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Abstract 

This thesis proposes a novel protocol for incorporating helpful behavior into mul-

tiagent teamwork. In the proposed protocol, called the Mutual Assistance Protocol 

(MAP), an agent can use its own abilities and resources to advance a subtask as­

signed to another agent. The helpful act is performed only when the two agents 

jointly determine that it is in the interest of the team. The underlying design princi­

ple is that each agent assesses the team impact of changes in its own local plan. The 

distributed decision is reached through a bidding sequence similar to the Contract 

Net Protocol. The helpful act may consist in performing an action or in granting re­

sources. The advantages of MAP over protocols that use unilateral help decisions are 

demonstrated through simulation experiments, using varying levels of mutual aware­

ness in the team, dynamic disturbance in the environment, communication costs, and 

computation costs. 
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Chapter 1 

Introduction 

Many tasks in human society can only be accomplished through teamwork, i.e., 

organized, coordinated activity of a group of individuals with common goals directed 

towards a particular task. Teamwork is increasingly important for solving a variety of 

complex tasks when no individual is able to accomplish the task alone (e.g., performing 

a surgery) or when accomplishing the task alone would be highly inefficient (e.g., 

harvesting a large field). A team structure usually involves a number of differentiated 

roles and relationships between them, such as hierarchy or peer cooperation rules. The 

teamwork participants work on different constituents of the collective task and may 

perform mutually supportive collaborative actions towards achieving the collective 

goal. 

Teamwork has also become a major research topic in multiagent systems (MAS) 

[Levesque et al., 1990, Cohen and Levesque, 1991, Grosz and Kraus, 1996, Sycara and 

Lewis, 2004, Dunin-Keplicz and Verbrugge, 2010]. Agents are autonomous intelligent 

entities, delegated to solve problems, and capable of social interaction. They have 

been studied, in the context of several disciplines, for about three decades. Over the 

last decade, they have evolved into a mainstream computing technology [Wooldridge, 

2009]. With the rise of networking and distributed computing, the central interest of 
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the agent research community became the study of multiagent systems, in which a 

group of agents engage in cooperative or competitive interactions [Wooldridge, 2009, 

Shoham and Leyton-Brown, 2009]. Within that context, a variety of formalizations 

have been developed to model MAS teamwork [Levesque et al., 1990, Wooldridge and 

Jennings, 1994, Grosz and Kraus, 1996, Aldewereld et al, 2004, Dunin-Keplicz and 

Verbrugge, 2010]. In addition, several platforms have been built to facilitate agent 

teamwork, such as GRATE [Jennings et al., 1992], STEAM [Tambe, 1997], CAST [Yen 

et al., 2001], and Cougaar [Helsinger and Wright, 2005]. The application systems 

based on agent teams include the MokSAF team planning system for time-critical 

tasks [Payne et al, 2000], the agent-based planning team training platform [Mountjoy 

and Ram, 2003], the system for human-agent teamwork in space applications [Sierhuis 

et al., 2003], and several systems for agent rescue teams [Hill et al., 2003, Marecki 

et al., 2005]. 

An essential aspect of MAS research and development is the design of protocols 

that specify how agents communicate and interact [Greaves et al., 2000, Paurobally 

et al., 2003, Dunn-Davies et al., 2005]. The rules and patterns of mutual interaction 

are often intuitively understood in human encounters, but require detailed and rigor­

ous specification in MAS. Once an interaction protocol for a particular purpose has 

been precisely formulated, it can be formally studied with respect to correctness, effi­

ciency, and properties of specific interest. It can then be optimized, standardized, and 

incorporated into MAS software development libraries and platforms. The resulting 

benefits include the interoperability between independently developed agents, a wider 

variety of design-time or even run-time choices among alternative interaction patterns, 

and a higher general level of architectural clarity, correctness, and efficiency of MAS 

software. There have been a variety of agent protocols developed for self-interested 

agent interactions such as auctions, negotiation, bargaining, or coordinated use of 
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resources Smith [1980], Foundation of Intelligent Physical Agents [2001a, 2000], Fiat 

et al. [2007], Ito et al. [2007]. The most successful and the most widely used among 

them has been the Contract Net Protocol (CNP) [Smith, 1980]. CNP is designed for 

distribution of tasks among agents in a manner resembling contract tenders. It has 

been used in a variety of application domains, such as open electronic marketplaces 

[Dellarocas and Klein, 1999]. The properties of CNP and its optimizations have been 

studied in the works by Sandholm [1999, 1993]. CNP has been standardized by the 

Foundation for Intelligent Physical Agents (FIPA) [Foundation of Intelligent Physical 

Agents, 2001b] and implemented as a library in the agent development package JADE 

[Java Agent Development Framework, 2004]. 

In the domain of agent teamwork, protocol research has mainly focused on team-

wide issues such as the team formation, the assignment of roles and subtasks to 

agents, or the development of team-level plans, often building upon early work in the 

area of cooperative problem solving [Wooldridge and Jennings, 1994, 1999, Durfee, 

1999]. One observation that motivates the research presented in this thesis is that 

the quality and efficiency of teamwork depend not only on its global aspects such 

as team structure, organization, resources, and planning, but also on smaller-scale 

collaborative practices within the team. It has been observed in scientific studies 

(e.g., [LePine et al., 2000]), and commonly accepted in management practices, that 

the capacity of team members for direct mutual assistance is an important ingredient 

of success in human teamwork. Consistent with this observation, there has been a 

growing interest in the study of helpful behavior in agent teamwork [Itoh, 1991, Miceli 

et al., 1994, Yen et al., 2004, Cao et al., 2005, Fan et al., 2005, Kamar et al., 2009, 

Polajnar et al., 2011]; however, that research interest has not, to the best of our 

knowledge, resulted in the formulation of specific protocols for helpful behavior. 

In this thesis, we introduce a novel protocol, called the Mutual Assistance Protocol 
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(MAP), that incorporates helpful behavior into agent teamwork. In its underlying 

teamwork model, each team member works on a subtask with specified time and 

resource limits, for which it autonomously constructs its local plan. In a helpful act, 

one agent uses its own abilities and resources to help advance the subtask of another 

agent. The helpful act is performed only if the two agents jointly determine that it is 

in the interest of the team as a whole, using their individual beliefs about the state 

of the environment and the state of activities in the rest of the team. The message 

exchanges in MAP are similar as in CNP, but the decision criteria are based on team 

interest rather than individual self interest. (In fact, individual interest is not present 

in the model; the team interest relates to the achievement of team's objectives, not 

to collective social welfare based on individual interests.) 

The purpose of MAP is to enable team members to respond to arising difficulties 

through direct mutual assistance, without the need to raise those difficulties at the 

global team level. The design of MAP avoids assumptions about the global team 

organization, its degree of centralization, or the techniques used for global plan con­

struction, subtask assignment, and resource allocation. However, the design of MAP 

does assume that the global decisions in effect are sound and suitable for the team's 

task. MAP is not designed to help overcome team-level problems of structure or 

strategy, even if helpful behavior may alleviate such problems in the short term. Be­

cause of this, we regard MAP as a 'secondary' protocol, designed to support smoother 

teamwork in the presence of moderate challenges, while challenges of higher magni­

tude may require the use of 'primary' protocols for reorganization or replanning at 

the global level. 

The design philosophy of MAP is to choose the decision mechanism for helpful 

behavior with a view towards the expected accuracy of agent beliefs on which the 

decisions are based. While we assume that agents in the team communicate truth­
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fully, their beliefs are usually imperfect. However, different beliefs of the same agent 

may differ in accuracy, forcing the protocol designer to ponder which and whose be­

liefs to use in the decision criteria. The design principle adopted in our case is that, 

since we assume that the primary team organization is viable, the designer can view 

an individual belief that is highly relevant to the agent's role in the primary team 

organization as being credible enough to serve as a basis for decisions on secondary 

behavior. Applying this principle to our MAS model, we note that each agent con­

structs its own local plans, and therefore uses its individual beliefs to evaluate the 

team impact of each candidate plan. Accordingly, for deciding whether a helpful act 

should occur, we choose a distributed mechanism in which each agent only assesses 

the team impact of changes in its own local plan. We provide the specification of 

MAP in two cases: when the helpful behavior is expressed by performing an action, 

and when it is expressed by providing resources. In addition, we discuss two possible 

variations of MAP;one of them involves an alternative help-seeking mechanism, the 

other an alternative sequence of interactions in the help transaction. 

For comparison, we construct two protocols in which the decision about help is 

made unilaterally, based on the beliefs of a single agent. In one of them the decision 

about whether to help is based on probabilistic beliefs of the helper alone (similar to 

the principle employed in [Kamar et al., 2009]); in the other, the decision is based 

on the probabilistic beliefs of the requester alone. Also included for comparison is 

a computation without a helpful behavior. We analyze the complexity of the four 

protocols with respect to computation and communication costs. We also compare 

the four protocols in a series of simulation experiments, using as the simulation test-

bed a variation of the Colored Trails game [Grosz et al., 2004], which is a publicly 

available research test-bed for examining decision making in group of agents or people. 

We present a set of simulations showing how the performance of an agent team 

5 



depends on each of the following four quantities: the level of mutual awareness among 

the team members; the level of dynamic disturbance in the environment; the cost 

of communication; and the cost of computation. In this context, we compare the 

performance of the four approaches to helpful behavior. In most cases, all three 

protocols for helpful behavior produce significant improvements over the computation 

without helpful behavior. The experiments show the superiority of MAP over the 

other protocols, especially when the agents' knowledge about the rest of the team 

decreases. MAP strongly outperforms both unilateral protocols except in situations 

where individual agents have a near-perfect knowledge about the rest of the team; 

the latter type of situation is uncommon in practice and often costly to achieve in 

distributed architectures. 

The rest of this Thesis is structured as follows: Chapter 2 provides the background 

work, Chapter 3 presents the rationale for teamwork protocols for helpful behavior, 

Chapter 4 presents The Mutual Assistance Protocol (MAP), Chapter 5 provides the 

comparative performance evaluation of MAP and other protocols, and Chapter 6 

presents the conclusions and future work. 
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Chapter 2 

Related Work 

This chapter contains the necessary background in areas of multiagent systems, 

cooperation and collaboration, teamwork in multiagent systems, agent interaction 

protocols, helpful behavior in teamwork, and expert teamwork, with the focus relevant 

to my thesis. 

2.1 Multiagent Systems 

There is no universally accepted definition of what exactly an agent or a multiagent 

system (MAS) is. Shoham and Leyton-Brown [2009] describe multiagent systems as 

"systems that combine multiple autonomous entities, each having diverging interests 

or different information or both." Wooldridge [2009] defines multiagent systems as 

"systems composed of multiple interacting computing elements, known as agents", 

where an agent is "a computer system situated in some environment and capable of 

autonomous action in this environment in order to meet its delegated objectives ". 

Wooldridge and Jennings [1995] suggest that in order to satisfy their design objectives 

the agents need to be proactive, i.e., able to take initiatives in performing goal-directed 

actions; reactive, i.e., able to perceive the environment and react to its changes; and 
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social, i.e., able to interact with other agents and humans. 

While in this work we are primarily interested in artificial agents, we find it useful 

to take the inclusive view of multiagent systems, allowing, for instance, the term to 

apply to a team consisting of humans and agents. Thus, while all definitions allow 

agents to be artificial entities, the same inclusive view also allow them to be humans 

or other living organisms. 

An agent gets sensory inputs from the environment and produces as output ac­

tions that can influence the environment. An agent also has an internal state, which 

evolves depending on the sensory input and influences the actions of the agent. The 

environmental states can be represented using a utility function that assigns a real 

number to different states of the environment, letting the agent judge how desirable 

each state is for the agent. 

In the last twenty years, researchers have expressed particular interest in prac­

tical reasoning agents. The practical reasoning agents have unique mental states, 

which help them to decide what to do and how to accomplish it. The most popular 

framework for constructing this type of agents is the Belief-Desire-Intention (BDI) 

framework, coming from the philosophical work of Bratman [1987]. In that model, 

the agent relies on perception to form beliefs (which may or may not be true) about 

the environment and about other agents. The agent uses these beliefs to construct the 

desires, which are states of the environment that the agent would like to achieve. The 

most suitable desires, which are chosen through deliberation, become intentions. The 

agent does not have any commitment towards desires, and they can be even mutually 

inconsistent or unachievable, but the agent should have some level of commitment 

towards its intentions and should consider them possible. There are many systems 

implemented using the BDI model. One of the first and the best known is the Pro­
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cedural Reasoning System (PRS), constructed by Georgeff and Lansky [1987]. Other 

such systems include dMARS, AgentSpeak, JADEX, and Jason (see e.g., [Wooldridge, 

2009]). 

Rao and Georgeff [1995] formlize BDI reasoning using modal logic. Modal logic can 

express statements such as "necessarily true" or "possibly true" [Hughes and Cresswell, 

1996, Blackburn et al, 2001]. However, the term "modal logic" is used more widely 

to cover a group of logics with similar rules, which are derivatives of the classical 

modal logic. Examples of such logics are the temporal logic or the epistemic logic. 

In temporal logic, one can express temporal notions such as p is 'henceforth true' or 

becomes 'eventually true', while epistemic logic allows to express epistemic notions 

such as what agent a knows, or what agent a knows about the knowledge of agent b. 

There are many agent-based applications that are successfully used in the real 

world, such as the OASIS air traffic management system [Ljungberg and Lucas, 1992], 

the CIDIM power distribution system, based on ARCHON architecture [Jennings, 

1994], and the FIRMA resource management project [Downing et al., 2001]. 

2.2 Multiagent Cooperation and Collaboration 

In multiagent systems, agents may interact in different ways, involving coopera­

tion, collaboration, competition, or combinations of these. In this thesis, I will be 

mainly interested in cases where agents cooperate and collaborate in order to achieve 

a common goal. 

In order to work together, agents need to coordinate their activities [Wooldridge, 

2009]. The coordination is necessary for synchronizing the agents' actions and avoid­

ing extraneous activities. However, coordination in agent interaction does not imply 
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cooperation. Cooperation requires more than coordination from agents, and there 

is a difference between coordinated action that is not cooperative, and cooperative 

coordinated action. The example showing that is the scenario presented below cited 

from Searle [1990]. 

As a result of a sudden downpour in the park, a group of people run to a tree 

in the middle of the park because it is the only available source of shelter. This 

may be coordinated behavior, but it is not cooperative action, as each person 

has the intention of avoiding becoming wet. But when the people are dancers, 

and the choreography calls for them to converge on a common point (the tree), 

this is cooperative action, although the individuals are performing exactly the 

same actions as before. The difference is that in latter case they each have 

the aim of meeting at the central point as a consequence of the overall aim of 

executing the dance. 

This example illustrates that not every coordinated action is a cooperation. Cooper­

ation involves several different types of activities, such as task sharing, information 

sharing, and dynamic coordination of multiagent activities [Wooldridge, 2009]. 

For our purposes, we will use the term "cooperation" to describe working together 

in the broadest sense, while "collaboration" is a more restrictive form of cooperation 

which implies commitment to a shared goal, usually the accomplishment of the ac­

tion that the agents are trying collectively to accomplish. Self-interested individuals 

will cooperate if everyone benefits, even though their goals may differ, while during 

collaboration individuals must cooperate and have shared goals. 

There are at least two main distinctions between cooperation (and collaboration) 

in multiagent systems and 'traditional' distributed systems [Wooldridge, 2009], spec­

ified below: 
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• In multiagent systems, agents can be designed by different people who have 

different goals. As a result, the agents may have no shared goals, which may 

require them to function strategically in order to obtain their targeted outcome. 

• As agents act autonomously and make decisions at run-time, they must be 

able to coordinate their actions and cooperate with other agents dynamically. 

In contrast, in traditional distributed systems, units typically coordinate and 

cooperate according to the rules developed at design time. 

The need for agent cooperation for problem solving has been recognized in late 

1980s with the work of Durfee et al. [1989], where the authors explore the coopera­

tion of agent-like entities, which have unique expertise and can solve problems. As 

there may be problems which no individual agent can solve, or solving the problem 

collectively would bring them more benefit (such as less usage of resources or more 

confidence regarding the solution quality), agents may decide to cooperate. 

One of the most widely used approaches towards agent collaboration has been the 

use of joint intentions [Wooldridge, 2009]. Intentions provide stability and predictabil­

ity that are essential to act in a changing environment [Cohen and Levesque, 1991, 

Levesque et al., 1990, Cohen and Levesque, 1990]. Being part of a collaborative pro­

cess implies that, in addition to having individual intentions towards a certain goal, 

agents also must have certain intentions to commitments towards the other members. 

Such a mental structure provides stability to the collaborative activity. 

2.3 Teamwork 

Teamwork is the collaboration of individual agents towards accomplishing a par­

ticular task. In order to act as a team, the agents need to have committments to 



shared goals and be in particular mental states while performing their actions. The 

study of agent teamwork is an active research area, and there have been many formal 

approaches towards the formalization of the semantics of agent teamwork. The ex­

amples include the fundamental works by Levesque et al. [1990], Cohen and Levesque 

[1991], Wooldridge and Jennings [1994], Grosz and Kraus [1996], and more resent 

works by Sycara and Lewis [2004], Aldewereld et al. [2004], Brzeziriski et al. [2005], 

Dunin-Keplicz and Verbrugge [2010]. In addition, several platforms have been built to 

facilitate agent teamwork, such as GRATE [Jennings et al., 1992], STEAM [Tambe, 

1997], CAST [Yen et al., 2001], and Cougaar [Helsinger and Wright, 2005]. The ap­

plication systems based on agent teams include the MokSAF team planning system 

for time-critical tasks [Payne et al., 2000], the agent-based planning team training 

platform [Mountjoy and Ram, 2003], the system for human-agent teamwork in space 

applications [Sierhuis et al., 2003], and several systems for agent rescue teams [Marecki 

et al., 2005, Hill et al., 2003], to name a few. 

The agents may recognize the need for collaboration during the execution of their 

tasks. This requires agents to have capabilities for deciding whether to form teams 

at run-time. Wooldridge and Jennings [1994, 1999] present a four-stage model of 

collaborative problem solving (CPS) and formalize it by expressing it in multi-modal 

logic. The four stages of the model are as follows: 

1. Recognition 

CPS starts when an agent that has a goal recognizes the need for collaborative 

action related to that goal. An agent may recognize the need for collaboration 

for several reasons, such as the beliefs about inability or inefficiency to achieve 

the goal alone. However, these beliefs are not enough to initiate the collabo­

ration. In order to have a capacity for collaboration regarding an agent's goal, 
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the agent must also have beliefs about the existence of a group of agents that 

can achieve the goal. 

2. Team Formation 

In this stage, the agent that recognized the opportunity for collaboration re­

quests others to collaborate. Other agents deliberate about the request, and if 

they agree to collaborate, they together form a team with a certain commitment 

to collective action. The team then agrees about the way towards achieving the 

goal. As the agents are rational, they will not agree to form a team if they do 

not believe that the goal is achievable. 

3. Plan Formation 

Having beliefs about the existence of solution to achieve the goal, the team 

chooses an action that will take the group at least one step 'closer' to the goal. 

As there may be different such actions, the team chooses the best one through 

negotiation. 

4. Team Action 

In this stage, the team executes the agreed plan of joint actions. The agents 

follow a certain convention to keep the relationship with other agents during 

the plan execution. 

In their work, Cohen and Levesque [1991] and Levesque et al. [1990] specify the 

necessary conditions of the mental states of the agents in the team, using the notion 

of joint intentions. In their model, the authors show that the team of agents working 

on some common goal should treat that goal as a weak achievement goal, i.e., every 

agent in a team should consider the possibility that the other team member may have 

discovered that the goal is either achieved, unachievable, or irrelevant, and is on its 
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way of making that fact commonly known. If any agent in the team comes to the 

conclusion that the goal is accomplished, not achievable, or irrelevant, it should drop 

the goal, but before finishing its job, it should make the fact commonly known. 

Among several other researchers, Smith and Cohen [1995] developed a semantics 

for an agent communications language, which is essential for team agents in order 

to communicate and share their beliefs and intentions. The authors showed that the 

establishment of semantics for an agent communications language can be done on the 

assumption that inter-agent communications form a task oriented dialogue, which 

is used by agents to build, maintain, and disband teams. The agents perform these 

activities through actions of communicative acts, called speech acts. The authors con­

structed basic and complex speech acts, such as Assert, Request, Refuse, etc., based 

on joint intentions theory, and show how agents can form and disband teams using 

series of speech acts. Tambe [1997] integrated the properties of mental states of the 

agents forming a team, as well as the speech acts necessary for the agent communi­

cation, demonstrating a flexible and reusable agent architecture via an implemented 

candidate STEAM. STEAM is based on joint intentions theory and captures concepts 

of team synchronization, constructs for monitoring joint intentions and repair, and 

decision-theoretic communication. 

2.4 Agent Protocols 

In order to accomplish certain tasks, agents engage in interactions, which may be 

sequences of actions and messages following a higher-level structure. Such a higher-

level structure referring to a certain task is called an agent protocol [Paurobally et al., 

2003, Paurobally and Cunningham, 2002, Miller and McBurney, 2008]. 
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Agent protocols are essential in all but the most basic agent cooperative inter­

actions, as they provide set of rules controlling the interaction [Greaves et al., 2000, 

Dunn-Davies et al., 2005]. They include agent interaction protocols and agent commu­

nication protocols. Agent interaction protocols are high-level protocols that prescribe 

what the agents should communicate to each-other when performing a certain type of 

task. They rely on communication protocols that regulate how agents communicate. 

Two well known standard agent communication protocols are KQML/KIF [Mayfield 

et al., 1996] and FIPA-ACL [Foundation of Intelligent Physical Agents, 1997]. In this 

thesis we are mainly interested in agent interaction protocols. 

As agents may interact in a variety of circumstances, having a universal agent 

protocol is not realistic [Dunn-Davies et al., 2005], and different agent cooperations in 

different domains require specific protocols. Research on different types, properties, 

and optimizations of agent interaction protocols includes such as [Ball and Butler, 

2006, Chen et al., 2007, Smith, 1980]. 

There have been a variety of agent protocols developed for self-interested agent 

interactions [Smith, 1980, Foundation of Intelligent Physical Agents, 2001a, 2000, 

Fiat et al., 2007, Ito et al., 2007]. One of the most successful and widely used among 

them has been the Contract Net Protocol (CNP) [Paurobally et al., 2004], originally 

developed by Smith [1980]. Smith's inspiration came from the method that companies 

use when putting contracts out to tender [Wooldridge, 2009]. The Contract Net 

Protocol is a high level protocol, originally designed for the cooperation of nodes 

during the distributed problem solving process. The main purpose of CNP is achieving 

a balance through task sharing, where the nodes with workload are able to find idle 

nodes in the net to perform the tasks. The nodes achieve such balance through 

contracting. 
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The original CNP algorithm consists of four main steps: 

1. Task Announcement 

The node that creates the tasks or realizes that it needs help, advertises the task 

to other nodes through task announcement, and after announcing it becomes the 

manager of that task. Depending on the specific capabilities of other nodes, the 

manager may send the announcement to all other nodes with general broadcast, 

to a subset of nodes with limited broadcast, or to one single node with direct 

message. 

2. Bidding 

The nodes in the net receive the task announcement, evaluate it according to 

the expertise the task requires, the price, and possibly some other factors. If 

the node realizes that it is suitable for the task, it submits a bid. The bid may 

specify the capabilities of the node which are important for the completion of 

the task, and possibly some other parameters. 

3. Awarding 

The manager may receive many bids from different nodes for one task announce­

ment, and based on the specifications of the bids, chooses the most appropriate 

candidate(s) to execute the task. The manager then informs the successful 

bidders through an award message. The manager rejects all other bids. 

4. Executing 

The selected node(s) start the execution of the task. These nodes are called 

contractors of the task. After the completion of the task the contractors re­

port the results to the manager. A node can be a manager of one task and a 

contractor of another task at the same time. 
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Along with the development of the Multiagent Systems, the Contract Net Protocol 

had to be modified to reflect approaches in the way current agents are designed [Weiss, 

2001]. 

In addition to the early work on cooperative problem solviing, the Contract Net 

Protocol has been extensively used for cooperation among self interested agents. The 

actions of self interested agents are motivated by increasing the individual utility 

value to the agent. The modern Contract Net Protocol has additional utility margin 

calculations during the process of evaluation of the announcement. The agent eval­

uates the benefit associated with potential contract and the cost for executing the 

task in the contract, calculating the marginal benefit. Calculating the benefits from 

all available task announcements, the agent uses its rationality and bids for the one 

with highest value [Sandholm, 1999, 1993]. 

As shown in the steps of the algorithm and the analysis above, the interaction be­

tween agents in CNP is based on competitive negotiations by using contracts. Thus, 

though the CNP itself is designed for cooperative distributed problem solving pur­

poses, the individual agents in the net are self-interested, meaning that the final choice 

may be the best for the manager and the contractor, but not for the group as a whole 

[Weiss, 2001]. Based on this property of self-interested agents in CNP, there have 

been several application areas researched and presented, such as the open electronic 

marketplaces [Dellarocas and Klein, 1999], where agents can buy and sell goods. 

CNP has also been widely tested and analyzed in Multiagent Systems, both from 

the semantical and state machine model's perspective [Paurobally et al., 2004, Itabashi 

et al., 2002]. It has a number of advantages, such as the decentralized nature of 

decision making and the simplicity of the algorithm. In addition, CNP has been 

implemented in several agent development packages such as JADE [Java Agent De­
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velopment Framework, 2004]. 

However, the modern approach to CNP may lead to a relevant problem, where 

the agents will not accept new task announcements if the marginal benefit of the new 

task is lower compared to their current available tasks. This situation may lead to 

the case where the whole system is stuck, whereas the individual agents have the 

maximum benefits. [Weiss, 2001]. 

There is also another bothering problem with the usage of CNP in Multiagent 

Systems, which is that the agents are not always truthful and may lie, if it would 

increase their benefit. Since the agents are self-interested and try to maximize their 

utility, such behaviors are possible. 

Research on development of protocols for agent collaboration has been mainly 

focused on planning of the global structure of the team. The strategies for task 

sharing, result sharing, and global planning of the team are addressed in the work 

by Durfee [1999]. A general model for team formation is presented in the works by 

Wooldridge and Jennings [1994, 1999]. However, the development of protocols for 

achieving efficient inter-agent collaboration in cases when the global team structure 

is already planned, has received less attention. Some of the steps towards building 

such protocols is included in the work by and Kamar et al. [2009]. 

2.5 Helpful Behavior in Agent Teams 

Both science and human experience indicate that towards designing efficient hu­

man teamwork, an essential factor is the helpful behavior among the team members. 

A team member performs helpful behavior by assisting another team member if it 

executes or gives information about a part of the task that is assigned to the other 
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team member. Helpful behavior in agent teams can be important as well, and there 

exists a research interest in modeling helpful behavior in artificial agents [Itoh, 1991, 

Miceli et al., 1994, Yen et al., 2004, Cao et al., 2005, Fan et al., 2005, Kamar et al., 

2009]. Although agents are designed with certain capabilities and for certain roles, 

the need for helpful behavior in agent teams can arise for several reasons [Polajnar 

et al., 2011]. Firstly, the agents are usually situated in environments where poten­

tial faults and unexpected events may happen, putting the agents in situations not 

anticipated by their designers. Moreover, as the design of agents can often be costly, 

in some domains it may be preferred to design agents with certain standard capa­

bilities in the domain of their design objectives, so that they can be reused during 

the execution of similar tasks. On the other hand, providing agents with potentially 

necessary capabilities may often be impractical, as the agents may have physical or 

computational components that cannot be cost-effectively transferred to every team 

member that could possibly need them. Therefore, in many environments an agent 

team, even though designed for specific application, may still need mechanisms for 

mutual assistance or dynamic reorganization. 

The dynamic reorganization of agent roles is currently used in several self-healing 

systems, designed to provide fault tolerance [Dashofy et al., 2002]. The dynamic 

reorganization may be efficient when the changes in the environment are persistent. 

However, when the environment changes have intermittent behavior and are unpre­

dictable, dynamic reorganization of agent roles does not solve the problem [Polajnar 

et al., 2011]. 

Cao et al. [2005] use the shared mental models to develop a formal model of 

proactive helpful behavior. The model provides means for proactive helpful behavior 

in cases when a team member fails its task and when a team member needs to achieve 

the conditions necessary for performing its task. The model enables the agents to 
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identify the help needs of the team members and perform actions to satisfy the team 

members' needs if they can. 

Kamar et al. [2009] observe that, even though the team members have an incentive 

to help each-other because of their commitments to the shared goal, they still need 

to deliberate about the decision whether to help. Helpful actions are associated with 

some costs for the helping agent, which may result in costs for the team activity as 

a whole. The team costs may be of different types, such as the spent resources on 

execution of the help or communication, lost opportunities to perform other activities. 

The authors develop a general model for evaluating the potential benefit to the team 

related to performing a helpful action. The authors develop their model based on 

local probabilistic beliefs of the team members. The team members use these local 

beliefs to reason about the probabilities of the potential help needs of other team 

members and the potential team benefits or losses associated with providing such 

helps. However, these beliefs are based on local reasoning and not guaranteed to be 

accurate. 

An approach towards decentralized decision making for the helpful action has been 

mentioned in the work by Polajnar et al. [2011], where the authors discuss the need 

for empathy in artificial agents and provide a simulation experiment where the team 

members achieve better results by performing empathy-driven helpful behavior in a 

decentralized manner. 

2.6 Expert Teamwork 

Many human teams are characterized by the property that individual members 

of the team have unique expertise that they contribute to the team [Cannon-Bowers 
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et al, 1993, Mohammed and Dumville, 2001, Cooke et al., 2000, Hoffman et al., 1995]. 

Expertise is a specialist knowledge or skill that cannot be easily transferred to another 

team member. Therefore, the decisions of expert members in teams are accepted, and 

the expert members are given autonomy of decision making. For our purposes, we 

call this kind of teams expert teams1. A good example of a human expert team is the 

surgical team, which typically consists of the main surgeon, an assisting surgeon, an 

anesthesiologist, and various supporting roles; each role involves specialized knowl­

edge, as well as predefined rules and patterns of collaboration with other roles in the 

team. Besides role specialization, another general property of expert teamwork is that 

team decisions are based on expertise of specialized members. The decision mecha­

nisms therefore must balance commitment to joint goals with the necessary expert 

autonomy. Cooke et al. [2000] observe that in human expert teams an essential factor 

for success is the limited overlapping knowledge among the team members. Such an 

overlap provides means for mutual assistance in case of difficulties, as well as certain 

predictability of the team members' decisions. 

Expert teamwork has been the subject of research interest in multiagent settings 

as well [Polajnar et al., 2011, Singh, 1991a], The incentives of such studies lie in the 

fact that many multiagent systems, too, often have specialized members in teams, and 

some of the members may have unique skills and abilities. Some application-specific 

research points on that too [Polajnar et al., 2008]. However, because of more complex 

properties of expert teams, the collaboration mechanisms among expert agents have 

been developed less compared to the collaboration mechanisms for homogeneous agent 

teams. 

Polajnar et al. [2008] suggest that, depending on the team collaboration model, 

1In our work, the term expert in phrase expert 'team' is distinct from the term expert in the 
phrase 'expert systems'. By saying expert, we mean the individual unique expertise of the team 
member 
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the communication among the members of an expert agent team can be achieved 

through both a passive environment and direct message exchange, depending on the 

purpose of the communication. Communication through environment is relevant for 

collaborative solving of complex problems involving distributed expertise. An example 

of such environment is the blackboard architecture, in which the team members can 

post or subscribe to different categories and having a flexibility of synchronous as 

well as asynchronous communication [Corkill, 1991]. The expert team members can 

also communicate client-server interactions that are properly designed as bidirectional 

message-passing transactions and should not be done in the environment. 

As the members of an expert agent team have individual unique expertise, they 

know how to do certain things. This know-how [Singh, 1999, 1991b,a] refers to proce­

dural knowledge - how to achieve or maintain some states of affairs - which is different 

from factual knowledge. Singh [1999] developed the theory of procedural knowledge, 

and showed that in many situations know-how is equally important as the knowledge 

of facts (know-that), and that know-how cannot be reduced to know-that. Thus, the 

capabilities of expert agents are represented by the combination of their knowledge 

and know-how. 
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Chapter 3 

Designing a Protocol for Helpful 
Behavior 

This chapter highlights the need for protocols that provide mechanisms for helpful 

behavior in agent teamwork. Section 3.1 describes the need for helpful behavior in 

agent teams, Section 3.2 presents the approach we use towards designing MAP. 

3.1 The Case for Helpful Behavior in Agent Teams 

The interest in human teamwork, its mechanisms of collaboration, and the tech­

niques to improve its efficiency, has been steadily increasing in recent years, both in 

the realm of scientific studies and in practical management, to the point that most 

job interviews now directly address candidates' teamwork skills. 

In human teamwork, the success of a team project depends on many factors. The 

team must have the necessary expertise and resources, clear formulation of tasks, an 

adequate structure, and proper planning at the global level. Assuming that all these 

prerequisites are in place, the team's performance on complex tasks still critically 

depends on the effectiveness of internal interactions in the team. In many situations, 
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an important ingredient of effective collaboration is the readiness of team members 

to help each other. 

Helpful behavior in agent teamwork has also attracted interest of a number of 

researchers [Itoh, 1991, Miceli et al., 1994, Yen et al., 2004, Cao et al., 2005, Fan et al., 

2005, Kamar et al., 2009, Polajnar et al., 2011]. A strong motive for such studies is the 

emergence of mixed human and artificial agent teams, in which many of the human 

rules of social behavior are expected to apply. The potential significance of helpful 

behavior in teams consisting purely of artificial agents is discussed in [Polajnar et al., 

2011]. The authors point out that, although artificial agents are designed with certain 

capabilities and for certain roles, the need for helpful behavior can arise for several 

reasons. The agents are often situated in environments where faults and unexpected 

events may happen, which may put the agents in situations not anticipated by their 

designers. Furthermore, as the design of agents can often be costly, in some domains 

it may be preferred to design agents with certain standard capabilities in the domain 

of their design objectives, so that they can be reused during execution of similar tasks. 

Thus artificial agents, like humans, may have abilities beyond their immediate roles, 

which can prove valuable to the team in unexpected situations, in particular if helpful 

behavior is supported by suitable protocols. On the other hand, providing agents 

with all potentially useful capabilities could be impractical, as the agents may have 

physical or computational components that cannot be cost-effectively transferred to 

every team member that could possibly need them. Therefore, in many environments 

an agent team, even if designed for a specific application, may still need mechanisms 

for mutual assistance. 

In order to incorporate helpful behavior into agent teamwork, one needs to develop 

suitable interaction protocols. The existing studies in helpful behavior among agents 

have so far, to the best of our knowledge, not produced such protocols. One of the few 
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approaches in that direction is the work by Kamar et al. [2009], where the authors 

provide methods for reasoning about helpful behavior based on local probabilistic 

beliefs of individual agents. 

In this thesis we make the case for the development of teamwork protocols for 

helpful behavior. When such protocols are developed, adopted, and possibly stan­

dardized, developers will be able to independently design agents that can interact and 

cooperate according to a set of well defined mutual assistance rules that are known 

in advance. A stable protocol definition provides a basis for theoretical and empirical 

studies of its advantages, limitations, and costs. It also allows incorporation of generic 

protocol versions into development toolkits and libraries, leading to major savings in 

development time. As argued by Miller and McBurney [2008], agents could decide 

dynamically when they need such protocols, thus having an option of adding helpful 

behavior at run time as needed. As always when software is developed for system­

atic reuse, and particularly in the realm of free software, there are opportunities to 

attain higher quality of a protocol design and implementation through feedback and 

collaboration of many experts on its successive refinements over longer periods. 

Based on this rationale, we proceed to consider some design objectives and prin­

ciples for a teamwork protocol for helpful behavior. We introduce the protocol itself 

in the next chapter. 

3.2 The Protocol Design Objectives and Approach 

As in other teamwork literature, we assume that agents in the team are truthful 

in their interactions. Helpful behavior differs from self-interested cooperation (e.g., 

CNP) in that it is motivated by team benefit rather than individual agent's benefit. 
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Despite this absence of fundamental conflict of interest, the viewpoints of team mem­

bers can differ because they do not have the same expertise and do not have identical 

information about the state of the environment or the state of teamwork in progress; 

and since they have a degree of individual decision autonomy, their decisions may not 

always be in accord with each other. Moreover, the decisions of individual members 

may not always serve the team interest as it would be perceived on the basis of the to­

tal knowledge collectively held by all members. Thus, an intended helpful act, based 

on limited knowledge of an individual team member, may in fact not be helpful to the 

team, even if the team as a whole knows enough to detect the problem. Yet, in most 

complex systems it would be quite unrealistic to postulate that each individual team 

member must know everything the team knows. In a centralized team organization, 

one might require the team leader to know all that the team knows; but it is well 

known that such solutions are vulnerable to failure and do not scale as the system 

size increases. Intuitively, a strict subjection of helpful acts to central approval by 

the team leader preempts one of the key purposes of helpful behavior, which is to 

overcome local problems without raising them to the global level. 

The observations above reinforce the need for carefully designed protocols that 

regulate helpful behavior in teams. In particular, the protocol designer must consider 

whether the agents involved in the decision on performing a helpful act are likely to 

possess the relevant information. In a recent study of helpful behavior [Kamar 2009], a 

team member uses its own beliefs to unilaterally decide whether to help another agent; 

no communication is needed prior to the decision. A different approach is used in 

[Polajnar 2011], an article on empathy-based helpful behavior: the agent requesting 

help interacts with agents willing to offer help, possibly leading to a bilateral (or 

multilateral) agreement. We adopt the latter principle as a basis for the protocol 

introduced in this thesis. The reasons motivating this choice are discussed below. 
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In our approach, helpful behavior is viewed as a supplementary, corrective mech­

anism, whose purpose is to improve the performance "in the small", at a fine level 

of granularity of the operations performed, without altering the general team struc­

ture and organization, agent role design, and global plan construction. Our model 

therefore situates helpful behavior in a context where these general, high-level aspects 

of team operation are fixed. It is possible that mutual assistance is needed because 

the events arising in the environment have exposed certain weaknesses of the current 

team organization or global plan. But if the inadequacies are of such magnitude that 

they require team reorganization, role redesign or reassignment, or replanning at the 

global level, then the situation is beyond the scope of our present study. 

Consistent with the above restrictions, and in order to keep our model of agent 

team as general as possible, we assume as little as possible about the degree of cen­

tralization of the team organization. The assumption that we do make is that each 

agent performs a certain subtask, for which it autonomously develops a plan of its 

own actions, intended to meet the time and cost limits prescribed by the team. In 

that context, we consider two kinds of helpful acts. First, an agent may perform an 

action on behalf of another, using its own time and cost budget. Second, an agent 

may grant a portion of its own cost budget as assistance to another. In order to not 

depend on any features that some teams might not have, we rely on decentralized 

mechanisms for deciding whether an agent should help another. About the MAS 

infrastructure we also assume relatively little; primarily, the communication cost of 

consulting about help and its eventual delivery must not be prohibitive. The intent is 

to have a protocol for helpful behavior that is applicable across a wide range of MAS 

team models. Clearly, some of those models may support it better than others, and 

some may include effective alternative mechanisms for similar purposes. 

In order to come up with a cost-effective plan, the agent must be able to generate 
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and evaluate alternative candidate plans. The candidate plans are compared with 

respect to team interest rather than the agent's self-interest. To this end the team 

member arguably has a harder duty than a self-interested contractor in CNP, because 

its decision criteria involve non-local circumstances such as the state of the team's 

environment beyond its own scope of perception, the progress of work elsewhere in 

the team, and dependencies between subtasks within the global plan. The agent's 

belief set used in the comparative evaluation of plans thus consists of two subsets: 

its local beliefs, based on its own perception of the environment external to the team, 

and its context beliefs, developed in interaction with the team, that contain team-level 

information relevant to the individual. We do not specify the team-level information 

that the agent has, but we do assume that it is sufficient for a sound assessment 

of the team impact of each candidate plan. If that is not the case, then the team 

organization itself is ineffective. 

The above analysis motivates our position that, within the general assumptions we 

have outlined, each helpful act in agent teamwork should occur based on a distributed 

agreement among its participants, rather than based on a unilateral decision. For 

instance, consider the case when agent A contemplates a helpful act of performing an 

action within the current plan of agent B. In [Kamar 2009], A unilaterally assesses 

the team impact of help as the difference between the team utility of the scenario with 

help and the team utility of the scenario without help. The calculation of team utility 

is based on A's own beliefs about the probabilities of team members' actions. Note 

that a decision to help implies a change of plans for both A and B. In an effective 

team organization that complies with our assumptions, A should indeed be able to 

assess the team impact of its own plan change, in the same way as it assesses its own 

candidate plans. The presumed ability of A to properly assess the team impact of 

B's plan change may or may not exist; its absence does not seem to imply that the 
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underlying team organization is ineffective. We prefer to opt for a distributed decision 

mechanism that lets B assess the team impact of its own plan change. We already 

know that B has that ability because it routinely assesses its own candidate plans. 

The purpose of MAP is to enable team members to respond to arising difficulties 

through direct mutual assistance, without the need to raise those difficulties at the 

global team level. The design of MAP avoids assumptions about the global team 

organization, its degree of centralization, or the techniques used for global plan con­

struction, subtask assignment, and resource allocation. However, the design of MAP 

does assume that the global decisions in effect are sound and suitable for the team's 

task. MAP is not designed to help overcome team-level problems of structure or 

strategy, even if helpful behavior may alleviate such problems in the short term. Be­

cause of this, we regard MAP as a 'secondary' protocol, designed to support smoother 

teamwork in the presence of moderate challenges, while challenges of higher magni­

tude may require the use of 'primary' protocols for reorganization or replanning at 

the global level. 
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Chapter 4 

The Mutual Assistance Protocol 

This chapter introduces a mechanism for incorporating helpful behavior into agent 

teamwork and formalizes it as the Mutual Assistance Protocol (MAP). Section 4.1 

formulates the general theoretical framework of MAP; Sections 4.2 and 4.3 provide 

the formalization of MAP, Section 4.4 presents a discussion on team-level influences 

on MAP, and Section 4.5 discusses two variations of MAP. 

4.1 The General Framework of MAP 

Many agent teams work in settings where there exists an overall plan for the 

main task, with projected timing and cost associated with each of its subtasks that 

individual members of the team perform. Examples of such teams include different 

engineering and planning teams. The team organization may involve dependencies 

among the subtasks, as some subtasks may need others as constituents. As the envi­

ronment in which the team operates may be dynamic, unexpected events may happen 

during the execution of subtasks, requiring the agents to change their plans towards 

achieving the subtasks. Such changed plans may not be able to satisfy the given 

time and cost requirements, impacting not only the affected agent's performance, but 
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also other dependent team members' subtasks and the overall performance of the 

team. Situations of this type require mechanisms that improve the team robustness 

towards the changes in the environment in the sense that the team performance is 

not degraded significantly. Such a robustness can be provided through incorporating 

helpful behavior mechanisms among team members. As a first step towards defining 

such a mechanism, we describe the team collaboration process at an abstract level. In 

our model, we do not specify how the global plan for task assignments is constructed 

and assume that the member executing the subtask has potentially enough capabili­

ties to do that. In addition, we assume that the changes in the environment in which 

the team operates are moderate, so that they do not result in a need for changing 

the overall team structure. We also assume that the agents are able to evaluate their 

plans and can calculate accurate team impact of the chosen plan. While such calcu­

lations need not return exactly accurate values, we assume that their approximation 

returns reasonably accurate values. 

In our MAS model, a team of agents Ai, A2, •. •, An, n > 1, operates in an envi­

ronment E. The team is assigned a task T, with each agent Ai currently assigned 

a subtask Tj, along with a requested completion time limit Deadline(Ti) and cost 

budget TotalCost(Ti); we do not specify how subtasks, deadlines, and budgets are 

assigned, but assume that those assignments are stable unless we indicate otherwise. 

The environment E is deterministic in the sense that, when an action a is per­

formed on a given state of E, the resulting state of E is uniquely determined. The 

environment is dynamic in the sense that its state evolves over time due to both 

agent actions and other unspecified factors. We refer to the latter changes as events 

in the environment; the team cannot predict the future events but may need to re­

act to them. It is the duty of each agent Ai to perceive the events in a particular 

environment segment Ei and react to them as necessary. The design of agent roles 
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in a team and the distribution of subtasks among its members often rely on specific 

expectations regarding event patterns. We informally speak of unexpected behavior 

or unexpected events to indicate that the actual event patterns do not match such 

expectations. 

Each agent Ai forms a set of local beliefs Bj based on its own observation of the 

external environment and its own progress in performing its subtask, as well as a set 

of context beliefs Ci based on interactions with the rest of the team. Beliefs are logical 

statements representing the agent's view of the world. The beliefs sets Bi and Ci take 

values from the domain called BeliefSets. As both belief sets evolve in time, we write 

Bi(t) and Ci(t) when their dependence on time t is explicitly discussed, but omit the 

argument otherwise. 

The agents can modify the state of the environment by performing actions from 

a given finite set called Actions. Each agent Ai has an associated set ActionSi C 

Actions, representing the actions that Ai is capable of performing, along with the 

functions costf ActionSi —> K+, and duration*: ActionSi —> R+ (where R+ is 

the set of non-negative reals), representing the cost and time that Ai requires for 

performing the action. In general, the agents can be specialized and have different 

capabilities. The duration and cost of an action a performed by an agent Ai can 

vastly differ from the duration and cost of the same action a performed by a different 

agent Aj. Each agent Ai is aware of the duration and cost of each action a that it 

performs; in general, it may not know the duration and cost of actions performed by 

others. 

In order to perform its subtask, agent Ai can autonomously generate a plan. A 

plan is a sequences of actions that an agent Ai can perform; it belongs to the domain 

PlanSi = Actions*. When Ai generates a plan 7Tj = a*... a!-, k > 1 in Plansi, it uses 
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the duration and cost of each action a\ to calculate the total duration and total cost of 

7Tj. The agent generates a set of alternative plans, discards those that fail to meet the 

prescribed deadline and budget, and selects the best plan for the remaining subset. 

The best candidate is selected based on team interest as perceived by Ai, represented 

by the .Aj's team utility function 

Ui. PlanSi x Belief Sets x Belief Sets —• R 

where R is the set of reals. The team utility function value ut(irt) Bi, Ci) represents 

the ylj's estimate of the team's overall utility of following its global plan within which 

Ai s own plan is 7^. In general this estimate is imperfect because Ai has a partial 

knowledge about the total state of team's activities. 

If the team organization is to be effective, it is an essential design requirement 

that Ai should be able to accurately compare its candidate plans. Given any two 

candidate plans 7r and w', the difference 

Aj(7T, 7r') = Ui(7T, Bi,  Ci) -  Ui(n' ,  Bi,  Q) 

must accurately reflect the team impact of Aj's choosing n over 7r'. It is worth noting 

that what matters is the difference rather than Ui itself. (For instance, if ux has 

additive components that do not depend on Aj's plan, they will cancel out and their 

accuracy is immaterial.) For these reasons we henceforth assume that the protocols for 

mainstream collaboration within the team are so designed that the context beliefs Ci 

are always sufficient to enable Ai to accurately calculate the team impact of choosing 

one plan over another. By 'accurately' we mean that the level of accuracy is good 

enough to meet the requirements of the application; the actual criteria in practice 

are domain specific. We shall not elaborate how these context beliefs are formed and 

updated, since our interest is not in the primary collaborative mechanisms but in 
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the secondary ones, namely in protocols for helpful behavior. However, our design of 

MAP relies and depends on the assumption that each agent can competently assess 

the team impact of its choice among its own candidate plans. Our rationale is that if 

within our general team model that assumption is not met, then the team organization 

is fundamentally ineffective and its refinement through addition of helpful behavior 

is unwarranted. 

As the team operates in a dynamic environment, some of the events happening 

there may result in a need for a plan change for some agents of the team. Moreover, as 

there may be subtask dependencies in the team, such a plan change may lead to plan 

changes for other agents as well. If agent Ai has to change its original plan 7Tj to satisfy 

the requirements, given the updated beliefs Bi and C;, it attempts to generate a new 

plan for the rest of the subtask. If it is possible to replan the rest of the execution of 

a subtask, so that the changes are handled within the deadline and available resource 

limits, the agent proceeds with that plan. Otherwise it may raise its concerns at the 

team level, possibly leading to reallocation of deadlines and resources to subtasks, or 

to structural changes in the global plan; such considerations are beyond our current 

scope. Given that the global interventions are costly, it may benefit the team if 

the difficulty can be overcome through helpful behavior between the team members. 

Thus, when a protocol for helpful behavior is available in the teamwork model, the 

agent asks for help before raising its concerns to the global team level. An agent may 

ask for help for two reasons: when it has difficulties performing an action because of 

the lack of capabilities or because of the the lack of resources. We discuss these two 

cases separately in the next two sections. For each case, we provide the description 

of the help request generation, deliberation about whether to help, and deliberation 

about choosing the most suitable help offer. 
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4.2 Action MAP: Help by Performing an Action 

In this section we provide a formalization of the Mutual Assistance Protocol in 

the case when an agent does not have adequate capabilities to perform an action of 

its plan effectively and needs to ask for help. 

When each of the candidate plans generated by the agent Ai misses the watermark, 

which indicates that the plan comes close to failing in satisfying the deadline or 

resource requirements, Ai recognizes the need to ask for help. It selects a potential 

plan 7Tj and decides to request help in performing a specific action af within 7r». The 

helpful act needs to be performed within a certain time interval [^,£2], in order to 

fit with the rest of 7Ti. On the one hand, the execution of may start no earlier 

than the time t% when the necessary inputs for «l
fc are ready. On the other hand, 

the execution of must be completed no later than the projected deadline t2 for 

af, so that the remainder of the plan after the execution of a* can be completed on 

time. Let af [ii, t2\ be the action identical to af, but performed free of cost in the 

time interval [ii, t2}. Let ir[ = help+(-Kl, a*, [£1, £2]) denote the resulting plan of agent 

Ai that results from the substitution of af [ii, t2\ for a* in the original plan 7rf. In 

order to evaluate the importance of the requested help action, Ai uses the team utility 

function Wj(tx[, B^Ci) to calculate the team utility of the plan tx\ in which the action 

af is performed free of cost at the time interval [ii, t2}. 

The difference between the team utility function values of the plans 7r- and iXi re­

flects the team benefit, from the requesting agent's perspective, of having the specified 

action performed by another agent: 

Ai(7T.,7Tj) = Ui(n'u Bi,  Ci) - UiiiTi, Bi,  Ci) 
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Having recognized the action for which it needs help, the time interval of the needed 

help, and the team benefit of the requested action, Ai broadcasts a help request to 

the team members: 

Broadcast(HelpRequest(Ai,  af, [£i, £2], Ai(7rt', 7Ti))) 

When a team member agent Aj receives the help request, it has to decide whether 

to agree to help. The agent first checks whether it has the capabilities to perform 

the requested action in the time interval provided in the help request. If Aj does not 

have the capabilities, it ignores the help request. If Aj has adequate capabilities to 

help Ai by performing the action af, it considers the change of its own plan ttj to a 

new plan 7r" = help~(iXj, a£, [tx, £2]) in which it additionally performs the action of in 

the time interval [ti,t2\. Aj then calculates the team utility function for the plan 7x'J. 

The difference between the utility function values for the plans iXj and 7r" reflects 

the team loss, from the Aj s perspective, if it, in addition to the actions of its own 

p lan ,  a l so  pe r fo rms  t he  ac t ion  a \  i n  t he  t ime  in t e rva l  [ t i , t 2 ] \  

Aj (7Xj, 7Tj  ) = Uj (7Xj, Bj ,Cj) — Uj (7Xj ,  Bj ,  Cj ) 

Aj uses the team loss value in order to deliberate whether to agree to help to agent 

Ai. If the calculated team loss value is smaller than the team benefit value of the 

same action specified in the request, then Aj agrees to help. Otherwise it ignores the 

help request. The difference between the team benefit value specified in the request 

and team loss value of the same action calculated by the helping agent is called the 

net team impact: 

Net I mpactij ) = Aj(7r-,7Tj) — Aj(7Tj,7r") 
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If the net team impact is a positive number, then Aj agrees to help and bids for the 

requested action a£, sending the value of the net impact for within its bid message 

to Ai. The bid must be delivered within the fixed time S after receiving the help 

request: 

Bid(Aj,  a*, Net Impact^ (a*)) 

When Ai receives the submitted bids, it chooses the bid that it views as the most 

favorable for the team, namely the bid with the highest net impact. 

One should note that the reasoning about team impact in MAP is inherently 

approximate, in that no agent assesses the simulataneous impact of both local plan 

changes. In our view, this is outweighed by the fact that each agent assesses its local 

circumstances with which it is highly familiar. 

We are now ready for a complete definition of the Mutual Assistance Protocol. It 

is specified in the three steps below. Step zero represents the preliminary step in the 

team operation, which is out of the scope of this Thesis. 

0. The team members get individual subtasks according to their abilities, with the 

corresponding deadlines and the total allowed costs for completing the subtask. 

The team members also get the context beliefs regarding the execution of the 

subtask. They make the initial plan for accomplishing the given subtask. 

1. During the execution of the subtask, environmental or context belief changes 

may happen, because of which a team member agent may recognize that it 

needs help for completing its subtask. In such a case, the agent makes an 

alternative plan, decides about the action for which it needs help along with 

the time interval when the help needs to be delivered, and calculates the team 

benefit if it is assisted by a team member. The agent then broadcasts a help 
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request, in which it mentions the particular action for which it needs help, the 

calculated time interval, and the amount that the team will benefit if such a 

help is provided. 

2. Each team-member agent that is qualified for performing the requested subtask 

assesses the request and calculates the cost that the team will suffer if the agent 

executes the requested help. If the calculated team cost is lower than the team 

benefit mentioned in the request, the agent bids for the help request, specifying 

the team loss for executing the help. Otherwise the agent ignores the request. 

3. The requesting agent receives all the bids from team members and selects the 

bid which has the most favorable impact on the team. If no offer comes for the 

requested action, the agent generates another alternative plan. 

4.3 Resource MAP: Help by Providing Resources 

This section presents the Mutual Assistance Protocol in the case when an agent has 

run out of resources during the execution of the plan and needs additional resources 

from the team members in order to complete the plan. 

As the environment is dynamic, and unpredicted events may happen, the agent 

may ask for resources only for the next action of the plan. After recognizing the need 

for additional resources, the agent Ai calculates the amount of resources D{ that it 

lacks. This amount may change over time, as the changes in the environment may 

force Ai to change its plan, and particularly, the next action. 

In order to evaluate the importance of the requested amount of resources, Ai uses 

a team utility function 

Hi: PlanSi x R+ —• R 
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The team utility function value Ui(~Ki, Ri) (where Ri is the remaining resources of 

agent Ai) represents the A,'s estimate of the team's overall utility if Ai follows the 

plan 7Tj in which Ai has resources Ri. The function value Ui(ni, Ri + A) represents 

the team impact if the plan tti is executed with additional resources A-

The difference between the team utility function values represents the team ben­

efit, from the requesting agent's perspective, if the specified amount of resources is 

provided to the agent Ai. 

Aj(7Tj, Di, Ri) = Ui{7Ti,  Ri  + Di) -  Ui(TTi,  Ri)  

Having recognized the amount of resources needed and the the team benefit associated 

with the requested amount, Ai broadcasts a help request to the team members: 

Broadcast(HelpRequest(Ai,  Dj,  Ai(irDi,  Ri)))  

When a team member agent Aj receives the help request, it has to decide whether 

it should help Ai with providing the full or partial amount of resources mentioned 

in the request. There may be situations when no individual team member is able to 

provide the full amount of resources mentioned in the help request without making 

its own situation worse than the one of the agent Ai. However, by contributing to 

A{ partially, the team members together may accumulate the necessary amount of 

resources requested by Ai. When deliberating whether to help Ai and with how 

much resources to help, an agent Aj uses the notion of proportionality; Aj deliberates 

whether at that time point there is a non-empty set Qj of possible resource amounts 

dj it can offer, and a coefficient qj, such that the proportional team loss associated 

with the absence of that resource amounts in Qj is less than equal to the coefficient 

qj} whch is less than the proportional team benefit of the agent Ai associated with 
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the existence of the additional resources Dj. The deliberation by Aj is performed 

by calculating the utility function Uj(nj,Rj) and Uj(iTj,Rj — dj) to determine the 

team impact if Aj executes the plan ixj with the amount of resources Rj and Rj — dj, 

respectively. 

Aj(n j , d j ,  Rj) = Uj( -K j ,  Rj) — Uj (7^, Rj — d j )  reflects the team loss of the agent Aj 

for giving away a resource amount dj. Thus, the proportionality condition for agent 

Aj leads to the following: 

Aj(7Tj,  dj ,  Rj)  ^  ^ Aj(7Tj,  Di,  Ri)  (a i \  

d, S q>< A 1 J 

If 4.1 does not hold for any amount of resources, then agent Aj ignores the help 

request. Otherwise Aj submits a bid, specifying the set of amounts it is able to 

transfer, along with the team loss coefficient associated with the provided set: 

Bid( A j ,  A i ,  Q j ,  Q j )  

Agent Ai receives the submitted bids and checks whether the collective amount 

of resources offered in the all bids together is greater or equal to the amount that it 

requested from the team. If the team collectively was not able to provide the agent 

Ai with the necessary amount of resources, then Ai may ignore all the bids or select 

the combination of bids most beneficial to the team, depending on the purpose of 

the requested resources. If the collectively offered resources in the bids are greater or 

equal to the requested amount, Ai chooses the the combination of bids which provide 

the agent with the requested amount of resources: 
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yi d jk  ~  Di  
k=1 

and minimize the upper bound on the team loss: 

T 

yj qjk * djk is minimal 
k=l 

The proportionality condition then ensures that the combined team loss of all 

helpers remains lower than the team benefit specified in the help request. Since for 

all k G {1,... ,r}, 

^jk i^jk i dj k  j  Rj k)  ^  Ai(7Ti,  Di,  Ri)  

d Qjk D Ujk ±Jt 

it follows that 

^fc=i Aji i ^ j k ' d j k  i Rjk ) — ' j k  

< maxqjkEr
k=1djk 

k 

= mzxq j k Di  
k 

^ Aj(7Ti, Di, Ri) n 

< A ' 

= Aj(7Ti, Di, Ri) 

The complete steps of the Mutual Assistance Protocol in case of the resource needs 

are specified below: 

0. The team members get individual subtasks according to their abilities, with the 
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corresponding deadlines and the total allowed costs for completing the subtask. 

The team members also get the context beliefs regarding the execution of the 

subtask. They make the initial plan for accomplishing the given subtask. 

1. During the execution of the subtask, an agent may be in a need for additional 

resources. In such a case, the agent requests help from the team members, 

specifying the amount of resources needed, and the possible team benefit if 

such an amount of resources is provided. 

2. Each team-member agent assesses the request and decides whether it can pro­

vide any amount of resources, such that the proportional team loss associated 

with the loss of that resources is lower than the proportional team benefit pro­

vided in the help request. If such an amount exists, the agent finds the maximum 

amount satisfying the criteria and submits a bid for the help request, specifying 

the offering amount of resources and the corresponding team loss. 

3. The requesting agent receives all the bids from team members and checks 

whether the collective amount of bidded resources are enough to accept any 

bidded amount. If so, then the agent selects the bid(s) which guarantee the 

requested amount of resource income, in the meantime causing the team the 

minimum amount of damage. Otherwise the agent may or may not take any of 

the resources offered in the bids, depending on the purpose of the request. 

4.4 Team-Level Influences on MAP 

In this section, we discuss how in MAP the plans of agents may be influenced 

because of plan changes of certain team members. 

Consider a team of agents working on a project task divided into seven subtasks, 
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as shown in Figure 4.1. The subtasks are represented by rectangles, and the depen­

dencies among the subtasks are represented by arrows. Subtasks T\ to T4 are executed 

in parallel, after completion of which the execution of the remaining subtasks starts. 

Each subtask has its projected duration and total expenses, as shown in the figure. 

The number above each subtask represents the projected time estimate for the com­

pletion of the subtask, whereas the number in the top-right corner of the subtask 

represents the estimated expenses for the completion of the subtask. The critical 

path in the project is represented by red arrows, which includes the subtasks T4, 

7g, and T7. The project diagram with its associated schedules and cost information 

is posted on a commonly accessible area and serves as context beliefs for the team 

agents. 
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time 

Figure 4.1: A Diagram for Team Project 

When the project starts, agents in charge of executing the subtasks t\ to T4 

generate individual plans based on their abilities, so that the plan satisfies the given 

time and cost requirements. The constructed plans may have different time and cost 

values compared to what the team estimates are. Once the agents select their plans, 

they post their schedules and the costs on the commonly accessible diagram, thus 

updating their own and some of their team members' context beliefs. In Figure 4.1, 

the durations of the individual plans of agents are represented by the shaded area 

inside the subtasks, and the associated costs of the chosen plans are represented by 
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the numbers inside the shaded regions. 

The diagram also gives to the team members information about the possible al­

lowed lateness of the completion of each subtask and relevant information about 

available resources. For instance, if because of environmental changes the agent A2  

experiences minor delays for the completion of subtask T2, such a delay will not cause 

the team any problems, as the accomplishment of the subtask T2 will be needed for 

other subtasks only when the subtask T\ or T3 and T4 together are completed. How­

ever, major delays of T2 may delay the completion of the overall project, affecting 

the team performance. While the delay of T2 with a consequent delay of T5 may not 

be vital, the case of consequent delay of T6 may cause the team significant damage. 

On the other hand, spending additional amount of resources for the completion of 

T2 may affect the team noticeably. Thus, agent A2 has certain time flexibility for 

completing T2 and should attempt on completing T2 spending fewer resources. The 

situation is different for the task T4, which is on the critical path, and any delay of 

the completion of T4 may lead to the delay of the entire project, affecting the team 

significantly. In such a case, when the timely completion of the subtask is critical, 

completing that subtask by spending additional resources may cause the team less 

damage than completing it by spending additional time. 

The above-mentioned cases reflect the actual methods for calculating the team 

impact utility functions in team models like the one in Figure 4.1. They also show 

that these functions can be efficiently calculated by agents, given the characteristics 

of the subtask and the chosen plan. 

The utility functions of team impact are used very frequently by the team member 

agents. The usage of these functions is more prominent when the agents or other team 

members need help, or when they need to consider change of the plan. The agents 
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may need to change their plan either because of environmental changes that make the 

agents to choose a different plan to satisfy the requirements, or because of the changes 

of context beliefs, for which the agent should react accordingly. Having discussed the 

usage of utility functions in the case of environmental changes above, we now describe 

its usage in case of changes of context beliefs. 

Even when an agent is operating according to the plan satisfying its current re­

quirements, it may need to choose a different plan because of context belief changes, 

which may trigger changes of the requirements. An example of such a situation is 

illustrated in Figure 4.1. In the example, the agent A4 is executing the plan which 

satisfies its time and cost requirements. However, as the subtasks T2 and primarily 

T3 are ahead of their schedules and will likely be completed significantly sooner than 

it was estimated, the team may decide to accelerate the completion of T4, aiming 

at earlier completion of the entire project (if the earlier completion of the project is 

important for the team). In this case, the team may change the requirements of the 

subtask t4 and request a4 to complete the task t4 earlier. While the early comple­

tion of t4 may influence the team positively, it may not be beneficial if it exceeds its 

limits. For instance, it would be pointless to request acceleration of t4 for more than 

3 time units, as there is no benefit to have t6 completed before the completion of t5 

(Figure 4.1). 

The global planning issues of the type discussed above affect the helpful behavior 

through the context beliefs of individual agents. The context beliefs represent the 

local information of a team member agent about the team state, relevant to the 

completion of its individual subtask. Similar to the mecanisms of updating the agent's 

local beliefs Bi through a belief-revision function based on the perception of the 

environment, context beliefs are updated through a belief-revision function based on 

the information input from the rest of the team. They usually contain information 
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about changes of plans of team members whose subtask completion schedules may 

in one way or another influence the plans of certain other team members. As the 

subtasks of the team may have inter-dependencies, having an up to date context 

information is critical for each team member in order to judge its actions and be a 

part of the team. In addition, the context beliefs inform agents about the priorities 

of the team regarding the time or resource expenses while executing the subtask. 

As discussed in Section 4.1, some of the unexpected events may lead to changes of 

plans for some agents. Such changes will usually result in spending different amount 

of resources or time for the completion of the agents' subtasks. As there may be inter-

dependencies among the subtasks, in order to increase the effectiveness of the team, 

changes of the schedules of some tasks may require appropriate changes of schedules 

for the other dependent subtasks. These observations result in a conclusion that the 

communication of relevant and timely context information among the team members 

is a critical part for the design of efficient teamwork. 

While sharing individual context information is an important part for team oper­

ation, deciding with whom to share the context requires deliberation. As the agent 

may have incomplete information about the set of team members for which its activ­

ities may turn out to be relevant, it needs to make the changes of its plan publicly 

available. However, sharing every information with every team member may be in­

efficient, as some of them may not need to know anything about the changes of the 

plan of a particular agent. One approach towards organizing the context sharing is 

the usage of a commonly accessible area, where agents may share their plan changes. 

While this method solves the problem, it may require the agents to spend additional 

time and resources for looking up the necessary information for them. 

In order to provide efficiency in updating the relevant context beliefs, one would 
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need some sort of publish/subscribe mechanism which ensures that without broad­

casting the updating information or posting on a commonly accessible area, the team 

members do get the relevant information needed for proper execution of their subtasks. 

We did not discuss the mechanisms of global planning of the team and distribution of 

the subtasks as it is not in the scope of this Thesis. Depending on such mechanisms 

or the global structure of the team, certain mechanism may be deployed in which 

the team members will be subscribed to proper information sources and will get the 

necessary updates of their context beliefs without performing an excessive search or 

getting the updates through a broadcast message. 

4.5 Variations of MAP 

This section presents two variations of Mutual Assistance Protocol. The variations 

include discussions about an alternative mechanism for performing a help request, and 

about an alternative approach for designing MAP. 

4.5.1 Simultaneous Help-Seeking Mechanism in Action MAP 

When an agent realizes that it needs help, in some situations it may prefer to 

generate several candidate plans towards achieving its goal and send simultaneous 

help requests for the actions for which the agent needs help. Moreover, there may 

be situations when the agent may prefer to send help requests for different actions 

belonging to the same candidate plan. Below we provide a mechanism for selecting 

the most preferable bid in situations mentioned above. 

As the agent may have requested help for actions belonging to different plans, 

and even for different actions belonging to the same plan, finding the most favorable 
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bid requires deliberation. For the bids related to the same action af, compares 

the net team impact values Netlmpactij(a!l) of each bid and chooses the bid with 

maximum net benefit value. In this way, Ai is able to find the best bid for each action 

that requires help. For the bids related to actions belonging to different candidate 

plans, the agent, again, selects the best bid by comparing the net team impact values. 

The best bid is chosen according to the maximum value of net team impact, as that 

is the bid which will bring the team the highest overall benefit. 

We now consider the case when there are bids for different actions belonging to the 

same plan. If the bids are unrelated (i.e., the success in executing an action does not 

depend on the acceptance of the bid for another action), then A+ first selects the bid 

with highest value of net team impact. That bid will be associated with some action 

for which Ai had requested help. Let us call that action of. The agent Ai then finds 

the bid with second highest net team impact and its associated action aj. In order to 

decide whether, in addition to accepting the bid for of, it should accept the bid for a\ 

as well, Ai recalculates the team benefit value A-(7^, 7Tj) for action a?, assuming that 

the action of is performed for free. This team benefit value for a\ will be 

different (lower) than the original value, as now the calculation assumes that another 

action 0$ is already performed free of cost. However, if the recalculated team benefit 

value AJ(7r^, 7Tj) for action a? is still higher than the team loss value a'j(irj, 7r") derived 

from the bid, the agent accepts the bid for action a\ as well. Otherwise it ignores the 

bid for aj. At performs this reasoning for all the bids that contain different actions 

belonging to the same plan. 

If there are related bids (i.e., the success in executing a certain action depends 

on the acceptance of the bid for another action), then Ai makes them unrelated by 

combining the related bids into one compound bid, whose team benefit and team loss 

values are the sum of its components. After performing this step and having only 
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unrelated bids, Ai can perform the previous step in order to find the best bid or the 

combination of best bids. 

Next, suppose that Ai receives a combination of bids for the same action, bids 

for different actions belonging to the same plan, and bids for different actions from 

different plans. In order to choose the best offer(s), Ai should first find the best bid 

for each action, then find the best options related to a particular plan, and finally 

compare the best options of each plan in order to choose the most beneficial option 

among all bids. 

4.5.2 Helper-Initiated MAP 

The design of the Mutual Assistance Protocol is based on the requester-initiated 

interaction, when an agent recognizing the need for help initiates the interaction with 

team members for the sake of getting help in the interest of the team. However, the 

same principles used in the design of MAP can be used in developing a helper-initiated 

protocol, in which a team member a* that is well ahead of the deadline of its subtask 

or has a large spare amount of resources broadcasts a message to the team members 

indicating its readiness to help in a certain action af or with certain amount of 

resources Di, also broadcasting the team loss A* associated with the potential help. 

The cases of helper-initiated Action-MAP and helper-initiated Resource-MAP are 

discussed below separately. 

Helper-Initiated Action MAP 

In the case of helper-initiated Action MAP, the agent Ai that is ahead of its 

schedule or has a large amount of spare resources broadcasts a message to the team 

members, indicating the willingness to help the team members by performing an 

action af that costs Ai little time or little resources. In the broadcasted message, A{ 
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also specifies the team loss Aj that such a potential help would entail. Each team 

member Aj receives the broadcasted message and checks whether it needs the offered 

help action in any stage of its currently-chosen plan. If so, Aj calculates the team 

benefit Aj if it is assisted by Ai in performing the action a£ in the time interval 

[ii, £2] in the plan itj. If the calculated team benefit of Aj is higher than the team loss 

provided in the broadcasted message by ai (Aj > A*), then aj bids to the help offer 

sent by Ai, also mentioning the time interval in which Aj needs the helpful action to 

be executed, and the net team impact (Aj — Aj) associated with the potential help. 

Ai receives the bids from the team members reacting to the help offer, deliberates 

whether it can perform the offered action within the time interval specified in the 

bid, and among the feasible bids Ai chooses the bid with maximum net team impact 

value. The help is then delivered to the agent for which the net team impact value is 

the maximum. 

Helper-Initiated Resource-MAP 

In the case of helper-initiated Resource MAP, the agent Ai that has a spare amount 

of resources broadcasts a message to the team members, specifying the willingness to 

help them by transferring an amount of resources from the set Qi- Each amount Dj 

in Qi must be such that it does not endanger the performance of ^4j's own subtask 

Ti, and is associated with relatively low team loss value. This is expressed by the 

condition Aj(7ij, Dj>-Ri)/A < qi i.e., that the relative team loss is lower than the 

fixed value of the coefficient qi. Within the broadcast message, Ai specifies the set 

Qi and the coefficient qi. Each team member Aj receives the broadcasted message 

and deliberates whether it needs any additional resource points dj for improving the 

team benefit associated with the completion of its subtask 7} ;if so, Aj responds with 

a bid message specifying the desired set of values Qj and a fixed coefficient qj, where 

qj > qi and Aj(7ij, dj, Rj)/dj is greater than or equal to qj for each dj in Qj. Similar 



to the analysis in Section 4.3, these conditions ensure that the combined team benefit 

of all agents receiving help is greater than the team loss of the helper. Ai receives the 

bids and selects the ones with highest proportional team benefit values. 

4.5.3 MAP of Achievement and Maintenance Tasks 

So far, we have discussed the usage of the Mutual Assistance Protocol in achieve­

ment tasks, where the team members are working to make certain propositions true, 

and thus complete their subtasks. However, in practice there are also team collab­

oration models where maintenance tasks (i.e., tasks where the value of proposition 

needs to be maintained over time) are equally important [Kaminka et al., 2007]. This 

section discusses the usage and applicability of MAP for maintenance tasks. 

As a team member, an agent executing a maintenance subtask knows the impor­

tance of its subtask for the team and the possible loss to the team in the case of 

maintenance failure. As there may be different severities of failures, in each case the 

team may have different amount of loss. 

Based on these observations, the Mutual Assistance Protocol presented in Sec­

tion 4.2 and Section 4.3 can be similarly applied to maintenance tasks. Upon being 

assigned a subtask, an agent Ai generates an initial plan 7rt = (aj,, af) that guar­

antees the maintenance of the subtask during the team operation. If, at time tc an 

unexpected event happens in the environment or in the context beliefs of the agent 

Ai that makes Ai to choose a different plan 7r- for which agent Ai either does not have 

adequate capabilities or sufficient resources, it may ask for help. The value of the 

team benefit for maintaining the subtask can be either known at priori or calculated 

at the time of an emergency. 
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Chapter 5 

Evaluation 

This chapter presents a simulation study of teamwork that includes helpful be­

havior based on the Mutual Assistance Protocol. Specifically, we conduct a series of 

experiments that compare the teamwork performance resulting from the use of MAP 

versus two other help methods, in which the requesting or helping agents unilaterally 

decide about the need and usefulness of the helpful act. Also included for comparison 

is teamwork without helpful behavior. The study of MAP in this chapter is limited to 

helpful acts in which an agent performs an action on behalf of another, as formalized 

in Section 4.2 (the resource assistance version of Section 4.3 is not included). The sim­

ulation environment is based on a variation of the Colored Trails (CT) game, which 

is a publicly available research test-bed for examining decision-making in group of 

agents or people1 [Gal et al., 2010]. The following sections describe the test-bed used 

in the evaluation (Section 5.1), the approaches with which MAP was compared (Sec­

tion 5.2), the configuration parameter settings (Section 5.3), and the experimental 

results (Section 5.4). 

xThe Colored Trails software can be accessed at http://www.eecs.harvard.edu/ai/ct 
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5.1 The Test Bed for Simulation Experiments 

In the CT game, the players are randomly located on a rectangular board divided 

into colored squares. Each player has a supply of chips whose colors belong to the set 

of board colors. There are also goal squares for players, located at certain positions 

on the board, and the players get points for reaching the goal squares. At each turn, 

a player can move to a neighboring square of the board by spending a chip that has 

the color of that square. The purpose of the agents is to reach their goal locations, 

collecting the maximum number of points for the team. 

The variation of the CT game used in this thesis has been developed specifically 

for the study of helpful behavior in teamwork and implemented independently2. The 

rules of the game are adjusted to the purposes of our current study. The players 

represent software agents Ai,..., An, n > 1, that collaborate as a team. The game 

proceeds in synchronous rounds, with each agent trying to make a move in each round; 

it is legal for multiple agents to be on the same square at the same time. The game 

ends when no agent can make a move; all agents remain in the game until the end. 

At the start of the game, each agent Ai is assigned an initial location on the board, 

a unique goal with a specified location and amount ft of reward points (representing 

the agent's subtask), and an initial budget st = did of resource points, where di is 

the distance (expressed as number of moves) along the shortest path from the agent's 

initial location to its goal, and a a positive fixed budget for each move. During the 

game, the agent receives another fixed (non-negative) amount a' for each completed 

move, as a reward for intermediate progress, and collects the final reward ft if and 

when it reaches the goal. 

2The game has been developed by Omid Alemi (with the participation of Ashton Fedler) for his 
research and kindly provided to us for our experiments. 
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Each move by Ai represents an action performed by the agent and has an asso­

ciated cost in resource points, paid from the agent's total budget. The board has a 

fixed set of colors, C\,..., Cm, m > 1, which affect the costs of the moves as specified 

in a predefined cost matrix c. Whenever A{ moves to a field of color Cv the cost of 

the move is Cy > 0. The value of the cost matrix element ctj represents the level of 

ability of the agent Ai in performing the type of action represented by the color Cy. 

the lower the value, the higher the agent's expertise. The values can vary widely to 

represent the diversity of specialties in the team. Ai knows its abilities (i.e., its vector 

Ci of the cost matrix) and has full visibility of the board (including the locations of 

other agents and their goals). Each agent initially selects a path to its goal. In our 

experiments, each agent chooses the lowest-cost path among all shortest paths to its 

goal and commits to that path for the rest of the game. The chosen path may turn 

out to be less than optimal, as the colors of individual board fields can change during 

the game. These color changes represent independent events in the dynamic environ­

ment; they are unrelated to the agents' actions. The probability of color change is 

uniform for all board squares; we refer to it as the disturbance level. 

During the game, each agent maintains a budget of resource points and a budget of 

rewards points.Initially, the agent receives resource points proportional to its distance 

from the goal, spends them at each move while they last, and blocks after that. Each 

agent earns a fixed amount of rewaxd points for each step,a fixed amount of reward 

points for reaching the goal, plus the remaining amount of resource points as bonus 

for reaching the goal. A blocked agent remains in the game and may become active 

again (for instance, if the color of the next square on its path changes and makes the 

move affordable). The game ends when no agent can make a further move. At the 

end of the game, the agent's budget represent its score, and the total score across all 

agents is the team score. The objective of the game is to maximize the team score. 

55 



So far the game is hardly interesting, as the agents have fixed choices and need 

no strategy. The only element that prevents its outcome from being predictable from 

the start is the dynamic behavior of the environment, represented by board squares 

that change color. The variation in agent behavior is introduced next, as we give 

the agents the ability to help each other; we compare different methods of deciding 

whether to help. This aspect of the game profile is suited to our current purposes: as 

we focus on helpful behavior, we prefer to have other dimensions of agent behavior 

vary as little as possible. 

The rule of helpful behavior states that, when an agent faces a move to a square 

of color Cfc, it is legal for another agent A, to pay for the move at the cost Cjk + o, 

where o is a fixed overhead cost associated with each helpful act. The rule models 

the situation where an agent, facing the prospect of performing an action for which 

it is poorly qualified, receives help from an expert that can perform the action itself 

efficiently but has its efficiency reduced by the overhead of arranging the helpful act. 

If Cjk + o < Cik, the helpful act objectively benefits the team. 

As discussed in Chapter 4, the main difficulty in deciding whether to help is that 

the beliefs of an individual agent about the abilities of others, and about other relevant 

circumstances in the rest of the team, may not be accurate enough. In our experiments 

this uncertainty is modeled by the mutual awareness probability p, defined as follows. 

Each agent knows the discrete finite set of values C from which the values of cost 

matrix entries Cjk are chosen. Agent does not know the value of the cost vector Cj 

of another agent A,, but for each k has a probabilistic belief about the likelihood that 

the value of Cjk equals a particular element of C. With the probability p, Ai guesses 

the correct value of Cjk, and with the probability 1 — p it makes a uniformly random 

guess of any value in C (including the correct value, which makes the likelihood of 

correct guess equal p + (1 — p)/\C\). As p varies from 0 to 1, the mutual awareness of 
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individual abilities in the team varies from complete ignorance to perfect knowledge. 

In a series of simulation experiments we explore the impact of such variations upon 

the comparative performance of MAP and two other methods for deciding whether 

the help of one teammate to another benefits the team. 

5.2 Methods for Deciding whether to Help 

In protocols for helpful behavior, agents must decide, based on their beliefs, 

whether or not it is in the interest of the team that a helpful act should take place. 

In this section we restrict our attention to helpful acts in which one agent executes 

an action on behalf of another. In that context, we consider MAP and two alter­

native methods for deciding whether such a helpful act should occur. As the fourth 

possibility we include the approach with no helpful behavior. Later in this chapter, 

these four approaches to helpful behavior will be mutually compared for efficiency 

through simulation experiments using the test bed described in the previous section. 

We first describe the decision mechanisms of all methods (5.2.1) and then discuss 

their computation and communication costs (5.2.2). The mechanisms are described 

and analyzed as implemented in the simulation; many other variations of the same 

mechanisms are possible. 

5.2.1 The Decision Mechanisms 

For simplicity of protocol descriptions, we assume that the agents use a syn­

chronous message-passing communication model, in the sense that they can send 

messages to each other in synchronous rounds, operating in lockstep based on a com­

mon clock. The communication channels are reliable in the sense that all messages get 
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delivered without delay. The send primitives include unicast and team-wide broad­

cast. If in a given round an agent receives a message that prompts a response, the 

agent sends that response in the next round (regardless of how much computation 

it requires). This reduces the message count by making the absence of a message 

potentially informative. For instance, a lack of response to an offer in the next round 

is interpreted as a negative response; no rejection message is needed. The choice of 

the current communication model as a vehicle for presentation has no bearing on the 

possibility of implementing the protocols in other models. 

Always-Help: Decision by Recipient of Help 

This is a unilateral method in the sense that a single agent decides whether help 

should occur. The agent that needs help uses its own beliefs to determine, for every 

other agent in the team, if that agent can provide the help with a resulting benefit 

for the team. It constructs the list of all agents that meet the criterion, ranked 

according to the expected team benefit. If the list of candidates is nonempty, it sends 

each candidate a request message. Each candidate responds (without questioning 

the judgment on team interest), except in the case that it is unable to deliver the 

requested help. The requester sends an acceptance message to the responder with the 

highest presumed team benefit. 

Proactive-Help: Decision by Provider of Help 

This is also a unilateral method, but based on the initiative and judgment by the 

potential provider of help. Each agent uses its own beliefs to determine, for every 

other agent on the team, whether it can provide help to that agent with a resulting 

benefit to the team. If the list of candidates satisfying the criterion is nonempty, the 

agent offers help to the one with the highest presumed team benefit. When an agent 

receives a single help offer in a given round, it responds with an acceptance message 
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(without questioning the team benefit or performing other deliberation). In the case 

of multiple offers in the same round, it randomly chooses one offer and responds with 

an acceptance message. A version of unilateral proactive help protocol is used in 

[Kamar et al 2009]. 

MAP: Distributed Decision by Recipient and Provider of Help 

In our Mutual Assistance Protocol (MAP), the decision is effected through a dis­

tributed agreement between the recipient and the provider of help, with each agent 

using its beliefs to assess the team impact of its local change of plan. The agent that 

needs help in performing an action assesses the team benefit of its switching to a dif­

ferent local plan in which the action has a cost of zero. It broadcasts the assessment 

in its request message to everyone else on the team. An agent that receives the re­

quest assesses the team loss that would result from adding the new action to its local 

plan in order to fulfill the help request. It responds to the request if the team impact, 

calculated as the difference between the team benefit and team loss is positive, and 

includes the value of the team impact in its response message. The requester accepts 

help from the responder with the highest value of team impact. 

No-Help: Absence of Helpful Behavior 

This is the approach in which no helpful acts are ever considered, and each agent relies 

exclusively on its own resources to complete its subtask. Its purpose is to provide 

a reference against which the performance of protocols for helpful behavior can be 

measured. 

The two unilateral decision mechanisms described above fundamentally differ from 

MAP in that they require an agent to assess the team impact of a local plan change 

in another agent, while in MAP each agent assesses only the team impact of its own 

local plan changes. For this reason it is reasonable to expect that the performance of 
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protocols that use unilateral decision mechanisms should more critically depend on 

the level of mutual knowledge in the team to a greater degree than the performance 

of MAP. This dependency is examined through simulation experiments later in this 

chapter. 

5.2.2 The Costs of Computation and Communication 

The computation cost is dominated by the calculations of team utility values. 

Specifically, we calculate the team impact of agent A's help to agent Aj as the dif­

ference between the team benefit (from A/s not having to perform an action) and 

the team loss (from Ai s having to perform an additional action); we assume that the 

cost of each of these two component calculations is a fixed constant value c. We also 

assume that other computational costs involved in the decision are considered negli­

gible by comparison. The communication costs are based on the number of messages, 

with each broadcast having a fixed cost of b and each unicast of s. The total num­

ber of agents in the team is n, while fc, k\,... denote the variable numbers of agents 

participating in certain interactions. Note that the message count could be different 

in another communication model. Also, in architectures where broadcast must be 

implemented through unicast messages, its fixed cost of b is replaced by (n — l)s. 

Always-Help 

The costs of individual protocol steps in a successful help transaction are as follows: 

1. The requesting agent computes the team benefit, at cost c; for each of the other 

n — 1 team members it computes the team loss, at the total cost (n — 1 )c; and 

it sends messages to k agents (where 1 < k < n — 1) for which the computed 

team impact is positive. 
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2. Out of the k candidates for providing help, k\ send response messages (where 

1 < ki < k), at total cost ks. 

« 

3. The requester sends an acceptance message to one of the candidates, at cost s. 

Thus, during one successful help transaction the team as a whole spends an amount 

of resources equal to: 

Cs(Always-Help) = c + ((n — 1 )c + ks) 4- kis + s = nc + (k + k\ + l)s 

In the worst case, when the requesting agent sends the request message to every 

team member, and each of them confirms its availability to perform the help, the cost 

of the team in a successful help transaction equals to: 

Cw(Always.Help) =c + ((n— l )c+ (n— 1 )s) + (n — l)s 4- s = nc + (2n— l)s  

The help transaction is not guaranteed to be successful. It can fail if no team 

member responds to the help request sent by the requesting agent. If the transaction 

fails, the cost to the team is equal to: 

Cf(Always-Help) = c + ((n — 1 )c + ks) = nc + ks 

Proactive-Help 

The costs of individual protocol steps in a successful help transaction are as follows: 

1. The n— 1 team members compute the team benefit of the potentially struggling 

team member, at cost (n — 1 )c, and compute the team loss at cost (n — 1 )c, in 

total spending 2(n — 1 )c. 

2. Assuming that for k of them (where 1 < k < n — 1) the computed team impact 

is positive, k agents send a message to the potentially struggling agent, at cost 

ks. 
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3. The agent sends an acceptance message to one of the offering agents, at cost s. 

Thus, during one successful help transaction the team as a whole spends an amount 

of resources equal to: 

Cs (Proactive-Help) = 2 (n — 1 )c+ ks + s = 2 (n — 1 )c + (fc + l)s 

In the worst case, when every agent in a team decides to help the potentially 

struggling agent, the cost of the team in a successful help transaction becomes equal 

to: 

Cw (Proactive-Help) = 2(n - 1 )c + (n - l)s 4- s = (2n - 2)c + ns 

The help transaction in Proactive-Help method can fail if, after computing the 

team impact, no team member decides to offer help to the potentially struggling 

agent. In this case, the cost of the team equals to: 

Cf (Proactive-Help) = 2 (n — 1 )c 

MAP 

The costs of individual protocol steps in a successful help transaction are as follows: 

1. The requesting agent computes the team benefit, at cost c, and broadcasts the 

request to the team members, at cost b. 

2. Each member computes the team loss, at cost c; assuming that for k of them 

(where 1 < k < n — 1) the computed team impact is positive, k agents send a 

message to the requesting agent, at cost ks. 

3. The agent sends an acceptance message to one of the candidates, at cost s. 

Thus, during one successful help transaction the team as a whole spends an amount 

of resources equal to: 
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Cs (MAP) = (c + b) + ((n - 1 )c + ks) + s = ric + (k + l)s + b 

In the worst case, when the broadcast message must be sent as a sequence of 

unicast messages, and when requesting agent gets bids from each team member, the 

cost of the team in a successful help transaction equals to: 

CW(MAP) — (c+ (n - l )s)  +  ((n -  1 )c+ (n - l)s) + s = nc+ (2n - l)s 

The help transaction can fail if, after computing the team loss, no team member 

responds to the help request sent by the requesting agent. If the transaction fails, the 

cost of the team is equal to: 

C f ( M A P )  =  c  +  b +  ( n  -  l ) c  =  n c  +  b  

Note that in the worst case, the costs are the same for MAP and Always-Help, and 

for the Cs the costs depend on the parameters k, k\, and b. Relation to the Proactive 

Help is not that straightforward and depends on the values of c and s. 

5.3 The Configuration Parameter Settings 

We initialize the simulation parameters for our experiments as follows. We choose 

a board of size (10,10), with six colors; the number of agents per team is eight; and 

the goal reward is 200 points. The cost vector for each agent includes a high cost of 50 

for three of the colors (randomly chosen), and a lower cost for the other three, in each 

case randomly chosen from the set {1,5,20,25}. Thus each agent has low capabilities 

for three types of actions, and high capabilities, to a varying degree, for the other 

three. The reward for accomplishing each step on the chosen path is 10 points; the 

initial allocated resources for each step towards the goal is 20 points; the cost of 

sending a message is initialized to 0.1 points; the cost of computing the team benefit 
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and loss values is initialized 0.1 points; the overhead cost for performing a helpful 

action is initialized to 20 points; the disturbance level on the board is initialized to 0 

percent; the percentage representing awareness of each-others' abilities is initialized 

to 100. 

During the experiments we calculate the average team scores of the MAP, No-Help, 

Always-Help, and Proactive-Help methods while varying: the probability representing 

mutual awareness of abilities (shown as percentage in the graphs); the disturbance 

level, i.e., the frequency of color changes on the board (also shown as percentage); 

and the communication and computation costs. For each chosen configuration of the 

parameters, we calculate the team scores for each of the four methods, averaged over 

60,000 simulation runs. 

The results of the experiments are presented in the next section. In each run, 

the behaviors of four agent teams, each using a different help method but otherwise 

identical to the others, are simulated in parallel. The corresponding agents in four 

approaches are under exact same constraints, i.e., they choose the same path towards 

the goal, have the same resources and capabilities, etc. The only difference is that 

the agents in the four teams use different help methods to collectively achieve their 

goals. 

5.4 The Experimental Results 

This section presents the results of experiments in which we vary the level of 

mutual awareness among the team members; the level of dynamic disturbance in the 

environment; the cost of communication; and the cost of computation. 
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5.4.1 The Impact of Mutual Awareness on Team Score 

In this section, we compare the MAP protocol with No-Help, Always-Help, and 

Proactive-Help methods by varying the mutual awareness of agents about each-others' 

capabilities. We design the same experiments with different values of disturbance, 

communication costs, and computation costs. Specifically, for disturbance we use low 

(10 percent) and high (40 percent) values, for communication cost we use low (0.1) 

and high (1) values, and for computation cost we use low (0.1) and high (1) values. 

Figure 5.1 shows the team scores of the compared methods depending on the mu­

tual awareness of the team members about each-others' abilities, when the teams are 

operating in an environment with low disturbance, in which the computation and 

communication costs axe low. As the figure shows, MAP and No-Help methods do 

not depend on the percentage of mutual awareness among the team members, as none 

of them uses unilateral probabilistic reasoning for helpful behavior. However, along 

with the increase of the awareness percentage of the team members, both Always-Help 

and Proactive-Help methods noticeably improve their performances, outperforming 

the No-Help method. As in the Always-Help method the agents perform less commu­

nication than in the MAP method, at certain high percentage of mutual awareness 

(in this case, when the probability is equal to one), Always-Help method produces 

better results than MAP (note that this result assumes that broadcast is implemented 

as n — 1 unicast messages; even with this assumption the worst case performance of 

both methods is the same, as calculated in Section 5.2). However, in the majority of 

team models the perfect mutual awareness among the team members does not exist. 

In addition, even in the case of perfect mutual awareness, the difference between the 

performances of Always-Help and MAP methods is insignificant. 

The behavior of the Proactive-Help method along with the increase of the mutual 
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awareness is a little different; although the performance of the Proactive-Help team 

improves significantly, it may not be able to outperform MAP even when perfect 

awareness among the team member exists. The reason for such a behavior is the 

property of Proactive-Help agents, according to which each agent performs checks at 

each turn to observe whether there have been any changes in the team members' paths, 

and if there are such changes, it computes the impact of the team if it helps the team 

member. All these computations bring with them additional costs to the Proactive-

Help agents, affecting their performance. Because of such additional computations, 

sometimes even if the perfect awareness among the team members exists, Proactive-

Help team may perform no better than MAP. 
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Figure 5.1: The Impact of Mutual Awareness on Team Score in the case of Low Distur­

bance, Low Communication Cost, and Low Computation Cost 

Figure 5.2 presents the analogous performances of the compared methods when 

the disturbance is low, computation cost is low, and the communication cost is high. 

When the awareness percentage becomes close to 100, because of its excessive number 
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of communications associated with high cost, MAP produces slightly worse results 

compared to Always-Help and Proactive-Help approaches. However, MAP continues 

to be dominant in awareness percentages lower than 90 percent. Prom the figure we 

also conclude that in the case of high communication cost and low computation cost, 

the Proactive-Help method performs better than the Always-Help method, in low 

and moderate percentages of mutual awareness. When the mutual awareness among 

the members becomes close to 100 percent, Always-Help method outperforms the 

Proactive-Help method because of the more optimal choice of the helping agent. 
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Figure 5.2: The Impact of Mutual Awareness on Team Score in the case of Low Distur­
bance, High Communication Cost, and Low Computation Cost 

Figures 5.3 presents the performances of the teams when the disturbance is low, 

the computation cost is high, and the communication cost is low. As seen in the 

figure, when the computation costs are high, the Proactive-Help method performs 

even worse than the No-Help approach, despite the increase of the percentage of 

mutual awareness. The reason for such a result for Proactive-Help method is the 
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excessive amount of computation during the team operation, which, because of the 

high computation cost, affects the team performance dramatically. 
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Figure 5.3: The Impact of Mutual Awareness on Team Score in the case of Low Distur­
bance, Low Communication Cost, and High Computation Cost 

Figure 5.4 presents the team scores of the methods when the disturbance is low, the 

computation and communication costs are high. In these settings, the Proactive-Help 

method produces the worst results because of its excessive number of computations 

associated with high cost. The Always-Help method performs worse than the No-Help 

method in low awareness percentages, but dramatically increases its performance once 

the mutual awareness among the team members increases. This is justified with the 

observation that along with the increase of the awareness probability, the decisions 

of Always-Help method become closer to optimal, in the meantime taking the same 

amount of resources in deliberation and communication. 
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Figure 5.4: The Impact of Mutual Awareness on Team Score in the case of Low Distur­
bance, High Communication Cost, and High Computation Cost 

In both latter cases, MAP continues to be dominant over all other approaches. 

Only when the mutual awareness percentage is 90 percent or 100 percent, the Always-

Help method performs equal or slightly better results because of the fewer communi­

cation among the members. 

The analogous experiments in case of the high disturbance in the environment 

are presented in Figures 5.5, 5.6, 5.7, 5.8. The experiments show that, despite the 

higher disturbance, along with the increase of the mutual awareness the compared 

approaches exhibit a behavior similar to the case of the low disturbance. Thus, the 

critical factors in the success of the compared approaches are the computation and 

communication costs among the team members. 
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Figure 5.5: The Impact of Mutual Awareness on Team Score in the case of High Distur­
bance, Low Communication Cost, and Low Computation Cost 
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Figure 5.6: The Impact of Mutual Awareness on Team Score in the case of High Distur­
bance, High Communication Cost, and Low Computation Cost 
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Figure 5.7: The Impact of Mutual Awareness on Team Score in the case of High Distur­
bance, Low Communication Cost, and High Computation Cost 
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Figure 5.8: The Impact of Mutual Awareness on Team Score in the case of High Distur­
bance, High Communication Cost, and High Computation Cost 
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5.4.2 The Impact of Disturbance on Team Score 

In this section, we compare the MAP protocol with No-Help, Always-Help, and 

Proactive-Help methods by varying the disturbance on the board. We design the 

same experiments with different values of mutual awareness percentages among the 

agents, communication costs, and computation costs. Specifically, for mutual aware­

ness we use moderately low (30 percent) and moderately high (70 percent) values, 

for communication and computation costs we use low (0.3) and high (1) values. Note 

that the use of low value of 0.3 as opposed to the previously used low value 0.1 does 

not alter the behavior represented by the graphs, but provides their better separation. 

Figure 5.9 presents the team scores of the compared methods depending on the 

disturbance in the environment, when the mutual awareness of the team members is 

moderately low, and the computation and communication costs are low. As seen in the 

figure, along with the increase of the disturbance, MAP performs better compared 

to all other approaches. The Always-Help method produces slightly better results 

than the Proactive-Help method, as along with the increase of the disturbance the 

Proactive-Help agents perform more computations for reasoning about whether to 

help. However, as the computation cost is not high, such additional computations 

by Proactive-Help agents still guarantee their better performance compared to the 

No-Help method. 

Figure 5.10 presents the analogous performances of the methods with high commu­

nication and computation costs. Here, too, along with the increase of the disturbance, 

MAP outperforms all other methods. Because of the high computation and commu­

nication costs, Proactive-Help approach produces the worst results, whereas above 

certain disturbance percentage, the Always-Help approach outperforms the No-Help 

approach because of the more frequent inefficiency of the latter. 
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Figure 5.9: The Impact of Disturbance on Team Score in the case of Moderately Low 

Mutual Awareness, Low Communication cost, and Low Computation Cost 
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Figure 5.10: The Impact of Disturbance on Team Score in the case of Moderately Low 

Mutual Awareness, High Communication cost, and High Computation Cost 
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The simulation results in the case of high communication cost and low computation 

cost are similar to the results presented in Figure 5.9, whereas the simulation results 

in the case of low communication cost and high computation costs are similar to the 

results presented in Figure 5.10. 

Figures 5.11 and 5.12 present the analogous team scores in which the mutual 

awareness of the team members is higher. The experiments show that despite the 

changes of the awareness level, the methods exhibit similar behavior when the distur­

bance in the environment changes. 
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Figure 5.11: The Impact of Disturbance on Team Score in the case of Moderately High 
Mutual Awareness, Low Communication cost, and Low Computation Cost 
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Figure 5.12: The Impact of Disturbance on Team Score in the case of Moderately High 
Mutual Awareness, High Communication cost, and High Computation Cost 

The results shown in Figures 5.9 to 5.12 are influenced by the fact that in the sim­

ulation the mechanism for recognizing the need for help is triggered by the perceived 

changes in the environment. This explains why all four methods have the same team 

score at disturbance level zero. 

The simulation results in the case of high communication cost and low computation 

cost are similar to the results presented in Figure 5.11, whereas the simulation results 

in the case of low communication cost and high computation costs are similar to the 

results presented in Figure 5.12. 

The above-presented experiments confirm the advantage of MAP over other meth­

ods in cases of moderately low and moderately high awareness probabilities, regard­

less of the disturbance level in the environment (assuming that the changes in the 

environment are moderate and are not such that there might be a need for team 

reorganization). 
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5.4.3 The Impact of Communication Cost on Team Score 

In this section, we compare the MAP protocol with No-Help, Always-Help, and 

Proactive-Help methods by varying the value of the communication cost among 

agents. We design the same experiments with different values of mutual awareness 

among the agents, and different values of computation costs. Specifically, for mu­

tual awareness we use moderately low (30 percent) and moderately high (70 percent) 

values, for computation cost we use low (0.3) and high (1) values. We perform the 

experiments in environments with moderate disturbances (30 percent). 

Figure 5.13 presents the team scores of the compared methods depending on the 

communication cost among the team members, when the awareness of the team mem­

bers about each-other is moderately low, and the computation cost is moderately low. 

As the figure shows, the increase of the communication cost in teams results in de­

graded performance of MAP, Always-Help, and Proactive-Help methods. However, 

as the Proactive-Help method uses less communication than MAP and Always-Help 

methods, its results are not affected significantly. MAP agents communicate slightly 

more than the Always-Help agents, but the more optimal decisions of the MAP team 

compared to the Always-Help team compensate the overhead of communication, re­

sulting in approximately equal amount of team points loss compared to the Always-

Help team. When the communication cost increases significantly, the performance 

of Always-Help method becomes worse than the performance of the Proactive-Help 

method. The reason for such a behavior is that the Always-Help team members 

perform more communications associated with high cost, than the Proactive-Help 

members. 
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Figure 5.13: The Impact of Communication Cost on Team Score in the case of Moderately 
Low Mutual Awareness and Low Computation Cost 

Figure 5.14 shows the team scores of analogous experiments in which the compu­

tation cost among the team members is high. Although the behaviors of the com­

pared methods are the same as in the case of low computation costs, in this case 

the Proactive-Help method performs the worst. In addition, the No-Help method 

outperforms the Always-Help method when the communication costs become very 

high. The rationale for such results is explained in the high cost of the computation 

and communication among the team members. In such cases, it may be preferred 

for the team to operate without any probabilistic guesses and helpful behaviors, as 

the questionable outcome of such a help may not justify the spent resources for per­

forming such a help. As the decisions of the MAP team are accurate, the help using 

MAP method is guaranteed to be beneficial for the team, unless the computation and 

communication costs are extremely high. 

Figures 5.15 and 5.16 present the performances of the methods in the analogous 

experiments when the mutual awareness of the team members is higher. Because of 
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Figure 5.14: The Impact of Communication Cost on Team Score in the case of Moderately 

Low Mutual Awareness and High Computation Cost 

the high mutual awareness, when the communication cost increases, and the computa­

tion cost is low (Figure 5.15) both Always-Help and Proactive-Help methods perform 

better than the No-Help approach. However, when the communication cost increases 

with the computation cost being high (Figure 5.16), the Proactive-Help method per­

forms worse than the No-Help method, despite the higher level of awareness. 

5.4.4 The Impact of Computation Cost on Team Score 

In this section, we compare the MAP protocol with No-Help, Always-Help, and 

Proactive-Help methods by varying the value of the computation cost among agents. 

We design the same experiments with different values of mutual awareness among 

the agents, and different values of communication costs. Specifically, for mutual 

awareness we use moderately low (30 percent) and moderately high (70 percent) 

values, for communication cost we use low (0.3) and high (1) values. We perform the 

experiments in environments with moderate disturbances (30 percent). 
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Figure 5.15: The Impact of Communication Cost on Team Score in the case of Moderately 
High Mutual Awareness and Low Computation Cost 
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Figure 5.16: The Impact of Communication Cost on Team Score in the case of Moderately 
High Mutual Awareness and High Computation Cost 
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Figure 5.17 exposes the performance of the compared methods depending on the 

computation costs of the team members when reasoning about the help needs of each-

other and team benefits. The figure presents the team scores in the case when the 

mutual awareness of the team members moderately low, and the communication cost 

is low. As the figure shows, the increase of the computation cost in teams decreases 

the performance of MAP, Always-Help, and Proactive-Help methods. However, as the 

Proactive-Help method uses more computations when checking whether anyone needs 

help, and when computing the team impact of potentially every team member for 

performing its next move, along with the increase of the computation costs the results 

of the Proactive-Help method are affected dramatically, at some point even producing 

worse results than the No-Help method. As MAP and Always-Help methods perform 

the same amount of computations - much less than the Proactive-Help method, their 

results are not degraded significantly. 
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Figure 5.17: The Impact of Computation Cost on Team Score in the case of Moderately 

Low Awareness and Low Communication Cost 
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Figure 5.18 presents the team scores of the compared methods when the commu­

nication cost among the team members is high. MAP outperforms the other methods 

in all cases. The Proactive-Help method is more preferable than the Always-Help and 

No-Help approaches in cases of low computation and high communication costs, but 

quickly becomes worse than both of them, as the computation cost increases. 
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Figure 5.18: The Impact of Computation Cost on Team Score in the case of Moderately 
Low Awareness and High Communication Cost 

Figures 5.19 and 5.20 show the team scores of analogous experiment results when 

the mutual awareness among the team members is higher. Despite the change of the 

awareness level, all methods behave the same way as in lower awareness case. 
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Figure 5.19: The Impact of Computation Cost on Team Score in the case of Moderately 
High Awareness and Low Communication Cost 
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Figure 5.20: The Impact of Computation Cost on Team Score in the case of Moderately 
High Awareness and High Communication Cost 
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5.4.5 Summary of the Evaluation Results 

The presented experiments show the dominance of MAP over the other compared 

methods when the mutual awareness among the team members is not close to per­

fect. In the case of perfect awareness among the team members, the Always-Help 

approach performs slightly better than MAP because of its fewer usage of communi­

cation. For the Proactive-Help approach, even in the case of perfect awareness, the 

relative advantage over MAP highly depends on the computation and communication 

costs among the team members, as the Proactive-Help method uses less communi­

cation than MAP, but performs a large number of computations and checks at each 

move. However, it is worth noting that in real teams having perfect awareness about 

each other during the team operation entails additional communication, which is not 

modeled in our experiments. This observation leads to believe that in real teams with 

high communication costs, the better performances of Always-Help or Proactive-Help 

approaches compared to MAP may be unrealistic, as the cost of maintaining a near-

perfect awareness about each other would likely be prohibitive. 

For the success of the Proactive-Help method, a critical factor is the value of com­

putation cost among the team members. While in the low values of computation cost 

the Proactive-Help method can produce equal or slightly worse results compared to 

MAP, with the increase of the computation cost its performance degrades significantly, 

sometimes even performing worse than the No-Help method. 

The Always-Help method improves its performance dramatically when the mutual 

awareness among the team members increases. Its performance also highly depends 

on the value of the communication cost, whereas the change of the computation cost 

has less impact on the Always-Help method. 

The No-Help method never outperforms MAP in any of the experimental settings 
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(unless the communication and computation costs are extremely high). However, 

depending on the awareness level among the team members, as well as the commu­

nication and computation costs, No-Help method may produce better results than 

Always-Help and Proactive-Help methods, as the latter ones may spend additional 

resources on computing and communicating, while not arriving at optimal decisions. 
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Chapter 6 

Conclusions and Future Work 

This thesis proposes a novel protocol, called the Mutual Assistance Protocol 

(MAP), for incorporating helpful behavior into multiagent teamwork. Initial research 

has included a study of literature in several areas of multiagent systems (MAS), es­

pecially agent teamwork, agent protocols, and helpful behavior in agent teams. The 

study led to an observation that, despite the growing use of protocols in MAS, there 

is a shortage of protocols designed for MAS teamwork, and particularly for incor­

porating helpful behavior into MAS teamwork. Another observation was that some 

of the existing approaches to helpful behavior in teamwork enable agents to provide 

help based on unilateral probabilistic beliefs of a single agent, which in many realistic 

teamwork environments may be inaccurate. These observations motivated the design 

of a new protocol for helpful behavior in teamwork, with a particular attention to the 

choice of individual agents' beliefs involved in the help decision. 

In MAP, helpful behavior occurs when an agent uses its own abilities and resources 

to advance a subtask assigned to another agent. Similar to the bidding sequence of the 

Contract Net Protocol, the agent that needs help broadcasts a request, receives offers 

from teammates willing to help, and chooses the most suitable offer. The helpful act 

is performed only when the two agents, based on their own beliefs, determine that 
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it is in the interest of the team. When pondering possible help, each agent assesses 

the team impact of changing its current local plan to a new plan that includes the 

helpful act. The underlying design philosophy is that each agent, in its mainstream 

behavior, regularly assesses the team impact of its alternative local plans; thus, insofar 

as its individual beliefs can effectively support its mainstream behavior, they can also 

effectively support its helpful behavior. As the helpful act may consist of either 

performing actions or granting additional resources, two MAP versions, called the 

Action Map and Resource Map, have been developed to address these two aspects 

separately. 

MAP was then analyzed in terms of the complexity of the resource costs dur­

ing the helpful act transaction. In addition, Action MAP was submitted to a test 

of how well it performs compared to approaches with no helpful behavior or with 

probabilistic unilateral decision mechanisms, using an implemented simulation game. 

The advantages of MAP over protocols that use unilateral help decisions were demon­

strated through simulation experiments, using varying levels of mutual awareness in 

the team, dynamic disturbance in the environment, communication costs, and com­

putation costs. 

The analysis and experiments suggest that MAP indeed increases the effectiveness 

of teamwork, and is superior compared to unilateral decision mechanisms for helpful 

behavior, especially in cases when the beliefs of the team members about each others' 

abilities and activities may not be accurate. 

The thesis includes two variations of MAP that need to be further explored. In one 

of them, the agent requesting help can be involved in multiple simultaneous (related 

or independent) MAP transactions. The other is the Helper-Initiated MAP, that 

starts with a broadcast by an agent willing to offer help. 
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In MAP, an agent deliberating about help relies on its local beliefs, acquired 

through perception, as well as its context beliefs, acquired through communication 

with the rest of the team. While this thesis did not explore the formation and main­

tenance of context beliefs, this topic is relevant in MAP implementation and leads to 

interesting architectural questions that merit further study. 
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