxicological impacts of chemicals on test organisms, which forms the 

scientific basis for current remediation standards. In soils, toxicity of PHCs to soil organisms 

including plants occurs concurrently with physical and chemical changes to the soil habitat 

following PHC contamination (Tarradellas and Bitton, 1997; Blakely et al., 2002; Trofimov 

and Rozanova, 2003). Is it possible to separate the effects of chemical toxicity from habitat 

9 



changes such as hydrophobicity, lowered redox potential or reduced nutrient supply in PHC-

contaminated soils? Are methods available for assessing the fate and behaviour of PHCs in 

forest soils that include bioavailability and indicators for ecological integrity that also 

complement measures for plant productivity? In addition, many PHCs are structurally 

analogous to organic compounds naturally found in the soil environment and appear to be 

degraded by soil microbial communities using the same biochemical pathways (McGill et al., 

1981; Siciliano and Germida, 1998). Can functional aspects of microbial populations and 

communities (e.g. exocellular enzymes) be manipulated for bioremediation of contaminated 

soil? 

Numerous reviews have addressed various aspects of mycorrhizal systems (e.g. Meharg and 

Cairney, 2000; Dahlberg, 2001; Burke and Cairney, 2002; Allen et al, 2003; Read and 

Perez-Moreno, 2003; Fitter et al., 2005) or of PHC behaviour and biodegradation in soil 

(McGill et al, 1981; Riser-Roberts, 1998; Alexander, 1999, 2000; Prince and Drake, 1999; 

Diaz, 2004; Stokes et al, 2005; Rombke et al, 2006). How might we advance the 

understanding of the fate and behaviour of PHCs in boreal forest soils in both ecological and 

sustainable management contexts? We aim to do so by synthesizing information regarding 

the interactions between mycorrhizal communities and PHC contaminants in boreal soils. 

From this, we hope to evaluate potential management strategies, identify gaps in knowledge 

and guide future research. Our central premise is that mycorrhizal systems occupy the 

structural and functional interface between decomposition and primary production in 

northern forest ecosystems and as such are an appropriate focal point for such a synthesis. 

Information in this synthesis should be useful to professionals ranging from ecologists to 
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engineers involved in the management and remediation of contaminated boreal forest soils. 

Our approach is first to provide pertinent basic information about mycorrhizas, followed by 

insights into the ecology of ecto- and ericoid mycorrhizal systems. Next we review the fate 

and behaviour of petroleum hydrocarbons in forest soils, with an emphasis on interactions 

with mycorrhizal fungi and associated bacteria. Finally, we summarize implications for 

ecosystem management. 

Mycorrhizas 

Classification and structure 

Mycorrhizas are symbioses between plant roots and an array of soil-inhabiting, filamentous 

fungi. These associations are virtually ubiquitous and generally considered mutualisms (i.e. 

reciprocally increase the fitness of both partners) as they are based on a bidirectional 

exchange of nutrients that is essential to the growth and survival of both partners (Smith and 

Read, 1997; Peterson and Massicotte, 2004; Sapp, 2004). The fungal partner acquires 

nitrogen (N), phosphorus (P) and other nutrients from the soil environment and exchanges 

them with the plant partner for photosynthetically derived carbon (C) compounds that fuel 

fungal metabolism. The structural attributes of mycorrhizas are related to their primary 

function of nutrient exchange and provide the basis for broad classification into seven 

currently recognized groups: ectomycorrhizas, ericoid mycorrhizas, ectendomycorrhizas, 

arbuscular mycorrhizas, arbutoid mycorrhizas, monotropoid mycorrhizas and orchid 

mycorrhizas (Peterson et ah, 2004). In boreal forest ecosystems, most trees typically form 

ectomycorrhizal (ECM) symbioses, whereas the major constituents of the understorey 
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vegetation often form arbuscular (AM), ericoid (ERM) or arbutoid (ARM) mycorrhizas. The 

ECM and ERM groups will be considered herein in the greatest detail. 

Ectomycorrhizas, the associations between ECM fungi and the roots of woody plants, are 

characterized by three structural components: the mantle, the Hartig net and the extraradical 

mycelium (Smith and Read, 1997). The mantle is a sheath of fungal tissue that covers the 

highly active tips of the lateral roots of the plant and forms the boundary between the root 

and the soil environment. Its compact, but also variable, morphological nature provides a 

buffering capacity that helps to prevent root cell dehydration or penetration by pathogenic 

organisms (Brundrett, 1991). Fungal cells (hyphae) emanate from the outer mantle as 

extraradical mycelia and grow into the surrounding soil where they reach micropore areas 

and absorb nutrients that may otherwise be inaccessible, both physically and biochemically 

(i.e. enzymatic processing of organic compounds), to roots (Soderstrom, 1992; Perez-Moreno 

and Read, 2000). Some ECM fungi also form rhizomorphs, which are thick linear aggregates 

of hyphae that are specialized for long-distance translocation of nutrients and water (Agerer, 

2001). Lipids, phenolic compounds, proteins and polyphosphates may accumulate in the 

hyphae of the outer mantle, which may also bind heavy metals and thereby prevent their 

uptake into roots (Peterson et ah, 2004). The inner mantle consists of repeatedly branched 

hyphae, suggesting a role in nutrient exchange such as enabling absorption of glucose and 

fructose from the root and conversion to fungal sugars (e.g. trehalose, mannitol or glycogen) 

(Peterson et ah, 2004). At the interface of nutrient exchange is a highly branched structure 

known as the Hartig net, which is formed by multidigitate growth of fungal hyphae between 

epidermal and cortical cells of the root, and is the probable site for exchange of resources 
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between symbionts (Peterson et al., 2004). Subtle variations in morphological attributes 

viewed using light microscopy are often used to distinguish between ECM fungal taxa; 

development and differentiation of extraradical mycelia may provide predictive features 

relevant to the ecological classification of ECMs (Agerer, 1987-2002, 2001). 

The common feature of plants that form ericoid mycorrhizas is the formation of very fine 

lateral roots that are composed of a vascular cylinder, one or two rows of cortical cells and an 

epidermal layer of enlarged cells (Peterson et al., 2004). ERM fungi do not form mantles or 

Hartig nets, but rather colonize the epidermal cells of these fine roots and develop 

intracellular hyphal coils that are specialized for nutrient exchange (Peterson et al., 2004). 

The intracellular fungal symbiont is separated from the plant cytoplasm by a plant-derived 

membrane, which invaginates to follow fungal growth and coil formation (Perotto et al., 

2002). ERM fungal taxa cannot be distinguished by morphological characters using light 

microscopy. From molecular studies, it appears that ERM roots are composite structures that 

house multiple fungal symbionts, which implies that epidermal root cells may potentially 

function as separate units colonized by a variety of fungi (Perotto et al., 2002). 

Diversity 

Mycorrhizal symbioses have been an important force in evolution (Pirozynski and Malloch, 

1975; Blackwell, 2000; Cairney, 2000; Sapp, 2004). Based on reconstructions of 

evolutionary lineages (phylogenies) from fungal DNA and the fossil record, it is currently 

accepted that the first mycorrhizal associations were pivotal in allowing plants to colonize 

the terrestrial environment about 600 million years ago and they form the evolutionary basis 
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of present plant communities (Pirozynski and Malloch, 1975; Blackwell, 2000). Redecker et 

al. (2000) reported fossilized fungal hyphae and spores found from the Ordovician of 

Wisconsin (about 460 million years old) that strongly resemble modern Glomerales-like AM 

fungi. Modern AM fungal species persist in most extant plant species and form a single 

monophyletic group descended from these first mycorrhizas (Cairney, 2000). The AM group 

represents four orders (Archaeosporales, Paraglomerales, Diversisporales and Glomerales) of 

fungi within the phylum Glomeromycota (Smith and Read, 1997). 

ECM fungal diversity appears to have arisen about 200 million years ago, corresponding to 

changes in climate that allowed for colonization of the land with trees and increased organic 

matter content of some ancient soils (Cairney, 2000). Although ECM plant partners 

(phytobionts) represent only about 8000 species (mostly in the families Pinaceae, Betulaceae, 

Fagaceae, Dipterocarpaceae, Salicaceae and Myrtaceae), these species are of global 

importance because of their disproportionate occupancy and domination of terrestrial 

ecosystems in boreal, temperate and subtropical forests (Smith and Read, 1997). It has been 

estimated that 5000-6000 species of fungi (of the sub-divisions Basidiomycotina, 

Ascomycotina and Zygomycotina) form ECM symbioses (Molina et ah, 1992; Horton and 

Bruns, 2001), but these numbers are expected to rise as more regions are progressively 

explored in detail (Cairney, 2000). Phylogenetic analyses reveal that ECM fungi have 

originated from several independent lineages and that symbiosis with plants has been 

convergently derived (and perhaps lost) many times over millions of years (Hibbett et al., 

2000). Some ECM taxa are closely related to, or descended from, wood-rot fungi and some 

are related to other saprotrophic fungal taxa (Tanesaka et ah, 1993; Hibbett et al., 2000). 
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This variation in the ability to degrade wood may have helped drive fungal speciation to 

avoid competition between closely related species that would otherwise use the same 

resources and occupy the same niche (Tanesaka et al, 1993; Bruns, 1995; Martin et ah, 

2000). The ability to degrade the complex aromatic chemical structures of lignin in wood 

may also confer an ability to transform similar structures in PHCs. 

ERMs evolved about 100 million years ago, as sclerophyllous vegetation (i.e. plants with 

small, tough foliage and tissues that are rich in lignin and cellulose, but deficient in N and P) 

emerged in nutrient-poor soils (Cairney, 2000). Many plants of the family Ericaceae (e.g. 

Vaccinium, Rhododendron, Gaultheria, Ledum species) are common components of the 

understorey vegetation in northern forests and usually form typical ERMs (Vralstad et ah, 

20026). In the Southern hemisphere, plant species of the family Epacridaceae form ERMs 

(Cairney and Ashford, 2002). ERM fungi were thought to belong to the Ascomycotina, of 

which fungal strains in the Rhizoscyphus ericae - Scytalidium vaccinii species complex 

(Helotiaceae, Helotiales, Ascomycota) are most commonly studied and reported (Vralstad et 

al., 2002a; Zhang and Zhuang, 2004). In addition, ERM fungi identified as Oidiodendron 

(anamorphs of the ascomycete family Myxotricaceae) as well as a broad range of sterile 

mycelia with divergent morphologies and unknown identifications have been described 

(Vralstad et al, 2002<2). Recent morphological (clamped hyphae and dolipore septae 

forming typical ERM coils on Vaccinium, Rhododendron and Gaultheria species) and 

molecular (rDNA sequences) evidence indicates that some ERM fungi may belong to the 

Basidiomycotina (Berch et ah, 2002; Perotto et ah, 2002). It has become increasingly 
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apparent that a wider spectrum of taxa is involved in the ERM symbiosis than had been 

previously imagined. 

ECM communities appear to consist of large numbers of fungal species (i.e. exhibit high 

species richness), even within small areas with little heterogeneity in plant communities, soil 

properties, climate and disturbance patterns (Bruns, 1995; Kranabetter et al, 1999; Taylor et 

al, 2000; Mah et al., 2001; Robertson et al., 2006). ERM fungal communities also appear to 

exhibit high richness. For example, Monreal et al. (1999) isolated 20 fungi (five of which 

formed ERM in vitro) from sixty segments (each 3 mm long) of fine roots from an 8-cm-long 

salal {Gaultheria shallon Pursh) rhizome. This ERM fungal richness is consistent with other 

reports of species-rich communities of mycorrhizal and non-mycorrhizal endophytes in 

individual root systems of other ericaceous [e.g. Calluna vulgaris (L.) Hull] and 

epacridaceous [e.g. Woollsiapungens (Cav.) F. Muell.] plants. All groups of ericoid fungi 

reported globally have been found associated with salal from a single site on Vancouver 

Island (British Columbia, Canada) and all ERM groups reported on salal have been found 

associated with other plant species elsewhere in the world (Berch et al., 2002). It is currently 

hypothesized that sterile mycelia with ERM behaviour represent a heterogeneous group of 

fungal taxa that are mostly unidentified and appear to include a variety of unculturable 

mycobionts (Berch et al., 2002; Perotto et al., 2002). High species richness and abundance 

may represent ecological adaptation to local environmental heterogeneity and is thought to 

provide forests with a range of strategies to maintain efficient functioning under an array of 

environmental conditions (Cairney, 1999; Nannipieri et al, 2003). 
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Establishing whether diversity is important for ecosystem processes has become a central 

issue in ecology (Leake, 2001). In general, soil microbial communities appear to comprise 

groups of organisms that fulfill broadly similar ecosystem functions (i.e. exhibit functional 

redundancy) (Yin et al., 2000). Functional diversity represents the value and range of 

capabilities that are possessed by organisms present in a given ecosystem and are relevant to 

ecosystem processes (Allen et al., 2003; Sobek and Zak, 2003). There is a growing body of 

evidence suggesting that the functional characteristics of component taxa are at least as 

important as species richness for maintaining essential ecosystem processes (Naeem, 2002; 

Nannipieri et al., 2003). Knowledge of the individual roles of mycorrhizal fungal species, or 

of their distribution either in relation to each other or to the physical and chemical 

environments of the soil, is limited (Goodman and Trofymow, 1998; Rosling et al., 2003) 

and insufficient for determination of community needs and responses by building up from the 

species level. Moreover, in mycorrhizal ecosystems, we hypothesize that the functional 

significance of individual taxa is overshadowed by the integrated functional capability of the 

community, which is likely not an additive function of the independent capabilities of 

component species. The tendency to generalize ecological functions from a few fungal 

isolates reveals little information about the intrinsic physiological potential of most taxa 

(Cairney, 1999; Cairney and Meharg, 2003) or of the community. Current evidence suggests 

that ongoing parallel evolution of plant and fungal partners in response to environmental 

change on local and global scales may most readily explain extant patterns of mycorrhizal 

diversity and specificity (Cairney, 2000). Although functional redundancy almost certainly 

exists within mycorrhizal communities, high taxonomic and genetic diversity of ECM (and 
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probably ERM) fungi may indicate that they also exhibit a high level of functional 

heterogeneity (Cairney, 1999). 

Are all the pieces of an ecosystem essential for restoration? Following a disturbance, should 

the management target be to maintain (or reintroduce) the original species richness at all 

costs, or, alternatively, to nurture the survivors (stress-resistors) so that they can contribute to 

the restoration of habitats in a future (altered) state? Is it likely that resistant organisms will 

modify the environment in ways that favour only themselves (i.e. preserving a specialized 

community), or do modifications lead eventually to succession by organisms that are 

incapable of tolerating the initial conditions (as suggested by most concepts of ecological 

succession)? Species richness may be a critical aspect of ecosystem resilience and 

functioning, but within a restoration context, more emphasis should perhaps be devoted to 

the resistant biota and their contribution in restoring pre-contamination conditions. 

Community specialization may indicate environmental stress, but we hypothesize 

specialization may also be a desirable response to stress, and a useful characteristic in 

allowing stressed ecosystems to achieve long-term stability and diversity. 

Ecology of ecto- and ericoid mycorrhizal systems 

Soil habitat 

Soils are living, open, dynamic systems. They contain structured and heterogeneous 

matrices, generally store nutrients and energy, and support high microbial diversity and 

biomass (Nannipieri et al., 2003). To thrive, soil microorganisms must mobilize energy and 

nutrients stored in soil. Soil structure provides a complex and variable set of microbial 
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habitats ranging from energy-rich to barren, or aerobic to anaerobic, over micrometre 

distances. Soil structure is determined by soil aggregation, which occurs when soil particles 

within aggregates cohere more strongly to each other than to adjacent aggregates (Hartel, 

1998). Aggregates are composed of sand, silt and clay particles that are held together by 

organic matter, precipitated inorganic materials, microorganisms and the products of their 

metabolic activities (Griffiths and Caldwell, 1992; Hartel, 1998). Aggregates are dynamic, 

constantly forming and disintegrating. Organic substrates and plant residues are entrained 

and protected during aggregate formation and released during aggregate disintegration 

(Plante and McGill, 2002). The solid phase adsorbs important biological molecules (e.g. 

DNA, enzymes, etc.) and many soil reactions are catalyzed at the surfaces of soil minerals 

such as clays, Mn (III and IV) oxides and Fe (III) oxides (Nannipieri et ah, 2003). In 

addition, the zeta potential of charged mineral and organic surfaces generates a steep pH 

gradient around them. For example, McLaren and Skujins (1968) cite examples of the pH 

optima of enzymes being several units higher in colloidal systems than in solution, 

apparently due to the lower pH in the immediate environment of the enzyme, close to 

colloidal surfaces. Water occupies the aggregate pore spaces and forms a meniscus around a 

central pocket of air, which provides an aerobic and aqueous habitat suitable for supporting 

bacterial communities (Wardle, 2002). Pore water also retards gas exchange, thereby 

creating anaerobic microsites. Pore water also participates in hydrolysis and mediates other 

soil reactions (Hartel, 1998). 

Boreal forest soils are typically acidic with seasonal or intermittent availability of mineral 

nutrients (N and P) and high C:N ratios due to the surface accumulation of recalcitrant 
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organic matter resulting from incomplete oxidation of plant material (Prescott et ah, 2000; 

Allen et ah, 2003). This organic layer (mor humus) stores nutrients and also contributes to 

moisture retention and soil structure (Prescott et ah, 2000). The forest floor is the most 

metabolically active fraction of these soils and is heavily colonized by ECM and ERM root 

systems of trees and understorey vegetation (Lundstrom et ah, 2000). Wallander et ah 

(2001) estimated the extraradical mycelia biomass of ECMs to represent about 820 kg ha"1 in 

boreal forest soils. Fungal metabolic activities produce organic acids that percolate with rain 

water down through the soil profile and contribute to accelerated weathering of mineral soils 

(Griffiths and Caldwell, 1992; Heinonsalo et ah, 2004). Soluble complexes are formed 

between the organic acids and Fe and Al ions in the upper mineral soil, thereby fostering 

leaching of Fe and Al ions and creating a weathered, eluvial horizon (Lundstrom et ah, 

2000). These complexes percolate further downward and precipitate, creating a 

characteristic rust-coloured illuvial B horizon overlying the parent material (Lundstrom et 

ah, 2000). These changes with depth in soil chemical and mineralogical properties create 

contrasting habitats for microorganisms. For example, Rosling et ah (2003) found that the 

species composition of the ECM community varied between organic and mineral horizons of 

boreal podzolic soils and that most taxa occurred in only one part of the soil profile. 

Less than 5% of the soil volume is occupied by microorganisms, but these sites of increased 

biological activity are where the majority of soil reactions are mediated (Diaz, 2004). The 

availability and nutrient content of organic matter are key factors influencing microbial 

biomass and community composition (Tiquia et ah, 2002). Other major factors controlling 

the distribution and abundance of soil microbial communities include: (1) properties of the 
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soil environment (e.g. pH, O2 supply and availability of water and nutrients such as N, P, Fe); 

(2) factors affecting dispersal (e.g. soil structure, micro-aggregate stability and routes of 

dispersal); and, (3) the controls of population turnover (e.g. nematode or protozoan grazing, 

controls on lytic enzymes, protective soil matrices) (Tiedje et ah, 1999). Introduction of 

PHCs alters all three of these fundamental characteristics. For example, O2 supply is often 

reduced, water movement is restricted and soil fauna including nematodes and protozoa are 

temporarily lost from the contaminated ecosystem. 

Microbial growth in soils is typically resource-limited (most often energy-limited) and 

increases rapidly in response to addition of reduced C to provide energy for the large chemo-

organotrophic biomass (Nannipieri et ah, 2003; Morgan et ah, 2005). Actively growing 

roots leak or secrete (exude) soluble and insoluble organic compounds into the surrounding 

soil (rhizosphere) that provide most of the low molecular weight C available to 

microorganisms (Darrah, 1991; Garbaye, 1994). Rhizodeposition is concentrated at the root 

tips and at sites of lateral branch formation, which correspond to sites of greater microbial 

population density and community complexity compared to bulk soil (Linderman, 1988; 

Chanway, 1997; Sarand et ah, 2000; Soderberg et ah, 2004). Soluble forms of C (e.g. 

monosaccharides, amino acids and organic acids) are readily metabolized by microorganisms 

to CO2 or converted to biomass; insoluble forms of C (e.g. mucilages, sloughed cortical cells 

and dead root hairs) are less readily metabolized (Darrah, 1991), but they may form new 

microbial habitats, which are eventually consumed. As with fungi, bacterial richness and 

functional redundancy are both high, at least at coarse scales. Using fatty acid methyl ester 

profiles (FAME analysis) and 16S rRNA gene sequences, Axelrood et ah (2002a, b) 
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described immense bacterial richness (isolates representing 42 known bacterial genera and 

clones spanning nine divisions, respectively) in surface organic matter and mineral soil 

samples from forests in the central interior of British Columbia. Culture collections were 

well represented by Pseudomonas, Bacillus, Paenibacillus and Arthrobacter species 

(Axelrood et al., 2002a), whereas molecular clones were represented by Bradyrhizobium, 

Rhizobium, Pseudomonas and Burkholderia species (Axelrood et al., 20026). These genera 

are considered common soil inhabitants and important components of rhizosphere 

communities with respect to nutrient cycling and transformation of minerals and complex 

organic substrates (Axelrood et al., 20026). 

It has not yet been fully appreciated that the establishment of mycorrhizal symbioses 

substantially alters the morphology and physiology of plant roots (e.g. alters permeability of 

root membranes), which also changes root exudation patterns as well as the types of C 

substrates exuded (Linderman, 1988; Ingham and Molina, 1991; Rygiewicz and Andersen, 

1994). The extraradical mycelia generate increased volumes of mycorrhizosphere soil 

compared to noncolonized roots and not only support microbial growth through exudation of 

energy-rich substrates, but also provide surfaces for colonization and contribute to formation 

of soil structure (Griffiths and Caldwell, 1992). The presence of ECM mycelia alters 

bacterial community structure by stimulating proliferation of selected bacterial populations, 

among other mechanisms (Frey et al., 1997; Heinonsalo et al., 2000). Fluorescent 

pseudomonads isolated from the mycorrhizosphere of Douglas-fir (Pseudotsuga menziesii 

(Mirbel) Franco) appear preferentially to use trehalose, a carbohydrate derived from fungal 

metabolism (Frey et al, 1997). Fluorescent pseudomonads and actinomycetes have been 
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observed around ECM roots of birch, closely associated with the mantle and in proximity to 

fungal exudates (Ingham and Molina, 1991). There is also some evidence that diverse 

microbial communities may be selectively present in association with certain ECM mycelia 

(Garbaye, 1994; Read and Perez-Moreno, 2003). For example, Olsson and Wallander (1998) 

found that structure of soil bacterial communities, assessed using phospholipid fatty acid 

(PLFA) analyses, depended both on ECM fungal species and soil type. Fungal mycelial 

(mat) communities are unique soil habitats that contribute to maintenance of high richness of 

bacterial and fungal taxa within ecosystems (Griffiths and Caldwell, 1992). 

In summary, conditions within soil habitats vary by orders of magnitude over micrometre 

distances, in response to physical (structure and aggregates), chemical (pH, 02, soluble 

substances) and biological (microorganisms, soil fauna, plant roots) variables. Soil habitats 

may also be substrates (e.g. plant residues). Perhaps because of this almost infinite variety of 

habitats at the microbial-size scale, it is difficult to find any soil sample that is missing major 

genera of the known microbiota of terrestrial ecosystems. Molecular techniques continue to 

show increasingly large ranges of genetic material within soils (e.g. Axelrood et ah, 20026; 

Prosser, 2002), with most (more than 99%) of the bacterial genotypes represented currently 

not culturable (Pace, 2005). With greater sampling effort, the number of known bacterial 

divisions has expanded substantially in recent years (Pace, 2005). From a management 

perspective, the genetic potential to mediate virtually any biogeochemical reaction and the 

habitat needed to support it appears to exist in most soils, with only specialized capabilities 

potentially missing. 
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Community interactions 

Mycorrhizosphere bacteria 

As mycorrhizal fungi constitute the most significant rhizosphere communities, they have 

immense potential for interactions with other soil organisms such as bacteria, fungi, 

protozoa, nematodes, arthropods and mammals, as well as with each other (Fitter and 

Garbaye, 1994; Read and Perez-Moreno, 2003; Cairney, 2005). The primary factors that 

influence the composition of associated communities are the quality and quantity of C 

compounds present, competitive interactions between mycorrhizal fungi and free-living 

microorganisms for mineral nutrients, and the beneficial, detrimental or neutral impacts of 

secondary metabolites produced by symbiotic or free-living organisms (Siciliano and 

Germida, 1998; Cairney and Meharg, 2002). The outcomes of interactions between ECM, 

ERM and saprotrophic fungal mycelia may include mutual interference of growth (deadlock) 

or replacement of one taxon with another through competition (Cairney, 2005). 

The interactions between ECM/ ERM fungi and the heterotrophic bacterial community are 

important for accessing mineral nutrients (Burke and Cairney, 1998). Observations that 

enhanced decomposition of organic compounds occurs in (mycor)rhizosphere soils have been 

attributed to the greater metabolic activities associated with higher densities of 

microorganisms (Heinonsalo et ah, 2000). Enriched bacterial communities, often arranged 

as biofilms (organised systems consisting of layers of biologically active cells), have been 

noted at the surfaces of the ECM fungal mantle and extraradical mycelia, which are the sites 

of nutrient mobilization, uptake and translocation (Sen, 2003). The exposure of microbial 

biofilms to organic polymers such as cellulose and proteins appears to drive degradative 
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secondary metabolism; this enables plant and microbial uptake of simple compounds (e.g. 

sugars, amino acids and mineral nutrients) that are released during the decomposition process 

(Sen, 2003). 

From the germination of fungal propagules in soil to establishment of true symbiosis, 

mycorrhizal fungi experience a free-living stage during which they interact with bacteria 

(known as mycorrhizal helper bacteria, MHB) that appear to be beneficial to the colonization 

process via one or more of several proposed mechanisms (Garbaye, 1994). In axenic culture 

with nutrient limitation, MHB may act by direct trophic interactions (where bacteria provide 

C substrates or growth factors to the free-living fungi) or by metabolic detoxification of 

fungal metabolites (e.g. polyphenols, etc.) (Duponnois and Garbaye, 1990). Bacteria that are 

active at the time of mycorrhizal formation may facilitate recognition between the plant and 

mycorrhizal fungus, improve the receptivity of the root for fungal colonization, or stimulate 

fungal growth, thereby increasing encounters between roots and mycelia (Frey-Klett et al., 

1997). MHB also appear to colonize fungal hyphae and stimulate initial mycorrhizal 

formation through production of vitamins, amino acids, phytohormones and/ or cell wall 

hydrolytic enzymes, which may influence germination and growth rates of fungal structures, 

enhance root development and/or decrease susceptibility to infection (Martin et al., 2000). 

Shishido et al. (1996) found that three strains of fluorescent pseudomonads enhanced spruce 

seedling growth through mechanisms unrelated to increased mycorrhizal colonization, but 

growth promotion of pine by two strains was facilitated by an interaction with mycorrhizas. 

Mycorrhizal root tips tended to support slightly higher populations of Pseudomonas spp. than 

non-mycorrhizal root tips and additional colonization sites or altered/ enhanced exudation in 
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the mycorrhizosphere were observed. Frey-Klett et ah (1997) found that high levels of 

bacterial inoculum (MHB Pseudomonas fluorescens BBc6) in the rhizosphere are not 

necessary for a helper effect to occur. 

Another group of naturally occurring, free-living soil bacteria that colonize roots and 

enhance plant growth when added to seeds and roots are known as the plant growth 

promoting rhizobacteria (PGPR) (Chanway and Holl, 1991). PGPR activity has been 

reported in Azospirillum, Bacillus, Clostridium, Hydrogenophaga, Serratia, Staphylococcus, 

Streptomyces, and Micro bacterium species (Chanway, 1997). Holl and Chanway (1992) 

found that growth of mycorrhizal pine was stimulated by inoculating the rhizosphere with 

Bacillus polymyxa strain L6, which appeared to be a function of the size of the bacterial 

population. Plant growth promotion was not attributed to increased symbiosis by the ECM 

fungus Wilcoxina, and was also unlikely to be due to N fixation as this Bacillus strain 

contributed to only 4% of seedling foliar N. Rather, stimulation of pine growth may have 

been a result of bacterial production of plant growth substances such as indoleacetic acid. 

Other researchers have suggested that PGPR may, at least in the short term, improve the C 

supply to mycorrhizas by providing an increased supply of N (fixed from the atmosphere) to 

the plant (Ingham and Molina, 1991; Martin et ah, 2000). Microorganisms may directly 

stimulate plant growth by providing nutrients (e.g. N, P, S) or growth factors (e.g. auxin, 

cytokinin, gibberellin), increasing root permeability or inducing plant systemic resistance to 

pathogens. Indirectly, microorganisms may influence other rhizosphere components that 

influence plant growth, such as increasing legume or alder root nodule number and size, 
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increasing colonization frequency of mycorrhizal fungi, or suppressing deleterious 

rhizobacteria (Chanway, 1997). 

Plant linkages 

Plant communities in northern forest ecosystems are linked below ground via the extensive 

extraradical mycelial network of mycorrhizal fungi (Dahlberg, 2001; Simard and Durall, 

2004). Host-specific fungi form intraspecific plant linkages, whereas fungi with more 

general host requirements may form interspecific linkages that allow for nutrient and C 

transfer between different tree species. In a microcosm experiment, radiolabeled C transfer 

through the soil mycelial network has been demonstrated between Sitka spruce [Picea 

sitchensis (Bong.) Carr.] and pine species (Pinus contorta Dougl. ex Loud, and P. sylvestris 

L.) (Finlay and Read, 1986). In the field, Simard et al. (1997) demonstrated bidirectional C 

transfer between Douglas-fir and paper birch {Betula papyrifera Marsh.) via a common 

mycelial network, with a significant net gain by the shaded Douglas-fir. Mycorrhizal 

networks appear to have the capacity to mediate significant N transfer among interconnected 

plants (Casuarina and Eucalyptus pairs); N gradients (between N-rich donors and N-limited 

receivers) may drive unidirectional N transfer (He et al., 2005). Similarities in the 

composition of ECM communities associated with various host species in bioassays and field 

surveys indicate the potential for linkages between varieties of plant species (Kranabetter et 

al, 1999; Massicotte et al, 1999). 

The coexistence of ECM and ERM plants in boreal forests provides many opportunities for 

sharing ECM and ERM fungi that link plants and translocate nutrients, although little 
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research on this issue has been conducted (Perotto et al., 2002). Vralstad et al. (2000) 

demonstrated that fungal strains derived from ECM morphotype Piceirhiza bicolorata 

constituted assemblages of very close relatives to ERM type Rhizoscyphus ericae. Similarly, 

Monreal et al. (1999) showed sequence similarity (ITS2 region) between the ECM fungus 

Phialophora finlandia andi?. ericae. In a resynthesis experiment using 12 R. ericae strains 

on ECM and ERM hosts, Vralstad et al. (20026) showed that genetically close relatives of 

the ERM fungus R. ericae are true ECM partners with conifer (spruce and pine) and 

angiosperm (birch) species, but no isolates tested formed both ECMs and ERMs. These 

studies indicate that ECM and ERM plants may share mycobionts of this species complex 

(known as the R. ericae aggregate) and, based on ITS phylogeny, the ability to form both 

ECM and ERM symbioses may have evolved with the R. ericae aggregate. Villarreal-Ruiz et 

al. (2004) recently reported the ability of a fungus from the R. ericae aggregate to form 

simultaneously both ECMs and ERMs in culture with Pinus sylvestris and Vaccinium 

myrtillus seedlings, respectively, based on rDNA sequencing and microscopy. 

Due to the complexity of the molecular mechanisms involved in establishment of a tight 

(host-specific) symbiosis, the type of fungal associations with different plant hosts may not 

be of great physiological importance under non-contaminated conditions, but may gain 

ecological importance under stressed environmental conditions (Perotto et al., 2002). 

Mycelial linkages may influence fungal and plant ecology by providing a source of fungal 

inoculum to newly growing roots, allowing the C demands of the mycelium to be met by 

more than one plant and facilitating the transfer of C and mineral nutrients between 

neighbouring trees (Jones et al, 2003). It has been proposed that ECM and ERM fungi may 
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contribute to development of plant communities if the net transfer of C and nutrients is 

predominantly from a pioneer plant species to a late successional species, but a greater 

awareness of these processes is important for understanding the interactions between trees 

and understorey vegetation (Dahlberg, 2001). Kernaghan et ah (2003) demonstrated a 

positive correlation between ECM fungal richness and overstory host tree richness that was 

explained by resource heterogeneity in combination with the preference (specificity) of ECM 

fungi for certain plant hosts. Recently, DeBellis et ah (2006) showed that the distributions of 

ECM fungi in southern mixed-wood boreal forests are influenced by the relative proportions 

of host tree species. Conservation of stand diversity should therefore support diverse fungal 

communities. Whether such communities are essential for ecosystem recovery following 

PHC contamination is still not known. Regardless, minimizing overstory disruption 

increases the possibility of preserving the integrated below-ground mycelial network with its 

associated communities, and maximizes its potential to hasten site recovery. 

Ecosystem processes 

Biogeochemical cycling of nutrients and energy through ecosystems is driven by ordering 

(e.g. photosynthesis, growth, humus formation) and dissipative (e.g. respiration, senescence, 

decomposition) processes (Addiscott, 1995). Mycorrhizal systems form the functional 

interface between decomposition (release of carbon and nutrients from organic substrates) 

and primary production (formation of biomass) for both above-ground and below-ground 

communities. In the below-ground food web, chemo-organotrophic organisms (those that 

obtain energy and carbon from organic substrates) appear to be ultimately responsible for 

governing nutrient availability for plant productivity (Wardle, 2002; Wardle et ah, 2004). In 
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reconstructed soil profiles (mini-ecosystems), the microflora (bacteria and fungi) were found 

to exert a greater influence on nutrient mobilization and tree growth than either the fungus-

feeding mesofauna or predator trophic groups (Setala et al, 2000). Setala et al. (2000) 

reported that although species composition of the trophic groups was important for system 

functioning, species richness within functional groups had a negligible impact on primary 

production. Soil fauna (nematodes, protozoa, enchytraeids, microarthropods, earthworms, 

termites, etc.) that feed on the microflora are also important in stimulation of primary 

production (Wardle, 2002) by preventing nutrient sequestration within inactive microbial 

biomass. 

Decomposition 

Heterotrophic bacteria and fungi directly decompose complex carbohydrates (mainly 

cellulose and lignin) in plant detritus (Wardle, 2002). Cellulose is readily biodegradable as it 

consists of P(l-4) linkages of D-glucose that form flat, linear chains H-bonded together to 

create microfibril sheets (Evans and Hedger, 2001). By contrast, lignin is a three-

dimensional aromatic polymer consisting of P(0-4) linkages of monomeric units of either 

cinnamyl alcohol: coumaryl alcohol (grasses), coniferyl alcohol (gymnosperms) or sinaptyl 

alcohol (angiosperms) that surround the microfibrils and provide rigidity to plant cell walls 

(Evans and Hedger, 2001). Due to its complex and uniquely heterogeneous structure (i.e. 

hydrophobicity and thermodynamic stability), lignin is highly resistant to degradation (i.e. 

recalcitrant) and inhibits decomposition by up to a few years by limiting access of 

microorganisms or enzymes to substrates (Prescott et ah, 2000; Steffen, 2003). 
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In the early stages of decomposition, soluble compounds and cellulose are rapidly 

metabolized under conditions where C is available and N is usually limiting (Prescott et al., 

2000). Decomposition rates slow over time due to changes in substrate compounds 

(increased lignin fraction) and succession of microorganisms able to compete for various 

substrates (Berg, 2000). In the later stages of decomposition, there is a net loss of lignin and 

N is mineralized from humus (Prescott et ah, 2000). Growth may become N-limited in 

habitats with high C:N ratio substrates, whereas in habitats with low C:N ratio (<30:1) 

substrates, decomposition of organic matter may result in C limitation (Tiquia et al., 2002). 

With the loss of cellulose, relative lignin and N concentrations increase and the higher N 

concentration can slow the decomposition rate. Such slowing may be due to low molecular 

mass N-containing compounds reacting with lignin residues during humification (Prescott et 

al, 2000), creating more recalcitrant aromatic compounds; or mineral N may repress 

synthesis of lignin-degrading enzymes in a wide range of soil organisms (Gallo et al., 2004); 

or a combination of these (Magill and Aber, 1998). Higher initial N concentration (lower 

C:N ratio) leads to lower decomposition extent (i.e. lower mass loss) and more stabilized 

organic matter in forest soils (Berg, 2000). The process of humus formation (i.e. 

humification) is thought to involve microbial modifications of lignin and condensation of 

proteins or amino acids into humus precursors, which polymerize into structurally intricate 

humus molecules (Prescott et al, 2000). Compared to the original plant material, humus is 

low in carbohydrates (e.g. cellulose and hemicellulose) and high in polyphenolics (e.g. lignin 

constituents) and immobilized N, which is sparingly available to plants (Prescott et al., 

2000). 
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Although it is generally accepted that mycorrhizas play important roles in decomposition and 

cycling of C, N and P in ecosystems, details of their functions in nutrient dynamics and 

regulation of nutrient and energy flows are continuing to be developed and refined (Martin, 

2001; Allen et al., 2003). The traditional view of the role of mycorrhizas in obtaining 

limiting nutrients from forest soils involves fungal exploration for nutrients [e.g. amino acids, 

ammonium (NH/) , nitrate (NO3") and inorganic P] that are released during decomposition of 

plant organic matter by heterotrophic fungal and bacterial communities or that are bound to 

the soil matrix (e.g. insoluble forms of Al and Ca phosphates) (Martin et al., 2000). 

However, molecular studies have revealed that some fungal species, previously regarded as 

decomposers of woody debris (saprotrophs), are both frequent and abundant components of 

ECM communities (Hibbett et al., 2000; Koljalg et al., 2000). This, along with other 

conceptual advances in biocomplexity theory, have led to re-evaluation of how mycorrhizas 

function within ecosystems and how interactions between multiple species of plants, 

mycorrhizal fungi and soil saprotrophs regulate community composition and ecosystem 

processes (Allen et ah, 2003). 

It has been hypothesized that the distribution of the different mycorrhizal categories is related 

to specialization for nutrient acquisition in particular environments (Read and Perez-Moreno, 

2003). In higher latitude and higher elevation forest ecosystems, where seasonally low 

temperatures and dry conditions result in very slow rates of decomposition, natural selection 

may have favoured ECM and ERM symbioses with the capacity to mobilize nutrients from 

organic material and provide them to plants (Read, 1991; Perotto et al., 2002; Read and 

Perez-Moreno, 2003). Fungal specialization for N acquisition and utilization may be 
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important for determining community structure, lending strong theoretical support to the idea 

that ECM diversity increases the effectiveness of nutrient acquisition from different spatial 

locations and different substrates in soil (Martin et al, 2000; Leake, 2001). 

Some ECM fungi appear to be directly involved in nutrient mobilization from organic 

compounds through production of a wide range of hydrolytic and oxidative enzymes such as 

polyphenol oxidases (e.g. laccase, catechol oxidase and tyrosinase) and endochitinases 

(Martin et al., 2000; Burke and Cairney, 2002; Lindahl and Taylor, 2004). Most ECM fungi 

so far investigated have demonstrated limited phenol-degrading activities, but few have been 

studied. By contrast, ERM fungi (e.g. R. ericae) appear to have well-developed saprotrophic 

abilities and degrade most polymeric components (e.g. polysaccharides, lignin, protein, chitin 

and pectin) of plant and fungal cell walls (Martin et al, 2000). It is widely accepted that 

enzymatic degradation of organic polymers, through production of an array of hydrolytic 

enzymes in the extraradical mycelia and translocation of nutrients to the root, is the major 

benefit of ERM symbioses to plants (Perotto et ah, 2002). ERM plants may enhance their 

exploitation of complex soil substrates by broadening their metabolic capabilities through an 

association with several fungi endowed with different functional enzymes (Martin et al., 

2000). This implies that simultaneous associations with a variety of symbiotic fungi may be 

an important strategy to broaden the range of functions in the colonization of different 

substrates (Perotto et al., 2002). Whereas many ECM and ERM fungi appear to have the 

ability to access N and P directly from organic compounds, the extent to which they 

contribute directly {via enzymatic catabolism) or indirectly (by influencing soil microbial 
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community structure) to decomposition remains unclear (Cairney and Meharg, 2002; 

Heinonsalo et ah, 2004). 

Primary production 

Regardless of the mechanisms involved, symbioses with mycorrhizal fungi improve plant 

nutrient acquisition by facilitating access to organic sources, potentially increasing the uptake 

of nutrients via extensive growth of the mycelia and circumventing nutrient depletion zones 

in the soil (Buscot et ah, 2000). Nutrients are absorbed across fungal membranes and are 

either retained by the fungi for biosynthesis and growth, or transported distances of 

centimeters to meters to the plant roots, where translocation to the host enhances the 

photosynthetic machinery of the plant (Allen et ah, 2003). Plant photosynthetic rates depend 

on the concentrations of N (for enzymes), P (for ATP and ADP), Fe and Mg (for 

chlorophyll), internal CO2 and water (to keep stomata open to fix CO2) (Buscot et ah, 2000). 

The resulting nutrient sink (root cells) allows for nutrient absorption and translocation 

through fungal cells that occurs more quickly than diffusion to the roots through soil (Martin 

et ah, 2000). It is thought that, as long as N or P is limiting in the soil environment, plants 

will support their fungal partners through continued allocation of C (Allen et ah, 2003). 

By absorbing, assimilating and translocating nutrients (e.g. nitrate, ammonium and amino 

acids such as glutamate, glutamine and alanine), fungi create a C sink in the mycorrhizal 

roots (Allen et ah, 2003). Heinonsalo et ah (2004) recently reported equivalent 14C 

allocations to roots and ECMs in organic and mineral A and B horizons of a podzol, using a 

Pinus sylvestris mini-rhizotron system. The sink strength controls the rate of photosynthate 
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production and the sugar supply appears to regulate some fungal gene expression (Buscot et 

al., 2000). Carbon metabolism provides fungal mycelia and plant cells with the energy, 

reducing power and biomass required for synthesis of various metabolites (e.g. amino acids) 

required for growth (Martin et al, 2000). Martin et al. (2000) have suggested that 

differences in ECM morphological features (e.g. abundant emanating hyphae with increased 

metabolic activity versus few emanating hyphae with decreased activity) may reflect 

differences in the need for C between taxa. Mycorrhizal fungi acquire most or all C via host 

photosynthesis and translocation (average 10-20% of net photosynthetic yield), but may also 

obtain C through assimilation following biodegradation of organic polymers in the soil 

(Martin et al., 2000; Allen et al., 2003). 

The ecological significance of using organic polymers as C sources, which may decrease the 

need for C from the host plant, is unknown (Martin et al, 2000). A substantial amount of 

fungal C is allocated to the synthesis of recalcitrant compounds such as chitin (60% of the 

fungal cell wall) that can persist in the environment for years and increase soil aggregation, 

stability, C storage and water-holding capacity. It has been estimated that as much as 20% of 

N in boreal podzolic forest floors may be retained in chitin (0-1,4 linked N-

acetylglucosamine units) present in dead and alive fungal mycelia (Lindahl and Taylor, 

2004). The remaining C is respired (43-60%), accumulated as fungal storage sugars (e.g. 

mannitol and trehalose) or lipids, or deposited in the mycorrhizosphere as labile compounds 

(sugars, amino acids) that support the growth of bacterial communities (Allen et al., 2003; 

Heinonsalo et al., 2004). The release of microbial communities from C limitation provides 

the potential for them to play a major role in decomposition and nutrient mobilization (Read 
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and Perez-Moreno, 2003). The C cost for maintaining the external mycelium is unknown, 

but the extent to which C is allocated from roots to mycelial systems may be intrinsically 

linked to growth and nutrient-foraging activities of ECM fungi. Using digital 

autoradiographic techniques, Leake et al. (2001) showed that patterns of C allocation within 

ECM mycelia are highly dynamic and responsive to changes in niche (caused by spatial 

variability in resource quality or interactions with other organisms). It has been hypothesized 

that coexistence among fungi may be explained by the differential partitioning of C resources 

among fungal species (Allen et al., 2003). The key role of mycorrhizas in C cycling 

(particularly in the positive feedback loop between plant growth, decomposition and leaf 

litter quality) may have important consequences for the C gains and losses of ecosystems and 

thus for the C budget at local, regional and global scales (Read, 1991; Cornelissen et al., 

2001; Allen e/ al, 2003). 

Summary 

The influences of mycorrhizal fungi on plant populations and communities are not merely the 

sum of effects on the individuals within populations (Dahlberg, 2001; Koide and Dickie, 

2002). Due to their long history and multiple evolutionary events, different plants and fungi 

bring independent characteristics to the symbiosis, resulting in extensive physiological 

variation among mycorrhizas (Allen et al., 2003). For example, some fungal species, 

previously regarded as saprotrophs, are both frequent and abundant components of ECM 

communities (Hibbett et al., 2000; Koljalg et al., 2000). The spatial scales within which 

individual mycelia operate as physically or physiologically integrated entities in nature are 

also not clear (Cairney, 2005). For example, all groups of ERM fungi reported globally have 
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been found associated with salal from a single site (Berch et ah, 2002). Whereas a distinct 

suite of functions can be assigned to a single mycorrhiza, the many genomic combinations 

(genetic diversity) of symbionts, environmental heterogeneity and the extensive 

connectedness of mycorrhizal root systems result in a complex suite of ways that 

mycorrhizas can function in ecosystems (Cairney, 1999; Allen et ah, 2003). For example, 

certain species of mycorrhizal fungi, rhizosphere organisms and plants may interact such that 

there is a net immobilization of nutrients, which results in slower rates of decomposition 

(Allen et ah, 2003). Other combinations of organisms (guilds) may not influence the 

equilibrium of either nutrient cycling or decomposition, or may interact to increase nutrient 

quality of litter and decomposition rates. 

High species richness and abundance may represent ecological adaptation to local 

environmental heterogeneity and is thought to provide forests with a range of strategies to 

maintain efficient functioning under an array of environmental conditions (Cairney, 1999; 

Nannipieri et ah, 2003). From a management perspective, a key challenge is to discover if 

modifications of the environment send mycorrhizal ecosystems in predictable directions. Or, 

alternatively, is it the combination of fungal and plant species that directs the trajectory? 

Current evidence suggests a vast range of genetic potential in most mycorrhizal ecosystems 

ready to respond to changing environmental conditions. Consequently, the hypothesis that 

environment is predominant in determining the outcome warrants testing. 
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Petroleum hydrocarbon contamination of forest soils 

Disturbance 

Analysis of changes to the structure and taxonomic diversity of soil communities following 

disturbance can provide clues to genetic and functional diversity by revealing some features 

of the surviving organisms. Although rarely considered in this way, discrete PHC 

contamination events such as oil spills are disturbances that disrupt ecosystem, community or 

population structure and alter the physical environment and resource or substrate availability 

(White and Pickett, 1985). Forest soil contamination is usually from a point source (i.e. 

involving discrete, localized and often readily measurable discharge of chemicals) and often 

results in rapid surface contamination, sometimes with large quantities of PHCs. For 

economic and toxicological reasons, the fate and behaviour of organic pollutants in soils has 

been the subject of intense research, with special interest focused on those chemicals that can 

be taken up or transformed by living organisms (Alexander, 1999; Semple et ah, 2003). 

However, the capacity of soil microorganisms to biodegrade organic pollutants not only 

depends on whether they have the necessary metabolic pathways, but also on whether the 

chemicals inhibit the microorganisms or are biologically available. Short- and long-term 

changes to soil microbial communities may result if some populations are susceptible to 

chemical toxicity (i.e. inhibition of cellular metabolic processes) or to changes to their 

physical (soil) and chemical (substrates/ inhibitors) habitat. Whether these changes alter 

community functions depends on the degree of redundancy within soil communities. 
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Chemical toxicity 

Petroleum products are complex mixtures that can contain numerous aliphatic (linear and 

branched chains), alicyclic (unsubstituted and alkyl substituted structures) and aromatic 

(unsubstituted and alkyl substituted structures with at least one unsaturated ring) compounds 

(Miller and Herman, 1997; Potter and Simmons, 1998). Numerous methods are available for 

analysing petroleum hydrocarbon mixtures in environmental media (Weisman, 1998). 

Natural gases are generally composed of methane, ethane and small amounts of higher 

molecular mass hydrocarbons whereas most crude oils contain compounds such as paraffins, 

aromatics, naphthenics and asphaltenes that are present in varying proportions (McGill et ah, 

1981; Potter and Simmons, 1998). Gasoline typically contains compounds in the nC4 to 

nC12 range, while diesel compounds are in the nC8 to nC21 range (Potter and Simmons, 

1998). Light paraffinic crude oils are dominated by molecules with C numbers less than 16 

and consisting mainly of alkanes (paraffins) and cycloalkanes (naphthenes). These chemicals 

are generally first metabolized by microorganisms (Westlake et ah, 1973; Riser-Roberts, 

1998). The heavier oils have greater proportions of aromatic hydrocarbons and heterocyclic 

NSO compounds (i.e. containing N, S, or O) with C numbers usually above 20 (McGill et ah, 

1981;Delilleefa/.,2004). 

Using chromatographic techniques, crude oils can be resolved into four categories of 

compounds: asphaltenes, saturates, aromatics and polars (eg. NSO compounds) (McGill et 

ah, 1981; Pollard et ah, 1992; Weisman, 1998). Asphaltenes are a mixture of pentane-

insoluble, colloidal compounds including polyaromatic and alicyclic molecules with some 

alkyl substitutes (usually methyl groups) that vary in molecular mass between 500 and 
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several thousand (McGill et ah, 1981). The structures of these compounds, particularly those 

with higher mass, share characteristics with proposed structures of humic acids (Prescott et 

ah, 2000). Saturated and aromatic hydrocarbons (mainly n-alkanes, branched alkanes, mono-

, bi-, and polycyclic alkanes (naphthalenes) and mono-, bi- and polyaromatics) usually 

account for 75% of the mass of crude oils (McGill et ah, 1981; Potter and Simmons, 1998). 

Up to 25% of the total mass may be n-alkanes, with cyclic hydrocarbons accounting for 30-

60% of the total mass. Monocyclic aromatic compounds (e.g. toluene, benzene and xylene) 

and bicyclic types (e.g. naphthalene, biphenol) represent 1-2%; polycyclic aromatics (usually 

methylated derivatives of fluorene, phenanthrene, anthracene, chrysene, benzofluorene and 

pyrene) are present in lower amounts (McGill et ah, 1981). The NSO fraction contains polar 

compounds such as naphthenic acids, mercaptans, thiophenes and pyridines. Most of the N 

in crude oil is contained in the distillate residue as part of the asphalt and resin fraction and 

usually accounts for less than 0.2% (rarely exceeds 1%) by mass. The S content varies 

between 0.3 and 3% whereas the O content usually does not exceed 3% (McGill et ah, 1981). 

Aliphatic compounds are generally less toxic than aromatics, and toxicity has been found to 

vary with compound size (McGill et ah, 1981; Edwards et ah, 1998). The quantity and 

composition of polycyclic aromatic hydrocarbons (PAHs) are major considerations in the 

evaluation of toxicity of PHC mixtures (Miller and Herman, 1997). PAHs with four or more 

benzene rings are known to be genotoxic to humans and other ecological receptors; in 

general, as relative molecular mass and polarity (i.e. degree of oxidation) of PAHs increase, 

carcinogenicity also increases and acute toxicity decreases. This is due to the metabolic 

production of highly reactive electrophilic intermediates that can access biological molecules 
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such as DNA, RNA and proteins and react to form adducts or lesions (Landis and Yu, 1995). 

Little is known about PHC toxicity to plant and microbial communities in forest soils as the 

majority of studies have excluded the complex interactions between combinations of 

chemicals, interacting communities and the soil environment that may exert synergistic, 

potentiative or antagonistic effects (Landis and Yu, 1995; Evans and Hedger, 2001; Koivula 

et ah, 2004). It is likely that toxicity varies with the type of pollutant, the extent of pollution 

and the general condition (i.e. extent of obvious signs of stress or disease) of the ecosystem 

prior to chemical disturbance (Seghers et al., 2003). 

In agricultural clay soils, the maximum toxicity of crude oil (indicated by worm survival, 

seed germination, bacterial bioluminescence and photosynthesis inhibition) was highest 

immediately after introduction of oil (Chaineau et ah, 2003). An initial decrease in microbial 

density has often been observed immediately following the addition of PHCs to soil. For 

example, the addition of 10% (volume/ mass) toluene to soil resulted in survival of only 

about 1% of the indigenous bacteria, which eventually recolonized the soil to reach a high 

cell density (Huertas et al, 2000). Biotransformations of PHC substrates may also lead to 

the release of an array of potentially toxic metabolites into the surrounding environment 

(McGill et al., 1981; Riser-Roberts, 1998). For bacteria, toxicity resulting from PHC 

contamination has been inferred from decreases in enzyme (hydrogenase and invertase) 

activity (Suleimanov et al., 2005), although reduced enzyme activities may also result from 

competition for limiting nutrients following PHC contamination. 
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The toxicity of non-ionized organic contaminants for microorganisms is primarily due to a 

nonspecific mode of action that involves partitioning of organic chemicals into the 

hydrophobic (lipophilic) layer of the cell membrane and disruption of membrane integrity 

(i.e. increased membrane permeability) (Miller and Herman, 1997). Kirk et al. (2005) 

suggested that interference with fungal membranes may explain the reduced extraradical 

hyphal growth of AM fungi {Glomus species) in PHC medium with soil. In general, fungi 

are considered to be more tolerant of high concentrations of polluting chemicals than 

bacteria, possibly due to differences in cell wall structure (Blakely et ah, 2002). Some yeasts 

(e.g. Saccharomyces cerevisiae) have been found to alter their membranes (i.e. increase 

hydrophilicity) to exclude hydrophobic contaminants (Park et al., 1988). It is possible that 

similar compensation mechanisms occur in other fungi as well. Long-term resistance to 

PHCs could also be due to the ability of ECM fungi to produce spores that resist 

environmental stress factors and germinate when the concentration of toxicants associated 

with PHC contamination has decreased sufficiently over time (Nicolotti and Egli, 1998). 

PHCs may directly kill plants on contact, slow their growth, inhibit seed germination, create 

nutrient-deficient conditions or, at lower concentrations, stimulate plant growth (McGill et 

al., 1981). Nicolotti and Egli (1998) have suggested that crude oil has a caustic or lethal 

effect on plants only when it comes into direct contact with tissues and that reduced growth 

and biomass may be manifestations of changes to soil communities. In general, the taller the 

trees and the deeper their roots, the greater their tolerance to increased PHC concentrations in 

soil (Trofimov and Rozanova, 2003). 
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Soil properties and processes 

Blakely et al. (2002) found that creosote impacted soil food webs and decomposition 

processes more by altering the habitat of microinvertebrates and their prey (i.e. fungi and 

bacteria) than via direct chemical toxicity. Kirk et al. (2005) suggested that PHCs may 

interfere with plant-fungus communication by altering root exudation patterns or changing 

the soil environment such that migration of diffusible chemical signals (e.g. flavonoids, 

auxins, etc.) is prevented. Many of the major impacts of PHCs on soil biota and plants in 

forest ecosystems appear to be associated with disturbances to water, nutrient and oxygen 

supplies related to the hydrophobicity and fluidity of oily products (Tarradellas and Bitton, 

1997; Trofimov and Rozanova, 2003). 

The disturbance caused by PHC contamination leads to considerable changes in physical and 

chemical properties that are not typical of unpolluted soils. PHC constituents may be found 

in mobile form, fixed in the soil pores and fissures, adsorbed on the surface of organic and 

mineral soil constituents or forming a continuous cover on the soil surface (Trofimov and 

Rozanova, 2003). Morphological changes in PHC-contaminated podzolic soils exhibit 

fragmentary patterns resulting from the unevenness of chemical distribution in the soil mass, 

increased amounts of iron in the upper horizons, and increased amounts of cemented soil 

aggregates (Trofimov and Rozanova, 2003). The extent of physical movement in the soil 

profile depends on temperature, PHC viscosity, moisture content, soil structure and soil 

texture (McGill et al, 1981). Greater lateral spread of PHCs occurs in cold conditions; in hot 

and dry soil conditions, vertical movement into the water-unsaturated zone may occur more 

frequently (McGill et al, 1981). In sandy soils, frontal migration of PHCs down the soil 
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profile along the paths of roots and fissures altered the soil profile to a depth of greater than 1 

m (Trofimov and Rozanova, 2003). In gray forest soils, heavy fractions of PHCs were 

retained in the upper plow layer and filled the largest infiltration, aeration and drainage 

pores; lighter fractions were largely retained in illuvial horizons and filled fine water 

retention pores (Suleimanov et al., 2005). This can lead to waterlogging and reducing 

conditions in the soil profile, both of which inhibit decomposition processes (Trofimov and 

Rozanova, 2003). Large amounts of oily material in soils may also indirectly increase soil 

temperature (by 1-10°C) if there is loss of surface vegetation. In some cases, more damage to 

the soil may occur due to the high osmotic potential of associated brine water (salinity 40,000 

-45,000 ug mL"1) than to the presence of PHCs alone (McGill et al, 1981). 

Water insolubility, hydrophobicity and soil sorptive properties increase with increasing size 

(number of aromatic rings) and complexity (molecule topology or pattern of ring linkages) of 

chemicals; PAHs with three or more rings tend to be strongly sorbed to the soil (Reilley et 

al, 1996; Alexander, 2000; Kanaly and Harayama, 2000; Cerniglia and Sutherland, 2001; 

Chaineau et al, 2003). Chemical persistence in soil also depends on several environmental 

factors, including the type and quality of clay particles (as well as cation exchange capacity), 

the type and concentration of solutes in surrounding solution, soil organic matter (SOM) 

content and composition, pH and temperature (Alexander, 1999; Semple et al., 2003). 

Organic chemicals may be sorbed to and retained by soil particles by adsorption or 

partioning. Adsorption entails chemical processes (ion exchange) or, more often, physical 

forces (H bonding or van der Waals forces) to surfaces of organic polymers or the external 

surfaces of 1:1 clay minerals and the external and internal surfaces of 2:1 (expanding) clays 
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(Alexander, 1999; Miller and Herman, 1997; Ellerbrock et al., 2005). Sorption to minerals 

must compete with water and may be very low for nonionized organics in hydrated systems. 

Sorption to organic solids may occur via physical binding, which concentrates chemicals on 

outer surfaces or within the pores of a solid. Partitioning of organic chemicals into the SOM 

is a process of transfer from the bulk state of one phase to the bulk state of another by 

mechanisms analogous to dissolution and leads to a distribution of molecules within a 

portion or the entire volume of the organic matter (Alexander, 1999; Chaineau et al., 2003). 

The extent of chemical retention in the SOM fraction is directly correlated with the octanol-

water partition coefficient of the substance (K0Vi, measure of chemical hydrophobicity), the 

amount of SOM in the solid phase and its degree of oxidation or polarity (Xing et al., 1994; 

Alexander, 1999; Wang et al., 2005). In forest soils, the sequestration of organic pollutants 

in SOM (i.e. sorbed inside soil aggregates or at inactive particle surfaces) may decrease 

toxicity of chemicals through physical separation from biological receptors, which also 

decreases substrate bioavailability for enzymatic degradation (Alexander, 2000; Ellerbrock et 

al., 2005). Toxicity of hydrophobic organic contaminants has been found to be less severe 

for organisms in soils with high humus content (Salminen and Haimi, 1997). 

PHC-polluted soils are characterized by lower values of hygroscopic moisture, hydraulic 

conductivity and water retention capacity (i.e. wettability) compared to unpolluted soils 

(Trofimov and Rozanova, 2003; Suleimanov et al., 2005). This is related to the spatial 

arrangement of hydrophobic components within SOM (Roy and McGill, 2000). Higher 

molecular mass components and their degradation products remain near the soil surface and 

form crusts that decrease water availability and limit water and gas exchanges between the 
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soil and the atmosphere. The creation of discrete and continuous water-repellent fronts 

parallel to the soil surface is also recorded in post-fire forest soils (Certini, 2005). 

Hydrophobic films on the exterior surfaces of soil aggregates reduce the wettability of the 

soil and increase structure stability (McGill et al., 1981; Certini, 2005). Many PHC-

contaminated soils eventually take up water and remain wet; however, long-term (years) 

hydrophobicity of crude oil contaminated agricultural soils has been documented in western 

Canada (Roy et al, 1999). 

The longer some chemicals remain in soil, the more they appear to resist desorption and 

biodegradation. Weathered (aged) chemical residues have considerable time to interact with 

the physical and chemical components of soil. Interactions may entail: (1) sorption, most 

likely via partitioning; or (2) irreversible incorporation into soil organic matter {via 

humification) by the catalytic activity of a variety of oxidative enzymes present in the soil 

matrix (Miller and Herman, 1997; Alexander, 1999). PHC pollution has been found to 

substantially increase the organic C (humic acid) content of soils (Trofimov and Rozanova, 

2003). Humification of PHC constituents is explicit to transformation processes. Covalent 

bonding between organic chemicals and humic polymers (humin, fulvic acid and humic acid) 

in soil can form stable linkages to dialkylphthalates, alkanes and fatty acids that are resistant 

to microbial degradation and are not readily extractable with many organic solvents (McGill 

et al, 1981; Alexander, 1999). Petroleum residues (as indicated by dichloromethane 

extraction) are associated with soil organic matter (Roy et al., 2003). Sorption of volatile 

PHCs from adjacent soil has generated hydrophobicity in soils not directly contaminated with 

PHCs (Roy and McGill, 2000). They may be either directly incorporated through H bonding 
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of phenolic and benzene carboxylic acids into the molecular structure of soil humic materials 

or adsorbed to the surface of the molecule (McGill et ah, 1981). They are not entirely 

associated with the humic component, however, because exhaustive extraction with NaOH 

did not eliminate hydrophobicity of soils (Roy and McGill, 2000). It is not known whether 

complexes between hazardous organic chemicals and soil humic materials are cleaved in 

nature to give detectable levels of the original compound, whether these complexes are 

assimilated by animals and plants, or whether they pose problems of present or future 

toxicological significance (Alexander, 1999). 

In PHC-contaminated soils, the C (energy) supply increases, which promotes metabolic 

activity on the part of all the microorganisms not directly inhibited by the PHCs and 

concurrently the C:N ratio tends to increase. The carrying capacity of a soil is the maximum 

level of microbial activity that can be supported under existing environmental conditions, 

which depends on the size of the population, availability of O2 or nutrients, temperature and 

water availability. The carrying capacity of soils may be exceeded as a result of large inputs 

of C from PHCs (Miller and Herman, 1997). The intensive growth of PHC-oxidizing 

microorganisms in response to increased C availability is accompanied by consumption of 

soil nutrients, resulting in decreased nutrient availability for plants (Xu and Johnson, 1997; 

Tiquia et ah, 2002; Trofimov and Rozanova, 2003). A decrease in available N may also be 

partly due to the inhibition of nitrification and ammonification processes or from loss of 

nitrates (McGill et al, 1981; Suleimanov et al., 2005). Some studies have shown that 

nitrifying bacteria were not found in freshly contaminated soils, but that nitrification 

processes were eventually regained; stable organic matter and total N content have increased 
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significantly following PHC contamination (McGill et al., 1981). An increase in total N has 

been attributed to increased atmospheric N2 fixation during PHC biodegradation (McGill et 

al., 1981). Thus, as the immobilization of mineral N present in the soil increases, the amount 

of available N decreases such that organisms benefiting from N2 fixation, or consortia 

capable of recycling N from microbial biomass, are the only organisms that can thrive under 

these conditions (i.e. selection of PHC-tolerant species) (Nicolotti and Egli, 1998). Oxidative 

degradation may also alter the composition of soil bacterial communities, so that aerobic 

cellulolytic and proteolytic species decrease and anaerobic N- fixing species increase 

(Nicolotti and Egli, 1998). Under disturbed water and extreme O2 limitation, P may be 

reduced and escape to the atmosphere as hydrogen phosphide (Suleimanov et al., 2005), 

although this is a very small loss mechanism. 

It does not appear that a single addition of PHCs limits microbial communities in the long 

term. However, several studies indicate that although total microbial numbers tend to 

increase over time, species richness often decreases, which may or may not have deleterious 

impacts on ecosystem functions (McGill et al., 1981; Hofman et ah, 2004). In general, PHC 

contamination is expected to lead to an initial loss of richness, followed by rapid proliferation 

of metabolically competent members of communities inhabiting the new environmental 

conditions imposed by the chemical contaminants (Gramss et al., 1998; Seghers et ah, 2003; 

Diaz, 2004). Some studies have reported drastic reductions in overall ECM biomass and 

colonization potential in soil following a spill, whereas some fungi appeared resistant to the 

PHCs and may have benefited from their presence (Nicolotti and Egli, 1998). In greenhouse 

experiments, spruce seedlings grown in crude-oil-contaminated soils exhibited shifts in ECM 
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community structure in response to increased contaminant concentrations (Nicolotti and Egli, 

1998). Nitrogen availability may be a major factor structuring ECM fungal communities; 

mineral N and foliar nutrient ratios (N:P, P:A1) were found to be excellent predictors of 

fungal taxonomic richness in organic horizons and organic nitrate availability was a good 

predictor of their relative abundance (Lilleskov et ah, 2002). From studies of impacts of acid 

rain on soil communities, changes to soil chemical status and functions of the decomposer 

community have been suggested to lead to imbalances in nutrient cycling and ecosystem 

productivity (Pennanen et al., 1998). 

Biodegradation 

The ability of heterotrophic bacteria and fungi to degrade organic pollutants appears to be 

inherent in most natural microbial communities and it is generally accepted that biological 

processes eventually degrade or transform most bioavailable (i.e. accessible by organisms or 

their enzyme systems) organic compounds (McGill et al., 1981; Sarand et ah, 2000; 

Nannipieri et ah, 2003; Delille et ah, 2004; Diaz, 2004). Many xenobiotic chemical 

constituents (e.g. PHCs) are structurally analogous to compounds naturally found in the soil 

environment (e.g. plant material, fungal and root exudates and allelopathic chemicals) and 

appear to be biodegraded through the same biochemical pathways (Miller and Herman, 1997; 

Siciliano and Germida, 1998). In addition to accidental releases, low levels of PHCs may 

also enter soils from natural seepages or via atmospheric deposition after burning of fossil 

fuels (Knox et al., 1999; Kanaly and Harayama, 2000; Trofimov and Rozanova, 2003; 

Certini, 2005). Biodegradative potential does not appear to be a distinguishing taxonomic 

character as metabolic ability (via different genes and biochemical pathways) is widespread 
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among many species of ubiquitous genera of bacteria and fungi (Siciliano et ah, 2003; 

Chaillan et ah, 2004). 

The complete catabolic conversion (mineralization) of organic substrates to inorganic 

products (H20 and CO2) and use of nutrient constituents (C, N, P, S and other elements) for 

synthesis of cellular components is known as growth-linked biodegradation (Alexander, 

1999). Biodegradation of some organic pollutants appears to result from transformations by 

microbial populations that are unable to use the substrate as a source of energy (even if the 

conversion is an energy-releasing oxidation reaction) or as an essential nutrient (i.e. not 

significant sources for biosynthesis) and is known as cometabolism (Miller and Herman, 

1997; Alexander, 1999; Sarand et ah, 2000). Cometabolism is usually attributed to the 

activity of enzymes with relaxed specificities that act on structurally related substrates 

(Hickey, 1998). Organic substrates may be transformed to products that are not typical 

intermediates of central metabolism and the organism may not possess enzymes to convert 

further the compound into metabolic intermediates for biosynthesis or energy production. 

Alternatively, products may inhibit enzymes for subsequent metabolic conversions, suppress 

the growth of the organism, or the organism may require a second substrate (cofactor) to 

bring about a particular reaction (Alexander, 1999). Cometabolic reactions also have impacts 

in nature that are different from growth-linked biodegradation. Whereas the rate of growth-

linked biodegradation characteristically increases with time as populations that are able to 

use the substrate as a source of energy and nutrients multiply, the environmental 

consequences of a population's inability to grow at the expense of the substrate are slow rates 

of biotransformation (due to small microbial biomass) and accumulation of organic products 

50 



that tend to persist in the environment (Alexander, 1999). The potential for substantial 

biodegradation of PHCs in soil (via growth-linked and cometabolic pathways) results in 

release of a nearly limitless array of metabolites into the soil environment. Some metabolites 

may be toxic to the soil biota; some may react with soil constituents or may be quickly 

degraded by other microorganisms present (McGill et al., 1981; Riser-Roberts, 1998). 

In a community context, biodegradation involves synergism. Syntrophic biodegradation 

occurs when two or more populations carry out transformations that one population alone 

cannot perform or performs slowly (Alexander, 1999). Thus, even if a particular population 

can metabolize only a small number of the chemical substrates available, other populations 

occupying the same habitat may possess complementary degradative enzyme capabilities that 

may ultimately result in complete chemical mineralization. Studies of mixed populations 

(i.e. communities) of bacteria have revealed more complex and rapid biodegradation than 

was previously believed possible based on studies of pure cultures (McGill et al, 1981). 

Little is known concerning syntrophic biodegradation by specific guilds of organisms. If 

functional redundancy is the norm in most ecosystems, is the degradation of a substrate in 

soil dictated by specific guilds of organisms, or are the properties of the substrate and soil 

environment more important? 

Bacterial pathways 

Because of their metabolic versatility, bacteria are able to obtain energy from virtually every 

organic compound (Romantschuk et al., 2000; Diaz, 2004). The most common electron 

acceptor for microbial respiration is O2 and aerobic processes provide the highest amount of 
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energy to cells. Oxygen is not only the electron acceptor, but also participates in activation 

of the substrate via oxygenation reactions (Diaz, 2004). Anaerobic (anoxic) conditions are 

prevalent in aquifers, aquatic sediments and waterlogged soils. Here, biodegradation is 

carried out by strict anaerobes or facultative organisms using alternative electron acceptors 

such as nitrate (e.g. denitrifying organisms such as Pseudomonas, Alcaligenes and 

Flavobacterium), sulphate (e.g. sulphate reducers such as Desulfobacterium), Fe(III) (e.g. 

ferric iron reducers such as Geobacter), CO2 (e.g. methanogens such as Methanospirillum) or 

others such as chlorate, Mn or Cr (McGill et ah, 1981; Diaz, 2004). Use of alternative 

acceptors depends on their availability as well as competition between different 

microorganisms for electron donors. The energy obtained using Fe(III) or nitrate is almost as 

efficient as using O2, but less energy is generated by sulphate reducers and methanogens. 

Fermentative strains may be energy-limited and restricted to syntrophic existence, requiring 

other populations to consume the potentially toxic endproducts of fermentation. 

Photosynthetic organisms use energy from the sun to degrade aromatics anaerobically to 

acetyl-CoA, which is subsequently used in biosynthetic reactions (Diaz, 2004). In both 

aerobic and anaerobic degradation, structurally diverse compounds are degraded through 

many different peripheral pathways to a few intermediates that are further channelled via 

biochemical pathways (i.e. reactions leading to the formation of Krebs cycle intermediates) 

to the cell's central metabolism (Diaz, 2004). 

Many microorganisms can use the aliphatic compounds present in PHCs as C sources. The 

mid-size straight-chain n-alkanes (nCIO to nC18) appear to be metabolized more readily than 

n-alkanes with shorter or longer chains, and saturated (single C bonds) are degraded more 
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readily than unsaturated (double C bonds) compounds (Miller and Herman, 1997; Delille et 

al., 2004). The extent and location of hydrocarbon sidechain branching or halogen 

substitution slows the biodegradation of the compound (Miller and Herman, 1997). The 

most common aerobic biochemical pathway involves direct incorporation of one atom of O2 

into the alkane by a mixed function oxidase or monooxygenase enzyme, but both O2 atoms 

can also be incorporated, hi either case, a primary fatty acid is formed that is subjected to 

consecutive removal of two-carbon fragments (P-oxidation), which are converted to acetyl-

CoA. This intermediate enters the Krebs cycle where complete mineralization to CO2 and 

H20 occurs (Miller and Herman, 1997). For alkenes, the first step is attack at the terminal or 

subterminal methyl group or at the double bond to yield an alcohol or epoxide that can be 

further oxidized to a primary fatty acid and enter P-oxidation. Degradation of alicyclic 

hydrocarbons (which are major components of crude oil, constituting 20-67% by volume) is 

thought to occur primarily via cometabolic reactions to open rings and subsequently cleave 

linearized products for entry into the Krebs cycle (Miller and Herman, 1997). 

Under anaerobic conditions, however, oxygenation of hydrocarbons using O2 is not possible. 

Aromatic ring structures may be activated under anaerobic conditions using a reductive 

rather than oxidative process. There is growing evidence that under anaerobic conditions 

some microbial communities are able to use O from H2O or CO2 for ring cleavage of 

aromatics or to prepare for ring cleavage of aromatics. For example, Schink et al. (1992) 

propose H2O as the O source for ring cleavage during benzoate metabolism by fermenting 

and denitrifying bacteria, and CO2 as the O source for carboxylation in preparation for ring 

cleavage of aniline by a sulphate-reducing bacterium. 
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Westlake et ah (1973) found that the ability of mixed populations of bacteria to use crude oil 

as a sole C source depended on the composition and amount of n-saturates, asphaltenes and 

NSO compounds and also that the aromatic fraction of crude oil was capable of supporting 

bacterial growth. It seems that PHC biodegradation is more closely related to the intrinsic 

biodegradability of chemicals (and their bioavailability) than to the particular enzymatic 

capacities of the microorganisms involved (Chaillan et ah, 2004). 

Bacteria such as Pseudomonas, Mycobacterium, Rhodococcus, Flavobacterium, 

Acinetobacter, Arthrobacter, Bacillus and Nocardia are considered the primary degraders of 

polycyclic aromatic hydrocarbons (PAHs) in soil (Kanaly and Harayama, 2000; Chaillan et 

ah, 2004). Pseudomonas has been the most extensively studied, owing to its ability to 

degrade so many different contaminants and its ubiquity in soils containing PHCs (McGill et 

ah, 1981; Axelrood et ah, 2002a; Delille et ah, 2004; Diaz, 2004). Most aerobic peripheral 

pathways involve oxygenation reactions carried out by monooxygenases and/or 

hydroxylating dioxygenases that incorporate one or two atom(s) of O2 into the aromatic ring 

structure to generate dihydroxy aromatic intermediates (e.g. catechol, protocatechuate, 

gentisate, hydroxyquinol and hydroquinone) (Miller and Herman, 1997; Siciliano and 

Germida, 1998; Cerniglia and Sutherland, 2001; Watanabe, 2002; Diaz, 2004). These 

compounds are the substrates of ring-cleavage enzymes that use molecular oxygen to open 

the aromatic ring between the two hydroxyl groups (ortho cleavage, catalyzed by intradiol 

dioxygenases) or proximal to one of the two hydroxyl groups (meta cleavage, catalyzed by 

extradiol dioxygenases). After several subsequent steps, the linearized products are 
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incorporated into the Krebs cycle. Anaerobic peripheral pathways usually converge to 

benzoyl-CoA, which is dearomatized by specific multicomponent reductases and consumes 

ATP (Diaz, 2004). 

The initial hydroxylation step is considered to be rate limiting and the enzymes involved 

generally determine the substrate range of microorganisms, although other factors (e.g. 

substrate specificity of transcriptional regulators and membrane transporters) may also 

contribute (Watanabe, 2002). In a recent study of biodegradation by indigenous microbial 

communities in sub-antarctic soils, PAHs with greater than three rings were generally not 

degraded (Delille et ah, 2004). There is little evidence that microbial growth can be 

sustained with PAHs with four or more rings as a sole substrate (although they may be 

degraded by syntrophic cometabolism) and there is very limited information regarding 

bacterial degradation of PAHs with five or more rings (Reilley et ah, 1996; Kanaly and 

Harayama, 2000). However, bacterial degradation of pyrene (a pericondensed four-ring 

PAH) has been reported from sediment near a hydrocarbon source, and a Mycobacterium 

species isolated from that sediment has been shown to degrade pyrene using an inducible 

enzyme system (Kanaly and Harayama, 2000). 

The metabolic flexibility of bacteria is related to their genetic adaptability. For example, 

Siciliano et ah (2003) found that a substantial decrease of aged PHCs in soil was related to a 

greater presence of catabolic genes (i.e. alkB, alkane monooxygenase; ndoB, 

naphthalenedioxygenase; xylE, catechol-2,3-dioxygenase) in bulk and rhizosphere soil. 

However, it was unclear whether the number of organisms containing these genes increased, 
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or if the number of genetic elements present in the community increased. The genes 

responsible for aromatic biodegradation pathways are usually arranged in clusters (operons) 

in mobile genetic elements (e.g. plasmids or transposons). Gene clusters contain catabolic 

genes (encode enzymes for catabolic pathways), transport genes (responsible for active 

uptake of the compound) and regulatory genes (adjust expression of the catabolic and 

transport genes to the presence of the compound to be degraded) (Diaz, 2004). For example, 

the catabolic genes of the ortho and meta pathways are organized as operons with flanking 

transposon elements on the TOL (toluene) plasmid (Sarand et al., 1998). This facilitates 

horizontal transfer of the respective genes and rapid adaptation of microorganisms to the 

presence of new substrates (Diaz, 2004). Conjugation (transfer of genetic material from one 

microorganism to another) appears to be important in the dissemination of catabolic genes in 

the indigenous environment (Sarand et al, 2000; Siciliano et al., 2003). 

Depending on chemical structure, contaminant concentration and environmental conditions, 

the onset of PHC biodegradation generally follows a period of acclimation in which no 

chemical degradation is evident (Alexander, 1999). Adaptation most commonly occurs by 

induction of the enzymes necessary for biodegradation, followed by increases in populations 

of biodegrading organisms (Miller and Herman, 1997). Chronic exposure to PHC substrates 

(e.g. near natural seepages or in areas where frequent spills occur) results in shorter 

acclimation periods (due to maintenance of biodegradation pathways within adapted 

communities) and subsequently increased transformation rates (Miller and Herman, 1997; 

Alexander, 1999). This pollution-induced community tolerance appears to increase 

proportionally with increased exposures (Seghers et al., 2003). The end of this period is 
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marked with a rise in respiration and increase in density (varying from slight to several 

orders of magnitude) that reflects growth of hydrocarbon-degrading populations as well as 

increased growth of organisms such as protozoa that graze microflora or decompose necrotic 

tissue (McGill et al., 1981). Subsequent declines in microbial respiration may occur due to 

complete degradation of labile fractions or to limiting availability of N and P (McGill et al., 

1981). High abundance, rapid growth and the ability to transfer genes horizontally allow for 

rapid microbial adaptation to changes in environmental conditions (Romantschuk et ah, 

2000; Diaz, 2004). 

Genetic changes such as mutations (i.e. appearance of new genotypes) may occur when 

communities are faced with chemicals that do not have natural chemical analogues (Miller 

and Herman, 1997). Such events occur at low frequency; however, if new genotypes possess 

physiological characteristics that provide a selective advantage (e.g. new metabolic 

capacities), they may multiply {via horizontal gene transfer) within the surviving community 

(Alexander, 1999). The length of time required for a genetic change or for selection and 

development of an adapted community is not yet predictable (Miller and Herman, 1997). 

However, given enough time and favourable environmental conditions, the capacity to 

degrade almost any organic compound is likely to evolve in or immigrate to a contaminated 

site (Romantschuk et al., 2000). 

Fungal cytochrome P450 and ligninolytic systems 

Many fungi (e.g. Aspergillus, Penicillium, Fusarium) isolated from PHC-contaminated soils 

and cultured on PHC-containing medium have been found to use crude oil as a sole C and 
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energy source (Chaillan et ah, 2004). In general, eukaryotic organisms oxidize aromatic 

compounds to water-soluble products via a cytochrome P450 monooxygenase reaction, 

incorporating one atom of molecular O2 into the aromatic ring to form a transient arene oxide 

and reducing the second atom of O2 to H2O. The arene oxide is immediately hydrated by an 

epoxide hydrolase to yield a trans-dihydrodiol or, alternatively, is non-enzymatically 

isomerized to form phenols that can conjugate with sulphate, glucuronic acid or glutathione 

(Miller and Herman, 1997; Cerniglia and Sutherland, 2001). These reactions increase both 

the water solubility and bioavailability of chemical substrates; soil conditions that favour 

fungal activity may initially increase the toxicity of the parent chemicals (Reilley et ah, 

1996). Whereas complete mineralization results in innocuous endproducts (CO2 and H2O), 

partial biodegradation can produce intermediate metabolites with unchanged, reduced or 

increased chemical toxicity. Toxic chemical intermediates with increased water solubility 

are of particular concern as this can result in the transport and spread of contaminants 

through the environment (Miller and Herman, 1997). 

The ligninolytic enzyme system of white rot fungi (WRF) has been extensively studied due 

to structural analogies between lignin and PAHs as metabolic substrates (Scheel et ah, 2000). 

Although lignin is a much larger and more heterogeneous polymer than the fused benzene 

ring structures of PAHs, it is also hydrophobic and insoluble, thereby posing similar 

problems for enzyme catalysis (Harvey and Thurston, 2001). WRF degrade lignin using a 

complex nonspecific enzyme system, often while simultaneously obtaining C from cellulose 

and hemicellulose (i.e. cometabolism) (Scheel et al., 2000; Steffen, 2003). As with the 

cytochrome P450 system, the oxidizing enzymes of the ligninolytic system increase the 
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bioavailability, solubility and redox status of the chemical substrates for subsequent 

metabolism (Harvey and Thurston, 2001). Different fungi appear to possess different 

combinations of oxidizing enzymes (Harvey and Thurston, 2001). 

The initial hydroxylation step of the pathway is accomplished with small, diffusible 

oxidizing agents (highly reactive radicals) generated by three groups of extracellular 

enzymes: lignin peroxidases (LiP), manganese peroxidases (MnP) and laccases (Collins and 

Dobson, 1997; Harvey and Thurston, 2001). LiP (EC 1.11.1.14) and MnP (EC 1.11.1.13) are 

heme-containing enzymes that function at low pH and catalyze the oxidation of lignin, humic 

substances and many organopollutants (Schlosser and Hofer, 2002). Both enzymes require 

H2O2, which is generated through fungal glucose oxidase, glyoxal oxidase and arylalcohol 

oxidase reactions (LiP and MnP) or oxidation of organic acids (MnP only) (Evans and 

Hedger, 2001). In the white rot basidiomycete Phanerochaete chrysosporium, PAHs with 

ionization potentials at or below about 7.55eV are substrates for direct one-electron oxidation 

by LiP, whereas those with ionization potentials above this threshold appear to be acted upon 

by radical species formed during MnP-dependent lipid peroxidation reactions (Bogan, 

Schoenike and Lamar, 1996). For LiP, radical cations are produced from one-electron 

oxidations of non-phenolic compounds, which act as non-specific redox mediators and 

extend the substrate range and redox capacity of LiP (Harvey and Thurston, 2001). During 

the catalytic cycle of MnP, the active centre is oxidized by H2O2. Reduction of the resting 

enzyme is achieved by two successive one-electron transfers that oxidize Mn2+ to Mn3+, 

which is facilitated by fungal organic acids (e.g. oxalate or malonate) upon chelation of the 

highly reactive Mn3+ state. Schlosser and Hofer (2002) found evidence supporting a 
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physiological role of laccase-catalyzed Mn oxidation in providing H2O2 for extracellular 

oxidation reactions and demonstrated a novel type of laccase-MnP cooperation relevant to 

biodegradation of lignin and organic pollutants. 

Laccases (benzendiokoxygen oxidoreductase, EC 1.10.3.2) are (blue) multicopper enzymes 

(glycosylated polyphenoloxidases) that are an essential component of a complex nonspecific 

enzyme system secreted by different kinds of fungi that have been shown to oxidize lignin 

and various organic contaminants (Schlosser and Hofer, 2002; Gonzalez et al., 2003; 

Hoegger et al., 2004). In addition to lignin depolymerization and polyphenol degradation, 

laccases are thought to be involved in the release of N from insoluble protein-tannin 

complexes, mycelial pigmentation, humus formation, fruiting body formation and 

detoxification of phenolic compounds, which protects fungi against soil pollutants and host 

defense compounds (Kanunfre and Zancan, 1998; Burke and Cairney, 2002; Hoegger et al., 

2004). Most reports refer to laccase activity as extracellular, but some WRF may also have 

intracellular laccases (Burke and Cairney, 2002). Laccases catalyze the reduction of O2 to 

H2O (4 electron reduction without formation of free reduced oxygen species) using a range of 

phenolic compounds as hydrogen donors (Burke and Cairney, 2002; Schlosser and Hofer, 

2002). An electron is removed from the phenolic hydroxyl groups of lignin to form free 

phenoxy radicals, which are further oxidized to quinines (Hoegger et al., 2004). 

Metabolic potential ofECM/ ERMfungi 

As some ECM and ERM fungi are closely related to WRF, some researchers have suggested 

that they may have retained some ability to degrade organic substrates, including PHCs 
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(Hibbett et al, 2000; Meharg and Caimey, 2000; Meharg, 2001). Braun-Lullemann, 

Huttermann and Majcherczyk (1999) reported on the ability of 16 species (27 strains) of 

ECM fungi that were isolated from middle European forests to degrade PAHs (1500 ppm of 

phenanthrene, pyrene, chrysene and benzo[#]pyrene) in pure, liquid culture. The slow but 

efficient metabolism of benzo[a]pyrene by ECM fungi was comparable to results of 

experiments with WRF (Braun-Lullemann et al, 1999). A study in which 58 fungal isolates 

from different physio-ecological groups were exposed to a range of PAHs showed that all 

fungal groups could degrade PAHs, but that ECM fungi were 19% as efficient as WRF 

(Gramss et al, 1999). Similarly, Meharg and Cairney (2000) tested 42 ECM fungal species 

with several types of persistent organic pollutants and found that 33 species were able to 

degrade one or more classes of chemicals. Only one of 21 ECM fungal species could not 

degrade at least one PAH; degrading species seemed to prefer chemicals with four to five 

rings. In each case, the direct oxidative activities correlated with production of extracellular 

enzymes that appeared to metabolize aromatic rings (Braun-Lullemann et al, 1999; Gramss 

et al, 1999). Green et al. (1999) reported that the ECM fungus Tylospora fibrillosa 

degraded 4-fiuorobiphenyl to significant extents via sequential hydroxylation reactions. 

A variety of ECM and ERM fungi are known to produce polyphenol oxidases (e.g. laccase, 

catechol oxidase and tyrosinase) in culture conditions, but there is little evidence for 

production of extracellular peroxidases (e.g. LiP and MnP) (Cairney and Burke, 1998; Burke 

and Cairney, 2002). Timonen and Sen (1998) assayed macerated fungal mycelia from 

several regions of a microcosm system and found that levels of enzyme activity in the 

environment were lower for ECM fungi than for saprotrophic fungi, possibly due to 
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avoidance of competition or preferential exploitation of substances of a particular quality. 

Gramss et al. (1998) reported that most cultured ECM fungi (from sporocarps collected from 

previously contaminated forest plots and industrial sites) exhibited oxidase activity: high 

extracellular enzyme activities were found for Lactarius and Russula species and high 

intracellular enzyme activities were found for Suillus, Hebeloma, Leccinum and Tricholoma 

species. Donnelly and Entry (1999) found extracellular enzyme activity at the advancing 

hyphal front of ECM fungi and suggested the possibility of a lack of complete dependence 

for C on the plant partners. 

Few studies have considered mycorrhizal fungi in symbiosis with a plant for the degradation 

of organic pollutants (Koivula et al., 2004). Meharg et al. (1997) found that the 

mineralization rate of 14C-labelled 2,4-dichlorophenol by ECM fungi (Suillus and Paxillus 

species) in symbiotic culture with P. sylvestris seedlings was increased by 50% and 250% 

compared to respective rates of those ECM fungi in axenic culture. As mineralization was 

extremely slow in vermiculite (i.e. no bacteria present), these data were interpreted to suggest 

that fungal patch differentiation led to greater enrichment and stability of bacterial 

communities at the fungal-soil interface. It is unknown how the C contributions of the 

phytobiont influenced fungal responses or how synergistic or antagonistic interactions 

between mycorrhizas and other microorganisms altered their ability to mineralize or degrade 

organic pollutants. 
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Genetic controls 

Ligninolytic enzymes are typically produced by WRF as multiple isoenzymes. This 

biochemical diversity had been attributed to post-transcriptional modifications of a single 

gene product, but characterization of several laccase gene families suggests that at least part 

of this diversity could be due to the multiplicity of laccase genes in fungal genomes 

(Gonzalez et ah, 2003). For example, Hoegger et al. (2004) found that Coprinopsis cinerea 

has at least eight different laccase genes within the haploid genome, which is the largest 

laccase gene family reported so far from a single haploid fungus. Bogan et al. (1996) found 

that the genome of Phanerochaete chrysosporium contains at least 10 structurally related 

genes {lipA through lip J) encoding LiP proteins and at least three MnP genes (mnpl, mnp2, 

mnp3). 

Screening genomes for genes that encode laccases and peroxidases may represent a reliable 

means of identifying potential enzymatic activities in ECM and ERM fungi (Burke and 

Cairney, 2002). As DNA sequences for laccase and peroxidase genes are now available for 

several saprotrophic fungi, opportunities exist to design molecular probes or primers for 

identification of similar genes and/ or mRNA transcripts in mycorrhizal fungi (D'Souza et 

al., 1996; Burke and Cairney, 2002). For example, Chen et al. (2003) used laccase gene 

primers to screen ECM basidiomycetes for laccase-like genes, which were amplified from 

Lactarius, Russula, Piloderma and Tylospora species. Timonen and Sen (1998) examined 

gene expression in identified functional components of P. sylvestris mycorrhizal systems and 

found expression of isozymes (i.e. polyphenol oxidase and acid phosphatase) was increased 

in hyphal fronts of Paxillus involutus and Suillus bovinus ECM systems as they advanced in 
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the humus. Through gene amplification and sequencing, Chambers et ah (1999) reported 

evidence for MnP genes and peroxidase activity in cultured Tylosporafibrillosa. Chen et ah 

(2001) extracted DNA from dried basidiomes or fungal cultures and amplified and sequenced 

genes for LiP and MnP using primers based on Phanerochaete chrysosporium genes. 

Although they reported the presence of LiP genes in a broad range of ECM fungal taxa and 

MnP genes in some ECM fungal taxa (three Atheliaceae taxa), Cairney, Taylor and Burke 

(2003) recently attempted to repeat these experiments and reported a lack of evidence to 

support the presence of peroxidase genes in ECM fungi. 

Extracellular laccase is constitutively produced in small amounts by several fungi, but 

enzyme expression is considerably enhanced by a wide range of substances, including a 

variety of different aromatic compounds (Burke and Cairney, 2002; Gonzalez et ah, 2003). 

Regulation of laccase production appears to be complex and vary between taxa. For 

example, in the WRF Pycnoporus cinnabarinus, laccase activity is increased with an increase 

in C:N ratio whereas in Phanerochaete chrysosporium, laccase activity is repressed by 

glucose regardless of N content and increased in the presence of cellulose when N is also 

increased (Burke and Cairney, 2002). From assays of liquid cultures of the ECM fungus 

Thelephora terrestris, Kanunfre and Zancan (1998) found increased secretion of extracellular 

laccase with a decreased C:N ratio. At the molecular level, Collins and Dobson (1997) 

demonstrated that laccase gene {Ice) transcription was activated by copper and nutrient N and 

that induction occurred at the level of gene transcription in the presence of two aromatic 

compounds. Chen et ah (2003) reported that some laccase-like genes amplified from 
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Lactarius, Russula, Piloderma, and Tylospora species appeared to be regulated at the 

transcriptional level, with transcription enhanced by higher N content. 

Implications for management 

Two broad objectives dominate management goals for contaminated forest sites: (1) 

reduction of risk; and, (2) long-term forest sustainability. In Canada, as in many 

jurisdictions, contaminated site remediation is required if there is risk to human or 

environmental health; this is not well defined for forest ecosystems and has led to situations 

of either over- or under-management. Here we wish to reflect on both these objectives and 

show how they converge. 

Risk arises from the conjunction of three conditions: a contaminant (toxicant), a pathway and 

a receptor. Mycorrhizal ecosystems in contaminated sites may attend to the toxicant by 

metabolizing and removing or immobilizing it, or by transforming and altering its mobility 

and toxicity. Moreover, mycorrhizal ecosystems may also be among the critical receptors. 

Consequently, the concept of risk entails both remediation and ecotoxicology. 

Bioremediation can be defined as the use of organisms to detoxify contaminants through 

immobilization, chemical transformation and mineralization processes (Diaz, 2004). 

Bioremediation efficacy is influenced by a variety of substrate and soil conditions, including: 

PHC composition; soil temperature, texture and structure; length of time the PHCs have been 

in the soil; and associated bioavailability, together with associated toxicants (Pollard et ah, 

1994). Use of microorganisms as management tools requires knowledge of which organisms 
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(or functional guilds of organisms) are likely to be present in a particular ecosystem, how 

they respond to different types of physical and chemical disturbances, and methods for 

ascertaining whether organisms are actually healthy and not just surviving (Blakely et ah, 

2002). From previous sections of this review, we can ask: (1) does the genetic potential exist 

(or is it likely to exist) to metabolize the array of substrates expected in the PHCs at a given 

site; (2) if so, what environmental conditions are likely to foster its expression and can these 

conditions be achieved; (3) is there need for added genetic potential through genetic 

engineering technologies; (4) if so, what constraints might limit its expression and what 

precautions might be needed; (5) is bioaugmentation needed to increase genetic potential; 

and, (6) if so, what precautions might be necessary, and how might its potential be best 

exploited? Although much remains unknown, considerable insights have been gained from 

recent and ongoing research regarding these questions. 

Observations that virtually all organic substrates appear to be transformed by soil 

microorganisms if they are accessible (e.g. Simard et al., 1997; Read and Perez-Moreno, 

2003; Diaz, 2004; Heinonsalo et al, 2004), combined with the continually increasing 

diversity of soil microbial communities revealed by molecular techniques (e.g. Axelrood et 

al., 2002Z>; Berch et al, 2002), the observation that catabolism of PHCs and plant residues 

share many common elements, and the absence of reports of soils that lack the ability to 

metabolize PHCs, all point to the ubiquitous genetic potential by soil communities to 

transform and perhaps completely catabolise PHCs. Consequently, bioremediation appears 

to be a sensible and potentially feasible intervention and has been extensively used. The 

focus of bioremediation strategies tends to be on contaminant disappearance, but is based on 
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a limited understanding of links between degradation and the basic nutritional needs of the 

responsible soil microbial community (Mills et al., 2003). In addition, the optimum 

environmental conditions to sustain communities that degrade PHCs are understood only in 

broad terms. Continued progress may be expected by careful attention to, and documentation 

of, the connection between the environmental conditions imposed on a site by PHC 

contamination, as well as catabolic response and environmental preference by persistent 

communities. In essence, PHCs impose their own environment, including varying 

concentrations of toxicants. Consequently, PHCs control the community or guild that 

survives, which in turn dictates the optimum conditions for its functioning. Based on first 

principles, and observations on a wide range of chemo-organotrophic microorganisms, it is 

reasonable to expect that a slightly acidic pH, well oxygenated and nutrient sufficient 

environment would favour functional guilds that would metabolize PHCs. Attaining such 

conditions, however, can be challenging in forest ecosystems without disrupting them. 

Is there a need to use recombinant organisms? In the early development of bioremediation 

technology, investigators recognized the scope of environmental pollution and the diversity 

of chemical pollutants, and invested significant effort into metabolic engineering to 

manipulate specific catabolic pathways or particular host cells (Alexander, 1999). Metabolic 

engineering has created recombinant organisms with novel hybrid pathways of 

biodegradation and increased substrate ranges; it has completed incomplete pathways, 

created multiple pathways, and provided mechanisms that enhance chemical bioavailability 

(Diaz, 2004). Because of issues (e.g. biosafety or inability to compete for resources) 

associated with introducing recombinant bacteria to contaminated ecosystems, 
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bioremediation (using recombinant bacteria) is often conducted ex situ, under relatively 

controlled conditions (Diaz, 2004). Ex situ bioremediation (with or without recombinant 

bacteria) is also used in situations where a high degree of control of environmental conditions 

is wanted (Riser-Roberts, 1998) and where added energy inputs such as in rotating 

bioreactors are desired. Recombinant organisms face public resistance due to the fear of 

their escape from the site, or transfer of genetic material to indigenous populations. Further, 

they may not always compete well with indigenous populations, or may require specialized 

environments. Consequently, they may be of limited potential for use on a large scale in 

forested ecosystems. 

There are fewer biosafety issues associated with bioaugmentation, the introduction of exotic 

microorganisms isolated from unrelated sites, but adapted to contaminant biodegradation 

(Ward et ah, 2003) or to extreme soil conditions (Cunningham et ah, 2004; Stallwood et ah, 

2005). Such additions can be made in a variety of ways, including industrial production and 

subsequent slurry applications. Soil samples from adjacent contaminated and remediated 

sites used as an inoculum would seem to be reasonable candidates as well. Although it can 

be readily used in the field, bioaugmentation lends itself better to highly engineered systems 

(e.g. slurry bio-reactors), to recalcitrant or novel contaminants for which the indigenous 

population may be ill-equipped, or for extreme environments (e.g. Cunningham et ah, 2004; 

Stallwood et ah, 2005). Cost is also a factor from a management perspective. Leavitt and 

Brown (1994) reported on three case studies comparing bioaugmentation using a commercial 

supplement with stimulation of indigenous soil organisms for removal of PHCs in a 

bioreactor and a land-treatment facility, and acetone or Ws-2-chloroethyl ether in a waste-
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water facility. Based on cost and efficacy, they concluded that bioaugmentation was not 

warranted in their situations and that biostimulation of indigenous organisms was the best 

choice. In situ bioremediation through enhancing contaminant biodegradation by indigenous 

soil populations and communities (i.e. syntrophic bioremediation) is considered less 

destructive and more cost-effective for remediating contaminated soils on large scales 

(Delille et ah, 2004; Doelman and Breedveld, 1999) and has proven successful when 

properly implemented (Nelson et ah, 1994). In situ bioremediation is more likely to maintain 

the desired integrity of below ground mycelial networks. 

Phytoremediation refers to all plant-induced biological, chemical and physical processes that 

aid in the remediation of contaminants (Cunningham et ah, 1996). Traditionally, research in 

this area has focused on use of agricultural plant species for the remediation of agricultural or 

industrial soils. Reilley et ah (1996) found that the presence of vegetation significantly 

enhanced the dissipation (and likely biodegradation) of anthracene and pyrene in the soil 

environment. Others have reported that various grasses, legumes and woody plants facilitate 

the degradation of PHCs in soil (Aprill and Sims, 1990; Chaineau et ah, 2000; Liste and 

Alexander, 2000; Palmroth et ah, 2002; Merkl et ah, 2005). Plants and associated 

mycorrhizospheres may increase the activity of PHC-degrading organisms, either via general 

enhancement [i.e. (mycor)rhizosphere effect] or due to proliferation of specific microbial 

groups (i.e. altered functional component of the microbial community) (Siciliano et ah, 

2003). They may also mediate desorption of contaminants bound to soil constituents by 

altering pH and redox potential, as well as concentration and types of organic compounds in 

the (mycor)rhizosphere. Research has shown that sites containing plants and expected 
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mycorrhizal associations experience more rapid reduction in toxicity of PHCs (Parrish et ah, 

2005). 

An increased awareness of the abundance and diversity of mycorrhizal systems in vegetated 

soils has led to their consideration for in situ bioremediation (Meharg, 2001). Where there is 

little risk to human or ecological health, the purposeful planting of trees inoculated with 

specific mycorrhizal fungi is expected to establish these mycelial systems in soil and allow 

gradual decontamination over a period of several years (Braun-Lullemann et al., 1999; 

Meharg and Cairney, 2000). A related approach is to transplant plugs or sprigs of vegetation 

from non-contaminated soil, as is done in various restoration ecology projects (e.g. Fraser 

and Kindscher, 2005), into contaminated areas for the final stages of clean up. This approach 

allows for simultaneous remediation and revegetation of sites without further disruption to 

physical and chemical properties of the soil and provides an inoculum of a soil community 

adapted to the site. Although it may require several months or years for tree root systems and 

associated mycorrhizal biomass to establish, mycelial systems would be expected to remain 

in a vital state for several decades, whereas other organisms (e.g. WRF) may complete their 

life cycles in a few days or weeks and then rest as spores (Gramss et al, 1999). A more 

thorough knowledge of which fungal symbionts are likely to survive and compete in various 

ecosystems, as well as which fungi contribute directly (exhibit biodegradative capabilities) or 

indirectly (provide suitable habitat for other microorganisms that exhibit biodegradative 

capabilities) to bioremediation of contaminated sites is required as part of management 

strategies that adopt this approach. Other phenomena, such as fungal specificity to plant 

hosts, may also require consideration (Molina et al., 1992). The spectrum of possible plant 
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hosts that can be selected by a particular mycorrhizal fungus can vary from a few to many. 

At the same time, the host receptivity (the number of different fungi accepted by a particular 

plant) can also differ. Both may impact the ecological contribution made by the symbiosis. 

For example, alder, compared to Douglas-fir, is very selective, typically initiating symbioses 

with a very restricted number of fungal species. Some fungi may form symbioses with one 

plant genus, whereas other fungi are less selective, initiating symbioses with potentially 

hundreds of plant hosts. How this selective nature between fungi and plants impacts 

ecological functions in general, and bioremediation in particular, remains unknown. 

Intrinsic bioremediation (contaminant biodegradation by adapted indigenous communities) 

may be an acceptable management strategy where risks to human or ecological health are 

low (Alexander, 1999). Nicolotti and Egli (1998) showed that some ECM fungi surviving in 

contaminated forest soil may metabolize chemicals in crude oil and suggested that crude oil 

spills in mixed agricultural and forest areas do not cause long-term environmental damage of 

the kind associated with coastal ecosystems, possibly due to intrinsic bioremediation by the 

soil community. Intrinsic bioremediation of PHC-polluted soils differs substantially between 

ecosystems and depends on the particular combination of soil-forming factors, soil 

properties, microbial communities and the content and composition of PHCs and their 

products (Trofimov and Rozanova, 2003). Studies of indigenous microbiota along with key 

physical and chemical parameters provide hope for the eventual ability to predict how natural 

attenuation will proceed at contaminated sites. Intrinsic bioremediation may be an 

appropriate management strategy in boreal forest ecosystems in some situations. 
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If external action to improve the bioremediation of a soil seems essential, environmental and 

ecological knowledge is required to choose the least destructive methods (Romantschuk et 

al., 2000). Ideally, bioremediation strategies should be based on knowledge of the 

microorganisms present in polluted environments, their metabolic abilities and how they 

respond to changes in environmental conditions in an ecological context (Blakely et al., 

2002; Diaz, 2004). The current state of knowledge, however, does not permit predictions or 

management strategies to be built up from the species level. Studying the physiology, 

biochemistry and genetics of soil microorganisms is important for contaminated site 

bioremediation, as well as for biomonitoring the impacts of chemicals as disturbance agents. 

Unfortunately, this is mostly unknown and current management is largely based on empirical 

rather than theory-based deductions. As demonstrated by the research described in this 

review, factors that alter the survival or activity of soil biota are important considerations for 

ecosystem management (Setala et al., 2000). However, the key question in terms of 

sustainability is how contamination events impact ecosystem functions in the near and long-

term future. 

Ecosystem health is not well defined, but has been described in terms of vigour 

(productivity), organization (diversity and mutual dependence) and resilience (maintenance 

of structures and patterns in the presence of environmental change) and interpreted by 

correlating biological indicators for processes that are considered critical for ecosystem 

function (Blakely et al, 2002; Lu and Li, 2003). Traditional indicators for contaminated 

sites include impacts of chemical contaminants on plant condition and biomass, with more 

recent interest in specific organisms capable of biodegradation. Fewer studies have 
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examined changes in soil properties that define its fertility and agro(eco)logical properties 

(Suleimanov et al, 2005). It has been suggested that criteria for remediation of PHC-

contaminated soils should be amended to include suppression or significant modification of 

the plant community, reduction in plant biomass, disturbance in functioning of soil biota, 

simplification of the soil community, decreases in the biological activity of the soil, and 

movement of PHCs into surface water or ground water (Trofimov and Rozanova, 2003). Soil 

quality guidelines in Canada have been developed using most of these criteria for 

agricultural, residential/ urban parkland, commercial and industrial lands, but not for forest 

ecosystems (Ouellet et al., 2002). 

Many biological and chemical-physical approaches have been proposed to predict or measure 

the bioavailability of organic compounds for biodegradation or to ecological receptors (i.e. 

toxicity). Biological measures of bioavailable toxicants include seedling emergence and 

growth tests, along with various soil invertebrate tests of acute toxicity, chronic toxicity, 

behaviour and reproduction (Stephenson et al, 2002). Rombke et al. (2006) recently 

identified potential invertebrate species and testing methodologies for assessing ecotoxicity 

of contaminants in boreal forest soils. Other biological measures include contaminant uptake 

and impact on organism biomolecules, and impacts on organism-mediated processes (e.g. 

nitrification) (Svendsen et al., 2002). Chemical-physical approaches include: kinetics of 

PHC desorption, mild solvent extraction, solid phase extraction (SPE), supercritical fluid 

extraction and cyclodextrin extraction. SPE correlates well with biological measures of 

ecotoxicity (and bioavailability) and does not have the potential to disrupt the structure of 

soil organic matter phases as do chemical methods (Ehlers and Loibner, 2006). 
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Conclusions 

(1) The importance of developing multi-disciplinary approaches to solving problems relating 

to anthropogenic pollution is now clearly appreciated by the scientific community, and this is 

especially evident in boreal ecosystems exposed to escalating threats to PHC contamination 

through expanded natural resource extraction activities, hi this review, we have presented a 

mycorrhizal ecosystems perspective on PHC contamination in boreal forest soils in order to 

identify gaps in knowledge and to guide future research in both ecological and sustainable 

management contexts so that scientists, land and facilities managers, industrialists and 

government officials will be better prepared to manage the inevitable accidents that will 

occur. 

(2) We know that the taxonomic, genetic and functional diversity of mycorrhizal ecosystems 

in boreal soils is immense and continues to expand with increased sampling effort. We also 

know that the functioning of these communities underpins survival and productivity of the 

ecosystem as a whole. It appears that redundancy in broad-scale biodegradative functions is 

essential for ecosystem recovery following PHC contamination, to account for the loss of 

community components that are unable to tolerate the altered physical and chemical 

conditions imposed by the PHCs. What remains to be determined are the details and the 

translation of this information into effective ecosystem management. 

(3) The ubiquity and enormous biomass of extraradical mycelia of mycorrhizal fungi in 

forest soils implies a key role in forest ecosystem processes. Recent studies have highlighted 
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the high taxonomic and genetic diversity of ECM or ERJVI fungal communities associated 

with certain plants in some ecosystems, though many potential hosts and types of ecosystems 

have not yet been surveyed. 

(4) Although there is thought to be some relationship between high diversity (species 

richness) and ecosystem health due to some degree of redundancy, the functional basis of 

ECM and ERM fungal diversity is virtually unknown. The physiological mechanisms of 

nutrient exchange between fungal and plant partners are also not well understood, 

particularly with respect to nutrient acquisition from the soil environment and especially for 

PHC-contaminated soils. A more thorough knowledge of which fungal symbionts are likely 

to survive and compete in various ecosystems is required, as well as a better understanding of 

whether certain types of fungal associations with different plant hosts gain in ecological 

importance following disturbance events. Whereas community responses (e.g. shifts in 

community structure) to some types of disturbances (e.g. fire, forestry practices, etc.) have 

been described in the recent literature (although it is unknown if these are related to shifts in 

function), responses to PHC pollution are not well understood. In fact, very little is known 

regarding rhizosphere communities in forest soils subjected to PHC contamination. 

(5) Studies of PHC contamination in forest soils are rare, as are the impacts on soil 

organisms and the intrinsic decomposition in these systems. The scientific basis for current 

remediation standards is based on information from experiments examining the toxicological 

impacts of PHC chemicals on test organisms. However, sequestration of organic pollutants 

in forest SOM may decrease the chemical toxicity of chemicals through physical separation 
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from biological receptors, which also decreases substrate bioavailability for enzymatic 

degradation. More research in this area is needed. Also necessary are improved methods for 

assessing the fate and behaviour of PHCs in forest soils, including determinations of 

bioavailability and development of a wider variety of indicators for ecological integrity than 

the traditional measures of plant productivity. Future research is needed to determine how 

toxicity varies with type of pollutant, mixtures of pollutants, extent of pollution, and the 

general condition of the ecosystem prior to chemical disturbance. 

(6) Few studies have examined whether the coexistence of ECM and ERM plants in boreal 

forests provides opportunities for sharing ECM and ERM fungi that link plants and 

translocate nutrients, and virtually nothing is known of how PHC contamination may 

interfere with processes of nutrient acquisition and exchange. 

(7) Recent studies have shown that some ECM and ERM fungi appear to play a direct role 

(via enzymatic catabolism) in biodegradation of complex organic substrates (including 

PHCs). However, few studies have examined various fungi in detail, or have examined 

mycorrhizal fungi in symbiosis with a plant. It is unknown as to how PHC contamination 

might interfere with fungal metabolic processes. 

(8) Incomplete biodegradation can produce potentially toxic intermediate metabolites; toxic 

intermediates with increased water solubility are of particular concern as this can result in the 

transport and spread of contaminants through the environment. More research is required in 

this area. 

76 



(9) Few studies have considered the indirect role of ECM and ERM systems in 

biodegradation through their interactions with the mycorrhizosphere-associated bacterial 

communities and little is known regarding syntrophic biodegradation by different functional 

guilds of organisms. Most fungi have been examined in isolation from an ecosystem context, 

thereby excluding interactions of individual ECMs and ERMs with each other, their soil 

environment and other members of the plant and microbial communities. Thus, information 

gained from these studies may have little ecological relevance for understanding how forest 

ecosystems function or for informing bioremediation management strategies for 

contaminated soils. 
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Chapter 2: Interactions between petroleum hydrocarbon contaminants and ecto- and 
ericoid mycorrhizal communities in sub-boreal forest soils 

Abstract 

The impacts of petroleum hydrocarbon (PHC) contamination on mycorrhizal communities in 

boreal forest soils are not well understood. In this study, we used a bioassay approach to 

determine whether ecologically relevant concentrations of PHCs altered ecto- (ECM) and 

ericoid (ERM) mycorrhizal fungal communities and whether mycorrhizal communities 

played a direct role in PHC biodegradation through secretion of laccase. Surface-sterilized 

seeds (Pinus contorta, lodgepole pine; Betulapapyrifera, paper birch) or seedlings 

(Vaccinium vitis-idaea, lingonberry) were planted into Cone-tainer™ pots containing 

reconstructed soils: an organic layer (mor humus, coarse woody debris, or previously 

contaminated humus) overlying sandy mineral horizons (Ae and Bf) of field-collected forest 

soils obtained from central BC, Canada. After 4 months, BC light crude oil (0, 73, 146, or 

219 mg cm"2) was applied to the soil surface around the seedling stem; systems were 

destructively sampled over 16 weeks following treatment. ECM communities (composition, 

relative abundance and spatial distribution) were assessed on pine and birch roots using light 

microscopy and fungal community profiles were generated for all root systems using length 

heterogeneity PCR and primers targeted at the ITS region of rDNA. In addition, selected 

mycorrhizal root tips (ECM and ERM) were tested for laccase activity in assays with 2,2'-

azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS). There were no significant changes in 

ECM or ERM fungal community structure associated with PHC treatment; however, PHC 

treated systems appeared to exhibit some community differences over time. Plant and 

organic soil properties appeared to have a greater influence on mycorrhizal community 
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structure than PHC contamination. In addition, laccase activity was observed for many 

dominant ECMs, indicating potential for biodegradation of aromatic PHCs. Thus ecological 

integrity of the plant - soil system may confer resilience against effects of PHC 

contamination and also contribute to PHC biodegradation. 
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Introduction 

Oil spills that occur in northern forest regions are localized and discrete disturbance events 

that often result in rapid surface contamination, sometimes with large quantities of petroleum 

hydrocarbons (PHCs). Very little is known regarding the impacts of PHC contamination on 

soil communities, particularly on mycorrhizal systems that represent the dominant microbial 

biomass in forests soils and underpin ecological processes (e.g. decomposition, nutrient 

cycling, primary production, C sequestration, etc.) both below- and above-ground (Read and 

Perez-Moreno, 2003). The major impacts of PHC contamination appear to be associated 

with disturbances to soil water, nutrient and oxygen regimes through changes to physical and 

chemical properties of soil (Blakely et ah, 2002). Changes to soil chemical status and 

decomposer community functions could lead to imbalances in nutrient cycling and ecosystem 

productivity (Pennanen et ah, 1998). Enhanced hydrophobicity of soils after fire has been 

shown to alter soil water-holding capacity and lead to changes in both quantity and 

composition of microbial and soil-dwelling invertebrate communities, potentially reducing 

plant productivity (Certini, 2005). Thus, factors that alter the survival or activity of 

mycorrhizal communities are important considerations for sustainable management of forest 

ecosystems (Setala et ah, 2000). However, this requires that environmental and functional 

properties assessed at population and community levels be integrated with ecological 

processes at the ecosystem or landscape scale; this represents a primary challenge of 

microbial ecology (Bengtsson, 1998; Standing et ah, 2007). 

In contaminated forests, oil recovery and soil remediation strategies tend to be based on 

socio-economic considerations and environmental concentrations of some PHCs (e.g. 
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polycyclic aromatic hydrocarbons, PAHs) with potential toxicity/ carcinogenicity to human 

and other ecological receptors (Tarradellas and Bitton, 1997; Nicolotti and Egli, 1998; 

Blakely et ah, 2002; Trofimov and Rozanova, 2003). Despite considerable environmental 

interest in PAHs, a general absence of documented adverse effects among terrestrial 

receptors (i.e. plants, invertebrates, birds, herpetofauna, or mammals) exposed to PAHs in the 

environment currently exists in the literature, although this is partly due to lack of research 

(Kapustka, 2004). Nearly all information regarding PHC toxicity on soil microorganisms has 

been compiled from laboratory tests that have focused on a few (e.g. PAHs) of the hundreds 

of chemical compounds that comprise crude oil. Results have generally shown that fungi are 

more tolerant than bacteria, possibly due to features of cell wall structure (Blakely et al., 

2002). However, in addition to reducing the variety and complexity of the biological 

systems affected by the release of crude oil into the forest environment, these studies nearly 

always disregard the symbiotic relationship between fungi and plant hosts, which may be 

very important in terms of buffering negative impacts. Soil-based studies have found that 

ectomycorrhizal communities exhibit high resilience to environmental stress when organic 

layers (e.g. humus, woody debris, etc.) of forest soils have not been severely disrupted 

(Setala et al., 2000; Jones et al., 2003). Greater environmental disturbance may occur when 

extreme management measures (e.g. tree or contaminated soil removal) are taken as 

compared to the original PHC contamination event. The lack of understanding of PHC 

impacts on mycorrhizal communities in forest soils places remediation strategies in potential 

conflict with other current forest management objectives. 
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In situ bioremediation (i.e. enhanced contaminant biodegradation by indigenous soil 

communities) is considered less destructive and more cost-effective for remediation of 

contaminated soils on large scales and is also more likely to maintain the desired integrity of 

mycelial networks (Doelman and Breedveld, 1999). PHC biodegradation is likely due to 

species-specific fungal attributes that favor survival and degradation activities, extension of 

the root area in contact with soil-adsorbed compounds, and influence over a complex 

consortium of bacteria expressing a range of enzyme activities in response to carbon 

availability in the mycorrhizosphere (Heinonsalo et al., 2000; Meharg and Cairney, 2000). 

For their part, many ecto- (ECM) and ericoid (ERM) mycorrhizal fungi appear to secrete 

various hydrolytic and oxidative enzymes that enable direct involvement in the degradation 

and/ or detoxification of various organic contaminants (Timonen and Sen, 1998; Burke and 

Cairney, 2002; Perotto et ah, 2002). For example, laccase (benzendiol:oxygen 

oxidoreductase, EC 1.10.3.2), part of a complex, nonspecific enzyme system usually 

associated with ligninolytic fungi, has been of particular interest with respect to 

bioremediation (Gramss et ah, 1998; Donnelly and Entry, 1999). This enzyme catalyzes the 

reduction of O2 to H2O (4 electron reduction without formation of free reduced oxygen 

species) to open aromatic ring structures of a range of organic substrates, thereby overcoming 

the thermodynamically rate-limiting step in microbial metabolic pathways (Burke and 

Cairney, 2002). In addition to lignin and PAH depolymerization, laccase is thought to be 

involved in the release of N from insoluble protein-tannin complexes, humus formation, 

mycelial pigmentation, and fruiting body formation (Kanunfre and Zancan, 1998; Burke and 

Cairney, 2002). It should be of no surprise that extracellular laccase appears to be 

constitutively produced in small amounts by several mycorrhizal fungi; it is unknown 
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whether enzyme expression is enhanced in the presence of different aromatic compounds as 

appears to be the case for some saprotrophic fungi (Burke and Cairney, 2002). 

This study addresses a fundamental question: does PHC contamination of forest soils 

negatively impact established (or establishing) mycorrhizal systems? Using a bioassay 

(single- and double-plant systems established in reconstructed forest soil layers in Cone-

tainer™ pots), morphological and molecular (LH-PCR) techniques were used to assess 

changes in mycorrhizal community structure in response to different PHC concentrations 

over 16 weeks. In these systems, organic soil layers (i.e. forest floor [FH], coarse woody 

debris [CWD], and forest floor previously contaminated with PHCs [FHoil]) provided the 

initial fungal inoculum for the developing rhizospheres; the composition of fungal 

communities was expected to be influenced by the relative abundance of lignin (i.e. in FH 

and CWD) and/ or previous exposure to PHCs (i.e. in FHoil). ECM (Pinus contorta var. 

latifolia and Betulapapyrifera) and ERM (Vaccinium vitis-idaea) systems were expected to 

represent a sub-set of the mycorrhizal fungal community in situ. Laccase assays were also 

conducted to assess potential for direct role of ECM and ERM fungi in PHC biodegradation 

and assess changes in enzyme activity associated with PHC treatment. 
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Materials and methods 

Field site 

The Kenneth Creek field site is located in the wet, cool subzone of the sub-boreal spruce 

(SBSwkl) biogeoclimatic zone of central British Columbia, Canada, about 100 km east of 

Prince George (53°34'N, 122°47'W) (Figure 2.1). In 1982, the forest was logged and 

burned, then subsequently planted with lodgepole pine (Pinus contorta Dougl. Ex Loud. var. 

latifolia Engelm.); currently, the site is a mature, even-aged pine stand with small hybrid 

white spruce {Picea glauca x engelmannii Parry ex Engelm.) and lesser numbers of western 

hemlock (Tsuga heterophylla (Raf.) Sarg.). Young subalpine fir {Abies lasiocarpa (Hook.) 

Nutt.) and sitka alder (Alnus crispa var. sinuata (Reg.) Rydb.) are present at the edge of the 

forest, along the access road; western redcedar {Thujaplicata Donn) and trembling aspen 

{Populus tremuloides Michx.) are also present in an unlogged stand across the main road. 

The site has a thick understory of oval-leaved blueberry {Vaccinium ovalifolium Sm.); 

mosses and lichens (e.g. Peltigera) cover the forest floor, with some Lycopodium species. 

The soils on this site were described by Arocena and Sanborn (1999). Soils are classified as 

Eluviated Dystric Brunisols (Soil Classification Working Group, 1998), and consist of sandy 

parent material with low clay content and few coarse fragments. The forest floor is mor 

humus, from 2-5 cm thick with copious fungal mycelia present. The C:N ratio of the forest 

floor is approximately 50 and the pH (water) is ~ 4.2. Gray Ae horizons are generally 1-2 cm 

thick, with thicker pockets in some areas. Red Bf horizons extend to almost 30 cm, beneath 

which are Bm (27-60 cm), BC (60-100) and C (> 1 m) horizons. The C:N ratios of the Ae 

and Bf horizons are about 20 and 13, respectively. The pH (water) of the Ae horizon is 4.2 
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while the pH of the Bf horizon is about 4.8, increasing with depth to about 6.0 at the 

transition to the C horizon. Fine roots are found at depths greater than 1 m. Large coarse 

woody debris (i.e. downed trees), the legacy of past forest management, is abundant all over 

the site. 

Organic layers and the top 20-30 cm of mineral soils (Ae and Bf horizons) were collected 

from the forest site in September of 2004, 2005 and 2006. The organic layers included the 

mor humus forest floor (FH) that had been undisturbed for approximately 20 years, coarse 

woody debris (CWD) in an advanced state of decay (i.e. decay class 5), and previously PHC-

contaminated mor humus (FHoil) that had weathered in situ for four months throughout the 

summer. The FHoil soils were collected in 2005 (year 2) only. In early May of that year, 2.0 

L of BC light crude oil (Husky Refinery, Prince George, BC) was applied to each of three 1-

m2 plots with the moss layer (but not seedlings and other plants) removed. The oil had been 

previously bubbled with N2 gas to remove the light and volatile compounds; a watering can 

was used for even application in the field. All soils were stored at 4°C prior to use in 

bioassay experiments, which commenced within 10 days of soil collection. 
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Figure 2.1: Maps showing the study site at the Kenneth Creek field site, located about 100 
km east of Prince George in the sub-boreal spruce (SBSwkl) zone of the central interior of 
British Columbia, Canada. 

102 



Bioassay and PHC treatment 

Forest soils (i.e. Ae [~1 cm] and Bf [~15 cm] mineral soil layers beneath organic [FH, CWD, 

or FHoil] soil layers [~2 cm]) were reconstructed in Cone-tainer™ pots (3.8 x 21 cm, Stuewe 

and Sons, Corvallis, Oregon) with two clay pellets in the bottom to prevent soil loss (Setala 

et ah, 2000). Mineral soils (Ae and Bf layers) were homogenized and sieved through (1 cm2) 

screens prior to potting. In 2004 and 2005 (years 1 and 2), surface-sterilized seeds of 

lodgepole pine (Pinus contorta var. latifolia) and paper birch (Betulapapyri/era Marsh.), 

collected from the SBS and obtained from the Ministry Tree Seed Center, Surrey, BC (Seed 

lots DWD20050009A (location 079-B-008) and DWD20050009B (location 094-E-015), 

respectively), were planted into each pot. In 2005 (year 2), lingonberry (Vaccinium vitis-

idaea L.) seedlings (rooted cuttings), obtained from Birch Creek Nursery (Prince George, 

BC), were planted into 10x10x10 cm pots (i.e. Ae [~1 cm] and Bf [~7 cm] mineral soil layers 

beneath organic [~2 cm] soil layers). In 2006 (year 3), pine seeds were planted into Cone-

tainer™ soil systems (FH and CWD organic layers) that were already planted with 

lingonberry cuttings. All pots were placed in the greenhouse (22°C day temperature, 15°C 

night temperature, and 16 h photoperiod) and fertilized once a month (5 mL of NPK 

fertilizer; providing 100 ppm each of NPK) for the first four months following seeding/ 

planting. The plants were watered two or three times per week for the duration of the 

experiment. 

After four months of growth, seedlings and mycorrhizas were well established. At this time, 

BC light crude oil (with volatiles removed as described for the field application) was pipetted 

onto the organic soil surface of each pot, around, but not touching, the seedling stem(s). To 
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determine effects of different levels of PHC contamination on plant - soil systems, 1, 2, or 3 

mL (corresponding to 73, 146, and 219 mg cm"2, respectively) crude oil was tested on pine 

and birch seedlings in 2004-05 (year 1). In the two subsequent years of study (i.e. years 2 

and 3), pine, birch, and lingonberry seedlings were treated with the highest (219 mg cm"2) 

PHC level tested, which corresponded to a field application rate of nearly 22 tonnes ha"1. 

There was no PHC loss from the bottom of the pot (i.e. no sheen on the wet surface below) 

observed after watering for the duration of the experiment and the smell of crude oil 

dissipated in the greenhouse within a week of PHC treatment. These observations provided 

some confidence that most of the oil was retained within the plant - soil systems (i.e. not lost 

through volatilization or washing out). 

Experimental design and sampling 

Experiments followed a randomized block design and tested different combinations of plant, 

organic soil layer and PHC treatments (Tables 2.1 and 2.2) over three years of studies. In 

2004-05 (year 1), treatment combinations included plant (P or B) and organic layer (FH or 

CWD) systems in PHC contaminated and untreated (control) soils (Table 2.1). Plant - soil 

systems (n=2 per treatment group) were destructively sampled at 1, 4, 7, 10, 13 and 16 weeks 

following PHC treatment in order to assess ECM morphotype community changes over time 

in response to different levels (0, 73, 146, and 219 mg cm"2) of contamination. Single-plant 

(pine, birch, and lingonberry) and double-plant (pine and lingonberry) systems (2005-06 and 

2006-07, respectively) were harvested at 1 and 16 weeks to further assess relationships 

between ECM and ERM fungal communities and PHC biodegradation (Table 2.2). 
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Table 2.1: Summary of plant, organic soil layer, and PHC treatment variables for 2004-2005 
study (n=2). 

Plant Organic Soil Layer PHC 
Pine [P] Forest floor [FH] No PHC (control) 
Birch [B] Coarse woody debris [CWD] PHC (73 mg cm"2) 

PHC (146 mg cm"2) 
PHC (219 mg cm"2) 

Table 2.2: Summary of plant, organic soil layer, and PHC treatment variables for 2005-2006 
(single-plant) and 2006-2007 (double-plant) studies (n=3)*. 

Plant Organic Soil Layer PHC 
Pine [P] Forest floor [FH] No PHC (control) 
Birch [B] Coarse woody debris [CWD] PHC (219 mg cm"2) 
Lingonberry [L] Contaminated forest floor [FHoil] 
Pine + Lingonberry [P+L] 

* n<3 in B-CWD and B-FHoil groups due to lack of seed germination 

Root systems (intact, but with the shoot excised) were shaken free from the soil (samples for 

PHC and nutrient analysis, pH and wet weights were collected concurrently, as described in 

Chapter 3) and then washed in sterile dH20. A detailed morphological analysis of pine and 

birch ECMs was conducted in 2004-05 (year 1). For this, root systems were stored in glass 

plates with sterile water at 4°C for up to a week following each harvest. Molecular analysis 

of ECM/ ERM fungi was conducted in 2005-06 (year 2) for the single-plant systems and in 

2006-07 (year 3) for the double-plant systems. Within a few days of seedling harvest, pine 

and birch root systems were quickly assessed under a dissecting microscope to note ECM 

presence, abundance and distribution within the soil system and to ensure that they were free 

of other roots or hyphae and soil particles. Samples of lingonberry hair roots were assessed 

for cortical cell colonization by root endophytes (i.e. cells appeared cloudy, not clear), some 

of which were expected to be ERM fungi. Except for a few root tips removed for laccase 
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assays, which were also performed at the 1 and 16-week harvest times, entire root systems 

were then collected in 2 mL tubes and stored at -20°C until DNA extraction. 

Morphological assessment ofECM communities 

Standard light microscopy techniques of Agerer (1987-2002), Ingleby et al. (1990) and 

Goodman et al. (1996) were used to group, quantify and spatially describe ECM 

morphotypes of PHC treated and untreated (control) pine and birch seedlings at 3-week 

intervals over the 16-week duration of the experiment. ECMs were initially described and 

grouped according to colour, texture, lustre, dimensions, tip shape, branching pattern, and 

presence or absence of rhizomorphs (mycelial strands). Root squash mounts were examined 

at 400-1000X magnification and descriptions of mantle features, emanating hyphae, 

rhizomorphs, and other distinguishing features were used to further group different ECM 

morphotypes. Root tips that appeared uncolonized or partially colonized (due to the lack of a 

well-developed mantle) were categorized as non-mycorrhizal. When possible, preliminary 

identifications to fungal families or genera were assigned; otherwise, a descriptive name was 

assigned. 

ECM community diversity was represented by the Simpson diversity index, a non-parametric 

measure of relative abundance of each ECM morphotype weighted more towards the 

abundant types (Magurran, 2004). Simpson diversity (D) was calculated for each root 

system from D = S pj2, where pi represents the proportion of individuals in the ith species, and 

reported as 1/D. Diversity values were compared using one-way ANOVA to determine 

significant differences (a=0.05) with level of PHC treatment, over time, and between the 
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plant - soil systems. The post-hoc Fisher's LSD test (a=0.05) was performed when a 

significant result was obtained. 

DNA extraction and length heterogeneity PCR 

Frozen root systems were crushed in liquid nitrogen and DNA was extracted using a CTAB 

(hexadecyl trimethyl ammonium bromide) protocol with an extra phenol/chloroform-isoamyl 

alcohol (1:1) purification step (Fujimura et al, 2008). DNA extracts were further cleaned 

using the Wizard® PCR Preps DNA Purification System kit (Promega) to remove phenolics 

and other oily contaminants. The cleaned DNA extracts were resuspended in TE buffer. 

Fungal communities were characterized by amplicon length heterogeneity PCR (LH-PCR), 

which provides an estimate of community structure based on relative abundance of genotypes 

(Martin and Rygiewicz, 2005). Community fingerprinting methods such as LH-PCR and 

terminal restriction fragment length polymorphism (TRFLP) provide little taxonomic 

resolution of microbial communities compared to methods such as sequencing, but are 

expected to provide sufficient resolution to separate communities based on broad variables 

(Kuyper and Landeweert, 2002). The ITS2 region of ribosomal DNA was amplified using 

the forward primer ITS3 (5'GCATCGATGAAGAACGCAGC) (White et al, 1990) and the 

D3 fluorescent dye-labeled reverse primer NL4B (5'GGATTCTCACCCTCTATGAC) 

(Martin and Rygiewicz, 2005). ITS3 is a universal primer that binds in a conserved domain 

128 bp from the 3' end of the 5.8S rDNA while NL4B binds in the large subunit (28S) at 

basidiomycete- (and ascomycete-) specific sites (Martin and Rygiewicz, 2005); PCR 

products are expected to vary from approximately 400 to >600 bp in length. PCR reactions 
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consisted of 10X PCR buffer, 2 mM dNTPs, 50 uM MgCl2, 10 uM forward and reverse 

primers (Proligo, CO), 0.7 U Platinum Taq DNA polymerase (Invitrogen Life Technologies), 

and nuclease-free water (Integrated DNA Technologies, Inc.) to a final volume of 27 uL, to 

which 3 uL DNA (diluted 1:10) was added. The DNA Engine DYAD™ thermocycler (MJ 

Research, Inc., Watertown, MA) conditions were as follows: initial denaturation for 4 min at 

94°C, annealing for 1 min at 48°C, and extension for 2 min, followed by 35 cycles of 

denaturation (94°C for 30 s), annealing (48°C for 30 s) and extension (72°C for 1 min 30 s) 

and final extension at 72°C for 6 min 30 s. All PCR products were run on 1.2% agarose gels 

to confirm amplification. 

PCR products (2 uL) were loaded into a CEQ™ 8000 sequencer (Beckman-Coulter Inc.) 

along with CEQ 600 bp size standard mixture. Run conditions were 60°C separation 

temperature, 4 kV voltage, and 120 min separation time. Analysis was performed using the 

amplicon fragment length polymorphism (AFLP) program of the CEQ™ 8000 sequencer and 

the quartic model for size standard with a bin width of 1.5 bp. Peaks less than 11% of the 

total sample peak height were not included. Profiles from separate DNA extractions and 

PCR reactions were compared to assess reproducibility and suitability for analysis. 

The relative abundance of genotypes comprising each sample (i.e. fungal community) was 

calculated after relativizing the fluorescent signal strength of each fragment peak to the total 

peak area within each sample. This step in the analysis set the minimum peak threshold by 

removing the small peaks resulting from noise or reflecting the amount of DNA analyzed that 

may impact the conclusions drawn (Osborne et ah, 2006). 
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Ordination techniques are used to arrange entities along single or multiple axes that 

summarize the continuous trend within data; samples with similar community composition or 

environmental characteristics are grouped more closely in the ordination space (McCune and 

Grace, 2002). Nonmetric Multidimensional Scaling (NMS) is a preferred method for 

analysis of community data because it does not carry assumptions of linearity among 

variables (required for parametric approaches) (Ramette, 2007). NMS preserves similarity 

distances in ranked order (i.e. nonparametric) and tends to linearize distances in species and 

environmental space; it is not constrained to any specific distance measure. In this study, 

NMS was calculated on the basis of a Sorensen distance measure with 50 runs with real and 

randomized data and a maximum of 500 iterations to assess stability (instability criterion was 

0.00001) using PC-ORD 5.0 software (McCune and Mefford, 1999). A stepwise reduction in 

dimensionality (6D-1D) was used to minimize stress along with a random starting 

configuration (user-provided seeds). Two measures were used to evaluate the structure of the 

ordination results. Stress (i.e. goodness of fit measure) is the deviation from monotonicity 

when distance is compared between the original species space and distance in the reduced 

ordination space (McCune and Grace, 2002). For community data, it is typically in the 10-20 

range, but should be interpreted cautiously at the upper end of this scale. Instability is a 

measure of change in stress at each iteration. Stable, low stress solutions indicate strong data 

structure. The final solution for NMS was accepted after comparing 50 runs with real to 

randomized data using Monte Carlo simulations (McCune and Grace, 2002). 
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Univariate comparisons between treatment groups were tested statistically with Multi-

Response Permutation Procedures (MRPP), a non-parametric method that tests the 

hypothesis that there is no difference among groups (McCune and Grace, 2002). It provides 

a statistic of the magnitude of differences between groups (analogous to effect size), given as 

the chance-corrected, within group agreement (A) and a p-value. A is equal to 1 when all 

items are identical within groups and 0 when heterogeneity within groups equals expectation 

by chance. As most comparisons were made between unequal group sizes (i.e. unbalanced 

analyses), multivariate differences were not tested statistically with nested permutational 

multivariate ANOVA, and thus direct interaction effects could not be detected. 

Laccase assays 

Laccase assays were conducted in 2006 and 2007 (years 2 and 3) with pine and birch (ECM) 

root tips and lingonberry (ERM) hair roots. Laccase activity was determined using a plate 

assay with 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS; Sigma Chemical Co., St. 

Louis, Mo.) as the substrate (Eggert et al. 1996). Freshly harvested plant roots were viewed 

under a dissecting microscope to select ECM morphotypes and to confirm the presence of 

colonized epidermal cells in ERM hair roots. These were removed from the root systems and 

placed into individual wells of a microplate, each well containing 100 uL of 50 mM glycine-

HC1 buffer (pH 3). Following addition of 50 uL ABTS (2 mM) to each well, the plates were 

incubated at ambient temperature (~22°C) for 24 h. The intensity of the bluish green color 

development was rated as nil (-), light (+) or dark (++) after 1,16 and 24 h of incubation. In 

an attempt to exclude reactions mediated by other potentially-present oxidative enzymes, 

assays were conducted at pH 3, the optimum pH for laccase activity in the white rot fungus, 

110 



P. chrysosporium with ABTS as the substrate; peroxidase reactions with ABTS generally 

occurred at pH 4-7. A small piece of field-collected Trametes fungus (collected behind the 

EFL at UNBC) was used as a positive control (dark green colour developed within an hour of 

incubation) for this assay; boiled fungus was used as the negative control (no colour 

development after several days). 

Results 

ECM morphotypes: development and response to PHCs 

All seedlings and root systems survived for 16 weeks following PHC treatment. A greater 

proportion of seedlings generally appeared less healthy (i.e. yellowed or red needles/ leaves) 

with the highest PHC treatment compared to controls, but untreated plants also occasionally 

appeared chlorotic. There was no difference in seedling height or root system development 

between control and PHC treated groups (data not shown). 

Virtually all pine and birch root tips were visibly ectomycorrhizal at the first harvest time 

(i.e. approximately 4 months post-seed germination and 1 week post-PHC treatment). The 

richness of ECMs associated with each root system ranged from two to seven morphotypes, 

with fewer distinct morphotypes observed on birch compared to pine roots. Morphotype 

richness tended to increase over time (i.e. 1-16 weeks) for both plant species and organic soil 

types. In general, ECMs, extraradical mycelia, and rhizomorphs were more extensively 

developed by the 16-week sampling time, which may have contributed to their greater 

visibility. Differences between pine and birch root system structures influenced the 

distribution of ECMs through the soil system, as well as ECM density within the pot and 
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proximity to other root tips. Pine root tip density was greater in the organic layer of the soil 

profile, but more root tips (i.e. up to 85%) occurred in the greater volume of the Bf layer. 

Pine generally had a lower density of root tips compared to birch. 

Morphotype descriptions for pine and birch ECMs are provided in Appendix A. ECM 

morphotypes that were most frequently identified on root systems included Cenococcum, 

MRA, E-strain, Amphinema, three Russulaceae (including Lactarius), two Rhizopogon-

Suillus, and two Thelephoraceae types. Three unidentified types (one black and two white 

types) were observed less commonly. The relative abundance of ECMs in FH and CWD soil 

systems are shown for pine and birch in Figures 2.2 and 2.3, respectively. 

Clusters of Cenococcum ECMs dominated the upper roots of pine and birch in the FH layer 

(i.e. often representing 10-20% of the total root tip community), but were rarely observed in 

the CWD layer. These tips were black and woolly, with characteristic stellate pattern of cells 

of the outer mantle. Although relative abundance did not decrease in systems with higher 

PHC concentrations, root tips appeared dry and less robust over time with PHC treatment. 

The other ascomycetes, MRA and E-strain, were commonly found on root tips throughout the 

soil profile, but with low relative abundance. All three ascomycetes were well-developed at 

the 1-week sampling times; at later sampling times, evidence of secondary colonization was 

observed, in which new ECM growth occurred on root tips previously colonized by MRA. 

Amphinema ECMs and external mycelia were often associated with Cenococcum tips near 

the organic-Ae layer interface, but were also occasionally observed lower in the soil profile. 
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Amphinema was characterized by copious yellow, curvy, clamped hyphae, but no 

rhizomorphs were observed in this study. Piloderma hyphae, characterized by ornamentation 

with needle-like crystals, were found associated with Cenococcum tips, but were never 

observed as ECMs in this study, even though abundant Piloderma mycelia were observed in 

the FH, CWD and FHoil organic layers in the field. 

Russulaceae types dominated most root systems (i.e. ECMs observed on 80-90% of root tips) 

of both pine and birch in FH and CWD soil systems. These ECMs were developed by the 1-

week harvest time, although sometimes with a thin mantle. Two Russulaceae types were 

associated with pine. Root tips varied in color from yellow to orange-brown and were 

generally unbranched and smooth or appeared velvety due to the few short undamped 

hyphae that resembled cystidia early in their development. The cell arrangement of outer 

mantles ranged from net to irregular synenchyma. The Russulaceae 2 ECM was identified as 

a species of Lactarius based on the presence of laticifers, which contained latex material. On 

birch, the Russulaceae 3 ECM, a cream-coloured smooth type, dominated all 96 root systems 

assessed in the first year of the study. Although mainly found in the mineral soil layers, 

Russulaceae ECMs were also common on the upper lateral roots, particularly in the CWD 

organic layer. 

Two Rhizopogon-Suillus types were found associated with root tips exclusively in the Bf 

layer in FH and CWD soil systems associated with pine. The Rhizopogon-Suillus 1 ECM 

was a dark brown, coralloid morphotype. The outer mantle had a net synenchyma cell 

arrangement with amorphous globules at the surface; the copious hyphae (2-4 um) 
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characteristically bulged at the undamped septa and exhibited no other ornamentation. The 

Rhizopogon-Suillus 2 ECM was white with a slightly tuberculate form, copious hyphae and 

an outer mantle with prosenchymous (to net synenchymous) cell arrangement. By the 16-

week sampling time, both ECMs had developed extensive rhizomorphs and hyphal fans 

(stained purple and orange, respectively, with KOH) that extended away from root tips into 

the mineral soil. Although ECM/ mycelial biomass was not measured, it appeared that 

rhizomorphic development may have been enhanced in PHC contaminated soils. 

Two Thelephoraceae -like types were found associated with a few seedlings of pine and birch 

in both FH and CWD soil systems. These ECMs were never observed prior to the 7-week 

harvest and were present at all concentrations of PHCs. ECMs were smooth, ranged in 

colour from orange to dark brown or black and had thin mantles of net or regular 

synenchyma (respectively). Both had few long emanating hyphae, sometimes with clamps. 

Three ECMs, one black and two white, were not identified in this study, mainly because they 

were encountered so rarely. The black type resembled MRA, except that the outer mantle 

was net to irregular synenchyma rather than the felt prosenchyma typically associated with 

MRA. One white type was similar to Piloderma and was found exclusively with birch. 
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Figure 2.2: Relative abundance of ECMs on pine roots in FH and CWD soil systems 
sampled at 3-week intervals over 16 weeks with 0, 1, 2, or 3 mL of crude oil added to the soil 
surface. 
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Figure 2.3: Relative abundance of ECMs on birch roots in FH and CWD soil systems 
sampled at 3-week intervals over 16 weeks with 0, 1, 2, or 3 mL of crude oil added to the soil 
surface. 
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In general, Simpson diversity (1/D) values were lower in systems treated with the highest 

PHC concentration (219 mg cm"2) compared to untreated controls, with intermediate 

diversity values for the intermediate (i.e. 73 mg cm"2 and 146 mg cm"2) PHC concentrations 

(Table 2.3). Differences between PHC treatments within harvest groups (n=2) were 

significant for P-FH systems at 10 weeks (p=0.027) and for B-FH systems at 13 and 16 

weeks (p = 0.015) 

Table 2.3: One-way ANOVA plus Fisher's LSD (a = 0.05) of Simpson diversity (1/D) 
between PHC treatments (within harvest groups): PHC-0 = control; PHC-1 = 73 mg cm"2; 
PHC-2 = 146 mg cm"2; PHC-3 = 219 mg cm"2. 

Harvest 
P-FH 

1 wk 
4 w k 
7 wk 
10 wk 
13 wk 
16 wk 

P-CWD 
1 wk 
4 wk 
7 wk 
10 wk 
13 wk 
16 wk 

B-FH 
1 wk 
4 wk 
7 wk 
10 wk 
13 wk 
16 wk 

B-CWD 
1 wk 
4 wk 
7 wk 
10 wk 
13 wk 
16 wk 

PHC-0 
mean (SE) 

1.23 (0.39) 
1.94(0.39) 
1.19(0.39) 
1.36 (0.39) a 
3.07 (0.39) 
2.80 (0.39) 

1.23 (0.33) 
1.52 (0.33) 
1.11(0.33) 
2.01 (0.33) 
1.12(0.33) 
1.80(0.33) 

1.24(0.10) 
1.23 (0.10) 
1.22(0.10) 
1.16(0.10) 
1.21 (0.10) a 
1.36 (0.10) a 

1.12(0.07) 
1.17(0.07) 
1.12(0.07) 
1.10(0.07) 
1.16(0.07) 
1.17(0.07) 

PHC-1 
mean (SE) 

1.65 (0.37) 
2.33 (0.37) 
1.11(0.37) 
2.11 (0.37) aft 
1.77(0.37) 
1.84(0.37) 

1.11(0.21) 
2.46(0.21) 
1.23(0.21) 
1.3(0.21) 
1.20(0.21) 
1.19(0.21) 

1.35(0.11) 
1.11(0.11) 
1.13(0.11) 
1.12(0.11) 
1.17 (0.11) aft 
1.12(0.11)6 

1.11 (0.08) 
1.16(0.08) 
1.11(0.08) 
1.1 (0.08) 
1.07(0.08) 
1.09(0.08) 

PHC-2 
mean (SE) 

1.29(0.27) 
2.40 (0.27) 
1.35 (0.27) 
1.52(0.27)oi 
1.99(0.27) 
2.16 (0.27) 

1.24(0.27) 
2.07 (0.27) 
1.10(0.27) 
1.24(0.27) 
1.33(0.27) 
1.41 (0.27) 

1.10(0.02) 
1.22(0.02) 
1.22(0.02) 
1.12(0.02) 
1.18 (0.02) ab 
1.08 (0.02) c 

1.53(0.11) 
1.22(0.11) 
1.53(0.11) 
1.04(0.11) 
1.13(0.11) 
1.31 (0.11) 

PHC-3 
mean (SE) 

1.58(0.36) 
1.13(0.36) 
1.39(0.36) 
2.44 (0.36) b 
1.49(0.36) 
1.54(0.36) 

1.11(0.22) 
2.35 (0.22) 
1.17(0.22) 
1.17(0.22) 
1.36(0.22) 
1.49(0.22) 

1.10(0.00) 
1.10(0.00) 
1.10(0.00) 
1.10(0.00) 
1.12(0.00)6 
1.15 (0.00) d 

1.34(0.02) 
1.22(0.02) 
1.36(0.02) 
1.10(0.02) 
1.08(0.02) 
1.07(0.02) 
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Analysis of Simpson diversity values within PHC groups generally showed an increase over 

the 16-week duration of the experiment (Table 2.4). These differences were significant 

within the two higher PHC concentration groups (i.e. 146 mg cm"2 and 219 mg cm"2) for P-

FH (p=0.004), B-FH (p=0.002), and B-CWD (p=0.013) systems, as well as within the 

untreated control group for P-FH (p=0.004). 

Table 2.4: One-way ANOVA plus Fisher's LSD (a = 0.05) of Simpson diversity (1/D) 
between harvests (within PHC treatment groups) at 1, 4, 7, 10, 13, and 16 weeks following 
PHC treatment. 

Harvest 
P-FH 

1 wk 
4 wk 
7 wk 
10 wk 
13 wk 
16 wk 

P-CWD 
1 wk 
4wk 
7 wk 
10 wk 
13 wk 
16 wk 

B-FH 
1 wk 
4 wk 
7 wk 
10 wk 
13 wk 
16 wk 

B-CWD 
1 wk 
4 wk 
7 wk 
10 wk 
13 wk 
16 wk 

PHC-0 
mean (SE) 

1.23 (0.39) a 
1.94 (0.39) aft 
1.19(0.39)o 
1.36 (0.39) a 
3.07 (0.39) ft 
2.80 (0.39) b 

1.23 (0.33) 
1.52(0.33) 
1.11(0.33) 
2.01 (0.33) 
1.12(0.33) 
1.80(0.33) 

1.24(0.10) 
1.23 (0.10) 
1.22(0.10) 
1.1 6(0.10) 
1.21 (0.10) 
1.36(0.10) 

1.12(0.07) 
1.17(0.07) 
1.12(0.07) 
1.10(0.07) 
1.16(0.07) 
1.17(0.07) 

PHC-1 
mean (SE) 

1.65 (0.37) 
2.33 (0.37) 
1.11(0.37) 
2.11(0.37) 
1.77(0.37) 
1.84(0.37) 

1.11(0.21) 
2.46(0.21) 
1.23(0.21) 
1.3(0.21) 

1.20(0.21) 
1.19(0.21) 

1.35(0.11) 
1.11(0.11) 
1.13(0.11) 
1.12(0.11) 
1.17(0.11) 
1.12(0.11) 

1.11(0.08) 
1.16(0.08) 
1.11(0.08) 
1.1 (0.08) 
1.07(0.08) 
1.09(0.08) 

PHC-2 
mean (SE) 

1.29 (0.27) a 
2.40 (0.27) ft 
1.35 (0.27) a 
1.52 (0.27) aft 
1.99 (0.27) aft 
2.16 (0.27) aft 

1.24(0.27) 
2.07 (0.27) 
1.10(0.27) 
1.24(0.27) 
1.33 (0.27) 
1.41 (0.27) 

1.10(0.02)00" 
1.22 (0.02) ft 

1.22 (0.02) oft 
1.12 (0.02) c 
1.18 (0.02) d 
1.08 (0.02) ae 

1.53(0.11)0 
1.22 (0.11) oft 
1.53(0.11)o 
1.04 (0.11) ft 
1.13 (0.11) ft 
1.31 (0.11) aft 

PHC-3 
mean (SE) 

1.58 (0.36) aft 
1.13 (0.36) a 
1.39 (0.36) aft 
2.44 (0.36) ft 
1.49 (0.36) oft 
1.54 (0.36) oft 

1.11(0.22) 
2.35 (0.22) 
1.17(0.22) 
1.17(0.22) 
1.36(0.22) 
1.49(0.22) 

1.10(0.00)o 
1.10 (0.00) a 
1.10 (0.00) a 
1.10 (0.00) a 
1.12(0.00)o 
1.15 (0.00) ft 

1.34 (0.02) a 
1.22 (0.02) ft 
1.36 (0.02) a 
1.10 (0.02) c 
1.08 (0.02) c 
1.07 (0.02) c 
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ECM and ERM community structure 

Multivariate analysis using nonmetric multidimensional scaling (NMS) gave a three-

dimensional solution with a final stress of 19.66 and instability of 0.12. The NMS ordination 

in Figures 2.4 and 2.6 show relative fungal community structure (genotypes) for all 109 

plant-soil systems for which successful fragment analysis occurred. These included 24 pine, 

12 birch, and 25 lingonberry single-plant systems, as well as 24 pine and lingonberry double-

plant systems in 48 FH, 43 CWD and 18 FHoil (used in single-plant systems only) soils. 

Nearly half of all systems were treated with PHCs (53 treated and 56 untreated systems); 54 

and 55 systems, respectively, were harvested from 1 and 16 weeks. Except for birch -CWD 

and FHoil groups, all other (plant-soil-PHC-harvest) treatment groups were represented by 

n=2-3. The total fungal community was represented by 91 DNA fragment lengths 

(genotypes): 74 were associated with pine and 60 with lingonberry (3 genotypes were 

exclusive to birch). Thirty genotypes were associated with double-plant systems only, 30 

were associated with only single-plant systems, and 31 genotypes were common to both 

single- and double-plant systems. 

Harvest time andPHC effects 

NMS ordinations of the harvest time and PHC treatment variables are shown along the first 

and second axes of Figure 2.4. Overall, fungal community structure varied significantly 

(p=0.005) between the 1 and 16-week harvest times. PHC treatment was not found to lead to 

any significant differences in fungal community structure when considered as a single 

variable. However, comparisons within PHC treated and control groups revealed that the 

PHC treated group at the 16-week harvest significantly varied from both PHC treated 

119 



(p=0.005) and control (p=0.031) groups at the 1-week harvest, while fungal communities in 

the control group did not vary after 16 weeks (Figure 2.5). In Figure 2.4, a great deal of 

overlap is observed in the distribution of fungal communities at the two harvest times 

(represented by diamond and inverted triangle symbols, respectively), but the 16-week group 

appears to be more concentrated towards the upper left quadrant of the plot. The separation 

of PHC treated communities (closed symbols) should appear more pronounced than 

untreated control communities (open symbols). 

ECM fungal communities of pine exhibited the same trends observed for the overall fungal 

community; namely, that PHC impacts on fungal community structure were observed only 

over time (p=0.031). ERM communities of lingonberry communities showed no differences 

between PHC treatment and harvest time groups. 
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Figure 2.4: NMS ordination of mycorrhizal fungal showing multivariate effects of harvest 
time (1 and 16 weeks) and PHC treatment (stress = 19.66; instability = 0.12). 

PHC ¥5 no PHC (control) p>0.05 

PHC-1wk •* PHC-18wk 
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Figure 2.5: Pairwise comparisons of fungal community structure (genotypes) in PHC-treated 
and control systems at 1 and 16 weeks. Significant differences (MRPP) are represented by 
dark arrows and corresponding p-values; light (slashed) arrows represent no differences 
between groups. 
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Plant effects 

Fungal community structure for different plant systems is represented along the first and 

third axes of the same NMS ordination (Figure 2.6). The clearest distinction is between 

single- and double-plant systems (represented by closed and open symbols, respectively). 

The single lingonberry (closed triangles) systems appear grouped towards the left side of the 

plot whereas single pine systems (closed squares) are more broadly distributed. Birch 

communities (closed circles) are distributed within the single pine and lingonberry clouds. 

Pairwise analysis using MRPP revealed that the pine and lingonberry communities from the 

double-plant systems differed significantly from communities from each of the single-plant 

systems, as well as from each other (p<0.001 in all cases). Single pine system communities 

varied significantly from both birch (p=0.032) and lingonberry (p=0.028) communities, 

which did not vary significantly from each other (note incomplete birch dataset). 
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I Pine (single) 

4 1 Birch (single) 

£i Lingonberry (single) 

• Pine (double) 

\ Lingonberry (double) 

Axis 1 (i^ = 18.8%) 

Figure 2.6: NMS ordination of mycorrhizal fungal communities of single (closed) and 
double (open) plant systems (stress = 19.66; instability = 0.12). 
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Separate analyses of pine and lingonberry communities reiterated differences between the 

single- and double-plant systems. In both cases, genotype richness was greater in the double-

plant systems. For pine, single-plant systems had an average of 5.54 genotypes per root 

system (n=24) compared to an average of 6.88 genotypes per root system (n=24) in double-

plant systems. For lingonberry, single-plant systems averaged 6.20 genotypes (n=25) and 

double-plant systems averaged 7.63 genotypes (n=24). No differences in genotype richness 

were associated with other treatment variables. For both plants, differences between fungal 

communities in single- compared to double-plant systems had p-values of <0.001. 

Organic layer effects 

To eliminate the double-plant effect on the analysis of soil layers, 24 FH, 19 CWD, and 18 

FHoil fungal communities were compared between single-plant systems only. Of a total of 

61 genotypes, 31 were found only in FH soils, while CWD and FHoil soils each had six 

unique genotypes. NMS analysis again gave a three-dimensional solution with a final stress 

value of 17.64 and instability of 0.024. The ordination shown in Figure 2.7 shows the broad 

distribution of genotypes in FH soils (dark squares), which reflects the heterogeneity of 

fungal communities found in these systems. Along the second and third axes, the FHoil soils 

(inverted triangles) are less broadly distributed than the FH soils; the CWD soils (open 

diamonds) form the tightest cluster in the center of the ordination. Fungal community 

structure varied significantly between all three types of soil systems: FH and CWD 

(p=0.016), FH and FHoil (p=0.048), and CWD and FHoil (p=0.027). 

124 



Axis 2 (r8 = 21.4%) 

Figure 2.7: NMS ordination of organic soil layer (FH, CWD, and FHoil) effects in single 
plant systems (stress = 17.64; instability = 0.024) 
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MRPP comparisons between PHC treated and untreated (control) systems within soil groups 

showed that most differences were related to soils, but that some may have been related to 

PHC treatment. No PHC-treated soil systems (i.e. FH, CWD, or FHoil systems) varied 

significantly from each other; all differences were related to the control soils. Fungal 

communities in FH control soils varied significantly from both CWD (p=0.024) and FHoil 

(p=0.041) control soils, but CWD and FHoil communities did not vary significantly from 

each other. Fungal communities in FHoil control soils varied significantly (p=0.016) from 

PHC treated FH soils, but not from either PHC treated CWD or FHoil soil communities. 

Differences between fungal communities in the different soil systems were only found within 

control groups (i.e. FH, CWD, and FHoil all varied significantly from one another), as well 

as between the control FHoil and treated FH and CWD (but not between treated and control 

FHoil soils). Lingonberry communities showed the same soil effects. 

Laccase activity 

Most ECM fungal root tips showed some level of laccase activity (i.e. development of a 

green color over 24 h), as shown in Figure 2.8. The greatest level of activity was associated 

with Rhizopogon-Suillus 1 and the two Russulaceae species that dominated pine roots (the 

Russulaceae ECM associated with birch was not tested). In the numerous trials conducted, 

Russulaceae (root tips) and Rhizopogon-Suillus 1 (root tips and/ or extraradical mycelia) 

harvested from pine seedlings from different soils and PHC treatments consistently produced 

a light green colour within the first hour of the assay, and a deep green colour by the 16-h 

mark. The Rhizopogon-Suillus 2 ECM did not often give positive results for laccase activity, 
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but sometimes produced a light green colour by 16 or 24 hours. Amphinema ECMs usually 

oxidized a low level of ABTS within the first hour of the assay; this light green colour did 

not generally deepen over the subsequent 23 hours, possibly indicating a low level of laccase 

secretion by this ECM. With respect to the ascomycetes, MRA usually showed low laccase 

activity within the first hour and substantial oxidation of ABTS by 16 and 24 hours. Laccase 

activity was seldom observed with Cenococcum ECMs; no enzyme activity was ever 

observed for E-strain. Neither soil type (i.e. organic layer) nor PHC treatment had any 

visible effect on laccase activity associated with these ECM root tips. 

For ERM hair roots, little laccase activity was ever observed; however, in one trial (n=5), 

hair roots from PHC-treated soils showed a strong positive reaction whereas roots from 

untreated soils showed no activity. 

Figure 2.8: Table showing laccase activity of ECM morphotypes and ERM hair roots 
assessed by intensity of colour development (-, none; +, pale green; ++, dark green) at 1, 16 
and 24 h incubation times with ABTS on the left. Symbols in brackets indicate less typical 
reactions over numerous trials (n=5+); Photograph showing range of colour development for 
ECMs (n=3, vertically) incubated in microplate wells with ABTS for 24+ h on the right. 
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Discussion 

We found that PHCs, when applied to plant-soil systems at rates comparable to a large 

terrestrial oil spill event (i.e. equivalent to several tonnes of crude oil per hectare), had little 

impact on established or developing mycorrhizal fungal communities over 16 weeks of 

study. 

PHC impacts on mycorrhizal communities 

Detailed morphological analysis showed that the ECM morphotypes described here represent 

a sub-set of ECMs commonly reported from northern forest soils (Rosling et al., 2003). 

These included Cenococcum, MRA, E-strain, Amphinema, three Russulaceae (including 

Lactarius), two Rhizopogon-Suillus, and two Thelephoraceae types, as well as three 

unidentified ECMs. Notably absent from our bioassay were Piloderma ECMs, even though 

their distinctive yellow mycelia were prevalent in FH, CWD, and particularly FHoil organic 

layers of the sub-boreal forest field site. Piloderma has been associated with greater N 

content that may be more typical of mature forest floors, which may explain why it was not 

associated with the seedling roots in the current study (Lilleskov et al., 2002). It is thought 

that Piloderma may specialize in efficient N uptake or increase nutrient availability through 

enzymatic degradation of organic substrates, potentially including PHCs. Thus, preservation 

of organic layers (i.e. Piloderma habitat) following PHC contamination may be an important 

management strategy for sustaining this ecological function. Cortinarius, which also tends to 

be associated with a high C:N ratio in mature forest soils (Lindahl et al., 2007) and may 

possess biodegradation potential, was also not observed in this study. 
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We found that most ECMs appeared unaffected by PHC treatment at any of the levels tested 

(i.e. ranging from approximately 7 to 22 tonnes ha"1). In one of the few comparable studies 

of PHC-contaminated agricultural and forest soils (i.e. initiated following an oil well blowout 

in northern Italy that contaminated an area of 1,500 ha with 18,000 m3 of crude oil), ECM 

fungal responses ranged from no negative effects to reduced biomass and colonization 

potential (Nicolotti and Egli, 1998). In subsequent experiments, in which different levels of 

PHCs were added to culture media, Nicolotti and Egli (1998) found that some fungal species 

were inhibited by oil whereas others (e.g. Laccaria sp.) appeared to grow better with PHCs, 

even at very high concentrations. Although the current study encompasses more of the 

complexity of the forest soil environment (particularly with respect to source of C via plant 

photosynthesis) and is not directly comparable to culture-based studies, a similar spectrum of 

ECM responses to PHC contaminants was observed. For example, Cenococcum ECMs may 

have been inhibited by PHCs. The dry, flaccid appearance of Cenococcum on some root 

systems may have partially resulted from toxicity of PHC chemicals, but was also likely due 

to physical changes in the soil habitat (i.e. change in water holding capacity of the FH layer) 

that occurred concurrently with PHC contamination. Soil drying may have been exacerbated 

in our model plant - soil systems that lacked a protective moss layer and forest canopy, and 

were thus potentially exposed to an even greater moisture loss due to evaporation compared 

to field conditions. The consequences of Cenococcum reduction as a functional component 

of the community are currently not known. On the other hand, rhizomorphic development of 

Rhizopogon-Suillus types may have been enhanced by PHCs, as hyphal fans proliferated into 

the contaminated mineral soil (biomass was not measured). The resulting expansion of 

mycorrhizosphere space would be expected to support diverse microbial communities 
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involved in the biodegradation of PHC substrates. No differences in distribution or 

abundance were observed for the Russulaceae types, which accounted for the majority of 

ECMs on all pine and birch root systems, regardless of PHC treatment. 

The diversity (i.e. Simpson diversity) of ECM communities on pine and birch root systems 

generally decreased with greater PHC concentrations, but this trend was neither consistent 

nor usually significant. At any one of the six sampling times, there were no substantial 

changes of dominant ECMs in PHC treated systems compared to controls. ECM and ERM 

fungal community structure (based on genotypes) also did not vary between PHC treated and 

untreated (control) systems. As the plant - soil systems were treated with fairly high and 

ecologically relevant concentrations of crude oil, these results indicate that the intact organic 

soil layer, ECM mantle, and ERM hair root provided some level of protection against the 

potential toxicity of PHC constituents (Blakely et ah, 2002). As also reported elsewhere 

(Setala et ah, 2000), our results suggest that maintenance of the ecological integrity of plant -

soil systems provides resilience to environmental stress such as PHC contamination. 

The temporal aspect of assessing mycorrhizal response to PHC treatment in dynamic systems 

was emphasized in this analysis. The morphological studies revealed a general increase in 

ECM richness and abundance over time, which was generally not altered by PHC treatment. 

As seedling root systems and mycorrhizal associations were still growing and developing at 

the time of PHC treatment, changes in diversity may have been due to increased ability to 

identify ECMs, or as a result of fungal succession on root tips, as has been reported from 

other studies (Massicotte et ah, 1999). The molecular studies also indicated shifts in ECM 
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fungal community structure over time and these time-related differences were only 

significant in the PHC treated systems. Thus, important questions with respect to ecosystem 

sustainability are whether PHC contamination alters the trajectory of mycorrhizal community 

structure in the long-term, and whether ecosystem health may be negatively impacted in the 

future as a result. Long term studies are required to address these questions. 

ECM and ERM fungal community structure was largely determined by properties associated 

with host plants than by PHC contamination. Differences in community structure between 

single-plant systems reflect the many potential plant-fungal combinations that occur in 

repeatable units across landscapes (Allen et al, 2003). More information on the individual 

physiologies of these symbioses is required to understand their roles in ecological processes 

and to predict how communities may adapt to future disturbances. Although fungal 

community structure varied between all host plant systems, differences were most striking 

between the single- and double-plant systems (i.e. more complex systems). These 

differences appeared to be due to greater genotype richness per root system, as well as altered 

genotype abundance patterns in the double-plant systems. Even though pine and lingonberry 

mycorrhizas shared the same rhizosphere in the double-plant systems, the ECM and ERM 

fungal communities remained distinct. The mycorrhizal community patterns observed in 

double-plant systems may represent the non-linear, emergent properties associated with 

complex systems whereby the influences of mycorrhizal fungi on plant populations and 

communities are not merely the sum of effects on the individuals within populations 

(Dahlberg, 2001; Allen et al, 2003). 
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In addition to assessing the integrity of established mycorrhizal fungal systems, we also 

tested the ability of seedlings to germinate and grow in contaminated soils (i.e. FHoil 

systems), which is an important consideration in the context of environmental restoration. In 

these chemically complex systems, sensitivity to the initial conditions may create limits to 

mycorrhizal diversity (Allen et ah, 2003), although this was not evident in either of our 

morphological or molecular studies. Nicolotti and Egli (1998) found that crude oil (50 ppm 

hand-mixed into homogenized forest soil) did not inhibit Norway spruce or poplar seed 

germination or kill seedlings. In our study, using a much greater PHC concentration, longer 

weathering period, and reconstructed soil layers, we also found that germination of pine 

seeds did not appear to be inhibited by the presence of weathered crude oil. Furthermore, 

seedling growth/ mycorrhizal colonization was sometimes more vigorous in the previously 

contaminated soils compared to pristine (FH and CWD) layers. Birch seeds appeared to have 

had lower rates of germination, possibly due to interference of PHC chemicals with initial 

interactions between germinating roots, fungal propagules, and mycorrhizal helper bacteria 

(Garbaye, 1994). However, the seedlings that grew in FHoil layer showed no apparent 

differences to seedlings germinated in the other organic soil layers (i.e. FH and CWD layers). 

The survival of lingonberry seedlings also did not differ between FH, CWD, and FHoil soil 

systems. 

Potential for direct mycorrhizal role in biodegradation 

Nicolotti and Egli (1998) reported that some ECM fungi surviving in contaminated forest soil 

may metabolize chemicals in crude oil. The distribution of laccase-secreting fungi represents 

a part of the oxidative potential in soils (Luis et ah, 2005). We found that the metabolic 
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potential for laccase-mediated PHC biodegradation appears to exist among the dominant 

members of ECM fungal communities including two Russulaceae (one Lactarius), 

Rhizopogon-Suillus 1, and Amphinema types. High extracellular enzyme activities have been 

reported for Lactarius and Russula species grown in culture (Gramss et ah, 1998) and 

laccase-like genes have been amplified from Lactarius, Russula, Piloderma and Tylospora 

fungi and soils (Chen et al. 2003; Luis et al, 2005). Increased extracellular enzyme activity 

and expression of genes coding these enzymes have been found at the hyphal fronts of ECM 

systems advancing in the humus of microcosms (Timonen and Sen, 1998; Donnelly and 

Entry, 1999). The function of fungal laccase in the carbon cycle in soils, especially in the 

formation, stabilization and degradation of the organic matter, is also of ecological interest 

(Luis et al. 2004). 

From our study, we know that the Russulaceae types dominated pine root systems in all soil 

systems, both PHC treated and untreated, and could potentially influence large volumes of 

forest soils (if distribution patterns are consistent with our bioassay). The Rhizopogon-

Suillus 1 ECM, also influenced large volumes of mineral soil via rhizomorphic proliferation, 

which may have even have been enhanced by high levels of PHC contamination. 

Rhizopogon-Suillus ECMs are not well studied, partly because they are often found deeper in 

the soil profile than most researchers sample (Rosling et al, 2003). Piloderma ECMs were 

not described from our study, but it is likely that laccase-secreting Piloderma ECMs are 

abundant in mature forest soils. These results indicate that soils with intact ECM systems 

may possess high biodegradative potential for PHC contaminants via the combined activities 

(syntrophic metabolism) of microorganisms in the mycorrhizosphere. 
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We did not find evidence of enhanced laccase activity (i.e. intensity of laccase reactions) 

resulting from exposure of pine ECMs to PHC substrates, as has been reported from studies 

in which a variety of different aromatic compounds were tested (Burke and Cairney, 2002). 

It could be that the ECMs in this study were directly exposed to lower PAH concentrations in 

the crude oil-contaminated soil compared to other studies. Alternatively, ECM fungi 

inhabiting soils influenced by organic layers rich in lignin and humus may exist in a state of 

enhanced laccase expression and activity. The warm, wet greenhouse conditions may have 

further enhanced laccase activity through provision of favourable decomposition/ 

biodegradation conditions. 

We generally did not observe much evidence of laccase activity when hair roots of 

lingonberry were tested, even though ERM fungi (e.g. R. ericae) have been reported to have 

well-developed saprotrophic abilities (Burke and Cairney, 2002; Perotto et al. 2002). In one 

set of trials, laccase activity was consistently observed with hair roots that were recently 

exposed to PHCs, but not with control roots. This result was not repeated, so no conclusions 

can be drawn from this. As very little is known regarding biodegradation capacity in ERM 

systems, further investigation is warranted. 

Conclusions 

In this study, we found that established ECM and ERM systems appear resilient to toxic 

effects of crude oil, which was related to the integrity of the plant - soil systems. In addition, 

ECM systems may directly enhance PHC biodegradation at the fungal - soil interface 
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through secretion of laccase, as well as indirectly aiding biodegradation through provision of 

colonization surfaces and co-metabolic substrates for associated bacterial communities. 

Thus, mycorrhizal systems may also be part of the remediation solution for PHC 

contaminated forest sites within a sustainable ecosystem management context. 
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Chapter 3: Enhanced biodegradation of petroleum hydrocarbons in the 
mycorrhizosphere of sub-boreal forest soils 

Abstract 

The dynamics of petroleum hydrocarbon (PHC) biodegradation in boreal forest soils are not 

well understood. We used a bioassay approach to determine whether differences in 

mycorrhizosphere-associated bacterial communities corresponded to differences in PHC 

biodegradation patterns. Surface-sterilized seeds {Pinus, Betula, Alnus sp.) or seedlings 

(Vaccinium sp.) were planted into Conetainer™ pots containing reconstructed soils: an 

organic layer (mor humus, coarse woody debris, or previously oil-contaminated humus) 

overlying sandy mineral horizons (Ae and Bf) of field-collected forest soils obtained from 

central BC, Canada. After 4 months, BC light crude oil (219 mg cm"2) was applied to the soil 

surface around the seedling stem; systems were destructively sampled at 1 and 16 weeks 

following treatment. Concentrations of PHCs in 4 fractions (based on equivalent normal 

straight-chain boiling point ranges) were determined using acetone-hexane extraction 

followed by GC-FID analysis. Genotypic profiles of root-associated bacterial communities 

were generated using length heterogeneity-PCR analysis of 16S rDNA; metabolic profiles 

were based on C substrate use after 7 weeks. Nearly all plant-organic soil layer combinations 

showed significant loss of nC10-nC16 fraction PHCs from 1 to 16 weeks, indicating an 

inherent capacity for biodegradation within these soils. Total PHC (nC10-nC50) 

concentrations declined significantly in only planted (pine-woody debris and birch-humus) 

systems, reinforcing the importance of the (mycor)rhizosphere for supporting degradative 

microbial communities. Multivariate analyses showed that (mycor)rhizosphere type and 

complexity influenced bacterial community structure, but that this was not related to PHC 
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biodegradation. The level of PHC contamination used in this study appeared to have 

minimal impact on soil bacterial community structure or broad metabolic functions. 



Introduction 

Boreal ecosystems are increasingly exposed to petroleum hydrocarbon (PHC) contamination 

due to expanding natural resource extraction activities (Kanaly and Harayama, 2000). Long-

term studies of oil-contaminated forest soils have reported reductions in PHC levels due to 

biodegradation (or biotransformation) by indigenous microbial communities (Braddock et 

ah, 2003; Prince et ah, 2003). From culture and microcosm experiments, many ubiquitous 

soil fungi and bacteria have been demonstrated to biodegrade numerous PHC compounds 

(Heinonsalo et ah, 2000; Sarand et ah, 2000; Genney et ah, 2004; Corgie et ah, 2003) and 

some genetic and biochemical pathways have been elucidated (Meharg and Cairney, 2000; 

Burke and Cairney, 2002; Watanabe, 2002; Diaz, 2004). It is generally accepted that the 

capacity to biodegrade PHCs is intrinsic in most soils (Meharg and Cairney, 2000; Chaillan 

et ah, 2004; Delille et ah, 2004) and requires metabolic synergy among different functional 

guilds of organisms, including mycorrhizal fungi and the bacterial communities closely 

associated with the mycorrhizosphere (Burke and Cairney, 2002; Diaz, 2004; Chaudhry et 

ah, 2005). Very little is currently known of the dynamics of PHC biodegradation as it occurs 

within the mycorrhizosphere of forest soil systems (Robertson et ah, 2007). 

Soil microbial communities may shift in response to changes in environmental conditions 

(Watanabe, 2002), but exhibit high resilience to environmental stresses when soil organic 

layers (e.g. humus, woody debris, etc.) are not severely disrupted (Setala et ah, 2000). Major 

impacts of PHCs on forest soil microbial communities appear to be associated with 

disturbances to water, nutrient and oxygen regimes related to the hydrophobicity and fluidity 

of oily products (Tarradellas and Bitton, 1997). Spilled PHCs initially spread laterally within 
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the lignin-rich humus of the forest floor; eventually, lighter fractions move down the soil 

profile, along the paths of roots and fissures (Trofimov and Rozanova, 2003; Suleimanov et 

al, 2005), where changes with depth in soil chemical and mineralogical properties create 

contrasting habitats for microorganisms (Dickie et al, 2002; Rosling et al, 2003). PHC 

contamination is expected to lead to an initial loss of bacterial diversity, followed by rapid 

proliferation of metabolically competent populations capable of inhabiting the new 

environmental conditions imposed by the chemical contaminants (Gramss et al, 1998; Diaz, 

2004). Part of this rapid adaptation within microbial communities results from lateral 

transfer of mobile genetic elements carrying genes for PHC biodegradation (Sarand et al, 

2000; Diaz, 2004) and is controlled by the composition and functional redundancy of the 

community originally present (Setala et al, 2000; Delille et al, 2003). Changes in bacterial 

community structure attributed to PHC contamination have been observed for several years 

after the initial spill event occurred (Lindstrom et al, 1999). 

Northern forests are dominated by plants forming ecto- (ECM) and ericoid (ERM) 

mycorrhizal symbioses with fungi expected to have well-developed saprotrophic activities 

(Read and Perez-Moreno, 2003). Mycorrhizal establishment alters the quality and quantity 

of root exudates that supply energy to the large chemo-organotrophic biomass associated 

with the mycorrhizosphere (Rygiewicz and Anderson, 1994; Nannipieri et al, 2003; Morgan 

et al, 2005). Interactions between mycorrhizal fungal mycelia and associated bacterial 

communities are important mechanisms for accessing mineral nutrients from organic 

substrates (Burke and Cairney, 2002; Sen, 2003) and also seem crucial for cometabolic 

biodegradation of PHCs in contaminated soils (Sarand et al, 1998; 2000). Mycorrhizosphere 
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development and function play central roles in controlling bacterial communities and their 

biodegradation activities in lignin-rich humus and PHC-contaminated soils (Heinonsalo et 

al, 2000). Enhanced PHC biodegradation in mycorrhizosphere soils (i.e. mycorrhizosphere 

effect) is attributed to the greater metabolic activities of higher densities of microorganisms 

(Heinonsalo et al, 2000; Corgie et al, 2003; Siciliano and Germida., 1998). 

Various combinations of host plants and mycorrhizal fungi may create specific 

mycorrhizosphere characteristics that are important with respect to biodegradation capacity 

(Rygiewicz and Anderson, 1994; Perez-Moreno and Read, 2000; Selmants et al, 2005). For 

example, plants that also form symbioses with N-fixing organisms (e.g. Alnus sp. with 

Frankia) have increased availability of N as well as C in the mycorrhizosphere (Selmants et 

al, 2005; Roy et al, 2007). Interactions between overstory (predominantly ECM plants) and 

understory (plants forming ERM or arbuscular mycorrhizas) vegetation may also alter 

capacity for biodegradation (Read and Perez-Moreno, 2003). Thus, host-fungal effects on C 

and nutrient availability should not be ignored in biodegradation capacity studies (Corgie et 

al, 2003). 

In the current study, we examined relationships between PHC biodegradation and indigenous 

microbial communities in reconstructed sub-boreal forest soils. We compared 

biodegradation patterns in different plant-soil systems that varied with respect to organic soil 

layer (i.e. forest floor, coarse woody debris, or forest floor previously contaminated with 

PHCs) and plant {Pinus, Betula, Alnus, or Vaccinium sp.) characteristics. In these systems, 

organic soil layers provided the initial inoculum for the developing rhizospheres; the 
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functional composition of these communities was expected to be influenced by the relative 

abundance of lignin and/ or previous exposure to PHCs. Microbial community structure and 

function were expected to be further influenced by individual (mycor)rhizosphere properties. 

For example, although pine and birch both support ECM communities, they differ with 

respect to density and depth of fine root tips. Alder forms symbioses with both ECM and In

fixing communities, while lingonberry forms ERMs. Differences between single- and 

double-plant (i.e. pine and lingonberry) systems were also assessed, as well as effects on 

bacterial communities by the PHC treatment itself. Ultimately, the goal of this study was to 

determine whether differences in bacterial community (genotypic and metabolic) profiles 

corresponded to changes in biodegradation patterns in an ecologically relevant context. 

Materials and methods 

Field site 

The Kenneth Creek field site is located in the wet, cool subzone of the sub-boreal spruce 

(SBSwkl) biogeoclimatic zone of central British Columbia, Canada, about 100 km east of 

Prince George (53°34'N, 122°47'W). In 1982, the forest was logged and burned, then 

subsequently planted with lodgepole pine {Pinus contorta Dougl. Ex Loud. var. latifolia 

Engelm.); currently, the site is a mature, even-aged pine stand with small hybrid white spruce 

{Picea glauca x engelmannii Parry ex Engelm.) and lesser numbers of western hemlock 

(Tsuga heterophylla (Raf.) Sarg.). Young subalpine fir {Abies lasiocarpa (Hook.) Nutt.) and 

sitka alder (Alnus crispa var. sinuata (Reg.) Rydb.) are present at the edge of the forest, 

along the access road; western redcedar {Thuja plicata Donn) and trembling aspen {Populus 

tremuloides Michx.) are also present in an unlogged stand across the main road. The site has 
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a thick understory of oval-leaved blueberry (Vaccinium ovalifolium Sm.); mosses and lichens 

(e.g. Peltigera) cover the forest floor, with some Lycopodium species. 

The soils on this site were described by Arocena and Sanborn (1999). Soils are classified as 

Eluviated Dystric Brunisols (Soil Classification Working Group, 1998), and consist of sandy 

parent material with low clay content and few coarse fragments. The forest floor is mor 

humus, from 2-5 cm thick with copious fungal mycelia present. The C:N ratio of the forest 

floor is approximately 50 and the pH (water) is ~ 4.2. Gray Ae horizons are generally 1-2 cm 

thick, with thicker pockets in some areas. Red Bf horizons extend to almost 30 cm, beneath 

which are Bm (27-60 cm), BC (60-100) and C (> 1 m) horizons. The C:N ratios of the Ae 

and Bf horizons are about 20 and 13, respectively. The pH (water) of the Ae horizon is 4.2 

while the pH of the Bf horizon is about 4.8, increasing with depth to about 6.0 at the 

transition to the C horizon. Fine roots are found at depths greater than 1 m. Large coarse 

woody debris (i.e. downed trees), the legacy of past forest management, is abundant all over 

the site. 

Organic layers and the top 20-30 cm of mineral soils (Ae and Bf horizons) were collected 

from the forest site in September of 2005 and 2006. The organic layers included the mor 

humus forest floor (FH) that had been undisturbed for approximately 20 years, coarse woody 

debris (CWD) in an advanced state of decay (i.e. decay class 5), and previously PHC-

contaminated mor humus (FHoil) that had weathered in situ for four months throughout the 

summer. The FHoil soils were collected in the first year only. In May of 2005, 2.0 L of BC 

light crude oil (Husky Refinery, Prince George, BC) was applied to each of three 1-m2 plots 
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with the moss layer (but not seedlings and other plants) removed. The oil had been 

previously bubbled with N2 gas to remove the light and volatile compounds; a watering can 

was used for even application in the field. All soils were stored at 4°C prior to use in 

bioassay experiments, which commenced within 10 days of soil collection. 

Bioassay andPHC treatment 

Forest soils (i.e. Ae [~1 cm] and Bf [-15 cm] mineral soil layers beneath organic [FH, CWD, 

or FHoil] soil layers [~2 cm]) were reconstructed in Cone-tainer™ pots (3.8 x 21 cm, Stuewe 

and Sons, Corvallis, Oregon) with two clay pellets in the bottom to prevent soil loss (Setala 

et al, 2000). Mineral soils (Ae and Bf layers) were homogenized and sieved through (1 cm2) 

screens prior to potting. Surface-sterilized seeds of lodgepole pine {Pinus contorta var. 

latifolia), white birch (Betula papyrifera Marsh.), and sitka alder {Alnus crispa var. sinuata), 

collected from the SBS and obtained from the Ministry Tree Seed Center, (Surrey, BC (Seed 

lots DWD20050009A (location 079-B-008), DWD20050009B (location 094-E-015), and 

DWD20050047A (location 002-E-001), respectively), were planted into each pot. 

Lingonberry {Vaccinium vitis-idaea L.) seedlings were obtained from Birch Creek Nursery 

(Prince George, BC) and planted into 10x10x10 cm pots (i.e. Ae [~1 cm] and Bf [~7 cm] 

mineral soil layers beneath organic [~2 cm] soil layers). All pots were placed in the 

greenhouse (22°C day temperature, 15°C night temperature, and 16 h photoperiod) and 

fertilized once a month (5 mL of NPK fertilizer; providing 100 ppm each of NPK) for the 

first four months following seeding/ planting. The plants were watered two or three times 

per week for the duration of the experiment. Single-plant (pine, birch, alder, and 
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lingonberry) systems were established in 2005-06; double-plant (pine and lingonberry) 

systems were established in 2006-07. 

Seedlings and mycorrhizas were well established after four months of growth. At this time, 3 

mL BC light crude oil (with volatiles removed as for the field application) was pipetted onto 

the organic soil surface of each pot, around, but not touching, the seedling stem. PHC 

concentration (219 mg cm'2) corresponded to an application rate of 21,900 kg ha"1 (i.e. ~22 

tonnes ha"1). The smell of crude oil dissipated in the greenhouse pod within the first week 

following PHC treatment and no PHC loss was observed from the bottom of the pot (i.e. no 

sheen on the wet surface below) after watering for the duration of the experiment. These 

observations provided some confidence that observed PHC losses between 1 and 16 weeks 

were primarily due to biodegradation. 

Experimental design and sampling 

Experiments followed a completely randomized block design with a planned full factorial 

structure for plant, organic soil layer and PHC treatments (Table 3.1). 

Table 3.1: Summary of plant, organic soil layer, and PHC treatment variables for 2005-2006 
(single-plant) and 2006-2007 (double-plant) studies (n=3)*. 

Plant Organic Soil Layer PHC 
Pine [P] Forest floor [FH] No PHC (control) 
Birch [B] Coarse woody debris [CWD] PHC (219 mg cm"2) 
Alder [A] Contaminated forest floor [FHoil] 
Lingonberry [L] No organic soil [NO] (control) 
Pine + Lingonberry [P+L] 

n<3 (due to poor germination) for birch -CWD, birch -FHoil, and all alder treatments; 
these treatments were removed from PHC and DNA analyses. 
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For soil, PHC, and DNA analyses, all three soil layers (organic, Ae, Bf) of PHC-treated and 

untreated control soil systems (n=3) were destructively sampled at 1 and 16 weeks following 

PHC treatment. Treatments included single-plant (pine [P], birch [B], lingonberry [L], and a 

control [N] with no plant (i.e. no mycorrhizosphere)) and organic soil layer (mor humus 

[FH], coarse woody debris [CWD], PHC-contaminated mor humus [FHoil], and a control 

[NO] with no organic layer) combinations; double-plant (P+L) systems and unplanted 

controls (N) were grown in FH and CWD organic soil layers. Individual pots were emptied 

into trays; plants were gently removed (for future mycorrhizal community analysis) from the 

soil with as little disturbance as possible to the reconstructed soil horizons. Approximately 1 

g (wet weight) of each soil layer was collected in duplicate in 20 mL pre-weighed glass vials 

(Fisher Scientific, Ottawa, Ontario). One set of samples was dried overnight in a 105°C oven 

to obtain soil dry weights (i.e. soil moisture contents); the other set was stored at 4°C until 

PHC extraction. The remaining soils were combined within treatment groups and then 

collected and air-dried for soil nutrient analysis and pH. Root systems (intact, but with the 

shoot excised) were shaken free from the soil and then washed in 35 mL sterile H2O. Roots 

were then divided into 2 mL tubes and stored at -20°C until DNA extraction. 

For bacterial community level physiological profile (CLPP) analysis, 60 plant - organic soil 

systems (n=2) were harvested seven weeks after PHC treatment in 2006. Treatments 

included PHC-treated and control pots for all single plant (pine [P], birch [B], alder [A], 

lingonberry [L], and no plant [N]) and organic soil layer (FH, CWD, FHoil) combinations. 

After initially shaking the roots to remove excess soil, the intact root systems were placed in 

50 mL tubes containing 35 mL of sterile dH20. Deionized water was used instead of buffer 
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as it does not contain nutrients that could potentially interfere with extracellular enzyme 

analysis and because buffering may alter enzyme activity or bioavailability of contaminants/ 

substrates (Palmroth et al, 2005). The tubes were gently shaken for 20 s to remove 

mycorrhizosphere soil clinging to the roots. This solution was used to inoculate Biolog 

EcoPlates™ (Biolog, Hayward, CA). 

PHC extraction and quantification using GC-FID 

A sequential shake method was used for PHC extraction (Schwab et al, 1999; Siddique et 

al, 2006). Ten millilitres of acetone:hexane (1:1, vol/vol) were added to approximately 1 g 

of soil (wet weight) in 20 mL glass vials. The vials were shaken on a reciprocating platform 

shaker at 120 cycles per minute for 30 min. Soil particles were allowed to settle before the 

extract was removed. This process was repeated three times and extracts were then 

combined. 

The extracts were cleaned using a silica gel column procedure to remove polar organic 

compounds (CCME, 2001). Glass columns (inside diameter of 16 mm) were plugged with 

glass wool and filled with approximately 60 mm of 70-230 mesh Grade 60 A activated 

(heated to 110°C for 12 h) silica gel followed by approximately 25 mm of ASC anhydrous 

sodium sulfate (dried at 400°C for 4 h). Approximately 10 mL of acetone:hexane (1:1, 

vol/vol) was used to condition the column prior to adding the 30 mL of PHC extract solution, 

which was accomplished by pipetting the solution into the top of the column and letting it run 

down the glass to the top of the sodium sulfate layer. After the extract had passed through 

the column, the column was flushed with 10 mL cyclohexane to ensure all compounds of 
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interest were collected. The collection vessels were 40 mL glass vials with Teflon-lined 

caps. Two milliliters of toluene were added to each vial and the caps were left open to 

evaporate the lighter organic solvents. Once most of the solvents had evaporated, the 

concentrated PHC extracts were transferred to 2 mL GC tubes for the final evaporation, and 

topped up to exactly 2 mL with toluene if necessary. The PHC extracts were stored at 4°C 

until GC-FID analysis. Acetone, hexane (GC grade) and other chemicals (AR grade) were 

purchased from Fisher Scientific, Ottawa, Ontario. 

The PHC extracts were analyzed on a Varian Model CP 3800 Gas Chromatograph (GC) 

equipped with a flame ionization detector (FID). A 15 m x 0.25 mm ID with 0.25 urn film 

thickness ZB-5 capillary column (Phenomenex Torrance, CA) was used for the separation of 

the PHC extracts. Typically 1 uL of PHC extract was injected into the GC system using a 

Varian CP 8400 auto-sampler. Splitless injection mode was performed on the 1079 PTV 

injector and after 0.7 min, the split mode was activated at split ratio 10:1. Both the injector 

and the detector (FID) temperatures were kept at 320°C during the analysis. The capillary 

column temperature was initially held at 50°C for 1 min, then increased at 15.0°C min"1 to 

110°C and further increased at 10.0°C min"1 to 300°C and held at 300°C for 10 min. The 

total run time was 34 min for each sample. The carrier gas (helium) was maintained at a 

constant flow rate of 1.5 mL min"1 for the whole analysis and no pressure pulse was used for 

the injection. 

PHCs from crude oil were quantified using the CCME reference method for determining 

PHC fractions (each fraction based on equivalent normal straight-chain hydrocarbon (nC) 
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boiling point ranges) in soil (CCME, 2001). The PHC fractions F2 (nCIO- nC16), F3 (nC16-

nC34) and F4 (nC34-nC50) were determined according to the CCME Canada-Wide Standard 

for Petroleum Hydrocarbons in Soil - Tier 1 Method (CCME, 2001). Earlier work showed 

that the F2 fraction contained mainly aliphatics such as alkanes. The F3 fraction includes 

aliphatic hydrocarbons as well as PAHs such as fluorene (C12H10), phenanthrene (C14H10) 

and pyrene (Ci6Hi0); here, we divided the F3 fraction into F3a (nC16-nC23) and F3b (nC23-

nC34) fractions. Previous studies have shown the Fl fraction (nC6-nC10) to be negligible 

and therefore it was ignored in this study. Peak retention times (i.e. peak maximums) of the 

external standards decane (nCIO), hexadecane (nC16), nonadecane (nC19), eicosane (nC20), 

tricosane (nC23), dotriacontane (nC32), and tetratriacontane (nC34) (Sigma Aldrich, 

Oakville, Ontario) dissolved in toluene were used to determine F2, F3a, F3b and F4 regions 

on the GC-FID chromatograms (Figure 3.1); external standards were run concurrently with 

samples at concentrations of 10, 25, 50, 125 and 250 ppm. 

PHC concentrations (\ig mL"1) were calculated by dividing the areas under the GC-FID 

curves by the response factor for the F2, F3a, F3b, F4 and total PHC (tPHCs). These values 

were then multiplied by the volume of the GC vial (2.0 mL) divided by the equivalent dry 

weight (g) of each soil sample to obtain concentrations in u.g g"1 (ppm). The final 

concentrations of PHCs were compared at 1 and 16 weeks by 1 -way ANOVA (a = 0.05) 

using Statistica 6.1 (StatSoft Inc., USA). 
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F2(nC10-nC16) F3a (nC16-nC23) F3b (nC23-nC34) 
4 fc_ 

F4 (nC34+) 

Figure 3.1: Overlay of two chromatograms generated from GC-FID analysis showing a 
reduction in PHC peak areas from 1 to 16 weeks. The vertical lines represent the boundaries 
(based on retention times of standards) for analysis of the F2 (nC10-nC16), F3a (nC16-
nC23), F3b (nC23-nC34) and F4 (nC34-nC50) PHC fractions. 

Soil nutrient analysis andpH 

Organic (FH, CWD and FHoil) and mineral soil (Ae and Bf) samples from single-plant 

systems were analyzed for total C and N content using <100-mesh samples (air-dried, then 

ground in a Model MM200 ball mill; Retsch, Haan, Germany) by dry combustion using a 

Model 1500 NC Elemental Analyzer (Fisons, Milan, Italy). The pH of organic soil layers 

was measured in a 1:4 soil to deionized H2O suspension while 1:2 suspensions (in deionized 

water) were used for mineral soils (Kalra and Maynard, 1991). 

LH-PCR and fragment analysis 

Mycorrhizosphere-associated bacterial communities (genotype richness and abundance) were 

characterized by amplicon length heterogeneity PCR (LH-PCR) using the D4 fluorescent 
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dye-labeled forward primer 27F (5'AGAGTTTGATCMTGGCTCAG) and unlabelled reverse 

primer 355R (5'GTCGCCTCCCGTAGGAGT) as described by Mills et al (2003). Root 

systems were crushed in liquid nitrogen and DNA was extracted using a CTAB (hexadecyl 

trimethyl ammonium bromide) protocol with an extra phenol/chloroform-isoamyl alcohol 

(1:1) purification step (Fujimura et at, 2008). DNA extracts were cleaned using the Wizard® 

PCR Preps DNA Purification System kit (Promega); cleaned extracts were resuspended in 

TE buffer. PCR reactions consisted of 3 uL DNA (diluted 1:50), 10X PCR buffer, 2 mM 

dNTPs, 50 uM MgCl2, 10 uM forward and reverse primers (Proligo, CO), 0.7 U Platinum 

Taq DNA polymerase (Invitrogen Life Technologies), and nuclease-free water (Integrated 

DNA Technologies, Inc.) to a final volume of 30 uL. The DNA Engine DYAD™ 

thermocycler (MJ Research, Inc., Watertown, MA) conditions were as follows: initial 

denaturation for 1 min at 94°C, 35 cycles of denaturation (94°C for 45 s), annealing (52°C for 

45 s) and extension (72°C for 1 min 30 s), and final extension at 72°C for 10 min. PCR 

products were run on 1.2% agarose gels to confirm amplification. 

PCR products (2 uL) were loaded into a CEQ™ 8000 sequencer (Beckman-Coulter Inc.) 

along with CEQ 400 size standard mixture. Run conditions were 60°C separation 

temperature, 4 kV voltage, and 120 min separation time. Analysis was performed using the 

amplicon fragment length polymorphism (AFLP) program of the CEQ™ 8000 sequencer and 

the cubic model for size standard with a bin width of 1.5 bp. Peaks less than 11% of the total 

sample peak height were not included. Profiles from separate DNA extractions and PCR 

reactions were compared to assess reproducibility and suitability for analysis. 
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Relative abundance of genotypes was calculated by relativizing the fluorescent signal 

strength of each fragment peak to the total peak area within each sample (Osborne et al, 

2006). Community structure was assessed graphically with Nonmetric Multidimensional 

Scaling (NMS) using PC-ORD 5.0 software (McCune and Mefford, 1999; Mills et al, 2006; 

Ramette, 2007). NMS was calculated on the basis of a Sarensen distance measure with 50 

runs with real and randomized data and a maximum of 500 iterations to assess stability 

(instability criterion was 0.00001). A stepwise reduction in dimensionality (6D-1D) was 

used to minimize stress along with a random starting configuration (user-provided seeds). 

When possible (i.e. for balanced analyses), multivariate differences were tested statistically 

with nested permutational multivariate ANOVA (NPMANOVA) (Anderson, 2001); 

otherwise, univariate differences were tested with Multi-Response Permutation Procedures 

(MRPP) (McCune and Grace, 2002) to examine effects between treatments. 

Community level physiological profiles 

The metabolic potential of mycorrhizosphere bacteria was assessed by community level 

physiological profiles (CLPP) based on broad differences in C-substrate use patterns 

(Hofman et al, 2004; Palmroth et al, 2005). Mycorrhizosphere soil solutions (100 uL) were 

inoculated into Biolog EcoPlates™ (Biolog, Hayward, California) containing triplicate wells 

of 31 substrates commonly found in the rhizosphere (at least nine are considered to be 

constituents of plant root exudates) along with a redox dye (tetrazolium violet) that is 

reduced to a purple color during substrate oxidation. The plates were incubated in the dark at 

~20°C. Reaction patterns (optical density at absorbance of 590 nm) were analyzed with a 
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microplate reader (Biolog Microstation plate reader and Biolog MicroLog 3 4.01 A software) 

at 24-h intervals for five days. 

For each plate, optical densities (OD590) of triplicate wells were averaged and values for the 

water control subtracted from each averaged well value; negative values were adjusted to 

zero. Average OD590 values were calculated for substrate guilds: including amino acid (L-

arginine, L-asparagine, L-phenylalanine, L-serine, L-threonine, glycyl-L-glutamic acid), 

amide/ amine (phenylethylamine, putrescine), carbohydrate (D-cellobiose, a-D-lactose, P-

methyl-D-glucoside, D-xylose, I-erythritol, D-mannitol, N-acetyl-D-glucosamine), 

carboxylic acid (D-glucosaminic acid, D-galactonic acid, y-lactone, D-galacturonic acid, 2-

hydroxy benzoic acid, 4-hydroxy benzoic acid, y-hydroxybutyric acid, itaconic acid, a-

ketobutyric acid, D-mallic acid), polymer (tween 40, tween 80, a-cyclodextrin, glycogen), 

and miscellaneous (pyruvic acid methyl ester, glucose-1-phosphate, D,L-a-glycerol-

phosphate) C substrates (Preston-Mafham et ah, 2002). Kinetic analysis of OD590 values by 

substrate guild was performed by calculating the area under each substrate use curve from 24 

to 120 hours, which corresponded to the log (linear) phase of bacterial growth. 

Area-under-curve values for PHC-treated and untreated communities were compared by 1 -

way ANOVA (a = 0.05) with either plant or organic soil treatments pooled. Principal 

components analysis (PCA) was used to assess treatment and substrate effects on variation in 

bacterial community profiles. All analyses were conducted using Statistica 6.1 (StatSoft Inc., 

USA). 
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Results 

PHC quantification from soils 

Not all plant - organic soil combinations germinated in sufficient quantities to allow for a 

full factorial treatment with an equal number of replicates; thus, treatments with n<3 were 

not included in PHC analyses. For the single-plant systems (2005-06), triplicate samples 

were obtained at the two harvest dates (t = 1, 16 weeks) for P-FH, P-CWD, P-FHoil, B-FH, 

L-FH, L-CWD, L-FHoil and the unplanted controls (N-FH, N-CWD, N-FHoil), for a total of 

30 pots (each with three soil horizons) per harvest. For the double-plant systems (2006-07), 

triplicate samples were obtained at the two harvest times for PL-FH, PL-CWD and the 

unplanted controls (N-FH, N-CWD), for a total of 12 pots per harvest. 

Total PHC concentrations (sum of F2, F3a, F3b, F4 fractions) in organic layers of PHC-

treated soil systems averaged over 150,000 ppm at 1 week (Figure 3.2). The high ppm was 

due, in part, to the lower particle density in organic compared to mineral layers. PHCs 

extracted from organic (FH, CWD and FHoil) soil layers accounted for 90% of the total 

PHCs extracted from each soil system; PHC levels in Ae layers were typically greater 

(~7.3%) than in Bf layers (~1%). In organic layers, PHC concentrations generally decreased 

over 16 weeks, with significant losses in FH (p<0.001) and CWD (p=0.02) soils only. The 

levels of PHC-like chemicals extracted from untreated (control) FH and CWD layers were 

very low, indicating that the GC-FID chromatograms largely represented the PHCs added to 

these systems (and not other soil constituents such as solvent-extractable soil organic matter). 

In FHoil layers, up to 39% (mean of 15%) of PHCs extracted from PHC-treated soils 

represented residual PHCs from the in situ soil contamination event 8 months earlier. No 
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significant changes in PHC concentration were apparent in mineral soil layers after 16 weeks, 

although levels in Ae layers tended to increase with time. 
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Figure 3.2: Concentration of total PHCs (ppm) in three organic soil layers (FH, CWD and 
FHoil) for PHC-treated and untreated controls at 1 and 16 weeks (data pooled for plant 
treatment). Bars represent standard errors of the means. Significant losses of PHCs within 
organic soil treatment groups are indicated by *. 

Analysis of PHC fractions within plant — organic soil systems 

Planted and unplanted systems were included in this analysis (i.e. P-FH, P-CWD, P-FHoil, 

B-FH, L-FH, L-CWD, and L-FHoil single-plant systems, PL-FH and PL-CWD double-plant 

systems, and N-FH, N-CWD, and N-FHoil no-plant systems). The F2 (nC10-nC16) fraction 
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PHCs from organic soil layers averaged 35,000 ppm after 1 week and 6,000 ppm after 16 

weeks. Significant decreases in F2 PHCs were found in most planted and unplanted organic 

layers, including the P-CWD (p=0.002), B-FH (p=0.02), L-CWD (p=0.03), L-FHoil 

(p=0.001), N-FH (p=0.02), and N-CWD (p=0.02) treatments. The F3a (nC16-nC23) and F3b 

(nC23-nC34) fraction PHCs (containing straight-chain, branched and cyclic alkanes as well 

as small PAHs) were generally present between 40,000 and 80,000 ppm, but values varied 

greatly both within and between treatment groups (Figure 3.3). The F4 (nC34-nC50) fraction 

PHCs (containing some larger PAHs) were usually present in organic layers at <20,000 ppm. 

Although levels of larger PHC (>C16) chemicals also tended to decrease with time in organic 

soil layers, only P-CWD and B-FH systems showed consistently significant decreases in F3a 

(p=0.001 for both treatments), F3b (p-0.004 and 0.001, respectively) and F4 (p=0.002 and 

0.009, respectively) fraction PHC concentrations over the study period. 

In contrast to the organic layers, PHC concentrations tended to increase with time in Ae 

layers (perhaps due to leaching) (Figure 3.4). PHC levels in Ae layers under the CWD layer 

were extremely variable compared to levels in FH systems. F2, F3a, F3b and F4 fraction 

PHC levels were usually between 1,000 and 8,000 ppm; not high enough to account for all 

PHC loss from the organic layers above. Again, F4-fraction PHCs were the lowest (-1,000 

ppm). For the Bf layers, PHC levels averaged about 1,000 ppm (Figure 3.5). PHC levels 

tended to increase most in the lingonberry compared to other plant systems. 
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Figure 3.3: Concentrations of F2 (nC10-nC16), F3a (nC16-nC23), F3b (nC23-nC34), and F4 
(nC34-nC50) PHCs (ppm) in organic layers of plant - soil systems at 1 and 16 weeks after 
PHC treatment. Plant treatments include: pine (P), birch (B), lingonberry (L), pine and 
lingonberry (P+L), and no plant (N). Bars represent standard errors of the means (n=3); 
significant differences (1-way ANOVA) within treatment groups are indicated by *. 
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Figure 3.4: Concentrations of F2 (nC10-nC16), F3a (nC16-nC23), F3b (nC23-nC34), and F4 
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lingonberry (P+L), and no plant (N). Bars represent standard errors of the means (n=3); 
significant differences (1-way ANOVA) within treatment groups are indicated by *. 
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Figure 3.5: Concentrations of F2 (nC10-nC16), F3a (nC16-nC23), F3b (nC23-nC34), and F4 
(nC34-nC50) PHCs (ppm) in Bf layers of plant - soil systems at 1 and 16 weeks after PHC 
treatment. Plant treatments include: pine (P), birch (B), lingonberry (L), pine and 
lingonberry (P+L), and no plant (N). Bars represent standard errors of the means (n=3); 
significant differences (1-way ANOVA) within treatment groups are indicated by *. 
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Soil properties 

The C and N contents were much greater in organic (FH, CWD, or FHoil) compared to 

mineral (Ae or Bf) soil layers (Table 3.2). In organic layers, C content ranged from 

approximately 19-48% (mean C content of mineral soils was <2%) and was significantly 

greater (p<0.001) in PHC-treated soils compared to controls at both 1 and 16 weeks. The 

CWD layers contained significantly more C (p<0.001) than either of the FH or FHoil layers. 

The C content tended to be greater in FHoil compared to FH layers, presumably due to C 

inputs from the earlier PHC contamination event. Similar C levels were observed for all 

mineral soils at 1 week, but after 16 weeks, C levels tended to be greater in mineral soils 

below the PHC-treated organic layers, including the FHoil controls. 

Total N ranged from approximately 0.28-0.64% in organic layers and generally did not vary 

with PHC treatment or over time. In contrast, mean N content of mineral soils was usually 

<0.1%. For both PHC-treated and control systems, N was significantly lower (pO.OOl) in 

CWD soils compared to FH and FHoil soils at 1 and 16 weeks; mean N content of CWD was 

approximately half that of FH and FHoil soils. The combination of greater C and lower N 

content in CWD resulted in high C:N ratios that ranged from approximately 135 tol83 and 

were significantly greater (p<0.001) than the C:N ratios in FH and FHoil soils, which were 

similar (i.e. ranging from approximately 30 to 65). Overall, C:N ratios did not change much 

between 1 and 16 weeks. 

Comparison of planted and unplanted groups (data not shown) generally showed no 

differences in N and C content in organic or mineral soil layers, although, in Ae soils, C 
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tended to increase from 1 to 16 weeks in planted compared to unplanted systems (as well as 

in PHC-treated compared to untreated systems). There were no C differences in the Bf soils 

for the different plant treatments. 

Soil pH (water) was generally lower in the organic and Ae soils (means of 5.3 and 5.4, 

respectively) than the Bf soils (mean of 5.7) at 1 week, but tended to increase after 16 weeks; 

this trend was greater in the untreated controls compared to the PHC-treated soils. In FH and 

CWD controls, pH significantly increased in all three soil layers (organic, Ae, and Bf), but no 

significant changes occurred in the FHoil controls. In the FHoil soil systems, pH was 

generally lower than in the FH and CWD systems, particularly in the Bf layer. Comparisons 

of plant treatments revealed no significant differences. 
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Table 3.2: Means (± standard errors) for soil properties (C, N, pH) in control and PHC-
treated plant - organic soil systems at 1 and 16 weeks. Percent C and N are reported on an 
air-dry basis. 

Weekl 

Total C % 
Org 
Ae 
Bf 

Total N % 
Org 
Ae 
Bf 

C:N Ratio 
Org 
Ae 
Bf 

pH 
Org 
Ae 
Bf 

Week 16 

Total C % 
Org 
Ae 
Bf 

Total N % 
Org 
Ae 
Bf 

C:N Ratio 
Org 
Ae 
Bf 

pH 
Org 
Ae 
Bf 

n o P H C 

19.07 ±2.040 
1.04 ±0.235 
1.09 ±0.189 

0.60 ± 0.062 
0.055 ± 0.003 
0.062 ± 0.004 

31.9± 1.142 
18.7 ±3.873 
17.4 ±1.755 

5.5 ±0.1 
5.2 ±0.1 
5.5 ±0.1 

n o P H C 

22.4 ±1.866 
0.89 ±0.235 
1.42 ±0.189 

0.644 ± 0.073 
0.049 ± 0.003 
0.073 ± 0.004 

35.3 ±1.807 
18.0 ±3.873 
19.3 ±1.755 

5.6 ±0.2 
5.8 ±0.1 
5.9 ±0.1 

FH 
PHC-treated 

33.80 ±3.751 
1.68 ±0.235 
1.75 ±0.189 

0.59 ± 0.034 
0.058 ± 0.003 
0.071 ±0.004 

56.9 ±5.291 
28.7 ±3.873 
24.6 ±1.755 

5.4 ±0.1 
5.0 ±0.1 
5.9 ±0.1 

FH 
PHC-treated 

29.3 ± 5.228 
2.32 ± 0.235 
1.92 ±0.189 

0.563 ± 0.063 
0.051 ±0.003 
0.081 ±0.004 

51.7 ±6.547 
45.7 ±3.873 
23.7 ±1.755 

5.4 ±0.1 
5.3 ±0.1 
6.1 ±0.1 

CWD 
n o P H C 

40.9 ±1.761 
1.46 ±0.210 
1.37 ±0.169 

0.31 ±0.024 
0.045 ± 0.003 
0.067 ± 0.004 

134.9 ±11.44 
31.7 ±3.464 
20.4 ±1.569 

4.9 ±0.1 
5.3 ±0.1 
5.8 ±0.1 

PHC-treated 

48.4 ± 2.544 
1.90 ±0.210 
1.34 ±0.169 

0.28 ± 0.029 
0.040 ± 0.003 
0.060 ± 0.004 

182.0 ±26.46 
46.7 ±3.464 
22.8 ±1.569 

5.0 ±0.1 
5.2 ±0.1 
5.5 ±0.1 

CWD 
n o P H C 

47.8 ±2.275 
1.09 ±0.235 
1.53 ±0.189 

0.29 ± 0.047 
0.045 ± 0.003 
0.080 ± 0.004 

174.1 ±28.83 
24.4 ±3.873 
19.2 ±1.755 

5.4 ±0.3 
5.7 ±0.1 
6.0 ±0.1 

PHC-treated 

53.8 ±1.750 
2.83 ± 0.235 
2.05 ±0.219 

0.30 ±0.021 
0.050 ± 0.003 
0.079 ± 0.004 

183.3 ±20.33 
56.4 ±3.87 
25.7 ±2.03 

5.1 ±0.2 
5.2 ±0.1 
6.0 ±0.1 

FHoil 
n o P H C 

23.1 ±3.397 
1.07 ±0.210 
2.27 ±0.169 

0.60 ± 0.094 
0.054 ± 0.003 
0.11 ±0.004 

40.3 ±1.768 
19.6 ±3.464 
20.8 ±1.569 

5.5 ±0.1 
5.3 ±0.1 
5.4 ±0.1 

PHC-treated 

36.92 ±1.911 
1.68 ±0.210 
2.18 ±0.169 

0.57 ±0.031 
0.061 ± 0.003 
0.10 ±0.004 

64.4 ± 0.840 
27.6 ±3.464 
21.5 ±1.569 

5.4 ±0.1 
5.3 ±0.1 
5.4 ±0.1 

FHoil 
n o P H C 

21.7 ±2.354 
1.41 ±0.235 
2.11 ±0.189 

0.558 ±0.056 
0.064 ± 0.003 
0.104 ±0.005 

38.9 ±1.358 
22.2 ±3.873 
20.3 ±1.755 

5.3 ±0.1 
5.6 ±0.1 
5.5 ±0.1 

PHC-treated 

37.2 ±3.596 
2.080 ±0.210 
2.18 ±0.169 

0.574 ± 0.041 
0.062 ± 0.003 
0.101 ±0.004 

64.4 ±3.320 
33.1 ±3.464 
21.4 ±1.569 

5.0 ±0.1 
5.6 ±0.1 
5.6 ±0.1 

164 



Bacterial community structure 

Overall, PHC treatment of the plant - soil systems had no effect on genotypic richness or 

structure (composition) of bacterial communities. Pairwise comparisons (MRPP) of PHC 

treated systems at 1 and 16 weeks revealed that genotype richness increased significantly 

(p=0.007) over time. Community structure varied significantly (p=0.036) between PHC-

treated and control groups after 16 weeks. 

Analysis (NPMANOVA and MRPP) of the single-plant (i.e. pine, birch and lingonberry) 

systems showed significant differences (p=0.002) in bacterial community structure in the 

different organic soil layer treatments. Pairwise comparisons indicated that the differences 

were between FH and FHoil groups (p<0.001), and CWD and FHoil groups (p=0.009), but 

not between FH and CWD groups. There were no interaction effects between organic soil 

layer and PHC groups. 

The type of plant (i.e. pine, birch or lingonberry) appeared to have less of an effect on 

genotype richness and community structure than the complexity (i.e. single- or double-plant) 

of the systems (Figure 3.6). The single-plant systems did not significantly differ with respect 

to either genotype richness or community structure. However, community structure varied 

significantly (p<0.001) for both pine and lingonberry in double- compared to single-plant 

systems; community structure also varied between pine and lingonberry within the double-

plant systems. These patterns were consistent for the richness data, with an additional 

significant difference (p<0.001) between pine and lingonberry in the single-plant systems. 

There were no interaction effects between plant and either PHC, harvest, or organic soil layer 
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groups. The overall effect of plant on bacterial community structure is shown in the NMS 

ordination (Figure 3.7). The figure shows tight clustering (in the lower left quadrant) of 

communities from the double-plant systems within the more dispersed distribution of single-

plant system communities. 

Seven DNA fragments corresponded to 16S fragment lengths for Pseudomonas (343, 344 bp) 

and Sphingomonas (317, 318, 319, 320, and 335 bp) species (Mills et ah, 2003). The 

frequency of these fragments (nested one-way ANOVA) varied with plant, but did not vary 

over time or with organic soil layer or PHC treatment, although some genotypes increased or 

decreased in frequency with different plants. 

B i r c h single 

P i n e single" / \ * Lingonberry single 

Pine^ubie « » Lingonberry double 

* • / \ t 

Figure 3.6: Schematic diagram showing plant effects on bacterial genotype richness and 
community structure. Arrows (solid, genotype richness and community structure; dashed, 
richness only) between plant treatments indicate significant differences. Treatments not 
connected by arrows are not significantly different. 
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Figure 3.7: NMS of bacterial community structure associated with single- (pine, birch or 
lingonberry) and double- (pine + lingonberry) plant systems (stress = 16.42; instability = 
0.06). 
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Bacterial community level physiological profiles 

Areas under C substrate oxidation curves for bacterial communities growing on EcoPlates™ 

were consistently greater for amino acids, carbohydrates and carboxylic acids in all 

treatments; lower values were observed for amides/ amines, polymers and the miscellaneous 

substrates. No differences in substrate use were found between PHC-treated and untreated 

communities or within the different organic soil groups. In the unplanted FH and CWD 

systems, areas under the substrate use curves were lower in the PHC-treated compared to 

untreated systems (which were similar to the planted system profiles); in the unplanted FHoil 

systems, areas under the curves were virtually identical in the PHC-treated and control soils 

and both treatments produced profiles similar to the planted system profiles. 

Principal components analysis (PCA) of the areas under substrate use curves (24-120 h) for 

the various plant - organic layer - PHC treatments generated the ordination shown in Figure 

3.8; the two principal components axes explained 85.02% of the variation between samples. 

The N-containing substrates (amines/ amides and amino acids) showed the greatest relative 

effect on the plot, followed by carbohydrates and carboxylic acids. Of the treatment 

variables, plant exhibited a greater effect than either organic soil or PHC. There was a 

tendency for unplanted systems to group away from the planted systems (i.e. towards the 

right side of the plot); the lingonberry treatments also grouped slightly away from pine, birch 

and alder (i.e. towards the lower quadrants of the plot). 
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Figure 3.8: PCA ordination of areas under C substrate curves showing the relative influence 
of PHC, organic soil and plant treatment variables. Plant effects are indicated by different 
symbols: pine (squares), birch (circles), alder (stars), lingonberry (triangles), and no plant 
(crosses). 
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Discussion 

PHC Biodegradation 

The process of PHC biodegradation in reconstructed sub-boreal forest soil systems was more 

closely related to qualities of the organic soil layer than to genotypic or broad metabolic 

structure of the bacterial communities in the mycorrhizosphere. We found significant 

reduction of total PHC levels following (1-16 weeks) addition of crude oil to pristine forest 

floor (FH) and coarse woody debris (CWD) soil systems. These lignin-rich and 

metabolically active soil layers form substantial surface components of northern forest 

landscapes (Lundstrom et al, 2000; Prescott et al, 2000). Their tendency to retain PHCs in 

the soil organic matter was evident in our study, as PHC concentrations were far greater than 

those extracted from the underlying mineral soils in each system. Soil analyses showed a 

significantly lower pH and higher C:N ratio in CWD compared to FH layers at both 1 and 16 

weeks; however, these differences did not appear to reduce biodegradation capacity of these 

soil communities. The intrinsic ability for PHC biodegradation existed within soil microbial 

communities of the pristine organic layers. 

Prior in situ treatment of the forest floor with PHCs did not appear to have enhanced 

microbial biodegradation capacity for subsequent PHC treatment in these soils, as was 

expected (Miller and Herman 1997; Braddock et al, 2003; Seghers et al, 2003; Diaz 2004). 

The lack of significant PHC reduction over the study period found in the previously 

contaminated (FHoil) soil layer may be partly explained by the presence of residual PHCs. 

Residual PHCs likely consisted of a greater proportion of more recalcitrant compounds that 

contributed to a more chemically complex and heterogeneous environment. Aging of 
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contaminants in soil generally reduces bioavailability to decomposer organisms (Alexander, 

2000). This may have increased variation in biodegradation patterns within treatment groups 

and masked any significant PHC loss over the 16-week duration of the experiment. The C:N 

ratio of FHoil soils was not significantly greater than FH soils; neither differed substantially 

from the C:N ratios reported for the forest floor measured in situ (about 50) (Arocena and 

Sanborn, 1999) or from oil-contaminated soils in Alaska (52.7) (Braddock et al, 2003). The 

pH of FHoil was similar to CWD; both were lower than FH, particularly after 16 weeks. 

These physico-chemical soil properties were therefore not related to the differences in 

biodegradation observed among the different organic soil layers. Although FH and CWD 

exhibited significantly different bacterial community structure patterns compared to FHoil 

layers, no differences in C use profiles were found. 

Processes that reduce PHC concentrations in oiled soils over time (i.e. biodegradation, 

evaporation, water washing, or photooxidation) lead to distinct chemical profiles in soil; a 

decrease in n-alkane (<nC17) concentration relative to larger compounds and PAHs is typical 

of biodegradation profiles (Braddock et al, 2003). In general, we found a trend of reduced 

F2 (nC10-nC16) PHCs for all treatment groups by 16 weeks. Several plant - soil systems 

exhibited significant decreases in F2 concentrations, including both planted (birch -FH, pine -

CWD, lingonberry -CWD and -FHoil) and unplanted (-FH and -CWD) systems. This finding 

was not surprising as many genera of soil bacteria are known to completely mineralize 

aliphatic compounds (e.g. alkanes <nC16) through central metabolic pathways such as 0-

oxidation and Kreb's cycle (McGill et al, 1981; Miller and Herman 1997). Our results 

suggest that biodegradation capacity for F2 PHCs exists within all the soil systems tested. 
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Also, unplanted soils, which originated as sub-boreal forest rhizosphere, continued to support 

biodegradative microbial communities for at least eight months after soil collection. 

In contrast, significant decreases of F3a (nC16-nC23), F3b (nC23-nC34) and F4 (nC34-

nC50) PHCs occurred only in pine -CWD and birch -FFf systems. Enhanced PAH 

degradation in rhizosphere compared to non-rhizosphere soils was also reported by Joner et 

al. (2006). Microbial utilization of PHCs often creates demand for other nutrients such as N 

and P (Miller and Herman, 1997). Thus, it is likely that the energy (C) and nutrient (N and 

P) resources necessary to support biodegradation of these larger and more chemically 

complex PHCs were limited in the unplanted soil systems that lacked inputs of C-rich 

substrates through exudation from mycorrhizal roots. Strong sorption of these larger PHC 

compounds to soil components may have also reduced their bioavailability to degrading 

microorganisms. Alternatively, the lack of significant change in levels of larger PHCs may 

have been due to slow decomposition of these compounds (i.e. perhaps 16 weeks was not 

long enough to detect changes in PHC concentrations). 

Mycorrhizosphere effect 

The mycorrhizosphere generally supports greater microbial biomass and activity (i.e. 

mycorrhizosphere effect) than non-rhizosphere soils, which increases the biodegradative 

potential of planted over unplanted systems (Linderman, 1988; Ingham and Molina, 1991; 

Rygiewicz and Anderson, 1994). In PHC-contaminated soils, plant-fungal exudates are also 

expected to support proliferation of functional groups of organisms with enhanced capacity 

for cometabolic biodegradation of PHCs. With respect to pyrene biodegradation, Mueller 
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and Shann (2007) showed that the quality of C in root exudates was more important than C 

quantity, suggesting that specific mycorrhizosphere communities may influence 

biodegradation. Several studies have reported elevated densities of PHC-degrading bacteria 

in contaminated soils (Lindstrom et al., 1999; Delille et al, 2004). Braddock et al. (2003) 

found that culturable populations of total heterotrophic and crude oil emulsifying bacteria 

were elevated in soils 25 years after an Alaskan oil spill compared to soils from an adjacent 

reference plot. Our comparisons of bacterial community C use profiles distinguished 

unplanted from planted soils on the PCA ordination. Palmroth et al. (2005) also showed C 

utilization differences between vegetated (pine and poplar) and unvegetated soil communities 

using similar methods. In our study, nested analyses within organic soil and PHC treatment 

groups showed lower metabolic activity in only the untreated FH and CWD systems; 

preliminary plate counts (data not shown) also indicated lower culturable bacterial density in 

untreated (i.e. no PHC added) FH and CWD (104-105 CFUs ml/1 soil solution) compared to 

either the untreated FHoil or the PHC-treated FH, CWD and FHoil (107-108 CFUs mL"1 soil 

solution) systems. These findings suggest that C inputs by both plants and PHCs support 

greater bacterial density; however, a plant appears to enhance biodegradation of >nC16 

PHCs. 

The finding that statistically significant reductions of the larger PHC (nC16+) fractions 

occurred in only planted (pine and birch) systems provides indirect evidence for a 

stimulatory role of ECMs in the biodegradation process. ECMs may simply provide habitat 

and C substrates that enhance bacterial cometabolism, as described earlier (Sarand et al, 

1998; 2000; Heinonsalo et al, 2004). In addition, ECMs may secrete oxidative enzymes that 
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open aromatic ring structures, thereby overcoming the thermodynamically limiting step in 

PAH metabolism (Burke and Cairney, 2002; Sen, 2003). Several recent studies have 

reported that mycorrhizas inhibited biodegradation of naphthalene, fluorene (Genney et al, 

2004), anthracene, anthraquinone, chrysene, dibenz[a,h]anthracene (Joner et al, 2006), and 

pyrene (Koivula et al, 2004) when individually spiked into microcosms. Genney et al. 

(2004) suggested that ECMs inhibit PHC biodegradation in situations of C limitation. Thus, 

in these studies, PAH treatment in the absence of cometabolic substrates may have led to 

increased competition between fungi and bacteria for the same energy resources, resulting in 

decreased PAH mineralization and accumulation of dead-end metabolites in soil (Gadgil and 

Gadgil, 1971). 

Differences in experimental design may explain our findings in context with these studies. In 

our study the establishment of diverse ECM communities on the fine roots of pine and birch 

was observed to be virtually ubiquitous, which likely reduced free-living soil fungi in the 

rhizosphere and thus limited this group of competitors (Lindahl et al., 2007). Incorporation 

of soil depth (i.e. increased three-dimensional space in miniature soil systems that contained 

horizons) in our mycorrhizal systems was also expected to reduce competition between ECM 

fungi with saprotrophic activities and the associated bacterial community (Cairney, 2005). 

Also, addition of reduced C substrates in PHC mixtures probably fueled the large 

heterotrophic biomass associated with the pine and birch mycorrhizospheres (Nannipieri et 

al., 2003; Morgan et al., 2005), resulting in a generally stimulatory effect on biodegradation. 

This explanation is supported by Koivula et al. (2004), who found that inhibition of PHC 

biodegradation (due to C limitation) was eased in oiled soils where alternate C substrates 
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were available. However, an overall inhibitory effect on biodegradation could explain why 

most mycorrhizal systems (including ERM systems) did not exhibit significant losses of 

larger PHCs in the current study. 

Although ERMs have been reported to exhibit oxidative enzyme activity (Burke and Cairney, 

2002), the lack of significant loss of larger PHCs indicates that they did not contribute to 

biodegradation in our lingonberry systems. One explanation may be that the fine root 

systems were shallow and lacked extensive ERM mycelia that did not sufficiently fill the 

larger pots into which the single lingonberry seedlings were planted; secreted enzymes and 

exudates may have been diluted with distance from the ERM roots. Joner and Leyval (2003) 

reported that the (mycor)rhizosphere effect on PAH degradation sometimes does not extend 

more than 1 mm from roots colonized by arbuscular mycorrhizas. Corgie et al. (2003) 

described bacterial gradients with increased densities of heterotrophs and PAH degraders 

closest to the roots (0-3 mm) that corresponded to a gradient of phenanthrene biodegradation. 

In a molecular study, Corgie et al. (2006) showed different bacterial communities were 

selected by rhizosphere depending on distance from the roots; bacteria exhibited different 

activity profiles and values for biodegradation. Alternatively, it is possible that lingonberry 

roots were not mycorrhizal (i.e. cell colonization, which was confirmed by microscopy, may 

not have included ERM fungi), although we assumed that ERM fungi accounted for at least 

some of the endophytic community. Very little is known regarding biodegradation capacity 

in ERM systems, and further investigation is warranted. 
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In the single-plant systems examined here and by Palmroth et al. (2005), C use profiles 

showed little differentiation between bacterial communities associated with the 

mycorrhizosphere of specific plants, although lingonberry appeared to cluster slightly away 

from pine, birch and alder. Bacterial genotype richness was significantly greater in 

lingonberry compared to pine and birch systems. It is unknown whether this greater richness 

is somehow related to the significant biodegradation for the F2 PHC fraction observed in 

lingonberry -CWD and -FHoil systems. Bacterial community structure varied significantly 

for both pine and lingonberry in the double-plant systems compared to any of the single-plant 

systems. Furthermore, bacterial community structure varied significantly between 

lingonberry and pine when the two plants shared the same pot. The NMS analysis 

graphically reaffirms that growth conditions between double- (tight clustering) and single-

(more dispersed distribution) plant systems are different enough to influence bacteria 

community structure. The soil conditions being the same, we presume that a double-plant 

system augments the level of competitive interactions (perhaps by providing more 

specialized niches owing to different root systems) compared to a single-plant system, and 

that is reflected in the bacterial diversity. Although significant PHC biodegradation was not 

observed in either of the double-plant (pine and lingonberry -FH or -CWD) systems tested, 

this may represent another example of increased environmental complexity where within-

group variation was too great to detect PHC reduction over 16 weeks. 

It was unfortunate that difficulties with seed germination resulted in incomplete datasets for 

the alder treatment. Associations with N-fixing Frankia were expected to enhance PHC 

biodegradation via a gradual and continuous delivery of N and C to the rhizosphere 
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environment (Selmants et al, 2005; Roy et al, 2007). A hint of the effect of greater N 

availability on mycorrhizosphere communities (i.e. altered amino acid requirements) may 

have slightly influenced the C use distribution of alder compared to the other ECM systems. 

Interactions between this additional functional group and the rest of the mycorrhizosphere 

community should be investigated in future PHC biodegradation studies. 

Overall, surface application of crude oil appeared to have minimal impact on the diversity 

(genotype richness and relative abundance) or metabolic capacity (community physiological 

profiles) of bacterial communities in the mycorrhizosphere. Huertas et al. (2000) suggested 

that heterogeneity in the soil matrix may provide a protective effect against the solvent shock 

associated with initial PHC contamination. Other studies have also reported the inability to 

distinguish communities from PHC-contaminated and reference soils on the basis of broad 

physiologies such as C mineralization; bacterial communities surviving in oiled soils have 

been described as metabolic generalists (Lindstrom et al, 1999; Palmroth et al, 2005). 

However, the physiological capacity for biodegradation of various organic substrates, which 

is controlled by the functional redundancy of the community originally present (Setala et al, 

2000; Delille et al, 2003), seems to remain intact in PHC-contaminated soils for some time 

in the absence of further disturbance. 

The methods used in this study did not distinguish the PHC-degrading component from the 

overall composition of bacterial communities. However, common hydrocarbon degraders 

such as Pseudomonas sp. grow well on Biolog EcoPlates and thus were expected to be 

represented as part of the C-utilizing community assessed. The molecular dataset was also 

177 



expected to include known PHC-degraders (e.g. pseudomonads and sphingomonads) whose 

corresponding fragment lengths were identified (i.e. 342-344 bp and 317-320, 334-335 bp, 

respectively) by Mills et al. (2003) using the same rDNA primer pair. These fragments 

appeared in both PHC-treated and control mycorrhizospheres of pine, birch and lingonberry 

systems, with no differences in frequency observed from 1-16 weeks. 

Conclusions 

We found that mycorrhizosphere communities enhanced PHC biodegradation in 

reconstructed sub-boreal forest soils, particularly in ECM systems. The ECM and ERM 

fungal communities associated with these systems and their roles in the biodegradation 

process were investigated in Chapter 2. The level of PHC contamination used in this study 

appeared to have minimal impact on soil bacterial community structure or broad metabolic 

functions associated with PHC biodegradation. 
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Chapter 4: Root-associated microbial communities differ with Pinus contorta var. 
latifolia and Vaccinium vitis-idaea co-inhabiting sub-boreal forest soils 

Abstract 

Rhizosphere communities, including mycorrhizas and closely associated heterotrophic 

microorganisms, represent critical functional groups for decomposition and carbon/ nutrient 

cycling processes in northern forest ecosystems. The spatial heterogeneity of the soil 

environment contributes to the great biodiversity of soil microorganisms. However, the 

complexity of the system and the multifunctional nature of many microorganisms have made 

it difficult to comprehend linkages between communities and ecosystem processes and also 

to predict how ecosystems may respond to environmental disturbances such as soil 

contamination. In this study, we used a bioassay approach to assess the relative contributions 

of plant and soil properties to spatial distribution patterns of ecto- (ECM) and ericoid (ERM) 

mycorrhizal fungi as well as root-associated bacterial communities inhabiting the shared 

rhizosphere of pine (ECM host) and lingonberry (ERM host). Soil systems were either 

untreated or treated with petroleum hydrocarbons (PHCs), simulating contamination events. 

Surface-sterilized pine {Pinus contorta var. latifolia) seeds and lingonberry {Vaccinium vitis-

idaea) seedlings were planted into Conetainer pots containing an organic layer (mor 

humus [FH] or coarse woody debris [CWD]) overlying sandy mineral horizons (Ae and Bf) 

of field-collected forest soils obtained from central BC, Canada. After 4 months, BC light 

crude oil (219 mg cm"2) was applied to the soil surface around the seedling stem; systems 

were destructively sampled at 1 and 16 weeks following treatment. Soils from each layer 

were analyzed for PHC concentration (not presented here), pH and total C and N content. 

The composition, relative abundance and vertical distribution (i.e. variation with soil layer) 
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of eight frequently occurring ECMs on pine roots were assessed using light microscopy. 

Community profiles (i.e. based on the relative abundance of all genotypes) were generated 

for all root systems using length heterogeneity PCR and primers targeting the ITS (fungi) and 

16S (bacteria) regions of ribosomal DNA. We found that the main components of ECM 

communities were consistent with those described from field-based studies. Genotype 

analysis by non-metric multidimensional scaling (NMS) and multi-response permutation 

procedures (MRPP) revealed that both plant and soil properties influenced the structure of 

root-associated fungal and bacterial communities; however, patterns of community structure 

varied among the different functional groups. Fungal communities were distinctly different 

on pine (ECM) and lingonberry (ERM) roots; only ECM fungal communities were structured 

vertically in the three layers of soil, representing direct interactions between fungi and soil in 

the ectomycorrhizal association. In contrast, ERM communities appeared to vary more 

between soil systems (i.e. FH-Ae-Bf and CWD-Ae-Bf) than between soil layers. Bacterial 

community structure varied between mycorrhizal root systems and between soil layers, 

indicating that differences between the ECM and ERM root environment and soil properties 

are both important with respect to bacterial niche differentiation. PHC contamination 

appeared to have little effect on the composition of root-associated microbial communities. 
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Introduction 

Rhizosphere communities, including mycorrhizas and closely associated heterotrophic 

microorganisms, represent critical functional groups for decomposition and carbon/ nutrient 

cycling processes in northern forest ecosystems. The spatial heterogeneity of the soil 

environment contributes to the great biodiversity of soil microorganisms and promotes 

species co-existence through greater resource partitioning (Ettema and Wardle, 2002; 

Ramette and Tiedje, 2007). However, the complexity of the system and the multifunctional 

nature of many microorganisms have made it difficult to comprehend linkages between 

communities and ecosystem processes and also to predict how ecosystems may respond to 

environmental disturbances such as soil contamination (Barrios, 2007). Disturbances may 

directly impact microbial functions, lead to loss of a functional group, change rates of 

ecosystem processes or alter resource availability (Balser et ah, 2006). The question arises 

as to how much detail is necessary to understand system behaviour and to mitigate for effects 

of environmental disturbance (Surridge, 2006). To answer this question may require that we 

step back from studying individual system components in favour of studying functional 

groups of soil biota that have tight linkages to functions that underpin soil-based ecosystem 

services (Balser et al., 2006; Smithwick, 2006; Barrios, 2007). 

Northern forests are dominated by trees in the families Pinaceae, Betulaceae, Fagaceae and 

Salicaceae that typically form ectomycorrhizal (ECM) symbioses with soil fungi that exhibit 

variable distribution patterns across forest landscapes according to host specificity (Molina et 

ah, 1992) and soil heterogeneity (Horton and Bruns, 2001). ECMs occupy the structural and 

functional interface between the plant and soil environment and regulate plant nutrient uptake 
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as well as carbon release to soil (Smith and Read, 1997). These mechanisms of carbon and 

nutrient exchange are understood to some extent (i.e. at genetic and biochemical levels) in 

ECM systems, but not in an ecological context, which involves interactions with other 

microbial communities sharing the rhizosphere. Although interactions with heterotrophic 

bacterial communities associated with the ECM mantle and extraradical mycelia are known 

to be important for mobilization, uptake and translocation of nutrients (Burke and Cairney, 

1998), an ecological understanding is impeded by that lack of integration between ECM 

fungal and bacterial studies. Additionally, roots of understory vegetation such as Ericaceae 

(e.g. Vaccinium, Rhododendron, Gaultheria, species) commonly share ECM rhizosphere 

space (Read and Perez-Moreno, 2003). These plants usually form ericoid mycorrhizas 

(ERMs) with fungi that are often unidentified, but also appear to exhibit high diversity at 

small scales (Berch et ah, 2002; Perotto et al., 2002) and are expected to contribute to 

nutrient cycling and decomposition processes in forests (Cairney, 2000; Read and Perez-

Moreno, 2003). Interactions between different mycorrhizal communities, as well as potential 

sharing of fungal symbionts, may contribute to ecological processes in important ways that 

we do not yet understand. 

Petroleum hydrocarbon (PHC) contamination is a type of environmental disturbance that can 

lead to considerable changes in physical and chemical soil properties on spatial scales 

ranging from square meters to hectares. Initially, spilled PHCs spread laterally within the 

organic layer of forest soils; lighter fractions eventually move down the soil profile, along the 

paths of roots and fissures. Fragmentary patterns of PHC constituents that persist in mobile 

form, fixed in soil pores and fissures, adsorbed on the surface of organic and mineral soil 
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constituents, or forming a free-phase continuous cover on the soil surface (Trofimov and 

Rozanova, 2003) increase soil heterogeneity and have unknown effects on soil microbial 

communities. The major impacts appear to be related to altered soil water, nutrient and 

oxygen regimes (Tarradellas and Bitton, 1997). At the same time, input of labile C substrates 

(and subsequent release of soil communities from C limitation) may promote metabolic 

activity on the part of all the microorganisms not directly inhibited by the PHCs and provide 

the potential for them to play a major role in decomposition and nutrient mobilization (Read 

and Perez-Moreno, 2003). The unevenness of PHC distribution in different soil layers may 

impact different microbial communities in contrasting ways that could reveal new features of 

functional diversity in forest soils. 

In this study, we used a bioassay approach to assess the relative contributions of plant and 

soil properties to spatial distribution patterns of ecto- (ECM) and ericoid (ERM) mycorrhizal 

fungi as well as root-associated bacterial communities inhabiting the shared rhizosphere of 

pine (ECM host) and lingonberry (ERM host). Soil systems were either untreated or treated 

with PHCs to gain some understanding of how communities may change in response to PHC 

contamination events. Using a combination of morphological and molecular methods to 

describe patterns of community structure along with multivariate analysis techniques to 

correlate soil properties, we aimed to contribute to the understanding of ecophysiological 

functioning of this group of microorganisms that is ubiquitous on the northern forest 

landscape. 
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Materials and methods 

Field site 

In September of 2006, forest soils were collected from the Kenneth Creek field site, located 

about 100 km east of Prince George (53°34'N, 122°47'W) in the wet, cool subzone of the 

sub-boreal spruce (SBSwkl) biogeoclimatic zone of central British Columbia. In 1982, the 

forest was logged and burned, then subsequently planted with lodgepole pine {Pinus contorta 

Dougl. Ex Loud. var. latifolia Engelm.); currently, the site is a mature, even-aged pine stand 

with small hybrid white spruce {Picea glauca x engelmannii Parry ex Engelm.) and a few 

western hemlock (Tsuga heterophylla (Raf.) Sarg.). Young subalpine fir {Abies lasiocarpa 

(Hook.) Nutt.) and sitka alder (Alnus crispa var. sinuata (Reg.) Rydb.) are present at the edge 

of the forest, along the access road; western redcedar {Thuja plicata Donn) and trembling 

aspen {Populus tremuloides Michx.) are also present in an unlogged stand across the main 

road. The site has a thick understory of oval-leaved blueberry {Vaccinium ovalifolium Sm.); 

mosses and lichens (e.g. Peltigera) cover the forest floor, with some Lycopodium species. 

The soils on this site were described by Arocena and Sanborn (1999). Soils are classified as 

Eluviated Dystric Brunisols (Soil Classification Working Group, 1998), and consist of sandy 

parent material with low clay content and few coarse fragments. The forest floor is mor 

humus, from 2-5 cm thick with copious fungal mycelia present. The C:N ratio of the forest 

floor is approximately 50 and the pH (water) is approximately 4.2. Gray Ae horizons are 

generally 1-2 cm thick, with thicker pockets in some areas. Red Bf horizons extend to almost 

30 cm, beneath which are Bm (27-60 cm), BC (60-100) and C (> 1 m) horizons. The C:N 

ratios of the Ae and Bf horizons are about 20 and 13, respectively. The pH (water) of the Ae 
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horizon is 4.2 while the pH of the Bf horizon is about 4.8, increasing with depth to about 6.0 

at the transition to the C horizon. Fine roots are found at depths greater than 1 m. Large 

coarse woody debris (i.e. downed trees), the legacy of past forest management, is abundant 

all over the site. 

Bioassay, PHC treatment and sampling 

Forest soil layers were reconstructed (i.e. Ae [~1 cm] and Bf [-15 cm] mineral soil layers 

beneath organic [FH or CWD] soil layers [~2 cm]) in Cone-tainer™ pots (3.8x21 cm, 

Stuewe and Sons, Corvalis, Oregon), as described previously. Lingonberry (Vaccinium vitis-

idaea L.) seedlings were transplanted into these soils and surface-sterilized seeds of 

lodgepole pine {Pinus contorta var. latifolia), collected from the SBS and obtained from the 

Ministry Tree Seed Center, Surrey, BC (seed lot DWD20050009A (location 079-B-008)), 

were then planted into the organic layer of each pot. All pots were kept in the greenhouse 

(22°C day temperature, 15°C night temperature, and 16 h photoperiod) and watered two or 

three times per week for the duration of the experiment. The plants were fertilized once a 

month (5 mL of NPK fertilizer; providing 100 ppm each of NPK) for the first four months 

during seedling and mycorrhizal (ECM or ERM) establishment. At four months, 3 mL crude 

oil (219 mg cm"2) was pipetted onto the organic soil surface of each pot, around, but not 

touching, the seedling stem. 

Plant - soil systems were destructively sampled at 1 and 16 weeks following PHC treatment. 

Individual pots were emptied into trays, and the two plants (pine and lingonberry) were 

gently removed from the soil with as little disturbance as possible to the three soil layers 
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(organic, Ae and Bf). Soil layers were collected from each pot, combined within treatment 

groups (Table 4.1), and then air-dried for soil nutrient analysis and pH. PHC concentrations 

in soil layers were also determined and are presented in Chapter 3. Root systems (with the 

pine or lingonberry seedling excised) were shaken free from the soil and washed in sterile 

dHaO. All root systems were examined under a dissecting microscope to ensure that they 

were free of other roots or hyphae and soil particles; the distribution of ECM morphotypes 

was also described for pine root systems. Root systems were then divided into three samples 

(organic, Ae and Bf soil layers) and stored in 2 mL tubes at -20°C until DNA extraction. 

Table 4.1: Plant, organic soil layer, and PHC treatment variables (n=3 for each combination). 

Plant Organic Soil Layer PHC 
Pine [P] + Lingonberry [L] Forest floor [FH] PHC 

Coarse woody debris [CWD] No PHC (control) 

Soil Analysis 

Organic (FH and CWD) and mineral soil (Ae and Bf) samples were analyzed for total C and 

N content using <100-mesh samples (air-dried, then ground in a Model MM200 ball mill; 

Retsch, Haan, Germany) by dry combustion using a Model 1500 NC Elemental Analyzer 

(Fisons, Milan, Italy). The pH of organic soils was measured in a 1:2 soil to deionized H2O 

suspension while 1:1 suspensions (in deionized water) were used for mineral soils (Kalra and 

Maynard, 1991). 

191 



LH-PCR and fragment analysis 

Frozen root systems were crushed in liquid nitrogen and DNA was extracted using a CTAB 

(hexadecyl trimethyl ammonium bromide) protocol with an extra phenol/chloroform-isoamyl 

alcohol (1:1) purification step (Fujimura et al., 2008). DNA extracts were further cleaned 

using the Wizard® PCR Preps DNA Purification System kit (Promega) to remove phenolics 

and other oily contaminants. These cleaned extracts were resuspended in TE buffer. 

Fungal communities were characterized by amplicon length heterogeneity PCR (LH-PCR), 

which provides an estimate of relative abundance of genotypes in a community (Martin and 

Rygiewicz, 2005). For fungi, the ITS2 region of ribosomal DNA was amplified using the 

forward primer ITS3 (5'GCATCGATGAAGAACGCAGC) (White et al, 1990) and the D3 

fluorescent dye-labeled reverse primer NL4B (5'GGATTCTCACCCTCTATGAC) (Martin 

and Rygiewicz, 2005). ITS3 is a universal primer that binds in a conserved domain 128 bp 

from the 3' end of the 5.8 S rDNA whereas NL4B binds in the large subunit (28S) at 

basidiomycete- (and ascomycete-) specific sites (Martin and Rygiewicz, 2005); PCR 

products are expected to be vary from approximately 400 to >600 bp in length. PCR 

reactions consisted of 10X PCR buffer, 2 inM dNTPs, 50 uM MgCl2, 10 uM forward and 

reverse primers (Proligo, CO), 0.7 U Platinum Taq DNA polymerase (Invitrogen Life 

Technologies), and nuclease-free water (Integrated DNA Technologies, Inc.) to a final 

volume of 27 uL, to which 3 uL DNA (diluted 1:10) was added. The DNA Engine DYAD™ 

thermocycler (MJ Research, Inc., Watertown, MA) conditions were as follows: initial 

denaturation for 4 min at 94°C, annealing for 1 min at 48°C, and extension for 2 min, 

followed by 35 cycles of denaturation (94°C for 30 s), annealing (48°C for 30 s) and 
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extension (72°C for 1 min 30 s) and final extension at 72°C for 6 min 30 s. All PCR 

products were run on 1.2% agarose gels to confirm amplification. 

For bacteria, the D4 fluorescent dye-labeled forward primer 27F 

(5'AGAGTTTGATCMTGGCTCAG) and unlabeled reverse primer 355R 

(5'GTCGCCTCCCGTAGGAGT) were used to amplify 16S rDNA (Mills et al, 2003). PCR 

reactions consisted of 3 uL DNA (diluted 1:50), 10X PCR buffer, 2 mM dNTPs, 50 uM 

MgCl2, 10 uM forward and reverse primers (Proligo, CO), 0.7 U Platinum Taq DNA 

polymerase (Invitrogen Life Technologies), and nuclease-free water (Integrated DNA 

Technologies, Inc.) to a final volume of 30 uL. The DNA Engine DYAD™ thermocycler 

(MJ Research, Inc., Watertown, MA) conditions were as follows: initial denaturation for 1 

min at 94°C, 35 cycles of denaturation (94°C for 45 s), annealing (52°C for 45 s) and 

extension (72°C for 1 min 30 s), and final extension at 72°C for 10 min. All PCR products 

were run on 1.2% agarose gels to confirm amplification. 

Fungal and bacterial samples were analyzed separately, but following the same procedure. 

PCR products (2 uL) were loaded into a CEQ™ 8000 sequencer (Beckman-Coulter Inc.) 

along with CEQ 600 bp (for fungal fragments) or CEQ 400 bp (for bacterial fragments) size 

standard mixture. Run conditions were 60°C separation temperature, 4 kV voltage, and 120 

min separation time. Analysis was performed using the amplicon fragment length 

polymorphism (AFLP) program of the CEQ™ 8000 sequencer and the quartic (for fungi) or 

cubic (for bacteria) model for size standard with the minimum relative peak height set at 1% 

and a bin width of 1.5 bp. 
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The relative abundance of genotypes in each sample (i.e. fungal community) was calculated 

by relativizing the fluorescent signal strength of each fragment peak to the total peak area 

within each sample (Osborne et ah, 2006). Nonmetric Multidimensional Scaling (NMS) was 

calculated on the basis of a S0rensen distance measure with 50 runs with real and 

randomized data and a maximum of 500 iterations to assess stability (instability criterion was 

0.00001) using PC-ORD 5.0 software (McCune and Mefford, 1999). A stepwise reduction in 

dimensionality (6D-1D) was used to minimize stress along with a random starting 

configuration (user-provided seeds). Stress (i.e. goodness of fit measure) and instability (i.e. 

measure of change in stress at each iteration) were used to evaluate the structure of the 

ordination results. The final solution for NMS was accepted after comparing 50 runs with 

real to randomized data using Monte Carlo simulations (McCune and Grace, 2002). Pairwise 

comparisons between groups were tested statistically with Multi-Response Permutation 

Procedures (MRPP), a non-parametric method that provides a statistic of the magnitude of 

differences between groups (i.e. effect size), given as the chance-corrected, within group 

agreement (A) and a p-value (McCune and Grace, 2002). 
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Results 

Soil properties 

As expected, C and N contents were much greater in organic (FH, CWD) compared to 

mineral (Ae, Bf) soil layers (Figure 4.1). In organic layers, mean C content in control (i.e. no 

PHC treatment) FH soil layers was 12.1% compared to 50.4% in CWD layers. In PHC 

treated soils, the amount of C increased to 21.6% in FH layers, but did not significantly 

change in CWD soil layers, where it was 51.6%). In Ae and Bf layers, C content did not vary 

in FH and CWD soil systems: levels for Ae and Bf layers were 1.6% and 1.2%, respectively, 

in controls compared to 3.5% and 1.5% in PHC treated systems. 

N content was 0.30% in control FH layers and 0.25%) in control CWD layers. In the PHC 

treated FH layer, %>N increased to 0.45% whereas %N decreased to 0.18% in PHC treated 

CWD layers. N content was 0.08% and 0.07% in Ae and Bf layers, respectively; these 

values did not vary between soil systems or in PHC treated and control soils. 

Soil pH (water) was generally lower in PHC treated compared to untreated soil systems, and 

was not different in FH and CWD systems. In control soil systems, pH was about 5.8 in the 

organic layer, 5.3 in the Ae layer, and 5.6 in the Bf layer. In PHC treated systems, pH was 

5.3 in the organic layer, 5.0 in the Ae layer, and 5.6 in the Bf layer. There were no 

differences in soil properties at 1 and 16 weeks. 
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ECM morphotypes 

Four months after seed germination (i.e. week 0, time of the PHC treatment), virtually all 

pine root tips were colonized with ECM fungi. ECM richness ranged from three to seven 

(mean of five) ECM morphotypes per root system. In general, ECMs, extraradical mycelia, 

and rhizomorphs were more extensively developed by the 16-week sampling time. The 

density of root tips was greater in the organic layer of the soil profile, but most root tips 

occurred in the B flayer (i.e. greater relative abundance). As shown in Figure 4.1, ECMs 

were often associated with specific soil layers and varied in terms of relative abundance and 

spatial distribution on different parts of the root systems. 

Eight ECM morphotypes were frequently identified on root systems, including Cenococcum, 

MRA, E-strain, Amphinema, two Russulaceae (including Lactarius), and two Rhizopogon-

Suillus types. Rare ECM types were also observed, but were not included in the present 

analysis. Morphological descriptions of pine ECMs are provided elsewhere (Appendix A). 

Clusters of Cenococcum ECMs dominated the upper roots of pine in the FH layer, but were 

never observed in the CWD layer of these double-plant systems. In PHC-treated systems, 

Cenococcum morphotypes appeared to be less abundant after 16 weeks and root tips 

appeared dry and less robust. Amphinema ECMs and external mycelia were often associated 

with Cenococcum tips near the organic-Ae layer interface, but were also occasionally 

observed in the Bf layer. The other ascomycetes, MRA and E-strain, were commonly found 

throughout the soil profile, but in low relative abundance. 

196 



Two members of the Russulaceae (one Lactarius and one Russula type) dominated most root 

systems (i.e. ECMs observed on 80-90% of root tips), particularly by the 16-week sampling 

time; at least one ECM was identified as a species of Lactarius based on the presence of 

laticifers. Root tips varied in colour from yellow to orange-brown and were generally 

unbranched and smooth or appeared velvety due to the few short undamped hyphae that 

resembled cystidia early in their development. Although mainly found in the Bf layer, 

Russulaceae ECMs were also common on the upper lateral roots, particularly in the CWD 

layer. 

Two Rhizopogon-Suillus types were found associated with root tips exclusively in the Bf 

layer. The first was a dark brown, coralloid morphotype. The second was white with a 

slightly tuberculate form. By the 16-week sampling time, both ECMs had developed 

extensive rhizomorph networks and hyphal fans that extended away from root tips into the Bf 

soil. 
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Soil Properties ECM Morphotypes 

organic layer 

(FH or CWD) 

%C %N PH sfiiiiiL 
19.1/51.0* 0.38/0.22* 5.6 

2.6 0.08 5.2 

1.4 0.07 5.6 

* FH/CWD organic soil layers 

# Fungal 
Genotypes 

35 32 

33 23 

34 33 

# Bacterial 
Genotypes 

44 41 

45 41 

42 45 

Total 58 46 Total 48 45 

Cen" 

Amp-

ftus-

Lac-

RhS1 

RhS2 

MRA 

- Cenococcum 

- Amphinema 

Russulaceae 

Lactams 

- Rhizopogon-Suilius 1 

- Rhizopogon-Suilius 1 

E - E-strain 

' only in FH systems 

Figure 4.1: Vertical distribution of soil properties (C, N, pH), ECM morphotypes (Cen, 
Cenococcum; Amp, Amphinema; Lac, Lactarius; Rus, Russulaceae; Rh-Sl, Rhizopogon-
Suilius 1; Rh-S2, Rhizopogon-Suilius 2; MRA; E-strain), and total number of ECM/ ERM 
fungal and bacterial genotypes associated with pine (P) or lingonberry (L) in organic (FH or 
CWD), Ae and Bf soil layers of a shared-rhizosphere system. 
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Fungal community structure 

The complete fungal dataset included 112 root samples and 75 amplicon fragments (400-690 

bp in length). Multivariate analysis using nonmetric multidimensional scaling (NMS) gave a 

three-dimensional solution with a final stress of 18.98 and instability of 0.08. Fungal 

community structure varied between the 1-week and 16-week harvest times (p<0.001); 

pairwise comparisons within PHC-treated and untreated (control) systems at 1 and 16 weeks 

indicated that the changes in fungal community structure over time occurred in PHC-treated 

(p<0.001) systems only. PHCs showed no other effects on fungal community structure. 

Comparisons between fungal communities in different soil layers (organic, Ae, Bf) at 1 and 

16 weeks showed significant differences (p=0.020) only between communities inhabiting the 

organic layer. 

Figure 4.2 shows the NMS ordination for fungal community structure within plant and soil 

layer groups. Plant (i.e. pine or lingonberry) had a significant effect (p<0.001) on fungal 

community structure. Fungal communities associated with pine roots differed (p<0.001) 

from communities associated with lingonberry roots sharing the same soil system (i.e. with 

overlapping rhizospheres). This distinction between pine and lingonberry fungal 

communities is clearly visible along the 1st and 2nd ordination axes (explained 39.9% of the 

variation in the dataset) in Figure 4.2, where pine communities tended to group to the left, 

and lingonberry to the right, of the ordination space. Comparisons (using MRPP) of pine and 

lingonberry root communities by soil layer (organic, Ae, Bf) also revealed significant 

differences (p<0.001) in community structure for all pairwise analyses. 

199 



09 

11 

3 

y 

" 

• 

W 
T 

• 

• 
# H 

T f m 
jr « • 

A • • • A •., r i 

• T • « 

Al • - *" 
* • 4 • m • * • 

A 

• k" T 

A 

Pine - org 

Pine - Ae 

Pine - Bf 

Lingonberry- org 

Lingonberry- Ae 

Lingonberry - Bf 

Axis 1 (r2 = 21.4%) 

Figure 4.2: NMS ordination of fungal community structure by plant (pine or lingonberry) 
and organic (FH and CWD) and mineral (Ae, Bf) soil layers (stress = 18.98; instability = 
0.08). 
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Soil properties also contributed to fungal community structure. Figure 4.3 shows the NMS 

ordination for fungal community structure within the three soil layers (organic, Ae, Bf) of the 

two soil (FH and CWD) groups along the 1st and 3rd ordination axes (explained 41.6% of the 

variation in the dataset). The most visible distinction appears to be between the FH and 

CWD systems, which tend to separate vertically. Within the layered soil systems, MRPP 

analysis revealed significant differences (p=0.027) between communities in organic and Bf 

layers, but not between Ae and either organic or Bf layers. Comparison of three soil layers 

for FH-Ae-Bf and CWD-Ae-Bf systems showed significant differences (p<0.003) between 

all combinations of the two systems, but no significant differences between layers within the 

same type of system (i.e. overlap of fungal community structure in all 3 layers). 
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Figure 4.3: NMS ordination of fungal community structure by soil layer in the two soil 
systems (FH-Ae-Bf and CWD-Ae-Bf) (stress = 18.98; instability - 0.08). 
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Separate analyses of pine and lingonberry root systems were based on 61 root samples (58 

DNA fragments ranging from 400-690 bp in length) and 51 root samples (46 DNA fragments 

ranging from 400-630 bp), respectively. Within plant groups, significant differences 

(p=0.002) in fungal communities were found only between the organic and Bf layers of pine 

(Figure 4.4a). An even closer examination of pine-fungal communities in soil layers of FH-

Ae-Bf and CWD-Ae-Bf systems showed that significant differences were associated with the 

CWD systems and occurred between all layers: CWD-Ae (p=0.030), CWD-Bf (p=0.018), 

and Ae-Bf (p=0.006) (Figure 4.4b). Comparisons of FH-Ae-Bf systems with CWD-Ae-Bf 

systems showed significant differences in pine-associated fungal communities only between 

the Ae layers of the two systems. For lingonberry, no differences were found between soil 

layers, but significant differences in fungal community structure were found between all 

layers of FH-Ae-Bf and CWD-Ae-Bf systems (Figure 4.4). 
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Figure 4.4: Pairwise comparisons of fungal community structure (genotypes) in pine (ECM) 
and lingonberry (ERM) groups: a) within soil layers; b) within and between layers of FH and 
CWD soil systems. Significant differences (MRPP) are represented by dark arrows and 
corresponding p-values; light (slashed) arrows represent no differences between groups. 
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Both plant systems supported the trends associated with harvest time and PHCs that were 

described for the complete fungal dataset. Differences in fungal community structure at 1 

and 16 weeks post-PHC treatment were significant only in PHC-treated systems and there 

were no significant differences between PHC-treated and control communities at either 1 or 

16 weeks. 

Bacterial community structure 

The same pine and lingonberry root systems used to assess fungal community structure were 

used for bacterial community structure analyses. This dataset consisted of 119 root samples 

and 49 DNA fragments, ranging between 300 and 420 bp. Pine roots accounted for 61 root 

samples (48 DNA fragments); lingonberry systems accounted for 58 root samples (45 DNA) 

fragments. The PHC and harvest time variables had little effect on bacterial communities, 

which appeared to follow the same trends in distribution as fungal communities. 

NMS analysis resulted in a two-dimensional solution with a final stress of 15.96 and 

instability of 0.06 (Figure 4.5). As with fungi, plant (pine and lingonberry) appeared to be 

the dominant variable in structuring root-associated bacterial communities, but soil layer and 

type of soil system (i.e. FH-Ae-Bf compared to CWD-Ae-Bf) were also important variables. 

The figure shows clear separation of the pine from the lingonberry bacterial communities 

along the two ordination axes (explained 83.7% of the dataset), and some distinction between 

organic and mineral soil layers associated with each plant. 
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Figure 4.5: NMS of bacterial community structure associated with plant (pine or 
lingonberry) in organic (FH or CWD) and mineral soil layers (stress - 15.96; instability: 

0.06). 
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Nested pairwise comparisons between bacterial communities of different plant and soil 

treatment groups are summarized in Figure 4.6. In combined plant groups (P+L), MRPP 

analysis revealed significant differences between organic and Bf layers (p=0.005), but not 

between Ae and either organic or Bf layers (i.e. same as for fungi). In separate pine and 

lingonberry analyses, Bf layers varied from both organic (p<0.001) and Ae (p=0.005) layers, 

which did not differ from each other (Figure 4.6a). Bacterial community structure varied 

significantly (p<0.001) between pine and lingonberry systems in each soil layer. 

Overall, comparisons of three soil layers within FH-Ae-Bf and CWD-Ae-Bf systems showed 

significant differences (p<0.001) in bacterial community structure between all combinations 

of soil layers (Figure 4.6b). Within FH and CWD system types, significant differences were 

found between organic-Bf and Ae-Bf layers of only the FH systems (p<0.001 for both). 

Differences (p<0.001) in bacterial community structure in all soil layers were also observed 

between FH-Ae-Bf and CWD-Ae-Bf systems. Separate analyses of pine and lingonberry 

communities showed that the organic and Bf layers varied significantly in the CWD-Ae-Bf 

systems of pine (p=0.030) and in the FH-Ae-Bf systems of lingonberry (p<0.001). Pine 

CWD systems also differed between Ae and Bf layers (p=0.037). Differences (p<0.001) in 

bacterial community structure between soil systems were significant only in lingonberry 

systems. 
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Figure 4.6: Pairwise comparisons of bacterial community structure (genotypes) in all plant 
systems (P+L), as well as in pine (ECM) and lingonberry (ERM) groups: a) within soil 
layers; b) within and between layers of FH and CWD soil systems. Significant differences 
(MRPP) are represented by dark arrows and corresponding p-values; light (slashed) arrows 
represent no differences between groups. 
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Discussion 

This study is the first to describe the spatial distribution patterns of microbial communities 

from a shared rhizosphere perspective, encompassing fungal and bacterial communities 

associated with pine (ECM host) and lingonberry (ERM host) roots interacting within the 

same soils. Our results showed that plant and soil properties both contributed to community 

structure of root-associated communities, but that community patterns varied among the 

different guilds of microorganisms (i.e. ECM and ERM fungi and associated bacteria) at 

different spatial scales within the mycorrhizosphere. Overall, PHC contamination had little 

effect on the composition of root-associated microbial communities. 

ECM and ERM root communities 

Within our soil systems, fungal community structure differed distinctly between plants (pine 

and lingonberry), reflecting the specificity of host root systems to form ECM or ERM 

symbioses. It has long been presumed that ECM and ERM fungal communities were both 

spatially and functionally separate (Smith and Read, 1997). We also found that bacterial 

community structure varied between the different mycorrhizal root systems, indicating that 

differences between the ECM and ERM root environment are also important with respect to 

bacterial niche differentiation. Mycorrhizal interactions with heterotrophic bacterial 

communities associated with the mantle and extraradical mycelia of ECM fungi and ERM 

roots are important for mobilization, uptake and translocation of nutrients required for fungal 

and, ultimately, plant growth (Burke and Cairney, 1998). As the establishment of ECM 

symbiosis may alter root morphology (mantle and extraradical mycelia) and physiology (e.g. 

membrane permeability, exudation patterns) in different ways than ERM symbiosis, 
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particularly with respect to quality and quantity of root exudates (Rygiewicz and Anderson, 

1994), it is not surprising that mycorrhizal root-influenced differences in habitat supported 

distinct bacterial communities. 

High genotype richness (i.e. 58 and 46 DNA fragments, respectively for ECM and ERM 

fungi, and 49 DNA fragments for root-associated bacteria) was observed for all three guilds 

of microorganisms. Although high richness has been related to ecological resiliency, there is 

no current sense of this threshold, particularly with respect to molecular assessment methods. 

For ECMs, genotype richness was much greater than morphotype richness, which consisted 

of eight common (and several rare) morphotypes. Discrepancies between morphological and 

molecular analyses of ECMs have been reported in many studies and reflect the dynamic 

character of mycorrhizal systems (Rosling et al, 2003). High genotype richness could be 

due to the presence of inconspicuous or rare ECM fungi or other root-associated fungi such 

as ascomycetous double colonizers (Rosling et al, 2003), saprotrophs (Lindahl et al, 2007) 

or dark septate endophytes (Mandyam and Jumpponen, 2005) that may coexist with ECM 

fungi on the roots. Their DNA was likely amplified along with the ECM fungal DNA 

extracted from the washed root systems and included in the total genotype count following 

LH-PCR. Secondary colonization (i.e. succession) of root tips already colonized by ECM 

fungi also may have occurred; we noted a trend of increasing richness of ECM morphotypes 

and genotypes over the 16 weeks of the study that was generally taken as a reflection of 

community development with time on the young root systems. Succession in ECM root 

colonization was also reported by Massicotte et al. (1999). In addition, an enhancement of 

genotype richness could result from intraspecific variation within fungal taxa, which could 
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increase the number of DNA fragments based on variables characters of ITS rDNA that are 

unrelated to functional diversity (Horton, 2002). The same factors that contributed to 

genotype richness in ECM systems also likely contributed to enhanced richness in ERM 

systems. 

We also found substantial overlap in fragment lengths (genotypes) occurring in pine (ECM) 

and lingonberry (ERM) communities, both for fungi and bacteria. For fungi, this could be 

due to similarities in communities of non-mycorrhizal fungi (i.e. saprotrophs, dark septates, 

etc.) associated with pine and lingonberry roots in the shared rhizosphere. These non-

mycorrhizal fungi may not express host specificity to the same extent as ECM and ERM 

fungi; communities may be structured more by the quantity rather than quality of available 

substrates (i.e. exudates in the rhizosphere). Alternatively, the presence of shared fungal 

genotypes in the two plant systems could be simply coincidental (i.e. as fragment lengths do 

not reflect taxa in LH-PCR), or may indicate sharing of mycorrhizal symbionts between root 

systems. In resynthesis experiments, Vralstad et al. (2002) showed that several strains of 

ERM fungi comprising the Rhizoscyphus ericae aggregate formed true ECMs with conifer 

(spruce and pine) and angiosperm (birch) species, although no isolates formed both ECMs 

and ERMs. Villarreal-Ruiz et al. (2004) reported the ability of a fungus from the R. ericae 

aggregate to form simultaneously both ECMs and ERMs in culture with Pinus sylvestris and 

Vaccinium myrtillus seedlings; however, any sharing of mycorrhizal symbionts has yet to be 

demonstrated in soil systems. Although we observed close interactions between pine and 

lingonberry roots in the soils in this study, the resolution of the community fingerprinting 
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method (i.e. LH-PCR) was not sufficient to demonstrate sharing of mycorrhizal fungal 

symbionts (i.e. only sharing of amplicon fragment lengths). 

In studies relating microbial communities to ecological processes at larger spatial scales (e.g. 

rhizosphere, stand, etc.), an understanding of spatial patterns of functional guilds of 

microorganisms may be more important than the taxonomical details. Community 

fingerprinting methods such as LH-PCR and terminal restriction fragment length 

polymorphism (TRFLP) provide little taxonomic resolution of microbial communities 

compared to methods such as sequencing, but are expected to provide sufficient resolution to 

separate communities based on broad variables (Kuyper and Landeweert, 2002). Mills et al. 

(2003) found no difference in resolution between LH-PCR and TRFLP in assessments of 

PHC-degrading bacterial communities. The coarse filter approach used here to describe 

patterns of root-associated communities in the shared rhizosphere potentially offers 

ecologically relevant information at the expense of some fine-scale resolution. 

Soil properties 

Soil properties of the reconstructed systems used in this study generally resembled soil 

properties at the field site. Exceptions included a slightly lower C:N ratio (about 40) in the 

FH layer of the bioassay and less acidity in all three layers compared to the forest site. PHC 

contamination altered soil properties by increasing C content, particularly in the organic (FH) 

soil layers, and generally lowering pH in organic and Ae layers. Lower pH could be partly 

due to production of metabolic acids and may reflect enhanced microbial activity in response 

to addition of readily metabolizable C substrates present in PHCs. Lindahl et al. (2007) 
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found increased saprotroph activity in the vicinity of mycorrhizal root tips with increased C 

availability. Nitrogen levels increased in FH layers, decreased in CWD layers, but remained 

the same (i.e. much lower than organic soil) in both mineral soil layers. Due to the high 

porosity in organic soil layers, PHCs, particularly more hydrophobic compounds, tend to be 

retained in these layers as compared to mineral soils. Hydrophobic compounds also have a 

greater tendency to adsorb to organic soil components than to mineral ones (Xing et al., 

1994). Thus, microbial communities in organic layers must inhabit PHC-contaminated 

habitat to a greater extent than communities inhabiting the mineral layers below, which 

consisted mainly of sand particles with few binding sites for the PHC chemicals that 

eventually made their way down the profile along the roots. 

However, changes to soil properties related to PHC contamination appeared to have little 

effect on community composition of root-associated microorganisms (fungi and bacteria), at 

least within the 16-week duration of the experiment. Setala et al. (2000) found that soil 

microbial communities appeared to exhibit high resilience to environmental disturbances 

when soil organic layers (e.g. humus, woody debris, etc.) were not severely disrupted. The 

mycorrhizosphere may offer some physical protection from potential toxic effects (e.g. 

solvent shock) of PHC treatment, surfaces for biofilm formation (themselves, protective 

structures), as well as a steady supply of C substrates supporting ongoing microbial 

metabolism. The extent to which these protective factors extend into the rhizosphere remains 

unknown and was not investigated in this study. 
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In the shared rhizosphere systems studied here, soil properties exerted two kinds of effects on 

microbial community structure: contrasting properties of the FH-Ae-Bf and CWD-Ae-Bf soil 

systems, which are potentially important during (mycor)rhizosphere development, and 

vertical segregation in the soil profile (reflection of broad changes in physical soil 

properties). 

FH and CWD systems 

The planting of pine seeds into FH and CWD organic layers provided opportunities for 

potentially different indigenous microorganisms to colonize the newly germinating roots in 

these two systems. The greater C:N ratio of the CWD layer could potentially enhance 

different communities of ECM fungi as well as saprotrophic communities. However, 

differences between root-associated communities (ECM fungi and bacteria) inhabiting the 

different soil layers were generally not observed in pine systems, except in Ae layer 

comparisons. This difference may be due to percolation of different metabolic products from 

CWD decomposition (i.e. compared to FH) downward in the soil profile, which could 

influence microbial communities in the Ae layer below. 

Lingonberry communities appeared to vary more between soil systems (i.e. FH-Ae-Bf and 

CWD-Ae-Bf) than between soil layers; the same trend was observed for both fungal and 

bacterial communities associated with lingonberry roots. It is possible that the soil habitat in 

and below CWD was different in ways (that we did not measure) from FH systems that 

supported different groups of microorganisms associated with lingonberry roots. Unlike 

pine, lingonberry cuttings (rooted in reconstructed forest soils) were transplanted into the soil 
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systems, which may have influenced fungal and bacterial colonization in unknown ways (e.g. 

introduced some competition). Further interpretation of this finding is difficult in light of the 

current limited understanding of ERM fungi. 

Vertical segregation 

ECM fungal communities exhibited vertical community structure, reflecting the direct 

interactions between fungi and soil in the ectomycorrhizal association. In general, ECM 

fungal communities in organic soil layers were distinctly different from Bf-layer, but not Ae-

layer, communities. In our soil systems, the boundaries above and below the Ae layer were 

not well defined and ECM fungal communities often overlapped in these zones. Rosling et 

al. (2003) found that ECM community composition varied between organic, eluvial and 

deeper mineral horizons of a Swedish podzol, and that most taxa described from the organic 

layer were also found in the eluvial horizon below. Genney et al. (2006) found that the 

layered nature of the soil substrate was more likely to encourage horizontal rather than 

vertical extension of mycelia and that ECMs and extraradical mycelia often occupied 

adjacent layers of organic and upper mineral soils. A comparison of FH and CWD soil 

systems revealed that differences between soil layers that influenced community structure 

were mainly attributable to CWD systems. The overlap in fungal communities between 

layers again reflects the continuity and dynamics of ECM systems. 

In contrast, ERM fungal communities of lingonberry did not vary in the different soil layers. 

Due to their endomycorrhizal nature, ERM fungal communities may be less influenced by 

differences in soil properties compared to ECM fungi that are in direct contact with soil on 
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the outer root surfaces and extraradical mycelia. In addition, compared to ECM fungi, there 

are relatively few ERM fungi, which may occupy fewer niches. As epidermal root cells 

appear to be composite structures that are colonized by a variety of fungal symbionts, each 

cell potentially functions as a separate unit (Berch et al, 2002; Perotto et al., 2002). Thus, 

variation in ERM community structure may occur at the level of individual hair roots rather 

than the level of the whole root system (i.e. rhizosphere), as for ECM communities. 

Bacterial communities that inhabit the outer surfaces of the ECM mantle and mycelia, as well 

as the ERM roots, also directly interact with the soil environment, and were found to exhibit 

complex patterns of vertical segregation similar to ECM fungal community patterns. 

Depending on the resolution of analysis, bacterial community structure was found to vary 

between Bf and organic and Bf and Ae layers. In pine systems, differences were associated 

with CWD systems, whereas in lingonberry systems, differences were associated with FH 

systems. Changes in soil chemical, mineralogical, and structural properties with depth create 

complex and variable sets of microbial habitats over very small distances, to which free-

living bacterial cells may be particularly sensitive (Genney et ah, 2006). Due to their small 

size and structural vulnerability to environmental stresses, bacterial communities may be 

expected to vary along much smaller spatial scales compared to the fungal communities with 

which they are associated. 

The vertical distribution patterns of ECM morphotypes described on the root systems of pine 

seedlings in this study were consistent with those described from field-based studies in 

European forests (Rosling et al, 2003; Tedersoo et al., 2003; Baier et al, 2006; Genney et 
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ah, 2006; Lindahl et al., 2007). In our soil systems, the density of ECM root tips was greater 

in organic compared to mineral soil layers, but this was not related to either morphotype or 

genotype richness (genotype richness was also not different between soil layers for ERM 

fungi and bacteria). Most of the root system (i.e. much higher abundance of mycorrhizal 

roots) occurred in mineral (i.e. Bf layer) soil layers. Some ECMs {Cenococcum, Amphinema, 

Russulaceae and Rhizopogon-Suillus types) dominated certain parts of the soil profile, while 

other ECMs (MRA and E-strain) occurred throughout the profile, usually at low relative 

abundance. These community patterns are not always revealed from studies using soil cores 

where a fairly arbitrary and shallow sample of the belowground habitat is taken. Our 

rhizosphere approach had the advantage of sampling entire root systems (albeit small and 

young), which represent ecological units on the landscape. For seedlings, at least, this 

approach provided a more precise picture of the abundance component of diversity, which 

may be important in terms of ecological functions. 

Similar ECM partitioning patterns in temperate forests (USA) were attributed to ECM 

specificity (or generality) for resource use in the different soil layers (Dickie et ah, 2002). 

For example, soil organic matter (SOM) is an important source of substrates for 

decomposition and nutrient cycling in forest ecosystems (Read and Perez-Moreno, 2003). 

The prevalence of ECM fungi in well-degraded litter and humus layers of organic soils 

supports the hypothesis that they play a significant role in mobilizing N from the more 

recalcitrant organic matter in boreal forest soils (Lindahl et al., 2007). Linkages between 

ECM community structure and function have been inferred using ECM exploration types (i.e. 

groups of ECM morphotypes defined by the amount, organization and extent of the 
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extraradical mycelia) as the units for analysis (Agerer, 2001). Patterns are thought to indicate 

differential resource utilization, which suggests that ECMs have distinct foraging strategies 

and different capacities for resource acquisition (Agerer, 2001; Baier et al., 2006). The 

relative abundance of hyphae of various ECMs may strongly influence host and ecosystem 

function (Dickie et ah, 2002). 

In our study, forest floor (FH) layers were dominated by Cenococcum, which has often been 

associated with high humus content and a large C:N ratio (Rosling et al, 2003; Baier et al., 

2006). Cenococcum is a short distance exploration type (Agerer, 2001) characterized by a 

dense cover of emanating hyphae, suitable for making multiple contacts with the loose 

organic cover of the forest floor (Baier et al., 2006). Although Cenococcum tends to be 

tolerant of changing environmental conditions (e.g. temperature, moisture) typical of organic 

soil layers in forests, some morphotypes in the current study appeared dry, less robust, and 

less abundant after 16 weeks in the PHC treated systems compared to untreated controls 

(Chapter 2). Cenococcum is often associated with Amphinema, which tends to inhabit the 

more environmentally stable interface between the organic and Ae layers (Rosling et ah, 

2003; Baier et al, 2006). Amphinema (as well as Piloderma, which did not colonize root tips 

in this study, but whose distinctive yellow hyphae were frequently observed in organic soil 

layers) has been described as medium-distance (fringe) exploration type characterized by 

fans of emanating hyphae with extended contact to the soil, as well as rhizomorphs that 

ramify and interconnect repeatedly (Agerer, 2001). 
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Whereas Cenococcum dominated the FH layer, it was consistently absent from the CWD 

layer, which was characterized by a greater C:N ratio due to the prevalence of lignified 

substrates as well as other physical differences. Instead, the two common Russulaceae 

morphotypes tended to dominate root systems in CWD (dead wood <2.5 cm diameter). 

Lactarius (and other Russulaceae) ECMs are typically associated with acidic, low-N soils, 

and may also contribute directly to decomposition via oxidative enzyme activity (Lilleskov et 

ah, 2002). CWD is also an important habitat for resupinate thelephoroid and athelioid fungi, 

as well as Sebacinaceae (Tedersoo et ah, 2003). We found that thelephoroid ECMs 

represented a rare component of the ECM fungi described in this study; these fungi tend to be 

inconspicuous (and also may not establish with young seedlings), but they likely contributed 

to genotype richness from roots in CWD. 

Pine roots in mineral soils were frequently dominated by the Russulaceae ECMs, which often 

accounted for more than three quarters of the total number of roots tips per seedling. These 

contact exploration types had smooth mantles with few emanating hyphae and were well 

equipped to explore dense soil horizons with narrow pores (Agerer, 2001; Baier et ah, 2006). 

They also tended to have preference for higher bulk density of mineral compared to organic 

soil layers (Genney et ah, 2006). 

The two Rhizopogon-Suillus ECMs described in this study were exclusively found in the Bf 

layer. Though not usually dominant on individual root systems, extensive extraradical 

mycelia and rhizomorphs of these ECMs likely accounted for a high proportion of biomass. 

Suillus and Paxillus morphotypes have been studied extensively in the lab (including with 
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respect to PHC biodegradation), but they have not been frequently described from field 

studies (Genney et al., 2006). The lack of field observations may be an artifact of the 

tendency to focus studies on upper soil layers only, missing yet another functional 

component of the system; Rosling et al. (2003) found Suillus luteus in mineral layers in 2 (of 

3) 52-cm columns of soil. Both Suillus and Rhizopogon have long-distance exploration 

strategies and produce highly visible thick rhizomorphs from tuberculate ECM tips (Agerer, 

2001). Proliferation of hyphal fans towards suitable metabolic substrates in microcosm soils 

has been reported by Bending and Read (1997); in this study, we frequently observed hyphal 

fans extending into both PHC treated and control mineral soils. Fungal species present in 

small numbers as mycorrhizas but that form extensive extraradical mycelia may be 

functionally very important for C and N cycling (Genney et al, 2006). 

Conclusions 

Mycorrhizas, along with the heterotrophic microorganisms tightly associated with the 

mycorrhizosphere, occupy the structural and functional interface for carbon and nutrient 

cycling between the aboveground and belowground food webs in northern forests. 

Interruptions in community functions through environmental disturbance such as PHC 

contamination could potentially disrupt essential ecosystem processes at a landscape scale. 

For the guilds of microorganisms at this trophic level (i.e. ECM fungi, ERM fungi and 

bacteria), PHCs did not appear to exert many detrimental impacts. However, it is unknown 

whether ongoing community development will occur along the same trajectory over the 

longer term in PHC contaminated systems compared to uncontaminated systems or whether 

this is functionally meaningful in terms of ecosystem processes. Furthermore, detrimental 
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impacts to microbial groups that are spatially abundant or possess more specialized functions 

could lead to community changes over time, so longer term studies are warranted. Analysis 

of variation in community structure at the rhizosphere scale gives a broad sense of 

community function by relating changes to habitat properties. Our finding that community 

patterns varied with both plant and soil characteristics and at different scales for the three 

groups assessed contributes to the greater understanding of forest soil ecology and 

sustainability. 
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Chapter 5: Conclusions and future considerations for microbial ecology and 
sustainability management in PHC-contaminated northern forest ecosystems 

This research was based on the premise that oil spills occur in boreal forest ecosystems with 

unknown scope and frequency. In addition, the fate and ecological impacts of petroleum 

hydrocarbon (PHC) contaminants in forest soils are not well understood from either eco-

toxicological or microbial ecological perspectives. Mycorrhizal systems (i.e. plant-fungal 

symbioses and associated heterotrophic bacterial communities) represent the dominant 

microbial biomass in northern forest soils and may be most vulnerable to the environmental 

impacts of direct PHC exposure. Conservation of the integrity of mycorrhizal systems in 

contaminated forests may be key for management for both ecological resilience and 

remediation in a sustainability context. 

The purpose of this research was to examine interactions between PHCs and mycorrhizal 

communities in the rhizosphere, where different guilds of microorganisms interact within the 

larger trophic group tightly linked to decomposition, carbon and nutrient cycling, and 

primary production. This work was both experimental and exploratory in nature, as 

hypotheses were both tested and generated. Several methodological approaches were 

simultaneously used to gain a better understanding of the physical, chemical and biological 

changes that occurred in the rhizosphere of sub-boreal forest soils following contamination 

with ecologically relevant (i.e. equivalent to several tonnes per hectare) levels of oil. Insights 

along a number of themes are presented in the following paragraphs. 
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Rhizosphere model for mycorrhizal systems 

Our model system was comprised of the root system of a single plant (pine, birch or 

lingonberry), germinated (or transplanted, in the case of lingonberry) into vertically-

structured, field-collected, sub-boreal forest soils. These plant-soil systems attempted to 

incorporate some of the complexities of soil and microbial community structure in the 

rhizosphere, but within the confines of the bioassay (i.e. limited dispersal, etc.). These 

systems captured a sub-set of the soil microbial community diversity expected in situ, which 

included ecto- (ECM) and ericoid (ERM) mycorrhizal fungal propagules capable of forming 

symbioses with different root systems in different soil types, under greenhouse conditions. 

Incorporation of soil vertical structure and depth expanded microbial habitat and niche, and 

revealed features of ectomycorrhizal (ECM) fungal diversity (e.g. extensive extraradical 

mycelia of the relatively abundant Rhizopogon-Suillus 1 morphotype) that have generally 

been overlooked in the deeper mineral soils. 

The rhizosphere represents a discrete functional unit that repeats over northern forest 

landscapes. A single rhizosphere obviously does not represent the full complexity of the 

forest soil environment, where dynamic interactions between many different types of 

rhizospheres exhibit emergent properties (i.e. the community possesses capabilities that its 

individuals lack) (Allen et ah, 2003). However, concurrent assessment of plant, soil and 

microbial community properties at the rhizosphere level had the advantage of allowing some 

extrapolation to broad spatial scales over landscapes exhibiting high levels of environmental 

heterogeneity, a necessity for application to sustainable land management. At the same time, 

details of microbial communities at greater levels of taxonomic, genetic, or physiological 
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resolution could be assessed at the level of the individual root tip. Thus, the rhizosphere 

scale is intermediate to species-based approaches for understanding functional diversity and 

ecophysiology on smaller scales, and approaches for assessing spatial distribution and 

ecological functions on larger scales. In this baseline study, we focused on structure, 

distribution, and broad ecological functions of microbial communities at the rhizosphere 

scale. 

A characteristic of more ecologically inclusive studies is greater variation within treatment 

groups, which can impair the ability to detect significant differences between them. Here, we 

used several methodological approaches and multivariate statistical analyses to assess 

changes in different system components and to look for consistent trends potentially pointing 

to biological significance. The remaining unexplained variation is likely the result of noise 

from unmeasured environmental and spatial variability (Ramette and Tiedje, 2007). 

Ecological integrity and resilience 

Environmental disturbance provides a means for understanding forest stability/ resilience 

arising from complex interactions within ecosystems (Amaranthus, 1998). We assessed 

environmental changes associated with soil fertility and physical structure that were expected 

to impact community structure and function of microorganisms and higher trophic-level 

organisms, hi our systems, surface contamination with crude oil led to increased 

concentrations of potentially toxic PHC chemicals ranging from <nC10 to >nC50 in size 

(GC-FID analysis). Soil C analysis confirmed that C content increased in PHC treated 

compared to untreated (control) soils, whereas N content remained unchanged. Thus, PHCs 
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may potentially inhibit some microorganisms (due to toxicity) and stimulate others (due to C 

availability). The more acidic pH that was generally associated with PHC treated soils 

supports the hypothesis that microbial activity was enhanced, although this was not explicitly 

tested. Although we found no differences in community structure (based on relative 

abundance of microbial components, not just richness) between PHC treated and control 

systems, this may be a reflection of the relatively low-resolution method used (i.e. LH-PCR), 

relative simplicity of the plant-soil (rhizosphere) systems, and relatively short period of study 

(16 weeks). Clearly there is a need for future field-based studies incorporating older and 

deeper root systems, different types of plant hosts and soil types, and on greater scales of 

space and time to more fully understand these interactions. 

Mycorrhizal communities were generally resilient to ecologically relevant levels of PHC 

contamination (i.e. equivalent to -7-22 tonnes per hectare, which is within the potential range 

of contamination levels expected from a burst pipeline, etc.) when the integrity of the system 

was conserved (i.e. no further disturbance to mycorrhizal roots or soil structure). In intact 

systems, most PHCs were retained in the organic soil layers (GC-FID analysis), which may 

have limited PHC exposure of mycorrhizas and associated heterotrophic communities at 

greater depths in the soil profile. Although microbial communities inhabiting the organic 

layers were exposed to far greater concentrations of PHCs than deeper communities, 

morphological examinations of individual ECMs and community fingerprinting (LH-PCR) 

studies revealed few changes in community structure (based on relative abundance of the 

fungal and bacterial components of each rhizosphere community) attributable to PHC 

contamination. We hypothesize that the mycorrhizosphere may also have served a protective 
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function for both mycorrhizal fungi and associated heterotrophic communities, possibly 

through exclusion of potentially toxic PHCs (i.e. due to properties of fungal cell walls, 

biofilm formation, and solvent flow along the mycelial surface). However, it was difficult to 

separate the effects of chemical toxicity from habitat changes (e.g. altered carbon/ nutrient 

supply, pH, water holding capacity, etc.) in PHC-contaminated soil systems. 

Morphological and DNA-based analyses do not directly address questions concerning PHC 

impacts on ecological functions because they reveal little of what the organisms are doing. 

Using biochemical (enzyme-based) methods to assess C metabolism, we found that PHC 

treatment had no effect on ECM laccase activity (for catalyzing the opening of aromatic ring 

structures) or on bacterial community C use profiles for substrates commonly found in the 

rhizosphere. More detailed functional analyses are needed to better understand relationships 

between PHC contamination and microbial functions, but these coarse-filter findings also 

point to general system resilience. 

PHC biodegradation and functional redundancy 

PHC concentrations (GC-FID analysis) generally decreased in all plant-soil systems over 16 

weeks, indicating an inherent capacity for PHC biodegradation. Biodegradation was 

particularly evident in pine and birch (ECM) systems that were grown in soils with FH and 

CWD organic layers providing the initial microbial inoculum. Both the forest floor (FH) and 

coarse woody debris (CWD) organic layers were expected to contain microorganisms well 

adapted for decomposition/ biodegradation of C substrates typically found in these soils. The 

structure of ECM fungal and bacterial communities varied between these plant-soil systems, 
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indicating functional redundancy for PHC biodegradation. Standing et al. (2007) suggested 

that functional redundancy among widespread soil processes such as decomposition/ 

biodegradation may be so large that relationships between microbial diversity and ecosystem 

function may lose relevance at larger spatial scales. Our results indicated redundancy for C 

substrate metabolism for individual ECMs (laccase assay) as well as for bacterial 

communities (CLPP analysis). Insights into functional heterogeneity in biodegradation 

processes (i.e. specific metabolic reactions along catabolic pathways) within these 

communities require higher levels of resolution than offered in this study and should be the 

focus of future research. 

ECMs appear to enhance biodegradation via at least two mechanisms. Our results showed 

that greater densities of microorganisms capable of PHC biodegradation were supported in 

the mycorrhizosphere compared to non-rhizosphere soil (i.e. mycorrhizosphere effect). This 

large heterotrophic biomass is likely fueled through addition of reduced C substrates in PHC 

mixtures, resulting in a generally stimulatory effect on biodegradation. In unplanted soils, 

we found greater bacterial densities in PHC-treated compared to untreated (control) soils, 

indicating that availability of readily metabolizable C substrates is at least one factor 

influencing the density of microbial communities in the mycorrhizosphere. In addition, we 

observed that the ECM extraradical mycelia greatly expanded the surface area for potential 

bacterial colonization and biofilm formation, which could also enhance PHC biodegradation 

through expansion of habitat and niche of biodegrading communities. 
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In the absence of mycorrhizosphere (i.e. in unplanted systems), levels of the smaller (<nC16) 

PHC chemicals were significantly reduced by indigenous bacterial communities, but levels of 

the larger (nC16+) PHCs did not change substantially. This provides indirect evidence for a 

stimulatory role of ECMs in the biodegradation process. More direct evidence was inferred 

from our finding that many ECMs exhibited the potential to open aromatic rings via laccase 

secretion, thus contributing to the metabolic synergy for PHC biodegradation that appears to 

exist within the mycorrhizosphere community. Laccase secretion by ECMs is one of many 

potential functions that may impact PHC biodegradation in forest soils for which we have no 

clear understanding with respect to ecological significance. Many of the dominant ECMs 

(e.g. Rhizopogon-Suillus 1, Russulaceae 1, and Lactarius) described in our study exhibited 

high laccase activity, both at the root tip and along the extraradical mycelia/ rhizomorphs. 

These morphotypes tended to inhabit the deeper, mineral soil layers and have not been well 

studied. The dominant ECMs may represent the most functionally relevant community 

component (i.e. greater biomass and greater contribution to nutrient uptake and C demand), 

with the numerous minor (less frequently occurring) ECMs representing functional 

equivalents of the dominant types, but with different environmental requirements and 

tolerances (Allen et ah, 2003). Thus, the minor types may contribute to ecosystem resilience 

in changing environmental conditions (i.e. disturbance) that are capable of replacing the 

dominant ECMs should they decline (i.e. insurance effect). This hypothesis remains to be 

specifically tested for mycorrhizal fungal communities, particularly with respect to 

contaminated soil management. 
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We did not find significant PHC biodegradation in the systems where additional complexity 

was incorporated (i.e. double-plant systems with ECM and ERM hosts or FHoil soil systems 

that contained residual PHCs from the previous contamination event) into the experimental 

design. The additional complexity may have overwhelmed the spatial and temporal 

limitations of the bioassay, resulting in greater within-group variation. In the double-plant 

systems, we found greater diversity (richness and relative abundance) of fungal and bacterial 

communities than in single-plant systems, and each root system supported both shared and 

distinct components of microbial communities. We hypothesized that double-plant systems 

augmented the level of competitive interactions (perhaps by providing more specialized 

niches owing to properties of the different root systems) compared to single-plant systems, 

which may have inhibited the overall biodegradation process at key steps along the 

biodegradation pathway. In the FHoil soils, residual PHCs probably consisted of a greater 

proportion of larger (>C16) PHCs that may be degraded more slowly and be less available to 

microbial metabolic systems. In terms of biodegradation potential based on community 

profiles, FHoil soil system fungal and bacterial communities varied no more from FH and 

CWD systems than these latter systems varied from one another. 

Plants and soils 

Soil microbial communities exhibit clear spatial (and temporal) patterns across landscapes 

based on environmental heterogeneity (niche) and the legacy of past disturbance events 

(Ramette and Tiedje, 2007). In this study, we found that the plant was the primary 

determinant of mycorrhizal fungal and associated bacterial community structure. Both 

morphological examinations of individual roots and community fingerprinting (LH-PCR) 

232 



studies revealed distinct fungal communities for pine, birch and lingonberry systems. This 

reflects the specificity of host root systems to form ECM or ERM symbioses, which were 

expected to be both spatially and functionally separate. This distinction between ECM and 

ERM fungal communities was maintained in the double-plant systems where the pine and 

lingonberry root systems were in close proximity. In addition, ECM fungal communities 

exhibited specificities for either the coniferous (pine) or deciduous (birch) host, which may 

have been due to differences in root structure or exudation patterns. Surprisingly, bacterial 

community structure also varied between the different mycorrhizal root systems, indicating 

that differences between ECM and ERM root environments are also important with respect to 

bacterial niche differentiation. Differences in microbial community structure between plant 

systems reflect the many potential plant-fungal combinations that occur in repeatable units 

across landscapes (Allen et ah, 2003). How the diversity of the plant community impacts 

microbial community structure, ecosystem resilience and biodegradation capacity following 

PHC contamination is an important consideration in both ecological and management 

contexts. 

Differing properties of the soil environment exerted two kinds of effects on microbial 

community structure. First, communities (morphology and LH-PCR) varied between the 

three soil systems tested, which were characterized by different organic layers (FH, CWD, 

and FHoil) providing the initial microbial inoculum during early plant growth and 

(mycor)rhizosphere development. Second, communities exhibited vertical segregation in the 

soil profile (organic, Ae, and Bf layers), which is a reflection of broad changes in physical 

and chemical soil properties. Results from the shared rhizosphere study (i.e. double-plant 
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systems with both pine and lingonberry) showed that community patterns varied among the 

different guilds of microorganisms (i.e. ECM and ERM fungi and associated bacteria) at 

different spatial scales within the mycorrhizosphere and were related to certain 

environmental variables. ECM fungal communities, which are in direct contact with soil on 

the outer root surfaces and extraradical mycelia, were found to vary between different soil 

layers within systems, as well as between the three organic soil layers of different systems. 

In contrast, ERM communities appeared to be less influenced by vertical differences in soil 

properties, but to depend more on properties of the different organic soil systems, which may 

influence the initial microbial inoculum composition. Variation in ERM community 

structure may occur at the level of individual hair roots consisting of epidermal cells 

potentially functioning as separate units rather than the level of the whole root system (i.e. 

rhizosphere), as for ECM communities. Bacterial communities varied both within and 

between soil systems. Due to their small size and structural vulnerability to environmental 

stresses, bacterial communities may be expected to vary along much smaller spatial scales 

compared to the fungal communities with which they are associated. These findings help 

form the base for a better understanding of connections, linkages, and scale-related relevance 

of mycorrhizosphere/ ecosystem components that contribute to ecological processes at 

landscape scales and to predict how ecosystems may respond to environmental disturbances 

such as soil contamination. However, the identification of common patterns of biotic and 

environmental variation remains a central issue in microbial ecology. 
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Management in PHC contaminated forests 

Currently, there is little ecological foundation for remediation strategies in PHC-

contaminated forest soils. Rather, remediation depends on contaminant (e.g. PAH) levels 

and perceived toxicological threats to soil quality, forest productivity, and wildlife, 

intertwined with the economic incentive of recovering spilled oil. There is no evidence that a 

single spill event in a forest poses significant ecological threats; studies suggest that over 

time scales of several years, many PHCs are biodegraded via central metabolic pathways of 

the indigenous soil microbiota or are transformed via specific enzymatic pathways to 

products that are incorporated into the soil organic matter. Our results suggest that surface 

application of relatively high rates of crude oil to plant-soil systems had little negative impact 

on mycorrhizal fungal or bacterial communities in the rhizosphere, and also showed that 

significant PHC biodegradation occurred within 16 weeks of treatment. 

Sustainable management strategies for northern forests need to preserve diverse 

environmental, social, and economic values for large areas over long periods of time. 

Mycorrhizal systems consist of functional groups of soil biota that underpin ecosystem 

services such as decomposition, biogeochemical cycling, primary production, soil stability, 

and C sequestration, to name a few (Barrios, 2007). Thus, maintenance of mycorrhizal 

integrity, which includes both the plant community and soil environment, should be an 

objective of remediation strategies for PHC contaminated soils. Ideally, remediation should 

utilize knowledge of the microbial communities present in contaminated soil environments, 

their metabolic abilities, and their likely response to changes in environmental conditions. 
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In situ bioremediation is considered a low-disturbance and cost-effective strategy for 

managing contaminated forest soils on large scales. Our results support the hypothesis that 

the intrinsic capacity for biodegradation is maintained in PHC contaminated soils in the 

absence of further environmental disturbance. This intrinsic biodegradation could be 

enhanced through various augmentations to the process. For example, addition of organic or 

woody material to the forest floor may extend the habitat of mycorrhizal systems (i.e. 

increase mycorrhizosphere volume) and provide energy-rich substrates for co-metabolism of 

the more recalcitrant PHC chemicals. Addition of N fertilizer has been used to relieve soils 

of the N deficiency that is often associated with PHC contamination (not found in our study); 

however, fertilization may also lead to conditions where mycorrhizal symbioses become too 

costly for the host plant to maintain (i.e. plants no longer require N from the mycobiont), 

which could lead to loss of vital functional components of mycorrhizal communities. In 

addition, the planting of mycorrhizal seedlings establishes mycelial systems in the 

contaminated soils and allows gradual decontamination over time. Our results suggest that 

the greatest success may come from using indigenous species of host plants (grown in site 

soils) for initially establishing adapted mycorrhizal communities rather than inoculating 

plants grown in nursery soil mixtures with non-site-specific fungi. 

In conclusion, this systems approach addressed fundamental questions in mycorrhizal 

ecology by considering PHC pollution as a form of environmental disturbance. Further 

research is needed for a more detailed understanding of interactions between PHCs and 

mycorrhizal systems in northern forest soils. 

236 



References 

Allen, M.F., Swenson, W., Querejeta, J.I., Egerton-Warburton, L.M., and Treseder, K.K. 
(2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among 
plants and fungi. Annual Review of Phytopathology 41: 271-303. 

Amaranthus, M.P. (1998) The importance and conservation of ectomycorrhizal fungal 
diversity in forest ecosystems: lessons from Europe and the Pacific Northwest. Portland, 
OR, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 
Gen. Tech. Rep. PNW-GTR-431. 15 pp. 

Barrios, E. (2007) Soil biota, ecosystem services and land productivity. Ecological 
Economics 64: 269-285. 

Ramette, A. and Tiedje, J.M. (2007) Multiscale responses of microbial life to spatial distance 
and environmental heterogeneity in a patchy ecosystem. Proceedings of the National 
Academy of Science 104: 2761-2766. 

Standing, D., Baggs, E.M., Wattenbach, M., Smith, P., and Killham, K. (2007) Meeting the 
challenge of scaling up processes in the plant - soil - microbe system. Biology and 
Fertility of Soils 44: 245-257. 

237 



A
pp

en
di

x 
A

: E
C

M
 m

or
ph

ot
yp

e 
de

sc
ri

pt
io

ns
 

E
C

M
 M

or
ph

ot
yp

e 
G

ro
ss

 M
or

ph
ol

og
y 

M
an

tl
e 

&
 H

ar
ti

g 
N

et
 

E
m

an
at

in
g 

H
yp

ha
e 

R
hi

zo
m

or
ph

s 
C

en
oc

oc
cu

m
 

M
R

A
 

E
-s

tr
ai

n 

A
m

ph
in

em
a 

bl
ac

k,
 w

oo
ly

 to
 g

ra
in

y,
 

m
at

te
 to

 s
hi

ny
, u

nb
ra

nc
he

d,
 

st
ra

ig
ht

 (1
-2

 m
m

) 
bl

ac
k 

(h
ya

lin
e 

at
 ro

ot
 ti

p)
, 

fe
lty

 to
 w

oo
ly

, m
at

te
, 

un
br

an
ch

ed
, s

tr
ai

gh
t 

(1
-1

.5
 

m
m

) 
or

an
ge

-b
ro

w
n 

to
 d

ar
k 

br
ow

n 
(h

ya
lin

e 
tip

),
 g

ra
in

y,
 

m
at

te
, u

nb
ra

nc
he

d,
 s

tr
ai

gh
t 

(1
-3

 m
m

) 

pa
le

 y
el

lo
w

, c
ot

to
ny

, m
at

te
, 

di
ch

ot
om

ou
s 

to
 ir

re
gu

la
r 

br
an

ch
in

g 

O
M

 re
gu

la
r 

sy
ne

nc
hy

m
a 

(s
te

lla
te

 p
at

te
rn

),
 H

ar
tig

 
ne

t p
re

se
nt

 
O

M
/IM

 f
el

t 
pr

os
en

ch
ym

a,
 th

in
, H

ar
tig

 
ne

t p
re

se
nt

 

O
M

/IM
 n

et
 to

 n
on

-
in

te
rl

oc
ki

ng
 i

rr
eg

ul
ar

 
sy

ne
nc

hy
m

a,
 v

er
y 

th
in

, 
la

rg
e 

ce
lls

 (5
-8

 u
rn

), 
H

ar
tig

 n
et

 p
re

se
nt

 
O

M
 n

et
 s

yn
en

ch
ym

a,
 c

el
l 

w
id

th
 3

-4
 u

m
, H

ar
tig

 n
et

 
pr

es
en

t 

br
ow

n-
bl

ac
k 

hy
ph

ae
 (

4-
5 

um
),

 
no

ne
 

so
m

et
im

es
 c

op
io

us
, s

ep
ta

te
, n

o 
cl

am
ps

, n
o 

or
na

m
en

ta
tio

n 
bl

ac
k 

or
 h

ya
lin

e 
hy

ph
ae

 (
2-

3 
no

ne
 

um
),

 s
ep

ta
te

, n
o 

cl
am

ps
, 

ve
rr

uc
os

e 
or

na
m

en
ta

tio
n 

fe
w

 h
ya

lin
e 

hy
ph

ae
 (5

-8
 u

m
),

 
no

ne
 

se
pt

at
e,

 n
o 

cl
am

ps
, v

er
uc

os
e 

or
na

m
en

ta
tio

n 

hy
al

in
e 

hy
ph

ae
 (

2-
3 

um
),

, 
no

ne
 

se
pt

at
e,

 c
la

m
ps

, v
er

ru
co

se
 

or
na

m
en

ta
tio

n 

P
il

od
er

m
a 

R
us

su
la

ce
ae

 1
 

R
us

su
la

ce
ae

 2
 

(L
ac

ta
ri

us
) 

(n
ot

 o
bs

er
ve

d)
 

fr
os

ty
 o

ra
ng

e-
br

ow
n,

 
sm

oo
th

, g
ra

in
y 

or
 v

el
ve

ty
, 

m
at

te
, u

nb
ra

nc
he

d 
or

 
di

ch
ot

om
ou

s,
 s

tr
ai

gh
t o

r 
be

nt
 (

1-
3 

m
m

) 
ye

llo
w

-o
ra

ng
e,

 s
m

oo
th

 to
 

ve
lv

et
y,

 m
at

te
, u

nb
ra

nc
he

d 
or

 d
ic

ho
to

m
ou

s,
 s

tr
ai

gh
t t

o 
be

nt
 (

1-
3 

m
m

) 

(n
ot

 o
bs

er
ve

d)
 

O
M

/IM
 n

et
 to

 
in

te
rl

oc
ki

ng
 i

rr
eg

ul
ar

 
sy

ne
nc

hy
m

a,
 s

m
al

l c
el

l 
w

id
th

 (
1-

3 
um

), 
H

ar
tig

 
ne

t p
re

se
nt

 
O

M
 n

on
-i

nt
er

lo
ck

in
g 

ir
re

gu
la

r 
sy

en
ch

ym
a,

 I
M

 
ne

t s
yn

en
ch

ym
a,

 v
ar

ia
bl

e 
ce

ll 
w

id
th

 (
4-

8 
um

),
 

la
tic

if
er

s,
 H

ar
tig

 n
et

 
pr

es
en

t 

hy
al

in
e 

hy
ph

ae
 (

2-
3 

ur
n)

, 
se

pt
at

e,
 c

la
m

ps
, v

er
ru

co
se

 
or

na
m

en
ta

tio
n 

w
ith

 n
ee

dl
e-

lik
e 

cr
ys

ta
ls

 
ve

ry
 fe

w
 s

ho
rt

 h
ya

lin
e 

hy
ph

ae
 

(2
-3

 u
m

),
 s

ep
ta

te
, n

o 
(s

om
et

im
es

?)
 c

la
m

ps
, n

o 
or

na
m

en
ta

tio
n 

ve
ry

 fe
w

 s
ho

rt
 h

ya
lin

e 
to

 
ye

llo
w

 c
ys

tid
ia

 (
2-

3 
um

),
 

sl
ig

ht
ly

 ta
pe

re
d 

ou
t, 

no
 b

as
al

 
cl

am
p,

 1
00

 u
m

 lo
ng

, s
ep

ta
te

, n
o 

cl
am

ps
, v

er
ru

co
se

 o
r n

o 
or

na
m

en
ta

tio
n 

pa
le

 y
el

lo
w

, l
oo

se
, 

un
di

ff
er

en
tia

te
d 

no
ne

 

no
ne

 

23
8 



E
C

M
 M

or
p

h
ot

yp
e 

G
ro

ss
 M

or
p

h
ol

og
y 

M
an

tl
e 

E
m

an
at

in
g 

H
yp

h
ae

 
R

hi
zo

m
or

ph
s 

R
us

su
la

ce
ae

 3
 

R
hi

zo
po

go
n-

Su
il

lu
s 

1 

R
hi

zo
po

go
n-

Su
il

lu
s 

2 

T
he

le
ph

or
ac

ea
e 

1 

T
he

le
ph

or
ac

ea
e 

2 

bl
ac

k 

w
hi

te
 1

 

w
hi

te
 2

 

cr
ea

m
y-

ye
llo

w
, 

sm
oo

th
 to

 
ve

lv
et

y,
 m

at
te

, u
nb

ra
nc

he
d 

or
 m

on
op

od
ia

l p
in

na
te

, 
st

ra
ig

ht
 (

1-
4 

m
m

) 

ru
st

y-
br

ow
n,

 g
ra

in
y 

to
 

ve
lv

et
y,

 m
at

te
, c

or
al

lo
id

 
(<

1 
m

m
),

 th
ic

k 
ro

pe
lik

e 
rh

iz
om

or
ph

s 
an

d 
hy

ph
al

 
fa

ns
 

w
hi

te
, w

oo
ly

, 
re

fl
ec

tiv
e 

(s
hi

ny
),

 u
nb

ra
nc

he
d 

or
 

di
ch

ot
om

ou
s,

 b
en

t t
o 

st
ra

ig
ht

 (
2 

m
m

),
 th

ic
k 

ro
pe


lik

e 
rh

iz
om

or
ph

s 
bl

ac
k 

to
 d

ar
k 

br
ow

n,
 

sm
oo

th
, m

at
te

, u
nb

ra
nc

he
d,

 
st

ra
ig

ht
 (

1-
3 

m
m

) 

go
ld

-b
ro

w
n 

to
 o

ra
ng

e-
br

ow
n,

 s
m

oo
th

, m
at

te
, 

m
on

op
od

ia
l p

in
na

te
, 

st
ra

ig
ht

 (
1-

3 
m

m
) 

bl
ac

k 
(w

hi
te

 a
t r

oo
t t

ip
),

 
m

at
te

, d
ic

ho
to

m
ou

s 
br

an
ch

in
g 

to
 c

or
al

lo
id

 (
.5

-2
 

m
m

) 
w

hi
te

, v
el

ve
ty

, m
at

te
 (

1 
m

m
) 

pa
tc

hy
 w

hi
te

, g
ra

in
y 

to
 

w
oo

ly
, r

ef
le

ct
iv

e 
(~

1 
m

m
) 

O
M

 n
et

 to
 n

on
-

in
te

rl
oc

ki
ng

 ir
re

gu
la

r 
sy

ne
nc

hy
m

a,
 c

el
l w

id
th

 
1-

2 
um

, H
ar

ti
gn

et
 

pr
es

en
t 

O
M

/IM
 n

et
 s

yn
en

ch
ym

a,
 

H
ar

tig
 n

et
 p

re
se

nt
, 

am
or

ph
ou

s 
de

po
si

ts
 o

n 
m

an
tle

 s
ur

fa
ce

 

O
M

 p
ro

se
nc

hy
m

a 
to

 n
et

 
sy

ne
nc

hy
m

a,
 c

el
l w

id
th

 
3-

4 
um

 

O
M

 n
on

-i
nt

er
lo

ck
in

g 
ir

re
gu

la
r 

to
 r

eg
ul

ar
 

sy
ne

nc
hy

m
a,

 H
ar

tig
 n

et
 

pr
es

en
t 

O
M

 n
et

 s
yn

en
ch

ym
a 

O
M

 n
et

 to
 n

on
-

in
te

rl
oc

ki
ng

 i
rr

eg
ul

ar
 

sy
ne

nc
hy

m
a,

 c
el

l w
id

th
 

~4
 u

m
, H

ar
tig

 n
et

 p
re

se
nt

 
O

M
 n

et
 s

yn
en

ch
ym

a 

O
M

 n
et

 s
yn

en
ch

ym
a 

hy
al

in
e 

cy
st

id
ia

 (
2-

3 
um

),
 

se
pt

at
e,

 n
o 

cl
am

ps
, v

er
ru

co
se

 o
r 

no
 o

rn
am

en
ta

tio
n 

br
ow

n 
or

 h
ya

lin
e 

hy
ph

ae
 (

2-
4 

um
), 

se
pt

at
e,

 n
o 

cl
am

ps
, 

ve
rr

uc
os

e 
or

 n
o 

or
na

m
en

ta
tio

n 

no
ne

 

hy
al

in
e 

hy
ph

ae
 (

2-
5 

um
),

 
se

pt
at

e,
 n

o 
(s

om
et

im
es

?)
 

cl
am

ps
, v

er
ru

co
se

 o
r n

o 
or

na
m

en
ta

tio
n 

da
rk

 b
ro

w
n 

or
 h

ya
lin

e 
hy

ph
ae

 
(~

2-
3 

um
),

 s
ep

ta
te

, c
la

m
ps

, n
o 

or
na

m
en

ta
tio

n 

lo
ng

 a
nd

 c
op

io
us

 h
ya

lin
e 

hy
ph

ae
 (2

-3
 u

m
),

 s
ep

ta
te

, 
cl

am
ps

 

bl
ac

k 
or

 h
ya

lin
e 

hy
ph

ae
 (

~3
 

ur
n)

, s
ep

ta
te

, n
o 

cl
am

ps
 

hy
al

in
e 

hy
ph

ae
 (

1 
um

),
 s

ep
ta

te
, 

no
 c

la
m

ps
 

hy
al

in
e 

hy
ph

ae
 (

2-
4 

um
),

 
se

pt
at

e,
 c

la
m

ps
 

br
ow

n-
pu

rp
le

 p
ig

m
en

t 
(p

ur
pl

e 
w

ith
 K

O
H

),
 

re
st

ri
ct

ed
 p

oi
nt

 a
tta

ch
m

en
t, 

sl
ig

ht
ly

 d
if

fe
re

nt
ia

te
d,

 
se

pt
at

e,
 n

o 
cl

am
ps

, 
am

or
ph

ou
s 

gl
ob

ul
es

 o
n 

su
rf

ac
e 

ye
llo

w
-o

ra
ng

e 
pi

gm
en

t 
(o

ra
ng

e 
w

ith
 K

O
H

),
 

sl
ig

ht
ly

 d
if

fe
re

nt
ia

te
d,

 
se

pt
at

e,
 n

o 
cl

am
ps

, 

no
ne

 

no
ne

 

no
ne

 

no
ne

 

no
ne

 

23
9 



Appendix B: Photographs of field site, soils, bioassay, and ECM morphotypes 

Plate 1: Soil Collection 

1) Soil pit at the Kenneth Creek field site revealing organic, Ae, Bf, Bfi, Bm, BC, and C 
horizons of a Dystric Brunisol (Arocena and Sanborn, 1999); 2) Collecting the Bf layer; 3) 
Collecting the FH layer (background); lxl m2 PHC-treated plot with the FH and Ae layers 
removed (foreground); 4) FHoil layer in situ 4 months after PHC treatment showing 
extensive yellow mycelia (a), small conifers (b), and herbaceous plants (c) growing within 
the plot; 5) Close-up of Piloderma mycelia from FHoil layer (a) and of a cluster of ECM root 
tips from the FH layer (b). 

Plate 2: Plant-soil systems and ECMs 

1) Bioassay: pine and birch systems following PHC treatment (a); lingonberry (b) and pine 
(c) single-plant systems in reconstructed soil layers; cleaned root systems of pine and birch at 
the 1-week sampling time (d); pine and lingonberry seedlings growing in CWD organic layer 
(e); ECM roots growing into the CWD substrate (f); 2) Cenococcum ECMs dominated the 
FH and FHoil layers in pine (a) and birch (b), PHC-treated (a) and untreated (b) systems; 
Cenococcum ECMs with profuse emanating hyphae (a,b) Cenococcum with very few hyphae 
(c); the typical stellate pattern of the outer mantle confirmed the identity of these ECMs (d); 
3) E-strain ECM on pine; 4) Profuse emanating hyphae of Amphinema ECM on pine viewed 
using dissecting (a) and compound (b) microscopes; 5) Characteristic needle-like crystals 
ornamenting Piloderma hyphae were often found associated with pine root tips, although 
Piloderma ECMs were not observed in this study. 

Plate 3: ECMs (cont) 

1) Russulaceae 1 ECM on pine; 2) Russulaceae 3 ECM (center) and MRA (lower left) on 
birch roots; 3) Russulaceae 2 (Lactarius) ECM on pine (a); cluster of Russulaceae 2 tips 
growing into CWD (b); Russulaceae 2 ECMs often dominated the root systems of pine (c); 4) 
Development of Rhizopogon-Suillus 1 ECMs on pine roots from a small, whitish cluster (a), 
to a coralloid cluster with brown pigmentation and ropelike rhizomorphs (b), to a series of 
clusters with networks of rhizomorphs extending into the Bf soil matrix (c); 5) Cluster of 
Rhizopogon-Suillus 2 on pine roots showing extensive rhizomorph development; 6) 
Thelephoraceae 1 root tips (a), irregular to regular synenchyma pattern of outer mantle (b), 
and clamped hyphae (c); Thelephoraceae 2 ECM on pine. 
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