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Abstract

Transaction processing in a distributed real time database system (DRTDBS) is 

coordinated by a concurrency control protocol (CCP). The performance o f  a CCP is affected 

by the load condition o f a transaction processing system. For example, the performance o f  

the Adaptive Speculative Locking (ASL) protocol degrades in high load conditions o f  the 

system. Priority protocols help a CCP by prioritizing transactions. The perform ance o f  the 

priority protocols is also affected by system load conditions, but they can be optimized by 

dynamically switching between priority protocols at run time when the system load changes. 

The objective of this research is to develop a protocol, Adaptive Priority Assignment 

protocol (APAP), which changes the priority protocol at run time to improve the 

performance o f  a CCP in a DRTDBS.

APAP is implemented in a DRTDBS, where ASL is used as the underlying CCP to 

validate APAP. The performance o f  APAP was tested under varying system load conditions 

with various combinations o f the database system parameters. Under the scenarios tested, 

APAP performed better than other priority protocols and demonstrated that dynamic 

selection o f priority protocols during run time is an effective w ay to improve the 

performance o f  a CCP in a DRTDBS.
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Chapter 1 

Introduction

A database system provides a systematic and secure way to store inform ation and 

answer queries in an organized manner. In today’s world, almost every business uses a 

database system. Access to a database system is controlled by transactions, w hich are 

combination o f read operations that read data from the database systems and write operations 

that update data in the database systems [1]. According to Berstein and N ew com er [2], a 

transaction must follow ACID properties: atomicity, consistency, isolation, and durability. 

Atomicity ensures that partial completion o f  a transaction is not accepted. Consistency m eans 

database changes made by a transaction should not violate consistency o f  the database. W hen 

a number o f transactions are running in parallel, isolation ensures that each transaction 

runs as if it were independent o f  other transactions. The results of a transaction will be 

permanent as indicated by durability, even in the event o f  a failure [2],

A real time database system (RTDBS) is a repository for data, like a conventional 

database, which supports data retrieval and manipulation. In addition, it ensures “some



degree o f confidence in meeting the system’s timing requirements” [3] [4], A RTDBS is 

evaluated by how many transactions complete their tasks before the deadlines expire. The 

performance o f a RTDBS depends on the number o f transactions missing their deadlines, the 

effects o f transactions missing their deadlines, the average ‘lateness’ or ‘tardiness’ o f  late 

transactions, the present status o f  the data, and the time interval in which the data in the 

database was collected from the external world [3].

A distributed database system (DDBS) is a collection o f  data sites, which contain one 

or more databases connected by a communication network. For example, in the stock market, 

information is stored in a geographically distributed database, since stocks are bought and 

sold from different places. A  DDBS supports sharing o f  data and programs, and load 

balancing among all sites. It can also be incrementally expanded to any num ber o f  sites [5], 

In a distributed real time database system (DRTDBS), transactions at each site have explicit 

timing constraints, which become more challenging to follow because the transactions are 

distributed and database consistency needs to be maintained through controlled data access.

Concurrency control protocols (CCPs) coordinate concurrent access to data and are 

considered the core component o f  database systems. There are several concurrency control 

approaches used to maintain the consistency o f the database while transactions are 

concurrently accessing data. These approaches can be categorized into two types: aggressive 

or optimistic where operations are scheduled immediately, and conservative or pessimistic 

where operations may be delayed [6], Two-phase locking (2PL) is the m ost popular 

concurrency control protocol in commercial products. In 2PL, all data items have locks 

associated with them. When a transaction accesses a data item, it holds the lock o f  that data 

item [6]. If the lock is an exclusive lock, the data item becomes unavailable to other
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transactions until the transaction holding the lock completes its execution. Therefore, 2PL 

increases transaction execution time.

The speculative locking (SL) protocol is an approach where conflicting transactions 

are allowed to access a data item that is held by another transaction to minimize the 

transaction execution time, and resolve conflicts later [7]. The adaptive speculative locking 

(ASL) protocol extends the basic function o f  the SL protocol in DRTDBS and outperforms it 

under most conditions by exploiting a variety o f  techniques: efficient m em ory management, 

hyper-threading, and transaction queue management (discussed in Chapter 2) [8] [9], 

However, the ASL protocol uses the fixed priority assignment approach, where a given 

protocol is selected when a transaction is initiated and used for the entire duration until it 

completes. The fixed approach o f choosing priority protocols may not always produce 

optimum results in a real time system, especially where system conditions change frequently, 

since there may not be enough time for transactions to complete before their deadlines.

Our hypothesis is that by dynamically switching between various priority protocols in 

a DRTDBS, the number o f transactions that meet their deadlines can be maximized. The goal 

is thus to develop an adaptive priority protocol approach for the ASL protocol that will allow 

automatic switching between priority protocols as the system load changes, thus improving 

overall performance. The remaining part o f this chapter explains the necessary components 

and features o f  the DRTDBS and provides background knowledge pertaining to our work. 

This is followed by an outline o f the contribution o f this research.

1.1 Transaction Processing

In a database system, the basic unit o f processing is a transaction, which is a set o f

read/write operations that can be either local or global [1], Local transactions deal w ith data
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locally at a single site, while global transactions deal with data at multiple sites and m ay have 

a number of sub-transactions. In DRTDBS, most transactions are global, and transaction 

execution involves running sub-transactions at remote sites. According to the distributed 

transaction model [10], transactions are controlled by processes, which work at different sites 

to coordinate between a transaction and its sub-transactions. The process that executes at the 

site where the transaction originates is called the master. Other processes that execute on 

behalf o f  the master are called cohorts, which need to maintain communication with the 

master for a successful global transaction execution. There are two types o f  distributed 

transaction execution models: sequential and parallel [11]. In a sequential execution model, 

operations from a single cohort are executed sequentially. The cohort can only commit after 

successful completion o f all operations. During the execution o f  operations, a site m ay have 

only one cohort or nothing. In a parallel execution model, all the cohorts are initiated 

together and execute in parallel without interfering w ith each other. Therefore, transactions 

complete earlier than in the sequential execution model.

The lifetime o f a transaction can be divided into two phases: a work phase and a 

commit phase [9]. In its work phase, a transaction reads or manipulates data. The m aster 

process informs other participating cohorts about the work to be done at each site. The 

cohorts then complete the work and confirms w ith the master about the completed work. In 

its commit phase, a transaction completes when the master gets confirmation from all the 

cohorts, and executes a commit protocol which makes the changes permanent, or executes an 

abort protocol which reverts any changes. Concurrent access of a data item causes 

inconsistency in the database. Serialization guarantees the serial execution o f  transactions 

when they execute concurrently on the same data [6]. To protect data and ensure
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serialization, locking and commit protocols are used in the work and com mit phase, 

respectively.

1.2 Data Distribution

Data in a DRTDBS are distributed throughout the sites o f  a system. In a DRTDBS, 

the nature o f the data distribution with respect to the execution o f  transactions can severely 

affect the performance. There are two ways data can be distributed (Figure 1.1): partitioned 

and replicated [6],

1. In partitioned distribution, there are no intersections of data w hen data are 

distributed in different nodes. The partitioned distribution minimizes maintenance 

cost, but if  a single site fails then the data is lost and cannot be recovered. Therefore, 

the whole system fails.

Partitioned Replicated

Site 1 Site 2a
Site 3a

Figure 1.1: Partitioned and replicated data distribution processes

2. In replicated distribution, multiple copies o f  the same data items are distributed 

to different sites [6]. This increases availability o f the data to transactions when they 

need it for their operations. In such an environment, the system does not need to stop



operation even when some sites fail because the required data may be available at 

other sites. However, updating data at one site requires updating all copies at other 

sites to prevent inconsistencies [12]. CCPs are used to ensure that the “database is a 

one copy equivalent” [6].

1.3 Deadlines

In a DRTDBS, deadlines represent timing constraints that a transaction m ust m eet to 

successfully commit. A global transaction requires processing of all associated sub­

transactions before it commits, so it requires more time than a local transaction. Deadlines 

can be categorized as (Figure 1.2): hard, soft, and firm [13].

Value Value

Aitival Time
• Time I Time

Deadline

(I) hard deadline

Arrival Time Deadline

(2) soft deadline

Value

Time
Arrival Time Deadline

(3) firm deadline

Figure 1.2: Transaction Deadline Model [13]

1. A hard deadline follows strict timing constraints for transactions. If  a transaction 

misses this timing constraint, its value becomes negative and that severely affects the 

system.

2. A soft deadline provides an extra amount o f  time for a transaction to finish its 

work after the deadline. W hen the deadline expires, the value o f  the transaction 

degrades. If  the transaction exceeds the extra time then its value becomes zero.

6



3. A  firm deadline is similar to soft deadline, but it does not provide extra time after 

the deadline. When a transaction misses the deadline, the value becom es zero and the 

transaction is discarded instantly [14],

1.4 Deadlocks

A deadlock occurs when no transaction can complete due to a circular wait on data 

requests. For example, a transaction Ti requests a data lock which is held by another 

transaction T2, which may be waiting (either directly or indirectly) for data items which are 

held by Ti. This circular wait causes a deadlock, where no transactions can com plete [14]. 

Deadlocks can be handled in three different ways [5]: deadlock prevention, deadlock 

avoidance, or deadlock detection.

1. “Deadlock prevention algorithms ensure deadlock free condition through 

guaranteeing that at least one o f  the conditions that cause deadlocks fails to hold” [5], 

These algorithms suffer from a high num ber o f  transaction restarts.

2. Deadlock avoidance algorithms use prior information about the use o f resources 

to analyze every incoming request, which helps them to predict deadlocks 

beforehand. These algorithms create lower system overhead than deadlock prevention 

algorithms. Without enough information these algorithms can fail [5].

3. Deadlock detection algorithms detect a deadlock when it occurs and abort one o f 

the transactions involved in causing it, to resolve the deadlock [5],

In a DRTDBS, deadlock detection requires good coordination among sites. They also 

need to deliberate a transaction’s timing constraints, since a transaction needs to have enough
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time to complete if  the transaction needs to restart. Deadlock detection in a DRTDBS can be 

categorized as: centralized, distributed, or hierarchical [15]. In the centralized approach, a 

site is used as a central coordinator to maintain the resource utilization graph o f  the entire 

system. Only the coordinator updates the resource utilization graph and searches it for 

circular waits. The approach is easy to implement, but it fails if  the central coordinator site 

fails. In the distributed approach, the resource utilization graph is distributed among many 

sites and requires coordination among the sites to detect deadlocks. W ithout good 

coordination between the sites, it is not possible to have exact information about the entire 

system, making it a complex process. In the hierarchical approach, sites are arranged in a 

hierarchical order so that deadlock detection involves only some sites, making it simpler than 

the distributed approach. However, a site can only detect deadlocks in its descendant sites 

[15].

1.5 Priority Assignment

Priority assignment protocols determine the order o f execution o f  transactions. These 

protocols also determine which transactions should be blocked or restarted during deadlocks. 

Therefore, transactions need to be prioritized to avoid unnecessary blockages or delays.

There are three categories o f  priority assignment techniques: static, dynamic, and 

hybrid. When the priority o f  a transaction is “assigned once and for all” , these are called 

static priority protocols [1], In static priority protocols, priorities o f transactions are set 

before the system executes the transactions and these priorities are not changed at run time. 

Static priority protocols require complete information about the transactions characteristics 

and are mostly suitable for small systems [16]. In dynamic priority protocols, the priority o f  a 

transaction “changes from request to request” where decisions about scheduling are made at
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run-time [1]. Certain important characteristics (i.e. deadlines, slack time) o f  a transaction 

change when the system restarts. Therefore, at each request, the characteristic o f  a 

transaction is checked to determine the priority o f the transaction. In hybrid priority 

protocols, priorities are fixed for some transactions and varied for others. One use o f  hybrid 

priority protocols is making some critical transactions non-preemptive w ith a static priority 

protocol during dynamic priority assignment [17]. Some o f  the popular priority assignment 

protocols are described below:

1. First Come First Serve (FCFS): In FCFS, the transaction with the earliest arrival 

time is assigned the highest priority. Therefore, deadline inform ation is not 

considered during priority assignment. In other words, a new transaction w ith a close 

deadline will get a lower priority than an old transaction which m ay not have a close 

deadline. This is not desirable in a real time system [18].

2. Shortest Job First (SJF): In SJF, transactions w ith the smallest run time are 

executed next [19]. This protocol is suitable when a system has prior knowledge 

about the run time o f the transactions. This process produces the best result when the 

load is high because it minimizes the average waiting time for a given set o f 

transactions.

3. Earliest Deadline First (EDF): In EDF, a transaction with an early deadline gets 

higher priority. A drawback o f this protocol is that it allocates higher priority to a 

transaction which is close to its 'deadline, but might miss it, over a transaction that 

still has a chance to meet its deadline [20].

4. Minimum Slack First (MSF): In MSF, a transaction with a shorter slack tim e gets 

higher priority. Slack time is the maximum amount o f  time that a transaction can be
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idle, but still complete before its deadline [1]. Therefore, MSF depends on both the 

execution time and the deadline o f a transaction.

1.6 Preemption

In DRTDBS, transactions should be preempted to avoid blockage o f  high priority 

transactions [21]. If a lower priority transaction has a lock on a data item and a higher 

priority transaction issues a request for that lock, then the higher priority transaction has to 

wait until the lower priority transaction completes. This situation is called priority inversion 

[22]. Due to priority inversion, high priority transactions might miss their deadlines. There 

are two popular methods to solve the priority inversion problem: priority inheritance and 

priority ceiling. In priority inheritance, if  a lower priority transaction Tl holds a data lock and 

a higher priority transaction TH also requests that data lock, then TL temporarily inherits the 

priority of TH until it completes its critical section [22]. The critical section is the time when 

a transaction accesses shared data and is not allowed to be preempted. After the critical 

section, Tl releases the lock and returns to its initial priority. The priority inheritance 

methods reduce the blocking time o f TH from the entire execution time o f TL to the execution 

time of its critical section. However, this process might suffer from deadlocks, and the block 

duration can be significant if  there is a chain o f  blocking [22].

In priority ceiling, a transaction Tj can preempt a blocking transaction Tj if  T, has 

higher priority than other preempted transactions. Otherwise, the transaction Tj is suspended, 

and the transaction Tj inherits T ’s priority. Priority ceiling not only minimizes the blocking 

time but also prevents deadlocks because a transaction with an exclusive lock (discussed in 

the next section) will never be blocked by a lower priority transaction [22], However, in 

priority ceiling, a low priority transaction is unnecessarily blocked by a high priority
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transaction even when an application is idle while reading data from or writing data into the 

database [23],

1.7 Locking Protocols

A locking protocol guarantees serialization o f  transactions within the system by 

utilizing locks on data items [24], I f  a transaction or a sub-transaction wants access to a 

shared data item, then it needs to request a lock on that data item. There are two types o f  

locks [25]: shared and exclusive. A shared lock is required when a transaction only needs to 

read a data item. An exclusive lock is needed when a transaction needs to m odify a data item. 

When a scheduler gets a request for a data item from a transaction, it checks the state o f the 

lock. If  the data item is not currently locked or has a shared lock, then the scheduler permits 

the transaction to hold the lock. Otherwise, if  the data item is exclusively locked, the 

transaction needs to wait until the current lock has been released. This ensures that only one 

transaction gets accesses to a data item at a given time. However, this blocking behaviour o f 

a locking protocol greatly degrades the performance o f  a DRTDBS because o f  time 

constraints [11], In a DRTDBS, during a read operation, a single copy o f  the data item is 

locked (shared) by the scheduler. During a write operation, all copies o f  the data item are 

locked (exclusive) by the scheduler until the data modification completes [9].

One o f  the most common locking protocols is the two-phase locking protocol (2PL) 

[11], which includes a growing phase and a shrinking phase (Figure 1.3). In the growing 

phase, a transaction only acquires locks on the required data. In the shrinking phase, a 

transaction frees all the acquired locks. During growing phase, no lock is released, and
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during shrinking phase no new lock is acquired. Every transaction has to go through these 

phases in order to guarantee the consistency o f  data [6].

Acquire
lock

Acquire
lock

▼

Time 1 2 3 4  5 6 7 8

Growing Phase | Locked Phase J  Shrinking Phase

Figure l .3: Two-Phase Locking - Growing and Shrinking Phase [9]

The 2PL can be static or dynamic [I], Dynamic two-phase locking (D2PL) and static 

two-phase locking (S2PL) work similarly, but have different lock settings. D2PL sets locks 

on the data item required for a transaction and keeps the data locked until the transaction 

completes. S2PL sets locks on the data item beforehand, using prior knowledge o f  the 

transactions that will access the data item. In a DRTDBS, especially for hard real time 

transactions, this prior knowledge is easily accessible [l]. Distributed S2PL decreases the 

number o f messages transmitted between sites in comparison to D2PL, because all lock 

requests o f a transaction are transmitted as one message. This also reduces the time delays 

for setting remote locks. Another advantage o f S2PL is that a blocked transaction cannot 

hold locks, meaning deadlocks do not occur. Therefore, D2PL, with its shorter average lock 

holding time, is preferable over S2PL for conventional non real time database systems [1],

Lock
Acquired

1 R elease
Lock

R elease
Lock
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1.8 Commit Protocols

Commit protocols ensure that modification o f  data by transactions will be permanent 

after transactions successfully complete [9], One important feature o f  transactions is 

atomicity, which can be secured by commit protocols. To ensure atomicity o f  a transaction, 

commit protocols prevent locks on data from being released until the modification o f  data 

becomes permanent [26].

In the distributed environment, atomicity is violated if  some transactions commit at 

some sites and abort at other sites [1]. Therefore, all the participating sites need to agree on 

committing or aborting. Moreover, to maintain atomicity, once a cohort is ready to com mit 

“it has to retain all its data locks until it receives the global decision from the m aster”, which 

might cause priority inversion [1],

The two-phase commit protocol (2PC) is the m ost commonly used distributed commit 

protocol. The fundamental workflow o f the 2PC protocols explained by Gupta et al. [27] is 

described below: The 2PC protocol has at least two-phases: the prepare phase and the 

commit phase (Figure 1.4). A commit protocol starts execution, when the m aster receives a 

WORKDONE message from all the cohorts. In the prepare phase, the master sends 

PREPARE messages to all cohorts in parallel. After getting the PREPARE messages, the 

cohorts vote for committing or aborting the execution. I f  a cohort finds a suitable 

environment for committing, it sends a YES vote to the master and writes a prepare log 

record to their local storage. This is called the “prepared state” for the cohorts. However, the 

cohort cannot commit until they get the final decision from the master. On the other hand, if  

a cohort cannot complete the execution, it sends a NO vote to the master. The cohort writes
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an abort log to their local storage and aborts immediately as a NO  vote is considered a veto 

[27]. This is the end o f the prepare phase.

WORKDONE

I
PREPARE

YES

COMMIT

ACKNOWLEDGEMENT 
M ------------------------------

I
Transaction Commits

WORKDONE

I
PREPARE

NO

ABORT

ACKNOWLEDGEMENT 
^ -----------------------------

I
Transaction Aborts

Figure 1.4: Commit Protocol - Commit and Abort Paths

The commit phase starts when the master receives the votes from all the cohorts. If 

there is not a single NO vote, then it writes a commit log record and sends the global 

decision, which is a COMMIT message to all the cohorts. This is called “com mitting state” 

for the master. W hen the global decision reaches the cohorts they write a com mit log and 

enter the “committing state” . The cohorts commit by sending an ACKNOW LEDGEM ENT 

message to the master. On the other hand, if  a single NO vote is received, the m aster writes 

an abort log and sends the global decision as an ABORT message to all the cohorts. This is 

called “aborting state” . After receiving the global decision o f  abortion, all the cohorts write 

an abort log, and abort the transaction by sending an ACKNOWLEDGEMENT message to 

the master. Upon receipt o f this message from all cohorts, the master writes an end log record 

and discards the transaction.

There are several variants o f  2PC [1]: presumed abort/commit protocols, one-phase 

commit protocols, and three-phase commit protocols. The presumed abort/commit protocols
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reduce the message and logging overheads by making an explicit commit presumption about 

the committing or aborting o f  transactions. W hen a cohort recovers from the failure state, it 

communicates with the master for available information about the transaction. I f  the master 

does not have information available about the transaction, then the cohort can assume that it 

has aborted. On the other hand, if  the cohort gets the commit decision from the master, it 

commits. The cohort then does not need to send an acknowledgment for the ABORT or 

COMMIT message and also does not need to write an abort/commit record to the log. The 

master also does not write the abort/commit record and the end record [27] [28].

One-phase commit protocols (1PC) combine the commit and prepare phases into one 

phase by removing the cohort voting phase to commit or abort. The cohorts enter into 

“prepared state” at the time o f sending the WORKDONE message. Thus 1PC eliminates one 

entire phase, which reduces commit processing overhead and delay [29] [30]. However, due 

to the long prepared state, 1PC suffers from priority inversion, because data locks cannot be 

preempted in the prepared state.

In 2PC and 1PC, even if  a single site fails, all participating cohorts “remain blocked 

until the failed site recovers” [27]. Three-phase com mit protocols remedies this problem by 

using an extra phase, which is called “precommit phase” . This phase occurs between the two 

phases o f 2PC, and makes a preliminary decision about committing or aborting transactions. 

The preliminary decision then helps all the participating sites, to reach a global decision even 

though the master fails. However, three-phase commit protocols increase the communication 

overhead by adding an extra message exchange between the cohorts and the master. 

Moreover, it forces the cohorts and the master to write a record to the logs in the “precom mit 

phase” [27] [31],
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1.9 Concurrency Control Protocols (CCPs)

CCPs make sure that multiple users can access data concurrently in a database 

management system. A CCP must protect data updates o f one user from access and updates 

o f another user until the first update becomes permanent [32]. CCPs maintain the 

serialization o f  the transaction operations, and guarantee that the transactions will maintain 

atomicity. Therefore, the main goal o f a CCP is to maximize the concurrency and m aintain 

consistency o f the databases. On the other hand, CCPs in a DRTDBS ensure that transactions 

are meeting their deadlines, in addition to maintaining consistency constraints o f  the 

databases [33], In a DRTDBS, maximizing the concurrency is not enough. The transactions 

need to be prioritized to maximize the schedulability, which helps transactions m aintain their 

timing constraints. It is also important that transactions are preemptible to reduce the 

blocking time o f transactions. Thus CCPs in a DRTDBS minimize the duration o f  blocking 

time by utilizing efficient priority assignment and preemption protocols. As stated earlier, 

CCPs are classified into two types: optimistic or aggressive and pessimistic or conservative 

[6],

1. Optimistic protocols do not block transactions; rather they optimistically 

schedule them instantaneously. This immediate scheduling can violate the 

serialization order o f operations if  the scheduler receives an operation later which 

should have been scheduled earlier than an executed operation. In this situation, 

optimistic protocols abort the transactions to maintain the serialization. The 

optimistic process is a faster process, but it might result in a higher number o f  

transaction rejections.
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2. Pessimistic protocols block an operation o f  a transaction immediately if  there is 

any data conflict and continue blocking until the possibility o f  data conflicts 

disappears. Delaying the operations by blocking decreases the possibility o f  data 

conflict and abortion during transactions, but excessive delays can cause transactions 

to exceed deadlines. Pessimistic protocols are suitable for transactions that rarely 

conflict.

1.10 Contribution

Few studies have been done on concurrency control protocols in a DRTDBS as it is 

difficult to manage distributed data and deadlocks, and coordinate transactions and their sub­

transactions performing at different sites. A priority protocol plays an important role in a real 

time system as it determines whether a transaction w ill be completed on time or not [16]. 

EDF is an optimal priority protocol, because if  EDF cannot schedule a transaction, then it is 

not possible for other priority protocols to schedule that transaction [34]. However, the 

concept o f assigning higher priority to transactions with the earliest deadlines is not suitable 

in high load conditions, because transactions might miss their deadlines due to lack o f  time 

[16].

An important CCP in DRTDBSs is ASL which controls a transaction’s access to data 

based on a fixed priority protocol. W e investigated the performance o f ASL protocol using 

several common priority protocols under different system configurations. Results o f  the 

experiments indicated that a priority protocol that performs well under certain configuration, 

may perform poorly or moderately under other configurations. This allowed us to determine 

a set o f load ranges in which different priority protocols perform superiorly. To maximize the 

performance under all system conditions, we concluded that an adaptive approach to



selecting priority protocols is needed. Researchers have been trying to achieve adaptive 

approaches to utilize the performance variations o f different priority protocols under varying 

system conditions [16] [35] [36]. In all techniques, a common practice is to switch between 

priority protocols o f a system based on the load, to improve the overall performance o f  the 

system. However, no research has been done so far to improve the performance o f  ASL 

protocol by dynamically switching between priority assignment protocols.

We use the load ranges determined as explained earlier to create an adaptive protocol, 

called Adaptive Priority Assignment Protocol (APAP). APAP uses the load condition at run 

time to decide which priority protocol should be used next while keeping ASL as the 

underlying CCP. Using this approach we observe significant improvement in the overall 

system performance. The protocol and results are presented in Chapter 4.
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Chapter 2 

Related Work

We use Adaptive Speculative Locking (ASL) as the underlying concurrency control 

protocol (CCP) in this thesis; therefore we needed to understand ASL and its techniques. W e 

evaluated ASL and reviewed current research about the speculative locking approach, which 

is the underlying structure o f ASL. W e also studied transaction scheduling techniques which 

consider changing the system environment during run time.

This chapter is divided into two sections. In the first section, we review the ASL 

protocol with other locking and commit protocols, from which ASL inherited properties such 

as lending uncommitted data and adaptive approach. W e also describe inheritance techniques 

among those protocols. In the second section, we discuss some scheduling techniques that 

adaptively switch between priority protocols depending on the system environm ent and that 

are most relevant to our research.
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2.1 Evaluation of the ASL protocol

ASL inherits the concept o f speculation locking o f  data from SL protocols [7]. 

However, the concept o f lending uncommitted data has also been used in the past in other 

CCPs, such as PROMPT, PEP, SL, etc. ASL also borrowed the concept o f  monitoring the 

system performance and making adaptive decisions to change system behaviour from AEP

[8 ]. In this section we discuss those CCPs briefly.

2.1.1 Permits Reading of Modified Prepared-Data for Timeliness

Permits Reading O f Modified Prepared-data for Timeliness (PROMPT) is a commit 

protocol based on firm-deadline designed for the DRTDBS [37], It also extends the concept 

of centralized 2PL high priority (2PL-HP) for distributed real time environments. In the 2PL- 

HP protocol, if  a higher priority transaction is holding a lock on a data item, then all requests 

for that lock will be blocked until the lock is released. On the other hand, if  the requesting 

transaction has higher priority, then the lock holding transaction is aborted immediately to 

release the lock. PROMPT extends this concept further by adding three m ore steps: 1) in the 

prepared state, read locks are released by the cohorts just after the cohorts receive the 

PREPARE message from the master. However, update locks are still held by the cohorts 

until the global decision about committing or abortion is available; 2 ) it is not possible to 

abort a cohort if it is in the prepared state; and 3) transactions can lend uncom mitted data 

optimistically when the lending transaction is only in the commit phase. W hen the borrowing 

transactions have access to the uncommitted data, there are three scenarios that describe the 

interaction between the lenders and the borrowers:

1. The global decision o f  committing or aborting for the lender is available, but the 

borrower’s local execution is still incomplete, In this case, the lender commits, or
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aborts depending on the global decision, and the borrower follows the lender to 

commit or abort.

2. The borrower completes its local execution, but the global decision for the lender 

is still not available. In this case, the borrower has to wait and is not allowed to take 

any initiative related to committing until the global decision for the lender is available 

or the borrower misses its deadline. This situation is called “put on the sh e lf’. If the 

lender receives the global decision to commit, then the lender commits and the 

borrower initiates commit related processing that is called “taken o ff the sh e lf’. If  the 

lender aborts then borrower’s data becomes useless and the borrower aborts.

3. If  the borrower aborts during data processing, then the lending is cancelled and 

the borrower’s updates are rolled back.

PROMPT has three additional features to make the data lending process faster and 

avoid wasting system resources: active abort, silent kill, and healthy lending.

1. In active abort, if  a participant cohort is about to abort locally, it sends this 

information immediately to the master, rather than waiting for the com mit phase. 

Active abort provides a transaction more time to complete and also facilitates proper 

usage o f  both logical and physical system resources.

2. In silent kill, if  a transaction is rejected before the commit phase o f  the master, 

then the rejection is recognizable by the cohorts without communication w ith the 

master. Therefore, the master does not need to invoke the abort protocol, because 

abortion happens silently. The silent kill process saves system resources by  

eliminating message passing between the master and the cohort.
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3. In healthy lending, if  a transaction is about to miss the deadline, then the 

transaction is disallowed to lend data to avoid abortion o f  the borrower transaction. 

PROMPT permits borrowing locked data, but it does not have a cascading abort 

problem for two reasons. First, the lending transaction is always expected to commit, because 

it is in the prepared state, so local data conflicts cannot abort the lender. Secondly, the sibling 

cohorts are going to commit, because all prior data conflicts are handled. Moreover, 

PROMPT has a controlled lending policy which does not permit the borrower to be a lender 

simultaneously, so PROMPT affects only the immediate borrower [37],

PROMPT’S performance was studied by Haritsa et al. [37] against 2PC, presumed 

commit, presumed abort, and 3PC for sequential and parallel transactions during both high 

level o f data and resource contention, only high level o f data contention, slow and high 

network speed, and high and low degree o f  data distribution. In all experiments, PROM PT 

performed better than the other protocols, especially in the low load condition. PROM PT 

also showed a higher borrowing rate (the average number o f  data items borrowed per 

transaction) during low to medium load. PROM PT’S success ratio (the fraction o f  times that 

a borrowing was successful) was 1 during low load, but decreased when the system load 

increased. Therefore, PROMPT performs poorly in high load condition. However, the 

success o f the borrower depends on the success o f the lender, because the borrower has to 

abort if  the lender aborts. On the other hand, if  the borrower completes before the lender, the 

borrower cannot commit until the lender completes, resulting in increase o f  transaction 

execution time.
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2.1.2 Prompt-Early Prepare

Prompt-Early Prepare (PEP) is a one-phase (1PC) real time commit protocol based on 

a RTDBS. PEP integrates the early prepare (EP) protocol with the lending property o f  the 

PROMPT protocol [29]. The standard (2PC) protocol has higher m aster/cohort 

communication overhead. To reduce the communication overhead, PEP overlaps the prepare 

and commit phases into one phase using EP protocol, which is a 1PC protocol. EP reduces 

the transaction execution time by removing the voting phase o f the 2PC protocol. In PEP, 

the prepared state o f  a cohort starts at the time o f sending the WORKDONE message to the 

master [38]. PEP is also optimized by a presumed commit mechanism, where the m aster 

sends the commit decision, but cohorts do not need to send ACKNOW LEDGEM ENT 

messages to the master. The master also does not write an end log record, rather it writes a 

membership log record to identify all the cohorts involved in the execution.

However, being a 1PC protocol, EP suffers from priority inversion because o f  the 

long duration o f  the prepared state. The situation deteriorates if  the participating transactions 

are sequential, where cohorts execute one after another rather than parallel. PEP deals w ith 

this problem by incorporating the concept o f lending prepared data. PEP also incorporates 

the active abort policy o f PROMPT to reduce the response time.

Haritsa and Ramamritham [29] compared the performance of PEP with PROMPT, 

EP, and CENT (a centralized system) in both parallel and sequential transaction 

environments. In both environments there were four experiments: 1) data and resource 

contention, 2) pure data contention, 3) fast network interface, and 4) highly distributed 

transaction. During the first two experiments, both EP and PEP outperformed PROM PT and 

PEP outperformed EP, because o f the message passing overhead o f PROMPT. In the case o f
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fast network interface, PROMPT performed better, but was still outperformed by PEP. PEP 

was only outperformed by PROMPT in the sequential high distributed transaction 

environment when the priority inversion period o f PEP is much longer than PROMPT.

PEP exploits the concept o f optimistically lending uncommitted data from PROMPT. 

Moreover, PEP reduces message and logging overheads through the use o f  1PC protocol. 

However, there are a few issues with PEP. PEP suffers from a high num ber o f  transaction 

aborts because it goes into the prepared state when data processing is still unfinished. The 

extension o f  the prepared state duration increases priority inversion. Also, deadlocks can 

occur, because a lender transaction, which has already lent data items, can still access new 

data items.

2.1.3 Adaptive Exclusive Primary

Adaptive exclusive primary (AEP) is an adaptive concurrency control protocol from 

which ASL borrowed the concept o f  dynamically changing behaviour during run time [9]. 

AEP is designed for distributed database systems and dynamically switches between an 

optimistic and a pessimistic CCP to improve data and resource contention issues [39]. The 

optimistic and pessimistic CCPs are the exclusive writer with locking option (EWL) protocol 

and the priority site locking (PSL) protocol, respectively.

EWL has a controlling site called exclusive writer and primary site (EW/PS). In 

EWL, a transaction updates data in the database optimistically without considering any data 

conflict. After the transaction completes, it sends a request for the update to the EW/PS. The 

request would be approved and the data update would be permanent i f  there is no data 

conflict; otherwise, the transaction needs to wait in a queue.
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PSL controls the access to each file in the database system using a prim ary site (PS), 

which also supports transaction execution as an ordinary site. A n update transaction sends a 

lock request for a file in the database to PS. PS checks the file status and approves the lock 

request if  the file is available; otherwise, PS disapproves the lock request, which forces the 

transaction to wait in a queue.

AEP dynamically switches between the optimistic and pessimistic protocols if  

potential data conflicts are found. A transaction begins with executing the EW L protocol. 

When data conflict occurs, AEP switches to the PSL protocol. AEP also uses PS to control 

access to a distributed file system like PSL and EWL. AEP maintains a registry to keep track 

o f the local active transactions which are incomplete. The registry helps a new transaction in 

determining any potential data conflicts. According to this information, AEP performs PSL if  

there is a potential conflict; otherwise, it performs EWL, from then on.

Tai et al. [39] state that AEP has three assumptions: 1) “with EW L and AEP, an 

access conflict is detected using a method based on sequence numbers” ; 2 ) “all transactions 

are read/write transactions”; and 3) “there is only one file in the database system in question 

and the file is replicated at and shared among all the sites” . The operational procedures o f  

PSL, EWL, and AEP are similar and can be divided into two steps. First, the prim ary site 

gives permission for a transaction to update a file. Second, the transaction checks if  there are 

any conflicts, and then it decides whether or not to update the file.

The performance o f AEP is discussed by Tai et al. [39] in comparison to PSL and 

EWL by varying the transaction inter-arrival times in two different transaction execution 

rates. In high transaction execution rates, EW L always outperformed PSL, but in low
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transaction execution rates, EWL showed little improvement over PSL. However, AEP 

always outperformed PSL and EWL.

The adaptive concept o f  AEP inspired ASL; however, AEP is not properly 

implemented in a real time distributed database environment. Transaction deadlines and time 

constraints were discussed, but the implementation o f those variables is not obvious. 

Moreover, AEP cannot detect any conflict at a non-local database site.

2.1.4 Speculative Locking

Speculative locking (SL) protocols extend standard 2PL protocols to allow 

parallelism among conflicting transactions [40] [7]. The 2PL protocol does not permit an 

uncommitted data item to be shared. SL allows any transaction to borrow uncom mitted data 

from the conflicting transactions. The borrowing transaction can have access to two versions 

o f data: a before image, which is the data before the conflicting transaction updates it, and an 

after image, which is the updated data produced by the conflicting transaction. The 

borrowing transaction then performs speculative operations on both the before and after 

images o f the data. If  the conflicting transaction commits, the borrowing transaction retains 

the after image o f the data, otherwise it keeps the before image of the data. Therefore, 

transaction blocking time is low, making transaction processing faster.

Transaction processing in a database system is shown in (Figure 2.1 [7]). The 

notation S; indicates the start o f  execution, E; is the completion of execution, Cj is the 

completion o f  commit processing and Aj is the abortion o f a transaction, Ti. Figure 2.2 

illustrates the transaction processing for 2PL, where two transactions, Ti and T2, need access 

to the pages X, Y and X, Z, respectively. The transaction T2 needs to wait until transaction Ti 

commits and releases the lock on page X.
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Execution Commit j

5i EEi Cj/Ai 
-----------------------►

Time

Figure 2.1: A Transaction Processing [7]

Speculative locking processing is shown in Figure 2.3 taken from [7], Transaction Ti 

has locks on pages X and Y. Ti releases the locks just after it completes processing and 

creates before and after images o f the data X  (Xi) and Y (Yi). T2 requests for locks on X  and 

gains locks on both X and Xi. T2 starts speculative executions T 21 and T22 right away and 

creates after images o f both X  and X] which are X 2 and X3. I f  T 1 commits then X 3 will 

remain, otherwise X2 will remain.

Ti

T2

ri[X] w ^ ]  n[Y] w ^ , ]

r2[X] w 2[X!] r2[Z] w ^ ]

Time

Figure 2.2: 2PL Processing [7]

T 1: n[X ] w ^ ]  r-i[Y] w , ^ ]
S , I C t

T 2:

T 2i: r2[X] w 2[X2] r2[Z] w 2[Zi]

T22: r2[Xi] w 2[X2] r2[Z] w 2[Z2] e 2 c

T im e

Figure 2.3: SL Processing [7]
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Lock
Requested

B yT,

Lock Held by Tj

R W

R yes no

W no no

Lock 
Requested 

By T;

Lock Held by Tj

R EW SPW

R yes no s p y e s

EW sp-yes no s p y e s

(a) (b)

Table 2.1: Lock Compatibility Matrix (a) 2PL and (b) SL [7]

Lock compatibility matrixes for both 2PL and SL are shown in Table 2.1 [7], A 

typical 2PL protocol has two types o f  locks: read (R) and write (W). A transaction requests a 

read lock to read a data item and a write lock to update a data item. On the other hand, to 

perform speculative operations, SL has two forms o f  write locks: execution-write (EW ) and 

speculative-write (SPW). An update transaction requests EW  locks on the data. W hen the 

operation creates an after image, SL converts the EW  lock into SPW lock, and the data 

becomes available to other transactions.

In SL, the number o f  parallel transaction processing increases exponentially as the 

level of lending increases. For example, for n number o f  transactions, there can be 2n 

number o f  speculative executions. Therefore, if  n transactions conflict, there are 2 n num ber 

o f  possibilities for termination of the transactions. This version is known as the naive version 

and is indicated by SL(n). Due to the high number o f speculative executions, SL suffers from 

a higher number o f transaction abortions. To solve this issue, SL introduces some variants to 

restrict the number o f speculative executions. These variants are described below:
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> SL(O): This variant is very optimistic. It assumes that a transaction will abort and 

terminate if  any prior transactions abort.

>  SL(1): In this version, if  more than one prior transaction aborts then current

transaction will abort.

>  SL(2): In this version, if  more than two prior transactions abort then current

transaction will abort.

SL is a faster process than 2PL, because transactions can start executing sooner. SL 

opens a new door in concurrency control protocol research. However, a large number o f 

speculative executions can occur with SL, causing data contention that degrades the 

performance o f  the system. All the SL variants assume that memory is unlimited, which 

makes them inappropriate for many systems.

2.1.5 A daptive Speculative Locking

Adaptive Speculative Locking (ASL) is based on the SL protocol and follows the 

adaptive nature described in the AEP protocol [9] [8 ]. ASL uses the same underlying 

architecture o f SL for transaction processing. However, SL assumes infinite system memory, 

which is unrealistic. To remedy this, ASL maximizes the size o f the local buffer and uses a 

page-based virtual memory mechanism. This mechanism is a memory management 

algorithm that controls allocation and de-allocation o f  the memory space. Since SL suffers 

from high data contention when the number o f speculative executions explodes, three 

variants were introduced, SL(0), SL(1), and SL(2). These variants restrict the number o f 

speculative executions depending on the number o f previous transaction aborts. ASL does 

not depend on the number o f previously aborted transactions and introduced the following
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techniques: hyper-threading, memory management including virtual memory, and transaction 

queue management [9] [8 ] for improving performance.

Hyper-threading (HT) is a Simultaneous M ulti-Threading (SMT) technology. HT 

utilizes instruction level and thread level parallelism to achieve performance gains. 

Therefore, a single physical processor can run concurrent executions o f  multiple separate 

instructions. In HT, one physical processor has two architectural states. One architectural 

state represents a logical processor and can execute an instruction stream. Therefore, one 

physical processor can act as two logical processors and can process two concurrent 

processes or threads simultaneously. HT shows a 65% performance increase over previous 

generation processors. However, HT is application and hardware dependent. ASL exploits 

HT by creating a thread for each speculative execution or concurrent process [41].

ASL protocol has a very effective memory management system. It uses two types o f  

memory concepts: system cache and virtual memory [9] [8 ]. The cache is a volatile and 

easily accessible storage area, managed by a cache manager, which is used for storing short 

term data. On the other hand, virtual memory is a technique that implements an operating 

system paging concept to improve limited memory issues, where data are m oved to the 

physical disk when the cache is full, as if  part o f the cache. A new transaction requires 

enough memory space to be reserved either in the cache or in the swap disk before requesting 

data from the database. When the transaction has enough space reserved, it reads data from 

the disk into the cache, which are then locked by the transaction manager; otherwise, it waits 

until enough space is available. The transaction then processes the data and releases the 

locks. In memory management systems, a transaction cannot block other transactions until it 

locks all required pages in the memory ASL considers all versions of a page as a unique page
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when they are in the memory or moving back and forth between the memory and the disk.

[9] [8 ],

ASL protocol shows its adaptive nature by using the transaction queue management 

(TQM). Page swapping is an effective way to solve limited memory issues, but it creates 

high communication overhead. TQM balances between cache utilization and page swapping. 

To improve the cache utilization, TQM  holds or releases transactions from the queue 

depending on the available space in the system cache. TQM has two parameters: hold level 

(HL) and enter level (EL). HL and EL help to determine the available system cache (ASC) 

which helps the transaction manager to compute the amount o f  total system cache utilization 

(TSCU). If TSCU is greater than HL, then the transaction manager does not deliver any 

transactions or subsequent transactions to the scheduler, and keeps checking the ASC value. 

The transaction manager releases transactions from queue when the ASC value becom es less 

than EL. By using the correct configuration o f  HL and EL values, TQM helps to minim ize 

data contention and maximize the cache use [9] [8 ].

The performance o f ASL was tested against all variants o f  SL by varying cache sizes, 

number o f transactions, inter-arrival times, disk sizes, percentage of read/write operations, 

and HL and EL values. ASL outperformed SL in all experiments. However, A SL ’s 

performance degraded in high load condition [9] [8 ]. In those experiments, ASL used a static 

priority protocol approach which is not effective under all load conditions. Therefore, 

performance o f  ASL can be improved by switching between priority protocols at run time. In 

this thesis, we propose an adaptive priority protocol approach for ASL.
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2.1.6 Synchronous Speculative Locking Protocol for Read-Only Transactions

Synchronous speculative locking protocol for read-only transactions (SSLR) is based 

on the SL protocol [42], Transactions can be divided into two types: read-only transactions 

(ROT), which only read data, and update transactions (UT) which modify data. In SSLR, a 

ROT can access data items, which are held by a UT and perform speculative executions. On 

the other hand, a UT- is not allowed to access data items that are held by a UT and has to 

wait until the data items are released.

The lock compatibility matrix for SSLR is shown in Table 2.2 [42], For write locks in 

SSLR, if  one transaction holds a SPW lock then unlike SL no other transactions can get the 

EW lock. There are two types of read locks in SSLR: a read lock for UTs (RU) and a read 

lock for ROTs (RR).

Lock
Requested

B yT,

Lock Held by Tj

RR RU EW SPW

RR yes yes no sp_yes

RU yes yes no no

EW no no no no

Table 2.2: Lock compatibility matrix for SSLR [42]

In SSLR, committing o f a ROT does not depend on preceding conflicting transaction 

like it does in SL. If  the preceding transaction is still uncommitted then the ROT commits 

with the before images o f the data items. However, if  the preceding transaction commits 

before the ROT commits, then the ROT commits with the after images o f  the data items. For 

example, T2 is a ROT and T 3 is a UT (Figure 2.4). T] is a running UT which produces an
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after image x t o f data xo. Ti accesses both X] and xo and performs two transactions T2i and 

T22- As T2 completes before Ti, T21 will remain. Whereas, as T3 is a UT, it w ill wait until Ti 

completes [42],

T,: X i  [ X q ]  W, [x , ]  q  [y0] Wj [y, ]  i, [p0] w, [p, ]

Ta i 2[Xo]r2[Zo]

S T22
c

T3:
time

c

Figure 2.4: SSLR Processing [42]

SSLR not only outperforms other read-only transaction based protocols, but also 

improves issues with the correctness o f  transactions (serialization) and the data currency 

which represents how recently a requested data item was changed. However, when a ROT 

completes execution before the preceding UT, and commits before the UT commits, the 

order o f transaction executions changes, which might make the system unstable when the 

system load changes frequently.

The SSLR has two variants. The first is Asynchronous Speculative Locking Protocol 

for ROTs (ASLR) [43] where a ROT can execute asynchronously, reducing the waiting time 

o f the speculative transactions. Rather than waiting for the conflicting UT to produce after 

images, the ROT is allowed to access available data item versions to carry out speculative 

executions. The transaction can start other speculative executions independently based on the 

available after images. For example, in Figure 2.5, T 2 is a ROT which is conflicting with a 

UT Ti. The speculative transaction T21 o f T 2 can access xo and start speculative executions.
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W hen transaction T] produces Xi, the speculative transaction T 22 is started. T 2 can commit 

when any one o f  the speculative transactions complete.

r 1 [Xq] Wi M  r i[Pol W,[P|] r 1 [q0] w ,[q,]

s3 c3

time
 : >

Figure 2.5: ASLR Processing [43]

The second variant is Synchronous Speculative Locking Protocol for ROTs 

exploiting Semantics (SSLR-S) [44] [45], Parallelism can be improved by using a property o f  

ROTs, called “compensatability” that reduces waiting time significantly. In 

“compensatability”, when a ROT is in conflict with a UT, a list is created and recorded with 

identification numbers o f the UT and the data item modified by UT. In the com mit process, 

the ROT reads the update value o f  the data item from the transaction log by using 

identification numbers. The SSLR-S classifies ROTs into two types: com pensatable ROTs 

(CROTs) and non-compensatable ROTs (NCROTs). A  CROT is processed without blocking. 

When a CROT conflicts with an UT, it shows “compensatability” . However, NCROT 

follows synchronous speculation like SSLR. For example, Ti is a CROT and T 2 is an UT. 

Here T | conflicts with T2 on data item xo.but it performs a parallel execution with T 2 without 

any blocking. When Ti commits, it reads the update value o f  xo from the transaction log and 

performs a compensation operation.
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2.2 Switching Between Priority Protocols

This section describes some scheduling algorithms most relevant to our thesis, which 

switch between priority protocols during run time. EDF is the m ost used priority protocol in 

real time transaction processing. However, EDF does not perform well during high load 

conditions. The following methods use EDF under low load conditions, but switch to a 

different priority protocol when the system load becomes high.

2.2.1 A daptive E arliest Deadline

Adaptive Earliest Deadline (AED) is an adaptive scheduling algorithm based on a 

RTDBS [20]. Under low or moderate resources and data contention, EDF results in the 

fewest missed deadlines, but when the load increases gradually, performance o f  EDF 

degrades abmptly. To improve the performance o f EDF in an overloaded environment, AED 

incorporates an adaptive approach using a feedback control mechanism. AED divides the 

transactions into two groups named HIT and MISS. Transactions w hich have higher 

probability o f  meeting deadlines fall into the HIT group. On the other hand, transactions 

which are less likely to meet their deadline are categorized as the MISS group. It is always 

expected that the transactions that can meet their deadlines should be in the HIT group. 

Transactions in the HIT group follow EDF scheduling and transactions in the MISS group 

follow random priority (RP) mapping.

To uniquely identify transactions, a randomly generated key is assigned to a new 

transaction, which is then used to order a list o f  transactions. The position in the list is very 

important as it is used to determine the relevant group for the transaction. To determine a 

group, the position o f  the transaction within the list is compared with a dynamic control 

variable, called HITcapacity. The transaction goes to the HIT group if the value o f  position is
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less than or equal to the HITcapacity value, otherwise, it goes to the MISS group. A 

feedback process is used to set the value o f  the HITcapacity. Initially, a scheduler called the 

priority mapper initializes the value o f the HITcapacity. Two parameters, HITbatch and 

ALLbatch, are used for computing two ratios called hit ratios, HitRatio(HIT) and 

HitRatio(ALL), that make sure only the transactions which can complete are in the HIT 

group. HitRatio(HIT) represents the fraction o f transactions in the HIT group that meet their 

deadlines. HitRatio(ALL) represents the same measurement in terms of all transactions in the 

system. In an ideal case, the HIT group has a HitRatio(ALL) o f  1.0 and the MISS group has 

a HitRatio(ALL) o f  0.0. The hit ratios are continuously checked and fed back to the priority 

mapper. The hit ratios values help the priority mapper to re-evaluate the H ITcapacity value, 

which is an iterative process [2 0 ].

Haritsa et al. [20] compared the performance o f AED with EDF, random  priority 

(RP), no priority (NP), and latest deadline (LD). AED performed like EDF during low load 

conditions when EDF outperformed all other priority protocols, and performed like RP 

during high load conditions when RP outperformed all other priority protocols. Therefore, 

EDF or RP performs well in a particular load condition while AED performs well under all 

load conditions. They also show that the HitRatio(ALL) for HIT group varied from 1.00 to 

0.98 when the system moved from low to high load, whereas, the HitRatio(ALL) for MISS 

group varied from 0.0 to 0.1. However, depending on a random number key for determining 

the transaction groups might not always be accurate. Moreover, calculating HITcapacity is a 

complicated process, which requires prior knowledge o f  the transaction characteristics. AED 

does not target distributed systems, so its performance in a distributed system is not tested.
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2.2.2 Sectional Scheduling

Sectional scheduling (SS) is an adaptive approach for transaction scheduling based on 

hard real-time systems, which changes behaviour according to the system environm ent [16]. 

The system environment does not remain constant. It changes as the system evolves, which 

makes the real time transactions vulnerable to fail their executions before deadlines. EDF is 

the most stable scheduling algorithm in real time systems, but it performs unpredictably 

when system characteristics change, especially when the system load changes. SS measures 

the current load o f the system and adequately adapts to  changes in the system environment.

According to SS, the system load can be partitioned into three cases: normal load, 

overload, and serious overload. The load is indicated by p. In normal load or low load (p <= 

1), as EDF shows 100% processor utilization, SS uses EDF for transaction scheduling. In 

overload conditions (1 < p <= 3), SS uses Deadline/Value First protocol w hich prioritizes 

transactions according to their values. A value represents the importance o f  a transaction in 

relation to other transactions [34], SS has three principles. The first principle is that a 

transaction has higher priority if it has an earlier deadline or a larger im portance value than 

another transaction. The second principle is if  two transactions have the same deadline, the 

transaction with the larger importance value will have the higher priority, or if  two 

transactions have the same importance value, then the transaction with the earlier arrival time 

will have the higher priority. Finally, the third principle is if  two transactions have the same 

importance value and deadline, then the transaction with the earlier arrival tim e w ill have the 

higher priority. In serious over load conditions (p > 3), SS follows Highest Value Density 

First (HVDF) where a transaction has the highest priority if  it has the highest value density. 

HVDF is based on the Highest Value First (HVF) algorithm where a transaction has the
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highest priority if  it has the highest importance value. The assumption is that a transaction 

has higher priority if  it has a higher value density and a lower slack time [16].

SS has an improved version, which is called robust sectional scheduling (RSS), which 

is more predictable than SS in overload condition. In this condition, RSS rejects a transaction 

with the least value that is affecting the system load. RSS has a recovery mechanism in 

which the rejected transactions are stored in a queue, and when the system is idle, RSS 

recovers those transactions [16].

Ding and Guo [16] compared SS with EDF, HVF, and HVDF by varying the load o f 

the system. SS outperformed all other priority protocols under all load conditions. In 

comparison with SS, RSS had a lower number o f  missed jobs under high load conditions. 

However, SS is not implemented in a DRTDBS where transaction operation type (read or 

write) might affect the system load. It is also unclear how changes in  system load were 

implemented.

2.2.3 Maximum Miss First

Maximum Miss First (MMF) is a non-preemptive scheduling algorithm for soft real 

time systems [35]. MMF schedules a transaction by calculating the miss ratio o f  the 

transaction. Miss ratio is the number o f  missed jobs at a certain time divided by the num ber 

o f released jobs during that time. The miss ratio o f  a transaction tj is defined as [35]:

N^iss (n 
M Rj(t) =  1

where A//™55 ( t)  is the number o f missed jobs o f  transaction t; at time t and N?ob ( t )  is the 

number of released jobs o f  transaction Tj at time t. The values o f  /V;miss ( t )  and /v /o£>(t) are 

zero for a new transaction Tj, but they increase as t j  releases jobs.
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MMF assigns priority to the transaction which has the highest miss ratio. I f  two 

transactions have the same miss ratio, then M MF uses the EDF priority protocol for 

scheduling transactions. W hen the system load is low, the miss ratio is zero; therefore, M M F 

acts like EDF, which is preferable under low load conditions. When the load increases 

gradually, the miss ratio becomes the key factor for scheduling [35].

Asiaban et al. [35] compared MMF with EDF, gEDF and other similar scheduling 

algorithms. MMF showed the same miss ratio for different transactions with different periods 

while the other algorithms did not. Therefore, MMF works well for all transactions. M M F 

produced a lower number o f consecutive missed jobs in comparison with other algorithms. 

MMF also showed better jitter (the maximum time variation between the finishing times o f 

any two consecutive jobs that completed successfully). MMF demonstrated the same system 

utilization as EDF and gEDF.

MMF does not depend on the execution time o f  the transactions which m akes it more 

stable. However, if  the number o f consecutive missed jobs is high, then M MF can block the 

transactions for a long time because o f the high number o f missed attempts. This can cause 

transactions to miss their deadlines, which degrades the performance of the system.

2.2.4 G roup-ED F

Group-EDF (gEDF) is a scheduling algorithm designed for non-preemptive soft real 

time systems. It uses both Earliest Deadline First (EDF) and Shortest Job First (SJF) to 

schedule a transaction in the system [36]. It creates groups o f  transactions based on their 

deadlines, where deadlines o f the transactions are close to each other. A group in the gEDF 

algorithm is created based on a group range parameter, Gr, represented by a percentage 

value. If the deadline value o f a transaction falls under the Gr percent of the deadline value o f
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the current transaction, the transaction is considered to be in the same group as the current 

transaction. Groups are scheduled based on the EDF protocol; when the deadlines o f  all 

transactions in a group are earlier than the deadlines o f all transactions in other groups, then 

the first group has higher priority. However, gEDF follows SJF to schedule individual 

transactions within a group.

Li et al. [36] studied the performance o f  gEDF by varying load tolerance (what extent 

a transaction can miss the deadline), the deadline value o f the transactions, the execution 

time o f the transactions, etc. gEDF performs like EDF during low load, but performs better 

than EDF during high load. The gEDF protocol also outperforms best-effort algorithms 

which switch priority protocols according to the system load.

According to Li et al. [36], though gEDF outperforms EDF, it does not guarantee 

fairness because it has tendency to favour only small transactions. However, i f  we 

concentrate in increasing the number o f completed transactions before the deadlines, then 

this is a good strategy. Nevertheless, gEDF does not consider distributed real time systems 

where a transaction might have a number o f sub-transactions, so grouping o f  transactions at 

different sites and coordinating between them can be difficult.

2.3 Summary

In a RTDBS, a transaction not only needs to maintain the serialization, but also needs

to complete before the deadline. Traditional CCPs guarantee serialization in transaction

execution, but cannot guarantee meeting deadlines. Again, a RTDBS in a distributed

environment (DRTDBS) needs to consider data availability, system resources availability,

and communication overhead between transactions and sub-transactions. Because o f  these

reasons, extending traditional CCPs by using an optimistically lending data technique or
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adaptively changing the behaviour o f  the system according the system state became very 

popular in designing a CCP. The ASL protocol adapted both features and proved itself as an 

effective CCP in a DRTDBS. However, the performance o f  ASL is affected by the system 

attributes (i.e. network latency, network topology, priority protocols). Therefore, the 

performance o f a system can be improved by finding an optimal solution for these attributes. 

Dynamically switching between priority protocols according to the system load is an optimal 

solution to improve the system performance. From various solutions presented in this 

chapter, we found that if  we can quantize the system load, then it is easy to switch between 

priority protocols considering the value o f the load. However, none of the solutions targeted 

a DRTDBS. Therefore, finding a solution for switching between priority protocols in a 

DRTDBS is the focus, and main contribution, o f this thesis.
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Chapter 3 

The Simulator

To analyze the performance o f  the ASL protocol in a DRTDBS, a distributed real­

time database model implemented in a distributed real time transaction processing simulator 

(DRTTPS) is used. DRTTPS was developed in the parallel and distributed computing 

research lab at UNBC. The key features o f DRTTPS are provided in this chapter. A detailed 

description of the simulator can be found in [46] [9].

3.1 Distributed Real-Time Transaction Processing Simulator

A model is not a real system, but describes the real system with all necessary 

information in a simpler manner. A  simulation o f a model describes the workflow o f  the 

model [47], The discrete event simulation model is a type o f  simulation model, where a 

representable system only changes its states at discrete points o f  time [48]. The continuous 

event simulation model is another type o f simulation model, which changes states o f  the 

system continuously over time. The discrete event simulation model is preferable over the 

continuous event simulation model because o f  its simplicity [47]. A simulation m odel



requires development o f a software application to implement the workflow o f a real system. 

The software application consists o f  entities that represent physical elements o f  the real 

world. The entities interact with each other to perform actions, which represents the 

behaviour o f the real system [9]. The software application is called the simulator.

Distributed Real-Time Transaction Processing Simulator (DRTTPS) is a discrete 

event simulator that simulates a DRTDBS [46] [9]. DRTTPS is flexible to incorporate new 

concurrency control protocols (CCPs) and can be a test bed for analyzing their performance. 

DRTTPS also allows other components to be added such as a new priority protocol or new 

network architecture. In DRTTPS, events are executed sequentially. A n event can be an 

action that a component of a simulator performs during execution. To m aintain the sequence 

o f events, they are inserted into a list in the order they need to be executed based on the 

event’s execution time. The events are then executed by removing them one by one from the 

beginning o f the list to the end by incrementing time. A tick is the unit to measure a discrete 

amount o f time in the simulator.

The network configuration in a distributed system is shown in Figure 3.1 [49]. It 

consists o f one or more sites where each site has one or more nodes, and each node has one 

or more real-time databases. It maintains a local area network between all nodes in a site and 

a wide area network between all sites. The system provides virtual routers to each site to 

maintain the connection between nodes inside the site or with other sites. It also provides 

routing tables to each node, where each routing table contains routes to all conceivable 

destination nodes. The destination nodes may be inside the container site or in other sites. 

The network connection is very reliable. A failure message is always re-sent to confirm the 

arrival o f the message at the destination and the system also updates the routing table during
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any connection failure or recovery to have an efficient routing path. A  network connection 

has the following properties:

1. Source: a network connection originating node.

2. Destination: a network connection ending node.

3. Bandwidth: maximum capacity o f  a network connection.

4. Latency: the time taken by a message to travel from source to destination.

5. External usage: the percentage o f  the bandwidth occupied by external users, if

any. The bandwidth excluding the external usage is considered as the effective

bandwidth o f the system.

site Csite A

network

communication 
via network

site B

Figure 3.1: Network configuration [49]

3.1.1 Node Architecture

A node is the core component o f DRTTPS and has the following characteristics:

1. Concurrency Control Protocol: It indicates which CCP is followed by the 

transactions in the node.



2. Preemption Protocol: A preemption protocol controls how the transactions are 

preempted in the system to avoid priority inversion. The options are described 

below:

>  High Priority: A transaction which is holding a lock on a data item 

can be preempted only if  a transaction which requests a lock on the 

same data item has higher priority than the lock holding transaction.

>  Priority Inheritance: The lower priority lock holding transactions 

inherits the priority o f  the higher priority waiting transaction to 

complete rather than being aborted.

>  No preemption: No preemptions will be attempted.

3. Deadlock Resolution Protocol: This protocol defines which transaction will be 

aborted if a deadlock occurs. The options are shown below:

>  First Deadlock Resolution: A  list is generated w ith the transactions 

which are involved in a deadlock. First deadlock resolution aborts 

the transaction at the top o f  the list to resolve the deadlock.

>  Priority Deadlock Resolution: Priority deadlock resolution requires 

a list of the transactions sorted according to their priority. It aborts 

the lowest priority transaction from the list to resolve the deadlock.

4. Priority Protocol: A priority protocol defines the order o f execution o f  

transactions, for example EDF, SJF, MSF, and FCFS, as described in Chapter 1.
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APAP selects one o f the existing priority protocols and switches between them 

depending on the load conditions.

5. Max active transactions: It sets the maximum limit on the number o f  transactions 

that can concurrently run in a node. Excess transactions need to w ait in a queue.

6 . Timeout: It represents the maximum time limit a transaction can be idle during 

execution before it is aborted. This time limit helps to resolve distributed 

deadlocks by predicting that the transaction is trapped in a deadlock if  it exceeds 

the time limit.

A  node consists o f several hardware and software components: processor manager, 

disk manager, buffer, swap disk, and optionally workload generator [46], The processor 

manager contains and arranges processors in the node. A processor can use a hyper­

threading technique which allows processing more than one page at a time [46], A  processor 

has two attributes:

1. Process Time: It indicates the processing time o f  a page measured by ticks.

2. Hyper-threading: It represents if  the hyper-threading technique is enabled or 

disabled in the node. System performance can be analyzed with or w ithout hyper­

threading.

The disk manager arranges disks in a node which store pages. Disks are non-volatile 

storage where data can be partitioned or replicated. A  disk has two attributes:

1. Access time: It represents the number o f ticks the system takes when it reads or 

writes a page from or to the disk.
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2. Page Range: It represents the number o f  pages in that disk. Data partition or 

replication can be controlled by page ranges. However, CCPs in DRTTPS are not 

designed to handle replicated data.

A buffer is a volatile storage where transactions perform read/write operations on the 

pages. A  transaction needs to have all requested pages to be loaded to the buffer from the 

disk if the buffer has enough space. The buffer has a parameter w hich represents the 

maximum number o f pages a buffer can support during read and write operations. If  the 

buffer does not have enough space, pages must be swapped out to a swap disk. The swap 

disk component indicates the physical disk and it contains a parameter, called access time, 

which represents the number o f  ticks the system requires to swap a page .

A w orkload genera to r is an optional component o f  a node, which is used for 

generating transactions in the node. It has the following parameters to control the number 

and nature o f  the transactions:

1. Size: It represents how many transactions are generated.

2. Arrival: It represents the inter-arrival time o f transactions in the system generated 

by the workload generator. At a low inter-arrival time, many transactions enter 

the system within a short time period which causes more transactions to run 

concurrently, resulting in high system load.

3. Slack time: It represents the deadline o f a transaction, as well as the extra time 

after the deadline. The range for the baseline experiment has been selected to 

represent a deadline which includes a slack o f  2 - 6  times the execution time.

4. W ork size: It represents the number o f pages a transaction m ight access in its 

lifetime.



5. Pages: It defines the total number o f  pages in the system.

6 . Update: It represents a percentage o f  update operations in transaction’s 

execution.

3.2 Graphical User Interface

SetupTool is the core o f  DRTTPS that allows users to set up and run simulations by 

creating site structure, node structure, and network architecture (Figure 3.2). The SetupTool 

contains a number o f  site components and corresponding parameters, where parameters 

control the characteristics of all the site components. A  simulation is run using combinations 

of specified parameter values. The SetupTool also has a component called variation, which 

defines the number o f simulations that can be run at the same time. The SetupTool has two 

graphical panels. The left panel shows the site components and the right panel shows 

parameter settings o f that particular site component. The SetupTool allows users to save 

simulations, where all site components and parameters are encapsulated in a binary image 

file. The binary image file is used later to load the simulation. After running a simulation, 

another component o f DRTTPS, called ReportTool (Figure 3.3), provides a user interface to 

create and save charts showing the results.
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3.3 Software Design:

DRTTPS provides a common pluggable framework for all components. The 

components are organized in a hierarchical structure (Figure 3.4 [46]) where all functioning 

components are children o f the node module. All children o f same base class have the same 

interface for interacting with other modules. There is a base-line CCP which is at the top o f 

the CCP inheritance tree, and contains basic functionality. CCP Level II inherits from the 

base-line protocol and CCP level III inherits from the CCP level II. All protocols at the same 

level with CCP Level II or CCP Level III will have the same physical structure (discussed in 

detail in the following subsection).

— 1 EventQueue

SiteComponent

—} CCP Baseline

4 z f
CCP Level 111

—| Processor Manager | 

I—| Pro

—| Disk Manager |

4zzi
—} Buffer

Figure 3.4: Simulation class structure [46]

The simulator architecture is flexible to incorporate new protocols w ithout major

modification of the code. An example could be priority protocols. If a new priority protocol

follows the common architecture given by DRTTPS, then the protocol would be easily

recognized by DRTTPS. The discrete event model is implemented by creating a global event

queue which stores all events and exists at top o f  the hierarchical class structure. DRTTPS

uses Java reflection [50] to create an event queue, which does not require message passing
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between classes. Java language was chosen for the development of the simulator for its 

versatility, efficiency, and platform portability. For a new event task, a new event object is 

created and added to the event queue. The events are executed one by one from the global 

event queue.

The performance analysis o f the protocols is executed by a separate class which 

keeps track o f any output values in the system. The values are then displayed in graphs in 

real-time as the simulation progresses (Figure 3.5). Finally, the ReportTool displays the 

statistics associated with the graph. DRTTPS can save or load a simulation for future use by 

encapsulating user interface, statistics, parameter setting, graphs etc. in a single object, by 

utilizing the serialization technique o f Java language [50].
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Figure 3.5: A  running simulator
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Figure 3.6: Speculative locking protocol dependencies [46]

3.3.1 Concurrency Control Protocols

Figure 3.6 shows speculative locking protocol dependencies in DRTTPS. The 

implementation o f  a CCP follows a hierarchical order. Concurrency Control is at the top o f 

all CCPs’ dependency hierarchies which provides default methods that are com mon to 

descendant CCPs. Abstract Speculative Locking inherits Concurrency Control for all default 

methods o f CCP and adds other methods with specific speculative locking functionality. 

Abstract Speculative Locking provides a generic structure for all speculative locking 

protocols. The structure includes common speculative functionalities as well as some distinct 

functionality (such as restricting number o f speculative executions). Abstract Speculative 

Locking also provides a version tree structure to keep track o f all versions o f a page. 

Speculative locking protocols are implemented by inheriting all methods from Concurrency 

Control and Abstract Speculative Locking. In addition it adds some extra features, which are 

not available in other speculative protocols; for example, ASL adds hyper-threading, 

memory management including virtual memory, and transaction queue management 

techniques.
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For a new transaction, the executing CCP checks the required pages on the version 

tree to lock the versions of the pages. N ot all versions o f  a page will be locked. It depends on 

the executing CCP’s page restriction criteria. The CCP sets speculative read or write locks on 

the pages and creates a group o f all the locks to keep track o f  all locks o f a transaction.

In DRTTPS, a transaction is aborted if  it is pre-empted by other transactions or if  it 

becomes deadlocked. The aborted transaction releases all locks that were obtained or 

requested. All versions o f the pages on the speculative tree created by the transaction are 

removed and protected for future use. The transaction is then positioned in a queue for future 

execution.

In the next chapter, we present our proposed method protocol and demonstrate its 

superior performance as compared with other priority protocols.
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Chapter 4 

The Proposed Protocol, Experiments 

and Results

This chapter describes our proposed protocol, Adaptive Priority Assignm ent Protocol 

(APAP) in detail. This is followed by the presentation o f experiments and results.

4.1 Adaptive Priority Assignment Protocol

Adaptive Priority Assignment Protocol (APAP) is an adaptive protocol for assigning 

priority to transactions in order to improve the performance o f  a DRTDBS under varying 

system loads. A priority assignment protocol is an integral part of transaction processing. 

The effect o f this protocol on the overall performance o f  the system is greatly impacted by  

data contention (number o f users’ requests to a database system at any time) and resource
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contention (conflict o f access to shared resources). The factors that cause data and resource 

contention include inter-arrival times o f transactions, disk size, cache size, number o f 

transactions, network topology, number o f  physical nodes, and the page update rate.

The performance o f a priority assignment protocol varies with different system 

environments; especially with different loads [16]. The system load “fluctuates drastically 

from day to day, hour to hour, minute to minute, even second to second” [51]. The load in a 

database system can be defined as the demand o f the database system, when a transaction 

performs queries and analysis through the DBMS. Moreover, any batch jobs or system 

commands can also create a demand [51]. The load can be quantified by the utilization o f the 

system, denoted by the following formula taken from [36] [52]:

£/ =  EF=1— ---------- 3.1
1 P i

where ej and p; denote elapsed execution time and the total assigned processing time o f 

transaction T , , respectively. EDF achieves 100% processor utilization during low load [16]. 

Conversely, during high load, EDF exhibits a significantly poor performance, thus prompting 

selection o f a better priority protocol [53]. The load calculation takes place whenever a new 

transaction arrives in the system. We ran the system with different load configurations until 

the number o f  completed transactions were maximized, and then recorded the load. After 

analyzing the performance with different loads, a range was determined for a particular 

priority protocol (Table 4.1).
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Priority Protocol Load Range

EDF O to 1.25

FCFS 2.2 to 2.3

SJF Rest o f  the time

Table 4.1: Load ranges for priority protocols

The performance o f MSF protocol is comparatively better under high load than in 

low load. However, in high load, SJF has a higher chance to complete a transaction than 

MSF because SJF minimizes the idle time o f  system during transaction execution. Moreover, 

in our experiments, during high load SJF performed better than MSF. Therefore, we did not 

use MSF as one o f the options for APAP. FCFS performed the best over a small load range 

from 2.2 to 2.3, beyond which the performance o f SJF was superior.

APAP uses the load range to decide which priority protocol to execute. W hen the 

system selects a new task it sends a load value to APAP. After getting the load value, APAP 

matches the load value with the load ranges recorded in it. If  the load falls w ithin the range 

o f the currently executing priority protocol then no change happens. If the load falls w ithin a 

different range then a switch operation is performed to change the executing priority 

assignment protocol to the newly determined priority protocol.

4.1.1 Implementation

We use DRTTPS as a test bed for APAP and use ASL as the underlying concurrency 

control protocol. As previously discussed, DRTTPS provides a common architecture to 

select the next transaction from a list o f transactions through a priority protocol engine.

When a new transaction arrives in the system, it is placed in a list where it waits until 

scheduled. The transaction selection process proceeds as follows: The priority protocol
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engine receives a request from the system to select a transaction from the waiting list. The 

priority protocol engine calculates and sends all the transactions’ values in the list to the 

backend comparator, which selects the highest priority transaction (Figure 4.1). The value is 

the deadline when the priority protocol is EDF or the execution time when the priority 

protocol is SJF. In the case o f  EDF, the highest priority transaction will have the earliest 

deadline, whereas in the case o f  SJF, it will have the lowest execution time. The transaction 

with the highest priority is then returned to the system for scheduling. W hile the transactions 

are executing, the preempted and/or aborted transactions are added to a priority queue in the 

backend comparator for future consideration.

(1) Send list
Priority
Protocol
Engine

(2) Forward list with 
transactions’ values Backend

ComparatorSystem

(4) Selected transaction (3) Selected transaction

Figure 4.1: Sequence o f  transaction selection process without APAP

When APAP is introduced in DRTTPS architecture, it acts as a mediator between the 

system and the priority protocol engine (Figure 4.2). The selection of a transaction from the 

list o f transactions waiting to be scheduled proceeds as follows: The APAP engine receives a 

load value from the system and determines the most suitable priority protocol based on that 

value. This modification ensures the dynamic selection o f the priority protocol. The APAP 

engine receives a list o f transactions from the system instead o f  the priority protocol engine. 

The APAP engine communicates with the priority protocol engine to get the values o f  the 

transactions in the list and sends the list with the transactions’ values to the backend
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comparator so that transaction selection can be completed and returned to the system. The 

communication between the APAP engine and the priority protocol engine is transparent to 

the system, as it only communicates directly with the APAP engine.

( 1 )  L o a d  v a l u e

(6) Forward list with 
transactions’ values(3) Send list Backend

ComparatorSystem APAP Engine

(7) Selected transaction
(8) Selected transaction

Priority
Protocol
Engine

Figure 4.2: Sequence o f  transaction selection process with APAP

In order to minimize the switching operation overhead, APAP only tests load for 

switching upon arrival o f a new transaction and not when transactions are pre-em pted and/or 

aborted and added to a priority queue. However, it continues acting as a m ediator to add 

transactions to the priority queue. The inclusion o f APAP in the DRTTPS does not cause any 

overhead to the original workflow o f transaction selection, as APAP simply selects 

transactions in the same manner (i.e. using the values for the transactions returned by the 

priority protocol engine).
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4.2 Experiments and Results

In this section, we describe the experiments conducted in this study. For each 

experiment, the performance o f  APAP was compared with other priority protocols including: 

EDF, SJF, FCFS, and MSF (discussed in chapter 1). The key performance metric is the 

percentage o f  transactions completed on time (PTCT), that is, before the deadlines. In 

addition, we observed the switches between the protocols in APAP and present it as the 

percentage o f usage (POU) o f priority protocols given a particular system configuration.

4.2.1 Baseline Experim ent

In a DRTDBS, there are many parameters that can change the system load, such as 

system resources (cache size, number o f disks), transaction inter-arrival time, slack time, 

network topologies etc. In our baseline experiment, we followed the parameter settings given 

in Table 4.2. Later we varied these parameters to change the overall system load. For all 

experiments, PTCT and POU are measured at a transaction inter-arrival time range o f 5 to 55 

ticks, because there was no observable result below or above this range. W e used binary tree 

topology for network connections among sites, where a node could have at m ost two child 

nodes. We assume bandwidth is unlimited and there is no network latency.

In Figure 4.3, when the transaction inter-arrival time is between 5 and 30 ticks, SJF 

demonstrates significantly higher PTCT than EDF and FCFS, because in high load scenarios, 

EDF and FCFS protocols suffer from a high number o f  transaction aborts. Under heavy load, 

EDF performs worse than the other protocols until an inter-arrival time o f  40 ticks. Beyond 

this point, the transactions have enough time to complete and EDF climbs to 100% 

completion rate. APAP performs better than all tested protocols by switching between the 

priority protocols.
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Parameter
Type Parameter Value

Network
Network Topology Binary Tree

Bandwidth 1 0 0 0  bit/tick
Network Pipe Latency 0

Node

Active Transaction 
Count

30

Disk Count per Node 2

M aximum Pages Held 
per Disk 1 0 0

Disk Access Time 35 ticks
Cache Size 2 0

Swap Disk Access 
Time

35 ticks

Transaction Process 
Time 15 ticks

Transaction
Generator

Pages per Transaction 4-12 pages
Slack Time 720-2160

Inter-arrival time 5-55 ticks
Page Update Rate 1 0 0  percent
Transaction Count 1 0 0

Table 4.2: Parameter Settings



100

h-ui- 50
a .

40

30

10 15 20 25 30 35 40  45 50 55

■ E D F  

- S J F  

- * - F C F S  

— M S F  

— " SS S——  A P A P

In te r-a rriv a l tim e

Figure 4.3: PTCT for the Baseline Experiment

Figure 4.4 shows the POUs o f  priority protocols in APAP for the baseline 

experiment. When the inter-arrival time o f  the system is between 5 and 20 ticks, the system 

usually runs with SJF because o f its superior performance during that time. W hen the inter­

arrival time o f the system increases, the load condition o f the system decreases. Thus, APAP 

increases the usage o f EDF, rather than SJF. The inter-arrival time between 20-30 ticks 

shows a transition period during which each o f the two protocols is used approxim ately 50% 

o f the time. The usage then becomes more distinct in favour o f  EDF due to decreased system 

load. APAP follows FCFS during the inter-arrival times o f 5 to 10 ticks and 15 to 30 ticks, 

with POUs up to 2.4% and 3.8%, respectively.
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Figure 4.4: POU for the Baseline Experiment

4.2.2 Performance of APAP varying the transaction load

More transactions means more data conflicts and more speculative executions, which 

increase the system load. We used the parameter settings in Table 4.2, except we increased 

the number o f transactions to 200. As a large number o f  transactions are executed, data 

contention and resource contention also increase, resulting in a large number o f  transaction 

rejections. Therefore, the performance o f  all priority protocols, including APAP, degrade. 

Figure 4.5 shows the PTCT for all protocols for this experiment. APAP continues to exhibit 

superior performance overall.
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Figure 4.5: PTCT for 200 transactions

The POUs o f  all protocols with 200 transactions are shown in Figure 4.6. It is clear 

that APAP runs SJF for more time than the baseline experiment. The FCFS is used during 

the inter-arrival time ranges from 5 to 15 ticks (maximum 4% POU) and 20 to 30 ticks 

(maximum 2.2% POU).
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Figure 4.6: POU for 200 transactions
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4.2.3 Performance of APAP with reduced page update rate

Page update rate is an important factor in transaction processing and indicates the 

percentage o f  write operations in a transaction execution. The write operations use exclusive 

locks on the data, thus blocking other transactions from accessing that data for a certain time. 

This blocking time increases the transaction execution time. Consequently, a high or low 

page update rate affects the system load. W e show results from two experiments in this 

section. In the first experiment, we changed the page update rate to 0 which represents a 

read-only scenario.
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Figure 4.7: PTCT for the zero page update rate

From Figure 4.7, EDF demonstrates maximum PTCT at inter-arrival times o f  5 and 

10 ticks, because there is no data conflict and thus no blockage o f  transactions. SJF exhibits 

higher PTCT than in the baseline experiment, but in comparison to other protocols, this is a 

poor performance. APAP demonstrates 6.9% less PTCT than EDF at inter-arrival time o f 5 

ticks. However, when the system runs with an inter-arrival time o f  more than 10 ticks, APAP
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outperforms all priority protocols and achieves PTCT o f 100% before EDF. Figure 4.8 shows 

that APAP runs mostly with SJF until an inter-arrival time o f 15 ticks. During that period, the 

usage o f SFJ varied from 85.2% to 76.1%, the usage o f  EDF increases from 13.8% to 20.3%, 

and the usage o f FCFS varies from 1% to 5%. When the inter-arrival time is more than 25 

ticks, APAP only uses EDF because it shows 100% efficiency during that period.
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Figure 4.8: POU for the zero page update rate

Next, we changed the page update rate 50 percent which implies that half o f  the pages 

accessed are also modified (Figure 4.9). The system load is higher in this case than that o f  

the zero page update rate in the previous experiment. Due to this higher load, EDF performs 

more poorly during the low inter-arrival times. However, during the high inter-arrival times, 

EDF outperforms SJF, MSF, and FCFS. APAP exploits all the priority protocols and 

consistently performs better than the other protocols except when the inter-arrival time is 20 

and 25 ticks. At these inter-arrival times, EDF exhibits a PTCT of 3.1% and 4.5% greater
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than APAP while transitioning from high to low system load. Beyond inter-arrival time o f 30 

ticks, APAP performs the same as EDF at 100% PTCT.
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Figure 4.9: PTCT for the 50 percent page update rate

The POU o f APAP for the page update rate o f  50 percent is shown in Figure 4.10. 

During the low inter-arrival times and high system load, APAP runs SJF frequently until an 

inter-arrival time o f  25 ticks. The POU o f SJF and EDF is 83.52% and 14.8%, respectively, 

at the 5-tick inter-arrival time. After that, the usage o f  SJF gradually decreases and that o f  

EDF gradually increases with a crossover point at 25 ticks. The POU o f FCFS remains low 

varying from 0 to 5.35%. APAP only uses EDF beyond the inter-arrival time o f  40 ticks.
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Figure 4.10: POU for the 50 percent page update rate

4.2.4 Performance of APAP with larger cache size

In this experiment, we study the effect o f cache size on APAP and other protocols. 

Cache size is important to the performance o f the ASL protocol because it must find space 

available in the cache or swap disk before it requests a page from the database. I f  there is not 

enough space, then the transaction needs to wait. Therefore, cache size affects the system 

load. When the cache size was increased from 20 to 50 pages (Figure 4.11), the PTCT o f all 

the priority protocols improve because o f  the larger memory. The PTCT o f SJF increases 

linearly, unlike the baseline experiment which has a drop in PTCT at the 40-tick inter-arrival 

time. The PTCT for MSF improves 4.45% on average. FCFS has a maximum 20.8%  jum p at 

the 30-tick inter-arrival time from the baseline experiment. EDF displays a large increase o f 

PTCT at 35 ticks and outperforms all other protocols. APAP is exceeded by EDF slightly 

(3.4%) at 35 ticks, but attains a PTCT o f 100% at 40 ticks with EDF.
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Figure 4.11: PTCT for 50 pages cache size
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Figure 4.12: POU for 50 pages cache size

Figure 4.12 indicates that the POU o f SJF varies from 84.3% to 92.4% until an inter­

arrival time o f 30 ticks. The POU o f EDF varies from 5.6% to 11.7% until 30 ticks. FCFS 

has maximum 5.34% POU at 30 ticks. W hen the PTCT o f EDF increases sharply at 35 ticks 

during the transition from high to low system load, the POU o f EDF also increases to 48% at
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35 ticks. Afterwards, the POU of EDF gradually reaches 100% at an inter-arrival time o f  50 

ticks.

W hen we increased the cache size to 100 pages, the performance for all protocols was 

observed to be almost the same as the performance with a memory size o f  50 pages.

4.2.5 Performance of APAP with increased slack time

An increase in slack time relaxes the deadlines and allows enough tim e for a 

transaction to complete. W hen the slack time o f  the system was increased to 720-3600 ticks, 

the PTCT o f all priority protocols improved (Figure 4.13), since the system now had enough 

time to execute all transactions. All priority protocols have a PTCT between 30% and 50% 

when the inter-arrival time is at 5 ticks. As the inter-arrival time increases, the performance 

o f all protocols also improves. EDF outperforms SJF at the 20-tick inter-arrival time, earlier 

than the baseline experiment. FCFS shows 11.4% and 14.5% more PTCT than EDF during 

the inter-arrival times o f 5 and 10 ticks. However, after 15 ticks FCFS is outperformed by 

EDF. MSF performed the same as in the baseline experiment, indicating that it is not affected 

by the increased slack time.
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Figure 4.13: PTCT for the 720-3600 ticks slack time

One noticeable finding is the performance of the protocols increase rapidly until the 

20-tick inter-arrival time, after which it increases slowly. APAP outperforms all protocols 

under all load conditions.

Figure 4.14 shows the POUs o f the priority protocols in APAP for slack time o f 720- 

3600 ticks. The POUs o f  SJF and EDF in APAP at the inter-arrival time o f 5 ticks are now 

closer, at 30% and 70%. The POUs then change quickly with the POU o f EDF becom ing 

greater than that o f  SJF after an inter-arrival time o f 15 ticks. As the PTCT o f EDF slowly 

increases to 100%, the POU of EDF also slowly goes up to 100%. In APAP the POU o f 

FCFS is up to 4.3% between the inter-arrival times o f  5 and 20 ticks. FCFS is also used in 

the inter-arrival times between 20 and 30 ticks, but only with a POU of 1%.
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Figure 4.14: POU for the 720-3600 ticks slack time

4.2.6 Effects of system disk space on the performance of APAP

In this experiment, we study the effect o f system disk space on the performance o f  

APAP and other protocols. The number o f disks affects the data availability for a transaction 

during execution. If  we increase the number o f  disks, a transaction has a high probability o f  

getting required data in the local disk, which reduces the blocking and execution tim es o f  the 

transaction. Therefore, the number o f  disks affects the system load. We increased the num ber 

o f disks from 2 to 4 for this experiment. Because of the increase in resources, there is a large 

change in the PTCTs o f all protocols over the baseline experiment (Figure 4.15). However, 

during low load when the inter-arrival time is between 5 and 10 ticks, SJF outperforms EDF, 

FCFS, and MSF. After 10 ticks, the performance curve o f  EDF shows a steep rise confirm ing 

its superior performance during low load. FCFS and M SF always perform close to each other 

and surpass SJF after 10 ticks. APAP outperforms all priority protocols under most load 

conditions, except an inter-arrival time o f 20 ticks where EDF performs slightly (4%) better.
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Figure 4.15: PTCT for 4 disks

The POUs o f EDF and SJF at lower inter-arrival times (5 to 10 ticks) are at 37.6% 

and 56.5%, respectively (Figure 4.16). As the system is a suitable environm ent for EDF 

when the inter-arrival time is more than 10 ticks, APAP gradually switches to using EDF 

more than SJF. After 30 ticks, APAP only runs EDF. APAP also uses FCFS 5.85% at the 

inter-arrival time o f 5 ticks, which gradually levels to around 1% between 15 and 20 ticks 

before going to zero at 25 ticks.
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Figure 4.16: POU for 4 disks

4.2.7 Effect of system distribution on the performance of APAP

An increase in the number o f  nodes in a DRTDBS increases data availability and load 

distribution. Therefore, it reduces the overall system load. In  the first experiment, we 

changed the number o f nodes from 7 to 11 (Figure 4.17). Due to the high data locality, the 

PTCT for EDF is now almost same as SJF even at an inter-arrival time o f  5 ticks. However, 

the performance o f EDF does not increase at a high rate when the inter-arrival time is more 

than 5 ticks. FCFS shows 7.7% more PTCT than EDF at an inter-arrival time 20 ticks. M SF 

exhibits the lowest PTCT until the 15-tick inter-arrival time after which it performs close to 

SJF. In fact, MSF performs the same as it did in the baseline experiment, because slack time 

does not improve by increasing the number o f nodes. APAP continues to outperform all 

other priority protocols.
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Figure 4.17: PTCT for 11 nodes
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Figure 4.18: POU for 11 nodes

Figure 4.18 indicates that the POU o f  SJF decreases from 73.4% to 66.5% during the 

inter-arrival times between 5 and 10 ticks, whereas the POU o f EDF increases from 23.2%  to 

28.6% during the same period. After that, the POUs o f  SJF and EDF remain more or less flat, 

until the inter-arrival time o f 20 ticks when APAP clearly shows preference for EDF over
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other priority protocols. The POU of FCFS increases to 4.9% at 10 ticks, then decreases 

gradually until it becomes zero at 35 ticks.
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Figure 4.19: PTCT for 15 nodes

Figure 4.19 shows performance results when the number o f  nodes was further 

increased to 15. Since there is high data locality, EDF surpasses SJF, MSF, and FCFS 

consistently, and achieves a PTCT o f 100% at the inter-arrival time of 15 ticks. APAP shows 

8.23% more PTCT than EDF at 5 ticks, but 2% and 2.3% less PTCT than EDF at 10 and 15 

ticks, respectively. Hereafter, APAP attains 100% of PTCT.

Because o f the superior performance o f EDF, APAP prefers EDF over SJF from the 

beginning which proves the adaptive nature o f  APAP (Figure 4.20).
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4.2.8 Effect of increasing the number of processors

In this experiment, we study the effect o f more than one processor in a node on 

APAP. We increased the number o f processors from 1 to 2, and no significant improvement 

in performance was observed for any o f the protocols including APAP (Figure 4.21). It 

should be noted that the number o f processors is not the real bottleneck in our experiments. 

As we discussed, the performance o f the protocols is greatly affected by the page update rate, 

cache size, slack time etc.; increasing the number o f processors does not affect the 

performance o f priority protocols. The PTCT o f  APAP increases to a m aximum o f 5.7% at 

the 20-tick inter-arrival time over the single processor experiment. The m aximum increase 

for EDF is 5.9% at the 35-tick inter-arrival time and 4.6% for SJF at 40 ticks.

The POUs in Figure 4.22 for two processors are visibly different than the single 

processor, because slight performance changes o f  the protocols increase the usage o f  EDF at 

the inter-arrival times from 5 to 10 ticks and decrease the POU at the inter-arrival time o f 20 

ticks.
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4.2.9 Effect of network topologies on the performance of APAP

Network topologies affect the performance o f ASL protocol [54]. In order to study 

this with APAP, that is, using dynamic switching between priority protocols, we changed the
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network topology from binary tree to 2D-Torus using 16 nodes. Due to the high data locality, 

all priority protocols perform better than the baseline experiment with 7 and 15 nodes. Here 

SJF and FCFS perform close to each other and better than EDF when the inter-arrival time is 

between 5 and 10 ticks (Figure 4.23). However, EDF outperforms SJF, M SF, and FCFS 

priority protocols when the inter-arrival time is more than 10 ticks and the system load is 

low. APAP demonstrates the maximum PTCT consistently.

As shown on Figure 4.24, between the inter-arrival times of 5 and 10 ticks, APAP 

performs with SJF around 75%-70% and with EDF around 25%-20%. After the inter-arrival 

time o f 10 ticks, the POU of SJF decreases and the POU o f EDF increases rapidly until it is 

used 100% by APAP at the inter-arrival time o f 25 ticks. The POU o f FCFS increases to 

7.9% at the inter-arrival time o f 10 ticks and goes back to zero at 15 ticks. W e get similar 

results for 2D-Mesh, Hypercube-4, and ring topologies.
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4.3 Summary

>  APAP outperformed all priority protocols especially in high load conditions. 

However, in some low load conditions EDF completed 2% to 6% more 

transactions than APAP.
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> A change in the page update rates from 100% to 0%, disk size 2 to 4, and the 

number of nodes from 7 to 15 greatly improved the performance o f  all priority 

protocols.

>  An increase in the number o f  processors from one to two in each node and the 

cache size from 50 to 100 did not have a significant effect on the performance o f  

any priority protocol.

> The network topologies we tested had similar effect on all priority protocols.

> W hen the inter-arrival time was increased, the POU of EDF increased, and 

always reached 100%.
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Chapter 5 

Conclusion

CCPs ensure consistency o f a database when multiple transactions request the same 

data in a database. In a distributed environment, CCPs also need to coordinate between 

transactions and their sub-transactions, which execute at different sites. The ASL protocol is 

a CCP for a DRTDBS which follows the underlying structure o f  Speculative Locking (SL) 

protocols as well as provides additional features (discussed in Chapter 2). ASL outperformed 

SLs, but its performance degrades when the system is in a high load condition [9],

A database system uses priority protocols when a CCP coordinates transaction 

processing to order transactions. EDF is an optimal priority protocol for ordering transactions 

in a database system. However, ED F’s performance also degrades in high load conditions. 

On the other hand, some other priority protocols (such as SJF) perform better than EDF in 

such conditions. A common trend to optimize the performance of priority protocols is 

dynamically changing from one to another according to the system load conditions. 

However, the existing solutions are not amenable to a DRTDBS.

Our proposed method, Adaptive Priority Assignment Protocol (APAP), improved the 

performance of a CCP to a large extent in a DRTDBS under all load conditions. APAP

switches between the priority protocols according to the system load using a load range table
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which contains load values where a given priority protocol is expected to perform better. 

This is done at run time. The ASL protocol is used as the underlying CCP for all o f  our 

experiments. We observed ASL’s improved performance by varying the num ber o f  

transactions, cache sizes, number o f processors, page update rates, num ber o f  disks, and 

network topologies. APAP outperformed all priority protocols in most conditions. In some 

low load conditions, when the inter-arrival time varied, EDF exhibited 2% to 6% more 

completed transactions than APAP.

We can summarize the observations in the following way:

1. APAP yields an overall superior performance when system load is high.

2. Longer slack time and more resources (more disks nodes, or cache size) decrease 

the system load, improving performance o f all priority protocols. However, 

increasing cache size beyond a certain value does not further improve the 

performance o f priority protocols.

3. In some low load conditions, EDF performs slightly better than APAP. However, 

any improvement attempt in these load conditions degrades the overall 

performance of APAP. Therefore, the fact that EDF outperformed APAP is 

considered as a limitation o f  APAP and can be considered negligible.

As APAP switches between priority protocols according to the system load, we also 

observed the percentage of usage (POU) o f the priority protocols in APAP. The POU charts 

indicate that:

1. APAP uses mostly SJF when the system load is high.

2. When the system load decreases, APAP increases the use of EDF.
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5.1 Future Work

We found that changing priority protocols at run time improves the performance o f  a 

CCP in real-time distributed database systems. However, in this research, we assumed that 

there exists a single workload generator. In a practical application, transactions can be 

generated at more than one node. Therefore, we can further our research by testing the 

performance o f APAP under multiple workload generators. Another area o f improvement 

would be the use o f replicated databases. They improve the performance o f  a transaction 

processing system by increasing data locality where a data item has one or more copies at 

different nodes. However, the test bed o f  this research, DRTTPS, is not designed to handle 

replicated databases. We can modify DRTTPS for this scenario and test the perform ance o f 

APAP. Finally, a real-time distributed system is also susceptible to failure. In our 

experiments, the DRTTPS was not built as a fault tolerant system which continues to 

function even when some components fail. Therefore, we can test how APAP performs in 

such an environment.
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