
AN ADAPTIVE LOAD SENSING PRIORITY ASSIGNMENT PROTOCOL FOR
DISTRIBUTED REAL-TIME DATABASE SYSTEMS

by

Shah Nahid Mahmud

B.Sc., Jahangimagar University, Bangladesh, 2003

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SCIENCE
IN

MATHEMATICAL, COMPUTER, AND PHYSICAL SCIENCES
(COMPUTER SCIENCE)

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

August 2012

©Shah Nahid Mahmud, 2012

1+1
Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-494-94088-4

Our file Notre reference
ISBN: 978-0-494-94088-4

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

Abstract

Transaction processing in a distributed real time database system (DRTDBS) is

coordinated by a concurrency control protocol (CCP). The performance o f a CCP is affected

by the load condition o f a transaction processing system. For example, the performance o f

the Adaptive Speculative Locking (ASL) protocol degrades in high load conditions o f the

system. Priority protocols help a CCP by prioritizing transactions. The perform ance o f the

priority protocols is also affected by system load conditions, but they can be optimized by

dynamically switching between priority protocols at run time when the system load changes.

The objective of this research is to develop a protocol, Adaptive Priority Assignment

protocol (APAP), which changes the priority protocol at run time to improve the

performance o f a CCP in a DRTDBS.

APAP is implemented in a DRTDBS, where ASL is used as the underlying CCP to

validate APAP. The performance o f APAP was tested under varying system load conditions

with various combinations o f the database system parameters. Under the scenarios tested,

APAP performed better than other priority protocols and demonstrated that dynamic

selection o f priority protocols during run time is an effective w ay to improve the

performance o f a CCP in a DRTDBS.

Table of Contents
Abstract... ii

Table of Contents...iii

List of Tables.. vi

List of Figures...vii

Acknowledgement..ix

Chapter 1.. 1

1.1 Transaction Processing..3

1.2 Data Distribution... 5

1.3 Deadlines..6

1.4 Deadlocks...7

1.5 Priority Assignment.. 8

1.6 Preemption...10

1.7 Locking Protocols... 11

1.8 Commit Protocols.. 13

1.9 Concurrency Control Protocols (CCPs).. 16

1.10 Contribution...17

Chapter 2 ..19

2.1 Evaluation of the ASL protocol...20

2.1.1 Permits Reading of Modified Prepared-Data for Timeliness..20

2.1.2 Prompt-Early Prepare...23

iii

2.1.3 Adaptive Exclusive Primary... 24

2.1.4 Speculative Locking.. 26

2.1.5 Adaptive Speculative Locking... 29

2.1.6 Synchronous Speculative Locking Protocol for Read-Only Transactions......................32

2.2 Switching Between Priority Protocols.. 35

2.2.1 Adaptive Earliest Deadline..35

2.2.2 Sectional Scheduling... 37

2.2.3 Maximum Miss First... 38

2.2.4 Group-EDF...39

2.3 Summary... 40

Chapter 3 ... 42

3.1 Distributed Real-Time Transaction Processing Simulator.. 42

3.1.1 Node Architecture...44

3.2 Graphical User Interface.. 48

3.3 Software Design:... 50

3.3.1 Concurrency Control Protocols.. 52

Chapter 4 ..54

4.1 Adaptive Priority Assignment Protocol.. 54

4.1.1 Implementation...56

4.2 Experiments and Results...59

4.2.1 Baseline Experiment... 59

iv

4.2.2 Performance of APAP varying the transaction load ..62

4.2.3 Performance of APAP with reduced page update rate... 64

4.2.4 Performance of APAP with larger cache size...67

4.2.5 Performance of APAP with increased slack tim e...69

4.2.6 Effects of system disk space on the performance of APAP...71

4.2.7 Effect of system distribution on the performance of APAP...73

4.2.8 Effect of increasing the number of processors..76

4.2.9 Effect of network topologies on the performance of APAP...77

4.3 Summary... 79

Chapter 5 ..81

5.1 Future Work..83

Bibliography...84

v

List of Tables

Table 2.1: Lock Compatibility Matrix (a) 2PL and (b) SL [7].. 28

Table 2.2: Lock compatibility matrix for SSLR [4 2]...32

Table 4.1: Load ranges for priority protocols.. 56

Table 4.2: Parameter Settings..60

VI

List of Figures

Figure 1.1: Partitioned and replicated data distribution processes.. 5

Figure 1.2: Transaction Deadline Model [1 3] ... 6

Figure 1.3: Two-Phase Locking - Growing and Shrinking Phase [9] .. 12

Figure 1.4: Commit Protocol - Commit and Abort Paths.. 14

Figure 2.1: A Transaction Processing [7] ... 27

Figure 2.2: 2PL Processing [7] ... 27

Figure 2.3: SL Processing [7]..27

Figure 2.4: SSLR Processing [42]..33

Figure 2.5: ASLR Processing [43]..34

Figure 3.1: Network configuration [4 9] ... 44

Figure 3.2: Simulator SetupTool.. 49

Figure 3.3: Simulator ReportTool...49

Figure 3.4: Simulation class structure [46]...50

Figure 3.5: A running sim ulator... 51

Figure 3.6: Speculative locking protocol dependencies [46]..52

Figure 4.1: Sequence o f transaction selection process without A PA P...57

Figure 4.2: Sequence o f transaction selection process w ith A PA P...58

Figure 4.3: PTCT for the Baseline Experim ent...61

Figure 4.4: POU for the Baseline Experim ent... 62

Figure 4.5: PTCT for 200 transactions..63

Figure 4.6: POU for 200 transactions.. 63

Figure 4.7: PTCT for the zero page update ra te ..64

Figure 4.8: POU for the zero page update ra te .. 65

Figure 4.9: PTCT for the 50 percent page update ra te .. 66

Figure 4.10: POU for the 50 percent page update ra te .. 67

Figure 4.11: PTCT for 50 pages cache s ize ..68

Figure 4.12: POU for 50 pages cache size.. 68

Figure 4.13: PTCT for the 720-3600 ticks slack tim e ..70

Figure 4.14: POU for the 720-3600 ticks slack tim e .. 71

Figure 4.15: PTCT for 4 d isks..72

Figure 4.16: POU for 4 d isks..73

Figure 4.17: PTCT for 11 nodes... 74

Figure 4.18: POU for 11 nodes..74

Figure 4.19: PTCT for 15 nodes... 75

Figure 4.20: POU for 15 nodes.. 76

Figure 4.21: PTCT for 2 processors.. 77

Figure 4.22: POU for 2 processors...77

Figure 4.23: PTCT for the 2D-torus network topology..79

Figure 4.24: POU for the 2D-torus network topology..79

viii

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisor, Dr. W aqar

Haque for his guidance, patience, and immense knowledge in m y research. Throughout this

research, his professionalism, attention to detail, and high quality of standards trem endously

helped me to find myself in a better academic standing. I could not have achieved m y goal

without his constant support and generosity.

I also would like to thank my committee members Dr. Alex Aravind and Dr.

Balbinder Deo, for their support, encouragement, and insightful comments. I spent a long

time in Dr. Alex Aravind’s research lab. He gave me valuable suggestions about theses based

on his experience with his other students, which helped me a lot.

A special word o f gratitude to my friend, Christina Tennant, for her continuous help

and enthusiasm to improve my thesis writing. For the last couple of months I have been

continuously bugging her to proofread my thesis. She patiently checked every line o f m y

writing and made suggestions to fix any issues. I also would like to thank m y friend, Barbara

W illmer who helped check my writing many times.

Finally, I would like to thank my family: my parents and my siblings for supporting

me throughout my life. I am grateful to them that they kept faith in me in all situations o f m y

life.

ix

Chapter 1

Introduction

A database system provides a systematic and secure way to store inform ation and

answer queries in an organized manner. In today’s world, almost every business uses a

database system. Access to a database system is controlled by transactions, w hich are

combination o f read operations that read data from the database systems and write operations

that update data in the database systems [1]. According to Berstein and N ew com er [2], a

transaction must follow ACID properties: atomicity, consistency, isolation, and durability.

Atomicity ensures that partial completion o f a transaction is not accepted. Consistency m eans

database changes made by a transaction should not violate consistency o f the database. W hen

a number o f transactions are running in parallel, isolation ensures that each transaction

runs as if it were independent o f other transactions. The results of a transaction will be

permanent as indicated by durability, even in the event o f a failure [2],

A real time database system (RTDBS) is a repository for data, like a conventional

database, which supports data retrieval and manipulation. In addition, it ensures “some

degree o f confidence in meeting the system’s timing requirements” [3] [4], A RTDBS is

evaluated by how many transactions complete their tasks before the deadlines expire. The

performance o f a RTDBS depends on the number o f transactions missing their deadlines, the

effects o f transactions missing their deadlines, the average ‘lateness’ or ‘tardiness’ o f late

transactions, the present status o f the data, and the time interval in which the data in the

database was collected from the external world [3].

A distributed database system (DDBS) is a collection o f data sites, which contain one

or more databases connected by a communication network. For example, in the stock market,

information is stored in a geographically distributed database, since stocks are bought and

sold from different places. A DDBS supports sharing o f data and programs, and load

balancing among all sites. It can also be incrementally expanded to any num ber o f sites [5],

In a distributed real time database system (DRTDBS), transactions at each site have explicit

timing constraints, which become more challenging to follow because the transactions are

distributed and database consistency needs to be maintained through controlled data access.

Concurrency control protocols (CCPs) coordinate concurrent access to data and are

considered the core component o f database systems. There are several concurrency control

approaches used to maintain the consistency o f the database while transactions are

concurrently accessing data. These approaches can be categorized into two types: aggressive

or optimistic where operations are scheduled immediately, and conservative or pessimistic

where operations may be delayed [6], Two-phase locking (2PL) is the m ost popular

concurrency control protocol in commercial products. In 2PL, all data items have locks

associated with them. When a transaction accesses a data item, it holds the lock o f that data

item [6]. If the lock is an exclusive lock, the data item becomes unavailable to other

2

transactions until the transaction holding the lock completes its execution. Therefore, 2PL

increases transaction execution time.

The speculative locking (SL) protocol is an approach where conflicting transactions

are allowed to access a data item that is held by another transaction to minimize the

transaction execution time, and resolve conflicts later [7]. The adaptive speculative locking

(ASL) protocol extends the basic function o f the SL protocol in DRTDBS and outperforms it

under most conditions by exploiting a variety o f techniques: efficient m em ory management,

hyper-threading, and transaction queue management (discussed in Chapter 2) [8] [9],

However, the ASL protocol uses the fixed priority assignment approach, where a given

protocol is selected when a transaction is initiated and used for the entire duration until it

completes. The fixed approach o f choosing priority protocols may not always produce

optimum results in a real time system, especially where system conditions change frequently,

since there may not be enough time for transactions to complete before their deadlines.

Our hypothesis is that by dynamically switching between various priority protocols in

a DRTDBS, the number o f transactions that meet their deadlines can be maximized. The goal

is thus to develop an adaptive priority protocol approach for the ASL protocol that will allow

automatic switching between priority protocols as the system load changes, thus improving

overall performance. The remaining part o f this chapter explains the necessary components

and features o f the DRTDBS and provides background knowledge pertaining to our work.

This is followed by an outline o f the contribution o f this research.

1.1 Transaction Processing

In a database system, the basic unit o f processing is a transaction, which is a set o f

read/write operations that can be either local or global [1], Local transactions deal w ith data

3

locally at a single site, while global transactions deal with data at multiple sites and m ay have

a number of sub-transactions. In DRTDBS, most transactions are global, and transaction

execution involves running sub-transactions at remote sites. According to the distributed

transaction model [10], transactions are controlled by processes, which work at different sites

to coordinate between a transaction and its sub-transactions. The process that executes at the

site where the transaction originates is called the master. Other processes that execute on

behalf o f the master are called cohorts, which need to maintain communication with the

master for a successful global transaction execution. There are two types o f distributed

transaction execution models: sequential and parallel [11]. In a sequential execution model,

operations from a single cohort are executed sequentially. The cohort can only commit after

successful completion o f all operations. During the execution o f operations, a site m ay have

only one cohort or nothing. In a parallel execution model, all the cohorts are initiated

together and execute in parallel without interfering w ith each other. Therefore, transactions

complete earlier than in the sequential execution model.

The lifetime o f a transaction can be divided into two phases: a work phase and a

commit phase [9]. In its work phase, a transaction reads or manipulates data. The m aster

process informs other participating cohorts about the work to be done at each site. The

cohorts then complete the work and confirms w ith the master about the completed work. In

its commit phase, a transaction completes when the master gets confirmation from all the

cohorts, and executes a commit protocol which makes the changes permanent, or executes an

abort protocol which reverts any changes. Concurrent access of a data item causes

inconsistency in the database. Serialization guarantees the serial execution o f transactions

when they execute concurrently on the same data [6]. To protect data and ensure

4

serialization, locking and commit protocols are used in the work and com mit phase,

respectively.

1.2 Data Distribution

Data in a DRTDBS are distributed throughout the sites o f a system. In a DRTDBS,

the nature o f the data distribution with respect to the execution o f transactions can severely

affect the performance. There are two ways data can be distributed (Figure 1.1): partitioned

and replicated [6],

1. In partitioned distribution, there are no intersections of data w hen data are

distributed in different nodes. The partitioned distribution minimizes maintenance

cost, but if a single site fails then the data is lost and cannot be recovered. Therefore,

the whole system fails.

Partitioned Replicated

Site 1 Site 2a
Site 3a

Figure 1.1: Partitioned and replicated data distribution processes

2. In replicated distribution, multiple copies o f the same data items are distributed

to different sites [6]. This increases availability o f the data to transactions when they

need it for their operations. In such an environment, the system does not need to stop

operation even when some sites fail because the required data may be available at

other sites. However, updating data at one site requires updating all copies at other

sites to prevent inconsistencies [12]. CCPs are used to ensure that the “database is a

one copy equivalent” [6].

1.3 Deadlines

In a DRTDBS, deadlines represent timing constraints that a transaction m ust m eet to

successfully commit. A global transaction requires processing of all associated sub­

transactions before it commits, so it requires more time than a local transaction. Deadlines

can be categorized as (Figure 1.2): hard, soft, and firm [13].

Value Value

Aitival Time
• Time I Time

Deadline

(I) hard deadline

Arrival Time Deadline

(2) soft deadline

Value

Time
Arrival Time Deadline

(3) firm deadline

Figure 1.2: Transaction Deadline Model [13]

1. A hard deadline follows strict timing constraints for transactions. If a transaction

misses this timing constraint, its value becomes negative and that severely affects the

system.

2. A soft deadline provides an extra amount o f time for a transaction to finish its

work after the deadline. W hen the deadline expires, the value o f the transaction

degrades. If the transaction exceeds the extra time then its value becomes zero.

6

3. A firm deadline is similar to soft deadline, but it does not provide extra time after

the deadline. When a transaction misses the deadline, the value becom es zero and the

transaction is discarded instantly [14],

1.4 Deadlocks

A deadlock occurs when no transaction can complete due to a circular wait on data

requests. For example, a transaction Ti requests a data lock which is held by another

transaction T2, which may be waiting (either directly or indirectly) for data items which are

held by Ti. This circular wait causes a deadlock, where no transactions can com plete [14].

Deadlocks can be handled in three different ways [5]: deadlock prevention, deadlock

avoidance, or deadlock detection.

1. “Deadlock prevention algorithms ensure deadlock free condition through

guaranteeing that at least one o f the conditions that cause deadlocks fails to hold” [5],

These algorithms suffer from a high num ber o f transaction restarts.

2. Deadlock avoidance algorithms use prior information about the use o f resources

to analyze every incoming request, which helps them to predict deadlocks

beforehand. These algorithms create lower system overhead than deadlock prevention

algorithms. Without enough information these algorithms can fail [5].

3. Deadlock detection algorithms detect a deadlock when it occurs and abort one o f

the transactions involved in causing it, to resolve the deadlock [5],

In a DRTDBS, deadlock detection requires good coordination among sites. They also

need to deliberate a transaction’s timing constraints, since a transaction needs to have enough

7

time to complete if the transaction needs to restart. Deadlock detection in a DRTDBS can be

categorized as: centralized, distributed, or hierarchical [15]. In the centralized approach, a

site is used as a central coordinator to maintain the resource utilization graph o f the entire

system. Only the coordinator updates the resource utilization graph and searches it for

circular waits. The approach is easy to implement, but it fails if the central coordinator site

fails. In the distributed approach, the resource utilization graph is distributed among many

sites and requires coordination among the sites to detect deadlocks. W ithout good

coordination between the sites, it is not possible to have exact information about the entire

system, making it a complex process. In the hierarchical approach, sites are arranged in a

hierarchical order so that deadlock detection involves only some sites, making it simpler than

the distributed approach. However, a site can only detect deadlocks in its descendant sites

[15].

1.5 Priority Assignment

Priority assignment protocols determine the order o f execution o f transactions. These

protocols also determine which transactions should be blocked or restarted during deadlocks.

Therefore, transactions need to be prioritized to avoid unnecessary blockages or delays.

There are three categories o f priority assignment techniques: static, dynamic, and

hybrid. When the priority o f a transaction is “assigned once and for all” , these are called

static priority protocols [1], In static priority protocols, priorities o f transactions are set

before the system executes the transactions and these priorities are not changed at run time.

Static priority protocols require complete information about the transactions characteristics

and are mostly suitable for small systems [16]. In dynamic priority protocols, the priority o f a

transaction “changes from request to request” where decisions about scheduling are made at

8

run-time [1]. Certain important characteristics (i.e. deadlines, slack time) o f a transaction

change when the system restarts. Therefore, at each request, the characteristic o f a

transaction is checked to determine the priority o f the transaction. In hybrid priority

protocols, priorities are fixed for some transactions and varied for others. One use o f hybrid

priority protocols is making some critical transactions non-preemptive w ith a static priority

protocol during dynamic priority assignment [17]. Some o f the popular priority assignment

protocols are described below:

1. First Come First Serve (FCFS): In FCFS, the transaction with the earliest arrival

time is assigned the highest priority. Therefore, deadline inform ation is not

considered during priority assignment. In other words, a new transaction w ith a close

deadline will get a lower priority than an old transaction which m ay not have a close

deadline. This is not desirable in a real time system [18].

2. Shortest Job First (SJF): In SJF, transactions w ith the smallest run time are

executed next [19]. This protocol is suitable when a system has prior knowledge

about the run time o f the transactions. This process produces the best result when the

load is high because it minimizes the average waiting time for a given set o f

transactions.

3. Earliest Deadline First (EDF): In EDF, a transaction with an early deadline gets

higher priority. A drawback o f this protocol is that it allocates higher priority to a

transaction which is close to its 'deadline, but might miss it, over a transaction that

still has a chance to meet its deadline [20].

4. Minimum Slack First (MSF): In MSF, a transaction with a shorter slack tim e gets

higher priority. Slack time is the maximum amount o f time that a transaction can be

9

idle, but still complete before its deadline [1]. Therefore, MSF depends on both the

execution time and the deadline o f a transaction.

1.6 Preemption

In DRTDBS, transactions should be preempted to avoid blockage o f high priority

transactions [21]. If a lower priority transaction has a lock on a data item and a higher

priority transaction issues a request for that lock, then the higher priority transaction has to

wait until the lower priority transaction completes. This situation is called priority inversion

[22]. Due to priority inversion, high priority transactions might miss their deadlines. There

are two popular methods to solve the priority inversion problem: priority inheritance and

priority ceiling. In priority inheritance, if a lower priority transaction Tl holds a data lock and

a higher priority transaction TH also requests that data lock, then TL temporarily inherits the

priority of TH until it completes its critical section [22]. The critical section is the time when

a transaction accesses shared data and is not allowed to be preempted. After the critical

section, Tl releases the lock and returns to its initial priority. The priority inheritance

methods reduce the blocking time o f TH from the entire execution time o f TL to the execution

time of its critical section. However, this process might suffer from deadlocks, and the block

duration can be significant if there is a chain o f blocking [22].

In priority ceiling, a transaction Tj can preempt a blocking transaction Tj if T, has

higher priority than other preempted transactions. Otherwise, the transaction Tj is suspended,

and the transaction Tj inherits T ’s priority. Priority ceiling not only minimizes the blocking

time but also prevents deadlocks because a transaction with an exclusive lock (discussed in

the next section) will never be blocked by a lower priority transaction [22], However, in

priority ceiling, a low priority transaction is unnecessarily blocked by a high priority

10

transaction even when an application is idle while reading data from or writing data into the

database [23],

1.7 Locking Protocols

A locking protocol guarantees serialization o f transactions within the system by

utilizing locks on data items [24], I f a transaction or a sub-transaction wants access to a

shared data item, then it needs to request a lock on that data item. There are two types o f

locks [25]: shared and exclusive. A shared lock is required when a transaction only needs to

read a data item. An exclusive lock is needed when a transaction needs to m odify a data item.

When a scheduler gets a request for a data item from a transaction, it checks the state o f the

lock. If the data item is not currently locked or has a shared lock, then the scheduler permits

the transaction to hold the lock. Otherwise, if the data item is exclusively locked, the

transaction needs to wait until the current lock has been released. This ensures that only one

transaction gets accesses to a data item at a given time. However, this blocking behaviour o f

a locking protocol greatly degrades the performance o f a DRTDBS because o f time

constraints [11], In a DRTDBS, during a read operation, a single copy o f the data item is

locked (shared) by the scheduler. During a write operation, all copies o f the data item are

locked (exclusive) by the scheduler until the data modification completes [9].

One o f the most common locking protocols is the two-phase locking protocol (2PL)

[11], which includes a growing phase and a shrinking phase (Figure 1.3). In the growing

phase, a transaction only acquires locks on the required data. In the shrinking phase, a

transaction frees all the acquired locks. During growing phase, no lock is released, and

11

during shrinking phase no new lock is acquired. Every transaction has to go through these

phases in order to guarantee the consistency o f data [6].

Acquire
lock

Acquire
lock

▼

Time 1 2 3 4 5 6 7 8

Growing Phase | Locked Phase J Shrinking Phase

Figure l .3: Two-Phase Locking - Growing and Shrinking Phase [9]

The 2PL can be static or dynamic [I], Dynamic two-phase locking (D2PL) and static

two-phase locking (S2PL) work similarly, but have different lock settings. D2PL sets locks

on the data item required for a transaction and keeps the data locked until the transaction

completes. S2PL sets locks on the data item beforehand, using prior knowledge o f the

transactions that will access the data item. In a DRTDBS, especially for hard real time

transactions, this prior knowledge is easily accessible [l]. Distributed S2PL decreases the

number o f messages transmitted between sites in comparison to D2PL, because all lock

requests o f a transaction are transmitted as one message. This also reduces the time delays

for setting remote locks. Another advantage o f S2PL is that a blocked transaction cannot

hold locks, meaning deadlocks do not occur. Therefore, D2PL, with its shorter average lock

holding time, is preferable over S2PL for conventional non real time database systems [1],

Lock
Acquired

1 R elease
Lock

R elease
Lock

12

1.8 Commit Protocols

Commit protocols ensure that modification o f data by transactions will be permanent

after transactions successfully complete [9], One important feature o f transactions is

atomicity, which can be secured by commit protocols. To ensure atomicity o f a transaction,

commit protocols prevent locks on data from being released until the modification o f data

becomes permanent [26].

In the distributed environment, atomicity is violated if some transactions commit at

some sites and abort at other sites [1]. Therefore, all the participating sites need to agree on

committing or aborting. Moreover, to maintain atomicity, once a cohort is ready to com mit

“it has to retain all its data locks until it receives the global decision from the m aster”, which

might cause priority inversion [1],

The two-phase commit protocol (2PC) is the m ost commonly used distributed commit

protocol. The fundamental workflow o f the 2PC protocols explained by Gupta et al. [27] is

described below: The 2PC protocol has at least two-phases: the prepare phase and the

commit phase (Figure 1.4). A commit protocol starts execution, when the m aster receives a

WORKDONE message from all the cohorts. In the prepare phase, the master sends

PREPARE messages to all cohorts in parallel. After getting the PREPARE messages, the

cohorts vote for committing or aborting the execution. I f a cohort finds a suitable

environment for committing, it sends a YES vote to the master and writes a prepare log

record to their local storage. This is called the “prepared state” for the cohorts. However, the

cohort cannot commit until they get the final decision from the master. On the other hand, if

a cohort cannot complete the execution, it sends a NO vote to the master. The cohort writes

13

an abort log to their local storage and aborts immediately as a NO vote is considered a veto

[27]. This is the end o f the prepare phase.

WORKDONE

I
PREPARE

YES

COMMIT

ACKNOWLEDGEMENT
M ------------------------------

I
Transaction Commits

WORKDONE

I
PREPARE

NO

ABORT

ACKNOWLEDGEMENT
^ -----------------------------

I
Transaction Aborts

Figure 1.4: Commit Protocol - Commit and Abort Paths

The commit phase starts when the master receives the votes from all the cohorts. If

there is not a single NO vote, then it writes a commit log record and sends the global

decision, which is a COMMIT message to all the cohorts. This is called “com mitting state”

for the master. W hen the global decision reaches the cohorts they write a com mit log and

enter the “committing state” . The cohorts commit by sending an ACKNOW LEDGEM ENT

message to the master. On the other hand, if a single NO vote is received, the m aster writes

an abort log and sends the global decision as an ABORT message to all the cohorts. This is

called “aborting state” . After receiving the global decision o f abortion, all the cohorts write

an abort log, and abort the transaction by sending an ACKNOWLEDGEMENT message to

the master. Upon receipt o f this message from all cohorts, the master writes an end log record

and discards the transaction.

There are several variants o f 2PC [1]: presumed abort/commit protocols, one-phase

commit protocols, and three-phase commit protocols. The presumed abort/commit protocols

14

reduce the message and logging overheads by making an explicit commit presumption about

the committing or aborting o f transactions. W hen a cohort recovers from the failure state, it

communicates with the master for available information about the transaction. I f the master

does not have information available about the transaction, then the cohort can assume that it

has aborted. On the other hand, if the cohort gets the commit decision from the master, it

commits. The cohort then does not need to send an acknowledgment for the ABORT or

COMMIT message and also does not need to write an abort/commit record to the log. The

master also does not write the abort/commit record and the end record [27] [28].

One-phase commit protocols (1PC) combine the commit and prepare phases into one

phase by removing the cohort voting phase to commit or abort. The cohorts enter into

“prepared state” at the time o f sending the WORKDONE message. Thus 1PC eliminates one

entire phase, which reduces commit processing overhead and delay [29] [30]. However, due

to the long prepared state, 1PC suffers from priority inversion, because data locks cannot be

preempted in the prepared state.

In 2PC and 1PC, even if a single site fails, all participating cohorts “remain blocked

until the failed site recovers” [27]. Three-phase com mit protocols remedies this problem by

using an extra phase, which is called “precommit phase” . This phase occurs between the two

phases o f 2PC, and makes a preliminary decision about committing or aborting transactions.

The preliminary decision then helps all the participating sites, to reach a global decision even

though the master fails. However, three-phase commit protocols increase the communication

overhead by adding an extra message exchange between the cohorts and the master.

Moreover, it forces the cohorts and the master to write a record to the logs in the “precom mit

phase” [27] [31],

15

1.9 Concurrency Control Protocols (CCPs)

CCPs make sure that multiple users can access data concurrently in a database

management system. A CCP must protect data updates o f one user from access and updates

o f another user until the first update becomes permanent [32]. CCPs maintain the

serialization o f the transaction operations, and guarantee that the transactions will maintain

atomicity. Therefore, the main goal o f a CCP is to maximize the concurrency and m aintain

consistency o f the databases. On the other hand, CCPs in a DRTDBS ensure that transactions

are meeting their deadlines, in addition to maintaining consistency constraints o f the

databases [33], In a DRTDBS, maximizing the concurrency is not enough. The transactions

need to be prioritized to maximize the schedulability, which helps transactions m aintain their

timing constraints. It is also important that transactions are preemptible to reduce the

blocking time o f transactions. Thus CCPs in a DRTDBS minimize the duration o f blocking

time by utilizing efficient priority assignment and preemption protocols. As stated earlier,

CCPs are classified into two types: optimistic or aggressive and pessimistic or conservative

[6],

1. Optimistic protocols do not block transactions; rather they optimistically

schedule them instantaneously. This immediate scheduling can violate the

serialization order o f operations if the scheduler receives an operation later which

should have been scheduled earlier than an executed operation. In this situation,

optimistic protocols abort the transactions to maintain the serialization. The

optimistic process is a faster process, but it might result in a higher number o f

transaction rejections.

16

2. Pessimistic protocols block an operation o f a transaction immediately if there is

any data conflict and continue blocking until the possibility o f data conflicts

disappears. Delaying the operations by blocking decreases the possibility o f data

conflict and abortion during transactions, but excessive delays can cause transactions

to exceed deadlines. Pessimistic protocols are suitable for transactions that rarely

conflict.

1.10 Contribution

Few studies have been done on concurrency control protocols in a DRTDBS as it is

difficult to manage distributed data and deadlocks, and coordinate transactions and their sub­

transactions performing at different sites. A priority protocol plays an important role in a real

time system as it determines whether a transaction w ill be completed on time or not [16].

EDF is an optimal priority protocol, because if EDF cannot schedule a transaction, then it is

not possible for other priority protocols to schedule that transaction [34]. However, the

concept o f assigning higher priority to transactions with the earliest deadlines is not suitable

in high load conditions, because transactions might miss their deadlines due to lack o f time

[16].

An important CCP in DRTDBSs is ASL which controls a transaction’s access to data

based on a fixed priority protocol. W e investigated the performance o f ASL protocol using

several common priority protocols under different system configurations. Results o f the

experiments indicated that a priority protocol that performs well under certain configuration,

may perform poorly or moderately under other configurations. This allowed us to determine

a set o f load ranges in which different priority protocols perform superiorly. To maximize the

performance under all system conditions, we concluded that an adaptive approach to

selecting priority protocols is needed. Researchers have been trying to achieve adaptive

approaches to utilize the performance variations o f different priority protocols under varying

system conditions [16] [35] [36]. In all techniques, a common practice is to switch between

priority protocols o f a system based on the load, to improve the overall performance o f the

system. However, no research has been done so far to improve the performance o f ASL

protocol by dynamically switching between priority assignment protocols.

We use the load ranges determined as explained earlier to create an adaptive protocol,

called Adaptive Priority Assignment Protocol (APAP). APAP uses the load condition at run

time to decide which priority protocol should be used next while keeping ASL as the

underlying CCP. Using this approach we observe significant improvement in the overall

system performance. The protocol and results are presented in Chapter 4.

18

Chapter 2

Related Work

We use Adaptive Speculative Locking (ASL) as the underlying concurrency control

protocol (CCP) in this thesis; therefore we needed to understand ASL and its techniques. W e

evaluated ASL and reviewed current research about the speculative locking approach, which

is the underlying structure o f ASL. W e also studied transaction scheduling techniques which

consider changing the system environment during run time.

This chapter is divided into two sections. In the first section, we review the ASL

protocol with other locking and commit protocols, from which ASL inherited properties such

as lending uncommitted data and adaptive approach. W e also describe inheritance techniques

among those protocols. In the second section, we discuss some scheduling techniques that

adaptively switch between priority protocols depending on the system environm ent and that

are most relevant to our research.

19

2.1 Evaluation of the ASL protocol

ASL inherits the concept o f speculation locking o f data from SL protocols [7].

However, the concept o f lending uncommitted data has also been used in the past in other

CCPs, such as PROMPT, PEP, SL, etc. ASL also borrowed the concept o f monitoring the

system performance and making adaptive decisions to change system behaviour from AEP

[8]. In this section we discuss those CCPs briefly.

2.1.1 Permits Reading of Modified Prepared-Data for Timeliness

Permits Reading O f Modified Prepared-data for Timeliness (PROMPT) is a commit

protocol based on firm-deadline designed for the DRTDBS [37], It also extends the concept

of centralized 2PL high priority (2PL-HP) for distributed real time environments. In the 2PL-

HP protocol, if a higher priority transaction is holding a lock on a data item, then all requests

for that lock will be blocked until the lock is released. On the other hand, if the requesting

transaction has higher priority, then the lock holding transaction is aborted immediately to

release the lock. PROMPT extends this concept further by adding three m ore steps: 1) in the

prepared state, read locks are released by the cohorts just after the cohorts receive the

PREPARE message from the master. However, update locks are still held by the cohorts

until the global decision about committing or abortion is available; 2) it is not possible to

abort a cohort if it is in the prepared state; and 3) transactions can lend uncom mitted data

optimistically when the lending transaction is only in the commit phase. W hen the borrowing

transactions have access to the uncommitted data, there are three scenarios that describe the

interaction between the lenders and the borrowers:

1. The global decision o f committing or aborting for the lender is available, but the

borrower’s local execution is still incomplete, In this case, the lender commits, or

20

aborts depending on the global decision, and the borrower follows the lender to

commit or abort.

2. The borrower completes its local execution, but the global decision for the lender

is still not available. In this case, the borrower has to wait and is not allowed to take

any initiative related to committing until the global decision for the lender is available

or the borrower misses its deadline. This situation is called “put on the sh e lf’. If the

lender receives the global decision to commit, then the lender commits and the

borrower initiates commit related processing that is called “taken o ff the sh e lf’. If the

lender aborts then borrower’s data becomes useless and the borrower aborts.

3. If the borrower aborts during data processing, then the lending is cancelled and

the borrower’s updates are rolled back.

PROMPT has three additional features to make the data lending process faster and

avoid wasting system resources: active abort, silent kill, and healthy lending.

1. In active abort, if a participant cohort is about to abort locally, it sends this

information immediately to the master, rather than waiting for the com mit phase.

Active abort provides a transaction more time to complete and also facilitates proper

usage o f both logical and physical system resources.

2. In silent kill, if a transaction is rejected before the commit phase o f the master,

then the rejection is recognizable by the cohorts without communication w ith the

master. Therefore, the master does not need to invoke the abort protocol, because

abortion happens silently. The silent kill process saves system resources by

eliminating message passing between the master and the cohort.

21

3. In healthy lending, if a transaction is about to miss the deadline, then the

transaction is disallowed to lend data to avoid abortion o f the borrower transaction.

PROMPT permits borrowing locked data, but it does not have a cascading abort

problem for two reasons. First, the lending transaction is always expected to commit, because

it is in the prepared state, so local data conflicts cannot abort the lender. Secondly, the sibling

cohorts are going to commit, because all prior data conflicts are handled. Moreover,

PROMPT has a controlled lending policy which does not permit the borrower to be a lender

simultaneously, so PROMPT affects only the immediate borrower [37],

PROMPT’S performance was studied by Haritsa et al. [37] against 2PC, presumed

commit, presumed abort, and 3PC for sequential and parallel transactions during both high

level o f data and resource contention, only high level o f data contention, slow and high

network speed, and high and low degree o f data distribution. In all experiments, PROM PT

performed better than the other protocols, especially in the low load condition. PROM PT

also showed a higher borrowing rate (the average number o f data items borrowed per

transaction) during low to medium load. PROM PT’S success ratio (the fraction o f times that

a borrowing was successful) was 1 during low load, but decreased when the system load

increased. Therefore, PROMPT performs poorly in high load condition. However, the

success o f the borrower depends on the success o f the lender, because the borrower has to

abort if the lender aborts. On the other hand, if the borrower completes before the lender, the

borrower cannot commit until the lender completes, resulting in increase o f transaction

execution time.

22

2.1.2 Prompt-Early Prepare

Prompt-Early Prepare (PEP) is a one-phase (1PC) real time commit protocol based on

a RTDBS. PEP integrates the early prepare (EP) protocol with the lending property o f the

PROMPT protocol [29]. The standard (2PC) protocol has higher m aster/cohort

communication overhead. To reduce the communication overhead, PEP overlaps the prepare

and commit phases into one phase using EP protocol, which is a 1PC protocol. EP reduces

the transaction execution time by removing the voting phase o f the 2PC protocol. In PEP,

the prepared state o f a cohort starts at the time o f sending the WORKDONE message to the

master [38]. PEP is also optimized by a presumed commit mechanism, where the m aster

sends the commit decision, but cohorts do not need to send ACKNOW LEDGEM ENT

messages to the master. The master also does not write an end log record, rather it writes a

membership log record to identify all the cohorts involved in the execution.

However, being a 1PC protocol, EP suffers from priority inversion because o f the

long duration o f the prepared state. The situation deteriorates if the participating transactions

are sequential, where cohorts execute one after another rather than parallel. PEP deals w ith

this problem by incorporating the concept o f lending prepared data. PEP also incorporates

the active abort policy o f PROMPT to reduce the response time.

Haritsa and Ramamritham [29] compared the performance of PEP with PROMPT,

EP, and CENT (a centralized system) in both parallel and sequential transaction

environments. In both environments there were four experiments: 1) data and resource

contention, 2) pure data contention, 3) fast network interface, and 4) highly distributed

transaction. During the first two experiments, both EP and PEP outperformed PROM PT and

PEP outperformed EP, because o f the message passing overhead o f PROMPT. In the case o f

23

fast network interface, PROMPT performed better, but was still outperformed by PEP. PEP

was only outperformed by PROMPT in the sequential high distributed transaction

environment when the priority inversion period o f PEP is much longer than PROMPT.

PEP exploits the concept o f optimistically lending uncommitted data from PROMPT.

Moreover, PEP reduces message and logging overheads through the use o f 1PC protocol.

However, there are a few issues with PEP. PEP suffers from a high num ber o f transaction

aborts because it goes into the prepared state when data processing is still unfinished. The

extension o f the prepared state duration increases priority inversion. Also, deadlocks can

occur, because a lender transaction, which has already lent data items, can still access new

data items.

2.1.3 Adaptive Exclusive Primary

Adaptive exclusive primary (AEP) is an adaptive concurrency control protocol from

which ASL borrowed the concept o f dynamically changing behaviour during run time [9].

AEP is designed for distributed database systems and dynamically switches between an

optimistic and a pessimistic CCP to improve data and resource contention issues [39]. The

optimistic and pessimistic CCPs are the exclusive writer with locking option (EWL) protocol

and the priority site locking (PSL) protocol, respectively.

EWL has a controlling site called exclusive writer and primary site (EW/PS). In

EWL, a transaction updates data in the database optimistically without considering any data

conflict. After the transaction completes, it sends a request for the update to the EW/PS. The

request would be approved and the data update would be permanent i f there is no data

conflict; otherwise, the transaction needs to wait in a queue.

24

PSL controls the access to each file in the database system using a prim ary site (PS),

which also supports transaction execution as an ordinary site. A n update transaction sends a

lock request for a file in the database to PS. PS checks the file status and approves the lock

request if the file is available; otherwise, PS disapproves the lock request, which forces the

transaction to wait in a queue.

AEP dynamically switches between the optimistic and pessimistic protocols if

potential data conflicts are found. A transaction begins with executing the EW L protocol.

When data conflict occurs, AEP switches to the PSL protocol. AEP also uses PS to control

access to a distributed file system like PSL and EWL. AEP maintains a registry to keep track

o f the local active transactions which are incomplete. The registry helps a new transaction in

determining any potential data conflicts. According to this information, AEP performs PSL if

there is a potential conflict; otherwise, it performs EWL, from then on.

Tai et al. [39] state that AEP has three assumptions: 1) “with EW L and AEP, an

access conflict is detected using a method based on sequence numbers” ; 2) “all transactions

are read/write transactions”; and 3) “there is only one file in the database system in question

and the file is replicated at and shared among all the sites” . The operational procedures o f

PSL, EWL, and AEP are similar and can be divided into two steps. First, the prim ary site

gives permission for a transaction to update a file. Second, the transaction checks if there are

any conflicts, and then it decides whether or not to update the file.

The performance o f AEP is discussed by Tai et al. [39] in comparison to PSL and

EWL by varying the transaction inter-arrival times in two different transaction execution

rates. In high transaction execution rates, EW L always outperformed PSL, but in low

25

transaction execution rates, EWL showed little improvement over PSL. However, AEP

always outperformed PSL and EWL.

The adaptive concept o f AEP inspired ASL; however, AEP is not properly

implemented in a real time distributed database environment. Transaction deadlines and time

constraints were discussed, but the implementation o f those variables is not obvious.

Moreover, AEP cannot detect any conflict at a non-local database site.

2.1.4 Speculative Locking

Speculative locking (SL) protocols extend standard 2PL protocols to allow

parallelism among conflicting transactions [40] [7]. The 2PL protocol does not permit an

uncommitted data item to be shared. SL allows any transaction to borrow uncom mitted data

from the conflicting transactions. The borrowing transaction can have access to two versions

o f data: a before image, which is the data before the conflicting transaction updates it, and an

after image, which is the updated data produced by the conflicting transaction. The

borrowing transaction then performs speculative operations on both the before and after

images o f the data. If the conflicting transaction commits, the borrowing transaction retains

the after image o f the data, otherwise it keeps the before image of the data. Therefore,

transaction blocking time is low, making transaction processing faster.

Transaction processing in a database system is shown in (Figure 2.1 [7]). The

notation S; indicates the start o f execution, E; is the completion of execution, Cj is the

completion o f commit processing and Aj is the abortion o f a transaction, Ti. Figure 2.2

illustrates the transaction processing for 2PL, where two transactions, Ti and T2, need access

to the pages X, Y and X, Z, respectively. The transaction T2 needs to wait until transaction Ti

commits and releases the lock on page X.

26

Execution Commit j

5i EEi Cj/Ai
-----------------------►

Time

Figure 2.1: A Transaction Processing [7]

Speculative locking processing is shown in Figure 2.3 taken from [7], Transaction Ti

has locks on pages X and Y. Ti releases the locks just after it completes processing and

creates before and after images o f the data X (Xi) and Y (Yi). T2 requests for locks on X and

gains locks on both X and Xi. T2 starts speculative executions T 21 and T22 right away and

creates after images o f both X and X] which are X 2 and X3. I f T 1 commits then X 3 will

remain, otherwise X2 will remain.

Ti

T2

ri[X] w ^] n[Y] w ^ ,]

r2[X] w 2[X!] r2[Z] w ^]

Time

Figure 2.2: 2PL Processing [7]

T 1: n[X] w ^] r-i[Y] w , ^]
S , I C t

T 2:

T 2i: r2[X] w 2[X2] r2[Z] w 2[Zi]

T22: r2[Xi] w 2[X2] r2[Z] w 2[Z2] e 2 c

T im e

Figure 2.3: SL Processing [7]

27

Lock
Requested

B yT,

Lock Held by Tj

R W

R yes no

W no no

Lock
Requested

By T;

Lock Held by Tj

R EW SPW

R yes no s p y e s

EW sp-yes no s p y e s

(a) (b)

Table 2.1: Lock Compatibility Matrix (a) 2PL and (b) SL [7]

Lock compatibility matrixes for both 2PL and SL are shown in Table 2.1 [7], A

typical 2PL protocol has two types o f locks: read (R) and write (W). A transaction requests a

read lock to read a data item and a write lock to update a data item. On the other hand, to

perform speculative operations, SL has two forms o f write locks: execution-write (EW) and

speculative-write (SPW). An update transaction requests EW locks on the data. W hen the

operation creates an after image, SL converts the EW lock into SPW lock, and the data

becomes available to other transactions.

In SL, the number o f parallel transaction processing increases exponentially as the

level of lending increases. For example, for n number o f transactions, there can be 2n

number o f speculative executions. Therefore, if n transactions conflict, there are 2 n num ber

o f possibilities for termination of the transactions. This version is known as the naive version

and is indicated by SL(n). Due to the high number o f speculative executions, SL suffers from

a higher number o f transaction abortions. To solve this issue, SL introduces some variants to

restrict the number o f speculative executions. These variants are described below:

28

> SL(O): This variant is very optimistic. It assumes that a transaction will abort and

terminate if any prior transactions abort.

> SL(1): In this version, if more than one prior transaction aborts then current

transaction will abort.

> SL(2): In this version, if more than two prior transactions abort then current

transaction will abort.

SL is a faster process than 2PL, because transactions can start executing sooner. SL

opens a new door in concurrency control protocol research. However, a large number o f

speculative executions can occur with SL, causing data contention that degrades the

performance o f the system. All the SL variants assume that memory is unlimited, which

makes them inappropriate for many systems.

2.1.5 A daptive Speculative Locking

Adaptive Speculative Locking (ASL) is based on the SL protocol and follows the

adaptive nature described in the AEP protocol [9] [8]. ASL uses the same underlying

architecture o f SL for transaction processing. However, SL assumes infinite system memory,

which is unrealistic. To remedy this, ASL maximizes the size o f the local buffer and uses a

page-based virtual memory mechanism. This mechanism is a memory management

algorithm that controls allocation and de-allocation o f the memory space. Since SL suffers

from high data contention when the number o f speculative executions explodes, three

variants were introduced, SL(0), SL(1), and SL(2). These variants restrict the number o f

speculative executions depending on the number o f previous transaction aborts. ASL does

not depend on the number o f previously aborted transactions and introduced the following

29

techniques: hyper-threading, memory management including virtual memory, and transaction

queue management [9] [8] for improving performance.

Hyper-threading (HT) is a Simultaneous M ulti-Threading (SMT) technology. HT

utilizes instruction level and thread level parallelism to achieve performance gains.

Therefore, a single physical processor can run concurrent executions o f multiple separate

instructions. In HT, one physical processor has two architectural states. One architectural

state represents a logical processor and can execute an instruction stream. Therefore, one

physical processor can act as two logical processors and can process two concurrent

processes or threads simultaneously. HT shows a 65% performance increase over previous

generation processors. However, HT is application and hardware dependent. ASL exploits

HT by creating a thread for each speculative execution or concurrent process [41].

ASL protocol has a very effective memory management system. It uses two types o f

memory concepts: system cache and virtual memory [9] [8]. The cache is a volatile and

easily accessible storage area, managed by a cache manager, which is used for storing short

term data. On the other hand, virtual memory is a technique that implements an operating

system paging concept to improve limited memory issues, where data are m oved to the

physical disk when the cache is full, as if part o f the cache. A new transaction requires

enough memory space to be reserved either in the cache or in the swap disk before requesting

data from the database. When the transaction has enough space reserved, it reads data from

the disk into the cache, which are then locked by the transaction manager; otherwise, it waits

until enough space is available. The transaction then processes the data and releases the

locks. In memory management systems, a transaction cannot block other transactions until it

locks all required pages in the memory ASL considers all versions of a page as a unique page

30

when they are in the memory or moving back and forth between the memory and the disk.

[9] [8],

ASL protocol shows its adaptive nature by using the transaction queue management

(TQM). Page swapping is an effective way to solve limited memory issues, but it creates

high communication overhead. TQM balances between cache utilization and page swapping.

To improve the cache utilization, TQM holds or releases transactions from the queue

depending on the available space in the system cache. TQM has two parameters: hold level

(HL) and enter level (EL). HL and EL help to determine the available system cache (ASC)

which helps the transaction manager to compute the amount o f total system cache utilization

(TSCU). If TSCU is greater than HL, then the transaction manager does not deliver any

transactions or subsequent transactions to the scheduler, and keeps checking the ASC value.

The transaction manager releases transactions from queue when the ASC value becom es less

than EL. By using the correct configuration o f HL and EL values, TQM helps to minim ize

data contention and maximize the cache use [9] [8].

The performance o f ASL was tested against all variants o f SL by varying cache sizes,

number o f transactions, inter-arrival times, disk sizes, percentage of read/write operations,

and HL and EL values. ASL outperformed SL in all experiments. However, A SL ’s

performance degraded in high load condition [9] [8]. In those experiments, ASL used a static

priority protocol approach which is not effective under all load conditions. Therefore,

performance o f ASL can be improved by switching between priority protocols at run time. In

this thesis, we propose an adaptive priority protocol approach for ASL.

31

2.1.6 Synchronous Speculative Locking Protocol for Read-Only Transactions

Synchronous speculative locking protocol for read-only transactions (SSLR) is based

on the SL protocol [42], Transactions can be divided into two types: read-only transactions

(ROT), which only read data, and update transactions (UT) which modify data. In SSLR, a

ROT can access data items, which are held by a UT and perform speculative executions. On

the other hand, a UT- is not allowed to access data items that are held by a UT and has to

wait until the data items are released.

The lock compatibility matrix for SSLR is shown in Table 2.2 [42], For write locks in

SSLR, if one transaction holds a SPW lock then unlike SL no other transactions can get the

EW lock. There are two types of read locks in SSLR: a read lock for UTs (RU) and a read

lock for ROTs (RR).

Lock
Requested

B yT,

Lock Held by Tj

RR RU EW SPW

RR yes yes no sp_yes

RU yes yes no no

EW no no no no

Table 2.2: Lock compatibility matrix for SSLR [42]

In SSLR, committing o f a ROT does not depend on preceding conflicting transaction

like it does in SL. If the preceding transaction is still uncommitted then the ROT commits

with the before images o f the data items. However, if the preceding transaction commits

before the ROT commits, then the ROT commits with the after images o f the data items. For

example, T2 is a ROT and T 3 is a UT (Figure 2.4). T] is a running UT which produces an

32

after image x t o f data xo. Ti accesses both X] and xo and performs two transactions T2i and

T22- As T2 completes before Ti, T21 will remain. Whereas, as T3 is a UT, it w ill wait until Ti

completes [42],

T,: X i [X q] W, [x ,] q [y0] Wj [y,] i, [p0] w, [p,]

Ta i 2[Xo]r2[Zo]

S T22
c

T3:
time

c

Figure 2.4: SSLR Processing [42]

SSLR not only outperforms other read-only transaction based protocols, but also

improves issues with the correctness o f transactions (serialization) and the data currency

which represents how recently a requested data item was changed. However, when a ROT

completes execution before the preceding UT, and commits before the UT commits, the

order o f transaction executions changes, which might make the system unstable when the

system load changes frequently.

The SSLR has two variants. The first is Asynchronous Speculative Locking Protocol

for ROTs (ASLR) [43] where a ROT can execute asynchronously, reducing the waiting time

o f the speculative transactions. Rather than waiting for the conflicting UT to produce after

images, the ROT is allowed to access available data item versions to carry out speculative

executions. The transaction can start other speculative executions independently based on the

available after images. For example, in Figure 2.5, T 2 is a ROT which is conflicting with a

UT Ti. The speculative transaction T21 o f T 2 can access xo and start speculative executions.

33

W hen transaction T] produces Xi, the speculative transaction T 22 is started. T 2 can commit

when any one o f the speculative transactions complete.

r 1 [Xq] Wi M r i[Pol W,[P|] r 1 [q0] w ,[q,]

s3 c3

time
 : >

Figure 2.5: ASLR Processing [43]

The second variant is Synchronous Speculative Locking Protocol for ROTs

exploiting Semantics (SSLR-S) [44] [45], Parallelism can be improved by using a property o f

ROTs, called “compensatability” that reduces waiting time significantly. In

“compensatability”, when a ROT is in conflict with a UT, a list is created and recorded with

identification numbers o f the UT and the data item modified by UT. In the com mit process,

the ROT reads the update value o f the data item from the transaction log by using

identification numbers. The SSLR-S classifies ROTs into two types: com pensatable ROTs

(CROTs) and non-compensatable ROTs (NCROTs). A CROT is processed without blocking.

When a CROT conflicts with an UT, it shows “compensatability” . However, NCROT

follows synchronous speculation like SSLR. For example, Ti is a CROT and T 2 is an UT.

Here T | conflicts with T2 on data item xo.but it performs a parallel execution with T 2 without

any blocking. When Ti commits, it reads the update value o f xo from the transaction log and

performs a compensation operation.

34

2.2 Switching Between Priority Protocols

This section describes some scheduling algorithms most relevant to our thesis, which

switch between priority protocols during run time. EDF is the m ost used priority protocol in

real time transaction processing. However, EDF does not perform well during high load

conditions. The following methods use EDF under low load conditions, but switch to a

different priority protocol when the system load becomes high.

2.2.1 A daptive E arliest Deadline

Adaptive Earliest Deadline (AED) is an adaptive scheduling algorithm based on a

RTDBS [20]. Under low or moderate resources and data contention, EDF results in the

fewest missed deadlines, but when the load increases gradually, performance o f EDF

degrades abmptly. To improve the performance o f EDF in an overloaded environment, AED

incorporates an adaptive approach using a feedback control mechanism. AED divides the

transactions into two groups named HIT and MISS. Transactions w hich have higher

probability o f meeting deadlines fall into the HIT group. On the other hand, transactions

which are less likely to meet their deadline are categorized as the MISS group. It is always

expected that the transactions that can meet their deadlines should be in the HIT group.

Transactions in the HIT group follow EDF scheduling and transactions in the MISS group

follow random priority (RP) mapping.

To uniquely identify transactions, a randomly generated key is assigned to a new

transaction, which is then used to order a list o f transactions. The position in the list is very

important as it is used to determine the relevant group for the transaction. To determine a

group, the position o f the transaction within the list is compared with a dynamic control

variable, called HITcapacity. The transaction goes to the HIT group if the value o f position is

35

less than or equal to the HITcapacity value, otherwise, it goes to the MISS group. A

feedback process is used to set the value o f the HITcapacity. Initially, a scheduler called the

priority mapper initializes the value o f the HITcapacity. Two parameters, HITbatch and

ALLbatch, are used for computing two ratios called hit ratios, HitRatio(HIT) and

HitRatio(ALL), that make sure only the transactions which can complete are in the HIT

group. HitRatio(HIT) represents the fraction o f transactions in the HIT group that meet their

deadlines. HitRatio(ALL) represents the same measurement in terms of all transactions in the

system. In an ideal case, the HIT group has a HitRatio(ALL) o f 1.0 and the MISS group has

a HitRatio(ALL) o f 0.0. The hit ratios are continuously checked and fed back to the priority

mapper. The hit ratios values help the priority mapper to re-evaluate the H ITcapacity value,

which is an iterative process [2 0].

Haritsa et al. [20] compared the performance o f AED with EDF, random priority

(RP), no priority (NP), and latest deadline (LD). AED performed like EDF during low load

conditions when EDF outperformed all other priority protocols, and performed like RP

during high load conditions when RP outperformed all other priority protocols. Therefore,

EDF or RP performs well in a particular load condition while AED performs well under all

load conditions. They also show that the HitRatio(ALL) for HIT group varied from 1.00 to

0.98 when the system moved from low to high load, whereas, the HitRatio(ALL) for MISS

group varied from 0.0 to 0.1. However, depending on a random number key for determining

the transaction groups might not always be accurate. Moreover, calculating HITcapacity is a

complicated process, which requires prior knowledge o f the transaction characteristics. AED

does not target distributed systems, so its performance in a distributed system is not tested.

36

2.2.2 Sectional Scheduling

Sectional scheduling (SS) is an adaptive approach for transaction scheduling based on

hard real-time systems, which changes behaviour according to the system environm ent [16].

The system environment does not remain constant. It changes as the system evolves, which

makes the real time transactions vulnerable to fail their executions before deadlines. EDF is

the most stable scheduling algorithm in real time systems, but it performs unpredictably

when system characteristics change, especially when the system load changes. SS measures

the current load o f the system and adequately adapts to changes in the system environment.

According to SS, the system load can be partitioned into three cases: normal load,

overload, and serious overload. The load is indicated by p. In normal load or low load (p <=

1), as EDF shows 100% processor utilization, SS uses EDF for transaction scheduling. In

overload conditions (1 < p <= 3), SS uses Deadline/Value First protocol w hich prioritizes

transactions according to their values. A value represents the importance o f a transaction in

relation to other transactions [34], SS has three principles. The first principle is that a

transaction has higher priority if it has an earlier deadline or a larger im portance value than

another transaction. The second principle is if two transactions have the same deadline, the

transaction with the larger importance value will have the higher priority, or if two

transactions have the same importance value, then the transaction with the earlier arrival time

will have the higher priority. Finally, the third principle is if two transactions have the same

importance value and deadline, then the transaction with the earlier arrival tim e w ill have the

higher priority. In serious over load conditions (p > 3), SS follows Highest Value Density

First (HVDF) where a transaction has the highest priority if it has the highest value density.

HVDF is based on the Highest Value First (HVF) algorithm where a transaction has the

37

highest priority if it has the highest importance value. The assumption is that a transaction

has higher priority if it has a higher value density and a lower slack time [16].

SS has an improved version, which is called robust sectional scheduling (RSS), which

is more predictable than SS in overload condition. In this condition, RSS rejects a transaction

with the least value that is affecting the system load. RSS has a recovery mechanism in

which the rejected transactions are stored in a queue, and when the system is idle, RSS

recovers those transactions [16].

Ding and Guo [16] compared SS with EDF, HVF, and HVDF by varying the load o f

the system. SS outperformed all other priority protocols under all load conditions. In

comparison with SS, RSS had a lower number o f missed jobs under high load conditions.

However, SS is not implemented in a DRTDBS where transaction operation type (read or

write) might affect the system load. It is also unclear how changes in system load were

implemented.

2.2.3 Maximum Miss First

Maximum Miss First (MMF) is a non-preemptive scheduling algorithm for soft real

time systems [35]. MMF schedules a transaction by calculating the miss ratio o f the

transaction. Miss ratio is the number o f missed jobs at a certain time divided by the num ber

o f released jobs during that time. The miss ratio o f a transaction tj is defined as [35]:

N^iss (n
M Rj(t) = 1

where A//™55 (t) is the number o f missed jobs o f transaction t; at time t and N?ob (t) is the

number of released jobs o f transaction Tj at time t. The values o f /V;miss (t) and /v /o£>(t) are

zero for a new transaction Tj, but they increase as t j releases jobs.

38

MMF assigns priority to the transaction which has the highest miss ratio. I f two

transactions have the same miss ratio, then M MF uses the EDF priority protocol for

scheduling transactions. W hen the system load is low, the miss ratio is zero; therefore, M M F

acts like EDF, which is preferable under low load conditions. When the load increases

gradually, the miss ratio becomes the key factor for scheduling [35].

Asiaban et al. [35] compared MMF with EDF, gEDF and other similar scheduling

algorithms. MMF showed the same miss ratio for different transactions with different periods

while the other algorithms did not. Therefore, MMF works well for all transactions. M M F

produced a lower number o f consecutive missed jobs in comparison with other algorithms.

MMF also showed better jitter (the maximum time variation between the finishing times o f

any two consecutive jobs that completed successfully). MMF demonstrated the same system

utilization as EDF and gEDF.

MMF does not depend on the execution time o f the transactions which m akes it more

stable. However, if the number o f consecutive missed jobs is high, then M MF can block the

transactions for a long time because o f the high number o f missed attempts. This can cause

transactions to miss their deadlines, which degrades the performance of the system.

2.2.4 G roup-ED F

Group-EDF (gEDF) is a scheduling algorithm designed for non-preemptive soft real

time systems. It uses both Earliest Deadline First (EDF) and Shortest Job First (SJF) to

schedule a transaction in the system [36]. It creates groups o f transactions based on their

deadlines, where deadlines o f the transactions are close to each other. A group in the gEDF

algorithm is created based on a group range parameter, Gr, represented by a percentage

value. If the deadline value o f a transaction falls under the Gr percent of the deadline value o f

39

the current transaction, the transaction is considered to be in the same group as the current

transaction. Groups are scheduled based on the EDF protocol; when the deadlines o f all

transactions in a group are earlier than the deadlines o f all transactions in other groups, then

the first group has higher priority. However, gEDF follows SJF to schedule individual

transactions within a group.

Li et al. [36] studied the performance o f gEDF by varying load tolerance (what extent

a transaction can miss the deadline), the deadline value o f the transactions, the execution

time o f the transactions, etc. gEDF performs like EDF during low load, but performs better

than EDF during high load. The gEDF protocol also outperforms best-effort algorithms

which switch priority protocols according to the system load.

According to Li et al. [36], though gEDF outperforms EDF, it does not guarantee

fairness because it has tendency to favour only small transactions. However, i f we

concentrate in increasing the number o f completed transactions before the deadlines, then

this is a good strategy. Nevertheless, gEDF does not consider distributed real time systems

where a transaction might have a number o f sub-transactions, so grouping o f transactions at

different sites and coordinating between them can be difficult.

2.3 Summary

In a RTDBS, a transaction not only needs to maintain the serialization, but also needs

to complete before the deadline. Traditional CCPs guarantee serialization in transaction

execution, but cannot guarantee meeting deadlines. Again, a RTDBS in a distributed

environment (DRTDBS) needs to consider data availability, system resources availability,

and communication overhead between transactions and sub-transactions. Because o f these

reasons, extending traditional CCPs by using an optimistically lending data technique or

40

adaptively changing the behaviour o f the system according the system state became very

popular in designing a CCP. The ASL protocol adapted both features and proved itself as an

effective CCP in a DRTDBS. However, the performance o f ASL is affected by the system

attributes (i.e. network latency, network topology, priority protocols). Therefore, the

performance o f a system can be improved by finding an optimal solution for these attributes.

Dynamically switching between priority protocols according to the system load is an optimal

solution to improve the system performance. From various solutions presented in this

chapter, we found that if we can quantize the system load, then it is easy to switch between

priority protocols considering the value o f the load. However, none of the solutions targeted

a DRTDBS. Therefore, finding a solution for switching between priority protocols in a

DRTDBS is the focus, and main contribution, o f this thesis.

41

Chapter 3

The Simulator

To analyze the performance o f the ASL protocol in a DRTDBS, a distributed real­

time database model implemented in a distributed real time transaction processing simulator

(DRTTPS) is used. DRTTPS was developed in the parallel and distributed computing

research lab at UNBC. The key features o f DRTTPS are provided in this chapter. A detailed

description of the simulator can be found in [46] [9].

3.1 Distributed Real-Time Transaction Processing Simulator

A model is not a real system, but describes the real system with all necessary

information in a simpler manner. A simulation o f a model describes the workflow o f the

model [47], The discrete event simulation model is a type o f simulation model, where a

representable system only changes its states at discrete points o f time [48]. The continuous

event simulation model is another type o f simulation model, which changes states o f the

system continuously over time. The discrete event simulation model is preferable over the

continuous event simulation model because o f its simplicity [47]. A simulation m odel

requires development o f a software application to implement the workflow o f a real system.

The software application consists o f entities that represent physical elements o f the real

world. The entities interact with each other to perform actions, which represents the

behaviour o f the real system [9]. The software application is called the simulator.

Distributed Real-Time Transaction Processing Simulator (DRTTPS) is a discrete

event simulator that simulates a DRTDBS [46] [9]. DRTTPS is flexible to incorporate new

concurrency control protocols (CCPs) and can be a test bed for analyzing their performance.

DRTTPS also allows other components to be added such as a new priority protocol or new

network architecture. In DRTTPS, events are executed sequentially. A n event can be an

action that a component of a simulator performs during execution. To m aintain the sequence

o f events, they are inserted into a list in the order they need to be executed based on the

event’s execution time. The events are then executed by removing them one by one from the

beginning o f the list to the end by incrementing time. A tick is the unit to measure a discrete

amount o f time in the simulator.

The network configuration in a distributed system is shown in Figure 3.1 [49]. It

consists o f one or more sites where each site has one or more nodes, and each node has one

or more real-time databases. It maintains a local area network between all nodes in a site and

a wide area network between all sites. The system provides virtual routers to each site to

maintain the connection between nodes inside the site or with other sites. It also provides

routing tables to each node, where each routing table contains routes to all conceivable

destination nodes. The destination nodes may be inside the container site or in other sites.

The network connection is very reliable. A failure message is always re-sent to confirm the

arrival o f the message at the destination and the system also updates the routing table during

43

any connection failure or recovery to have an efficient routing path. A network connection

has the following properties:

1. Source: a network connection originating node.

2. Destination: a network connection ending node.

3. Bandwidth: maximum capacity o f a network connection.

4. Latency: the time taken by a message to travel from source to destination.

5. External usage: the percentage o f the bandwidth occupied by external users, if

any. The bandwidth excluding the external usage is considered as the effective

bandwidth o f the system.

site Csite A

network

communication
via network

site B

Figure 3.1: Network configuration [49]

3.1.1 Node Architecture

A node is the core component o f DRTTPS and has the following characteristics:

1. Concurrency Control Protocol: It indicates which CCP is followed by the

transactions in the node.

2. Preemption Protocol: A preemption protocol controls how the transactions are

preempted in the system to avoid priority inversion. The options are described

below:

> High Priority: A transaction which is holding a lock on a data item

can be preempted only if a transaction which requests a lock on the

same data item has higher priority than the lock holding transaction.

> Priority Inheritance: The lower priority lock holding transactions

inherits the priority o f the higher priority waiting transaction to

complete rather than being aborted.

> No preemption: No preemptions will be attempted.

3. Deadlock Resolution Protocol: This protocol defines which transaction will be

aborted if a deadlock occurs. The options are shown below:

> First Deadlock Resolution: A list is generated w ith the transactions

which are involved in a deadlock. First deadlock resolution aborts

the transaction at the top o f the list to resolve the deadlock.

> Priority Deadlock Resolution: Priority deadlock resolution requires

a list of the transactions sorted according to their priority. It aborts

the lowest priority transaction from the list to resolve the deadlock.

4. Priority Protocol: A priority protocol defines the order o f execution o f

transactions, for example EDF, SJF, MSF, and FCFS, as described in Chapter 1.

45

APAP selects one o f the existing priority protocols and switches between them

depending on the load conditions.

5. Max active transactions: It sets the maximum limit on the number o f transactions

that can concurrently run in a node. Excess transactions need to w ait in a queue.

6 . Timeout: It represents the maximum time limit a transaction can be idle during

execution before it is aborted. This time limit helps to resolve distributed

deadlocks by predicting that the transaction is trapped in a deadlock if it exceeds

the time limit.

A node consists o f several hardware and software components: processor manager,

disk manager, buffer, swap disk, and optionally workload generator [46], The processor

manager contains and arranges processors in the node. A processor can use a hyper­

threading technique which allows processing more than one page at a time [46], A processor

has two attributes:

1. Process Time: It indicates the processing time o f a page measured by ticks.

2. Hyper-threading: It represents if the hyper-threading technique is enabled or

disabled in the node. System performance can be analyzed with or w ithout hyper­

threading.

The disk manager arranges disks in a node which store pages. Disks are non-volatile

storage where data can be partitioned or replicated. A disk has two attributes:

1. Access time: It represents the number o f ticks the system takes when it reads or

writes a page from or to the disk.

46

2. Page Range: It represents the number o f pages in that disk. Data partition or

replication can be controlled by page ranges. However, CCPs in DRTTPS are not

designed to handle replicated data.

A buffer is a volatile storage where transactions perform read/write operations on the

pages. A transaction needs to have all requested pages to be loaded to the buffer from the

disk if the buffer has enough space. The buffer has a parameter w hich represents the

maximum number o f pages a buffer can support during read and write operations. If the

buffer does not have enough space, pages must be swapped out to a swap disk. The swap

disk component indicates the physical disk and it contains a parameter, called access time,

which represents the number o f ticks the system requires to swap a page .

A w orkload genera to r is an optional component o f a node, which is used for

generating transactions in the node. It has the following parameters to control the number

and nature o f the transactions:

1. Size: It represents how many transactions are generated.

2. Arrival: It represents the inter-arrival time o f transactions in the system generated

by the workload generator. At a low inter-arrival time, many transactions enter

the system within a short time period which causes more transactions to run

concurrently, resulting in high system load.

3. Slack time: It represents the deadline o f a transaction, as well as the extra time

after the deadline. The range for the baseline experiment has been selected to

represent a deadline which includes a slack o f 2 - 6 times the execution time.

4. W ork size: It represents the number o f pages a transaction m ight access in its

lifetime.

5. Pages: It defines the total number o f pages in the system.

6 . Update: It represents a percentage o f update operations in transaction’s

execution.

3.2 Graphical User Interface

SetupTool is the core o f DRTTPS that allows users to set up and run simulations by

creating site structure, node structure, and network architecture (Figure 3.2). The SetupTool

contains a number o f site components and corresponding parameters, where parameters

control the characteristics of all the site components. A simulation is run using combinations

of specified parameter values. The SetupTool also has a component called variation, which

defines the number o f simulations that can be run at the same time. The SetupTool has two

graphical panels. The left panel shows the site components and the right panel shows

parameter settings o f that particular site component. The SetupTool allows users to save

simulations, where all site components and parameters are encapsulated in a binary image

file. The binary image file is used later to load the simulation. After running a simulation,

another component o f DRTTPS, called ReportTool (Figure 3.3), provides a user interface to

create and save charts showing the results.

48

DRTTPS Setup Tool — Run * 3011 i-M:
Run Simulations | Run Simulations Remotely J \ Set GCO File Y Save^f Output Conf^utaOon J Options | Randomi're Seeds j BuikJ from script .J

^ 3 Site 0 H

j - .
9 a Wodeol

? - C 3 v siiaE ofl C o n ts in e r 0
f C3 Variation 0

Q Workload (Sorter#
C 3 P r o c e s s o r l l a n s g e r 0

o- C3 Oisfc Manager 0

D SuflerO
D Swap DisK 6

o- Node 1
®-C3 Node2

C 3 N o d e 3
o- C3 node 4
o - C 3 M ode 5
* “ C 3 N o d e 6

TTV

Node 0
Concurrency Control Protocol

Type Âdaptors Speculative Locking

. Decision Algorithm

Enters 1150

Preemption Protocol

Typo {Higher Priority Preempts

Priority Protocol-"

Type {Dynamic Priority Protocol

■Priority Protocol""

Type {dynamic Priority Protocol

Priority Protocol

t Deadlock Resolution Protocol

t Type jPrtOftty Deadlock Resolution

Figure 3.2: Simulator SetupTool

f IJrmm&d
m

load

3SM8
tQMocM

t
- Q v a i i a f c n C
- 0 Y a r ia k r .i
- [Y w ife t ie r^

3 S S s O
**C3Ne&WHlcO
<*-C3 HcceO
M 3 H c « t
► G 3 n w e ?
►CD Hoes 3
^ L jH o d s *
► CSHodsS »■ (3 Mods 6

?U€»riCC!TiS;C5d w T̂ s

Q llsan V alu *
Q Maximum Value
Q ttlrnjRiVakiC

'VjriatoiCô aineiO

IfinaJVaJae c l PerceatCom ptetK S o s tim e

;;v/Oafr{«€ daa fcepesaEfc

8.46

6.3'

m'

Vbw Export

VanWn 0

loa d

ru a_ i81 .s e tu p
flja_tW_cftrS5

.itl.stoj
n a . l f i i . s s n .?

i j t n _ 9sm _J

Figure 3.3: Simulator ReportTool

3.3 Software Design:

DRTTPS provides a common pluggable framework for all components. The

components are organized in a hierarchical structure (Figure 3.4 [46]) where all functioning

components are children o f the node module. All children o f same base class have the same

interface for interacting with other modules. There is a base-line CCP which is at the top o f

the CCP inheritance tree, and contains basic functionality. CCP Level II inherits from the

base-line protocol and CCP level III inherits from the CCP level II. All protocols at the same

level with CCP Level II or CCP Level III will have the same physical structure (discussed in

detail in the following subsection).

— 1 EventQueue

SiteComponent

—} CCP Baseline

4 z f
CCP Level 111

—| Processor Manager |

I—| Pro

—| Disk Manager |

4zzi
—} Buffer

Figure 3.4: Simulation class structure [46]

The simulator architecture is flexible to incorporate new protocols w ithout major

modification of the code. An example could be priority protocols. If a new priority protocol

follows the common architecture given by DRTTPS, then the protocol would be easily

recognized by DRTTPS. The discrete event model is implemented by creating a global event

queue which stores all events and exists at top o f the hierarchical class structure. DRTTPS

uses Java reflection [50] to create an event queue, which does not require message passing

50

between classes. Java language was chosen for the development of the simulator for its

versatility, efficiency, and platform portability. For a new event task, a new event object is

created and added to the event queue. The events are executed one by one from the global

event queue.

The performance analysis o f the protocols is executed by a separate class which

keeps track o f any output values in the system. The values are then displayed in graphs in

real-time as the simulation progresses (Figure 3.5). Finally, the ReportTool displays the

statistics associated with the graph. DRTTPS can save or load a simulation for future use by

encapsulating user interface, statistics, parameter setting, graphs etc. in a single object, by

utilizing the serialization technique o f Java language [50].

i-fe] S im u la t io n .

1 3 S ite 0
h" C l N e tw o r k 0

I f “ E 3 P r o c e s s o r M a n a g e r 0
1 9~ EES D Tsk M a n a g e r 0
| I - D W o r k lo a d G e n e r a to r 1

| C l B u tte r o
P t S w a p D i s k 0

E 3 N o d e 1
f - E 3 N o d e 2
f ~ G 3 M o d e 3
f ~ 1 N o d e 4
f - O N o d e 5

N o d e 6

T r a n s a c t i o n s i
'■ -S i te C o m p o n e n t s

Name: Site 0:Node O

Concurrency control protocol: Adaptive Speculative Locking Using Hold at 150%, Enterat 150%

Preemption protocol: Higher Priority Preempts using Earliest Deadline First

Deadlock resolution protocol: Abort Lowest Priority Transaction using Earliest Deadline First

Priority protocol: Earliest Deadline First

Replication protocol: Closest Mode

Max active transactions: 30

Transaction timeout: Constant distribution with value 10OOOO

I E I... *
E v e n t D e s c r ip t i o n

r a n s a c t i o n c r e a t e d in W o r k lo a d G e n e r a to r 1 t r a n s a c t i o n 0
r a n s a c t i o n a r r iv e s t r a n s a c t i o n 0
a r t t r a n s a c t i o n t r a n s a c t i o n 0

S p a w n s u b t r a n s a c t i o n t r a n s a c t i o n 1 :0. S ite 0 : N o d s 5
) 3 w n s u b t r a n s a c t io n t r a n s a c t io n 2 :0 . S ite ff .N o d e 3

p a w n a u b t r a n s a c t i o n t r a n s a c t i o n 3 :0 , S ite 0 : N o d e o
A c c e s s t r a n s a c t i o n 0 , p a g e 5 3 :1 in B u ffe r 0 A c c e s s w a s a m i s s
R e q u e s t a c c e s s r e a d p a g e 5 3 :1 in D is k M a n a g e r O tP isK O

a d y to a c c e s s r e a d p a g e 5 3 :1 in D i s k M a n a g e r Q :D isk 0
e g in a c c e s s r e a d p a g e 5 3 :1 In D i s k M a n a g e r O .P i s K 0
r a n s a c t i o n t r e a t e d in W o r k lo a d G e n e r a to r 1 t r a n s a c t i o n A
a n s a c t i o n a r r iv e s t r a n s a c t i o n 4
a r t t r a n s a c t i o n t r a n s a c t i o n 4

IS p a w n s u b t r a n s a d i o n t r a n s a c t i o n 5 :4 , S ite 0 :N o d e <■

Figure 3.5: A running simulator

51

A bstract
S p ecu la tive Locking Speculative Locking 1

Speculative Locking 2

Adaptive S p ecu la tiv e Locking

Speculative Locking 0

Specu lative Locking
Unlimited

C oncurrency Control

Figure 3.6: Speculative locking protocol dependencies [46]

3.3.1 Concurrency Control Protocols

Figure 3.6 shows speculative locking protocol dependencies in DRTTPS. The

implementation o f a CCP follows a hierarchical order. Concurrency Control is at the top o f

all CCPs’ dependency hierarchies which provides default methods that are com mon to

descendant CCPs. Abstract Speculative Locking inherits Concurrency Control for all default

methods o f CCP and adds other methods with specific speculative locking functionality.

Abstract Speculative Locking provides a generic structure for all speculative locking

protocols. The structure includes common speculative functionalities as well as some distinct

functionality (such as restricting number o f speculative executions). Abstract Speculative

Locking also provides a version tree structure to keep track o f all versions o f a page.

Speculative locking protocols are implemented by inheriting all methods from Concurrency

Control and Abstract Speculative Locking. In addition it adds some extra features, which are

not available in other speculative protocols; for example, ASL adds hyper-threading,

memory management including virtual memory, and transaction queue management

techniques.

52

For a new transaction, the executing CCP checks the required pages on the version

tree to lock the versions of the pages. N ot all versions o f a page will be locked. It depends on

the executing CCP’s page restriction criteria. The CCP sets speculative read or write locks on

the pages and creates a group o f all the locks to keep track o f all locks o f a transaction.

In DRTTPS, a transaction is aborted if it is pre-empted by other transactions or if it

becomes deadlocked. The aborted transaction releases all locks that were obtained or

requested. All versions o f the pages on the speculative tree created by the transaction are

removed and protected for future use. The transaction is then positioned in a queue for future

execution.

In the next chapter, we present our proposed method protocol and demonstrate its

superior performance as compared with other priority protocols.

53

Chapter 4

The Proposed Protocol, Experiments

and Results

This chapter describes our proposed protocol, Adaptive Priority Assignm ent Protocol

(APAP) in detail. This is followed by the presentation o f experiments and results.

4.1 Adaptive Priority Assignment Protocol

Adaptive Priority Assignment Protocol (APAP) is an adaptive protocol for assigning

priority to transactions in order to improve the performance o f a DRTDBS under varying

system loads. A priority assignment protocol is an integral part of transaction processing.

The effect o f this protocol on the overall performance o f the system is greatly impacted by

data contention (number o f users’ requests to a database system at any time) and resource

54

contention (conflict o f access to shared resources). The factors that cause data and resource

contention include inter-arrival times o f transactions, disk size, cache size, number o f

transactions, network topology, number o f physical nodes, and the page update rate.

The performance o f a priority assignment protocol varies with different system

environments; especially with different loads [16]. The system load “fluctuates drastically

from day to day, hour to hour, minute to minute, even second to second” [51]. The load in a

database system can be defined as the demand o f the database system, when a transaction

performs queries and analysis through the DBMS. Moreover, any batch jobs or system

commands can also create a demand [51]. The load can be quantified by the utilization o f the

system, denoted by the following formula taken from [36] [52]:

£/ = EF=1— ---------- 3.1
1 P i

where ej and p; denote elapsed execution time and the total assigned processing time o f

transaction T , , respectively. EDF achieves 100% processor utilization during low load [16].

Conversely, during high load, EDF exhibits a significantly poor performance, thus prompting

selection o f a better priority protocol [53]. The load calculation takes place whenever a new

transaction arrives in the system. We ran the system with different load configurations until

the number o f completed transactions were maximized, and then recorded the load. After

analyzing the performance with different loads, a range was determined for a particular

priority protocol (Table 4.1).

55

Priority Protocol Load Range

EDF O to 1.25

FCFS 2.2 to 2.3

SJF Rest o f the time

Table 4.1: Load ranges for priority protocols

The performance o f MSF protocol is comparatively better under high load than in

low load. However, in high load, SJF has a higher chance to complete a transaction than

MSF because SJF minimizes the idle time o f system during transaction execution. Moreover,

in our experiments, during high load SJF performed better than MSF. Therefore, we did not

use MSF as one o f the options for APAP. FCFS performed the best over a small load range

from 2.2 to 2.3, beyond which the performance o f SJF was superior.

APAP uses the load range to decide which priority protocol to execute. W hen the

system selects a new task it sends a load value to APAP. After getting the load value, APAP

matches the load value with the load ranges recorded in it. If the load falls w ithin the range

o f the currently executing priority protocol then no change happens. If the load falls w ithin a

different range then a switch operation is performed to change the executing priority

assignment protocol to the newly determined priority protocol.

4.1.1 Implementation

We use DRTTPS as a test bed for APAP and use ASL as the underlying concurrency

control protocol. As previously discussed, DRTTPS provides a common architecture to

select the next transaction from a list o f transactions through a priority protocol engine.

When a new transaction arrives in the system, it is placed in a list where it waits until

scheduled. The transaction selection process proceeds as follows: The priority protocol

56

engine receives a request from the system to select a transaction from the waiting list. The

priority protocol engine calculates and sends all the transactions’ values in the list to the

backend comparator, which selects the highest priority transaction (Figure 4.1). The value is

the deadline when the priority protocol is EDF or the execution time when the priority

protocol is SJF. In the case o f EDF, the highest priority transaction will have the earliest

deadline, whereas in the case o f SJF, it will have the lowest execution time. The transaction

with the highest priority is then returned to the system for scheduling. W hile the transactions

are executing, the preempted and/or aborted transactions are added to a priority queue in the

backend comparator for future consideration.

(1) Send list
Priority
Protocol
Engine

(2) Forward list with
transactions’ values Backend

ComparatorSystem

(4) Selected transaction (3) Selected transaction

Figure 4.1: Sequence o f transaction selection process without APAP

When APAP is introduced in DRTTPS architecture, it acts as a mediator between the

system and the priority protocol engine (Figure 4.2). The selection of a transaction from the

list o f transactions waiting to be scheduled proceeds as follows: The APAP engine receives a

load value from the system and determines the most suitable priority protocol based on that

value. This modification ensures the dynamic selection o f the priority protocol. The APAP

engine receives a list o f transactions from the system instead o f the priority protocol engine.

The APAP engine communicates with the priority protocol engine to get the values o f the

transactions in the list and sends the list with the transactions’ values to the backend

57

comparator so that transaction selection can be completed and returned to the system. The

communication between the APAP engine and the priority protocol engine is transparent to

the system, as it only communicates directly with the APAP engine.

(1) L o a d v a l u e

(6) Forward list with
transactions’ values(3) Send list Backend

ComparatorSystem APAP Engine

(7) Selected transaction
(8) Selected transaction

Priority
Protocol
Engine

Figure 4.2: Sequence o f transaction selection process with APAP

In order to minimize the switching operation overhead, APAP only tests load for

switching upon arrival o f a new transaction and not when transactions are pre-em pted and/or

aborted and added to a priority queue. However, it continues acting as a m ediator to add

transactions to the priority queue. The inclusion o f APAP in the DRTTPS does not cause any

overhead to the original workflow o f transaction selection, as APAP simply selects

transactions in the same manner (i.e. using the values for the transactions returned by the

priority protocol engine).

58

4.2 Experiments and Results

In this section, we describe the experiments conducted in this study. For each

experiment, the performance o f APAP was compared with other priority protocols including:

EDF, SJF, FCFS, and MSF (discussed in chapter 1). The key performance metric is the

percentage o f transactions completed on time (PTCT), that is, before the deadlines. In

addition, we observed the switches between the protocols in APAP and present it as the

percentage o f usage (POU) o f priority protocols given a particular system configuration.

4.2.1 Baseline Experim ent

In a DRTDBS, there are many parameters that can change the system load, such as

system resources (cache size, number o f disks), transaction inter-arrival time, slack time,

network topologies etc. In our baseline experiment, we followed the parameter settings given

in Table 4.2. Later we varied these parameters to change the overall system load. For all

experiments, PTCT and POU are measured at a transaction inter-arrival time range o f 5 to 55

ticks, because there was no observable result below or above this range. W e used binary tree

topology for network connections among sites, where a node could have at m ost two child

nodes. We assume bandwidth is unlimited and there is no network latency.

In Figure 4.3, when the transaction inter-arrival time is between 5 and 30 ticks, SJF

demonstrates significantly higher PTCT than EDF and FCFS, because in high load scenarios,

EDF and FCFS protocols suffer from a high number o f transaction aborts. Under heavy load,

EDF performs worse than the other protocols until an inter-arrival time o f 40 ticks. Beyond

this point, the transactions have enough time to complete and EDF climbs to 100%

completion rate. APAP performs better than all tested protocols by switching between the

priority protocols.

59

Parameter
Type Parameter Value

Network
Network Topology Binary Tree

Bandwidth 1 0 0 0 bit/tick
Network Pipe Latency 0

Node

Active Transaction
Count

30

Disk Count per Node 2

M aximum Pages Held
per Disk 1 0 0

Disk Access Time 35 ticks
Cache Size 2 0

Swap Disk Access
Time

35 ticks

Transaction Process
Time 15 ticks

Transaction
Generator

Pages per Transaction 4-12 pages
Slack Time 720-2160

Inter-arrival time 5-55 ticks
Page Update Rate 1 0 0 percent
Transaction Count 1 0 0

Table 4.2: Parameter Settings

100

h-ui- 50
a .

40

30

10 15 20 25 30 35 40 45 50 55

■ E D F

- S J F

- * - F C F S

— M S F

— " SS S—— A P A P

In te r-a rriv a l tim e

Figure 4.3: PTCT for the Baseline Experiment

Figure 4.4 shows the POUs o f priority protocols in APAP for the baseline

experiment. When the inter-arrival time o f the system is between 5 and 20 ticks, the system

usually runs with SJF because o f its superior performance during that time. W hen the inter­

arrival time o f the system increases, the load condition o f the system decreases. Thus, APAP

increases the usage o f EDF, rather than SJF. The inter-arrival time between 20-30 ticks

shows a transition period during which each o f the two protocols is used approxim ately 50%

o f the time. The usage then becomes more distinct in favour o f EDF due to decreased system

load. APAP follows FCFS during the inter-arrival times o f 5 to 10 ticks and 15 to 30 ticks,

with POUs up to 2.4% and 3.8%, respectively.

61

3o
a .

100
90

80

70

60

50

40

30

20

10

0

10 15 20 25 30 35 40

In te r-a rriv a l tim e

E D F

S J F

F C F S

45 50 55

Figure 4.4: POU for the Baseline Experiment

4.2.2 Performance of APAP varying the transaction load

More transactions means more data conflicts and more speculative executions, which

increase the system load. We used the parameter settings in Table 4.2, except we increased

the number o f transactions to 200. As a large number o f transactions are executed, data

contention and resource contention also increase, resulting in a large number o f transaction

rejections. Therefore, the performance o f all priority protocols, including APAP, degrade.

Figure 4.5 shows the PTCT for all protocols for this experiment. APAP continues to exhibit

superior performance overall.

62

100

so
70

50
CL

40

30

25 40 45 50 555

— ® — E D F

— E S — S J F

— — F C F S

- * - M S F

— s e — A P A P

In te r-a rriva l tim e

Figure 4.5: PTCT for 200 transactions

The POUs o f all protocols with 200 transactions are shown in Figure 4.6. It is clear

that APAP runs SJF for more time than the baseline experiment. The FCFS is used during

the inter-arrival time ranges from 5 to 15 ticks (maximum 4% POU) and 20 to 30 ticks

(maximum 2.2% POU).

o
a .

100

90

80

70

60

50

40

30

20

10
0

10 15 20 25 30 35 40

In te r-a rriv a l tim e

45 50 55

- E D F

- S J F

- t 2 t - F C F S

Figure 4.6: POU for 200 transactions

63

4.2.3 Performance of APAP with reduced page update rate

Page update rate is an important factor in transaction processing and indicates the

percentage o f write operations in a transaction execution. The write operations use exclusive

locks on the data, thus blocking other transactions from accessing that data for a certain time.

This blocking time increases the transaction execution time. Consequently, a high or low

page update rate affects the system load. W e show results from two experiments in this

section. In the first experiment, we changed the page update rate to 0 which represents a

read-only scenario.

ut-
Q .

100

90

80

70

60

50

40

30

20

10

0
15 20 40

— <3>— E D F

— B — S J F

— Ufar" * F C F S

— X — M S F

— J i e - A P A P

In te r-a rriv a l tim e

Figure 4.7: PTCT for the zero page update rate

From Figure 4.7, EDF demonstrates maximum PTCT at inter-arrival times o f 5 and

10 ticks, because there is no data conflict and thus no blockage o f transactions. SJF exhibits

higher PTCT than in the baseline experiment, but in comparison to other protocols, this is a

poor performance. APAP demonstrates 6.9% less PTCT than EDF at inter-arrival time o f 5

ticks. However, when the system runs with an inter-arrival time o f more than 10 ticks, APAP

64

outperforms all priority protocols and achieves PTCT o f 100% before EDF. Figure 4.8 shows

that APAP runs mostly with SJF until an inter-arrival time o f 15 ticks. During that period, the

usage o f SFJ varied from 85.2% to 76.1%, the usage o f EDF increases from 13.8% to 20.3%,

and the usage o f FCFS varies from 1% to 5%. When the inter-arrival time is more than 25

ticks, APAP only uses EDF because it shows 100% efficiency during that period.

3o
Q .

100

90

80

70

60

50

40

30

20

10

0

— ❖ — E D F

— g § — S J F

— s f e — F C F S

10 15 20 25 30 35 40

In te r-a rriva l tim e

45 50 55

Figure 4.8: POU for the zero page update rate

Next, we changed the page update rate 50 percent which implies that half o f the pages

accessed are also modified (Figure 4.9). The system load is higher in this case than that o f

the zero page update rate in the previous experiment. Due to this higher load, EDF performs

more poorly during the low inter-arrival times. However, during the high inter-arrival times,

EDF outperforms SJF, MSF, and FCFS. APAP exploits all the priority protocols and

consistently performs better than the other protocols except when the inter-arrival time is 20

and 25 ticks. At these inter-arrival times, EDF exhibits a PTCT of 3.1% and 4.5% greater

65

than APAP while transitioning from high to low system load. Beyond inter-arrival time o f 30

ticks, APAP performs the same as EDF at 100% PTCT.

u
Q .

100

90

80

70

60

50

40

30

20

10

0
20 25 30 35 40 45 50 55

— E D F

— ® — S J F

- * r - F C F S

M S F

— A P A P

In te r-a rriva l tim e

Figure 4.9: PTCT for the 50 percent page update rate

The POU o f APAP for the page update rate o f 50 percent is shown in Figure 4.10.

During the low inter-arrival times and high system load, APAP runs SJF frequently until an

inter-arrival time o f 25 ticks. The POU o f SJF and EDF is 83.52% and 14.8%, respectively,

at the 5-tick inter-arrival time. After that, the usage o f SJF gradually decreases and that o f

EDF gradually increases with a crossover point at 25 ticks. The POU o f FCFS remains low

varying from 0 to 5.35%. APAP only uses EDF beyond the inter-arrival time o f 40 ticks.

66

o
CL

100
90

80

70

60

50

40

30

20

10

0

- ♦ - E D F

- • - S J F

- A - F C F S

10 15 20 25 30 35 40 45 50 55

In te r-a rriv a l tim e

Figure 4.10: POU for the 50 percent page update rate

4.2.4 Performance of APAP with larger cache size

In this experiment, we study the effect o f cache size on APAP and other protocols.

Cache size is important to the performance o f the ASL protocol because it must find space

available in the cache or swap disk before it requests a page from the database. I f there is not

enough space, then the transaction needs to wait. Therefore, cache size affects the system

load. When the cache size was increased from 20 to 50 pages (Figure 4.11), the PTCT o f all

the priority protocols improve because o f the larger memory. The PTCT o f SJF increases

linearly, unlike the baseline experiment which has a drop in PTCT at the 40-tick inter-arrival

time. The PTCT for MSF improves 4.45% on average. FCFS has a maximum 20.8% jum p at

the 30-tick inter-arrival time from the baseline experiment. EDF displays a large increase o f

PTCT at 35 ticks and outperforms all other protocols. APAP is exceeded by EDF slightly

(3.4%) at 35 ticks, but attains a PTCT o f 100% at 40 ticks with EDF.

67

100
90

70

60h-OI- 50
CL

40

20

10 15 20 25 30 35 40 45 50 55

In te r-a rriva l tim e

- ♦ - E D F

— ■ — S J F

—&r~ F C F S

- * - M S F

— ^ — A P A P

Figure 4.11: PTCT for 50 pages cache size

100

90

80

70

60
uo
Q l

40

20
10

5 10 15 20 25 30 35 40 45 50 55

In te r-a rriv a l tim e

Figure 4.12: POU for 50 pages cache size

Figure 4.12 indicates that the POU o f SJF varies from 84.3% to 92.4% until an inter­

arrival time o f 30 ticks. The POU o f EDF varies from 5.6% to 11.7% until 30 ticks. FCFS

has maximum 5.34% POU at 30 ticks. W hen the PTCT o f EDF increases sharply at 35 ticks

during the transition from high to low system load, the POU o f EDF also increases to 48% at

68

35 ticks. Afterwards, the POU of EDF gradually reaches 100% at an inter-arrival time o f 50

ticks.

W hen we increased the cache size to 100 pages, the performance for all protocols was

observed to be almost the same as the performance with a memory size o f 50 pages.

4.2.5 Performance of APAP with increased slack time

An increase in slack time relaxes the deadlines and allows enough tim e for a

transaction to complete. W hen the slack time o f the system was increased to 720-3600 ticks,

the PTCT o f all priority protocols improved (Figure 4.13), since the system now had enough

time to execute all transactions. All priority protocols have a PTCT between 30% and 50%

when the inter-arrival time is at 5 ticks. As the inter-arrival time increases, the performance

o f all protocols also improves. EDF outperforms SJF at the 20-tick inter-arrival time, earlier

than the baseline experiment. FCFS shows 11.4% and 14.5% more PTCT than EDF during

the inter-arrival times o f 5 and 10 ticks. However, after 15 ticks FCFS is outperformed by

EDF. MSF performed the same as in the baseline experiment, indicating that it is not affected

by the increased slack time.

69

100
90

80

i—ui- 50

40

10 15 20 25 30 35 40 45 50 55

- ■ - E D F

—A—SJF

—H— FCFS

—* — APAP

—©— MSF

In te r-a rriv a l tim e

Figure 4.13: PTCT for the 720-3600 ticks slack time

One noticeable finding is the performance of the protocols increase rapidly until the

20-tick inter-arrival time, after which it increases slowly. APAP outperforms all protocols

under all load conditions.

Figure 4.14 shows the POUs o f the priority protocols in APAP for slack time o f 720-

3600 ticks. The POUs o f SJF and EDF in APAP at the inter-arrival time o f 5 ticks are now

closer, at 30% and 70%. The POUs then change quickly with the POU o f EDF becom ing

greater than that o f SJF after an inter-arrival time o f 15 ticks. As the PTCT o f EDF slowly

increases to 100%, the POU of EDF also slowly goes up to 100%. In APAP the POU o f

FCFS is up to 4.3% between the inter-arrival times o f 5 and 20 ticks. FCFS is also used in

the inter-arrival times between 20 and 30 ticks, but only with a POU of 1%.

70

DO
Q .

100

90

80

70

60

50

40

30

20

10

0

—#— EDF

- ■ - S J F

- 6 - FCFS

10 15 20 25 30 35 40 45 50 55

In te r-a rriva l tim e

Figure 4.14: POU for the 720-3600 ticks slack time

4.2.6 Effects of system disk space on the performance of APAP

In this experiment, we study the effect o f system disk space on the performance o f

APAP and other protocols. The number o f disks affects the data availability for a transaction

during execution. If we increase the number o f disks, a transaction has a high probability o f

getting required data in the local disk, which reduces the blocking and execution tim es o f the

transaction. Therefore, the number o f disks affects the system load. We increased the num ber

o f disks from 2 to 4 for this experiment. Because of the increase in resources, there is a large

change in the PTCTs o f all protocols over the baseline experiment (Figure 4.15). However,

during low load when the inter-arrival time is between 5 and 10 ticks, SJF outperforms EDF,

FCFS, and MSF. After 10 ticks, the performance curve o f EDF shows a steep rise confirm ing

its superior performance during low load. FCFS and M SF always perform close to each other

and surpass SJF after 10 ticks. APAP outperforms all priority protocols under most load

conditions, except an inter-arrival time o f 20 ticks where EDF performs slightly (4%) better.

71

100
90

60
ui-
Q .

- ♦ - E D F

—• —SJF

—&— FCFS

—X— MSF

—it*— APAP

5 10 15 20 25 30 35 40 45 50 55

In te r-a rriv a l tim e

Figure 4.15: PTCT for 4 disks

The POUs o f EDF and SJF at lower inter-arrival times (5 to 10 ticks) are at 37.6%

and 56.5%, respectively (Figure 4.16). As the system is a suitable environm ent for EDF

when the inter-arrival time is more than 10 ticks, APAP gradually switches to using EDF

more than SJF. After 30 ticks, APAP only runs EDF. APAP also uses FCFS 5.85% at the

inter-arrival time o f 5 ticks, which gradually levels to around 1% between 15 and 20 ticks

before going to zero at 25 ticks.

72

3Oa.

100
90

80

70

60

50

40

30

20
10

0
5 10 15 20 25 30 35 40 45 50 55

—-O -E D F

—O—SJF

- tS— FCFS

In te r-a rriva l tim e

Figure 4.16: POU for 4 disks

4.2.7 Effect of system distribution on the performance of APAP

An increase in the number o f nodes in a DRTDBS increases data availability and load

distribution. Therefore, it reduces the overall system load. In the first experiment, we

changed the number o f nodes from 7 to 11 (Figure 4.17). Due to the high data locality, the

PTCT for EDF is now almost same as SJF even at an inter-arrival time o f 5 ticks. However,

the performance o f EDF does not increase at a high rate when the inter-arrival time is more

than 5 ticks. FCFS shows 7.7% more PTCT than EDF at an inter-arrival time 20 ticks. M SF

exhibits the lowest PTCT until the 15-tick inter-arrival time after which it performs close to

SJF. In fact, MSF performs the same as it did in the baseline experiment, because slack time

does not improve by increasing the number o f nodes. APAP continues to outperform all

other priority protocols.

73

100

80

70

i— u t-
CL

50

40

35 40 45 50 55

—♦ — EDF

SJF

—•*— FCFS

—-X— MSF

— APAP

In te r-a rriva l tim e

Figure 4.17: PTCT for 11 nodes

3oa.

100

90

80

70

60

50

40

30

20

10

0 1------------1 — i— A — i— — r~ B — i— 0 — i— Q —i

5 10 15 20 25 30 35 40 45 50 55

—❖— EDF

—B — SJF

—■A—FCFS

In te r-a rriv a l tim e

Figure 4.18: POU for 11 nodes

Figure 4.18 indicates that the POU o f SJF decreases from 73.4% to 66.5% during the

inter-arrival times between 5 and 10 ticks, whereas the POU o f EDF increases from 23.2% to

28.6% during the same period. After that, the POUs o f SJF and EDF remain more or less flat,

until the inter-arrival time o f 20 ticks when APAP clearly shows preference for EDF over

74

other priority protocols. The POU of FCFS increases to 4.9% at 10 ticks, then decreases

gradually until it becomes zero at 35 ticks.

100

90

80

60
h-uH-
o .

50

40

5 10 15 20 25 30 35 40 45 50 55

In te r-a rriva l tim e

EDF

SJF

tSt-FCFS

■X— APAP

* - M S F

Figure 4.19: PTCT for 15 nodes

Figure 4.19 shows performance results when the number o f nodes was further

increased to 15. Since there is high data locality, EDF surpasses SJF, MSF, and FCFS

consistently, and achieves a PTCT o f 100% at the inter-arrival time of 15 ticks. APAP shows

8.23% more PTCT than EDF at 5 ticks, but 2% and 2.3% less PTCT than EDF at 10 and 15

ticks, respectively. Hereafter, APAP attains 100% of PTCT.

Because o f the superior performance o f EDF, APAP prefers EDF over SJF from the

beginning which proves the adaptive nature o f APAP (Figure 4.20).

75

100

80

3o
CL

40

-EDF

-SJF

-FCFS

10 15 20 25 30 35 40

In te r-a rriv a l tim e

45 50 55

Figure 4.20: POU for 15 nodes

4.2.8 Effect of increasing the number of processors

In this experiment, we study the effect o f more than one processor in a node on

APAP. We increased the number o f processors from 1 to 2, and no significant improvement

in performance was observed for any o f the protocols including APAP (Figure 4.21). It

should be noted that the number o f processors is not the real bottleneck in our experiments.

As we discussed, the performance o f the protocols is greatly affected by the page update rate,

cache size, slack time etc.; increasing the number o f processors does not affect the

performance o f priority protocols. The PTCT o f APAP increases to a m aximum o f 5.7% at

the 20-tick inter-arrival time over the single processor experiment. The m aximum increase

for EDF is 5.9% at the 35-tick inter-arrival time and 4.6% for SJF at 40 ticks.

The POUs in Figure 4.22 for two processors are visibly different than the single

processor, because slight performance changes o f the protocols increase the usage o f EDF at

the inter-arrival times from 5 to 10 ticks and decrease the POU at the inter-arrival time o f 20

ticks.

76

100

CL

40

15 20 25 35 40 45 50 55

- ♦ — EDF

- • - S J F

-sSr-FCFS

-K — MSF

APAP

In te r-a rriv a l tim e

Figure 4.21: PTCT for 2 processors

100

Z3Oa.
40

5 10 15 20 25 30 35 40 45 50 55

In ter-arriva l tim e

Figure 4.22: POU for 2 processors

4.2.9 Effect of network topologies on the performance of APAP

Network topologies affect the performance o f ASL protocol [54]. In order to study

this with APAP, that is, using dynamic switching between priority protocols, we changed the

77

network topology from binary tree to 2D-Torus using 16 nodes. Due to the high data locality,

all priority protocols perform better than the baseline experiment with 7 and 15 nodes. Here

SJF and FCFS perform close to each other and better than EDF when the inter-arrival time is

between 5 and 10 ticks (Figure 4.23). However, EDF outperforms SJF, M SF, and FCFS

priority protocols when the inter-arrival time is more than 10 ticks and the system load is

low. APAP demonstrates the maximum PTCT consistently.

As shown on Figure 4.24, between the inter-arrival times of 5 and 10 ticks, APAP

performs with SJF around 75%-70% and with EDF around 25%-20%. After the inter-arrival

time o f 10 ticks, the POU of SJF decreases and the POU o f EDF increases rapidly until it is

used 100% by APAP at the inter-arrival time o f 25 ticks. The POU o f FCFS increases to

7.9% at the inter-arrival time o f 10 ticks and goes back to zero at 15 ticks. W e get similar

results for 2D-Mesh, Hypercube-4, and ring topologies.

78

£a

100
90

80

70

60

50

40

30

20

10

0

EDF

—81— SJF

—£t— FCFS

—X— APAP

-M SF

5 10 15 20 25 30 35 40 45 50 55

In te r-a rriv a l tim e

Figure 4.23: PTCT for the 2D-torus network topology

3o
a .

100

90

80

70

60

50

40

30

20

10

0 T—f l —i—S —r—t 3 " I" B —i

♦ — EDF

SJF

FCFS

10 15 20 25 30 35 40 45 50 55

In te r-a rriv a l tim e

Figure 4.24: POU for the 2D-torus network topology

4.3 Summary

> APAP outperformed all priority protocols especially in high load conditions.

However, in some low load conditions EDF completed 2% to 6% more

transactions than APAP.

79

> A change in the page update rates from 100% to 0%, disk size 2 to 4, and the

number of nodes from 7 to 15 greatly improved the performance o f all priority

protocols.

> An increase in the number o f processors from one to two in each node and the

cache size from 50 to 100 did not have a significant effect on the performance o f

any priority protocol.

> The network topologies we tested had similar effect on all priority protocols.

> W hen the inter-arrival time was increased, the POU of EDF increased, and

always reached 100%.

80

Chapter 5

Conclusion

CCPs ensure consistency o f a database when multiple transactions request the same

data in a database. In a distributed environment, CCPs also need to coordinate between

transactions and their sub-transactions, which execute at different sites. The ASL protocol is

a CCP for a DRTDBS which follows the underlying structure o f Speculative Locking (SL)

protocols as well as provides additional features (discussed in Chapter 2). ASL outperformed

SLs, but its performance degrades when the system is in a high load condition [9],

A database system uses priority protocols when a CCP coordinates transaction

processing to order transactions. EDF is an optimal priority protocol for ordering transactions

in a database system. However, ED F’s performance also degrades in high load conditions.

On the other hand, some other priority protocols (such as SJF) perform better than EDF in

such conditions. A common trend to optimize the performance of priority protocols is

dynamically changing from one to another according to the system load conditions.

However, the existing solutions are not amenable to a DRTDBS.

Our proposed method, Adaptive Priority Assignment Protocol (APAP), improved the

performance of a CCP to a large extent in a DRTDBS under all load conditions. APAP

switches between the priority protocols according to the system load using a load range table

81

which contains load values where a given priority protocol is expected to perform better.

This is done at run time. The ASL protocol is used as the underlying CCP for all o f our

experiments. We observed ASL’s improved performance by varying the num ber o f

transactions, cache sizes, number o f processors, page update rates, num ber o f disks, and

network topologies. APAP outperformed all priority protocols in most conditions. In some

low load conditions, when the inter-arrival time varied, EDF exhibited 2% to 6% more

completed transactions than APAP.

We can summarize the observations in the following way:

1. APAP yields an overall superior performance when system load is high.

2. Longer slack time and more resources (more disks nodes, or cache size) decrease

the system load, improving performance o f all priority protocols. However,

increasing cache size beyond a certain value does not further improve the

performance o f priority protocols.

3. In some low load conditions, EDF performs slightly better than APAP. However,

any improvement attempt in these load conditions degrades the overall

performance of APAP. Therefore, the fact that EDF outperformed APAP is

considered as a limitation o f APAP and can be considered negligible.

As APAP switches between priority protocols according to the system load, we also

observed the percentage of usage (POU) o f the priority protocols in APAP. The POU charts

indicate that:

1. APAP uses mostly SJF when the system load is high.

2. When the system load decreases, APAP increases the use of EDF.

82

5.1 Future Work

We found that changing priority protocols at run time improves the performance o f a

CCP in real-time distributed database systems. However, in this research, we assumed that

there exists a single workload generator. In a practical application, transactions can be

generated at more than one node. Therefore, we can further our research by testing the

performance o f APAP under multiple workload generators. Another area o f improvement

would be the use o f replicated databases. They improve the performance o f a transaction

processing system by increasing data locality where a data item has one or more copies at

different nodes. However, the test bed o f this research, DRTTPS, is not designed to handle

replicated databases. We can modify DRTTPS for this scenario and test the perform ance o f

APAP. Finally, a real-time distributed system is also susceptible to failure. In our

experiments, the DRTTPS was not built as a fault tolerant system which continues to

function even when some components fail. Therefore, we can test how APAP performs in

such an environment.

83

Bibliography
[1] U. Shanker, M. Misra and A. K. Saije, "Distributed real time database system: background and

literature review," Distributed and Parallel Databases, vol. 23, pp. 127-149, January 2008.

[2] P. A. Bernstein and . E. Newcomer, Principles of transaction processing (Second Edition), San
Francisco, California: Morgan Kaufmann Publishers, Inc., 2009.

[3] B. Kao and H. Garcia-Molina, "An Overview of Real-Time Database Systems," in proceedings
o f NATO Advanced Study Institute on Real-Time Computing, St. Maarten, Netherlands., 1992,
pp. 463-486.

[4] A. Buchmann, "Real-Time Databases," Encyclopedia o f database technologies and applicatios
, pp. 524-529, 2005.

[5] C. F. Yeung and S. L. Hung, "A new deadlock detection algorithms for distributed real-time
database system.," in 14th Sysmposium on Reliable Distributed System., Bad Neuenahr, 1995,
pp. 146-153.

[6] P. A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in
Database Systems, M. A. Harrison, Ed., Manlo Park, California: Addison-Wesley Publishing
Company, 1987, pp. 265-304.

[7] P. K. Reddy and Kitsuregawa, Masaru, "Speculative Locking Protocols to Improve
Performance for Distributed Database Systems," IEEE Trans, on Knowl. and Data Eng., vol.
16, pp. 154-169, February 2004.

[8] W. Haque and P. R. Stokes, "Adaptive speculative locking protocol for distributed real-time
database system," in Procedings o f the 19 th IASTED Interntional Conference on Parallel and
Distributed Computing and Systems, Cambridge, Massachusetts, 2007, pp. 382-390.

[9] P. R. Stokes, Design and Simulation of an Adaptive Concurrency Control Protocol for
Distributed Real-Time Database System, Prince George, Canada: Master's Thesis,University of
Northern British Columbia, 2007.

[10] O. Ulusoy, "Distributed Concurrency Control," in Real-time database systems: architecture
and techniques, Norwel, Massachusetts 02061, USA, Kluwer Academic Publishers, 2001, pp.
205-215.

[11] D. Agrawal, A. El Abbadi and R. Jeffers, "Using delayed commitment in locking protocols for
real-time databases," in Proceedings o f the 1992 ACM SIGMOD international conference on
Management o f data, San Diego, California, USA, 1992, pp. 104-113.

[12] A. E. Abbadi and S. Toueg, "Availability in partitioned replicated databases," in Proceedings
of the fifth ACM SIGACT-SIGMOD symposium on Principles o f database systems, Cambridge,
Massachusetts, United States, 1986, pp. 240-251.

[13] K. Ramamritham, "Real-Time Databases," International Journal o f Distributed and Parallel
Databases, vol. l,pp. 199-226, 1996.

[14] R. Obermacrk, "Disctributed Deadlock Detection Agorithm," ACM Transactions on Database
System, vol. 7, pp. 187-208, 1982.

84

[15] M. Singhal, "Deadlock Detection in Distributed Systems," Computer, vol. 22, no. 11, pp. 37-
48, 1989.

[16] W. Ding and R. Guo, "Design and Evaluation of Sectional Real-Time Scheduling Algorithms
Based on System Load," in The 9th International Conference for Young Computer Scientists,
Hunan, 2008, pp. 14-18.

[17] D. Levine, C. Gill and D. Schmidt, "Dynamic Scheduling Strategies for Avionics Mission
Computing," in Digital Avionics Systems Conference, Bellevue, W A, USA, 1998, pp. 1-8.

[18] L. Gruenwald, M. Montealegre and C. N. Lau, "Performance Comparison of Scheduling
Techniques to Manage Transactions for Real-Time Mobile Databases in Ad Hoc Networks," in
http://paginas.usco.edu.co/proyeccion/Documentos/entornos/entornos20/ArticuloMatildeMont
ealegre.pdf.

[19] [Online]. Available: http://www.personal.kent.edu/~rmuhamma/OpSystems/os.html.

[20] J. R. Haritsa, M. Livny and M. J. Carey, "Earliest Deadline Scheduling for Real-Time
Database Systems.," in in Proc. IEEE Real-Time Systems Symposium, San Antonio, TX , USA,
1991, pp. 232-243.

[21] K. W. Lam and S. L. Hung, "A pre-emptive transaction scheduling protocol for controlling
priority inversion," in Third International Workshop on Real-Time Computing Systems and
Applications, Seoul, 1996, pp. 144 - 151.

[22] L. sha, R. Ragunathan and L. John, "Priority Inheritance Protocols: An approach to Real-Time
Synchronization," IEEE transaction on Computers, vol. 39, pp. 1175-1185, September 1990.

[23] Y. S. Philip ,. K.-l. Wu , K.-j. Lin and S. H. Sang , "On real-time databases: Concurrency
control and scheduling," Proceedings o f the IEEE, pp. 140-157, 1994.

[24] Z. Kedem and A. Silberschatz, "Controlling concurrency using locking protocols," in 20th
Annual Symposium on Foundations o f Computer Science, San Juan, Puerto Rico, 1979, pp. 274
-285.

[25] Z. M. Kedem and A. Silberschatz, "Locking Protocols: From Exclusive to Shared Locks,"
Journal o f the ACM (JACM), vol. 30, no. 4, pp. 787-804, Oct 1983.

[26] D. Skeen, "Nonblocking commit protocols," in Proceedings o f the 1981 ACM SIGMOD
international conference on Management o f data, Ann Arbor, Michigan, 1981, pp. 133-142.

[27] R. Gupta, H. Jayant and K. Ramamritham, "Revisiting Commit Processing in Distributed
Database Systems," Proceedings o f the 1997 ACM SIGMOD international conference on
Management o f data, vol. 26, no. 2, pp. 486-497, 1997.

[28] Y. Al-Houmaily, P. K. Chrysanthis and S. P. Levitan, "An argument in favor of the presumed
commitprotocol.," in Proceedings o f the IEEE International Conference on Data Engineering,
Birmingham, 1997, pp. 255--265.

[29] J. R. Haritsa and K. Ramamritham, "Adding PEP to real-time distributed commit processing,"
in Procedings o f the 21st IEEE Real-time Systems Symposiums, Orlando, USA, 2000, pp. 37-
46.

[30] M. Abdallah, R. Guerraoui and P. Pucheral, "One-Phase Commit :Does It Make Sense ?," in
Procedings o f the International Conference on Parallel and Distributed Systems, Tainan,

85

http://paginas.usco.edu.co/proyeccion/Documentos/entornos/entornos20/ArticuloMatildeMont
http://www.personal.kent.edu/~rmuhamma/OpSystems/os.html

Taiwan, 1998, pp. 14-16.

[31] M. Atif, "Analysis and Verification of Two-Phase Commit & Three-Phase Commit Protocols,"
in International Conference on Emerging Technologies, 2009, pp. 326 -331.

[32] P. A. Bernstein and N. Goodman , "Concurrency Control in Distributed Database Systems,"
ACM Comput. Surv., vol. 13, no. 2, pp. 185-221, 1981.

[33] L. Sha, R. Rajkumar and J. P. Lehoczky, "Concurrency Control for Distributed Real-Time
Databases," SIGMOD RECORD, vol. 17, pp. 82-98, March 1988.

[34] G. Buttazzo, M. Spuri and F. Sensini, "Value vs. Deadline Scheduling in Overload
Conditions," in Procedings o f the 16th IEEE Real-Time Systems Symposium, Pisa, Italy, 1995,
pp. 90-99.

[35] S. Asiaban, M. E. Moghaddam and M. Abbaspur, "A Real-Time Scheduling Algorithm for
Soft Periodic Tasks," JDCTA: International Journal o f Digital Content Technology and its
Applications, vol. 3, pp. 100-111, 2009.

[36] W. Li, K. Kavi and R. Akl, "A non-preemptive scheduling algorithm for soft real-time
systems," Computers and Electrical Engineering, vol. 33, no. 1, pp. 12-29, Januray 2007.

[37] J. R. Haritsa, K. Ramamritham and G. Ramesh, "The PROMPT real-time commit protocol,"
IEEE Transactions on Parallel and Distributed Systems, vol. 11, no. 2, pp. 160-181, 2000.

[38] M. Abdallah and P. Pucheral, "A Non-Blocking Single-Phase Commit Protocol for Rigorous
Participants," in In Proceedings o f the National Conference Bases de Donnes Avances,
Grenoble, France, 1997.

[39] A. T. Tai and J. F. Meyer, "Performability Management in Distributed Database Systems: An
Adaptive Concurrency Control Protocol," in Proceedings o f the 4th International Workshop on
Modeling, Analysis, and Simulation o f Computer and Telecommunications Systems, San Jose,
C A , USA, 1996, pp. 212-216.

[40] P. K. Reddy and M. Kitsuregawa, "Improve performance in distributed database systems using
speculative transaction processing," in Second IASTED European Parallel and Distributed
Systems Conference, Vienna, Austria, 1998, p. 275— 285.

[41] T. Marr and et al., "Hyper-threading technology architecture and microarchitecture," Intel
Technology Journal, vol. 6, pp. 4-15, 2002.

[42] T. Ragunathan and P. K. Reddy, "Performance enhancement of Read-only transactions using
speculative locking protocol," in Sixth Annual Inter Research Institute Student Seminar in
Computer Science (IRISS 2007), Hyderabad, India, 2007.

[43] T. Ragunathan and P. K. Reddy, "Improving the performance of read-only transactions through
asynchronous speculation," in HPCS 2008, San Diego, CA, USA, 2008, p. 467—474.

[44] T. Ragunathan and . P. Krishna Reddy, "Exploiting Semantics and Speculation for Improving
the Performance of Read-only Transactions," in International Conference on Management o f
Data COMAD 2008, Mumbai, India, December 17-19, 2008, pp. 162-173.

[45] T. Ragunathan, P. Krisna Reddy and M. Goyal, "Semantics-Based Asynchronous Speculative
Locking for Improving the Performance of Read-only Transactions," in Proceedings o f the
2010 Spring Simulation Multiconference, Orlando, Florida, 2010, pp. 238:1—238:4.

8 6

[46] W. Haque and P. R. Stokes, "Simulation o f a complex distributed real-time database system,"
Proceedings o f the 2007 spring simulation multiconference, vol. 2, pp. 359-366, 2007.

[47] A. Maria, "Introduction to Modeling and Simulation," in Winter Simulation Conference,
Atlanta, Georgia, United States, 1997, pp. 7-13.

[48] J. Banks and S. J. Carson, "1NRODUCTION TO DISCRETE_EVENT SIMULATION,"
Proceeding o f the 1986 Winter Simulation Conference proceedings, pp. 17-23, 1986.

[49] A. Silberschatz, H. F. Korth and S. Sudarshan., Database Systems Concepts, New York, NY,
USA: McGraw-Hill, Inc., 2006.

[50] Sun MicroSystem, "Java Language Specification," Palo Alto California : Sun Microsystem,
vol. 1.4.2,2003.

[51] C. S. Mullins, "Defining Database Performance," October 2010. [Online]. Available:
http://www.dbta.com/Articles/Columns/DBA-Comer/Defining-Database-Performance-
70236.aspx.

[52] G. C. Buttazzo, J. A. Stankovic , S. Superiore and S. Anna, "RED: Robust Earliest Deadline
Scheduling," Proc. o f 3rd International Workshop on Responsive Computing Systems, pp. 100-
111, 1993.

[53] C. L. Liu and J. W. Layland , "Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment," Journal o f the ACM (JACM), vol. 20, no. 1, pp. 46-61, Januray 1973.

[54] W. Haque, Q. Pai and S. N. Mahmud, "Effect of Network Topology on the performance of
Adaptive Speculative Locking Protocol," in Parallel and Distributed Computing and Systems,
Dallas, USA, 2011.

87

http://www.dbta.com/Articles/Columns/DBA-Comer/Defining-Database-Performance-

