
A MUTUAL ASSISTANCE PROTOCOL FOR AGENT TEAMWORK

by

Narek Nalbandyan

B.Sc., Yerevan State University, 2008

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

MATHEMATICAL, COMPUTER, AND PHYSICAL SCIENCES
(COMPUTER SCIENCE)

THE UNIVERSITY OF NORTHERN BRITISH COLUMBIA

September 2011

© Narek Nalbandyan, 2011

1+1
Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-494-87576-6

Our file Notre reference

ISBN: 978-0-494-87576-6

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

Abstract

This thesis proposes a novel protocol for incorporating helpful behavior into mul-

tiagent teamwork. In the proposed protocol, called the Mutual Assistance Protocol

(MAP), an agent can use its own abilities and resources to advance a subtask as­

signed to another agent. The helpful act is performed only when the two agents

jointly determine that it is in the interest of the team. The underlying design princi­

ple is that each agent assesses the team impact of changes in its own local plan. The

distributed decision is reached through a bidding sequence similar to the Contract

Net Protocol. The helpful act may consist in performing an action or in granting re­

sources. The advantages of MAP over protocols that use unilateral help decisions are

demonstrated through simulation experiments, using varying levels of mutual aware­

ness in the team, dynamic disturbance in the environment, communication costs, and

computation costs.

ii

Table of Contents

Abstract ii

Table of Contents iii

List of Figures v

Acknowledgements vii

Dedication viii

1 Introduction 1

2 Related Work 7
2.1 Multiagent Systems 7
2.2 Multiagent Cooperation and Collaboration 9
2.3 Teamwork 11
2.4 Agent Protocols 14
2.5 Helpful Behavior in Agent Teams 18
2.6 Expert Teamwork 20

3 Designing a Protocol for Helpful Behavior 23
3.1 The Case for Helpful Behavior in Agent Teams 23
3.2 The Protocol Design Objectives and Approach 25

4 The Mutual Assistance Protocol 30
4.1 The General Framework of MAP 30
4.2 Action MAP: Help by Performing an Action 35
4.3 Resource MAP: Help by Providing Resources 38
4.4 Team-Level Influences on MAP 42
4.5 Variations of MAP 48

4.5.1 Simultaneous Help-Seeking Mechanism in Action MAP 48
4.5.2 Helper-Initiated MAP 50
4.5.3 MAP of Achievement and Maintenance Tasks 52

5 Evaluation 53
5.1 The Test Bed for Simulation Experiments 54

iii

5.2 Methods for Deciding whether to Help 57
5.2.1 The Decision Mechanisms 57
5.2.2 The Costs of Computation and Communication 60

5.3 The Configuration Parameter Settings 63
5.4 The Experimental Results 64

5.4.1 The Impact of Mutual Awareness on Team Score 65
5.4.2 The Impact of Disturbance on Team Score 72
5.4.3 The Impact of Communication Cost on Team Score 76
5.4.4 The Impact of Computation Cost on Team Score 78
5.4.5 Summary of the Evaluation Results 83

6 Conclusions and Future Work 85

Bibliography 88

iv

List of Figures

4.1 A Diagram for Team Project 44

5.1 The Impact of Mutual Awareness on Team Score in the case of Low
Disturbance, Low Communication Cost, and Low Computation Cost 66

5.2 The Impact of Mutual Awareness on Team Score in the case of Low
Disturbance, High Communication Cost, and Low Computation Cost 67

5.3 The Impact of Mutual Awareness on Team Score in the case of Low
Disturbance, Low Communication Cost, and High Computation Cost 68

5.4 The Impact of Mutual Awareness on Team Score in the case of Low
Disturbance, High Communication Cost, and High Computation Cost 69

5.5 The Impact of Mutual Awareness on Team Score in the case of High
Disturbance, Low Communication Cost, and Low Computation Cost 70

5.6 The Impact of Mutual Awareness on Team Score in the case of High
Disturbance, High Communication Cost, and Low Computation Cost 70

5.7 The Impact of Mutual Awareness on Team Score in the case of High
Disturbance, Low Communication Cost, and High Computation Cost 71

5.8 The Impact of Mutual Awareness on Team Score in the case of High
Disturbance, High Communication Cost, and High Computation Cost 71

5.9 The Impact of Disturbance on Team Score in the case of Moderately
Low Mutual Awareness, Low Communication cost, and Low Compu­
tation Cost 73

5.10 The Impact of Disturbance on Team Score in the case of Moderately
Low Mutual Awareness, High Communication cost, and High Compu­
tation Cost 73

5.11 The Impact of Disturbance on Team Score in the case of Moderately
High Mutual Awareness, Low Communication cost, and Low Compu­
tation Cost 74

5.12 The Impact of Disturbance on Team Score in the case of Moderately
High Mutual Awareness, High Communication cost, and High Compu­
tation Cost 75

5.13 The Impact of Communication Cost on Team Score in the case of
M o d e r a t e l y L o w M u t u a l A w a r e n e s s a n d L o w C o m p u t a t i o n C o s t . . . 7 7

5.14 The Impact of Communication Cost on Team Score in the case of
M o d e r a t e l y L o w M u t u a l A w a r e n e s s a n d H i g h C o m p u t a t i o n C o s t . . . 7 8

v

5.15 The Impact of Communication Cost on Team Score in the case of
M o d e r a t e l y H i g h M u t u a l A w a r e n e s s a n d L o w C o m p u t a t i o n C o s t . . . 7 9

5.16 The Impact of Communication Cost on Team Score in the case of
Moderately High Mutual Awareness and High Computation Cost . . 79

5.17 The Impact of Computation Cost on Team Score in the case of Mod­
erately Low Awareness and Low Communication Cost 80

5.18 The Impact of Computation Cost on Team Score in the case of Mod­
erately Low Awareness and High Communication Cost 81

5.19 The Impact of Computation Cost on Team Score in the case of Mod­
erately High Awareness and Low Communication Cost 82

5.20 The Impact of Computation Cost on Team Score in the case of Mod­
erately High Awareness and High Communication Cost 82

vi

Acknowledgements

I am cordially grateful to my supervisor, Dr. Jernej Polajnar, for his encourage­

ment, patience, advice, and support during my study, which allowed me to gain an

understanding of the subject and reach this stage. I am also thankful for his faith in

this work, considering the somewhat difficult circumstances in which it was written.

I am heartily thankful to Dr. Desanka Polajnar and Dr. Iliya Bluskov for their

help and for serving in my Supervisory Committee.

I would like to express my gratitude to Dr. Tamara Polajnar, as well as to my

colleagues Omid Alemi, Arber Borici, and Ashton Fedler, for their input on the de­

velopment of this Thesis.

I am also thankful to all of those who assisted me in one way or another during

the completion of this Thesis.

vii

This Thesis is dedicated to my family

Nvard Danielyan, Levon Nalbandyan,

and Arevik Nalbandyan

who selflessly supported me in every stage of my life,

enabling such a study to happen today.

viii

Chapter 1

Introduction

Many tasks in human society can only be accomplished through teamwork, i.e.,

organized, coordinated activity of a group of individuals with common goals directed

towards a particular task. Teamwork is increasingly important for solving a variety of

complex tasks when no individual is able to accomplish the task alone (e.g., performing

a surgery) or when accomplishing the task alone would be highly inefficient (e.g.,

harvesting a large field). A team structure usually involves a number of differentiated

roles and relationships between them, such as hierarchy or peer cooperation rules. The

teamwork participants work on different constituents of the collective task and may

perform mutually supportive collaborative actions towards achieving the collective

goal.

Teamwork has also become a major research topic in multiagent systems (MAS)

[Levesque et al., 1990, Cohen and Levesque, 1991, Grosz and Kraus, 1996, Sycara and

Lewis, 2004, Dunin-Keplicz and Verbrugge, 2010]. Agents are autonomous intelligent

entities, delegated to solve problems, and capable of social interaction. They have

been studied, in the context of several disciplines, for about three decades. Over the

last decade, they have evolved into a mainstream computing technology [Wooldridge,

2009]. With the rise of networking and distributed computing, the central interest of

1

the agent research community became the study of multiagent systems, in which a

group of agents engage in cooperative or competitive interactions [Wooldridge, 2009,

Shoham and Leyton-Brown, 2009]. Within that context, a variety of formalizations

have been developed to model MAS teamwork [Levesque et al., 1990, Wooldridge and

Jennings, 1994, Grosz and Kraus, 1996, Aldewereld et al, 2004, Dunin-Keplicz and

Verbrugge, 2010]. In addition, several platforms have been built to facilitate agent

teamwork, such as GRATE [Jennings et al., 1992], STEAM [Tambe, 1997], CAST [Yen

et al., 2001], and Cougaar [Helsinger and Wright, 2005]. The application systems

based on agent teams include the MokSAF team planning system for time-critical

tasks [Payne et al, 2000], the agent-based planning team training platform [Mountjoy

and Ram, 2003], the system for human-agent teamwork in space applications [Sierhuis

et al., 2003], and several systems for agent rescue teams [Hill et al., 2003, Marecki

et al., 2005].

An essential aspect of MAS research and development is the design of protocols

that specify how agents communicate and interact [Greaves et al., 2000, Paurobally

et al., 2003, Dunn-Davies et al., 2005]. The rules and patterns of mutual interaction

are often intuitively understood in human encounters, but require detailed and rigor­

ous specification in MAS. Once an interaction protocol for a particular purpose has

been precisely formulated, it can be formally studied with respect to correctness, effi­

ciency, and properties of specific interest. It can then be optimized, standardized, and

incorporated into MAS software development libraries and platforms. The resulting

benefits include the interoperability between independently developed agents, a wider

variety of design-time or even run-time choices among alternative interaction patterns,

and a higher general level of architectural clarity, correctness, and efficiency of MAS

software. There have been a variety of agent protocols developed for self-interested

agent interactions such as auctions, negotiation, bargaining, or coordinated use of

2

resources Smith [1980], Foundation of Intelligent Physical Agents [2001a, 2000], Fiat

et al. [2007], Ito et al. [2007]. The most successful and the most widely used among

them has been the Contract Net Protocol (CNP) [Smith, 1980]. CNP is designed for

distribution of tasks among agents in a manner resembling contract tenders. It has

been used in a variety of application domains, such as open electronic marketplaces

[Dellarocas and Klein, 1999]. The properties of CNP and its optimizations have been

studied in the works by Sandholm [1999, 1993]. CNP has been standardized by the

Foundation for Intelligent Physical Agents (FIPA) [Foundation of Intelligent Physical

Agents, 2001b] and implemented as a library in the agent development package JADE

[Java Agent Development Framework, 2004].

In the domain of agent teamwork, protocol research has mainly focused on team-

wide issues such as the team formation, the assignment of roles and subtasks to

agents, or the development of team-level plans, often building upon early work in the

area of cooperative problem solving [Wooldridge and Jennings, 1994, 1999, Durfee,

1999]. One observation that motivates the research presented in this thesis is that

the quality and efficiency of teamwork depend not only on its global aspects such

as team structure, organization, resources, and planning, but also on smaller-scale

collaborative practices within the team. It has been observed in scientific studies

(e.g., [LePine et al., 2000]), and commonly accepted in management practices, that

the capacity of team members for direct mutual assistance is an important ingredient

of success in human teamwork. Consistent with this observation, there has been a

growing interest in the study of helpful behavior in agent teamwork [Itoh, 1991, Miceli

et al., 1994, Yen et al., 2004, Cao et al., 2005, Fan et al., 2005, Kamar et al., 2009,

Polajnar et al., 2011]; however, that research interest has not, to the best of our

knowledge, resulted in the formulation of specific protocols for helpful behavior.

In this thesis, we introduce a novel protocol, called the Mutual Assistance Protocol

3

(MAP), that incorporates helpful behavior into agent teamwork. In its underlying

teamwork model, each team member works on a subtask with specified time and

resource limits, for which it autonomously constructs its local plan. In a helpful act,

one agent uses its own abilities and resources to help advance the subtask of another

agent. The helpful act is performed only if the two agents jointly determine that it is

in the interest of the team as a whole, using their individual beliefs about the state

of the environment and the state of activities in the rest of the team. The message

exchanges in MAP are similar as in CNP, but the decision criteria are based on team

interest rather than individual self interest. (In fact, individual interest is not present

in the model; the team interest relates to the achievement of team's objectives, not

to collective social welfare based on individual interests.)

The purpose of MAP is to enable team members to respond to arising difficulties

through direct mutual assistance, without the need to raise those difficulties at the

global team level. The design of MAP avoids assumptions about the global team

organization, its degree of centralization, or the techniques used for global plan con­

struction, subtask assignment, and resource allocation. However, the design of MAP

does assume that the global decisions in effect are sound and suitable for the team's

task. MAP is not designed to help overcome team-level problems of structure or

strategy, even if helpful behavior may alleviate such problems in the short term. Be­

cause of this, we regard MAP as a 'secondary' protocol, designed to support smoother

teamwork in the presence of moderate challenges, while challenges of higher magni­

tude may require the use of 'primary' protocols for reorganization or replanning at

the global level.

The design philosophy of MAP is to choose the decision mechanism for helpful

behavior with a view towards the expected accuracy of agent beliefs on which the

decisions are based. While we assume that agents in the team communicate truth­

4

fully, their beliefs are usually imperfect. However, different beliefs of the same agent

may differ in accuracy, forcing the protocol designer to ponder which and whose be­

liefs to use in the decision criteria. The design principle adopted in our case is that,

since we assume that the primary team organization is viable, the designer can view

an individual belief that is highly relevant to the agent's role in the primary team

organization as being credible enough to serve as a basis for decisions on secondary

behavior. Applying this principle to our MAS model, we note that each agent con­

structs its own local plans, and therefore uses its individual beliefs to evaluate the

team impact of each candidate plan. Accordingly, for deciding whether a helpful act

should occur, we choose a distributed mechanism in which each agent only assesses

the team impact of changes in its own local plan. We provide the specification of

MAP in two cases: when the helpful behavior is expressed by performing an action,

and when it is expressed by providing resources. In addition, we discuss two possible

variations of MAP;one of them involves an alternative help-seeking mechanism, the

other an alternative sequence of interactions in the help transaction.

For comparison, we construct two protocols in which the decision about help is

made unilaterally, based on the beliefs of a single agent. In one of them the decision

about whether to help is based on probabilistic beliefs of the helper alone (similar to

the principle employed in [Kamar et al., 2009]); in the other, the decision is based

on the probabilistic beliefs of the requester alone. Also included for comparison is

a computation without a helpful behavior. We analyze the complexity of the four

protocols with respect to computation and communication costs. We also compare

the four protocols in a series of simulation experiments, using as the simulation test-

bed a variation of the Colored Trails game [Grosz et al., 2004], which is a publicly

available research test-bed for examining decision making in group of agents or people.

We present a set of simulations showing how the performance of an agent team

5

depends on each of the following four quantities: the level of mutual awareness among

the team members; the level of dynamic disturbance in the environment; the cost

of communication; and the cost of computation. In this context, we compare the

performance of the four approaches to helpful behavior. In most cases, all three

protocols for helpful behavior produce significant improvements over the computation

without helpful behavior. The experiments show the superiority of MAP over the

other protocols, especially when the agents' knowledge about the rest of the team

decreases. MAP strongly outperforms both unilateral protocols except in situations

where individual agents have a near-perfect knowledge about the rest of the team;

the latter type of situation is uncommon in practice and often costly to achieve in

distributed architectures.

The rest of this Thesis is structured as follows: Chapter 2 provides the background

work, Chapter 3 presents the rationale for teamwork protocols for helpful behavior,

Chapter 4 presents The Mutual Assistance Protocol (MAP), Chapter 5 provides the

comparative performance evaluation of MAP and other protocols, and Chapter 6

presents the conclusions and future work.

6

Chapter 2

Related Work

This chapter contains the necessary background in areas of multiagent systems,

cooperation and collaboration, teamwork in multiagent systems, agent interaction

protocols, helpful behavior in teamwork, and expert teamwork, with the focus relevant

to my thesis.

2.1 Multiagent Systems

There is no universally accepted definition of what exactly an agent or a multiagent

system (MAS) is. Shoham and Leyton-Brown [2009] describe multiagent systems as

"systems that combine multiple autonomous entities, each having diverging interests

or different information or both." Wooldridge [2009] defines multiagent systems as

"systems composed of multiple interacting computing elements, known as agents",

where an agent is "a computer system situated in some environment and capable of

autonomous action in this environment in order to meet its delegated objectives ".

Wooldridge and Jennings [1995] suggest that in order to satisfy their design objectives

the agents need to be proactive, i.e., able to take initiatives in performing goal-directed

actions; reactive, i.e., able to perceive the environment and react to its changes; and

7

social, i.e., able to interact with other agents and humans.

While in this work we are primarily interested in artificial agents, we find it useful

to take the inclusive view of multiagent systems, allowing, for instance, the term to

apply to a team consisting of humans and agents. Thus, while all definitions allow

agents to be artificial entities, the same inclusive view also allow them to be humans

or other living organisms.

An agent gets sensory inputs from the environment and produces as output ac­

tions that can influence the environment. An agent also has an internal state, which

evolves depending on the sensory input and influences the actions of the agent. The

environmental states can be represented using a utility function that assigns a real

number to different states of the environment, letting the agent judge how desirable

each state is for the agent.

In the last twenty years, researchers have expressed particular interest in prac­

tical reasoning agents. The practical reasoning agents have unique mental states,

which help them to decide what to do and how to accomplish it. The most popular

framework for constructing this type of agents is the Belief-Desire-Intention (BDI)

framework, coming from the philosophical work of Bratman [1987]. In that model,

the agent relies on perception to form beliefs (which may or may not be true) about

the environment and about other agents. The agent uses these beliefs to construct the

desires, which are states of the environment that the agent would like to achieve. The

most suitable desires, which are chosen through deliberation, become intentions. The

agent does not have any commitment towards desires, and they can be even mutually

inconsistent or unachievable, but the agent should have some level of commitment

towards its intentions and should consider them possible. There are many systems

implemented using the BDI model. One of the first and the best known is the Pro­

8

cedural Reasoning System (PRS), constructed by Georgeff and Lansky [1987]. Other

such systems include dMARS, AgentSpeak, JADEX, and Jason (see e.g., [Wooldridge,

2009]).

Rao and Georgeff [1995] formlize BDI reasoning using modal logic. Modal logic can

express statements such as "necessarily true" or "possibly true" [Hughes and Cresswell,

1996, Blackburn et al, 2001]. However, the term "modal logic" is used more widely

to cover a group of logics with similar rules, which are derivatives of the classical

modal logic. Examples of such logics are the temporal logic or the epistemic logic.

In temporal logic, one can express temporal notions such as p is 'henceforth true' or

becomes 'eventually true', while epistemic logic allows to express epistemic notions

such as what agent a knows, or what agent a knows about the knowledge of agent b.

There are many agent-based applications that are successfully used in the real

world, such as the OASIS air traffic management system [Ljungberg and Lucas, 1992],

the CIDIM power distribution system, based on ARCHON architecture [Jennings,

1994], and the FIRMA resource management project [Downing et al., 2001].

2.2 Multiagent Cooperation and Collaboration

In multiagent systems, agents may interact in different ways, involving coopera­

tion, collaboration, competition, or combinations of these. In this thesis, I will be

mainly interested in cases where agents cooperate and collaborate in order to achieve

a common goal.

In order to work together, agents need to coordinate their activities [Wooldridge,

2009]. The coordination is necessary for synchronizing the agents' actions and avoid­

ing extraneous activities. However, coordination in agent interaction does not imply

9

cooperation. Cooperation requires more than coordination from agents, and there

is a difference between coordinated action that is not cooperative, and cooperative

coordinated action. The example showing that is the scenario presented below cited

from Searle [1990].

As a result of a sudden downpour in the park, a group of people run to a tree

in the middle of the park because it is the only available source of shelter. This

may be coordinated behavior, but it is not cooperative action, as each person

has the intention of avoiding becoming wet. But when the people are dancers,

and the choreography calls for them to converge on a common point (the tree),

this is cooperative action, although the individuals are performing exactly the

same actions as before. The difference is that in latter case they each have

the aim of meeting at the central point as a consequence of the overall aim of

executing the dance.

This example illustrates that not every coordinated action is a cooperation. Cooper­

ation involves several different types of activities, such as task sharing, information

sharing, and dynamic coordination of multiagent activities [Wooldridge, 2009].

For our purposes, we will use the term "cooperation" to describe working together

in the broadest sense, while "collaboration" is a more restrictive form of cooperation

which implies commitment to a shared goal, usually the accomplishment of the ac­

tion that the agents are trying collectively to accomplish. Self-interested individuals

will cooperate if everyone benefits, even though their goals may differ, while during

collaboration individuals must cooperate and have shared goals.

There are at least two main distinctions between cooperation (and collaboration)

in multiagent systems and 'traditional' distributed systems [Wooldridge, 2009], spec­

ified below:

10

• In multiagent systems, agents can be designed by different people who have

different goals. As a result, the agents may have no shared goals, which may

require them to function strategically in order to obtain their targeted outcome.

• As agents act autonomously and make decisions at run-time, they must be

able to coordinate their actions and cooperate with other agents dynamically.

In contrast, in traditional distributed systems, units typically coordinate and

cooperate according to the rules developed at design time.

The need for agent cooperation for problem solving has been recognized in late

1980s with the work of Durfee et al. [1989], where the authors explore the coopera­

tion of agent-like entities, which have unique expertise and can solve problems. As

there may be problems which no individual agent can solve, or solving the problem

collectively would bring them more benefit (such as less usage of resources or more

confidence regarding the solution quality), agents may decide to cooperate.

One of the most widely used approaches towards agent collaboration has been the

use of joint intentions [Wooldridge, 2009]. Intentions provide stability and predictabil­

ity that are essential to act in a changing environment [Cohen and Levesque, 1991,

Levesque et al., 1990, Cohen and Levesque, 1990]. Being part of a collaborative pro­

cess implies that, in addition to having individual intentions towards a certain goal,

agents also must have certain intentions to commitments towards the other members.

Such a mental structure provides stability to the collaborative activity.

2.3 Teamwork

Teamwork is the collaboration of individual agents towards accomplishing a par­

ticular task. In order to act as a team, the agents need to have committments to

shared goals and be in particular mental states while performing their actions. The

study of agent teamwork is an active research area, and there have been many formal

approaches towards the formalization of the semantics of agent teamwork. The ex­

amples include the fundamental works by Levesque et al. [1990], Cohen and Levesque

[1991], Wooldridge and Jennings [1994], Grosz and Kraus [1996], and more resent

works by Sycara and Lewis [2004], Aldewereld et al. [2004], Brzeziriski et al. [2005],

Dunin-Keplicz and Verbrugge [2010]. In addition, several platforms have been built to

facilitate agent teamwork, such as GRATE [Jennings et al., 1992], STEAM [Tambe,

1997], CAST [Yen et al., 2001], and Cougaar [Helsinger and Wright, 2005]. The ap­

plication systems based on agent teams include the MokSAF team planning system

for time-critical tasks [Payne et al., 2000], the agent-based planning team training

platform [Mountjoy and Ram, 2003], the system for human-agent teamwork in space

applications [Sierhuis et al., 2003], and several systems for agent rescue teams [Marecki

et al., 2005, Hill et al., 2003], to name a few.

The agents may recognize the need for collaboration during the execution of their

tasks. This requires agents to have capabilities for deciding whether to form teams

at run-time. Wooldridge and Jennings [1994, 1999] present a four-stage model of

collaborative problem solving (CPS) and formalize it by expressing it in multi-modal

logic. The four stages of the model are as follows:

1. Recognition

CPS starts when an agent that has a goal recognizes the need for collaborative

action related to that goal. An agent may recognize the need for collaboration

for several reasons, such as the beliefs about inability or inefficiency to achieve

the goal alone. However, these beliefs are not enough to initiate the collabo­

ration. In order to have a capacity for collaboration regarding an agent's goal,

12

the agent must also have beliefs about the existence of a group of agents that

can achieve the goal.

2. Team Formation

In this stage, the agent that recognized the opportunity for collaboration re­

quests others to collaborate. Other agents deliberate about the request, and if

they agree to collaborate, they together form a team with a certain commitment

to collective action. The team then agrees about the way towards achieving the

goal. As the agents are rational, they will not agree to form a team if they do

not believe that the goal is achievable.

3. Plan Formation

Having beliefs about the existence of solution to achieve the goal, the team

chooses an action that will take the group at least one step 'closer' to the goal.

As there may be different such actions, the team chooses the best one through

negotiation.

4. Team Action

In this stage, the team executes the agreed plan of joint actions. The agents

follow a certain convention to keep the relationship with other agents during

the plan execution.

In their work, Cohen and Levesque [1991] and Levesque et al. [1990] specify the

necessary conditions of the mental states of the agents in the team, using the notion

of joint intentions. In their model, the authors show that the team of agents working

on some common goal should treat that goal as a weak achievement goal, i.e., every

agent in a team should consider the possibility that the other team member may have

discovered that the goal is either achieved, unachievable, or irrelevant, and is on its

13

way of making that fact commonly known. If any agent in the team comes to the

conclusion that the goal is accomplished, not achievable, or irrelevant, it should drop

the goal, but before finishing its job, it should make the fact commonly known.

Among several other researchers, Smith and Cohen [1995] developed a semantics

for an agent communications language, which is essential for team agents in order

to communicate and share their beliefs and intentions. The authors showed that the

establishment of semantics for an agent communications language can be done on the

assumption that inter-agent communications form a task oriented dialogue, which

is used by agents to build, maintain, and disband teams. The agents perform these

activities through actions of communicative acts, called speech acts. The authors con­

structed basic and complex speech acts, such as Assert, Request, Refuse, etc., based

on joint intentions theory, and show how agents can form and disband teams using

series of speech acts. Tambe [1997] integrated the properties of mental states of the

agents forming a team, as well as the speech acts necessary for the agent communi­

cation, demonstrating a flexible and reusable agent architecture via an implemented

candidate STEAM. STEAM is based on joint intentions theory and captures concepts

of team synchronization, constructs for monitoring joint intentions and repair, and

decision-theoretic communication.

2.4 Agent Protocols

In order to accomplish certain tasks, agents engage in interactions, which may be

sequences of actions and messages following a higher-level structure. Such a higher-

level structure referring to a certain task is called an agent protocol [Paurobally et al.,

2003, Paurobally and Cunningham, 2002, Miller and McBurney, 2008].

14

Agent protocols are essential in all but the most basic agent cooperative inter­

actions, as they provide set of rules controlling the interaction [Greaves et al., 2000,

Dunn-Davies et al., 2005]. They include agent interaction protocols and agent commu­

nication protocols. Agent interaction protocols are high-level protocols that prescribe

what the agents should communicate to each-other when performing a certain type of

task. They rely on communication protocols that regulate how agents communicate.

Two well known standard agent communication protocols are KQML/KIF [Mayfield

et al., 1996] and FIPA-ACL [Foundation of Intelligent Physical Agents, 1997]. In this

thesis we are mainly interested in agent interaction protocols.

As agents may interact in a variety of circumstances, having a universal agent

protocol is not realistic [Dunn-Davies et al., 2005], and different agent cooperations in

different domains require specific protocols. Research on different types, properties,

and optimizations of agent interaction protocols includes such as [Ball and Butler,

2006, Chen et al., 2007, Smith, 1980].

There have been a variety of agent protocols developed for self-interested agent

interactions [Smith, 1980, Foundation of Intelligent Physical Agents, 2001a, 2000,

Fiat et al., 2007, Ito et al., 2007]. One of the most successful and widely used among

them has been the Contract Net Protocol (CNP) [Paurobally et al., 2004], originally

developed by Smith [1980]. Smith's inspiration came from the method that companies

use when putting contracts out to tender [Wooldridge, 2009]. The Contract Net

Protocol is a high level protocol, originally designed for the cooperation of nodes

during the distributed problem solving process. The main purpose of CNP is achieving

a balance through task sharing, where the nodes with workload are able to find idle

nodes in the net to perform the tasks. The nodes achieve such balance through

contracting.

15

The original CNP algorithm consists of four main steps:

1. Task Announcement

The node that creates the tasks or realizes that it needs help, advertises the task

to other nodes through task announcement, and after announcing it becomes the

manager of that task. Depending on the specific capabilities of other nodes, the

manager may send the announcement to all other nodes with general broadcast,

to a subset of nodes with limited broadcast, or to one single node with direct

message.

2. Bidding

The nodes in the net receive the task announcement, evaluate it according to

the expertise the task requires, the price, and possibly some other factors. If

the node realizes that it is suitable for the task, it submits a bid. The bid may

specify the capabilities of the node which are important for the completion of

the task, and possibly some other parameters.

3. Awarding

The manager may receive many bids from different nodes for one task announce­

ment, and based on the specifications of the bids, chooses the most appropriate

candidate(s) to execute the task. The manager then informs the successful

bidders through an award message. The manager rejects all other bids.

4. Executing

The selected node(s) start the execution of the task. These nodes are called

contractors of the task. After the completion of the task the contractors re­

port the results to the manager. A node can be a manager of one task and a

contractor of another task at the same time.

16

Along with the development of the Multiagent Systems, the Contract Net Protocol

had to be modified to reflect approaches in the way current agents are designed [Weiss,

2001].

In addition to the early work on cooperative problem solviing, the Contract Net

Protocol has been extensively used for cooperation among self interested agents. The

actions of self interested agents are motivated by increasing the individual utility

value to the agent. The modern Contract Net Protocol has additional utility margin

calculations during the process of evaluation of the announcement. The agent eval­

uates the benefit associated with potential contract and the cost for executing the

task in the contract, calculating the marginal benefit. Calculating the benefits from

all available task announcements, the agent uses its rationality and bids for the one

with highest value [Sandholm, 1999, 1993].

As shown in the steps of the algorithm and the analysis above, the interaction be­

tween agents in CNP is based on competitive negotiations by using contracts. Thus,

though the CNP itself is designed for cooperative distributed problem solving pur­

poses, the individual agents in the net are self-interested, meaning that the final choice

may be the best for the manager and the contractor, but not for the group as a whole

[Weiss, 2001]. Based on this property of self-interested agents in CNP, there have

been several application areas researched and presented, such as the open electronic

marketplaces [Dellarocas and Klein, 1999], where agents can buy and sell goods.

CNP has also been widely tested and analyzed in Multiagent Systems, both from

the semantical and state machine model's perspective [Paurobally et al., 2004, Itabashi

et al., 2002]. It has a number of advantages, such as the decentralized nature of

decision making and the simplicity of the algorithm. In addition, CNP has been

implemented in several agent development packages such as JADE [Java Agent De­

17

velopment Framework, 2004].

However, the modern approach to CNP may lead to a relevant problem, where

the agents will not accept new task announcements if the marginal benefit of the new

task is lower compared to their current available tasks. This situation may lead to

the case where the whole system is stuck, whereas the individual agents have the

maximum benefits. [Weiss, 2001].

There is also another bothering problem with the usage of CNP in Multiagent

Systems, which is that the agents are not always truthful and may lie, if it would

increase their benefit. Since the agents are self-interested and try to maximize their

utility, such behaviors are possible.

Research on development of protocols for agent collaboration has been mainly

focused on planning of the global structure of the team. The strategies for task

sharing, result sharing, and global planning of the team are addressed in the work

by Durfee [1999]. A general model for team formation is presented in the works by

Wooldridge and Jennings [1994, 1999]. However, the development of protocols for

achieving efficient inter-agent collaboration in cases when the global team structure

is already planned, has received less attention. Some of the steps towards building

such protocols is included in the work by and Kamar et al. [2009].

2.5 Helpful Behavior in Agent Teams

Both science and human experience indicate that towards designing efficient hu­

man teamwork, an essential factor is the helpful behavior among the team members.

A team member performs helpful behavior by assisting another team member if it

executes or gives information about a part of the task that is assigned to the other

18

team member. Helpful behavior in agent teams can be important as well, and there

exists a research interest in modeling helpful behavior in artificial agents [Itoh, 1991,

Miceli et al., 1994, Yen et al., 2004, Cao et al., 2005, Fan et al., 2005, Kamar et al.,

2009]. Although agents are designed with certain capabilities and for certain roles,

the need for helpful behavior in agent teams can arise for several reasons [Polajnar

et al., 2011]. Firstly, the agents are usually situated in environments where poten­

tial faults and unexpected events may happen, putting the agents in situations not

anticipated by their designers. Moreover, as the design of agents can often be costly,

in some domains it may be preferred to design agents with certain standard capa­

bilities in the domain of their design objectives, so that they can be reused during

the execution of similar tasks. On the other hand, providing agents with potentially

necessary capabilities may often be impractical, as the agents may have physical or

computational components that cannot be cost-effectively transferred to every team

member that could possibly need them. Therefore, in many environments an agent

team, even though designed for specific application, may still need mechanisms for

mutual assistance or dynamic reorganization.

The dynamic reorganization of agent roles is currently used in several self-healing

systems, designed to provide fault tolerance [Dashofy et al., 2002]. The dynamic

reorganization may be efficient when the changes in the environment are persistent.

However, when the environment changes have intermittent behavior and are unpre­

dictable, dynamic reorganization of agent roles does not solve the problem [Polajnar

et al., 2011].

Cao et al. [2005] use the shared mental models to develop a formal model of

proactive helpful behavior. The model provides means for proactive helpful behavior

in cases when a team member fails its task and when a team member needs to achieve

the conditions necessary for performing its task. The model enables the agents to

19

identify the help needs of the team members and perform actions to satisfy the team

members' needs if they can.

Kamar et al. [2009] observe that, even though the team members have an incentive

to help each-other because of their commitments to the shared goal, they still need

to deliberate about the decision whether to help. Helpful actions are associated with

some costs for the helping agent, which may result in costs for the team activity as

a whole. The team costs may be of different types, such as the spent resources on

execution of the help or communication, lost opportunities to perform other activities.

The authors develop a general model for evaluating the potential benefit to the team

related to performing a helpful action. The authors develop their model based on

local probabilistic beliefs of the team members. The team members use these local

beliefs to reason about the probabilities of the potential help needs of other team

members and the potential team benefits or losses associated with providing such

helps. However, these beliefs are based on local reasoning and not guaranteed to be

accurate.

An approach towards decentralized decision making for the helpful action has been

mentioned in the work by Polajnar et al. [2011], where the authors discuss the need

for empathy in artificial agents and provide a simulation experiment where the team

members achieve better results by performing empathy-driven helpful behavior in a

decentralized manner.

2.6 Expert Teamwork

Many human teams are characterized by the property that individual members

of the team have unique expertise that they contribute to the team [Cannon-Bowers

20

et al, 1993, Mohammed and Dumville, 2001, Cooke et al., 2000, Hoffman et al., 1995].

Expertise is a specialist knowledge or skill that cannot be easily transferred to another

team member. Therefore, the decisions of expert members in teams are accepted, and

the expert members are given autonomy of decision making. For our purposes, we

call this kind of teams expert teams1. A good example of a human expert team is the

surgical team, which typically consists of the main surgeon, an assisting surgeon, an

anesthesiologist, and various supporting roles; each role involves specialized knowl­

edge, as well as predefined rules and patterns of collaboration with other roles in the

team. Besides role specialization, another general property of expert teamwork is that

team decisions are based on expertise of specialized members. The decision mecha­

nisms therefore must balance commitment to joint goals with the necessary expert

autonomy. Cooke et al. [2000] observe that in human expert teams an essential factor

for success is the limited overlapping knowledge among the team members. Such an

overlap provides means for mutual assistance in case of difficulties, as well as certain

predictability of the team members' decisions.

Expert teamwork has been the subject of research interest in multiagent settings

as well [Polajnar et al., 2011, Singh, 1991a], The incentives of such studies lie in the

fact that many multiagent systems, too, often have specialized members in teams, and

some of the members may have unique skills and abilities. Some application-specific

research points on that too [Polajnar et al., 2008]. However, because of more complex

properties of expert teams, the collaboration mechanisms among expert agents have

been developed less compared to the collaboration mechanisms for homogeneous agent

teams.

Polajnar et al. [2008] suggest that, depending on the team collaboration model,

1In our work, the term expert in phrase expert 'team' is distinct from the term expert in the
phrase 'expert systems'. By saying expert, we mean the individual unique expertise of the team
member

21

the communication among the members of an expert agent team can be achieved

through both a passive environment and direct message exchange, depending on the

purpose of the communication. Communication through environment is relevant for

collaborative solving of complex problems involving distributed expertise. An example

of such environment is the blackboard architecture, in which the team members can

post or subscribe to different categories and having a flexibility of synchronous as

well as asynchronous communication [Corkill, 1991]. The expert team members can

also communicate client-server interactions that are properly designed as bidirectional

message-passing transactions and should not be done in the environment.

As the members of an expert agent team have individual unique expertise, they

know how to do certain things. This know-how [Singh, 1999, 1991b,a] refers to proce­

dural knowledge - how to achieve or maintain some states of affairs - which is different

from factual knowledge. Singh [1999] developed the theory of procedural knowledge,

and showed that in many situations know-how is equally important as the knowledge

of facts (know-that), and that know-how cannot be reduced to know-that. Thus, the

capabilities of expert agents are represented by the combination of their knowledge

and know-how.

22

Chapter 3

Designing a Protocol for Helpful
Behavior

This chapter highlights the need for protocols that provide mechanisms for helpful

behavior in agent teamwork. Section 3.1 describes the need for helpful behavior in

agent teams, Section 3.2 presents the approach we use towards designing MAP.

3.1 The Case for Helpful Behavior in Agent Teams

The interest in human teamwork, its mechanisms of collaboration, and the tech­

niques to improve its efficiency, has been steadily increasing in recent years, both in

the realm of scientific studies and in practical management, to the point that most

job interviews now directly address candidates' teamwork skills.

In human teamwork, the success of a team project depends on many factors. The

team must have the necessary expertise and resources, clear formulation of tasks, an

adequate structure, and proper planning at the global level. Assuming that all these

prerequisites are in place, the team's performance on complex tasks still critically

depends on the effectiveness of internal interactions in the team. In many situations,

23

an important ingredient of effective collaboration is the readiness of team members

to help each other.

Helpful behavior in agent teamwork has also attracted interest of a number of

researchers [Itoh, 1991, Miceli et al., 1994, Yen et al., 2004, Cao et al., 2005, Fan et al.,

2005, Kamar et al., 2009, Polajnar et al., 2011]. A strong motive for such studies is the

emergence of mixed human and artificial agent teams, in which many of the human

rules of social behavior are expected to apply. The potential significance of helpful

behavior in teams consisting purely of artificial agents is discussed in [Polajnar et al.,

2011]. The authors point out that, although artificial agents are designed with certain

capabilities and for certain roles, the need for helpful behavior can arise for several

reasons. The agents are often situated in environments where faults and unexpected

events may happen, which may put the agents in situations not anticipated by their

designers. Furthermore, as the design of agents can often be costly, in some domains

it may be preferred to design agents with certain standard capabilities in the domain

of their design objectives, so that they can be reused during execution of similar tasks.

Thus artificial agents, like humans, may have abilities beyond their immediate roles,

which can prove valuable to the team in unexpected situations, in particular if helpful

behavior is supported by suitable protocols. On the other hand, providing agents

with all potentially useful capabilities could be impractical, as the agents may have

physical or computational components that cannot be cost-effectively transferred to

every team member that could possibly need them. Therefore, in many environments

an agent team, even if designed for a specific application, may still need mechanisms

for mutual assistance.

In order to incorporate helpful behavior into agent teamwork, one needs to develop

suitable interaction protocols. The existing studies in helpful behavior among agents

have so far, to the best of our knowledge, not produced such protocols. One of the few

24

approaches in that direction is the work by Kamar et al. [2009], where the authors

provide methods for reasoning about helpful behavior based on local probabilistic

beliefs of individual agents.

In this thesis we make the case for the development of teamwork protocols for

helpful behavior. When such protocols are developed, adopted, and possibly stan­

dardized, developers will be able to independently design agents that can interact and

cooperate according to a set of well defined mutual assistance rules that are known

in advance. A stable protocol definition provides a basis for theoretical and empirical

studies of its advantages, limitations, and costs. It also allows incorporation of generic

protocol versions into development toolkits and libraries, leading to major savings in

development time. As argued by Miller and McBurney [2008], agents could decide

dynamically when they need such protocols, thus having an option of adding helpful

behavior at run time as needed. As always when software is developed for system­

atic reuse, and particularly in the realm of free software, there are opportunities to

attain higher quality of a protocol design and implementation through feedback and

collaboration of many experts on its successive refinements over longer periods.

Based on this rationale, we proceed to consider some design objectives and prin­

ciples for a teamwork protocol for helpful behavior. We introduce the protocol itself

in the next chapter.

3.2 The Protocol Design Objectives and Approach

As in other teamwork literature, we assume that agents in the team are truthful

in their interactions. Helpful behavior differs from self-interested cooperation (e.g.,

CNP) in that it is motivated by team benefit rather than individual agent's benefit.

25

Despite this absence of fundamental conflict of interest, the viewpoints of team mem­

bers can differ because they do not have the same expertise and do not have identical

information about the state of the environment or the state of teamwork in progress;

and since they have a degree of individual decision autonomy, their decisions may not

always be in accord with each other. Moreover, the decisions of individual members

may not always serve the team interest as it would be perceived on the basis of the to­

tal knowledge collectively held by all members. Thus, an intended helpful act, based

on limited knowledge of an individual team member, may in fact not be helpful to the

team, even if the team as a whole knows enough to detect the problem. Yet, in most

complex systems it would be quite unrealistic to postulate that each individual team

member must know everything the team knows. In a centralized team organization,

one might require the team leader to know all that the team knows; but it is well

known that such solutions are vulnerable to failure and do not scale as the system

size increases. Intuitively, a strict subjection of helpful acts to central approval by

the team leader preempts one of the key purposes of helpful behavior, which is to

overcome local problems without raising them to the global level.

The observations above reinforce the need for carefully designed protocols that

regulate helpful behavior in teams. In particular, the protocol designer must consider

whether the agents involved in the decision on performing a helpful act are likely to

possess the relevant information. In a recent study of helpful behavior [Kamar 2009], a

team member uses its own beliefs to unilaterally decide whether to help another agent;

no communication is needed prior to the decision. A different approach is used in

[Polajnar 2011], an article on empathy-based helpful behavior: the agent requesting

help interacts with agents willing to offer help, possibly leading to a bilateral (or

multilateral) agreement. We adopt the latter principle as a basis for the protocol

introduced in this thesis. The reasons motivating this choice are discussed below.

26

In our approach, helpful behavior is viewed as a supplementary, corrective mech­

anism, whose purpose is to improve the performance "in the small", at a fine level

of granularity of the operations performed, without altering the general team struc­

ture and organization, agent role design, and global plan construction. Our model

therefore situates helpful behavior in a context where these general, high-level aspects

of team operation are fixed. It is possible that mutual assistance is needed because

the events arising in the environment have exposed certain weaknesses of the current

team organization or global plan. But if the inadequacies are of such magnitude that

they require team reorganization, role redesign or reassignment, or replanning at the

global level, then the situation is beyond the scope of our present study.

Consistent with the above restrictions, and in order to keep our model of agent

team as general as possible, we assume as little as possible about the degree of cen­

tralization of the team organization. The assumption that we do make is that each

agent performs a certain subtask, for which it autonomously develops a plan of its

own actions, intended to meet the time and cost limits prescribed by the team. In

that context, we consider two kinds of helpful acts. First, an agent may perform an

action on behalf of another, using its own time and cost budget. Second, an agent

may grant a portion of its own cost budget as assistance to another. In order to not

depend on any features that some teams might not have, we rely on decentralized

mechanisms for deciding whether an agent should help another. About the MAS

infrastructure we also assume relatively little; primarily, the communication cost of

consulting about help and its eventual delivery must not be prohibitive. The intent is

to have a protocol for helpful behavior that is applicable across a wide range of MAS

team models. Clearly, some of those models may support it better than others, and

some may include effective alternative mechanisms for similar purposes.

In order to come up with a cost-effective plan, the agent must be able to generate

27

and evaluate alternative candidate plans. The candidate plans are compared with

respect to team interest rather than the agent's self-interest. To this end the team

member arguably has a harder duty than a self-interested contractor in CNP, because

its decision criteria involve non-local circumstances such as the state of the team's

environment beyond its own scope of perception, the progress of work elsewhere in

the team, and dependencies between subtasks within the global plan. The agent's

belief set used in the comparative evaluation of plans thus consists of two subsets:

its local beliefs, based on its own perception of the environment external to the team,

and its context beliefs, developed in interaction with the team, that contain team-level

information relevant to the individual. We do not specify the team-level information

that the agent has, but we do assume that it is sufficient for a sound assessment

of the team impact of each candidate plan. If that is not the case, then the team

organization itself is ineffective.

The above analysis motivates our position that, within the general assumptions we

have outlined, each helpful act in agent teamwork should occur based on a distributed

agreement among its participants, rather than based on a unilateral decision. For

instance, consider the case when agent A contemplates a helpful act of performing an

action within the current plan of agent B. In [Kamar 2009], A unilaterally assesses

the team impact of help as the difference between the team utility of the scenario with

help and the team utility of the scenario without help. The calculation of team utility

is based on A's own beliefs about the probabilities of team members' actions. Note

that a decision to help implies a change of plans for both A and B. In an effective

team organization that complies with our assumptions, A should indeed be able to

assess the team impact of its own plan change, in the same way as it assesses its own

candidate plans. The presumed ability of A to properly assess the team impact of

B's plan change may or may not exist; its absence does not seem to imply that the

28

underlying team organization is ineffective. We prefer to opt for a distributed decision

mechanism that lets B assess the team impact of its own plan change. We already

know that B has that ability because it routinely assesses its own candidate plans.

The purpose of MAP is to enable team members to respond to arising difficulties

through direct mutual assistance, without the need to raise those difficulties at the

global team level. The design of MAP avoids assumptions about the global team

organization, its degree of centralization, or the techniques used for global plan con­

struction, subtask assignment, and resource allocation. However, the design of MAP

does assume that the global decisions in effect are sound and suitable for the team's

task. MAP is not designed to help overcome team-level problems of structure or

strategy, even if helpful behavior may alleviate such problems in the short term. Be­

cause of this, we regard MAP as a 'secondary' protocol, designed to support smoother

teamwork in the presence of moderate challenges, while challenges of higher magni­

tude may require the use of 'primary' protocols for reorganization or replanning at

the global level.

29

Chapter 4

The Mutual Assistance Protocol

This chapter introduces a mechanism for incorporating helpful behavior into agent

teamwork and formalizes it as the Mutual Assistance Protocol (MAP). Section 4.1

formulates the general theoretical framework of MAP; Sections 4.2 and 4.3 provide

the formalization of MAP, Section 4.4 presents a discussion on team-level influences

on MAP, and Section 4.5 discusses two variations of MAP.

4.1 The General Framework of MAP

Many agent teams work in settings where there exists an overall plan for the

main task, with projected timing and cost associated with each of its subtasks that

individual members of the team perform. Examples of such teams include different

engineering and planning teams. The team organization may involve dependencies

among the subtasks, as some subtasks may need others as constituents. As the envi­

ronment in which the team operates may be dynamic, unexpected events may happen

during the execution of subtasks, requiring the agents to change their plans towards

achieving the subtasks. Such changed plans may not be able to satisfy the given

time and cost requirements, impacting not only the affected agent's performance, but

30

also other dependent team members' subtasks and the overall performance of the

team. Situations of this type require mechanisms that improve the team robustness

towards the changes in the environment in the sense that the team performance is

not degraded significantly. Such a robustness can be provided through incorporating

helpful behavior mechanisms among team members. As a first step towards defining

such a mechanism, we describe the team collaboration process at an abstract level. In

our model, we do not specify how the global plan for task assignments is constructed

and assume that the member executing the subtask has potentially enough capabili­

ties to do that. In addition, we assume that the changes in the environment in which

the team operates are moderate, so that they do not result in a need for changing

the overall team structure. We also assume that the agents are able to evaluate their

plans and can calculate accurate team impact of the chosen plan. While such calcu­

lations need not return exactly accurate values, we assume that their approximation

returns reasonably accurate values.

In our MAS model, a team of agents Ai, A2, •. •, An, n > 1, operates in an envi­

ronment E. The team is assigned a task T, with each agent Ai currently assigned

a subtask Tj, along with a requested completion time limit Deadline(Ti) and cost

budget TotalCost(Ti); we do not specify how subtasks, deadlines, and budgets are

assigned, but assume that those assignments are stable unless we indicate otherwise.

The environment E is deterministic in the sense that, when an action a is per­

formed on a given state of E, the resulting state of E is uniquely determined. The

environment is dynamic in the sense that its state evolves over time due to both

agent actions and other unspecified factors. We refer to the latter changes as events

in the environment; the team cannot predict the future events but may need to re­

act to them. It is the duty of each agent Ai to perceive the events in a particular

environment segment Ei and react to them as necessary. The design of agent roles

31

in a team and the distribution of subtasks among its members often rely on specific

expectations regarding event patterns. We informally speak of unexpected behavior

or unexpected events to indicate that the actual event patterns do not match such

expectations.

Each agent Ai forms a set of local beliefs Bj based on its own observation of the

external environment and its own progress in performing its subtask, as well as a set

of context beliefs Ci based on interactions with the rest of the team. Beliefs are logical

statements representing the agent's view of the world. The beliefs sets Bi and Ci take

values from the domain called BeliefSets. As both belief sets evolve in time, we write

Bi(t) and Ci(t) when their dependence on time t is explicitly discussed, but omit the

argument otherwise.

The agents can modify the state of the environment by performing actions from

a given finite set called Actions. Each agent Ai has an associated set ActionSi C

Actions, representing the actions that Ai is capable of performing, along with the

functions costf ActionSi —> K+, and duration*: ActionSi —> R+ (where R+ is

the set of non-negative reals), representing the cost and time that Ai requires for

performing the action. In general, the agents can be specialized and have different

capabilities. The duration and cost of an action a performed by an agent Ai can

vastly differ from the duration and cost of the same action a performed by a different

agent Aj. Each agent Ai is aware of the duration and cost of each action a that it

performs; in general, it may not know the duration and cost of actions performed by

others.

In order to perform its subtask, agent Ai can autonomously generate a plan. A

plan is a sequences of actions that an agent Ai can perform; it belongs to the domain

PlanSi = Actions*. When Ai generates a plan 7Tj = a*... a!-, k > 1 in Plansi, it uses

32

the duration and cost of each action a\ to calculate the total duration and total cost of

7Tj. The agent generates a set of alternative plans, discards those that fail to meet the

prescribed deadline and budget, and selects the best plan for the remaining subset.

The best candidate is selected based on team interest as perceived by Ai, represented

by the .Aj's team utility function

Ui. PlanSi x Belief Sets x Belief Sets —• R

where R is the set of reals. The team utility function value ut(irt) Bi, Ci) represents

the ylj's estimate of the team's overall utility of following its global plan within which

Ai s own plan is 7^. In general this estimate is imperfect because Ai has a partial

knowledge about the total state of team's activities.

If the team organization is to be effective, it is an essential design requirement

that Ai should be able to accurately compare its candidate plans. Given any two

candidate plans 7r and w', the difference

Aj(7T, 7r') = Ui(7T, Bi, Ci) - Ui(n' , Bi, Q)

must accurately reflect the team impact of Aj's choosing n over 7r'. It is worth noting

that what matters is the difference rather than Ui itself. (For instance, if ux has

additive components that do not depend on Aj's plan, they will cancel out and their

accuracy is immaterial.) For these reasons we henceforth assume that the protocols for

mainstream collaboration within the team are so designed that the context beliefs Ci

are always sufficient to enable Ai to accurately calculate the team impact of choosing

one plan over another. By 'accurately' we mean that the level of accuracy is good

enough to meet the requirements of the application; the actual criteria in practice

are domain specific. We shall not elaborate how these context beliefs are formed and

updated, since our interest is not in the primary collaborative mechanisms but in

33

the secondary ones, namely in protocols for helpful behavior. However, our design of

MAP relies and depends on the assumption that each agent can competently assess

the team impact of its choice among its own candidate plans. Our rationale is that if

within our general team model that assumption is not met, then the team organization

is fundamentally ineffective and its refinement through addition of helpful behavior

is unwarranted.

As the team operates in a dynamic environment, some of the events happening

there may result in a need for a plan change for some agents of the team. Moreover, as

there may be subtask dependencies in the team, such a plan change may lead to plan

changes for other agents as well. If agent Ai has to change its original plan 7Tj to satisfy

the requirements, given the updated beliefs Bi and C;, it attempts to generate a new

plan for the rest of the subtask. If it is possible to replan the rest of the execution of

a subtask, so that the changes are handled within the deadline and available resource

limits, the agent proceeds with that plan. Otherwise it may raise its concerns at the

team level, possibly leading to reallocation of deadlines and resources to subtasks, or

to structural changes in the global plan; such considerations are beyond our current

scope. Given that the global interventions are costly, it may benefit the team if

the difficulty can be overcome through helpful behavior between the team members.

Thus, when a protocol for helpful behavior is available in the teamwork model, the

agent asks for help before raising its concerns to the global team level. An agent may

ask for help for two reasons: when it has difficulties performing an action because of

the lack of capabilities or because of the the lack of resources. We discuss these two

cases separately in the next two sections. For each case, we provide the description

of the help request generation, deliberation about whether to help, and deliberation

about choosing the most suitable help offer.

34

4.2 Action MAP: Help by Performing an Action

In this section we provide a formalization of the Mutual Assistance Protocol in

the case when an agent does not have adequate capabilities to perform an action of

its plan effectively and needs to ask for help.

When each of the candidate plans generated by the agent Ai misses the watermark,

which indicates that the plan comes close to failing in satisfying the deadline or

resource requirements, Ai recognizes the need to ask for help. It selects a potential

plan 7Tj and decides to request help in performing a specific action af within 7r». The

helpful act needs to be performed within a certain time interval [^,£2], in order to

fit with the rest of 7Ti. On the one hand, the execution of may start no earlier

than the time t% when the necessary inputs for «l
fc are ready. On the other hand,

the execution of must be completed no later than the projected deadline t2 for

af, so that the remainder of the plan after the execution of a* can be completed on

time. Let af [ii, t2\ be the action identical to af, but performed free of cost in the

time interval [ii, t2}. Let ir[= help+(-Kl, a*, [£1, £2]) denote the resulting plan of agent

Ai that results from the substitution of af [ii, t2\ for a* in the original plan 7rf. In

order to evaluate the importance of the requested help action, Ai uses the team utility

function Wj(tx[, B^Ci) to calculate the team utility of the plan tx\ in which the action

af is performed free of cost at the time interval [ii, t2}.

The difference between the team utility function values of the plans 7r- and iXi re­

flects the team benefit, from the requesting agent's perspective, of having the specified

action performed by another agent:

Ai(7T.,7Tj) = Ui(n'u Bi, Ci) - UiiiTi, Bi, Ci)

35

Having recognized the action for which it needs help, the time interval of the needed

help, and the team benefit of the requested action, Ai broadcasts a help request to

the team members:

Broadcast(HelpRequest(Ai, af, [£i, £2], Ai(7rt', 7Ti)))

When a team member agent Aj receives the help request, it has to decide whether

to agree to help. The agent first checks whether it has the capabilities to perform

the requested action in the time interval provided in the help request. If Aj does not

have the capabilities, it ignores the help request. If Aj has adequate capabilities to

help Ai by performing the action af, it considers the change of its own plan ttj to a

new plan 7r" = help~(iXj, a£, [tx, £2]) in which it additionally performs the action of in

the time interval [ti,t2\. Aj then calculates the team utility function for the plan 7x'J.

The difference between the utility function values for the plans iXj and 7r" reflects

the team loss, from the Aj s perspective, if it, in addition to the actions of its own

p lan , a l so pe r fo rms t he ac t ion a \ i n t he t ime in t e rva l [t i , t 2] \

Aj (7Xj, 7Tj) = Uj (7Xj, Bj ,Cj) — Uj (7Xj , Bj , Cj)

Aj uses the team loss value in order to deliberate whether to agree to help to agent

Ai. If the calculated team loss value is smaller than the team benefit value of the

same action specified in the request, then Aj agrees to help. Otherwise it ignores the

help request. The difference between the team benefit value specified in the request

and team loss value of the same action calculated by the helping agent is called the

net team impact:

Net I mpactij) = Aj(7r-,7Tj) — Aj(7Tj,7r")

36

If the net team impact is a positive number, then Aj agrees to help and bids for the

requested action a£, sending the value of the net impact for within its bid message

to Ai. The bid must be delivered within the fixed time S after receiving the help

request:

Bid(Aj, a*, Net Impact^ (a*))

When Ai receives the submitted bids, it chooses the bid that it views as the most

favorable for the team, namely the bid with the highest net impact.

One should note that the reasoning about team impact in MAP is inherently

approximate, in that no agent assesses the simulataneous impact of both local plan

changes. In our view, this is outweighed by the fact that each agent assesses its local

circumstances with which it is highly familiar.

We are now ready for a complete definition of the Mutual Assistance Protocol. It

is specified in the three steps below. Step zero represents the preliminary step in the

team operation, which is out of the scope of this Thesis.

0. The team members get individual subtasks according to their abilities, with the

corresponding deadlines and the total allowed costs for completing the subtask.

The team members also get the context beliefs regarding the execution of the

subtask. They make the initial plan for accomplishing the given subtask.

1. During the execution of the subtask, environmental or context belief changes

may happen, because of which a team member agent may recognize that it

needs help for completing its subtask. In such a case, the agent makes an

alternative plan, decides about the action for which it needs help along with

the time interval when the help needs to be delivered, and calculates the team

benefit if it is assisted by a team member. The agent then broadcasts a help

37

request, in which it mentions the particular action for which it needs help, the

calculated time interval, and the amount that the team will benefit if such a

help is provided.

2. Each team-member agent that is qualified for performing the requested subtask

assesses the request and calculates the cost that the team will suffer if the agent

executes the requested help. If the calculated team cost is lower than the team

benefit mentioned in the request, the agent bids for the help request, specifying

the team loss for executing the help. Otherwise the agent ignores the request.

3. The requesting agent receives all the bids from team members and selects the

bid which has the most favorable impact on the team. If no offer comes for the

requested action, the agent generates another alternative plan.

4.3 Resource MAP: Help by Providing Resources

This section presents the Mutual Assistance Protocol in the case when an agent has

run out of resources during the execution of the plan and needs additional resources

from the team members in order to complete the plan.

As the environment is dynamic, and unpredicted events may happen, the agent

may ask for resources only for the next action of the plan. After recognizing the need

for additional resources, the agent Ai calculates the amount of resources D{ that it

lacks. This amount may change over time, as the changes in the environment may

force Ai to change its plan, and particularly, the next action.

In order to evaluate the importance of the requested amount of resources, Ai uses

a team utility function

Hi: PlanSi x R+ —• R

38

The team utility function value Ui(~Ki, Ri) (where Ri is the remaining resources of

agent Ai) represents the A,'s estimate of the team's overall utility if Ai follows the

plan 7Tj in which Ai has resources Ri. The function value Ui(ni, Ri + A) represents

the team impact if the plan tti is executed with additional resources A-

The difference between the team utility function values represents the team ben­

efit, from the requesting agent's perspective, if the specified amount of resources is

provided to the agent Ai.

Aj(7Tj, Di, Ri) = Ui{7Ti, Ri + Di) - Ui(TTi, Ri)

Having recognized the amount of resources needed and the the team benefit associated

with the requested amount, Ai broadcasts a help request to the team members:

Broadcast(HelpRequest(Ai, Dj, Ai(irDi, Ri)))

When a team member agent Aj receives the help request, it has to decide whether

it should help Ai with providing the full or partial amount of resources mentioned

in the request. There may be situations when no individual team member is able to

provide the full amount of resources mentioned in the help request without making

its own situation worse than the one of the agent Ai. However, by contributing to

A{ partially, the team members together may accumulate the necessary amount of

resources requested by Ai. When deliberating whether to help Ai and with how

much resources to help, an agent Aj uses the notion of proportionality; Aj deliberates

whether at that time point there is a non-empty set Qj of possible resource amounts

dj it can offer, and a coefficient qj, such that the proportional team loss associated

with the absence of that resource amounts in Qj is less than equal to the coefficient

qj} whch is less than the proportional team benefit of the agent Ai associated with

39

the existence of the additional resources Dj. The deliberation by Aj is performed

by calculating the utility function Uj(nj,Rj) and Uj(iTj,Rj — dj) to determine the

team impact if Aj executes the plan ixj with the amount of resources Rj and Rj — dj,

respectively.

Aj(n j , d j , Rj) = Uj(-K j , Rj) — Uj (7^, Rj — d j) reflects the team loss of the agent Aj

for giving away a resource amount dj. Thus, the proportionality condition for agent

Aj leads to the following:

Aj(7Tj, dj , Rj) ^ ^ Aj(7Tj, Di, Ri) (a i \

d, S q>< A 1 J

If 4.1 does not hold for any amount of resources, then agent Aj ignores the help

request. Otherwise Aj submits a bid, specifying the set of amounts it is able to

transfer, along with the team loss coefficient associated with the provided set:

Bid(A j , A i , Q j , Q j)

Agent Ai receives the submitted bids and checks whether the collective amount

of resources offered in the all bids together is greater or equal to the amount that it

requested from the team. If the team collectively was not able to provide the agent

Ai with the necessary amount of resources, then Ai may ignore all the bids or select

the combination of bids most beneficial to the team, depending on the purpose of

the requested resources. If the collectively offered resources in the bids are greater or

equal to the requested amount, Ai chooses the the combination of bids which provide

the agent with the requested amount of resources:

40

yi d jk ~ Di
k=1

and minimize the upper bound on the team loss:

T

yj qjk * djk is minimal
k=l

The proportionality condition then ensures that the combined team loss of all

helpers remains lower than the team benefit specified in the help request. Since for

all k G {1,... ,r},

^jk i^jk i dj k j Rj k) ^ Ai(7Ti, Di, Ri)

d Qjk D Ujk ±Jt

it follows that

^fc=i Aji i ^ j k ' d j k i Rjk) — ' j k

< maxqjkEr
k=1djk

k

= mzxq j k Di
k

^ Aj(7Ti, Di, Ri) n

< A '

= Aj(7Ti, Di, Ri)

The complete steps of the Mutual Assistance Protocol in case of the resource needs

are specified below:

0. The team members get individual subtasks according to their abilities, with the

41

corresponding deadlines and the total allowed costs for completing the subtask.

The team members also get the context beliefs regarding the execution of the

subtask. They make the initial plan for accomplishing the given subtask.

1. During the execution of the subtask, an agent may be in a need for additional

resources. In such a case, the agent requests help from the team members,

specifying the amount of resources needed, and the possible team benefit if

such an amount of resources is provided.

2. Each team-member agent assesses the request and decides whether it can pro­

vide any amount of resources, such that the proportional team loss associated

with the loss of that resources is lower than the proportional team benefit pro­

vided in the help request. If such an amount exists, the agent finds the maximum

amount satisfying the criteria and submits a bid for the help request, specifying

the offering amount of resources and the corresponding team loss.

3. The requesting agent receives all the bids from team members and checks

whether the collective amount of bidded resources are enough to accept any

bidded amount. If so, then the agent selects the bid(s) which guarantee the

requested amount of resource income, in the meantime causing the team the

minimum amount of damage. Otherwise the agent may or may not take any of

the resources offered in the bids, depending on the purpose of the request.

4.4 Team-Level Influences on MAP

In this section, we discuss how in MAP the plans of agents may be influenced

because of plan changes of certain team members.

Consider a team of agents working on a project task divided into seven subtasks,

42

as shown in Figure 4.1. The subtasks are represented by rectangles, and the depen­

dencies among the subtasks are represented by arrows. Subtasks T\ to T4 are executed

in parallel, after completion of which the execution of the remaining subtasks starts.

Each subtask has its projected duration and total expenses, as shown in the figure.

The number above each subtask represents the projected time estimate for the com­

pletion of the subtask, whereas the number in the top-right corner of the subtask

represents the estimated expenses for the completion of the subtask. The critical

path in the project is represented by red arrows, which includes the subtasks T4,

7g, and T7. The project diagram with its associated schedules and cost information

is posted on a commonly accessible area and serves as context beliefs for the team

agents.

43

time

Figure 4.1: A Diagram for Team Project

When the project starts, agents in charge of executing the subtasks t\ to T4

generate individual plans based on their abilities, so that the plan satisfies the given

time and cost requirements. The constructed plans may have different time and cost

values compared to what the team estimates are. Once the agents select their plans,

they post their schedules and the costs on the commonly accessible diagram, thus

updating their own and some of their team members' context beliefs. In Figure 4.1,

the durations of the individual plans of agents are represented by the shaded area

inside the subtasks, and the associated costs of the chosen plans are represented by

44

the numbers inside the shaded regions.

The diagram also gives to the team members information about the possible al­

lowed lateness of the completion of each subtask and relevant information about

available resources. For instance, if because of environmental changes the agent A2

experiences minor delays for the completion of subtask T2, such a delay will not cause

the team any problems, as the accomplishment of the subtask T2 will be needed for

other subtasks only when the subtask T\ or T3 and T4 together are completed. How­

ever, major delays of T2 may delay the completion of the overall project, affecting

the team performance. While the delay of T2 with a consequent delay of T5 may not

be vital, the case of consequent delay of T6 may cause the team significant damage.

On the other hand, spending additional amount of resources for the completion of

T2 may affect the team noticeably. Thus, agent A2 has certain time flexibility for

completing T2 and should attempt on completing T2 spending fewer resources. The

situation is different for the task T4, which is on the critical path, and any delay of

the completion of T4 may lead to the delay of the entire project, affecting the team

significantly. In such a case, when the timely completion of the subtask is critical,

completing that subtask by spending additional resources may cause the team less

damage than completing it by spending additional time.

The above-mentioned cases reflect the actual methods for calculating the team

impact utility functions in team models like the one in Figure 4.1. They also show

that these functions can be efficiently calculated by agents, given the characteristics

of the subtask and the chosen plan.

The utility functions of team impact are used very frequently by the team member

agents. The usage of these functions is more prominent when the agents or other team

members need help, or when they need to consider change of the plan. The agents

45

may need to change their plan either because of environmental changes that make the

agents to choose a different plan to satisfy the requirements, or because of the changes

of context beliefs, for which the agent should react accordingly. Having discussed the

usage of utility functions in the case of environmental changes above, we now describe

its usage in case of changes of context beliefs.

Even when an agent is operating according to the plan satisfying its current re­

quirements, it may need to choose a different plan because of context belief changes,

which may trigger changes of the requirements. An example of such a situation is

illustrated in Figure 4.1. In the example, the agent A4 is executing the plan which

satisfies its time and cost requirements. However, as the subtasks T2 and primarily

T3 are ahead of their schedules and will likely be completed significantly sooner than

it was estimated, the team may decide to accelerate the completion of T4, aiming

at earlier completion of the entire project (if the earlier completion of the project is

important for the team). In this case, the team may change the requirements of the

subtask t4 and request a4 to complete the task t4 earlier. While the early comple­

tion of t4 may influence the team positively, it may not be beneficial if it exceeds its

limits. For instance, it would be pointless to request acceleration of t4 for more than

3 time units, as there is no benefit to have t6 completed before the completion of t5

(Figure 4.1).

The global planning issues of the type discussed above affect the helpful behavior

through the context beliefs of individual agents. The context beliefs represent the

local information of a team member agent about the team state, relevant to the

completion of its individual subtask. Similar to the mecanisms of updating the agent's

local beliefs Bi through a belief-revision function based on the perception of the

environment, context beliefs are updated through a belief-revision function based on

the information input from the rest of the team. They usually contain information

46

about changes of plans of team members whose subtask completion schedules may

in one way or another influence the plans of certain other team members. As the

subtasks of the team may have inter-dependencies, having an up to date context

information is critical for each team member in order to judge its actions and be a

part of the team. In addition, the context beliefs inform agents about the priorities

of the team regarding the time or resource expenses while executing the subtask.

As discussed in Section 4.1, some of the unexpected events may lead to changes of

plans for some agents. Such changes will usually result in spending different amount

of resources or time for the completion of the agents' subtasks. As there may be inter-

dependencies among the subtasks, in order to increase the effectiveness of the team,

changes of the schedules of some tasks may require appropriate changes of schedules

for the other dependent subtasks. These observations result in a conclusion that the

communication of relevant and timely context information among the team members

is a critical part for the design of efficient teamwork.

While sharing individual context information is an important part for team oper­

ation, deciding with whom to share the context requires deliberation. As the agent

may have incomplete information about the set of team members for which its activ­

ities may turn out to be relevant, it needs to make the changes of its plan publicly

available. However, sharing every information with every team member may be in­

efficient, as some of them may not need to know anything about the changes of the

plan of a particular agent. One approach towards organizing the context sharing is

the usage of a commonly accessible area, where agents may share their plan changes.

While this method solves the problem, it may require the agents to spend additional

time and resources for looking up the necessary information for them.

In order to provide efficiency in updating the relevant context beliefs, one would

47

need some sort of publish/subscribe mechanism which ensures that without broad­

casting the updating information or posting on a commonly accessible area, the team

members do get the relevant information needed for proper execution of their subtasks.

We did not discuss the mechanisms of global planning of the team and distribution of

the subtasks as it is not in the scope of this Thesis. Depending on such mechanisms

or the global structure of the team, certain mechanism may be deployed in which

the team members will be subscribed to proper information sources and will get the

necessary updates of their context beliefs without performing an excessive search or

getting the updates through a broadcast message.

4.5 Variations of MAP

This section presents two variations of Mutual Assistance Protocol. The variations

include discussions about an alternative mechanism for performing a help request, and

about an alternative approach for designing MAP.

4.5.1 Simultaneous Help-Seeking Mechanism in Action MAP

When an agent realizes that it needs help, in some situations it may prefer to

generate several candidate plans towards achieving its goal and send simultaneous

help requests for the actions for which the agent needs help. Moreover, there may

be situations when the agent may prefer to send help requests for different actions

belonging to the same candidate plan. Below we provide a mechanism for selecting

the most preferable bid in situations mentioned above.

As the agent may have requested help for actions belonging to different plans,

and even for different actions belonging to the same plan, finding the most favorable

48

bid requires deliberation. For the bids related to the same action af, compares

the net team impact values Netlmpactij(a!l) of each bid and chooses the bid with

maximum net benefit value. In this way, Ai is able to find the best bid for each action

that requires help. For the bids related to actions belonging to different candidate

plans, the agent, again, selects the best bid by comparing the net team impact values.

The best bid is chosen according to the maximum value of net team impact, as that

is the bid which will bring the team the highest overall benefit.

We now consider the case when there are bids for different actions belonging to the

same plan. If the bids are unrelated (i.e., the success in executing an action does not

depend on the acceptance of the bid for another action), then A+ first selects the bid

with highest value of net team impact. That bid will be associated with some action

for which Ai had requested help. Let us call that action of. The agent Ai then finds

the bid with second highest net team impact and its associated action aj. In order to

decide whether, in addition to accepting the bid for of, it should accept the bid for a\

as well, Ai recalculates the team benefit value A-(7^, 7Tj) for action a?, assuming that

the action of is performed for free. This team benefit value for a\ will be

different (lower) than the original value, as now the calculation assumes that another

action 0$ is already performed free of cost. However, if the recalculated team benefit

value AJ(7r^, 7Tj) for action a? is still higher than the team loss value a'j(irj, 7r") derived

from the bid, the agent accepts the bid for action a\ as well. Otherwise it ignores the

bid for aj. At performs this reasoning for all the bids that contain different actions

belonging to the same plan.

If there are related bids (i.e., the success in executing a certain action depends

on the acceptance of the bid for another action), then Ai makes them unrelated by

combining the related bids into one compound bid, whose team benefit and team loss

values are the sum of its components. After performing this step and having only

49

unrelated bids, Ai can perform the previous step in order to find the best bid or the

combination of best bids.

Next, suppose that Ai receives a combination of bids for the same action, bids

for different actions belonging to the same plan, and bids for different actions from

different plans. In order to choose the best offer(s), Ai should first find the best bid

for each action, then find the best options related to a particular plan, and finally

compare the best options of each plan in order to choose the most beneficial option

among all bids.

4.5.2 Helper-Initiated MAP

The design of the Mutual Assistance Protocol is based on the requester-initiated

interaction, when an agent recognizing the need for help initiates the interaction with

team members for the sake of getting help in the interest of the team. However, the

same principles used in the design of MAP can be used in developing a helper-initiated

protocol, in which a team member a* that is well ahead of the deadline of its subtask

or has a large spare amount of resources broadcasts a message to the team members

indicating its readiness to help in a certain action af or with certain amount of

resources Di, also broadcasting the team loss A* associated with the potential help.

The cases of helper-initiated Action-MAP and helper-initiated Resource-MAP are

discussed below separately.

Helper-Initiated Action MAP

In the case of helper-initiated Action MAP, the agent Ai that is ahead of its

schedule or has a large amount of spare resources broadcasts a message to the team

members, indicating the willingness to help the team members by performing an

action af that costs Ai little time or little resources. In the broadcasted message, A{

50

also specifies the team loss Aj that such a potential help would entail. Each team

member Aj receives the broadcasted message and checks whether it needs the offered

help action in any stage of its currently-chosen plan. If so, Aj calculates the team

benefit Aj if it is assisted by Ai in performing the action a£ in the time interval

[ii, £2] in the plan itj. If the calculated team benefit of Aj is higher than the team loss

provided in the broadcasted message by ai (Aj > A*), then aj bids to the help offer

sent by Ai, also mentioning the time interval in which Aj needs the helpful action to

be executed, and the net team impact (Aj — Aj) associated with the potential help.

Ai receives the bids from the team members reacting to the help offer, deliberates

whether it can perform the offered action within the time interval specified in the

bid, and among the feasible bids Ai chooses the bid with maximum net team impact

value. The help is then delivered to the agent for which the net team impact value is

the maximum.

Helper-Initiated Resource-MAP

In the case of helper-initiated Resource MAP, the agent Ai that has a spare amount

of resources broadcasts a message to the team members, specifying the willingness to

help them by transferring an amount of resources from the set Qi- Each amount Dj

in Qi must be such that it does not endanger the performance of ^4j's own subtask

Ti, and is associated with relatively low team loss value. This is expressed by the

condition Aj(7ij, Dj>-Ri)/A < qi i.e., that the relative team loss is lower than the

fixed value of the coefficient qi. Within the broadcast message, Ai specifies the set

Qi and the coefficient qi. Each team member Aj receives the broadcasted message

and deliberates whether it needs any additional resource points dj for improving the

team benefit associated with the completion of its subtask 7} ;if so, Aj responds with

a bid message specifying the desired set of values Qj and a fixed coefficient qj, where

qj > qi and Aj(7ij, dj, Rj)/dj is greater than or equal to qj for each dj in Qj. Similar

to the analysis in Section 4.3, these conditions ensure that the combined team benefit

of all agents receiving help is greater than the team loss of the helper. Ai receives the

bids and selects the ones with highest proportional team benefit values.

4.5.3 MAP of Achievement and Maintenance Tasks

So far, we have discussed the usage of the Mutual Assistance Protocol in achieve­

ment tasks, where the team members are working to make certain propositions true,

and thus complete their subtasks. However, in practice there are also team collab­

oration models where maintenance tasks (i.e., tasks where the value of proposition

needs to be maintained over time) are equally important [Kaminka et al., 2007]. This

section discusses the usage and applicability of MAP for maintenance tasks.

As a team member, an agent executing a maintenance subtask knows the impor­

tance of its subtask for the team and the possible loss to the team in the case of

maintenance failure. As there may be different severities of failures, in each case the

team may have different amount of loss.

Based on these observations, the Mutual Assistance Protocol presented in Sec­

tion 4.2 and Section 4.3 can be similarly applied to maintenance tasks. Upon being

assigned a subtask, an agent Ai generates an initial plan 7rt = (aj,, af) that guar­

antees the maintenance of the subtask during the team operation. If, at time tc an

unexpected event happens in the environment or in the context beliefs of the agent

Ai that makes Ai to choose a different plan 7r- for which agent Ai either does not have

adequate capabilities or sufficient resources, it may ask for help. The value of the

team benefit for maintaining the subtask can be either known at priori or calculated

at the time of an emergency.

52

Chapter 5

Evaluation

This chapter presents a simulation study of teamwork that includes helpful be­

havior based on the Mutual Assistance Protocol. Specifically, we conduct a series of

experiments that compare the teamwork performance resulting from the use of MAP

versus two other help methods, in which the requesting or helping agents unilaterally

decide about the need and usefulness of the helpful act. Also included for comparison

is teamwork without helpful behavior. The study of MAP in this chapter is limited to

helpful acts in which an agent performs an action on behalf of another, as formalized

in Section 4.2 (the resource assistance version of Section 4.3 is not included). The sim­

ulation environment is based on a variation of the Colored Trails (CT) game, which

is a publicly available research test-bed for examining decision-making in group of

agents or people1 [Gal et al., 2010]. The following sections describe the test-bed used

in the evaluation (Section 5.1), the approaches with which MAP was compared (Sec­

tion 5.2), the configuration parameter settings (Section 5.3), and the experimental

results (Section 5.4).

xThe Colored Trails software can be accessed at http://www.eecs.harvard.edu/ai/ct

53

5.1 The Test Bed for Simulation Experiments

In the CT game, the players are randomly located on a rectangular board divided

into colored squares. Each player has a supply of chips whose colors belong to the set

of board colors. There are also goal squares for players, located at certain positions

on the board, and the players get points for reaching the goal squares. At each turn,

a player can move to a neighboring square of the board by spending a chip that has

the color of that square. The purpose of the agents is to reach their goal locations,

collecting the maximum number of points for the team.

The variation of the CT game used in this thesis has been developed specifically

for the study of helpful behavior in teamwork and implemented independently2. The

rules of the game are adjusted to the purposes of our current study. The players

represent software agents Ai,..., An, n > 1, that collaborate as a team. The game

proceeds in synchronous rounds, with each agent trying to make a move in each round;

it is legal for multiple agents to be on the same square at the same time. The game

ends when no agent can make a move; all agents remain in the game until the end.

At the start of the game, each agent Ai is assigned an initial location on the board,

a unique goal with a specified location and amount ft of reward points (representing

the agent's subtask), and an initial budget st = did of resource points, where di is

the distance (expressed as number of moves) along the shortest path from the agent's

initial location to its goal, and a a positive fixed budget for each move. During the

game, the agent receives another fixed (non-negative) amount a' for each completed

move, as a reward for intermediate progress, and collects the final reward ft if and

when it reaches the goal.

2The game has been developed by Omid Alemi (with the participation of Ashton Fedler) for his
research and kindly provided to us for our experiments.

54

Each move by Ai represents an action performed by the agent and has an asso­

ciated cost in resource points, paid from the agent's total budget. The board has a

fixed set of colors, C\,..., Cm, m > 1, which affect the costs of the moves as specified

in a predefined cost matrix c. Whenever A{ moves to a field of color Cv the cost of

the move is Cy > 0. The value of the cost matrix element ctj represents the level of

ability of the agent Ai in performing the type of action represented by the color Cy.

the lower the value, the higher the agent's expertise. The values can vary widely to

represent the diversity of specialties in the team. Ai knows its abilities (i.e., its vector

Ci of the cost matrix) and has full visibility of the board (including the locations of

other agents and their goals). Each agent initially selects a path to its goal. In our

experiments, each agent chooses the lowest-cost path among all shortest paths to its

goal and commits to that path for the rest of the game. The chosen path may turn

out to be less than optimal, as the colors of individual board fields can change during

the game. These color changes represent independent events in the dynamic environ­

ment; they are unrelated to the agents' actions. The probability of color change is

uniform for all board squares; we refer to it as the disturbance level.

During the game, each agent maintains a budget of resource points and a budget of

rewards points.Initially, the agent receives resource points proportional to its distance

from the goal, spends them at each move while they last, and blocks after that. Each

agent earns a fixed amount of rewaxd points for each step,a fixed amount of reward

points for reaching the goal, plus the remaining amount of resource points as bonus

for reaching the goal. A blocked agent remains in the game and may become active

again (for instance, if the color of the next square on its path changes and makes the

move affordable). The game ends when no agent can make a further move. At the

end of the game, the agent's budget represent its score, and the total score across all

agents is the team score. The objective of the game is to maximize the team score.

55

So far the game is hardly interesting, as the agents have fixed choices and need

no strategy. The only element that prevents its outcome from being predictable from

the start is the dynamic behavior of the environment, represented by board squares

that change color. The variation in agent behavior is introduced next, as we give

the agents the ability to help each other; we compare different methods of deciding

whether to help. This aspect of the game profile is suited to our current purposes: as

we focus on helpful behavior, we prefer to have other dimensions of agent behavior

vary as little as possible.

The rule of helpful behavior states that, when an agent faces a move to a square

of color Cfc, it is legal for another agent A, to pay for the move at the cost Cjk + o,

where o is a fixed overhead cost associated with each helpful act. The rule models

the situation where an agent, facing the prospect of performing an action for which

it is poorly qualified, receives help from an expert that can perform the action itself

efficiently but has its efficiency reduced by the overhead of arranging the helpful act.

If Cjk + o < Cik, the helpful act objectively benefits the team.

As discussed in Chapter 4, the main difficulty in deciding whether to help is that

the beliefs of an individual agent about the abilities of others, and about other relevant

circumstances in the rest of the team, may not be accurate enough. In our experiments

this uncertainty is modeled by the mutual awareness probability p, defined as follows.

Each agent knows the discrete finite set of values C from which the values of cost

matrix entries Cjk are chosen. Agent does not know the value of the cost vector Cj

of another agent A,, but for each k has a probabilistic belief about the likelihood that

the value of Cjk equals a particular element of C. With the probability p, Ai guesses

the correct value of Cjk, and with the probability 1 — p it makes a uniformly random

guess of any value in C (including the correct value, which makes the likelihood of

correct guess equal p + (1 — p)/\C\). As p varies from 0 to 1, the mutual awareness of

56

individual abilities in the team varies from complete ignorance to perfect knowledge.

In a series of simulation experiments we explore the impact of such variations upon

the comparative performance of MAP and two other methods for deciding whether

the help of one teammate to another benefits the team.

5.2 Methods for Deciding whether to Help

In protocols for helpful behavior, agents must decide, based on their beliefs,

whether or not it is in the interest of the team that a helpful act should take place.

In this section we restrict our attention to helpful acts in which one agent executes

an action on behalf of another. In that context, we consider MAP and two alter­

native methods for deciding whether such a helpful act should occur. As the fourth

possibility we include the approach with no helpful behavior. Later in this chapter,

these four approaches to helpful behavior will be mutually compared for efficiency

through simulation experiments using the test bed described in the previous section.

We first describe the decision mechanisms of all methods (5.2.1) and then discuss

their computation and communication costs (5.2.2). The mechanisms are described

and analyzed as implemented in the simulation; many other variations of the same

mechanisms are possible.

5.2.1 The Decision Mechanisms

For simplicity of protocol descriptions, we assume that the agents use a syn­

chronous message-passing communication model, in the sense that they can send

messages to each other in synchronous rounds, operating in lockstep based on a com­

mon clock. The communication channels are reliable in the sense that all messages get

57

delivered without delay. The send primitives include unicast and team-wide broad­

cast. If in a given round an agent receives a message that prompts a response, the

agent sends that response in the next round (regardless of how much computation

it requires). This reduces the message count by making the absence of a message

potentially informative. For instance, a lack of response to an offer in the next round

is interpreted as a negative response; no rejection message is needed. The choice of

the current communication model as a vehicle for presentation has no bearing on the

possibility of implementing the protocols in other models.

Always-Help: Decision by Recipient of Help

This is a unilateral method in the sense that a single agent decides whether help

should occur. The agent that needs help uses its own beliefs to determine, for every

other agent in the team, if that agent can provide the help with a resulting benefit

for the team. It constructs the list of all agents that meet the criterion, ranked

according to the expected team benefit. If the list of candidates is nonempty, it sends

each candidate a request message. Each candidate responds (without questioning

the judgment on team interest), except in the case that it is unable to deliver the

requested help. The requester sends an acceptance message to the responder with the

highest presumed team benefit.

Proactive-Help: Decision by Provider of Help

This is also a unilateral method, but based on the initiative and judgment by the

potential provider of help. Each agent uses its own beliefs to determine, for every

other agent on the team, whether it can provide help to that agent with a resulting

benefit to the team. If the list of candidates satisfying the criterion is nonempty, the

agent offers help to the one with the highest presumed team benefit. When an agent

receives a single help offer in a given round, it responds with an acceptance message

58

(without questioning the team benefit or performing other deliberation). In the case

of multiple offers in the same round, it randomly chooses one offer and responds with

an acceptance message. A version of unilateral proactive help protocol is used in

[Kamar et al 2009].

MAP: Distributed Decision by Recipient and Provider of Help

In our Mutual Assistance Protocol (MAP), the decision is effected through a dis­

tributed agreement between the recipient and the provider of help, with each agent

using its beliefs to assess the team impact of its local change of plan. The agent that

needs help in performing an action assesses the team benefit of its switching to a dif­

ferent local plan in which the action has a cost of zero. It broadcasts the assessment

in its request message to everyone else on the team. An agent that receives the re­

quest assesses the team loss that would result from adding the new action to its local

plan in order to fulfill the help request. It responds to the request if the team impact,

calculated as the difference between the team benefit and team loss is positive, and

includes the value of the team impact in its response message. The requester accepts

help from the responder with the highest value of team impact.

No-Help: Absence of Helpful Behavior

This is the approach in which no helpful acts are ever considered, and each agent relies

exclusively on its own resources to complete its subtask. Its purpose is to provide

a reference against which the performance of protocols for helpful behavior can be

measured.

The two unilateral decision mechanisms described above fundamentally differ from

MAP in that they require an agent to assess the team impact of a local plan change

in another agent, while in MAP each agent assesses only the team impact of its own

local plan changes. For this reason it is reasonable to expect that the performance of

59

protocols that use unilateral decision mechanisms should more critically depend on

the level of mutual knowledge in the team to a greater degree than the performance

of MAP. This dependency is examined through simulation experiments later in this

chapter.

5.2.2 The Costs of Computation and Communication

The computation cost is dominated by the calculations of team utility values.

Specifically, we calculate the team impact of agent A's help to agent Aj as the dif­

ference between the team benefit (from A/s not having to perform an action) and

the team loss (from Ai s having to perform an additional action); we assume that the

cost of each of these two component calculations is a fixed constant value c. We also

assume that other computational costs involved in the decision are considered negli­

gible by comparison. The communication costs are based on the number of messages,

with each broadcast having a fixed cost of b and each unicast of s. The total num­

ber of agents in the team is n, while fc, k\,... denote the variable numbers of agents

participating in certain interactions. Note that the message count could be different

in another communication model. Also, in architectures where broadcast must be

implemented through unicast messages, its fixed cost of b is replaced by (n — l)s.

Always-Help

The costs of individual protocol steps in a successful help transaction are as follows:

1. The requesting agent computes the team benefit, at cost c; for each of the other

n — 1 team members it computes the team loss, at the total cost (n — 1)c; and

it sends messages to k agents (where 1 < k < n — 1) for which the computed

team impact is positive.

60

2. Out of the k candidates for providing help, k\ send response messages (where

1 < ki < k), at total cost ks.

«

3. The requester sends an acceptance message to one of the candidates, at cost s.

Thus, during one successful help transaction the team as a whole spends an amount

of resources equal to:

Cs(Always-Help) = c + ((n — 1)c + ks) 4- kis + s = nc + (k + k\ + l)s

In the worst case, when the requesting agent sends the request message to every

team member, and each of them confirms its availability to perform the help, the cost

of the team in a successful help transaction equals to:

Cw(Always.Help) =c + ((n— l)c+ (n— 1)s) + (n — l)s 4- s = nc + (2n— l)s

The help transaction is not guaranteed to be successful. It can fail if no team

member responds to the help request sent by the requesting agent. If the transaction

fails, the cost to the team is equal to:

Cf(Always-Help) = c + ((n — 1)c + ks) = nc + ks

Proactive-Help

The costs of individual protocol steps in a successful help transaction are as follows:

1. The n— 1 team members compute the team benefit of the potentially struggling

team member, at cost (n — 1)c, and compute the team loss at cost (n — 1)c, in

total spending 2(n — 1)c.

2. Assuming that for k of them (where 1 < k < n — 1) the computed team impact

is positive, k agents send a message to the potentially struggling agent, at cost

ks.

61

3. The agent sends an acceptance message to one of the offering agents, at cost s.

Thus, during one successful help transaction the team as a whole spends an amount

of resources equal to:

Cs (Proactive-Help) = 2 (n — 1)c+ ks + s = 2 (n — 1)c + (fc + l)s

In the worst case, when every agent in a team decides to help the potentially

struggling agent, the cost of the team in a successful help transaction becomes equal

to:

Cw (Proactive-Help) = 2(n - 1)c + (n - l)s 4- s = (2n - 2)c + ns

The help transaction in Proactive-Help method can fail if, after computing the

team impact, no team member decides to offer help to the potentially struggling

agent. In this case, the cost of the team equals to:

Cf (Proactive-Help) = 2 (n — 1)c

MAP

The costs of individual protocol steps in a successful help transaction are as follows:

1. The requesting agent computes the team benefit, at cost c, and broadcasts the

request to the team members, at cost b.

2. Each member computes the team loss, at cost c; assuming that for k of them

(where 1 < k < n — 1) the computed team impact is positive, k agents send a

message to the requesting agent, at cost ks.

3. The agent sends an acceptance message to one of the candidates, at cost s.

Thus, during one successful help transaction the team as a whole spends an amount

of resources equal to:

62

Cs (MAP) = (c + b) + ((n - 1)c + ks) + s = ric + (k + l)s + b

In the worst case, when the broadcast message must be sent as a sequence of

unicast messages, and when requesting agent gets bids from each team member, the

cost of the team in a successful help transaction equals to:

CW(MAP) — (c+ (n - l)s) + ((n - 1)c+ (n - l)s) + s = nc+ (2n - l)s

The help transaction can fail if, after computing the team loss, no team member

responds to the help request sent by the requesting agent. If the transaction fails, the

cost of the team is equal to:

C f (M A P) = c + b + (n - l) c = n c + b

Note that in the worst case, the costs are the same for MAP and Always-Help, and

for the Cs the costs depend on the parameters k, k\, and b. Relation to the Proactive

Help is not that straightforward and depends on the values of c and s.

5.3 The Configuration Parameter Settings

We initialize the simulation parameters for our experiments as follows. We choose

a board of size (10,10), with six colors; the number of agents per team is eight; and

the goal reward is 200 points. The cost vector for each agent includes a high cost of 50

for three of the colors (randomly chosen), and a lower cost for the other three, in each

case randomly chosen from the set {1,5,20,25}. Thus each agent has low capabilities

for three types of actions, and high capabilities, to a varying degree, for the other

three. The reward for accomplishing each step on the chosen path is 10 points; the

initial allocated resources for each step towards the goal is 20 points; the cost of

sending a message is initialized to 0.1 points; the cost of computing the team benefit

63

and loss values is initialized 0.1 points; the overhead cost for performing a helpful

action is initialized to 20 points; the disturbance level on the board is initialized to 0

percent; the percentage representing awareness of each-others' abilities is initialized

to 100.

During the experiments we calculate the average team scores of the MAP, No-Help,

Always-Help, and Proactive-Help methods while varying: the probability representing

mutual awareness of abilities (shown as percentage in the graphs); the disturbance

level, i.e., the frequency of color changes on the board (also shown as percentage);

and the communication and computation costs. For each chosen configuration of the

parameters, we calculate the team scores for each of the four methods, averaged over

60,000 simulation runs.

The results of the experiments are presented in the next section. In each run,

the behaviors of four agent teams, each using a different help method but otherwise

identical to the others, are simulated in parallel. The corresponding agents in four

approaches are under exact same constraints, i.e., they choose the same path towards

the goal, have the same resources and capabilities, etc. The only difference is that

the agents in the four teams use different help methods to collectively achieve their

goals.

5.4 The Experimental Results

This section presents the results of experiments in which we vary the level of

mutual awareness among the team members; the level of dynamic disturbance in the

environment; the cost of communication; and the cost of computation.

64

5.4.1 The Impact of Mutual Awareness on Team Score

In this section, we compare the MAP protocol with No-Help, Always-Help, and

Proactive-Help methods by varying the mutual awareness of agents about each-others'

capabilities. We design the same experiments with different values of disturbance,

communication costs, and computation costs. Specifically, for disturbance we use low

(10 percent) and high (40 percent) values, for communication cost we use low (0.1)

and high (1) values, and for computation cost we use low (0.1) and high (1) values.

Figure 5.1 shows the team scores of the compared methods depending on the mu­

tual awareness of the team members about each-others' abilities, when the teams are

operating in an environment with low disturbance, in which the computation and

communication costs axe low. As the figure shows, MAP and No-Help methods do

not depend on the percentage of mutual awareness among the team members, as none

of them uses unilateral probabilistic reasoning for helpful behavior. However, along

with the increase of the awareness percentage of the team members, both Always-Help

and Proactive-Help methods noticeably improve their performances, outperforming

the No-Help method. As in the Always-Help method the agents perform less commu­

nication than in the MAP method, at certain high percentage of mutual awareness

(in this case, when the probability is equal to one), Always-Help method produces

better results than MAP (note that this result assumes that broadcast is implemented

as n — 1 unicast messages; even with this assumption the worst case performance of

both methods is the same, as calculated in Section 5.2). However, in the majority of

team models the perfect mutual awareness among the team members does not exist.

In addition, even in the case of perfect mutual awareness, the difference between the

performances of Always-Help and MAP methods is insignificant.

The behavior of the Proactive-Help method along with the increase of the mutual

65

awareness is a little different; although the performance of the Proactive-Help team

improves significantly, it may not be able to outperform MAP even when perfect

awareness among the team member exists. The reason for such a behavior is the

property of Proactive-Help agents, according to which each agent performs checks at

each turn to observe whether there have been any changes in the team members' paths,

and if there are such changes, it computes the impact of the team if it helps the team

member. All these computations bring with them additional costs to the Proactive-

Help agents, affecting their performance. Because of such additional computations,

sometimes even if the perfect awareness among the team members exists, Proactive-

Help team may perform no better than MAP.

Team Score

1950

1900

1850
-•-MAP

P No-Help

—#— Al ways-Help

X Proactive-Help

1800

1750

1700

1650
Awareness Percentage

20 30 40 50 60 70 80 90 100

Figure 5.1: The Impact of Mutual Awareness on Team Score in the case of Low Distur­

bance, Low Communication Cost, and Low Computation Cost

Figure 5.2 presents the analogous performances of the compared methods when

the disturbance is low, computation cost is low, and the communication cost is high.

When the awareness percentage becomes close to 100, because of its excessive number

66

of communications associated with high cost, MAP produces slightly worse results

compared to Always-Help and Proactive-Help approaches. However, MAP continues

to be dominant in awareness percentages lower than 90 percent. Prom the figure we

also conclude that in the case of high communication cost and low computation cost,

the Proactive-Help method performs better than the Always-Help method, in low

and moderate percentages of mutual awareness. When the mutual awareness among

the members becomes close to 100 percent, Always-Help method outperforms the

Proactive-Help method because of the more optimal choice of the helping agent.

1900

1850

1800
-•-MAP

-•-No-Help

—Always -He lp

X Proactive-Help

1750

1700 It

1650

1600 Awareness Percent age

20 30 60 70 90 100 40 50 80

Figure 5.2: The Impact of Mutual Awareness on Team Score in the case of Low Distur­
bance, High Communication Cost, and Low Computation Cost

Figures 5.3 presents the performances of the teams when the disturbance is low,

the computation cost is high, and the communication cost is low. As seen in the

figure, when the computation costs are high, the Proactive-Help method performs

even worse than the No-Help approach, despite the increase of the percentage of

mutual awareness. The reason for such a result for Proactive-Help method is the

67

excessive amount of computation during the team operation, which, because of the

high computation cost, affects the team performance dramatically.

Team Score

1850

1800

—•—MAP

—•—No-Help

A Alwavs-Help

Proactive-Help

1750

1700 »

1650

1600

1550

1500 '~1 Awareness Percentage

100 40 60 80 30

Figure 5.3: The Impact of Mutual Awareness on Team Score in the case of Low Distur­
bance, Low Communication Cost, and High Computation Cost

Figure 5.4 presents the team scores of the methods when the disturbance is low, the

computation and communication costs are high. In these settings, the Proactive-Help

method produces the worst results because of its excessive number of computations

associated with high cost. The Always-Help method performs worse than the No-Help

method in low awareness percentages, but dramatically increases its performance once

the mutual awareness among the team members increases. This is justified with the

observation that along with the increase of the awareness probability, the decisions

of Always-Help method become closer to optimal, in the meantime taking the same

amount of resources in deliberation and communication.

68

Team Score

1800 if

1750

-•-MAP

—•-No-Help

h> Always-Help

X Proactive-Help

1700

1650

1600

1550

1500 Awareness Percentage
30 70 80 10 20 40 60 90 100 50

Figure 5.4: The Impact of Mutual Awareness on Team Score in the case of Low Distur­
bance, High Communication Cost, and High Computation Cost

In both latter cases, MAP continues to be dominant over all other approaches.

Only when the mutual awareness percentage is 90 percent or 100 percent, the Always-

Help method performs equal or slightly better results because of the fewer communi­

cation among the members.

The analogous experiments in case of the high disturbance in the environment

are presented in Figures 5.5, 5.6, 5.7, 5.8. The experiments show that, despite the

higher disturbance, along with the increase of the mutual awareness the compared

approaches exhibit a behavior similar to the case of the low disturbance. Thus, the

critical factors in the success of the compared approaches are the computation and

communication costs among the team members.

69

Team Score

1500

1400

1300

-•-MAP

-•-No-Help

M Always-Help

Proactive-Help

1200

1100

900

800

700 Awareness Percentage
40 50 60 80 90 100 30 70

Figure 5.5: The Impact of Mutual Awareness on Team Score in the case of High Distur­
bance, Low Communication Cost, and Low Computation Cost

Team Score

1300

1200

1100

MAP

1000 —•—No-Help

-tIp- A (ways-Help

X Proactive-Help 900

800

700

600 Awareness Percentage
10 20 40 50 60 90 100 30 70 80

Figure 5.6: The Impact of Mutual Awareness on Team Score in the case of High Distur­
bance, High Communication Cost, and Low Computation Cost

70

Team Score

1300

1200

1100

1000 -•-MAP

> No-Help

—Ahways-Help

—X- Proactive-Help

900

800

700

600

SOO Aware nets Percentage
50 60 70 80 10 20 30 40 90 100 0

Figure 5.7: The Impact of Mutual Awareness on Team Score in the case of High Distur­
bance, Low Communication Cost, and High Computation Cost

Team Score

1100

1000

900 -•-MAP

-•-No-Help

—sfc—Always-Hetp

Proactive-Help

800

700

600

SOO Awareness Percentage
40 10 20 30 60 70 80 90 100

Figure 5.8: The Impact of Mutual Awareness on Team Score in the case of High Distur­
bance, High Communication Cost, and High Computation Cost

71

5.4.2 The Impact of Disturbance on Team Score

In this section, we compare the MAP protocol with No-Help, Always-Help, and

Proactive-Help methods by varying the disturbance on the board. We design the

same experiments with different values of mutual awareness percentages among the

agents, communication costs, and computation costs. Specifically, for mutual aware­

ness we use moderately low (30 percent) and moderately high (70 percent) values,

for communication and computation costs we use low (0.3) and high (1) values. Note

that the use of low value of 0.3 as opposed to the previously used low value 0.1 does

not alter the behavior represented by the graphs, but provides their better separation.

Figure 5.9 presents the team scores of the compared methods depending on the

disturbance in the environment, when the mutual awareness of the team members is

moderately low, and the computation and communication costs are low. As seen in the

figure, along with the increase of the disturbance, MAP performs better compared

to all other approaches. The Always-Help method produces slightly better results

than the Proactive-Help method, as along with the increase of the disturbance the

Proactive-Help agents perform more computations for reasoning about whether to

help. However, as the computation cost is not high, such additional computations

by Proactive-Help agents still guarantee their better performance compared to the

No-Help method.

Figure 5.10 presents the analogous performances of the methods with high commu­

nication and computation costs. Here, too, along with the increase of the disturbance,

MAP outperforms all other methods. Because of the high computation and commu­

nication costs, Proactive-Help approach produces the worst results, whereas above

certain disturbance percentage, the Always-Help approach outperforms the No-Help

approach because of the more frequent inefficiency of the latter.

72

Team Score

2300

2100

1900

1700
MAP

-•-No-Help

—*—Alw»ys-Help

Proactive-Help

1500

1300

1100

900

700

500 -1 Disturbance Percentage
50 25 15 20 30 35 40 45 0 5 10

Figure 5.9: The Impact of Disturbance on Team Score in the case of Moderately Low

Mutual Awareness, Low Communication cost, and Low Computation Cost

Team Score

2300

2100

1900

1700

-•-MAP

• No-Help

—<*— Alw#ys-Help

X Proactive-Help

1500

1300

1100

900

700

500 Disturbance Percentage
5 30 0 10 15 20 25 35 40 45 50

Figure 5.10: The Impact of Disturbance on Team Score in the case of Moderately Low

Mutual Awareness, High Communication cost, and High Computation Cost

73

The simulation results in the case of high communication cost and low computation

cost are similar to the results presented in Figure 5.9, whereas the simulation results

in the case of low communication cost and high computation costs are similar to the

results presented in Figure 5.10.

Figures 5.11 and 5.12 present the analogous team scores in which the mutual

awareness of the team members is higher. The experiments show that despite the

changes of the awareness level, the methods exhibit similar behavior when the distur­

bance in the environment changes.

Team Score

2300

2100

1900

1700

MAP
1S00 U No-Help

—ir- Atwsys-Help

Proactive -Help
1300

1100

900

700

SOO Disturbance Percentage
5 25 30 0 10 15 20 35 40 45 50

Figure 5.11: The Impact of Disturbance on Team Score in the case of Moderately High
Mutual Awareness, Low Communication cost, and Low Computation Cost

74

Team Score

2300

2100

1900

1700
-•-MAP

-•-No-Help

—Always-Help

)< Proactive-Help

1500

1300

900

700

500 Disturbance Percentage
45 50 25 30 35 40 5 10 15 20 0

Figure 5.12: The Impact of Disturbance on Team Score in the case of Moderately High
Mutual Awareness, High Communication cost, and High Computation Cost

The results shown in Figures 5.9 to 5.12 are influenced by the fact that in the sim­

ulation the mechanism for recognizing the need for help is triggered by the perceived

changes in the environment. This explains why all four methods have the same team

score at disturbance level zero.

The simulation results in the case of high communication cost and low computation

cost are similar to the results presented in Figure 5.11, whereas the simulation results

in the case of low communication cost and high computation costs are similar to the

results presented in Figure 5.12.

The above-presented experiments confirm the advantage of MAP over other meth­

ods in cases of moderately low and moderately high awareness probabilities, regard­

less of the disturbance level in the environment (assuming that the changes in the

environment are moderate and are not such that there might be a need for team

reorganization).

75

5.4.3 The Impact of Communication Cost on Team Score

In this section, we compare the MAP protocol with No-Help, Always-Help, and

Proactive-Help methods by varying the value of the communication cost among

agents. We design the same experiments with different values of mutual awareness

among the agents, and different values of computation costs. Specifically, for mu­

tual awareness we use moderately low (30 percent) and moderately high (70 percent)

values, for computation cost we use low (0.3) and high (1) values. We perform the

experiments in environments with moderate disturbances (30 percent).

Figure 5.13 presents the team scores of the compared methods depending on the

communication cost among the team members, when the awareness of the team mem­

bers about each-other is moderately low, and the computation cost is moderately low.

As the figure shows, the increase of the communication cost in teams results in de­

graded performance of MAP, Always-Help, and Proactive-Help methods. However,

as the Proactive-Help method uses less communication than MAP and Always-Help

methods, its results are not affected significantly. MAP agents communicate slightly

more than the Always-Help agents, but the more optimal decisions of the MAP team

compared to the Always-Help team compensate the overhead of communication, re­

sulting in approximately equal amount of team points loss compared to the Always-

Help team. When the communication cost increases significantly, the performance

of Always-Help method becomes worse than the performance of the Proactive-Help

method. The reason for such a behavior is that the Always-Help team members

perform more communications associated with high cost, than the Proactive-Help

members.

76

Team Score

1600

1500

-•-MAP
-•-No-Help

Ahvays-Help
-N- ProsctJve-Help

1200

1100

1000

6 7 9 10 3 5 a l 2 4 0

Figure 5.13: The Impact of Communication Cost on Team Score in the case of Moderately
Low Mutual Awareness and Low Computation Cost

Figure 5.14 shows the team scores of analogous experiments in which the compu­

tation cost among the team members is high. Although the behaviors of the com­

pared methods are the same as in the case of low computation costs, in this case

the Proactive-Help method performs the worst. In addition, the No-Help method

outperforms the Always-Help method when the communication costs become very

high. The rationale for such results is explained in the high cost of the computation

and communication among the team members. In such cases, it may be preferred

for the team to operate without any probabilistic guesses and helpful behaviors, as

the questionable outcome of such a help may not justify the spent resources for per­

forming such a help. As the decisions of the MAP team are accurate, the help using

MAP method is guaranteed to be beneficial for the team, unless the computation and

communication costs are extremely high.

Figures 5.15 and 5.16 present the performances of the methods in the analogous

experiments when the mutual awareness of the team members is higher. Because of

77

Team Score

1500

1400

1300

—•—MAP
-•-No-Help

Alwiyj-Help
—¥r~ Proactfve-Help

1200

1000

900

800 Comimmicatioa Cost
10 2 3 4 5 6 7 8 9 0 1

Figure 5.14: The Impact of Communication Cost on Team Score in the case of Moderately

Low Mutual Awareness and High Computation Cost

the high mutual awareness, when the communication cost increases, and the computa­

tion cost is low (Figure 5.15) both Always-Help and Proactive-Help methods perform

better than the No-Help approach. However, when the communication cost increases

with the computation cost being high (Figure 5.16), the Proactive-Help method per­

forms worse than the No-Help method, despite the higher level of awareness.

5.4.4 The Impact of Computation Cost on Team Score

In this section, we compare the MAP protocol with No-Help, Always-Help, and

Proactive-Help methods by varying the value of the computation cost among agents.

We design the same experiments with different values of mutual awareness among

the agents, and different values of communication costs. Specifically, for mutual

awareness we use moderately low (30 percent) and moderately high (70 percent)

values, for communication cost we use low (0.3) and high (1) values. We perform the

experiments in environments with moderate disturbances (30 percent).

78

Team Score

1600

1500

1400

MAP
1300

• No-Help

—*—Atways-Help

Proactive-Help
1200

1100

1000

900 1 Communication Cost
10

Figure 5.15: The Impact of Communication Cost on Team Score in the case of Moderately
High Mutual Awareness and Low Computation Cost

Team Score

1500

1400

1300

MAP
1200

-•-No-Help

—4r-Ahways-Help

>i Proactive-Help
1100

1000

900

800 Communication Cost

Figure 5.16: The Impact of Communication Cost on Team Score in the case of Moderately
High Mutual Awareness and High Computation Cost

79

Figure 5.17 exposes the performance of the compared methods depending on the

computation costs of the team members when reasoning about the help needs of each-

other and team benefits. The figure presents the team scores in the case when the

mutual awareness of the team members moderately low, and the communication cost

is low. As the figure shows, the increase of the computation cost in teams decreases

the performance of MAP, Always-Help, and Proactive-Help methods. However, as the

Proactive-Help method uses more computations when checking whether anyone needs

help, and when computing the team impact of potentially every team member for

performing its next move, along with the increase of the computation costs the results

of the Proactive-Help method are affected dramatically, at some point even producing

worse results than the No-Help method. As MAP and Always-Help methods perform

the same amount of computations - much less than the Proactive-Help method, their

results are not degraded significantly.

Team Score

1600

1500

1400

1300 -•-MAP

-•-No-Help

—4— Always-Help

—Proact've-Hel p
1100

1000

900

SOO Computation Cost
10

Figure 5.17: The Impact of Computation Cost on Team Score in the case of Moderately

Low Awareness and Low Communication Cost

80

Figure 5.18 presents the team scores of the compared methods when the commu­

nication cost among the team members is high. MAP outperforms the other methods

in all cases. The Proactive-Help method is more preferable than the Always-Help and

No-Help approaches in cases of low computation and high communication costs, but

quickly becomes worse than both of them, as the computation cost increases.

Team Score

1400

1300

MAP

1200

800 Computation Cost

Figure 5.18: The Impact of Computation Cost on Team Score in the case of Moderately
Low Awareness and High Communication Cost

Figures 5.19 and 5.20 show the team scores of analogous experiment results when

the mutual awareness among the team members is higher. Despite the change of the

awareness level, all methods behave the same way as in lower awareness case.

81

Team Score

1600

1400

MAP

1300 Hi-No-Help

•""A"1 Always-Help

X Proactive-Help
1200

1100

1000

900 Computation Cost
10

Figure 5.19: The Impact of Computation Cost on Team Score in the case of Moderately
High Awareness and Low Communication Cost

Team Score

1500

1400

1300

-•-MAP
1200

M No-Help

—Always-Help

Proactive-Help
1100

1000

900

800 Computation Cost
10

Figure 5.20: The Impact of Computation Cost on Team Score in the case of Moderately
High Awareness and High Communication Cost

82

5.4.5 Summary of the Evaluation Results

The presented experiments show the dominance of MAP over the other compared

methods when the mutual awareness among the team members is not close to per­

fect. In the case of perfect awareness among the team members, the Always-Help

approach performs slightly better than MAP because of its fewer usage of communi­

cation. For the Proactive-Help approach, even in the case of perfect awareness, the

relative advantage over MAP highly depends on the computation and communication

costs among the team members, as the Proactive-Help method uses less communi­

cation than MAP, but performs a large number of computations and checks at each

move. However, it is worth noting that in real teams having perfect awareness about

each other during the team operation entails additional communication, which is not

modeled in our experiments. This observation leads to believe that in real teams with

high communication costs, the better performances of Always-Help or Proactive-Help

approaches compared to MAP may be unrealistic, as the cost of maintaining a near-

perfect awareness about each other would likely be prohibitive.

For the success of the Proactive-Help method, a critical factor is the value of com­

putation cost among the team members. While in the low values of computation cost

the Proactive-Help method can produce equal or slightly worse results compared to

MAP, with the increase of the computation cost its performance degrades significantly,

sometimes even performing worse than the No-Help method.

The Always-Help method improves its performance dramatically when the mutual

awareness among the team members increases. Its performance also highly depends

on the value of the communication cost, whereas the change of the computation cost

has less impact on the Always-Help method.

The No-Help method never outperforms MAP in any of the experimental settings

83

(unless the communication and computation costs are extremely high). However,

depending on the awareness level among the team members, as well as the commu­

nication and computation costs, No-Help method may produce better results than

Always-Help and Proactive-Help methods, as the latter ones may spend additional

resources on computing and communicating, while not arriving at optimal decisions.

84

Chapter 6

Conclusions and Future Work

This thesis proposes a novel protocol, called the Mutual Assistance Protocol

(MAP), for incorporating helpful behavior into multiagent teamwork. Initial research

has included a study of literature in several areas of multiagent systems (MAS), es­

pecially agent teamwork, agent protocols, and helpful behavior in agent teams. The

study led to an observation that, despite the growing use of protocols in MAS, there

is a shortage of protocols designed for MAS teamwork, and particularly for incor­

porating helpful behavior into MAS teamwork. Another observation was that some

of the existing approaches to helpful behavior in teamwork enable agents to provide

help based on unilateral probabilistic beliefs of a single agent, which in many realistic

teamwork environments may be inaccurate. These observations motivated the design

of a new protocol for helpful behavior in teamwork, with a particular attention to the

choice of individual agents' beliefs involved in the help decision.

In MAP, helpful behavior occurs when an agent uses its own abilities and resources

to advance a subtask assigned to another agent. Similar to the bidding sequence of the

Contract Net Protocol, the agent that needs help broadcasts a request, receives offers

from teammates willing to help, and chooses the most suitable offer. The helpful act

is performed only when the two agents, based on their own beliefs, determine that

85

it is in the interest of the team. When pondering possible help, each agent assesses

the team impact of changing its current local plan to a new plan that includes the

helpful act. The underlying design philosophy is that each agent, in its mainstream

behavior, regularly assesses the team impact of its alternative local plans; thus, insofar

as its individual beliefs can effectively support its mainstream behavior, they can also

effectively support its helpful behavior. As the helpful act may consist of either

performing actions or granting additional resources, two MAP versions, called the

Action Map and Resource Map, have been developed to address these two aspects

separately.

MAP was then analyzed in terms of the complexity of the resource costs dur­

ing the helpful act transaction. In addition, Action MAP was submitted to a test

of how well it performs compared to approaches with no helpful behavior or with

probabilistic unilateral decision mechanisms, using an implemented simulation game.

The advantages of MAP over protocols that use unilateral help decisions were demon­

strated through simulation experiments, using varying levels of mutual awareness in

the team, dynamic disturbance in the environment, communication costs, and com­

putation costs.

The analysis and experiments suggest that MAP indeed increases the effectiveness

of teamwork, and is superior compared to unilateral decision mechanisms for helpful

behavior, especially in cases when the beliefs of the team members about each others'

abilities and activities may not be accurate.

The thesis includes two variations of MAP that need to be further explored. In one

of them, the agent requesting help can be involved in multiple simultaneous (related

or independent) MAP transactions. The other is the Helper-Initiated MAP, that

starts with a broadcast by an agent willing to offer help.

86

In MAP, an agent deliberating about help relies on its local beliefs, acquired

through perception, as well as its context beliefs, acquired through communication

with the rest of the team. While this thesis did not explore the formation and main­

tenance of context beliefs, this topic is relevant in MAP implementation and leads to

interesting architectural questions that merit further study.

87

Bibliography

Huib Aldewereld, Wiebe van der Hoek, and John jules Meyer. Rational Teams:
Logical Aspects of Multi-Agent Systems. Technical report, Utrecht University,
2004.

Elisabeth Ball and Michael Butler. Using Decomposition to Model Multi-agent In­
teraction Protocols in Event-B. In FM'06 Doctoral Symposium. Springer, 2006.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cambridge
University Press, New York, NY, USA, 2001.

Michael Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
1987.

Jacek Brzeziriski, Piotr Dunin-K§plicz, and Barbara Dunin-Kgplicz. Collectively Cog­
nitive Agents in Cooperative Teams. In Engineering Societies in the Agents World
V, pages 191-208. Springer, 2005.

Jannis A Cannon-Bowers, Eduardo Salas, and Sharolyn Converse. Shared Mental
Models in Expert Team Decision Making. In Individual and Group Decision Mak­
ing: Current issues, pages 221-246. Erlbaum, 1993.

Sen Cao, Richard A. Volz, Thomas R. Ioerger, and Michael S. Miller. On Proactive
Helping Behaviors in Teamwork. In Proceedings of the International Conference on
Artificial Intelligence, 2005.

Kay-Yut Chen, Tad Hogg, and Bernardo Huberman. Behavior of Multi-Agent Pro­
tocols using Quantum Entanglement. In Proceedings of AAAI-2007 Spring Sympo­
sium on Quantum Interaction, 2007.

Philip R. Cohen and Hector J. Levesque. Intention is Choice with Commitment.
Artificial Intelligence, pages 213-261, 1990.

Philip R. Cohen and Hector J. Levesque. Teamwork. Special Issue on Cognitive
Science and Artificial Intelligence, pages 487-512, 1991.

Nancy J. Cooke, Eduardo Salas, Janis A. Cannon-Bowers, and Rene'e Stout. Mea­
suring Team Knowledge. Human Factors, pages 153-173, 2000.

88

Daniel Corkill. Blackboard Systems. AI Expert, 6(9):40-47, 1991.

Eric M. Dashofy, Andre van der Hoek, and Richard N. Taylor. Towards Architecture-
Based Self-healing Systems. In Proceedings of the First Workshop on Self-healing
Systems, WOSS '02, pages 21-26, New York, NY, USA, 2002. ACM.

Chrysanthos Dellarocas and Mark Klein. Designing Robust, Open Electronic Market­
places Of Contract Net Agents. In Proceedings of the 20th International Conference
on Information Systems, 1999.

Thomas E. Downing, Scott Moss, and Claudia Pahl-Wostl. Understanding Climate
Policy Using Participatory Agent-Based Social Simulation. In Proceedings of the
Second International Workshop on Multi-Agent-Based Simulation, pages 198-213,
London, UK, 2001. Springer-Verlag.

Barbara Maria Dunin-Keplicz and Rineke Verbrugge. Teamwork in Multi-Agent Sys­
tems: A Formal Approach. Wiley, 2010.

Hywel Dunn-Davies, Jim Cunningham, and Shamimabi Paurobally. Propositional
Statecharts for Agent Interaction Protocols. Electronic Notes in Theoretical Com­
puter Science, 134:55-75, 2005.

Edmund Durfee, Victor Lesser, and Daniel Corkill. Trends in Cooperative Distributed
Problem Solving. IEEE Transactions on Knowledge and Data Engineering, 1(1):
63-83, 1989.

Edmund H. Durfee. Distributed problem solving and planning. In Gerhard Weiss, ed­
itor, Multiagent Systems, A Modern Approach to Distributed Artificial Intelligence,
chapter 3, pages 121-164. The MIT Press, 1999.

Xiaocong Fan, John Yen, and Richard A. Volz. A Theoretical Framework on Proactive
Information Exchange in Agent Teamwork. Artificial Intelligence, 169:23-97, 2005.

Amos Fiat, Yishay Mansour, and Uri Nadav. Efficient Contention Resolution Proto­
cols for Selfish Agents. In Proceedings of the eighteenth annual ACM-SIAM sympo­
sium on Discrete algorithms, SODA '07, pages 179-188. Society for Industrial and
Applied Mathematics, 2007.

Foundation of Intelligent Physical Agents. FIPA Dutch Auction Interaction Protocol
Specification. FIPA TC Communication 00032, 2000.

Foundation of Intelligent Physical Agents. FIPA English Auction Interaction Protocol
Specification. FIPA TC Communication 00031, 2001a.

Foundation of Intelligent Physical Agents. FIPA Specification Part 2 - Agent Com­
munication Language, 1997.

89

Foundation of Intelligent Physical Agents. FIPA contract net interaction protocol
specification. FIPA TC Communication 00029, 2001b.

Ya'akov Gal, Barbara Grosz, Sarit Kraus, Avi Pfeffer, and Stuart Shieber. Agent
decision-making in open mixed networks. Artificial Intelligence, 174(18):1460 -
1480, 2010.

Michael Georgeff and Amy Lansky. Reactive Reasoning and Planning. In Proceedings
of the Ninth National Conference an Artificial Intelligence, pages 677-682, 1987.

Mark Greaves, Heather Holmback, and Jeffrey Bradshaw. What Is a Conversation
Policy? Issues in Agent Communication, pages 118-131, 2000.

Barbara Grosz, Sarit Kraus, and Shavit Talman. The Influence of Social Dependencies
on Decision-Making: Initial Investigations with a New Game. In Autonomous
Agents and Multiagent Systems, 2004.

Barbara J. Grosz and Sarit Kraus. Collaborative Plans for Complex Group Action.
Artificial Intelligence, 86:269-357, 1996.

Aaron Helsinger and Todd Wright. Cougaar: A Robust Configurable Multi Agent
Platform. In Aerospace, 2005 IEEE Conference, pages 1-10, 2005.

Randall W. Hill, Jonathan Gratch, Stacy Marsella, Jeff Rickel, William R. Swartout,
and David R. Traum. Virtual Humans in the Mission Rehearsal Exercise System.
KI Embodied Conversational Agents, 2003.

Hoffman, Shadbolt, Burton A. Mike, and Klein Gary. Eliciting Knowledge from
Experts: A Methodological Analysis. Organizational Behavior and Human Decision
Processes, 62(2):129-158, 1995.

George Hughes and Maxwell John Cresswell. A New Introduction to Modal Logic.
Routledge, 1996.

Goichi Itabashi, Yoshiaki Haramoto, Yasushi Kato, Kaoru Takahashi, and Norio Shi-
ratorii. Specification and Analysis of the Contract Net Protocol Based on State
Machine Model. In Special Section on Concurrent System Technology and its Ap­
plication to Multiple Agent Systems, 2002.

Takayuki Ito, Hiromitsu Hattori, and Mark Klein. Multi-Issue Negotiation Proto­
col for Agents: Exploring Nonlinear Utility Spaces. In Proceedings of the 20th
international joint conference on Artifical intelligence, pages 1347-1352. Morgan
Kaufmann Publishers Inc., 2007.

Hideshi Itoh. Incentives to Help in Multi-agent Situations. Econometrica, 59(3), 1991.

Java Agent Development Framework, http://jade.tilab.com/doc/api/jade/proto/package-
summary.html. FIPA Standard Protocols in JADE, 2004.

90

Nicholas Jennings. The ARCHON System and its Applications. In 2nd International
Conference on Cooperating Knowledge Based Systems, pages 13-29, 1994.

Nicholas. R. Jennings, Ebrahim Mamdani, Inaki Laresgoiti, J. Perez, and J. Corera.
Grate: A general framework for cooperative problem solving. IEE-BCS Journal of
Intelligent Systems Engineering, 1(2):102—114, 1992.

Ece Kamar, Ya'akov Gal, and Barbara J. Grosz. Incorporating Helpful Behavior into
Collaborative Planning. In Autonomous Agents and Multiagent Systems/Agent
Theories, Architectures, and Languages, pages 875-882, 2009.

Gal Kaminka, Ari Yakir, Dan Erusalimchik, and Nirom Cohen-Nov. Towards Collab­
orative Task and Team Maintenance. In Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems - AAMAS '07. ACM
Press, 2007.

Jeffrey A. LePine, Mary Ann Hanson, Walter C. Borman, and Stephan J. Motowidlo.
Contextual performance and teamwork: Implications for staffing. Research in Per­
sonnel and Human Resources Management, 19:53-90, 2000.

Hector Levesque, Philip Cohen, and Jose Nunes. On Acting Together. In Proceedings
of the Eighth National Conference on Artificial Intelligence, pages 94-99, 1990.

Magnus Ljungberg and Andrew Lucas. The OASIS Air-Traffic Management System.
In Proceedings of the Pacific Rim International Conference on Artificial Intelli­
gence, Seoul, Korea, 1992.

Janusz Marecki, Nathan Schurr, and Milind Tambe. Agent-Based Simulations for
Disaster Rescue Using the DEFACTO Coordination System, pages 281-297. John
Wiley and Sons, Inc., 2005.

James Mayfield, Yannis K Labrou, and Tim Finin. Evaluation of KQML as an Agent
Communication Language. In Intelligent Agents II, volume 1037, pages 347-360.
Springer-Verlag, 1996.

Maria Miceli, Amedeo Cesta, and Paola Rizzo. Autonomous Help in Distributed Work
Environments. In Proceedings of the Seventh European Conference on Cognitive
Ergonomics, pages 367-377, 1994.

Tim Miller and Peter McBurney. On Illegal Composition of First-Class Agent In­
teraction Protocols. In Proceedings of the thirty-first Australasian conference on
Computer science - Volume 74, ACSC '08, pages 127-136. Australian Computer
Society, Inc., 2008.

Susan Mohammed and Brad C. Dumville. Team Mental Models in a Team Knowledge
Framework: Expanding Theory and Measurement Across Disciplinary Boundaries.
Journal of Organizational Behavior, 22:89-106, 2001.

91

Daniel Mountjoy and Bala Ram. Agent-Based Planning Team Training Platform.
Technical report, United States Air Force Research Laboratory, 2003.

Shamimabi Paurobally and Jim Cunningham. Verification of Protocols for Auto­
mated Negotiation. In Proceedings of the 15th Eureopean Conference on Artificial
Intelligence, ECAI'2002. IOS Press, 2002.

Shamimabi Paurobally, Jim Cunningham, and Nicholas R. Jennings. Developing
agent interaction protocols using graphical and logical methodologies. In Program­
ming Multi-Agent Systems, volume 3067, pages 149-168. Springer, 2003.

Shamimabi Paurobally, J. Cunningham, and Nicholas R. Jennings. Verifying the
contract net protocol: A case study in interaction protocol and agent communica­
tion semantics. In 2nd International Workshop on Logic and Communication in
Multi-Agent Systems, pages 98-117, 2004.

Terry R. Payne, Terri L. Lenox, Susan Hahn, Michael Lewis, and Katia Sycara.
Agent-Based Team Aiding in a Time Critical Task. In In Proceedings of Hawaii
International Conference on System Sciences, 2000.

Jeremy Pitt and E. H. Mamdani. Communication Protocols in Multi-agent Systems:
A Development Method and Reference Architecture. In Issues in Agent Commu­
nication, pages 160-177, 2000.

Desanka Polajnar, Jernej Polajnar, and L. Lukic. Metamodel Abstractions of Agent
Roles in Cooperative Process Planning. In Proceedings of the 2008 IEEE SMC
International Conference on Distributed Human-Machine Systems, pages 77-82,
Athens, Greece, 2008.

Jernej Polajnar, Behrooz Dalvandi, and Desanka Polajnar. Does Empathy between
Artificial Agents Improve Agent Teamwork? In Proceedings of the 10th IEEE In­
ternational Conference on Cognitive Informatics and Cognitive Computing, Banff,
Alberta, Canada, 2011. IEEE Computer Society.

Anand Rao and Michael Georgeff. BDI-Agents: Prom Theory to Practice. In Pro­
ceedings of the First Intl. Conference on Multiagent Systems, 1995.

Tuomas W. Sandholm. An Implementation of the Contract Net Protocol Based on
Marginal Cost Calculations. Eleventh National Conference on Artificial Intelli­
gence, pages 256-262, 1993.

Tuomas W. Sandholm. Distributed Rational Decision Making, pages 201-258. MIT
Press, Cambridge, MA, USA, 1999.

John Rogers Searle. Collective Intentions and Actions. In Intentions in Communica­
tion, pages 401-416. The MIT Press, Cambridge, MA, 1990.

92

Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-
theoretic, and Logical Foundations. Cambridge University Press, 2009.

Maarten Sierhuis, Jeffrey M. Bradshaw, Alessandro Acquisti, Ron van Hoof, Renia
Jeffers, and Andrzej Uszok. Human-Agent Teamwork and Adjustable Autonomy
in Practice. In Proceedings of the Seventh International Symptosium on Artificial
Intelligence, Robotics and Automation in Space, 2003.

Munindar Singh. Group Ability and Structure. Decentralized Artificial Intelligence,
2, 1991a.

Munindar P. Singh. A Logic of Situated Know-How. In Proceedings of the Ninth
National Conference on Artificial Intelligence, pages 343-348. AAAI Press, 1991b.

Munindar P. Singh. Know-How. In Foundations of Rational Agency, Applied Logic
Series, pages 105-132. Kluwer, 1999.

Ira Smith and Philip R. Cohen. Toward a Semantics for an Agent Communication
Language Based on Speech-acts. In Proceedings of the 13th National Conference
on Artificial Intelligence, pages 24-31, 1995.

Reid G. Smith. The Contract Net Protocol: High-Level Communication and Control
in a Distributed Problem Solver. IEEE Transactions on Computers, 29:1104-1113,
1980.

Robert Fletcher Sproull and Dan Cohen. High-Level Protocols. Proceedings of the
IEEE, 66(11):1371- 1386, 1978.

Katia. Sycara and Michael. Lewis. Integrating Intelligent Agents into Human Teams.
In Team Cognition: Understanding the Factors that Drive Process and Perfor­
mance. American Psychological Association, 2004.

Milind Tambe. Agent Architectures for Flexible, Practical Teamwork. In Proceedings
of the National Conference on Artificial Intelligence, 1997.

Wiebe van ver Hoek and Michael Wooldridge. Cooperation, Knowledge, and Time:
Alternating-time Temporal Epistemic Logic and its Applications. The Dynamics
of Knowledge, 75:125-157, 2003.

Gerhard Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. The MIT Press, 2001.

Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley, second edition,
2009.

Michael Wooldridge and Nicholas Jennings. Formalizing the Cooperative Problem
Solving Process. In Proceedings of the Thirteenth International Workshop on Dis­
tributed Artificial Intelligence, pages 403-417, 1994.

93

Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents: Theory and Prac­
tice. Knowledge Engineering Review, 10(2): 115—152, 1995.

Michael Wooldridge and Nicholas R. Jennings. The Cooperative Problem Solving
Process. Logic and Computation, 9(4):563-592, 1999.

John Yen, Jianwen Yin, Thomas R. loerger, Michael S. Miller, Dianxiang Xu, and
Richard A. Volz. CAST: Collaborative Agents for Simulating Teamwork. In 17th
International Joint Conference on Artificial Intelligence, pages 1135-1144, 2001.

John Yen, Xiaocong Fan, and Richard A. Volz. Information Needs in Agent Team­
work. Web Intelligence and Agent Systems, 2:231-247, 2004.

94

