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ABSTRACT

Fish can accumulate high levels of mercury (Hg) and become a human health concern if 

consumed. The purpose o f this study was to develop a risk assessment tool to determine 

which water bodies from certain areas in Northern British Columbia contain fish with 

high Hg concentrations. Raw and published data were collected from Health Canada and 

Ministry of Environment and amalgamated to form a large data set (3097 fish samples 

from 34 distinct areas between 1974 and 2000). Fish weight was standardized and a cut­

off point was determined for each species for high Hg levels. This was used to develop a 

risk assessment tool unique to the study area to identify which species/water body 

combinations were high in Hg and how fish consumption strategies can be adapted to 

minimize exposure. Although high Hg levels were widespread, the majority of 

contaminated samples were from Pinchi Lake and the Williston Lake area.
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1.0 Purpose of the Study

The overall goal of this research was to identify the areas in the Northern Interior 

of British Columbia where concentrations of mercury (Hg) in fish are elevated and may 

pose a risk to fish consumers. Further, this research provided a tool for Public Health 

professionals in the Northern British Columbia region when assessing the risk associated 

with fish consumption from various water bodies in the region. Specifically, the 

following questions were addressed:

1. Which areas in Northern British Columbia have the highest levels o f Hg in 

fish, and do these levels vary in different species from the same area?

2. Are there similarities in the areas with the highest Hg levels in fish? For 

instance, are anthropogenic activities associated with the elevated Hg levels?

3. Are there relationships between Hg concentrations in fish and species, age, 

weight, location, and date o f sampling?

4. Does consumption o f fish from the areas exhibiting high Hg concentrations in 

fish pose a human health risk? If so, how should Public Health officials 

respond to this risk?

2.0 Background and Context of the Study

Due to its high toxicity to both humans and animals, Hg is one o f the most 

commonly studied trace elements in the environment (Mousavi et al., 2011). Hg is third 

(after arsenic and lead) on the 2011 Agency for Toxic Substances and Disease Registry 

(ATSDR) priority list of 275 hazardous substances, which includes substances that 

present the most significant potential threats to human health in the United States
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(ATSDR, 2011). It is released into the environment through both natural and 

anthropogenic sources and can exist in three forms: elemental, inorganic, and organic 

(Bhavsar, 2010; Mousavi et al., 2011). In freshwater ecosystems, the organic form (e.g. 

methylmercury) is predominant and has a high propensity to accumulate in fish tissue 

through ingestion and absorption (Beyrouty & Chan, 2006). Therefore, dietary 

consumption of fish and other aquatic animals is a major route of Hg exposure amongst 

human and wildlife populations (Mousavi et al., 2011) and the effects of high Hg 

exposure are well documented (Beyrouty & Chan, 2006).

Although methylmercury (MeHg) is produced naturally in the environment 

(Adriano, 2001), records of it being a potential toxicant and its use in chemical research 

date as far back as the 1860s (Clarkson, 2002). The commercial production o f organic Hg 

did not begin until around 1914, when it began to be used as a crop fungicide (Barrett, 

2010). Since then, MeHg has come to be known as one o f the most hazardous 

environmental pollutants. Many endemic disasters are attributed to MeHg, such as 

Minamata disease in Japan and poisoning from the distribution of wheat seeds dressed 

with MeHg in Iraq (Mousavi et al., 2011; Legrand et al., 2005).

In Canada, Hg pollution surfaced as an issue in 1969 when fish and waterfowl 

populations within the basins o f Wabigoon and English Rivers in Ontario were found to 

have elevated Hg levels (Harada et al., 2011). The pollution source was found to be a 

factory upstream, which used Hg as a catalyst to purify caustic soda. Two indigenous 

communities along the river (Asubpeeschoseewagong from Grassy Narrows and 

Wabaseemoong from White Dog) consumed Hg-contaminated fish from the river. 

Although there is debate about the actual cause o f symptoms, clinical and
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epidemiological investigations conducted by Harada et al. (2011) found that Minamata 

Disease-like symptoms were common amongst the population. Follow-up research was 

conducted in 2002, 2004, and 2010 and the original findings of these symptoms were 

reconfirmed (Harada, M., et al., 2011). Even today, Hg concentrations in fish continue to 

be above safe levels (Kinghom et al., 2007).

The amount of Hg released into the atmosphere has increased through other 

human activities, including coal and municipal waste incineration (Mousavi et al., 2011). 

Metal mining and smelting, the use o f Hg in gold mining, chlor-alkali production (where 

Hg is used as an electrode in the electrochemical process of manufacturing chlorine), and 

bio-medical waste are also anthropogenic sources contributing to increased Hg in the 

environment (Mousavi et al., 2011). Other examples o f anthropogenic sources of 

exposure include: paints and tattoo inks, dental amalgams, barometers, blood pressure 

monitors, gas regulators, fluorescent bulbs, wall light switches, camera batteries, 

thermostats, and thermometers (Mousavi et al., 2011).

2.1 Hg in the environment

Hg is naturally occurring and is found in air, water and soil; it can be detected 

almost anywhere in the environment, with normal background levels in sediments usually 

below 0.1 ppm (ranges between 0.01 to 0.2 ppm). Table 2.1 below summarizes the forms 

that Hg can exist within the environment. Because Hg exists in many forms, its 

movement within the environment is influenced by a number o f factors (Adriano, 2001).

It cycles naturally through the earth’s crust, atmosphere, oceans, and life forms, with 

trace amounts in fish, plants, and animals (Rasmussen, 2005). The main ore o f mercury is 

the red sulphide cinnabar (HgS), which is what is commonly mined. In its gaseous
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elemental form Hg has an atmospheric lifetime of six to eighteen months allowing it to be 

transported around the globe (UNEP, 2008).

The main mobilization mechanism for Hg in the environment is through the 

formation of organic forms. Alkylation is a process which combines inorganic Hg with 

one or two methyl groups forming monomethylmercury or dimethylmercury (WHO, 

2006). Methylation of Hg is a detoxification process which is performed by 

microorganisms such as bacterium, fungi and mould; hence the rate of methylation is in 

part dependent on the abundance o f these organisms (WHO, 2006).

2.1.1 Hg bioaccumulation in the aquatic food web

Inorganic Hg, once it has been released by natural and/or anthropogenic sources, 

enters aquatic environments and accumulates in sediments where it can be transformed 

into MeHg by sulfate-reducing bacteria under anoxic conditions (Wang et. al, 2012). 

Anaerobic sulfate-reducing bacteria are the main agents of Hg methylation, and 

anthropogenic additions of sulfate are increasing the activities o f these bacteria. These 

bacteria may methylate Hg in a slow side reaction at 1/1000 the rate of overall sulfate 

reduction. Sulfate reducers growing at or near redox interfaces may be most important for 

methylation and Hg contamination of shallow-water food webs (Fry and Chumchal,

2012 ).

Uptake of MeHg from the environment by the lowest organisms of the food chain 

plays a key role in MeHg bioaccumulation and biomagnification in biota at higher trophic 

levels because most of the Hg that accumulates in species originates from consumption o f 

organisms at lower trophic levels rather than direct aqueous accumulation. The pathway 

for MeHg transfer along the food web can be classified as pelagic or benthic according to
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the foraging habitat. A part of the MeHg in sediments can be taken up by benthic animals 

directly through gut digestion, or MeHg is also able to enter the water through particulate 

re-suspension and diffusion, where it can be absorbed by phytoplankton and then 

biomagnified to potentially harmful concentrations in the food web (Wang et. al, 2012).
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Table 2.1 Forms ofHg (U.S. EPA, 2007)

Types o f Hg Description W here it is found Symptoms from exposure

Elemental 
or metallic

- N ot carbon-containing

- Silver colored metal 
that exists as a thick 
liquid at room 
tem perature

- A vapour in air

- A m bient air

- Therm om eters

- Fluorescent bulbs

- Dental am algam s

-Renal toxicity, skin rashes, hypertension, and pulm onary toxicity

- N eurological changes (behavioral changes, trem ors, and reduced m uscle 
coordination)

- D eath, related to respiratory failure

- P ink disease (sym ptom s include leg cram ps, irritability, redness /peeling  o f  skin, 
itching, fever, sw eating, salivating, rashes, sleeplessness)

Organic - P redom inantly  M eH g

- E thylm ercury

- Phenylm ercuric 
A cetate (PM A )

- Foods such as fish

- V accine preservatives and 
som e antiseptics

- Form erly used in som e indoor 
paint

- Sedim ent

- In utero exposure m ay cause delays in reaching developm ental m ilestones and 
decrease intelligence

- H igh doses m ay cause mental retardation, reduced m uscle coordination, 
blindness, seizures, m uscle w eakness, and inability to speak

- E ffects in adult hum ans include kidney dam age and digestive tract problem s

-Chronic exposure is linked to elevated blood pressure, increased risk o f  heart 
attack, heart palpitations, hand trem ors, im paired hearing, dizziness, and 
staggering

-Pink disease

Inorganic - N ot carbon-containing

- N on-elem ental form s 
o f  inorganic Hg, 
including m ercuric 
chloride, mercuric 
acetate, mercuric 
sulfide, etc.

- C om m ercially  available 
products

- M edicinal hom eopathic herbal 
rem edies

- Low  exposure from  indoor air

- Can be toxic to kidneys, stom ach, intestines

- Can lead to increased blood pressure

- Possib le em bryotoxic effects including increased rates o f  m iscarriage and 
stillbirth

6



2.1.2 Influencing factors for increased Hg concentrations in fish 

The relationship between elevated Hg concentrations in fish in newly flooded 

areas is well documented. The flooding of vegetation and terrestrial soils through natural 

and anthropogenic processes contributes to elevated Hg concentrations in the food web of 

flooded environments (Mast and Krabbenhoft, 2010). It has been proven that reservoir 

formation often leads to elevated Hg levels in fish relative to pre-impoundment 

concentrations, even in cases where no point source discharges o f Hg are evident (Mast 

and Krabbenhoft, 2010). In newly created reservoirs, the initial flooding of organic-rich 

soils can result in elevated Hg concentrations in fish for up to 10 to 20 years later (Bodaly 

et al., 2007). Hg accumulation may also be elevated in established reservoirs that 

experience annual water-level fluctuations related to water storage, power generation, or 

flood control (Mast and Krabbenhoft, 2010). The source of Hg in reservoirs is likely a 

redistribution of the element from materials already in the lake or river prior to flooding 

(Mast and Krabbenhoft, 2010). In situations where the reservoir is reflooded, declining 

water levels may allow the growth of vegetation on exposed littoral areas, which then 

become a new carbon source when the sediments are reflooded, causing an increase in 

microbial activity and MeHg production. An alternate explanation is that drying o f soils 

and sediments results in oxidation of reduced sulfur to sulfate which stimulates sulfate- 

reducing bacteria and MeHg production when rewetted (Mast and Krabbenhoft, 2010). 

The magnitude of increases in Hg levels in the environment, and in turn, in fish depends 

on many factors including the area o f land and vegetation inundated, water temperature, 

pH, alkalinity, sulfate, dissolved organic carbon and the age and retention time of the 

reservoir (Mast and Krabbenhoft, 2010).
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The correlation between the rising concentration of Hg in fish tissue and the size 

and age of the fish is well documented. The levels of increase depend on trophic status 

and diet; the lowest levels are in aquatic plants, intermediate in invertebrates and highest 

in fish, and piscivorous mammals and birds (Storelli et al., 2007). “Larger, older, and 

higher-trophic-level fish species generally have higher MeHg tissue residues than smaller 

and younger organisms from lower trophic levels. Concentrations in top predator fish can 

be up to 10 million times higher than those in water” (Mahaffey et al., 2011). Studies also 

show differences in Hg concentrations in pelagic and benthic species; animals living in 

close association with sediments (in which they bury and from where they feed) are 

eventually more exposed to sediment-associated contamination than other fish (Storelli et 

al., 2007). Almost all of the Hg found in biological systems has been absorbed in the 

form of MeHg and all freshwater fish in North America, and perhaps in the world, have 

at least trace levels of Hg in their tissues (Bhavsar, 2010). MeHg can bioaccumulate and 

biomagnify within aquatic food webs and is highly absorbable to both fish and human 

consumers via ingestion (95 to 100%) compared to inorganic Hg (5 to 10%) (Storelli et 

al., 2007; Chan et al., 2003).

2.2 Northern British Columbia

Northern British Columbia’s geographic area is approximately 500,000 square 

kilometers, which comprises more than half o f the province (TourismBC, 2008). This 

area has many rivers and lakes and is known for its freshwater and saltwater fishing.

Hg levels in fish have been a source of concern in some regions o f Northern 

British Columbia both in the past and at the present time. Higher than normal levels have 

been attributed to anthropocentric activities such as the building o f reservoirs and mining
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close to lakes. The two water bodies that have received the most attention for high Hg 

levels in Northern British Columbia are Pinchi Lake and Williston Reservoir.

2.2.1 Pinchi Lake

The area along the Pinchi fault in central British Columbia is a prime example of 

a natural Hg source found and exploited by humans leading to elevated Hg levels in the 

lake (Weech et al., 2004). A portion o f the northern shore was mined for Hg from 1940 to 

1944, at which time the mine was closed and all structures were subsequently 

demolished. The mine was redeveloped and operated once again from 1968 to 1975. 

Waste ore was routinely deposited directly into Pinchi Lake; since then, relatively high 

concentrations of Hg have been observed in the water, sediments, and fish in the area 

(Weech et al., 2004).

There has been media attention on the elevated Hg levels o f Pinchi Lake’s fish, as 

the Tl’azt’en Nation, a group of Carrier Indians who live north o f Fort St James, claim 

that it has affected the health of the majority o f their population of 1200 (The Province, 

2003). In February of 2010, a consulting agency prepared a document for Teck Metals 

(also known as Cominco) entitled “Human Health Risk Assessment of the Pinchi Mine 

and Pinchi Lake Area.” This document included a closure plan for the mine and 

concluded that “post-closure environmental conditions and land uses at the mine site 

described in the Closure Plan should result in acceptable risks to human health for on-site 

receptors” (Wilson, 2010). An assessment conducted at a later date to ensure that the 

post-closure conditions are indeed acceptable would be ideal.
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2.2.2 Williston Lake

The Williston Lake Reservoir (Figure 2.1) is located in close proximity to 

Hudson’s Hope, B.C.; it was created in 1968 by the impoundment of the Peace River in 

the Peace Canyon for the purpose of hydroelectric generation (Stockner, 2005). This 

reservoir is a product o f the W.A.C. Bennett Dam, which flooded land surrounding the 

Peace, Parsnip, and Finlay rivers (creating the present three reaches) during the late 

1960s through to the early 1970s. This is British Columbia’s largest reservoir, with a 

surface area o f nearly 178,000 hectares and a catchment area close to 70,000 square 

kilometers (Baker et al., 2000). The lake is used by the sports fishing industry as well as a 

First Nations community, Tsay Keh Dene, located at the mouth o f the Finlay Reach.

Figure 2.1 Map of Williston Lake and the surrounding area (ILEC, 2008)

Plotey Wiver,

A  Fort Ware |  .

WHfistoa laktf 

Riv«r\
f  mate? Forth? (SU* §5)
f P«c« Canyon Oom Fort St, John

gf aytet
X^*Hud?on'? Hop* 

t V.AXX Bennett Dim

Scale km

too

10



2.3 Benefits o f fish consumption

The importance of fish consumption for good health and nutrition is well 

accepted; it has provided humanity with an important food source for thousands of years. 

Fish are a source of many vitamins, including niacin, vitamins B12, D, and A. Further, 

fish provide a dietary source o f other nutrients including selenium, iodine, fluoride, 

calcium, copper, choline, taurine and zinc (SACN/COT, 2004; Karagas et al., 2012; 

FAO/WHO, 2011). The many health benefits o f fish are partly due to the high 

concentrations of n-3 polyunsaturated fatty acids (n-3 PUFAs) present in many species 

(Mahaffey et al., 2011).

The n-3 PUFAs that are particularly important in human nutrition include alpha- 

linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and 

docosahexaenoic acid (DHA). The two fatty acids that are especially important for 

human neurological development are EPA and DHA (Mahaffey et al., 2011). These 

essential fatty acids play important roles in cell membrane formation, integrity, and 

functions; the functioning of the brain, retina, liver, kidney, adrenal glands, and gonads; 

and local hormone production for the regulation of blood pressure and immune and 

inflammatory responses (Mahaffey et al., 2011).

Maternal intake of fish has been observed to be valuable to fulfill fetal 

requirements. DHA and arachidonic acid (AA), an omega-6 PUFA, are essential for the 

development of the central nervous system in mammals (SACN/COT, 2004). During the 

last trimester of pregnancy, fetal requirements for DHA and AA are very high due to the 

rapid synthesis of brain tissue. The main sources of the DHA and AA that accumulate in 

the brain are drawn from maternal circulation during pregnancy and through breast milk
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for newborns (Mahaffey et al., 2011; SACN/COT, 2004). In pre-term and low-birth- 

weight babies, DHA deficiency has been related to visual impairment and delayed 

cognitive development. Also, there is some evidence that increased maternal intake of 

fish or fish oil supplements may prolong gestation, minimizing preterm delivery and low 

birth weight (SACN/COT, 2004).

Multiple observational studies have monitored DHA levels in maternal blood 

during pregnancy, in umbilical cord blood during delivery or o f maternal fish 

consumption during pregnancy. These studies demonstrate independent beneficial 

associations o f DHA levels with more optimal neurodevelopmental outcomes in 

offspring, such as better behavioural attention scores, visual recognition memory and 

language comprehension in infancy and childhood (FAO/WHO, 2011).

The ingestion o f fish or fish oils has been associated with an array o f health 

benefits including improvement of blood lipid profiles, decreased risk of heart disease, 

lowered blood pressure, improvement in rheumatoid arthritis, enhanced eye and brain 

development in early life, prevention o f macular degeneration, less risk o f colitis and type 

2 diabetes, and improvement in neurological and psychological disorders such as 

depression, schizophrenia and Parkinson’s Disease (Ginsberg and Toal, 2008). A number 

of studies have shown strong evidence that fish or fish oil consumption reduces all-cause 

mortality and various cardiovascular disease outcomes (FAO/WHO, 2011).

2.4 Dietary concern related to fish consumption

Monomethylmercury is a neurotoxic species which bioaccumulates in fish tissue 

and is a principal Hg-related human health concern today (Mousavi et al., 2011). As it is 

readily formed in water and remains in the water column, fish take in MeHg by ingestion
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of contaminated prey and particles or assimilate the compound through their gills during 

respiration. The toxicity o f low concentrations o f Hg on most aquatic organisms can 

result in decreased growth rate, reproduction and overall ability to survive (Mousavi et 

al., 2011).

Hg and MeHg compounds usually affect the nervous system, the kidneys, and the 

developing fetus. Fetal brain Hg levels tend to be 5 to 7 times higher than in the mother’s 

blood, with the developing central nervous system being of highest concern (WHO, 2006; 

Karagas, 2012). Hg toxicity can also affect fetal respiratory, cardiovascular, 

gastrointestinal, hematological, immune and reproductive systems.

There are several factors that determine the presence and severity o f adverse 

health effects such as the chemical form o f the Hg, the dose, the age or developmental 

stage o f the exposed individual, the duration of exposure, and the route o f exposure 

(WHO, 2006). Three routes of exposure are dermal contact, inhalation, and ingestion, 

with ingestion being the most common and hazardous.

Almost all Hg in fish is in the form of MeHg, which has a high affinity for 

proteins in fish muscle (Melwani et al., 2009). All humans are exposed to some level of 

Hg, and fish is the primary source of Hg exposure among the general population 

(Bhavsar et al., 2010). Because of this, many governments provide dietary advice to limit 

fish consumption where there are elevated Hg levels (WHO, 2006). The World Health 

Organization and the Food and Agriculture Organization of the United Nations 

recommend a maximum of 0.5 ppm in non-predatory fish and 1 ppm in predatory fish. 

The United States Food and Drug Administration set a maximum level o f 1 ppm in fish,
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shellfish and aquatic animals. The European Community allows 0.5 ppm in fishery 

products and Japan allows up to 0.3 ppm.

Health Canada has set a guideline o f 0.5 ppm for the Hg level in commercial fish; 

however, certain predatory fish species sold in Canada may contain Hg levels that are 

higher than this. In 2007, Health Canada issued a new standard which limits acceptable 

Hg content in predatory fish to 1.0 ppm (Health Canada, 2007b). Such predatory species 

include fresh/frozen tuna (Thunnus spp.), shark (Selachimorpha spp.), swordfish (Xiaphis 

gladius), marlin (Makaira spp.), orange roughy (Hoplostethus atlanticus), and escolar 

(Lepidocybium flavobrunneum). There is no limit on the consumption of fish such as 

salmon (Salmo salar (Atlantic); Oncorhynchus spp. (Pacific)), cod (Gadus spp.), pollock 

(Pollachiuspollachius), sole (Solea spp.), shrimp (Pandalus borealis), mussels (Mytilus 

edulis), scallops (Pecten maximus), and canned light tuna (Thunnus spp.). There is also 

no limit on the consumption o f the species used in this study (including bull trout, dolly 

varden, and lake trout, for which there are current advisories in Northern BC), nor do the 

guideline limits differ according to where the fish is caught (for example, inland/offshore, 

which province/area, etc.).

Many communities, especially First Nations, rely on fish intake as a daily 

component of their meals and nutrient intake and are likely at risk for chronic exposure to 

MeHg (Chan et al., 2011). It is important to balance the risks and benefits o f fish 

consumption when nutritional, social, cultural, and economic benefits are concerned 

(Chan et al., 2011). In many communities, researchers are aware that MeHg is present in 

the area; however, there is a lack of comprehensive data collection and analysis. 

Collecting and analyzing data can be a lengthy and expensive process; limited human and
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financial resources make it difficult to study each community in depth. That being said, 

there is a current and ongoing “First Nations Food, Nutrition, and Environment Study” 

which analyzes food and water consumption for one hundred randomly selected First 

Nations communities across Canada (in British Columbia, Manitoba, and Ontario) 

(FNFES, 2012). This project is being conducted by the University of Northern British 

Columbia and has principal investigators from the University o f Ottawa, University o f 

Montreal, and the Assembly o f First Nations, as well as co-investigators from Health 

Canada. This study also reports average total Hg in hair concentrations and conducts 

household interviews about traditional foods consumed in the past year (FNFES, 2012).

2.5 Benefits versus risks o f fish 'consumption

Whether the benefits o f fish consumption outweigh the risks of MeHg exposure 

has been a controversial issue for quite some time. The most important factors in the 

debate are the MeHg exposure levels in fish being consumed, and the level o f risk 

associated with MeHg. When taking different factors into consideration, the 

recommendations can be quite confusing. For instance, the Food and Drug 

Administration of the United States (FDA) issued consumption advice in 2004, but only 

for children and pregnant and/or nursing women. Health Canada (2011) recommends 

150g/week as a general guideline, 150g/month for pregnant women, 125g/month for 

children 5-11 years of age, and 75g/month for children 1-4 years o f age (for non- 

predatory fish). To add to the confusion, the American Heart Association (2010) 

recommends at least 2 fish meals per week (Turyk, 2012).

Two studies from the Seychelles and Faroe islands show contrary assessments 

despite having similar populations with high per capita consumption of fish and MeHg
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body burdens higher than in the United States (Ginsberg and Toal, 2008). The Faroe 

study showed significant neurodevelopmental deficits at birth and into the early school 

years whereas the Seychelles study, at similar MeHg exposure levels, showed no 

evidence of harm. The National Academy o f Sciences (NAS) held a peer review panel to 

determine the reasons for the conflicting results of the two studies and found that there 

were four main differences. The Faroese study used the umbilical cord to test for Hg 

concentration while the Seychellois survey used maternal hair; the Faroese study used 

domain-specific tests and the Seychellois study used globally-accepted tests (which may 

not have been sensitive enough to the region); the Faroese children were evaluated at age 

7 and the Seychellois at age 5.5 (a less sensitive age for neuropsychological tests); the 

Faroese eat whale meat, which can significantly raise the concentration o f Hg in the body 

in a short amount o f time. After taking the above differences into account, NAS 

determined that the study from the Faroe Islands, even though they eat whale meat, 

fulfilled the most criteria for use o f an epidemiology study in risk assessment (Jacobson, 

2001). This was mostly due to the fact that the Seychelles study may have lacked 

sufficient power to detect the relatively small effect sizes computed for the Faroe Islands 

data (Price et al., 2007).

Based on these two studies and an additional one from New Zealand, a National 

Academy of Sciences report in 2000 (NRC, 2000) concluded that MeHg in fish is an 

important public health risk and a dose-response analysis for neurodevelopmental effects 

was developed. The U.S. EPA used this to derive a reference dose (RfD) o f 0.1 pg/kg 

body weight/day (U.S. EPA, 2011).
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Many fish consumption advisories intend to educate the public on balancing the 

risks and benefits o f fish consumption; however, messages in the media that emphasize 

fish benefits have created confusion about the need for caution (Hobson, 2006). In some 

cases, warnings about MeHg levels in fish portray overly negative messages that cause 

individuals to completely avoid fish (Cohen et al., 2005; Oken et al., 2003). In 2001, 

when the U.S. FDA recommended “that women of child bearing age should avoid 

consuming specific long-lived predatory fish high in Hg and limit fish and shellfish 

meals, pregnant women in eastern Massachusetts decreased their total fish consumption, 

resulting in an estimated decline of 17%” (Turyk, 2012). On the other hand, some 

advocacy groups have recommended that pregnant women exceed federal fish 

consumption guidelines (Couzin, 2007).

There are many factors that need to be considered when estimating safe levels of 

MeHg intake from eating fish, making it a very difficult task. Factors such as differing 

sensitivity to MeHg amongst various populations; varying types, amounts, and frequency 

of seafood consumed; and the differences in Hg concentration o f species all need to be 

acknowledged. Further, there is disagreement about the reliability, variability, and 

interpretations of existing data (Mahaffey et al., 2011). However, there are a few points 

that all agree with: pregnant women and young children are the most sensitive groups, 

MeHg is neurotoxic, and seafood is the primary dietary source. Moreover, the many 

health benefits associated with seafood consumption, especially during pregnancy and 

early life, are well known (Mahaffey et al., 2011).

Mahaffey et al. (2011) provides a comprehensive review o f many risk-benefit 

considerations of fish consumption on child development that have been published in
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recent years. This work sheds light on significant advances that have been made in 

understanding the toxicology and epidemiology of MeHg exposures, as well as the 

nutritional benefits of n-3 PUFAs. However, a number of knowledge gaps still remain, 

including the need for much more information on the quantities o f n-3 PUFAs that can be 

synthesized from ALA through maternal metabolism. Many studies have considered the 

association between fish intake and child development at relatively low exposure levels, 

but unfortunately, not all studies provide detailed seafood consumption results (Mahaffey 

et al., 2011). This makes conducting a quantitative benefit/risk assessment o f DHA intake 

and MeHg exposure challenging because seafood consumption remains a major 

determining factor. It is made even more complex when additional factors are taken into 

account, such as exposure to lipophilic organic contaminants (such as PCBs, as they also 

tend to accumulate in predatory fish), other nutrients, or variability in individual body 

weights (Mahaffey et al., 2011).

The World Health Organization (WHO) and the Food and Agriculture 

Organization of the United Nations (FAO) have come together to formulate fish 

consumption advice. Their most recent document, “Report of the Joint FAO/WHO 

Expert Consultation on the Risks and Benefits o f Fish Consumption” was released in 

2011. This report concludes that the consumption of fish provides energy, protein, and a 

range of other nutrients, as well as reducing the risk o f mortality from coronary heart 

disease. There is an absence o f probable or convincing evidence o f risk o f coronary heart 

disease associated with MeHg and when comparing the benefits o f n-3 PUFAs with the 

risks of MeHg among women o f childbearing age, maternal fish consumption lowers the 

risk of suboptimal neurodevelopment in their offspring (FAO/WHO, 2011). However, the
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available data are currently insufficient to derive a quantitative framework for assessing 

the health risks and health benefits o f eating fish for infants, young children and 

adolescents. This document also includes a series of steps that are recommended for 

member states/countries to better assess and manage the risks and benefits o f fish 

consumption and more effectively communicate with their citizens. This includes 

acknowledging that fish is an important food source and is part of the cultural traditions 

of many peoples, emphasizing the benefits o f fish consumption on reducing mortality 

from coronary heart disease (and the risks o f mortality from coronary heart disease 

associated with not eating fish) for the general adult population, and emphasizing the net 

neurodevelopmental benefits to offspring of women o f childbearing age who consume 

fish, particularly pregnant women and nursing mothers. WHO/FAO (2011) also 

recommended that jurisdictions develop, maintain and improve existing databases on 

specific nutrients and contaminants, particularly MeHg and dioxins, in fish consumed in 

their region; and to develop and evaluate risk management and communication strategies 

that both minimize risks and maximize benefits from fish consumption.

WHO/FAO (2011) considered seven other existing international risk-benefit 

activities when creating a matrix comparing levels of the n-3 PUFAs, DHA, and EPA 

with levels of total Hg and dioxins developed using existing data. The matrix categorized 

fish species by one of four levels o f each of these substances.

2.6 Existing risk assessment and management strategies

It is important to understand and complete a risk assessment in order to know the 

true risk of consuming certain foods. Risk assessment refers to a process that 

characterizes the degree and nature of a given risk (Health Canada, 2007a). Through risk
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assessment, it can be determined if there is a need for risk management, which is 

prevention and control employed to reduce risk (Health Canada, 2007a). Risk 

management strategies have been employed in the past to reduce the risk o f unacceptable 

exposures to Hg and the need for one was first identified by Health Canada in the late 

1960s, when a standard was developed for Hg in fish (Health Canada, 2007a).

“In their everyday lives, people face hazards and must make individual decisions 

about the risks they face. However, the public depends upon the government to provide 

both safeguards and warnings about potential hazards, and to regulate or remediate where 

needed to reduce exposure to these hazards” (Burger, 2005). A risk assessment guide is 

needed to provide guidance to risk managers so that they can better understand the risk 

posed by MeHg in fish. This will provide them with the knowledge needed to assist in 

developing appropriate cost-effective intervention strategies in which the risk of fish 

consumption can be minimized while the benefits can be maximized.

The risk-benefit assessment used for the purposes of this thesis is the Codex 

Alimentarius risk assessment paradigm by WHO/FAO and will be discussed in detail 

below. However, there are many other international risk-benefit strategies that have been 

developed. The Benefit-Risk Analysis of Foods (BRAFO) has gained much attention in 

Europe, as well as worldwide (ILSI, 2012). This system uses a tiered approach to assess 

the risks and benefits of changing from the reference scenario to an alternative, resulting 

in a statement about which scenario is preferred in terms of health effects. In Tier 1, each 

risk and benefit is assessed independently, often using standard screening methods (but 

more refined methods may provide the benefit o f needing to proceed to Tier 2). Tier 1 

comprises a separate risk assessment and a separate benefit assessment. In Tier 2, risks

20



and benefits are compared in a qualitative way without the use o f a common metric. In 

Tier 3, risks and benefits are integrated quantitatively in a common metric, by a 

deterministic approach. In Tier 4, risks and benefits are integrated quantitatively in a 

common metric by a probabilistic approach.

Another tiered approach was developed by the Scientific Committee o f the 

European Food Safety Authority (EFSA) which focuses on human health risks and 

human health benefits, and does not address social, economic and other considerations 

(EFSA Journal, 2010). This approach is very similar to both the Codex and the BRAFO 

approach and incorporates three steps: initial assessment (risks versus benefits), refined 

assessment (quantitative), and the comparison o f risks and benefits (using a composite 

metric such as DALYs or QALYs). This approach identifies that separate consideration is 

needed where differences in the sensitivity to the agent under consideration exist or are 

assumed to exist in specific subpopulations.

DALY (Disability Adjusted Life Years) and QALY (Quality Adjusted Life Years) 

are both ways to assess the burden of disease attributable to an environmental factor.

They are technically similar in that they both express health in time (life years) and give a 

weight to years lived with a disease, capturing both quality and quantity o f life in one 

indicator. However, the DALY approach also gives an indication of the potential number 

of healthy life years lost due to premature mortality or morbidity and are estimated for 

particular diseases, instead o f a health state. Although QALYs and DALYs stem from the 

same broad conceptual framework, they are not interchangeable, as they are partly based 

on different assumptions and different methodologies (Sassi, 2006).
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Using these many risk-benefit assessments, government agencies around the 

world develop fish consumption advice for the public. This often results in fish 

consumption advisories, the development o f which is also a process which builds upon 

existing literature and advisories issued by other governments.

2.7 Fish consumption advisories

As of 2008, all 50 states and the District of Columbia in the United States of 

America have issued fish consumption advisories to alert residents of consumption 

restrictions on certain species from local lakes and rivers (Lando and Zhang, 2011). State 

advisories vary in their specifics due to differences in fish species and types o f pollutants 

in local waterbodies. In 2008, 80% of these advisories, including at least one in every 

state, were issued in part due to Hg contamination (Lando and Zhang, 2011).

The FDA issued national fish consumption advisories in 2001 and 2004, targeting 

women of childbearing age and households with young children. The efficacy o f these 

advisories has been evaluated in different ways. Lando and Zhang (2011) examined 

changes in consumer awareness of Hg contamination in fish and their knowledge of the 

information contained in the national advisories by using nationally representative 

surveys in 2001 and 2006. They tried to test whether the targeted groups in the national 

advisories were more aware of the information contained in the advisories in 2006 than 

they were in 2001. The results indicated that the United States’ population’s awareness of 

Hg as a potential toxicant in fish increased from 69% to 80% between 2001 and 2006.

The percent of those who could name a targeted at-risk group or fish listed in the national 

advisories increased and there was also an increase in the mean index score in measuring 

awareness of Hg in fish and knowledge of the information contained in the advisories.
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Media attention and many federal, state, and local education activities surrounding the 

national and state fish advisories aided in alerting the public about the potential problem 

of Hg in fish. Despite this increase, overall knowledge about the information contained in 

the national advisories remains low (Lando and Zhang, 2011). Although women in 

general had greater gains in their level of awareness and knowledge between 2001 and 

2006 than their male counterparts, women of childbearing age did not have greater 

awareness or knowledge than the rest o f the population groups. However, adults that had 

children five years of age or younger in their households had greater awareness and 

knowledge than those who did not. It was also found that Caucasians, older adults, and 

highly educated consumers had higher awareness and knowledge index scores than ethnic 

minorities, younger adults, and less educated consumers. Further, those who lived within 

easy access to fresh fish and fishing had higher awareness and knowledge index scores 

(Lando and Zhang, 2011).

Another study conducted to assess the efficacy o f the FDA’s 2001 advisory found 

that it significantly reduced fish consumption amongst the population (Shimshack et al., 

2010). This study had a rich data set with household-level consumer panel data from 

Information Resources, Inc. (IRI). The data set included every packaged supermarket fish 

purchase from a panel of nearly 15,000 households in the year before the advisory and 

the 2 years after the advisory (2000—2002). The consumption data were combined with 

detailed information on more than 5300 unique products comprising over 50 species. 

Home fish consumption was then translated into household Hg and omega-3 intakes 

based on measurements reported in the scientific literature and extensive USD A (United 

States Department of Agriculture) testing. The empirical findings o f this study showed
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that Hg intakes fell 17.1% in response to the advisory on average, with the reduction 

being concentrated among college-educated, high fish-consuming households. However, 

at-risk consumers’ omega-3 intakes from this food source also fell 21.4%. It appears that 

the recommendation to continue consuming healthful levels o f seafood and to substitute 

towards lower Hg fish was not heeded on average (Shimshack et al., 2010).

Burger and Gochfeld (2008) interviewed 174 individuals (including students, 

maintenance staff, and faculty) at Rutgers University in New Jersey to assess the degree 

of knowledge about the benefits and risks of fish in relation to ethnicity and the degree o f 

knowledge. Their study found that people are generally more aware of the benefits o f fish 

consumption than the risks, and they have more specific information about those benefits 

than they do about the risks (Burger and Gochfeld, 2008). Further, there were ethnic 

differences in knowledge about: advisories or benefits, specific information about the 

risks and benefits, and that some fish are better or worse with respect to the risks from 

chemicals. Caucasians related more specific information about the risks and benefits than 

minorities (Burger and Gochfeld, 2008).

A review of literature reveals that awareness of warnings is sometimes ethnically 

related; even though minorities tend to consume more fish than their Caucasian 

counterparts, their knowledge of advisories is often considerably less (Burger and 

Gochfeld, 2006). Reasons for the lack of knowledge may be due to lower income and 

education; whereas the higher consumption may be culturally related. A pilot study was 

conducted in Philadelphia on fish consumption and advisory awareness among the Asian 

community by distributing questionnaires (Perez et al., 2012). This study found that the 

concept that fish consumption can have both harmful and beneficial effects is a difficult
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one for populations that rely on seafood as a major dietary and cultural component. Study 

data were used to evaluate the efficacy of state-issued advisories and it was found that 

while advisory awareness levels among study participants were greater than previously 

observed in Asian-American populations, consumption levels remained high. However, 

the sample size was quite small (n=34) and represented a very limited sample o f the 

Philadelphia Asian-American population.

DeWeese et al. (2009) reported on the efficacy o f  lake-specific, risk-based, 

culturally sensitive fish consumption advice for tribes in the Great Lakes Region. Area- 

specific advisory maps, which were a combination of text and graphics and provided 

consumption advice as well as information on health benefits o f consuming fish (in 

particular Ogaa/Walleye), were distributed to tribes in Wisconsin, Minnesota, and 

Michigan. A behavioural intervention program was developed and the efficacy o f it was 

assessed using surveys of tribal fish harvesters and women o f childbearing age. Fifty-one 

families from 10 tribes recorded their fish consumption during the study. The 

intervention involved dissemination of the advisory maps to tribal leaders, fish 

harvesters, women o f childbearing age, children, and elders, as well as the broader tribal 

population. There were oral presentations which included detailed training on use of the 

maps, general information about the adverse health effects o f Hg exposure, and 

information about how map-based consumption advice was developed. After the 

intervention, concern about Hg increased significantly among all harvesters, but not 

among women of childbearing age. Although nearly 100% of Wisconsin tribal harvesters 

and over 90% of tribal harvesters in Minnesota and Michigan surveyed found the 

advisory maps to be very or somewhat helpful, there was no significant increase in the
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number of harvesters who used maps to make choices about which lakes to harvest. The 

intervention effort toward women of childbearing age resulted in an increase of 

awareness and concern but not in behavioral changes. Overall, Ogaa harvest in 

Wisconsin, Michigan, and Minnesota increased during and after the map-based 

intervention program.

Consumers may limit fish consumption or choose among different kinds o f fish 

based on consumption advisories and media warnings; however, there is a rich literature 

indicating that this is not always the case (Burger and Gochfeld, 2006). Burger and 

Gochfeld (2006) reviewed the issuance of fish consumption advisories, compared angler 

compliance and knowledge about such advisories, and proposed a framework for 

information needs necessary to integrate several aspects of fishing, fish consumption, and 

risk. They found that public health officials need to take a multi-faceted approach to 

managing the risk that includes cultural sensitivity and audience-specific positive 

information. They also suggest that more graphics and tables be added to the advisories 

to make the information easier to understand and absorb. “Whether and how a person 

responds to consumption advisories depends upon their level o f trust in the conveyor of 

risk information, whether they are risk aversive, overall environmental concerns, and the 

sources of information that they encounter or listen to” (Burger and Gochfeld, 2006). Site 

(or region)-specific information on the reasons for fishing would allow for a 

communication strategy aimed at the local fishing population. Instead of just the 

consumption advisory information being provided to the public, risk managers must 

address multiple attitudes, behavioral patterns, and exposure pathways. Effective risk 

communication results in the target audience being provided with sufficient site- and fish-
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specific information. This should include the risks and benefits o f consuming a given 

species of fish, at a given size or weight, so that they can make an informed decision 

(Burger and Gochfeld, 2006).

Incorporating relevant information in enough detail to fully relay the message, but 

not so much detail that it is overwhelming and difficult to understand can be quite 

challenging. Groth (2010) developed a chart to organize the 51 seafood varieties into six 

groups based on Hg levels to serve as a framework for improving risk communication.

He used FDA data on the Hg content o f each variety, and marketshare data from the 

National Marine Fisheries Service (NMFS), adapted by the FDA, to estimate 

contributions to the total amount o f Hg in the US seafood supply. He multiplied the mean 

Hg level by the share of the market for each variety o f fish and shellfish to generate Hg 

input factors. These were indicative o f the relative inputs by each variety to the total 

amount of Hg in the US seafood supply. He then ranked the 51 seafood varieties by their 

relative contributions to total Hg, then sorted them into six categories by Hg content and 

examined risk communication implications of the information thus generated. According 

to this chart, canned light tuna is categorized as “above average” for Hg content; 

however, the FDA’s advisory categorizes it as “low” for Hg content and recommends that 

pregnant women consume up to 12 grams per week (Groth, 2010). Groth (2010) 

identifies many deficiencies in current risk communication by the government: “ it does 

not address the needs of consumers who eat a great deal of fish; it offers no advice about 

numerous moderately high Hg fish that are significant sources of exposure if  eaten 

regularly; it inaccurately describes the largest source o f Hg exposure in the American diet
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as a “ low-Hg” fish; and it fails to draw distinctions among Hg levels in fish and shellfish 

varieties that strongly influence exposures for many consumers” (Groth, 2010).

Many other studies attempt to reveal possible reasons for why or why not 

advisories are effective, and what can be done to make them more effective. Studies show 

that advisories are often ineffective at reaching ethnic groups, as well as fishermen with 

low income and educational levels (Tan et al., 2011). When advisories incorporate 

dissimilar priorities, it can increase the complexity of the advice and send conflicting 

messages to the public. Tan et al. (2011) evaluated approaches o f consumption advisories 

to improve the effectiveness o f California advisories. They made several 

recommendations as a result of their analysis, giving policy makers a few points to think 

about when creating an advisory. This research found that attempts to define portion size 

in quantities that depart from commonly consumed quantities to control fish intake are 

unlikely to be heeded; instead, advisories should place emphasis on the frequency of 

consumption rather than portion size. They found that informants were more receptive to 

fish consumption advice when it was accompanied with information specific to the fish 

they were catching, particularly a visual depiction of the fish’s Hg level; therefore, they 

recommend giving not just consumption advice, but Hg information for fish as well.

They also recommend avoiding certain terms, symbols, and concepts that may cause 

confusion, as they found that for some informants, the inclusion o f one or more confusing 

terms was sufficient reason to disregard the entire material. Lastly, they recommend 

using portion sizes, Hg meters to convey contaminant levels, advice categories, and 

population definitions effectively. They found it was helpful to use Hg meter and portion 

size illustrations, and to group fish into three categories for high, moderate, or low Hg

28



levels. To ensure that the advisory will be effective on its target population, it is 

important to test the advisory materials among intended audiences before they are 

finalized (Tan et al., 2011).

A North Carolina study assessed the determinants of subsistence fishing and tried 

to promote informed fish consumption among culturally distinct and lower income 

subsistence fishers (Driscoll et al., 2011). The study participants included African 

American, Hispanic, and Native American communities. Fish advisories were developed 

for each community to promote informed fish consumption intentions among residents 

who consume local fish and were successful in increasing knowledge and healthy 

intentions among most residents. The fish advisories were tri-fold brochures that were 

based on formative data collected in each community. Information that the brochures 

included was: a description of the health and cultural benefits of fishing and eating local 

fish; a description of safe levels of fish consumption for members o f various 

subpopulations; various methods for reducing exposure to MeHg without precluding 

local fish consumption completely; and contact information for local organizations and 

resources to which residents can go for more information. Further, the brochures included 

community-specific social values attributed to subsistence fish consumption, commonly 

held beliefs, and culturally sensitive mitigation strategies. All brochures were written at a 

sixth grade reading level using the Flesch-Kincaid readability program. The fish 

advisories were effective in educating those unaware o f the risk o f the existence o f MeHg 

in local fish. They also educated those who were aware o f the risk that popular measures 

intended to reduce exposure to the contaminant were ineffective (such as beliefs that the 

river cleanses itself of MeHg or that the contaminant can be seen or removed in
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preparation). The intention of the advisories was not for the populations to cease 

consumption of locally caught fish altogether, but rather to continue eating locally caught 

fish with lower levels of MeHg. Only one of the three communities actually intended to 

abide by the recommendations; the other two indicated that they intended to continue 

consuming locally caught fish without altering their consumption patterns.

Burger and Gochfeld (2008) provided suggestions for future communication that 

“might improve the knowledge base for making decisions about fish consumption: 1) 

clearer statements about the agents causing the risk or benefit (e.g. Hg, omega-3 fatty 

acids), and the potential health outcomes (neurobehavioral deficits, lower cholesterol), 2) 

clearer statements about which fish are freshwater or saltwater fish (terms often used in 

advisories, but which are not generally understood), 3) clearer listing of which fish have 

high or low levels of contaminants, specific to geographical region, and 4) target 

information to minorities about the factors contributing to risks and benefits, and about 

fish that are high or low in contaminants” (Burger and Gochfeld, 2008).

2.8 Risk assessment by FAO/WHO

The FAO/WHO document titled “Food Safety Risk Analysis: A guide for national 

food safety authorities” was last updated in 2006. This document describes the structured 

Risk Analysis decision-making process with three distinct but closely connected 

components: risk assessment, risk management, and risk communication (Figure 2.2).
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Figure 2.2 Generic components o f  risk analysis (FAO/WHO, 2006)
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Definitions for the three main components of risk analysis have been provided by 

FAO. Risk assessment: a scientifically based process consisting o f the following steps: i) 

hazard identification; ii) hazard characterization; iii) exposure assessment; and iv) risk 

characterization. Risk management: the process, distinct from risk assessment, o f 

weighing policy alternatives in consultation with all interested parties, considering risk 

assessment and other factors relevant for the health protection o f consumers and for the 

promotion of fair trade practices, and, if  needed, selecting appropriate prevention and 

control options. Risk communication', the interactive exchange of information and 

opinions throughout the risk analysis process concerning risk, risk-related factors and risk 

perceptions, among risk assessors, risk managers, consumers, industry, the academic
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community and other interested parties, including the explanation of risk assessment 

findings and the basis of risk management decisions (FAO/WHO, 2006).

Risk assessment and risk management are grounded in a science-based approach; 

risk assessment is the scientific component o f risk analysis, while risk management 

combines the scientific approach with other factors such as economic, social, cultural and 

ethical considerations (FAO/WHO, 2006). However, it is important for risk assessment to 

also involve judgments and choices that are not completely scientific, and for risk 

managers to clearly understand the scientific approaches used by risk assessors 

(FAO/WHO, 2006).

2.9 Risk management by FAO/WHO

Risk management is best accomplished by using a systematic, consistent, and 

readily-understood framework while employing scientific knowledge on risk and other 

factors relevant to public health protection (FAO/WHO, 2006). The Food Safety and Risk 

Analysis document presents a generic risk management framework, which provides a 

practical, structured process for food safety regulators to apply the components of risk 

analysis. There are three perspectives on risk that need to be addressed: technical, 

psychological, and sociological (FAO/WHO, 2006).

The technological perspective is limited to scientific evaluation of the likelihood 

and severity of harm. This may include an economic subset in which harm can be 

described in terms of health indices (FAO/WHO, 2006). The psychological perspective 

focuses on risk as a function o f individual perception. This takes various attributes into 

consideration such as willful exposure, ability to control risk, and catastrophic nature of 

risk, etc. (FAO/WHO, 2006). The sociological perspective views risk as a social and
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cultural construct. The goal of this perspective is to distribute costs and benefits in 

socially acceptable and equitable ways (FAO/WHO, 2006).

The generic framework for risk management was designed to be functional in 

both strategic, long term situations and in the shorter term work o f food safety authorities. 

The framework is broken down into four parts which are all interconnected: preliminary 

risk management activities, identification and selection o f risk management options, 

implementation of risk management decision, and monitoring and review (FAO/WHO, 

2006). Please refer to Figure 2.3 for detailed descriptions of these four categories.

Figure 2.3 Generic framework for risk management (FAO/WHO, 2006).
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2.10 Risk assessment tool for the Northern Health Authority

The risk assessment tool developed in this thesis is designed to be unique to 

selected areas in the Northern Health Authority’s jurisdiction by providing local levels of 

Hg in different fish species, local information on risk factors for elevated blood Hg, and a 

framework for information that should be collected on local patterns of fish consumption. 

This tool identifies which species from specific water bodies contain elevated Hg 

concentrations and how fish harvesting methods for these species can be adapted to 

minimize Hg exposure.

The risk assessment tool is a combination of existing documents including the BC 

HealthFile # 68m (HealthLinkBC, 2011). This HealthFile was released to promote low- 

risk fish consumption and to warn about fish consumption that may put British 

Columbians at risk for adverse Hg effects. The British Columbia Centre for Disease 

Control and Ministry of Health issued guidelines specific to the province on the 

consumption of fish and Hg because it has fish consumption patterns that are unique in 

Canada, as there are many coastal, Aboriginal, and Asian communities in BC who tend to 

eat large amounts o f fish. Further, there is regional variation in Hg levels in fish available 

to consumers across Canada.

Providing fish consumption advice can be a controversial issue, as it is undeniable 

that MeHg is toxic, but also undeniable that fish has many dietary benefits. Therefore, it 

is important to inform the residents o f Northern British Columbia about the types o f fresh 

fish that are available in the area and the risks and benefits associated with them.
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3.0 Methodology

3.1 Overall approach

3.1.1 Source o f  raw data. Data were collected from the British Columbia Ministry 

of Environment and Health Canada, which have offices located in Prince George, British 

Columbia. This included raw data that these agencies had collected, but not analyzed, as 

well as data obtained from reports that have already been published, or written for the 

sole use of the specific agency. In addition to Hg concentrations, fish type, fish length (tip 

of the snout to the tip of the longer lobe of the fin), weight, sample location, and sample 

year were extracted from these data sets and used for this study. In some cases, data were 

duplicated between the various sources. To eliminate duplicated data, data sets were 

examined manually after they were entered into SPSS; redundant data sets were 

eliminated from the statistical analysis.

3.1.2 Use o f muscle tissue data only. Hg concentrations can vary between muscle 

tissue and organs. Most studies examining the health effects o f high Hg levels in fish on 

human health tend to use muscle tissue data, as it is the most widely consumed part o f the 

fish. Most of the data collected were from muscle tissue; however, there was a small 

amount of data on Hg levels in organ, roe, water, and sediment that were omitted for 

consistency.

3.1.3 Use o f existing risk assessment tools. There are various risk assessment 

books and tools which were reviewed when creating the risk assessment tool for Northern 

Health. Existing government recommendations are incorporated into the tool and Health 

Canada’s guidelines for Hg levels and advised amounts of consumption are used. The 

risk assessment framework that was adapted for this study is described in detail below.
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3.2 Description of study area

Northern British Columbia is a vast area that consists o f many bodies o f water. 

For this study, 3097 fish samples were analyzed from 34 distinct areas (refer to Table 3.1 

below). Currently in Northern British Columbia, there are only fish advisories for bull 

trout and dolly varden from Williston Lake and lake trout from Pinchi Lake 

(Environment Canada, 2010).

3.3 Fish collection and Hg analysis

Fish samples were collected over a 26 year time span by different research 

groups; a variety of methods were used to determine Hg concentrations in these samples. 

The data report total Hg concentrations; however, since total Hg in fish is comprised 

almost entirely of MeHg (Rasmussen et al., 2007), MeHg is used interchangeably with 

Hg in this study. All concentrations are presented on wet weight basis. Data on various 

fish species varied from location to location, and from year to year. The number of fish 

samples collected from the water bodies also varied from year to year.
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Table 3.1 Number offish collected from  different water bodies used in this study

Lake N
B abine L ake 301
B ear L ake 102
B row n L ake 5
C huchi L ake 95
C unningham  Lake 57
Francois L ake 19
G rassham  L ake 28
Inzana L ake 65
K azchek L ake 46
ICemess L ake 35
M cK night L ake 8
Nations L akes 8
N echako R eservoir - T ahtsa R each 16
N ecoslie R iver - S tuart L ake 26
Pinchi L ake 162
Purvis L ake 20
Q uesnel L ake 110
R ainbow  C reek 11
Stuart L ake 141
T akla Lake 34
Tat chi R iver 72
T chentlo 62
T ezzeron Lake 191
T ochcha L ake 11
T rem bleur L ake/M iddle  R iver 105
Tsayata L ake 191
W eisner L ake 40
W hitefish L ake 66
W iiliston R eservo ir - F in lay 334
W illiston R eservo ir - Ingen ika 180
W iiliston R eservo ir - W illiston  L ake 42
W illiston R eservo ir - Parsn ip 166
W illiston R eservo ir - Peace 304
W itch L ake 44
Total 3097

3.4 Statistical analysis of data

The program SPSS for Windows, version 16 (SPSS, Chicago, Illinois, USA) was 

used for data analysis. Before analysing the data, several aspects o f Hg fish tissue 

concentrations were o f interest. For example, did some water bodies exhibit higher 

concentrations o f Hg in fish tissue, on average, than fish caught in other water bodies?

37



Did Hg concentrations of specific fish species exhibit differences between water bodies? 

How did these relationships change over the study period (1974 — 2000)? The data set 

had several major limitations with regards to suitability for the tests used to measure 

these differences, and will be clarified below.

The various sources of data had information on the fish species, length, weight,

Hg concentration, location and year collected. In some cases the specific fish type was 

given whereas in others only the general fish type is provided (for example, Sockeye 

Salmon in a specific case and Salmon in a general). In these cases, the fish types were not 

combined so that if  there was significance in a specific type it could be identified. Also, 

some of the data did not report fish length (only 1801 fish had length values in a data set 

of 3097 samples). Temporal and spatial trends, as well as species, weight, and length 

differences were all assessed in comparison to the Hg concentrations.

3.4.1 Controlling for length:weight relationships

As mentioned above, less than half of the fish data (41%) reported fish length, 

while all data sources reported fish weight. In these samples it was debated whether the 

lengths should be estimated for the data analysis since this is the main method of 

identifying size of fish in many other types of studies. Length data that were available 

were correlated with weight and a linear equation was formed (y = mx + b). Since weight 

was available for all fish, it was used in the equation to estimate length values for all 

those without lengths already. There are obvious limitations with this technique and it 

was decided that it is much more accurate to use the actual weights of the fish instead of 

the estimated lengths.
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3.4.2 ANOVA/ANCOVA

In order to carry out ANOVA and ANCOVA tests, data must meet certain 

criteria. For example, dependent variables should be normally distributed. Neither Hg 

concentration nor the weight o f fish met this criterion. Both variables had extremely large 

values for skewness and kurtosis (see Table 10.7 in Appendix) which were also 

confirmed by statistical tests for normality (Kolmogorov-Smimov). A square root 

transformation was applied to the weight, and a cube root transformation applied to Hg 

concentration (Tables 10.5 and 10.7). However, even having applied these 

transformations, the Kolmogorov-Smimov test showed that they were still non-normal 

(Tables 10.6 and 10.8). Another assumption is that each variable should have a fairly 

similar variance. This was not the case as shown by Levene’s test.

For ANCOVA, there are several other assumptions in addition to those o f the 

ANOVA. Covariates must be linearly related to the dependent variable; this assumption 

was met as weight and Hg concentration were positively correlated. An assumption that 

was violated for this data set was that the covariate should be unrelated to the 

independent variable, in this case the location. Weight was highly correlated with 

location, which can be explained by the fact that larger bodies o f  water are likely to 

support larger fish, whereas smaller bodies o f water are not able to support larger fish. 

Also the growth rate and trophic structure can vary among lakes due to their specific 

geochemistry. Another assumption is that covariates must have a homogeneity of 

regression effect. Essentially, there have to be equal effects on the dependent variable 

across all different independent variable subgroups (all slopes have to be equal). In a 

scatterplot of weight versus Hg concentration with location as the control variable (data
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not shown), it was clear that slopes were extremely different, and thus it was decided that 

ANCOVA should not be carried out. Given the fact that the data violates almost all of the 

assumptions for ANOVA/ANCOVA, doing either o f these analyses will provide results 

that would be difficult to interpret, and worse, misleading and/or inaccurate. 

Consequently, ANOVA and ANCOVA were not conducted in this thesis. Instead, 

descriptive statistics were used and in some cases correlations were conducted, when 

appropriate.

3.4.3 Use o f data in the Risk Assessment Tool

The results that were depicted by the data analysis were used to develop 

consumption advice for specific areas. The Hg concentration in fish was displayed by 

year, water body, species, and size o f fish. This was used to identify if Hg concentrations 

have declined and whether it is now safe to consume fish from specific water bodies, 

whether the same species have elevated Hg levels in various water bodies, and whether 

fish size made a significant difference in Hg concentration. Answering these questions 

allowed us to suggest whether the public can lower Hg intake by eating different species 

of fish from certain lakes or by fishing for their desired species in a different lake (if Hg 

levels are high for that species in their usual fishing lake).

To develop the risk assessment tool, the mean Hg concentration o f all species 

(with an N=60 or greater), was adjusted to standardize weight for each species. This was 

done so that the variability of Hg concentration would only reflect the difference in 

location. Using the results of this, the risk assessment tool is able to predict which species 

should be avoided from which lakes.
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4.0 Results

4.1 Fish species and water bodies included in this study

A total o f 20 types of fish were sampled from 34 water bodies (Table 3.1), 

ranging from a sample size of 2 (sturgeon) to 892 (lake whitefish). The total number of 

fish samples used in this study was 3097. O f these, 1801 had both length (mm) and 

weight (kg) values; the remainder had only weight. Samples were collected between 1974 

and 2000 (samples were collected in 16 of these 26 years).

4.2 Fish weights and fish lengths

Figure 4.2.1 displays the number of fish caught as well the mean weight of those 

fish for the year. The data presented highlights several important points. There were a 

number of years in which very few fish were caught (1975, 1985, 1989, 1992, 1993, 

1996), the average weight of the fish caught was very low (less than 0.742 kg). The only 

exception to this rule appears to be 1986, in which only 58 fish were caught, but had a 

mean weight of almost 2 kg (greatest mean weight in this study).

The trends in mean fish weight versus the location at which the fish were caught 

are shown in Figure 4.2.2. Fish caught in Tochcha Lake (lake trout in 1986) had the 

highest mean weight at almost 3.4 kg. However, only 11 fish were caught at this location. 

Quesnel Lake was next with a mean weight o f 2.9 kg, with a total o f 110 fish caught 

(rainbow trout and lake trout in 1988). Brown lake (dolly varden) and Rainbow Creek 

(rainbow trout) had the lowest mean weights, with 0.11 and 0.05 kg respectively. Total 

fish caught in these locations were 5 and 11, respectively.
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Figure 4.2.1 Mean weight (kg) o f  fish caught vs. year caught (n=3097)
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Figure 4.2.2 Mean weight (kg) o f fish caught vs. location (n=3097)
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Figure 4.2.3 shows the mean weight of each fish species caught over the study 

period. Lake whitefish were by far the most common fish caught at 892 samples, 

followed by lake trout (n=660), and rainbow trout (n=365). Many species were caught for 

which sample sizes are extremely small: coho salmon (n=4), large scale sucker (n=3), 

rocky mountain whitefish (n=l), squawfish (n=l), peamouth chub (n=3) and sturgeon 

(n=2).

The mean length of fish caught by year is displayed in Figure 4.2.4. It can be seen 

that the highest mean length o f fish caught was in 1978 at 518 mm (n=38), followed by 

1981 at 505 mm (n=101). Lowest average lengths were seen in 1989 (93 mm, n = l) and 

1992 (197 mm, n=35). Note: missing lengths were not calculated using the calculation 

noted in methods section for this chart; total n = 1801.

Figure 4.2.5 illustrates the mean length o f fish by the location in which they were 

caught. The highest mean lengths were caught in Quesnel Lake (628 mm, n=55) and 

Witch Lake (613 mm, n=3). Lowest mean lengths were seen in Kemess Lake (197 mm, 

n=35), Brown Lake (217 mm, n=5), and Purvis Lake (317 mm, n=3). One fish (a 

Rainbow Trout) was caught in Rainbow Creek with a length o f 93 mm.

It can be seen in Figure 4.2.6 that lake trout (581 mm, n=370), salmon (595 mm, 

n=13), sockeye salmon (560 mm, n=69), and char (562 mm, n=47) had the highest mean 

length. Fish with the lowest mean length were peamouth chub (253 mm, n=3) and 

mountain whitefish (260 mm, n=33).
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Figure 4.2.3 Mean weight (kg) o f fish caught vs. fish type (n=1801)
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Figure 4.2.4 Mean length (mm) o f fish caught vs. year caught (n=1801)
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Figure 4.2.5 Mean length (mm) o f fish caught vs. location caught (n—1801)
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Figure 4.2.6Mean length (mm) o f fish caught vs. fish type (n-1801)
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4.3 Mean Hg concentrations in fish by year, location, and species o f fish

Mean Hg concentrations in this data set varied from year to year, by location, and 

also by species o f fish. The figures below illustrate the differences.

As can be seen in Figure 4.3.1, fish caught in 1974 had the highest mean Hg 

concentration at 2.11 ppm (n=42). The second highest year for Hg levels was 1986, with 

a mean Hg concentration of 0.84 ppm (n=58). In years such as 1979 and 1988 where 

sample sizes were large (n=675 and n=750, respectively), Hg levels were relatively low 

at 0.24 ppm and 0.30 ppm, respectively. Mean Hg concentration were found to be the 

lowest in 1992 (0.03 ppm, n=35), 1989 (0.09 ppm, n=l 1), and 1993 (0.09 ppm, n=16). 

Figure 4.3.1 Mean Hg concentration (ppm) o f fish caught v.v. year caught (n=3097)
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Figure 4.3.2 presents mean Hg levels by location and clearly displays that fish 

from Pinchi Lake have the highest mean Hg concentration (1.17 ppm, n=162). All o f the 

fish species caught from Pinchi Lake were at or above the Health Canada’s Hg reference 

dose of 0.5 ppm, with the exception o f rainbow trout, which had a mean Hg concentration 

of 0.36 ppm. McKnight Lake also has a very high Hg concentration at 0.53 ppm; 

however, the sample size is very small with only eight fish caught at that location. Areas 

with lower mean Hg concentrations are Kemess Lake ( 0.03 ppm, n=35), Nechako River 

-  Tahtsa Reach (0.09 ppm, n=16), and Inzana Lake (0.13 ppm, n=65). The average Hg 

concentration for all fish caught over the study period was 0.30 ppm (n=3097).

Large scale sucker and peamouth chub (both caught in Pinchi Lake) had the 

highest mean Hg levels at 2.59 ppm and 1.90 ppm respectively (Figure 4.3.3); however, it 

can also be seen that they have a very small sample size (n=3 for both). Bull trout had 

mean Hg concentration higher than 0.5 ppm at 0.70 ppm (n=313). However, almost all of 

the bull trout samples were taken from the Williston Reservoir from various reaches 

(Finlay had the biggest sample size o f 160). The lowest concentration of mean Hg was 

found in coho salmon (0.04 ppm, n=4), salmon (0.07 ppm, n=13), kokanee (0.085 ppm, 

n=195), and mountain whitefish (0.10 ppm, n=60).
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Figure 4.3.2 Mean Hg concentration (ppm) o f fish caught vs. location caught
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4.4 Relationship between Hg concentration andfish size

The largest sample size of lake whitefish was from the Peace Reach of Williston 

River (N=158, 0.130 ppm); however, the heaviest lake whitefish were found in Weisner 

Lake (N=20) at 1.09 kg, with a Hg concentration o f 0.086 ppm. The smallest lake 

whitefish were caught in the Parsnip Reach o f Williston River (0.262 kg) with a mean Hg 

concentration of 0.190 ppm. The highest levels of Hg in lake whitefish were found in 

Pinchi Lake, with a mean concentration o f 0.495 ppm (0.535 kg). The heaviest lake trout 

were found in Whitefish Lake (N=40) at a mean of 2.99 kg, however, the Hg 

concentration was only 0.311 ppm whereas the lake trout from Pinchi Lake (N=75) had a 

lower weight of 2.74 kg, but a Hg concentration o f 1.82 ppm. The smallest lake trout 

were caught in Purvis Lake (N=6), at 0.35 kg and a Hg concentration of 0.308 ppm. The 

smallest rainbow trout were caught in Rainbow Creek (N=l 1) at 0.0512 kg (0.0856 ppm 

Hg). The heaviest rainbow trout were 3.02 kg from Quesnel Lake (N=73), with a Hg 

concentration of 0.117 ppm. However, the rainbow trout with the highest Hg 

concentrations were also from Pinchi Lake (N=13) at 0.36 ppm and a weight o f 0.309 kg.

Figure 4.4.1 demonstrates that the heavier the fish, the higher the mean Hg 

concentration. However, the lower and mid-weight categories do have a larger sample 

size; fish over 3 kg only account for approximately 11 % of the total data set.
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5.0 Development of the Risk Assessment Tool

Ideally a risk assessment tool would use more recent data and of a larger sample 

size (for some water bodies and fish species). Given the limitations of the data available 

for this study, a risk assessment tool was developed using the framework for risk analysis 

by WHO/FAO.

5.1 Risk analysis

As stated in the “Food Safety Risk Analysis: A guide for national food safety 

authorities” document, a risk analysis should: “i) follow a structured approach comprised 

of the three distinct components illustrated in Figure 2.2; ii) be based on the best 

available scientific evidence; iii) be applied consistently, for instance, to hazards o f 

different types and from country to country; iv) be carried out in an open, transparent and 

well documented process; v) be clear in its treatment o f uncertainty and variability; and 

vi) be evaluated and reviewed as appropriate on the basis of new information” 

(FAO/WHO, 2006). By adhering to these principals, an assessment was completed.

5.2 Risk assessment

5.2.1 Step 1: Hazard identification. The hazard in this case is clearly identified as 

MeHg exposure from fish consumption. It is assumed that most o f the total Hg in fish 

will be in the form of MeHg.

5.2.2 Step 2: Hazard characterization. This step requires qualitative and 

quantitative evaluation of the adverse health effects of MeHg exposure, ideally using 

dose-response relationships that define a safe level of exposure. This step has already 

been done by Health Canada and the limit of a maximum of 0.5 ppm has been defined as 

the safe level of exposure.
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5.2.3 Step 3: Exposure assessment. Exposure assessment is of course unique to 

each area when fish Hg levels are concerned. Therefore, it is important to identify who is 

consuming the fish, which fish they choose to consume, how much of each species they 

eat, and how much MeHg the fish in question contain. This information can be used in 

conjunction with the table that shows which areas have contaminated species according 

to the results of this study (table is presented later in the thesis).

5.2.4 Step 4: Risk characterization. A risk characterization developed for MeHg is 

relatively imprecise; “risk is not quantitatively characterized in terms of the probability 

and severity o f adverse health effects relative to defined levels o f exposure, but rather, 

presumptively ‘safe’ exposure levels are estimated. Such ‘safety assessments’ can 

nonetheless provide a basis for risk management decisions” (FAO/WHO, 2006).

5.3 Risk management

5.3.1 Step 1: Identify risk management options. A few risk management options 

can be identified which might help reduce MeHg risks at a provincial level. A general 

option is to control industrial Hg sources; however, this can be difficult to obtain at a 

provincial level, and even if successfully done, will have negligible short-term impact on 

the MeHg levels in fish. “Pollution control is generally outside the authority o f food 

safety agencies, which have the primary risk management responsibility for food-borne 

contaminants such as methylmercury” (FAO/WHO, 2006). Risk management options 

that can be applied at the provincial level include the restriction o f the sale o f certain fish 

species caught from high-risk water bodies and the education o f local consumers on the 

levels of MeHg. This would especially include members o f the First Nations 

communities surrounding high-risk water bodies so that they are well informed and able
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to manage their own MeHg exposure. Table 6.2 (presented later) can be shared with 

public health officials and members o f the public to raise awareness about contaminated 

species from various water bodies.

5.3.2 Step 2: Evaluate the options. The restriction of sale or consumption o f any 

fish species is generally not considered an ideal option, as even those fish with very high 

MeHg concentrations still have nutritional benefits. Information-based options are likely 

the best option at the provincial level, as the risk depends on multiple factors. “These 

approaches can address the complexity o f the problem, do not require costly and 

impractical enforcement efforts, can be implemented relatively quickly and at relatively 

minimal cost, and hold at least the potential for reducing MeHg exposure substantially, 

without adverse nutritional or economic consequences” (FAO/WHO, 2006).

5.3.3 Step 3: Implementation. Government and other stakeholders need to work 

together to provide adequate information to the population(s) at risk; in this case, the First 

Nations communities that rely heavily on fishing as a substantial part of their diet. This 

can be done by displaying adequate and clear signage in high-risk areas, in addition to 

verbal communication.

5.3.4 Step 4: Monitoring and review. This step requires risk managers to assess 

how well the risk management option implemented is working and weigh the need to 

examine new evidence and update risk assessments and management strategies. This is 

especially important in those areas where remedial action is being undertaken, as with the 

decline of MeHg concentrations in fish, the risk may be significantly reduced. It is 

important not to discourage the consumption of fish altogether and cause consumers to 

lose important nutritional benefits associated with the consumption of fish. The advice
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offered must be done so in such a way that consumers can continue to consume low-Hg 

fish for their nutritional benefits, while minimizing their Hg exposure.

6.0 Risk assessment tool for MeHg levels in fish in Northern BC

6.1 Normal range of Hg in fish in Northern BC

After following the risk assessment and management framework, it was clear that 

steps 3 and 4, implementation and monitoring/review, were needed. In order to take these 

next steps, it was important to determine what the normal range o f Hg in each fish 

species is in Northern BC. It was not possible to include all o f the fish species due to 

small sample sizes of some o f the species; however, each species with an N greater than 

60 was included. This was done by calculating an adjusted Hg concentration for each fish 

in the data set. Each species was analyzed separately to determine the mean Hg 

concentration. Next, for each species, an equation for the line o f best fit (y = Ax + B) was 

formed from correlating Hg concentration (y) and weight (x). An adjusted Hg 

concentration was calculated for each fish using the fish’s actual Hg concentration, the 

species mean Hg concentration, and the fish’s theoretical Hg concentration calculated 

from the correlation (through regression analysis). Below is the equation (please see 

Figure 10.1 in the appendix for a scatterplot distribution of Hg concentration vs. weight 

for bull trout and Figure 10.2 for a sample calculation o f the adjusted Hg concentration 

for bull trout):

Adjusted PPM = (actual ppm) x (mean species ppm/theoretical Hg concentration according to regression)

A new adjusted mean Hg and standard deviation were calculated from these adjusted 

concentrations and the normal range was calculated from that (± 1 S.D.). Table 6.1 below
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lists the adjusted mean Hg concentration, the standard deviation, and the adjusted mean 

and standard deviation added together for each species included in this section. The latter 

value provides us with the cut-off point for that particular species. Any Hg concentration 

higher than this value was then considered to be a higher than acceptable Hg 

concentration for that species.

Table 6.1 Adjusted mean Hg concentration by species and sum o f SD and adjusted means 
used to determine cut off Hg concentrations for various fish species

Species N Mean
Weight
(kg)

Mean
Hg
(ppm)

Adjusted 
mean Hg 
(ppm)

Standard
Deviation
(SD)

Cut-off 
Point for 
Hg in 
Fish 
Species 
(SD + 
Adjusted 
Mean 
(ppm)

Bull trout 313 1.537 0.702 0.682 0.363 1.046
Burbot 137 1.150 0.309 0.310 0.155 0.464
Char 66 2.409 0.377 0.375 0.164 0.539
Dolly varden 87 1.005 0.522 0.495 0.265 0.760
Kokanee 195 1.380 0.085 0.122 0.194 0.315
Lake trout 660 2.201 0.502 0.510 0.703 1.212
Lake whitefish 892 0.455 0.168 0.168 0.265 0.433
Mountain whitefish 60 0.897 0.099 0.099 0.139 0.238
Rainbow trout 365 1.061 0.121 0.121 0.114 0.234
Sockeye salmon 147 2.035 0.054 0.052 0.029 0.081
Whitefish 81 0.819 0.237 0.237 0.135 0.371

Using this information, we were able to identify fish species from specific water 

bodies that exhibit higher than the normal concentrations of Hg in tissue samples. Table

6.2 shows which species from specific water bodies are considered to be above the 

accepted range (i.e. % of fish within a specific species that exhibit Hg concentrations 

above the critical cut-off point).
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Table 6.2 Percentage o f Hg-contaminatedfish by species and water body as estimated using the risk assessment tool
Location Bull trout Burbot Char Dollly Kokanee Lake trout Lake M ountain Rainbow Sockcyc W hitefish

varden whitefish whitefish trout salm on
N % N % N % N % N % N % N % N % N % N % N %

Babinc Lake 14 0 71 10 108 0 11 0 93 2
Bear Lake 40 10 18 0 24 0 20 0
Brown Lake 5 0
C huchi Lake 17 6 59 0 8 25
C unningham  Lake 2 0 49 29
Francois Lake 9 0 10 0
G rassham  Lake 5 0 23 17
Inzana Lake 5 0 29 0 31 0
Knzchck Lake 2 0 43 0 1 0
K cm ess Lake 6 0 13 0 16 0
M cK night Lake 8 50
N ations Lake 4 0 4 75
N cchako -  T ahtsa Reach 16 6
Necoslic River -  Stuart Lake 14 29
Pinchi Lake 3 100 37 . . 11 - 75 40 51 33 2 100 13 85
Purvis Lake 6 0 5 0 1 0 4 0
Q ucsnel Lake 37 0 73 0
Rainbow Creek 11 0
Stuart Lake 14 7 5 0 23 0 32 0 18 22
Takla Lake 17 0 7 0 8 0 1 100 1 0
Tatchi River 44 7 19 0 5 80 1 0
T chcntlo 1 0 36 0 25 4
T ezzcron Lake 12 50 84 O ’ 65 0 29 28 1 0
T ochcha Lake 11 0
T rem bleur Lake 1 0 6 17 23 0 32 0 2 50 10 50
T sayata Lake 2 0 31 6 153 0 5 0
VVcisner Lake 20 0 20 0
W hitefish Lake 1 0 40 0 19 0
W illiston - Finlay 160 23 8 50 20 15 10 10 107 0 25 8
W illiston - Ingcnika 45 27 35 17 57 2 30 37 10 10
W illiston - W illiston Lake 5 40 13 0 23 0 1 0
W illiston - Parsnip 43 0 28 14 2 0 47 0 66 0
W illiston - Peace 57 4 14 29 32 0 2 0 158 1 5 0 36 6
W itch Lake 1 0 19 0 22 0 2 0
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This table effectively displays the number o f fish caught in each water body by species 

and how many of those fish were above the accepted Hg concentration and in turn put 

into perspective how polluted with Hg a water body may be. For example, when fishing 

for lake trout from Pinchi Lake, 40% of samples were considered contaminated or higher 

than the normal variability. However, when fishing for mountain whitefish from the same 

lake, although 100% of the samples were considered contaminated, this information must 

be used with caution, as only 2 samples o f mountain whitefish were collected (i.e. sample 

size was very small).

To simplify the Risk Assessment Tool, Table 6.3 (derived from Table 6.2) shows 

which fish species (minimum N=10) from specific water bodies had at least 25% or more 

contaminated samples. It also indicates nearby water bodies where the same species may 

be accessed that exhibit low Hg concentrations. This tool should help fish consumers 

select areas where fish exhibit safe levels o f Hg.
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Table 6.3 Fish species flagged as potentially contaminated with Hg after adjusting fo r  
weight

Location Fish Type Nearby Locations 
with same species 
which are likely 

not contam inated 
w ith Hg

Species in same 
lake which are 

likely not 
contam inated with 

Hg
Cunningham Lake Whitefish Whitefish Lake Char
Necoslie River — 
Stuart Lake

Char Trembleur Lake No known species 
from this study

Pinchi Lake Lake trout* Stuart Lake, 
Tezzeron Lake

Kokanee

Lake whitefish Stuart Lake, 
Tezzeron Lake

Rainbow trout Stuart Lake, 
Tezzeron Lake

Tezzeron Lake Burbot Stuart Lake Lake trout, 
lake whitefishRainbow trout Grassham Lake

Trembleur Lake Sockeye salmon Babine Lake Lake trout, lake 
whitefish

Williston Reservoir 
- Finlay

Rainbow trout Williston Reservoir 
-  Parsnip, Quesnel 
Lake

Lake whitefish

Williston Reservoir 
- Ingenika

Bull trout* Williston Reservoir 
-  Parsnip and Peace

Lake whitefish, 
whitefish

Rainbow trout Williston Reservoir 
- Parsnip

Williston Reservoir 
- Peace

Burbot Stuart Lake, Tatchi 
River

Bull trout, kokanee, 
lake whitefish, 
rainbow trout

* current fish consumption advisory for these species from t lese lakes

7.0 Discussion

This study has generated several interesting findings that are worth further 

discussion. Most importantly, there are fish within specific water bodies that had higher 

Hg levels than Health Canada’s current guideline of 0.5 ppm. In addition to this, these 

high levels can be linked to fish size, species, location and the year that they were caught 

in. Our results provide information to identify which areas in Northern BC have the
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highest levels of Hg in fish, and whether these levels vary in different species from the 

same area; whether there are similarities in the areas with the highest Hg levels in fish; 

and whether there is a significant difference in species, age, weight, location, and time of 

sampling in comparison to Hg concentrations in fish.

7.1 High Hg levels in fish from Pinchi Lake and Williston Lake

Fish from Pinchi Lake (1.17 ppm, n=162) and a subset from the Williston 

Reservoir (the ‘Finlay’ group) (0.52 ppm, n=334) had Hg tissue concentrations that were 

above the Health Canada guideline. In general, this study showed that larger fish had 

greater Hg concentrations than smaller ones, but the fish in Pinchi Lake and Williston 

Lake (the ‘Finlay’ group) were not the longest or heaviest fish. This relationship is not 

surprising when one considers the history o f these two water bodies.

The reasons for elevated Hg levels in fish from Pinchi Lake are clear. The Pinchi 

fault area geologically has naturally elevated Hg levels, there is a long history o f Hg 

mining in the area, and elevated Hg levels have been an issue for quite some time. The 

Environmental Trends report o f 2002 showed that as o f the year 2000, Pinchi Lake still 

had elevated Hg levels, which is consistent with the results of this study.

When examining all of the data collected from Pinchi Lake, it is clear that Hg 

concentrations in fish have remained high between 1974 and 2000. The Pinchi Lake mine 

closed in 1975, and considering that elevated Hg levels are projected to remain high for 

20 to 30 years after mine closure, high concentrations o f Hg were observed in fish 25 

years later in 2000. The mean Hg concentration was by far the highest in 1974 (2.11 ppm, 

N=42); there were only 6 samples taken in 1975, but 1986 showed a significant decline in 

fish tissue Hg concentrations (0.92 ppm, N=47); However, there was not much change
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from 1986 to 2000 (0.81 ppm, N=67). It would be valuable to test the MeHg 

concentrations in fish from Pinchi Lake today, 37 years post closure.

There were 8 different fish species sampled from Pinchi Lake, 7 o f which had 

elevated Hg concentrations above the Health Canada guideline of 0.5 ppm. Although 

rainbow trout was the exception to this, 85% of them were still considered Hg- 

contaminated when normalized for weight for the creation of the Risk Assessment Tool. 

Large scale sucker (N=3) had the highest Hg concentration at 2.59 ppm; however, due to 

the small sample size definitive conclusions cannot be made. Lake trout, o f which there is 

currently an advisory for from Pinchi Lake, had a mean Hg level o f 1.82 ppm.

Williston Lake is the largest water body (in surface area) in British Columbia 

(Stockner, 2005). Due to its large size and various reaches, it was very difficult to 

distinguish which area data were collected from. In some cases, the reach was identified 

in the data; however, in other cases it was listed in a broader description of “Williston 

Lake”. When the reach was known, the original location listed was kept in the analysis, 

making five different locations for Williston Lake.

The categorization of these five areas was somewhat arbitrary. The lake was split 

up into five geographical areas and samples were placed into each of those areas. For 

those samples that did not have a specific identifier, it was assumed that they were taken 

from the large, open part of the lake. Although not perfect, this method allowed us to split 

up this large body of water into distinct areas with large enough sample sizes that it was 

possible to compare and contrast them using statistical methods.

High Hg concentrations in fish from Williston Lake fish have been attributed to 

the flooding which occurred during the formation of the reservoir in the late 1960s and
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early 1970s. Hg released from flooded soils can cause elevated levels of MeHg in fish for 

about 20 to 30 years (MWLAP, 2002). O f the five areas of Williston, Finlay (0.52 ppm, 

N=334) and Ingenika (0.43 ppm, N=T80) had the highest mean Hg concentrations in fish 

tissue. Fish from Finlay Reach were first sampled in 1980 (0.40 ppm, N=72), then in 

1981 (0.43 ppm, N=24), 1988 (0.66 ppm, N=170), and then 2000 (0.35 ppm, N=68). 

Ingenika was only sampled in 1979 (0.30 ppm, N=74) and in 1980 (0.52, N=106). There 

was no particular pattern with these levels but Hg concentration in fish from Finlay 

appeared to rise between 1980 and 1988; but, Hg concentrations decreased in 2000. Data 

presented in the report “Environmental Trends in British Columbia (2002)” show that 

there were mean Hg concentrations > 0.5ppm in bull trout from Williston Reservoir in 

the year 2000 (MWLAP, 2002). The fish species that were above the Health Canada 

guideline of 0.5 ppm for Hg concentration in Williston Lake were dolly varden and bull 

trout, the same two species that have an ongoing consumption advisory.

7.2 Hg levels in fish tissue varied with fish size and sample period

Besides location and trophic level, there are many other factors that can influence 

Hg concentrations in fish. Fish size is one o f the well-known influencing factors for 

elevated Hg levels. The heaviest species was char, followed by lake trout, salmon, 

sockeye salmon, and bull trout. The four longest species were the same, although in a 

different order: salmon, lake trout, sockeye salmon and char. Fish length did not seem to 

be as closely related to weight as would be expected. When comparing years o f data 

collection, the heaviest fish were caught in 1986 and in between 1976 and 1978, whereas 

the longest fish were caught between 1978 and 1981. An explanation for this may include 

fish growth rate, which is the temporal change in either fish weight or length. Fish growth
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rate has been shown to influence Hg accumulation (and in turn, Hg biodilution) in fish 

muscle, as faster-growing fish have been shown to have lower Hg concentrations than 

slower-growing fish at a certain length (Lavigne et al., 2012). Biodilution is defined as a 

reduced overall accumulation of a contaminant within an organism due to an increase in 

body size resulting from differences in bioenergetic processes. Hg biodilution has been 

shown to partly explain decreased Hg concentrations in fish when it was not explained by 

changes in fish diet, structural alterations o f the trophic web, a reduction o f MeHg levels 

in forage fish, or by a reduction in whole-lake MeHg content (Lavigne et al., 2012). Fish 

growth rate has many influencing factors including the ratio between primary watershed 

area and lake area, the ratio between drainage area and lake area, riparian wetland 

coverage, land use and vegetation coverage o f the primary watershed, water quality 

variables and the sportsfishing intensity. Lavigne et al. (2012) found that growth rate 

could be used as an integrated proxy to predict Hg concentration in fish muscle in two 

slower-growing species (walleyes and northern pike) which had higher Hg concentrations 

at standardized length. Thus, they concluded that proper control o f fish growth rate 

through fishing pressure, lake ecology, and watershed management could be used to 

minimize the toxic risk associated with Hg exposure from fish consumption.

Quesnel Lake had the longest fish and heaviest fish (mean weight o f 2.87 kg); 

however, Quesnel Lake did not have the highest mean Hg concentration (0.16 ppm,

N=110). In comparison, Pinchi Lake had the highest mean Hg concentration (1.17 ppm, 

N= 162) and a mean weight o f 1.51 kg. Only lake trout (N= 73) and rainbow trout 

(N=37) were sampled from Quesnel Lake, whereas 8 different species were sampled 

from Pinchi Lake, the majority of which were lake trout (N=75) and lake whitefish
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(N=51). The lake trout from both lakes had similar sample sizes and similar weight, 

however the Hg concentrations for this species differed greatly in the water bodies, with 

Pinchi Lake’s lake trout having a mean Hg concentration of 1.82 ppm, and Quesnel 

Lake’s having only 0.24 ppm.

It is demonstrated in Figure 4.4.1 that the mean Hg concentration in the fish in 

this study (n=3097) is moderately positively correlated with the weight o f fish (r -  0.316, 

p < 0.0001). In fish over 2 kg, the Hg concentration is very close to or over Health 

Canada’s maximum of 0.5 ppm guideline. This weight category includes char, lake trout, 

salmon, and sockeye salmon. This finding is supported by many previous studies, 

including a study completed by Storelli in 2007 which analyzed Hg concentration in fish 

versus their size. It was found that there was a significant relationship between Hg 

concentration and fish size for all species (Storelli, 2007). However, it is noted by 

Bhavsar (2010) that Hg concentrations in fish typically increase with age, and that fish 

size is obtained as a surrogate measure for the duration o f contaminant exposure because 

it is easy and inexpensive to acquire (Bhavsar, 2010).

7.3 Hg levels in fish tissue varied with species

Another possible contributing factor to varying Hg concentrations in fish is 

species. Figure 4.4.3 illustrates mean Hg concentration by fish species. Unfortunately, the 

two species (large scale sucker and peamouth chub) with the highest concentrations both 

have very small sample sizes o f  only 3 fish each. Bull trout (n=313) had a concentration 

of 0.70 ppm and dolly varden (n=87) o f 0.50 ppm. It is interesting to note that bull trout 

and dolly varden were considered to be the same species until 1980, when they were 

reclassified as a separate species (U.S. Fish and Wildlife Service, 1998). Piscivorous fish
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(such as lake trout and bull trout) tend to have higher concentrations of Hg than fish that 

consume plankton (such as kokanee and lake whitefish) (Baker, 2002), which is 

supported by the results o f this study.

It was found that the highest Hg concentrations in fish in this study were in those 

caught in 1974. Upon closer examination, as displayed in Table 10.15 in the appendix, all 

of the fish sampled in 1974 came from Pinchi Lake. Further, the second highest Hg levels 

were in 1986, which was also exclusively from Pinchi Lake. Pinchi Lake was not part of 

any of the sampling areas in those years in which Hg levels were the lowest.

7.4 Limitations of this study

Although we are able to draw conclusions from this study, there are many 

limitations which prevent us from making any strong statements. This is mainly 

attributed to lengthy time span over which the data were collected; this can be seen as a 

positive, as it gives us an idea whether fish Hg concentrations are decreasing over time. 

However, due to the lack of consistency in location, this is a hard pattern to accurately 

conclude. For instance, when looking at Pinchi Lake, it is evident that Hg levels remained 

high between 1974 and 2000; however, samples were only taken in four o f those years. 

The last two years the fish were sampled in (1986 and 2000) had a 14 year gap and they 

had sample sizes of only 47 and 67. In order to truly capture the patterns o f mean Hg 

concentrations in fish over the years, it would be important to take a specific number of 

samples closer together and from the same location(s).

Another large factor that limited the analysis was that almost half o f the data set 

was missing fish length. As discussed earlier, due to the variability of fish weight 

compared to fish length, length is the most reliable method of accurately estimating fish
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size. Since we are correlating fish size with mean Hg concentration, this may contribute 

to an incorrect analysis. That said, lengths and weights of fish were highly correlated; 

therefore, using the weight is not completely inappropriate.

Further, the data were collected from many different agencies and existing papers; 

therefore, the sampling techniques may have varied quite widely. This would include the 

actual lab procedures used to determine the Hg concentrations, as well as the method 

used to weigh and measure the fish.

7.5 Development and potential application o f  the Risk Assessment Tool

By using the framework developed by FAOAVHO for risk assessment and 

management, it was clear that a risk assessment tool for the MeHg levels in fish in 

Northern BC would be of benefit to those who fish in the local waters and for the public 

health officials that provide advice and guidance. However, due to the limitations of the 

data set, development of the risk assessment tool presented some difficulties. By 

adjusting for weight (standardizing the data for differences in fish weight), the data could 

be presented so that each sample could be viewed as either above or below the cut-off for 

excessive Hg concentration.

A few tables were developed which can be used as a reference by Public Health 

professionals and the general public. Table 6.2 would be very useful to those trying to 

decide whether to consume a certain species from a certain lake, as each species is listed 

separately with the percentage of contaminated samples from that lake. This is important 

because it does not limit all fish consumption from that water body, but allows one to 

determine which species is a better choice. Further, the number o f samples that the 

percentage is derived from is listed as well, which assists in making an informed
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decision; for instance, if  only 3 samples were taken for that species from that lake and 

100% were contaminated, farther investigation may be warranted. However, if  100 

samples were taken and 90% were contaminated, then it is pretty certain that caution 

should be used when consuming that species taken from that lake.

Further, to simplify for fishers that are not interested in the percentages, Table 6.3 

includes a list of fish species that are considered most contaminated from specified water 

bodies and from which nearby water bodies contain less contaminated fish. This does not 

limit consumption of a specific species, but instead provides safer options; also, if  it is a 

specific lake that is the desired fishing spot, then the fisher is aware of species that should 

not be consumed.

8.0 Conclusion

Several interesting and important conclusions can be drawn from this study. 

Studying Hg concentrations in fish over such a large time span and in many different 

water bodies, allows us to identify concerns for high fish Hg concentrations. This study 

shows that as of the year 2000 Hg concentrations in fish were still high in some areas of 

Northern British Columbia.

In Canada, there have been reductions in Hg emissions in base metal mining, Hg 

used in the manufacture of chlorine and pesticides has mostly been eliminated, and 

releases from paints and batteries have also declined. Further, the Canadian Council of 

Ministers o f the Environment (CCME) has identified Hg as a priority issue (MWLAP, 

2002).
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There has been a considerable amount of information collected on fish Hg 

concentrations in Northern British Columbia since 1970; however, this information has 

been widely dispersed amongst many government and private agencies. There are other 

summaries of fish Hg concentrations in Northern British Columbia similar to this one; 

however, this study has some data that is not included in those others. Further, this study 

did not eliminate data points based on size, or missing lengths. They were accounted for 

and noted in the analysis, but it was believed that eliminating certain data did not provide 

a clear picture of the actual results. Despite the large amount of information available on 

fish Hg concentrations in this area, there is no ongoing monitoring program. It is highly 

recommended that a continuing and systemic monitoring program be put into place to 

update the existing and future fish consumption advisories accurately.

Most importantly, this study has produced a risk assessment tool which allows 

public health officials and members of the public to be able to make informed decisions 

about which water bodies they are fishing from. When fishing for a specific species the 

public is able to refer to this tool and choose to fish from a lake that has been found to 

have lower Hg concentrations in that specific species.
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10.0 Appendices

Table 10.1 Descriptive statistics fo r  fish parameters used in this study

N Min Max Mean Std.
Deviation

Skewness Skewness 
Std. Error

Kurtosis Kurtosis
Std.
Error

Weight (kg) 3097 0.01 39.4 1.2829 1.62532 9.309 0.044 195.955 0.088
Length (mm) 1801 27 1800 435.83 165.242 0.928 0.058 4.585 0.115
Hg
Concentration
(ppm) 3097 0 8.31 0.3013 0.54556 8.072 0.044 93.424 0.088
Year 3097 1974 2000 1983.83 7.413 1.03 0.044 -0.014 0.088
Location 3097 1 34 19.54 11.829 -0.356 0.044 -1.406 0.088
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Table 10.2 Descriptive statistics fo r  total number offish used in this study by water body

Frequency Percent Valid1 Percent
Babine Lake 301 9.7 9.7
Bear Lake 102 3.3 3.3
Brown Lake 5 0.2 0.2
Chuchi Lake 95 3.1 3.1
Cunningham Lake 57 1.8 1.8
Francois Lake 19 0.6 0.6
Grassham Lake 28 0.9 0.9
Inzana Lake 65 2.1 2.1
Kazchek Lake 46 1.5 1.5
Kemess Lake 35 1.1 1.1
McKnight Lake 8 0.3 0.3
Nations Lakes 8 0.3 0.3
Nechako Reservoir - Tahtsa Reach 16 0.5 0.5
Necoslie River - Stuart Lake 26 0.8 0.8
Pinchi Lake 162 5.2 5.2
Purvis Lake 20 0.6 0.6
Quesnel Lake 110 3.6 3.6
Rainbow Creek 11 0.4 0.4
Stuart Lake 141 4.6 4.6
Takla Lake 34 1.1 1.1
Tatchi River 72 2.3 2.3
Tchentlo 62 2 2
Tezzeron Lake 191 6.2 6.2
Tochcha Lake 11 0.4 0.4
Trembleur Lake/Middle River 105 3.4 3.4
Tsayata Lake 191 6.2 6.2
Weisner Lake 40 1.3 1.3
Whitefish Lake 66 2.1 2.1
Williston Reservoir - Finlay 334 10.8 10.8
Williston Reservoir - Ingenika 180 5.8 5.8
Williston Reservoir - Williston Lake 42 1.4 1.4
Williston Reservoir - Parsnip 166 5.4 5.4
Williston Reservoir -  Peace 304 9.8 9.8
Witch Lake 44 1.4 1.4
Total 3097 100 100

1 V alid  percent w as used in the SPSS program  to  d is tingu ish  w hether there  w ere  any p aram eters m issing . It 
is irre levan t in th is table; how ever, in the tab les tha t refer to  leng th  o f  fish it re fe rs  to those fish  tha t had 
m issing lengths in  the original data source.
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Table 10.3 Descriptive/tests o f  normality fo r  fish parameters used in this study

Std.
Error

Weight (kg) Mean 1.2829 0.02921
95% Confidence Interval for 
Mean

Lower
Bound

1.2256

Upper
Bound

1.3402

5% Trimmed Mean 1.1093
Median 0.75
Variance 2.642
Std. Deviation 1.62532
Minimum 0.01
Maximum 39.4
Range 39.39
Interquartile Range 1.48
Skewness 9.309 0.044
Kurtosis 195.955 0.088

Hg Concentration 
(ppm)

Mean 0.3013 0.00976

95% Confidence Interval for 
Mean

Lower
Bound

0.2822

Upper
Bound

0.3205

5% Trimmed Mean 0.2225
Median 0.17
Variance 0.295
Std. Deviation 0.54336
Minimum 0
Maximum 8.31
Range 8.31
Interquartile Range 0.24
Skewness 8.072 0.044
Kurtosis 93.424 0.088

Table 10.4 Tests o f normality for fish weight and Hg concentrations

Ko lmogoro v- S mimo va Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

Weight (kg) 0.217 3097 0 0.586 3097 0
Hg Concentration (ppm) 0.29, 3097, 0.00 0.407 3097 0
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Table 10.5 Square root transformation o f  weight o f  a ll fish used in this study

Std. Error
sqrtWeight Mean 0.9954 0.00971

95% Confidence Interval for Mean Lower Bound 0.9763
Upper Bound 1.0144

5% Trimmed Mean 0.9636
Median 0.866
Variance 0.292
Std. Deviation 0.54058
Minimum 0.08
Maximum 6.28
Range 6.19
Interquartile Range 0.77
Skewness 1.315 0.044
Kurtosis 5.709 0.088

Table 10.6 Tests o f normality for weight o f all fish used in this study

Kolmogorov-Smimova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

sqrtWeight 0.122 3097 0 0.92 3097 0

Table 10.7 Hg concentration (ppm) with cube root transformation for fish in this study

Std. Error
Mean 0.5836 0.00398
95% Confidence Interval for Mean Lower Bound 0.5758

Upper Bound 0.5914
5% Trimmed Mean 0.5671
Median 0.554
Variance 0.049
Std. Deviation 0.22142
Minimum 0
Maximum 2.03
Range 2.03
Interquartile Range 0.25
Skewness 1.549 0.044
Kurtosis 5.378 0.088
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Table 10.8 Tests o f  normality fo r  Hg concentration fo r  all fish used in this study

Kolmogorov-Smimova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

0.094 3097 0 0.905 3097 0

Table 10.9 Inter lake differences ofHg concentrations (ppm) in fish tissue, sorted by 
species

Location Fish Type M ean N
Babine Lake Kokanee 0.0555 71

Lake trout 0.2422 108
Sockeye salmon 0.0514 93

Bear Lake Kokanee 0.0315 40
Chuchi Lake Lake trout 0.3268 59
Cunningham Lake Whitefish 0.2718 49
Kazchek Lake Lake whitefish 0.0502 43
Pinchi Lake Lake trout 1.8218 75

Lake whitefish 0.4954 51
Quesnel Lake Rainbow trout 0.1165 73
Tatchi River Burbot 0.2795 44
Tezzeron Lake Lake trout 0.6064 84

Lake whitefish 0.0895 65
Tsayata Lake Lake whitefish 0.1876 153
Whitefish Lake Lake trout 0.3108 40
Williston Reservoir - Finlay Bull trout 0.846 160

Lake whitefish 0.1873 107
Williston Reservoir - Ingenika Bull trout 0.7027 45

Lake whitefish 0.2251 57
Williston Reservoir - Parsnip Bull trout 0.5135 43

Lake whitefish 0.1895 47
Rainbow trout 0.0415 46

Williston Reservoir - Peace Bull trout 0.4679 57
Lake whitefish 0.1299 158
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Table 10.10 Mean Hg concentrations (ppm) in fish tissue in various fish species

Species Mean N
Bull trout 0.7021 313
Burbot 0.3092 137
Char 0.377 66
Dolly varden 0.5215 87
Kokanee 0.0845 195
Lake trout 0.5017 660
Lake whitefish 0.1681 892
Mountain whitefish 0.0989 60
Rainbow trout 0.1209 365
Sockeye salmon 0.0535 147
Whitefish 0.2368 81
Total 0.2886 3003

Table 10.11 Hg concentration in fish tissue collected in various years

Year Mean N Std. Deviation % of total N Variance
1974 2.1148 42 2.7941 1.4% 7.807
1975 0.48 6 0.17967 .2% 0.032
1976 0.2456 160 0.15967 5.2% 0.025
1977 0.1915 234 0.17481 7.6% 0.031
1978 0.1746 275 0.13862 8.9% 0.019
1979 0.2374 675 0.22943 21.8% 0.053
1980 0.3763 303 0.35333 9.8% 0.125
1981 0.1826 151 0.25814 4.9% 0.067
1985 0.412 5 0.04764 .2% 0.002
1986 0.8414 58 0.56535 1.9% 0.32
1988 0.3032 750 0.54715 24.2% 0.299
1989 0.0856 11 0.03875 .4% 0.002
1992 0.0277 35 0.05096 1.1% 0.003
1993 0.0869 16 0.18297 .5% 0.033
1996 0.3662 13 0.24199 .4% 0.059
2000 0.334 363 0.45972 11.7% 0.211
Total 0.3013 3097 0.54336 100.0% 0.295
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Table 10.12 Hg concentration (ppm) in all fish sampled from  each location

Lake Mean N Std. Deviation % of total N Variance
Tsayata Lake 0.228 191 0.15074 6.2% 0.023
Babine Lake 0.1316 301 0.1159 9.7% 0.013
Bear Lake 0.1228 102 0.156 3.3% 0.024
Brown Lake 0.112 5 0.02049 .2% 0
Chuchi Lake 0.3052 95 0.20086 3.1% 0.04
Cunningham Lake 0.2602 57 0.14599 1.8% 0.021
Weisner Lake 0.1915 40 0.12771 1.3% 0.016
Whitefish Lake 0.2473 66 0.1715 2.1% 0.029
Francois Lake 0.1633 19 0.12811 .6% 0.016
Grassham Lake 0.1739 28 0.06551 .9% 0.004
Witch Lake 0.2575 44 0.14002 1.4% 0.02
Inzana Lake 0.1272 65 0.08541 2.1% 0.007
Kazchek Lake 0.0533 46 0.04164 1.5% 0.002
Kemess Lake 0.0277 35 0.05096 1.1% 0.003
McKnight Lake 0.525 8 0.15866 .3% 0.025
Trembleur Lake/Middle River 0.1452 105 0.13014 3.4% 0.017
Nations Lakes 0.2725 8 0.14109 .3% 0.02
Nechako Reservoir - Tahtsa Reach 0.0869 16 0.18297 .5% 0.033
Necoslie River - Stuart Lake 0.3042 26 0.2449 .8% 0.06
Stuart Lake 0.1606 141 0.14005 4.6% 0.02
Pinchi Lake 1.1671 162 1.63217 5.2% 2.664
Purvis Lake 0.1775 20 0.11045 .6% 0.012
Quesnel Lake 0.1577 110 0.13462 3.6% 0.018
Rainbow Creek 0.0856 11 0.03875 .4% 0.002
Tatchi River 0.2781 72 0.14614 2.3% 0.021
Takla Lake 0.1762 34 0.11626 1.1% 0.014
Tchentlo 0.2065 62 0.1401 2.0% 0.02
Tezzeron Lake 0.3517 191 0.31616 6.2% 0.1
Tochcha Lake 0.51 11 0.13372 .4% 0.018
Williston Reservoir - Finlay 0.5244 334 0.72657 10.8% 0.528
Williston Reservoir - Ingenika 0.4335 180 0.38227 5.8% 0.146
Williston Reservoir - Williston Lake 0.2579 42 0.13056 1.4% 0.017
Williston Reservoir - Parsnip 0.2558 166 0.335 5.4% 0.112
Williston Reservoir - Peace 0.1829 304 0.3281 9.8% 0.108
Total 0.3013 3097 0.54336 100.0% 0.295
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Table 10.13 Mean weight (kg) o f fish, sorted by species

Fish Type Mean N Median
Bull trout 1.5366 313 1
Burbot 1.1503 137 1.2
Char 2.4091 66 2.1
Coho salmon 1.5 4 1.5
Dolly varden 1.005 87 0.5
Kokanee 1.3796 195 1.5
Lake trout 2.2005 660 1.9
Lake whitefish 0.4547 892 0.4
Large scale sucker 1.175 3 1.15
Mountain whitefish 0.8973 60 0.8
Peamouth chub 0.2037 3 0.21
Rainbow trout 1.061 365 0.4
Rocky mt. whitefish 0.5 1 0.5
Salmon 2.1846 13 2
Sockeye salmon 2.035 147 2
Squawfish 1.5 1 1.5
Sturgeon 39.4 2 39.4
Sucker 0.7196 23 0.5
Trout 0.3339 33 0.3
White sucker 0.7045 11 0.5
Whitefish 0.8185 81 0.8
Total 1.2829 3097 0.75
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Table 10.14 Mean weight (kg) o f  fish, sorted by location

Location Mean N Median
Tsayata Lake 0.6076 191 0.5
Babine Lake 1.8967 301 1.9
Bear Lake 1.6426 102 1.5
Brown Lake 0.1062 5 0.078
Chuchi Lake 2.2763 95 2
Cunningham Lake 0.8754 57 0.8
Weisner Lake 1.7125 40 1.6
Whitefish Lake 2.1606 66 1
Francois Lake 1.2618 19 0.775
Grassham Lake 0.2036 28 0.2
Witch Lake 1.1159 44 1
Inzana Lake 1.3662 65 1.4
Kazchek Lake 0.7663 46 0.8
Kemess Lake 0.1785 35 0.032
McKnight Lake 0.3696 8 0.372
Trembleur Lake/Middle River 1.0395 105 0.5
Nations Lakes 2.0687 8 1.625
Nechako Reservoir - Tahtsa Reach 0.2039 16 0.194
Necoslie River - Stuart Lake 2.4923 26 2.15
Stuart Lake 1.9585 141 1.25
Pinchi Lake 1.5108 162 0.75
Purvis Lake 0.505 20 0.35
Quesnel Lake 2.8727 110 2.75
Rainbow Creek 0.0512 11 0.039
Tatchi River 1.7014 72 1.5
Takla Lake 1.0574 34 1
Tchentlo 1.45 62 0.8875
Tezzeron Lake 1.481 191 1.15
Tochcha Lake 3.3636 11 3.5
Williston Reservoir - Finlay 1.0578 334 0.4675
Williston Reservoir - Ingenika 0.9292 180 0.5
Williston Reservoir - Williston Lake 0.3688 42 0.2
Williston Reservoir - Parsnip 0.6482 166 0.35
Williston Reservoir - Peace 0.5778 304 0.35
Total 1.2829 3097 0.75
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Table 10.15 Hg concentration offish tissue, sorted by year, lake, and fish species.

Year Location Fish Type Hg Concentration 
(ppm)

Weight
(kg)

1974 Pinchi Lake Kokanee Mean 0.48 0.1625
N 6 6

Lake trout Mean 4.8275 2.4188
N 12 12

Lake whitefish Mean 1.79 0.3
N 5 5

Large scale 
sucker

Mean 2.5867 1.175

N 3 3
Mountain
whitefish

Mean 0.66 0.365

N 2 2
Peamouth chub Mean 1.8967 0.2037

N 3 3
Rainbow trout Mean 0.39 0.3023

N 11 11
Total Mean 2.1148 0.945

N 42 42
1976 Necoslie River - Stuart 

Lake
Char Mean 0.4971 2.8357

N 14 14
Salmon Mean 0.13 4.1

N 1 1
Sucker Mean 0.3 1.3

N 1 1
Total Mean 0.4619 2.8188

N 16 16
Stuart Lake Sturgeon Mean 0.45 39.4

N 2 2
Total Mean 0.45 39.4

N 2 2
1979 Tezzeron Lake Burbot Mean 0.455 1.8333

N 12 12
Lake trout Mean 0.6309 2.2333

N 66 66
Lake whitefish Mean 0.1012 0.5606

N 32 32
Rainbow trout Mean 0.1676 0.9

N 29 29
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Whitefish Mean 0.11 0.5
N 1 1

Total Mean 0.3951 1.5281
N 140 140

Williston Reservoir - 
Ingenika

Dolly varden Mean 0.6379 1.2179

N 14 14
Lake whitefish Mean 0.26 0.66

N 20 20
Rainbow trout Mean 0.189 0.3583

N 30 30
Whitefish Mean 0.26 0.66

N 10 10
Total Mean 0.3027 0.6432

N 74 74
1980 Williston Reservoir - 

Finlay
Bull trout Mean 0.5815 0.6885

N 26 26
Dolly varden Mean 0.5664 0.675

N 14 14
Lake whitefish Mean 0.1813 0.4987

N 30 30
Rainbow trout Mean 0.07 0.25

N 1 1
White sucker Mean 0.29 0.6

N 1 1
Total Mean 0.4007 0.5994

N 72 72
Williston Reservoir - 
Ingenika

Bull trout Mean 0.7027 1.5693

N 45 45
Dolly varden Mean 0.7324 1.5381

N 21 21
Lake whitefish Mean 0.2062 0.4197

N 37 37
White sucker Mean 0.3333 0.4

N 3 3
Total Mean 0.5248 1.1288

N 106 106
1981 Williston Reservoir - 

Finlay
Bull trout Mean 0.784 4.22

N 5 5
Dolly varden Mean 0.6807 3.2167
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Lake whitefish 0.146 0.46Mean

0.4167White sucker 0.31Mean

0.4331Total 1.9271Mean

1986 Pinchi Lake Bull trout 0.6533 0.36Mean

1.1033Lake trout 2.2373Mean

0.84Lake whitefish Mean 0.645

Rainbow trout 0.195 0.3475Mean

Total 0.9189 1.6803Mean

0.51 3.3636Tochcha Lake Lake trout Mean

3.3636Total 0.51Mean

1.1369Williston Reservoir - 
Finlay____________

Bull trout 2.13451988 Mean

Burbot 0.3325Mean 0.3

0.1922 0.254Kokanee Mean

Lake whitefish 0.2277 0.2795Mean
44

0.077 0.4129Rainbow trout Mean
24

Total 0.6585 1.2144Mean
170170

Bull trout 0.5135 1.2752Williston Reservoir - 
Parsnip___________

Mean

Burbot 0.3194 0.8493Mean

Lake trout 0.315 0.595Mean

Lake whitefish Mean 0.1895 0.2621
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Rainbow trout Mean 0.0415 0.3365
N 46 46

Total Mean 0.2558 0.6482
N 166 166

1996 McKnight Lake Dolly varden Mean 0.525 0.3696
N 8 8

Total Mean 0.525 0.3696
N 8 8

2000 Pinchi Lake Lake trout Mean 1.3821 3.3153
N 33 33

Lake whitefish Mean 0.2522 0.4618
N 34 34

Total Mean 0.8087 1.8673
N 67 67

Tezzeron Lake Lake trout Mean 0.5165 2.8917
N 18 18

Lake whitefish Mean 0.0781 0.5114
N 33 33

Total Mean 0.2328 1.3515
N 51 51
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Table 10.16 Latin names fo r  fish species used in this study

Common Name Latin Name
Bull trout Salvelinus confluentus
Burbot Lota lota
Char Salvelinus fontinalis
Coho salmon Oncorhynchus kisutch
Dolly varden Salvelinus malma malma
Kokanee Oncorhynchus nerka
Lake trout Salvelinus namaycush
Lake whitefish Coregonus clupeaformis
Large scale sucker Catostomus macrocheilus
Mountain whitefish Prosopium williamsoni
Peamouth chub Mylocheilus caurinus
Rainbow trout Oncorhynchus mykiss
Rocky mt. whitefish Prosopium williamsoni
Salmon Salmo Salar
Sockeye salmon Oncorhynchus nerka
Squawfish Ptychochelius
Sturgeon Acipenser sturio
Sucker Catostomus commersonii
Trout Salvelinus malma malma
White sucker Catostomus commersonii
Whitefish Coregonus clupeaformis
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Figure 10.1 Scatterplot o f Hg concentration (ppm) versus weight (kg) fo r  bull trout
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Figure 10.2 Sample calculation for adjusted Hg concentration (ppm) of fish for the Risk 
Assessment Tool

Calculation fo r a bull trout with an actual concentration of 0.07 ppm and a weight o f  
0.18 kg

A djusted  P P M  = (actual ppm ) x (m ean species ppm /calcu la ted  ppm  according to reg ression )

= (0 .07) x (0 .7021/((0 .371 x 0 .18 ) + 0 .132)

=  (0 .07) x (0 .7021 /0 .19878)

= (0 .07) x (3 .53204)

=  0.24724
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