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Abstract 

Wetlands provide beneficial functions and services (e.g. sediment retention, nutrient seques­
tration) to downstream aquatic environments. The resiliency of these functions under dis­
turbance conditions is, however, not fully understood. Two wetland-lake systems (Boswell 
and Viewland) in the central interior of British Columbia whose contributing catchments 
have historically been impacted by forestry practices were selected to examine how wetland 
sediment retention responds to disturbance. Core chronologies and sedimentation rates were 
calculated from unsupported 210Pb measurements using the Constant Rate of Supply (CRS) 
model, and sediment source contributions were determined using a multivariate unmixing 
model, for both wetlands and their downstream lakes. Sedimentation rates did not signifi­
cantly change post-logging in either lake; however, the dominant source to Viewland Lake 
changed from channel bank material to subsurface material. The increase in the proportion 
subsurface material consistent with increases in dry density and magnetic susceptibility, and 
decreases in median grain size and C:N. The bordering wetland was not found to contain any 
material other than channel bank material. The ephemeral nature of the wetland channel, 
as well as the length of the channel and the significant decrease in median grain size are 
thought to have prevented sediment deposition, or increased the potential for resuspension 
and further transport. Sedimentation rates were greatest near the inflow of Boswell wetland, 
however, the strongest responses to forestry practices were observed near the wetland out­
flow. Similarly, significantly lower median grain sizes could have limited deposition in the 
upstream areas of the wetland. Increases in precipitation as snow and stream discharge in 
addition to effects associated with forestry practices are thought to have been responsible for 
driving sedimentation rates in both catchments; however, changes in source contributions 
were likely the result of active forestry practices. 



Contents iii 

Contents 

Abstract ii 

Contents iii 

List of Tables vi 

List of Figures viii 

Acknowledgements xii 

1 Literature Review 1 
1.1 Introduction 1 
1.2 Wetlands 3 

1.2.1 Features and functions 3 
1.2.2 Water flow and sediment storage 4 
1.2.3 Hydrophytic macrophytes 5 

1.3 Sediment transfer 6 
1.4 Sediment deposition and storage 7 
1.5 Disturbance-response regimes 8 
1.6 Forestry practices 11 
1.7 Climate 12 
1.8 Research questions and objectives 13 

1.8.1 Research question 1 14 
1.8.1.1 Wetland and lake sedimentation rates 14 
1.8.1.2 Paleoenvironmental reconstruction 14 

1.8.2 Research question 2 16 
1.8.2.1 Changes in sediment provenance 16 
1.8.2.2 Sediment source tracing 16 

1.9 Thesis organization 18 

2 Methodology 20 
2.1 Study area 20 

2.1.1 Boswell Lake catchment 20 
2.1.2 Viewland Lake catchment 22 

2.2 Sample collection and preparation 24 
2.2.1 Wetland coring 24 
2.2.2 Lake coring 26 
2.2.3 Source materials 28 



Contents iv 

2.3 Radionuclides and core chronology 29 
2.3.1 Origin of lead-210 29 
2.3.2 Lead-210 dating models 29 
2.3.3 Caesium-137 31 
2.3.4 Core chronology 32 

2.4 Proxy measurements 33 
2.4.1 Bulk physical properties 34 
2.4.2 Magnetic susceptibility 34 
2.4.3 Particle size 35 
2.4.4 Total carbon and nitrogen 36 
2.4.5 Geochemistry 36 

2.5 Climate and stream discharge 37 
2.6 Sediment source tracing 38 

2.6.1 Source groups 38 
2.6.2 Multivariate unmixing model 39 

2.7 Statistical analysis 39 
2.7.1 Pre- versus post-logging 39 
2.7.2 Climate and stream discharge trends 41 
2.7.3 Correlations 42 

3 Results: Lake and wetland sedimentation rates 43 
3.1 Physical descriptions 43 
3.2 Lead-210 profiles and core chronologies 44 
3.3 Boswell Lake catchment 50 

3.3.1 Total sedimentation rates 50 
3.3.2 Proxy indicators 50 
3.3.3 Long-term changes in bulk physical properties 52 
3.3.4 Hydrometerological influences and trends 56 

3.4 Viewland Lake catchment 58 
3.4.1 Total sedimentation rates 58 
3.4.2 Proxy indicators 60 
3.4.3 Long-term changes in bulk physical properties 60 
3.4.4 Hydrometerological influences and trends 64 

4 Results: Sediment source tracing 66 
4.1 Source groups 66 
4.2 Boswell Lake catchment 68 

4.2.1 Composite fingerprint 68 
4.2.2 Sediment source contributions 71 
4.2.3 Correlations 72 

4.3 Viewland Lake catchment 75 
4.3.1 Composite fingerprint 75 
4.3.2 Sediment source contributions 75 
4.3.3 Correlations 78 



Contents v 

5 Discussion 79 
5.1 Boswell Lake catchment 79 

5.1.1 Lake sediment 79 
5.1.2 Wetland buffering function 81 

5.2 Viewland Lake catchment 84 
5.2.1 Lake sediment 84 
5.2.2 Wetland buffering function 85 

5.3 Importance of landscape position 88 
5.4 Local versus regional effects 89 
5.5 Study limitations 90 
5.6 Future research directions 92 

6 Conclusions and management implications 94 
6.1 Conclusions 94 
6.2 Management implications 97 
6.3 Final remarks 98 

Bibliography 99 

A Bathymetric maps 110 

B ClimateBC variables 113 

C Microscope image of tephra 114 

D Lead-210 dating models 115 



List of Tables vi 

List of Tables 

2.1 Morphometric characteristics of Boswell Lake and Viewland Lake. Informa­
tion for Boswell Lake was taken from The Angler's Atlas (2010) 23 

2.2 Summary of model assumptions. Adapted from Carroll k Lerche (2003). . . 31 

3.1 Summary of the x2 values produced by the Sediment Isotope Tomography 
(SIT) model. These values represent the goodness-of-fit between an observed 
distribution (measured unsupported 210 activities) and a theoretical distribu­
tion (modelled unsupported 210Pb activities). For a sample size of 10, two sam­
ple distributions would be considered to be not significantly different (p>0.05) 
if the x2 value was <16.9 48 

3.2 Summary of the two-sample t-tests results comparing pre- and post-logging 
total sedimentation rates (g cm-2 y_1) in Boswell Lake and wetland cores. In 
BL-Pl, BL-D8, and BL-D10 the post-logging periods are above 4 cm, 7 cm, 
and 7 cm, respectively. Values in brackets denote sample size 50 

3.3 Summary of two-sample t-tests comparing the means of pre- and post-logging 
periods for each proxy indicator measured in the Boswell Lake and wetland 
cores. In BL-Pl, BL-D8, and BL-D10 the post-logging periods are above 4 cm, 
7 cm, and 7 cm, respectively. Values in brackets denote sample sizes which 
are consistent across all proxies 54 

3.4 Summary of the two-sample t-tests results comparing pre- and post-logging 
sedimentation rates (g cm-2 y_1) in Viewland Lake and wetland cores. In VL-
P1 and VL-D1, the post-logging periods are above 2 cm and 7 cm, respectively. 
Values in brackets denote sample size 58 

3.5 Summary of the two-sample t-test results comparing the means of pre- and 
post-logging periods for each proxy indicator measured for the Viewland Lake 
and wetland cores. In VL-P1 and VL-D1, the post-logging periods are above 
2 cm and 7 cm, respectively. Values in brackets denote sample sizes. Total 
number of samples are given under dry bulk density. Other values are given 
where sample size was less than the total 62 

3.6 Final model produced by the stepwise linear regression for Viewland Lake 
(VL-P1) sedimentation rates. PAS=precipitation as snow 64 

3.7 Final model produced by the stepwise linear regression for Viewland wetland 
(VL-D1) sedimentation rates 64 

4.1 Fuzzy k-means clustering results for Boswell Lake and Viewland Lake source 
materials 67 



List of Tables vii 

4.2 Kruskal-Wallis H-test probabilities ( p )  for distinguishing surface, subsurface 
and channel bank materials in the Boswell Lake catchment using individual 
fingerprint properties. Mean concentration values are also given for each fin­
gerprint property for each source type 69 

4.3 Kruskal-Wallis H-test probabilities (p) for distinguishing surface, subsurface 
and channel bank materials in the Viewland Lake catchment using individ­
ual fingerprint properties. Mean concentration values are also given for each 
fingerprint property for each source type 70 

4.4 Fingerprint properties selected by the stepwise Multivariate Discriminant Func­
tion Analysis to distinguish source types in the Boswell Lake catchment. . . 71 

4.5 Percent relative errors and standard errors for the unmixing model calculations 
for the Boswell Lake (BL-P1) and wetland (BL-D8) cores 73 

4.6 Summary of the significant (p<0.05) correlations found between each source 
material and sedimentation rates, and proxy indicators 74 

4.7 Fingerprint properties selected by the stepwise Multivariate Discriminant Func­
tion Analysis to distinguish source types in the Viewland Lake catchment. . 75 

4.8 Percent relative errors and standard errors for the unmixing model calculations 
for the Viewland Lake (VL-P1) and wetland (VL-D1) cores 76 

4.9 Summary of the significant (p<0.05) correlations found between each source 
material and each proxy indicator for the Viewland Lake core (VL-P1). ... 78 



List of Figures viii 

List of Figures 

1.1 Conceptual diagram of a geomorphological disturbance, where: Ra = reaction 
time; and, Rx = relaxation time. The sum of Ra and Rx equals the response 
time. Diagram from Viles et al. (2008) 9 

1.2 Conceptual diagram of a biogeomorphological response to precipitation. Dia­
gram from Viles et al. (2008) (adapted from original by Knox, 1972) 10 

1.3 A conceptual diagram outlining the sediment fingerprinting approach. Adapted 
from Collins & Walling (2002) to this wetland focus 17 

2.1 Map of the province of British Columbia. The rectangle indicates the approx­
imate location of the Quesnel River Basin which is composed of three water­
sheds: the Cariboo River Watershed; the Quesnel River Watershed; and, the 
Horsefly River Watershed 21 

2.2 Map of the Boswell Lake catchment. Forestry practices were active in the 
catchment during two time periods: A) 1960-1975; and B) 1982-2008. Inset: 
Outline of the Quesnel River Watershed. The star represents the approximate 
location of the Boswell Lake catchment in the watershed 24 

2.3 Map of the Viewland Lake catchment. Forestry practices were active in the 
catchment in 1983 (A). Inset: Outline of the Horsefly River Watershed. The 
star represents the approximate location of the Viewland Lake catchment in 
the watershed 25 

2.4 (a) Boswell Lake and (b) Viewland Lake and wetland coring locations. Codes 
containing a 'D' indicate an open barrel core, 'P' refers to a percussion core, 
and those with an 'E' denote a core taken with an Ekman dredge. Note: The 
location of the stream containing Boswell wetland core BL-D13 was not shown 
in original spatial dataset. This line feature was created by extracting point 
locations from a Google Earth image of the catchment 27 

2.5 Diagram of the open barrel corer used to retrieve wetland sediment cores. . . 28 
2.6 Comparison of the 1- and 2-sample t-tests used to evaluate post-logging (F) 

changes in the sediment profiles against average pre-logging (X) conditions. 
For 1-sample t-tests, sedimentation rate and proxy values given by individual 
post-logging 1 cm core slices (F,) represent the null hypothesis (//) 40 

3.1 Unsupported 210Pb and 137Cs activity depth profiles for Boswell Lake and 
wetland cores. Unsupported 210Pb error bars represent the sum of the total 
210Pb and supported 210Pb errors. Values without errors were measured at 
the minimum detectable limit of the gamma assay 46 



List of Figures ix 

3.2 Core chronologies for (a) Boswell Lake (BL-P1) and wetland cores (b) BL-
D8, and (c) BL-D10 produced by the Constant Rate of Supply (CRS) model. 
Error bars were also calculated using the CRS model and represent the error 
on each of the calculated dates 47 

3.3 Unsupported 210Pb and 137Cs activity depth profiles for Viewland Lake and 
wetland cores. Unsupported 210Pb error bars represent the sum of the total 
210Pb and supported 210Pb errors. Values without errors were measured at 
the minimum detectable limit of the gamma assay. 48 

3.4 Core chronologies for (a) Viewland Lake (VL-P1) and (b) wetland (VL-D1) 
cores produced by the CRS model. Error bars were also calculated using the 
CRS model and represent the error on each of the calculated dates 49 

3.5 Total sedimentation rates (calculated using the CRS model) for Boswell Lake 
and wetland cores. The highlighted areas represent the periods of time that 
forestry practices were present in the Boswell Lake catchment. Error bars on 
the sedimentation rates represent the standard error calculated using the CRS 
model. An error value could not be calculated for the bottom of the BL-D8 
profile 51 

3.6 The seven proxy indicators (dry bulk density, percent water content, magnetic 
susceptibility, median particle size, total C, total N, and C:N) are shown over 
time for the dated portion of each of the Boswell Lake and wetland cores. 
The highlighted areas represent the years that forestry practices were present 
in the Boswell Lake catchment. Core logs and general descriptions of the 
sediment are also provided for each core (top left) 53 

3.7 Long-term depth profiles of dry bulk density and percent water content for 
(a) Boswell Lake (BL-Pl) and wetland cores (b) BL-D8, and (c) BL-D10. 
Values are presented over depth as they extend beyond the dated region of 
the sediment cores where 210Pb was not present in measurable concentrations. 
Highlighted areas represent years that forestry activities were present in the 
catchment. The date (2,410 yrs BP) provided at 56 cm is the location of the 
Bridge River tephra layer in the lake core 55 

3.8 Annual stream discharge (1924-2009) and mean annual precipitation (1901-
2002) values. Stream discharge values are for Quesnel River at Likely, BC and 
were taken from the Water Survey of Canada (Environment Canada). Mean 
annual precipitation measurements are specific to the Boswell Lake catchment 
and were modelled using ClimateBC. The small dashed line represents the 
linear regression line for the full time series of stream discharge. The large 
dashed lines are linear regression lines in between each set of breakpoints. . . 57 

3.9 Total sedimentation rates (calculated using the CRS model) for Viewland 
Lake and wetland cores. The horizontal line at 1983 represents the year the 
Viewland Lake catchment was logged. Error bars on the sedimentation rates 
were also calculated using the CRS model 59 



List of Figures x 

3.10 The seven proxy indicators (dry bulk density, percent water content, magnetic 
susceptibility, median particle size, total C, total N, and the C:N) are shown 
over time for the dated portion of each of the Viewland Lake and wetland 
cores. The horizontal line represents the year the Viewland Lake catchment 
was logged (1983). Core logs and general descriptions of the sediment are also 
provided for each core (top left) 61 

3.11 Long-term depth profiles of dry bulk density and percent water content for 
(a) Viewland Lake and (b) wetland cores. Values are presented over depth as 
they extend beyond the dated region of the sediment cores where 210Pb is not 
present in measurable concentrations. Horizontal lines represent the year that 
logging activities were present in the catchment. Although not show here, the 
Bridge River tephra layer (2,410 yrs BP) occurred at 67 cm depth in the lake 
core (VL-P1) 63 

3.12 Precipitation as snow (mm) and sedimentation rates (g cm-2 y_1) over time 
for the Viewland Lake core. Climate data are specific to the Viewland Lake 
catchment area and were modelled using ClimateBC. Sedimentation rates were 
calculated using the CRS model 65 

4.1 Results of the Principle Component Analysis (PCA) of the fingerprint prop­
erties for (a) Boswell Lake and (b) Viewland Lake sediment source materials. 
F=forest, F_sub=forest subsoil, L=logged, L_sub=logged subsoil, R=road, 
CB=channel bank. Biplots represent the first two principle components of 
the PCA 67 

4.2 Results of the multivariate unmixing model for the (a) Boswell Lake and (b) 
wetland cores. Values on the secondary y-axis represent the dates calculated 
using the CRS model for each 1 cm core slice containing detectable concentra­
tions of 210Pb. Each date aligns with the bottom of its respective 1 cm core 
segment 72 

4.3 Results of the multivariate unmixing model for the (a) Viewland Lake and 
(b) wetland cores. Values on the secondary y-axis represent the dates calcu­
lated using the constant rate of supply model for each 1 cm core slice contain­
ing detectable concentrations of 210Pb. Each date aligns with the bottom of 
its respective 1 cm core segment. The asterisk (*) identifies core slices that 
were not corrected for particle size due to a lack of material 77 

5.1 The components of catchment connectivity (from Bracken & Croke (2007)). . 89 

A.l Bathymetric map for Boswell Lake. Map was obtained online from the An­
g le r s '  A t l a s  I l l  

A.2 Bathymetric map for Viewland Lake. Map was created in ArcGIS using 
latitude-longitude coordinates and water depths obtained during a depth sur­
vey of the lake 112 



List of Figures xi 

C.l Microscope image of the tephra found in both the Boswell Lake and Viewland 
Lake cores. Tephra was identified as having originated from the Bridge River 
event (ca. 2,410 calendar years BP) based on the glass shard morphology and 
tephra colour 114 

D.l Comparison of the 210Pb-based depth-to-age models (CIC, CRS, SIT) for (a) 
Boswell Lake and wetland cores (b) BL-D8 and (c) BL-D10. Error bars are 
not given to enhance the readability of the figure 116 

D.2 Comparison of the 210Pb-based depth-to-age models (CIC, CRS, SIT) for (a) 
Viewland Lake and (b) wetland cores. Error bars are not given to enhance 
the readability of the figure 117 



Acknowledgements xii 

Acknowledgements 

I would like to express my sincere thanks to my supervisor, Phil Owens. Thank you for 
giving me the opportunity to develop my own project, and allowing me to make the most of 
this opportunity. Your guidance and support throughout this process has been invaluable, 
and I appreciate the time and effort that you devoted to my education and this project. 
Many thanks to the members of my committee: Dr. Brian Menounos, Dr. Ellen Petticrew, 
and Dr. John Rex. Thank you for sharing your knowledge and expertise with me. Each of 
you has provided me with feedback that has both helped me and challenged me, and I would 
not have been able to develop the current thesis without it. 

There are a number of people who helped me in the field and the lab, and whose assis­
tance allowed this project to move forward. A big thank you to Rob Little for enduring the 
"mozzies" over many days in soggy wetlands. Without your height and weight I never would 
have taken a single sediment core. And to Ty Smith for your willingness to head out onto 
frozen lakes with me and haul up tubes of dirt. Thank you to Rick Holmes and Bill Best of 
the QRRC for always being so welcoming and supportive. Thanks to Dr. Paul Sanborn for 
the use of your sediment corer. Thanks to Dr. Richard Jones and Dr. Klaus Kuhn for your 
guidance during field work. Thanks to Dr. John Clague for the use of your lab, and to Dr. 
Will Blake for radionuclide analysis. Thanks to Mel Grubb and Lyssa Maurer for taking the 
time to teach me all you know about processing sediment cores. 

I gratefully acknowledge the financial support I received from the FRBC-QRRC Landscape 
Ecology Research Program, the NSERC Alexander Graham Bell Graduate Scholarship, the 
Patrick Lloyd Graduate Scholarship, and the UNBC Master's Tuition Scholarship. 

Thank you to everyone at UNBC for making Prince George more than just the city where I 
go to school. Thanks to COL friends for organizing much needed recesses, and other hilari­
ous distractions. I could not have asked for a better group of friends to share these last few 
years with. 

Many thanks to my family and friends for their continual love and support. Thank you to 
my parents Jim, Sue, Betty and Joe, my brothers Stephen and Joey, and my sister Lisa and 
her family. And to my grandparents Olympiada, Michael and Rhea for always telling me to 
never stop learning. 

Finally, I would like to thank two people whose friendships mean the world to me. To Danielle 
and Rick, thank you for all of your encouragement, words of wisdom, and wonderful hugs. 
You have both made the last stretch of this process more enjoyable, and I am so grateful to 
have met you. 



1 

Chapter 1 

Literature Review 

1.1 Introduction 

Wetlands regulate the flow of materials in many landscapes from terrestrial surfaces to 

aquatic systems (Johnston, 1991). This ecosystem service is thought to be disproportionately 

large compared to the actual wetland area (Hemond, 1988; Johnston et al., 1990). As a result, 

the loss and degradation of wetlands can have significant repercussions for downstream water 

quality and wetland habitat quality. For example, the sediment retention function also 

regulates the flow of limiting nutrients, such as phosphorus which is typically bound to 

the surface of sediment particles. Furthermore, the highest concentrations of phosphorus are 

associated with the smallest size fractions of sediment (Owens & Walling, 2002) which require 

low energy environments (such as those found in wetlands) to be deposited. When present in 

high concentrations, phosphorus has been shown to produce eutrophic conditions (Schindler, 

1977), often resulting in depleted oxygen concentrations. Thus, the loss of upstream wetlands 

and their functions could result in the increased delivery of phosphorus to lakes, which might 

otherwise have been deposited within upstream wetlands. 

Wetland losses have been driven primarily by conversions to other land use activities, 

such as agriculture, urban development, flooding for hydroelectric production, and drain­

ing for pest management. Increasing densities of human settlements have been linked to 

increased fragmentation of wetland area and greater distances between individual wetlands 

(Gibbs, 2000). With increasing recognition of the important role that they play in the water­

shed, wetlands and their functions have been receiving more attention. Attempts to protect 

wetlands have included designating wetland areas for conservation purposes, identifying eco­
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logically significant wetlands, and placing economic value on wetlands and those functions 

that benefit society (Davis & Froend, 1999). Canada, for instance, has lost approximately 

70% of its total wetland area. In an attempt to preserve the remaining wetland areas, it 

has been estimated that based on wetland services (e.g. migratory bird habitat and water 

quality improvement), Canada's wetlands have a value of approximately $19,580 per hectare 

per year (British Columbia Ministry of Environment, 2010). 

Wetlands are commonly defined with respect to their hydrological (i.e. water table loca­

tion) and biological features (i.e. vegetation), with the biological features ultimately driven 

by the hydrological regime. In a review on sediment storage in fluvial wetlands, Phillips 

(1989) redefined wetlands in a geomorphic context. The author stated that "their presence 

and extent is both a reflection and a determinant of the magnitude of sediment storage (or 

remobilization) within a drainage basin". This definition suggests that any major hydrologic 

or geomorphic changes in the drainage basin could have significant impacts on downstream 

wetlands, and has been corroborated by the results of other studies. In a forested wetland in 

West Tennessee, USA, Hupp &; Bazemore (1993) observed that the channelization of streams 

in the upstream drainage basin resulted in less sediment deposition than in the unchannelized 

streams. Flow constriction caused by channelization increased stream velocities preventing 

sedimentation in the wetland. 

Land use activities do not necessarily result in the loss of wetland area, but they do disturb 

the surrounding area and have been found to alter hydrological conditions. Forestry prac­

tices, for instance, have been linked to surface compaction, increased runoff, and increased 

sediment production (Church & Eaton, 2001). Little information is currently available re­

garding the long-term variability of the sediment storage function of wetlands, how this 

function is impacted by forestry practices (which have been linked to increased suspended 

sediment concentrations), and the subsequent impact on downstream water quality (Zedler 

& Kercher, 2005). Additionally, few studies have focused on the status of wetland functions 

pre- and post-disturbance. Long-term studies are therefore needed to address the capacity of 
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wetlands to act as buffers under upstream disturbance conditions. This requires an adequate 

assessment of baseline functions, as well as monitoring during and after land use activities. 

Due to high costs and limited resources, it is unreasonable to think that long-term mon­

itoring data would be available for all wetlands and lakes residing in logged catchments. 

Other techniques are available that enable the development of a long-term historical dataset. 

Specifically, paleoenvironmental reconstruction attempts to reconstruct past environmental 

conditions using sediment records. This requires the measurement of "proxy indicators" 

which allow inferences to be made about historical environmental conditions based on cur­

rent knowledge of these indicators, and the processes that control their behaviour in a par­

ticular environment (Smol, 2008, 2010). This type of approach provides insight into baseline 

environmental conditions, as well as responses to natural and/or anthropogenic disturbances. 

The aim of this thesis is to use paleoenvironmental reconstruction techniques to evaluate 

the sediment retention function of two wetlands in the central interior of British Columbia, 

and how they have responded to changing hydrologic and geomorphic conditions as a result 

of historical forestry practices. The following sections will provide an overview of literature 

that has been published on wetland characteristics and the sediment storage function of 

wetlands, sediment transport and storage, disturbance response regimes, impacts of forestry 

practices and climate on sediment yields, as well as key analytical techniques that have been 

used to complete the present study. Research questions and objectives are also provided at 

the end of the literature review. 

1.2 Wetlands 

1.2.1 Features and functions 

A general definition of a wetland includes three main characteristics: all wetlands are tem­

porarily or permanently inundated, possess hydric (i.e. oxygen deprived) soils, and are inhab­

ited by rooted vegetation that is adapted to these conditions. Categories of wetlands often 
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rely on hydrology, vegetation type, and pH to define their boundaries. Marshes are typically 

inhabited by herbaceous vegetation, while swamps are capable of supporting woody species. 

Peatlands exist where the soil is rich in organic matter and the water table is at or below the 

ground surface. Acidic and alkaline conditions belong to bogs and fens, respectively. "True 

bogs" are more specifically bogs with no defined inflow or outflow, and receive water only 

through precipitation which is lost only by evaporation. Floodplains and riparian wetlands 

are situated along stream and river banks where they are able to intercept lateral runoff 

from uplands. Floodplains also receive overbank flood water when rivers exceed bankfull 

levels (Mitsch & Gosselink, 2000). These definitions provide a brief overview of the diver­

sity of wetlands that exist. Sub-types of wetlands lie within each of these categories whose 

definitions are a function of dominant vegetation type, ultimately driven by climate. 

Wetlands are commonly viewed as transitional environments between terrestrial and 

aquatic ecosystems, filtering or buffering downstream ecosystems and improving water qual­

ity. Wetlands also act as carbon sinks storing organic matter, support a diverse array of 

biota, and mitigate flood events (Hemond, 1988; Zedler & Kercher, 2005). Their ability to 

enhance sedimentation, trap nutrients, metals and contaminants, and improve water quality 

has also been recognized as an important tool for the management of wastewater (Srivastava 

et al., 2008) and agricultural runoff (Owens et al., 2007). However, the function(s) that a 

wetland is able to support is dependent on wetland type, and more importantly, its position 

in a watershed (Johnston et al., 1990). 

1.2.2 Water flow and sediment storage 

The movement, or advective-dispersive transport, of particulate matter through wetlands is 

largely a function of water flow, and the presence (or absence) of aquatic vegetation (Huang 

et al., 2008). Wetlands that are characterized by inundation or ponding typically promote a 

sediment trapping or buffering function (Johnston, 1991; Hupp & Bazemore, 1993) as these 

low-lying regions significantly reduce water velocity and facilitate sedimentation (Hemond, 
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1988). An urban wetland studied by Brown (1985) was found to reduce peak discharge at 

its outlet by 12-70% compared to the inlet. In the same study, the author also observed that 

sedimentation rates were enhanced during peak discharge events, especially those associated 

with early-May to late-June storms when 56-70% reductions in peak discharge were recorded. 

This is consistent with the findings of Johnston et al. (1990) who observed that wetlands 

were associated with higher concentrations of suspended solids during periods of high flow. 

1.2.3 Hydrophytic macrophytes 

According to Manning's equation, mean flow velocity (in main channels with low slopes) is 

inversely proportional to surface roughness (also known as Manning's roughness coefficient), 

and is largely controlled by the presence or absence of vegetation, which is also influenced 

by slope and substrate type. Hydrophytic macrophytes, or flood-tolerant plants, play an 

important role in water flow dynamics and sedimentation in wetlands (Clarke, 2002). Water 

flow reduction and sediment accumulation by macrophytes are dependent on vegetation 

density and type (Dawson, 1978). Petticrew k, Kalff (1992) observed that as leaf area 

index (LAI) increased, water velocity near the lake bed decreased. Leaf pattern (Clarke, 

2002; Huang et al., 2008), plant morphology, as well as shoot movements and flexibility 

(Sand-Jensen & Pedersen, 1999) can also result in small-scale velocity variations which can 

be accompanied by a decrease in turbulence. In addition to significantly reducing water 

velocity (Sand-Jensen & Pedersen, 1999), dense stands of vegetation prevent bed scouring 

and sediment resuspension (Sand-Jensen & Mebus, 1996; Braskerud, 2001). Although these 

studies focused on lake environments, it is likely that hydrophytic macrophytes would have 

the same effect on water velocity, and sediment trapping in wetlands. 

Flow modification as a result of wetland vegetation is also linked to the trapping of fine 

organic and inorganic particles (Clarke, 2002). LAI was found to explain 74% of the variation 

in the percent of clay accumulating below macrophyte stands in lake bottoms (Petticrew & 

Kalff, 1992). This suggests that an increase in the density of macrophytes would facilitate the 



Chapter 1. Literature Review 6 

deposition and retention of fine sediments. The reconstruction of historical sedimentation 

rates in several lakes revealed that lakes containing macrophytes had greater accumulations of 

sediment over time compared to those which were relatively macrophyte-free (Brenner et al., 

1999). However, the role of macrophyte stands in sediment retention is often temporary, as 

their predominant function is to stabilize the sediment bed through the binding effects of 

their roots (Sand-Jensen, 1998). Similarly, Phillips (2003) suggested that most wetlands are 

temporary storage sites of sediment to buffer the output to downstream waterbodies. 

1.3 Sediment transfer 

Sediment transfer is a two stage process that involves sediment production or mobilization, 

and subsequently sediment transport by a medium capable of entraining the sediment par­

ticles. Firstly, sediment production requires material to be eroded from a terrestrial surface. 

Surface erosion may occur as a result of bank erosion, raindrop erosion, sheetwash, soil creep, 

or rapid mass movement (Pye, 1994; Church & Eaton, 2001). Several local and regional fac­

tors moderate hillslope erosion, including lithology, vegetation cover, availability of rock and 

soil, slope length, steepness and roughness (Pye, 1994). Second, sediment transport typi­

cally occurs during storm events when a sufficient volume of water is present to overcome 

the shear stress acting on a particle (Pye, 1994). In an undisturbed forested environment, 

surface erosion due to running water is rare because of interception by vegetation and subse­

quent infiltration (Lehre, 1982; Swanson et al., 1982). However, the intensity and frequency 

of weather events also plays an important role in controlling rates of erosion. Blais et al. 

(1998) found that lake sedimentation rates decreased an average of 80% during a year when 

annual runoff experienced a 63% reduction. 

Mobilized sediment eventually enters either dispersive or channelized pathways (Bracken 

& Croke, 2007). The ability of these pathways to transport sediment is a function of stream 

power (i.e. stream volume and velocity), and particle size. Dispersive pathways are associated 

with overland flow and are characterized by diffuse connectivity. These pathways exhibit a 
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branching structure and tend to lose volume and power as they travel down a hillslope. As 

a result, they lose the ability to transport greater volumes of sediment, and larger particles 

such as sand and gravel. Furthermore, due to their systematic branching and limited power, 

there is a low probability of these pathways reaching streams via overland flow (Church & 

Eaton, 2001). On the other hand, channelized pathways are typically longer (Croke et al., 

2005), accumulate water with distance, and are more likely to be directly connected to the 

fluvial system (Church & Eaton, 2001). 

The "sediment delivery ratio" relates the amount of sediment delivered to the catchment 

outlet or the sediment yield (t km-2 y_1) to the gross erosion in the basin (t km"2 y_1) 

(Walling, 1983). In general, sediment yield has a positive relationship with slope angle as 

the degree of inclination provides the potential energy for runoff (Pye, 1994). For smaller 

catchment sizes the relationship between slope angle and delivery is significant, however, it 

tends to change with increasing catchment size. Larger basins provide more opportunities for 

temporary sediment storage as compared to smaller, less complex catchments. Furthermore, 

hillslopes in larger basins have been found to be decoupled from the fluvial network which 

again interrupts sediment delivery to the catchment outlet (Phillips, 1995). Other factors 

affecting this relationship include sediment source characteristics, drainage patterns, channel 

conditions, vegetation cover, and land use (for a comprehensive review see de Vente, 2007). 

1.4 Sediment deposition and storage 

The deposition and storage of sediment in aquatic environments depends on the properties 

of both the depositional environment and the material being transported. More specifically, 

Stokes' Law states that the deposition of a sediment particle strongly depends on the size of 

the sediment particle and the viscosity of the transport medium (Pye, 1994); however, this 

relationship only holds true for low Reynolds numbers (i.e. low turbulence). As the size of 

a sediment particle increases, the energy required to keep it suspended in the water column 

also increases. Therefore, as the energy of the system decreases (i.e. velocity decreases), its 
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ability to support larger particles will diminish resulting in sediment sorting (Powell, 1998). 

This relationship assumes that sediment particles are transported as discrete particles and 

does not account for the behaviour of aggregated particles in a water column. Aggregated or 

flocculated particles (floes) are comprised of organic and inorganic material which are bound 

together by surface adhesion. Floes have varied sizes, shapes and densities, and as a result, 

different settling velocities from their discrete counterparts (Droppo et al., 1997). Although 

the formation and transportation of floes have been found to have a significant impact on 

the deposition of both organic and inorganic materials, they will not be considered in the 

present study. Compaction and degradation of the material in the sediment cores would 

likely not provide an accurate representation of the material at the time of deposition. 

With respect to the characteristics of a depositional environment, sediment storage oc­

curs when the energy of the system is low enough to facilitate deposition, and where there 

is minimal re-suspension as a result of wave action and bed scouring. Lakes typically redis­

tribute sediment from shallower areas towards the deepest point of the basin (Davis, 1968, 

1973), also known as "sediment focusing". Consequently, lakes often provide excellent en­

vironments for reconstructing historical sedimentation rates and sediment yields. Wetlands 

have also been recognized as areas of sediment deposition (Johnston, 1991), however, storage 

in these systems is often temporary. Wetlands regulate the movement of sediment through 

the watershed and buffer downstream environments against environmental change (Phillips, 

1989, 2003). 

1.5 Disturbance-response regimes 

The processes of sediment transport and delivery under natural and disturbance (e.g. forestry 

practices) conditions have been reviewed above. As well, the quantity of sediment delivered 

to the catchment outlet was considered in terms of the sediment delivery ratio, and catchment 

size and complexity. However, the timing of sediment delivery, and the concept of equilibrium 

states, have not yet been discussed. Viles et al. (2008) proposed a conceptual model for 
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a generalized geomorphological disturbance response of a system (Fig. 1.1). The model 

illustrates that there is often a lag between the timing of the disturbance, or "forcing", and 

the observed response. Lags in the response have been attributed by Viles et al. (2008) to 

be the result of stabilizing effects, or characteristics and/or processes in the catchment that 

limit erosion and/or increase sediment storage. 

Response time Response time 

Rx Rx 
Ra Ra Ra 

KM c 

1 
1 0> 

Forcings 

Time 

Figure 1.1: Conceptual diagram of a geomorphological disturbance, where: Ra = reaction 
time; and, Rx = relaxation time. The sum of Ra and Rx equals the response 
time. Diagram from Viles et al. (2008). 

In the conceptual model by Viles et al. (2008) (Fig. 1.1), forcings are intended to represent 

any disturbance, including storm events, climate change, and human activities. Figure 1.2 

(originally from Knox, 1972) has been broken down into several components to illustrate a 

possible biogeomorphological response to a climate forcing (i.e. fluctuating precipitation). 

The increased growth of vegetation, as a result of increased precipitation, has an inverse 

relationship with erosion potential as vegetation growth provides a stabilizing effect by main­

taining a strong soil structure through the binding effects of the root network. This biological 

response thus translates into a negative feedback on sediment delivery by mitigating hillslope 

erosion. A similar response has been observed in field studies where despite the presence of 

active logging, water yield did not increase, and was attributed to the rapid reestablishment 
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of vegetation (Paterson et al., 1998). 
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Figure 1.2: Conceptual diagram of a biogeomorphological response to precipitation. Di­
agram from Viles et al. (2008) (adapted from original by Knox, 1972). 

The previous example has shown how stabilizing effects can produce either a lag or 

dampen the response to a catchment disturbance. However, their ability to do so also depends 

on the climate regime, the magnitude of the disturbance, and the cumulative impacts of 

destabilizing effects (i.e. processes that promote erosion). Forcings can also produce alternate 

stable states wherein the relaxation phase does not return the system to its previous condition 

and a new level of equilibrium is obtained (Owens et al., 2010). State changes in terms of 

sediment delivery can relate to either the quantity or quality of the sediment, or both. 

While the quality of the sediment (i.e. presence of contaminants or elevated concentrations 

of metals) is typically influenced by human activities (e.g. mining), sediment quantity can 

be influenced by both human activities and hydroclimatic processes. In a review comparing 

the effects of landscape disturbance and climate change on erosion, Slaymaker (2001) argued 

that, with the exception of the polar regions, human land use activities have a much greater 

impact on global erosion rates than climate change. Bracken & Croke (2007), however, 

suggested that local climate conditions and storm events provide the conditions required to 
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generate runoff, which in turn mobilize and deliver sediments to downstream waterbodies. 

1.6 Forestry practices 

The goal of the present study is to evaluate the sediment trapping function in wetlands 

using historical forestry practices as an indicator of disturbance. Therefore, it is important 

to understand how forestry practices impact forest hydrologic and geomorphic processes. 

The following provides a brief overview of forestry practices and their effects on water yield 

and sediment production. 

Undisturbed forests are vital elements in the water cycle as they intercept rainfall, pro­

mote infiltration, and contribute water vapour to the atmosphere through evapotranspira-

tion. Spittlehouse (2006a) estimated that 60 to 65% less rainfall reaches river systems when a 

tree canopy is effective in intercepting rainfall. It has been well documented that the removal 

of forest cover is strongly related to increases in water yield (Harr et al., 1982; Keppeler &; 

Ziemer, 1990; Stednick, 1996), although this relationship tends to be seasonal and is strongly 

influenced by precipitation (Bosch & Hewlett, 1982). 

The term "forestry practices" is used here to include forest harvest as well as other 

associated activities. Forestry roads are known to cause soil compaction and reduced water 

infiltration (Croke et al., 1999), both of which alter the volume and distribution of overland 

flow (Pike & Scherer, 2003), and change the magnitude and timing of peak flows following 

storm events. Jones & Grant (1996) found that a 25% patch-cut watershed in the western 

Cascades, Oregon, USA, with 6% road cover increased peak flows to the same extent as a 

clearcut watershed. Additionally, peak flows remained 25% greater than before logging and 

road construction over the following 25 years. 

Several studies have identified forestry roads as a major source of fine-grained sediment 

from logged catchments (Reid & Dunne, 1984). A detailed geochemical analysis of lake sed­

iment in central British Columbia by Christie & Fletcher (1999) revealed that the sediment 

did not originate from cut blocks, but instead from forestry roads and culverts. Cut blocks 



Chapter 1. Literature Review 12 

have also been reported to increase sediment transfer, however, significant contributions of 

sediment are more likely to occur as a result of subsequent mass wasting events. Generally, 

these occur several years post-logging when root networks and other organic debris have 

decomposed. Furthermore, the impact that logging and roads have on fine-grained sediment 

production is influenced by landscape position (Tague & Band, 2001), the degree of con­

nectedness to the stream network, and the importance of the road within the overall road 

network (Sheridan & Noske, 2007). 

Ditches and culverts installed under roads are common features in a forest road network 

and are used to prevent the flooding and erosion of roadways, and to channel the flow of 

existing streams. As a result, drainage systems also provide direct connections between the 

road network and fluvial pathways (Croke & Mockler, 2001). Moreover, road construction 

coupled with the presence of culverts tends to produce channelized pathways which increases 

the drainage density of the catchment (Wemple &; Jones, 1996). This suggests that ditches 

and culverts would also increase the amount of fine-grained sediment mobilized, and the 

probability of it reaching the fluvial system. 

1.7 Climate 

In addition to anthropogenic land disturbances, climate has been shown to influence sedi­

ment erosion and delivery (Walling, 1999). Therefore, it is important to consider the effects 

of varying climatic conditions on sediment retention in wetlands in addition to the effects 

of historical forestry practices. Event-based processes, such as rainfall and spring freshet 

can increase the potential for sediment erosion and delivery to occur. During stream mon­

itoring of Fitzsimmons Creek in southwestern British Columbia, Canada, Menounos et al. 

(2006) found that the highest measured suspended sediment concentration occurred dur­

ing a rainfall-driven bank-full discharge event. From a paleoenvironmental reconstruction 

perspective, intense rainfall events or a fast spring freshet could increase the deposition of 

sediment in downstream wetlands and lakes resulting in greater sedimentation rates for that 
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time period. Alternatively, large decreases in rainfall can also have an impact on sedimenta­

tion rates which have been shown to drastically decline during years of little rainfall (Blais 

et al., 1998). 

The magnitude and frequency of precipitation events is often the result of larger scale 

processes, such as the El Nino/La Nina-Southern Oscillation (ENSO). These processes typ­

ically have a longer periodicity and affect a larger area or region. For example, ENSO is 

a quasiperiodic climate process that occurs approximately every five years. Throughout 

most of North America, El Nino results in warmer and drier winters and summers, while 

La Nina produces cooler and wetter winters and summers (Ropelewski & Halpert, 1986). 

With respect to sediment erosion and delivery, larger scale climatic processes can enhance 

or subdue the intensity and/or the timing of rainfall events or the spring freshet. Dery et al. 

(2009) found that a phase change to a cool phase in Arctic Oscillation resulted in increased 

stream discharge in North American rivers. An intensification of the hydrological regime 

could provide the necessary energy to increase sediment erosion on the landscape, as well as 

increase the delivery of sediment to the stream network. 

1.8 Research questions and objectives 

The following research questions and objectives focus on evaluating the sediment reten­

tion function of two wetland buffers in the central interior of British Columbia. To evalu­

ate this wetland function, wetland sedimentation rates, as well as the sedimentation rates 

of their downstream lakes, were determined using paleoenvironmental reconstruction tech­

niques. The goal of this thesis was to establish if the selected wetland buffers provided the 

downstream lake with a sediment buffering function, and whether or not that function was 

compromised by the disturbance caused by upstream historical forestry activities. 
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1.8.1 Research question 1 

1.8.1.1 Wetland and lake sedimentation rates 

The first set of research questions relate to sediment storage in wetland buffers. Do wetland 

sedimentation rates increase after the onset of forestry activities? Also, are sedimentation 

rates in downstream lakes affected by forestry activities? 

These questions address the sediment buffering function of the wetland and its capacity to 

function "normally" when its contributing catchment area is disturbed by forestry activities. 

Assuming that the majority of sediment-bearing runoff that reaches the lake must pass 

through the wetland first, then any increase in lake sedimentation rates would suggest that 

either the wetland does not perform a sediment buffering function, or that the capacity of 

that function has been exceeded. The objective was then to calculate sedimentation rates 

for both the wetland and the lake to characterize baseline sedimentation rates against which 

post-harvest rates could be compared. 

1.8.1.2 Paleoenvironmental reconstruction 

One aim of paleoenvironmental reconstruction is to develop a historical dataset consisting of 

several lines of evidence which guide the interpretation of a system and its changes over time. 

One of the advantages of using this approach is that a long-term record can be produced 

for a system for which no monitoring data exist. The natural variability of the system (e.g. 

lake, wetland) along with responses to catchment disturbances can thus be reconstructed. 

Oldfield (1977) developed a conceptual model identifying lakes as ideal environments for 

reconstructing past conditions. While lakes are not closed environments, they have been 

shown to focus sediment toward the deepest areas, continuously creating an archive of the 

material delivered from hillslopes, river channels and the atmosphere, and of the material and 

organisms produced in situ. Retrieval of an intact sediment profile from the deepest point 

of a lake should therefore provide a long-term record of the conditions in the surrounding 
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catchment area and the lake itself. Other environments, such as wetlands and floodplains, 

have since been recognized as being able to provide a similar record of long-term change; 

however, other features and processes (e.g. vegetation, water level) affect the temporal and 

spatial distribution of sediment in these systems. 

The collection and interpretation of the long-term dataset require the measurement of 

proxy indicators which, as mentioned earlier, allow inferences to be made about historical 

environmental conditions based on current knowledge of these indicators, and the processes 

that control their behaviour in a particular environment (Smol, 2008, 2010). The selec­

tion of a set of proxy indicators should be driven by the research questions and objectives. 

Commonly used proxies include: bulk physical characteristics; mineral magnetic properties; 

grain size and shape; geochemical and nutrient concentrations; radionuclides; isotopic trac­

ers; and, remnants of organisms which are not susceptible to physical breakage or chemical 

dissolution (Smol, 2008). In order to understand the changes of these measurements in a 

temporal context, core chronologies must be developed. Core chronologies can be developed 

using radionuclide activities found in the sediment; most frequently used is the unsupported 

component of 210Pb. 

The development of a dataset using paleoenvironmental reconstruction techniques is a 

powerful tool that can provide information on long-term environmental change, as well the 

impacts of human activities on natural processes (e.g. sediment delivery), and environmental 

quality. A long-term perspective is especially important when attempting to establish guide­

lines for restoration projects (Foster et al., 2011), as guidelines based on recent monitoring 

data may be inaccurate due to recent disturbances, cumulative effects, and the establishment 

of alternate stable states (Owens et al., 2010). 
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1.8.2 Research question 2 

1.8.2.1 Changes in sediment provenance 

The second research question pertains to the source of the sediment being delivered to the 

wetlands and lakes. Do the relative contributions of sediment source materials identified 

within each catchment area change as a result of forestry activities? 

If sedimentation rates in either the wetland, lake, or both are altered, then it is important 

to evaluate a suite of alternate, potential drivers of that change, since it may not be related 

to forestry practices. Climatic factors, such as precipitation, are known to play a significant 

role in sediment delivery, sometimes having a larger impact on sedimentation rates than 

landscape disturbances (Blais et al., 1998). One would suspect that if forestry practices 

were driving increased sedimentation rates, then an increase in the relative proportion of 

subsurface soil material would occur as a result of erosion of surface soil exposing underlying 

subsurface materials (Thompson et al., 1975). Similarly, the construction and use of roads 

would increase the delivery of subsurface sediment. By identifying and characterizing the 

sediment sources in the catchment, it is then possible to determine the relative contribution 

of each to the wetland and lake, and how they change over time relative to the timing of the 

disturbance. However, this assumes that the fluxes of sediment from sites of intermediate 

storage do not change. 

1.8.2.2 Sediment source tracing 

Sediment source tracing has been used in many studies to identify the impact of different land 

use types on contemporary suspended sediment loads (Walling & Woodward, 1995; Collins 

et al., 1998). Long-term studies have also been carried out which used sediment stored within 

depositional environments, such as floodplains (Owens et al., 1999), to reconstruct historical 

changes in sediment sources over time. Figure 1.3 illustrates the main principles on which 

the sediment source tracing process is founded. The diagram has been adapted to match the 
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research questions raised by this study. 
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Figure 1.3: A conceptual diagram outlining the sediment fingerprinting approach. 
Adapted from Collins & Walling (2002) to this wetland focus. 

The process of sediment source tracing requires that sediment source types can be dif­

ferentiated according to their fingerprint properties. A simple, and commonly used set of 

source groups consists of: surface soil material; subsurface soil material; and, channel bank 

material. Where well-defined land use activities are present in the catchment (e.g. agricul­

ture, mining, urban areas and roads), many studies rely upon an a priori selection of source 

groups. Others have used statistical methods to verify the accuracy of the selected source 

groups with respect to the selected fingerprint properties (Hatfield k, Maher, 2009). It is also 

important to consider the underlying bedrock, and if source areas extend beyond a single 

bedrock type as this could impact the geochemical and mineralogical composition of the 

eroded sediment (Walling & Woodward, 1995). 

Various fingerprint properties have been used to characterize source groups, including soil 

geochemistry (Foster, 1994), radionuclides (Walling et al., 1993), nutrients (Walling et al., 

2008), mineral magnetic properties (Yu & Oldfield, 1989), and colour (Martmez-Carreras 

et al., 2010). The selection of a set of properties should be driven by the characteristics 



Chapter 1. Literature Review 18 

of the catchment(s) being studied, surrounding land use types, and ultimately the research 

questions being asked. A composite fingerprint is then statistically selected from the full 

set of fingerprint properties. Ideally, the final composite fingerprint consists of several pa­

rameters from more than one property type (Collins & Walling, 2002). Once an appropriate 

composite fingerprint has been been identified, a multivariate unmixing model can be used 

to calculate relative contributions of each source material. 

If a paleoenvironmental approach is being taken then the nature of the properties must 

also be considered in concert with the characteristics of the depositional environment. The 

challenge with reconstructing sediment source contributions over time is that fingerprint 

properties behave differently after deposition than when suspended in a water column (Owens 

et al., 1999). Post-depositional changes (or diagenesis) such as decomposition, physical 

mixing and bioturbation alter the nature of the fingerprint properties and their vertical 

distribution in the sediment profile. It is therefore necessary to select properties which behave 

conservatively not only during transport, but also in a depositional environment (Motha 

et al., 2002). Physical, mineral magnetic, radionuclide and geochemical properties tend to be 

conservative in a sedimentary environment, and have been widely used in both contemporary 

and historical studies. However, due to sorting effects during transport differences in grain 

size need to be accounted for by targeting a specific size fraction (e.g. <63 nm) for analysis 

(Carter et al., 2003; Foster et al., 2008), and by including a particle size correction in the 

unmixing model (Collins et al., 1997). 

1.9 Thesis organization 

The chapters of this thesis on the effects of historical forestry practices and climate on the sed­

iment retention function of two wetlands in the central interior of British Columbia have been 

organized according to a traditional thesis style which follows the scientific method. Chap­

ter two describes the study sites and methodology used to address the research questions. 

Chapters three and four summarize the results from the paleoenvironmental reconstruction 
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and sediment source tracing procedures, respectively. Chapter five provides a discussion on 

each of the study sites by interpreting the results in chapters three and four simultaneously. 

Study limitations and future research directions are given at the end of chapter five. Finally, 

a conclusion is given in chapter six, along with management implications and final remarks. 
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Chapter 2 

Methodology 

2.1 Study area 

Located in the Cariboo Mountains (mean elevation of 1,375 m above sea level) in the cen­

tral interior of British Columbia (Fig. 2.1), the Quesnel River Basin is composed of three 

watersheds: the Quesnel River Watershed, the Cariboo River Watershed, and the Horsefly 

River Watershed. All three watersheds have a combined area of approximately 12,000 km2. 

The land area within the basin has been used historically and at present for various resource 

extraction activities including forestry, agriculture, ranching and mining. 

The two selected study wetlands were chosen not only because their catchments have a 

history of forestry practices, but also because they border another depositional environment 

(i.e. a lake). Since the inflows of these lakes are surrounded by wetlands, they may have 

been provided with a buffering function which would have influenced the amount of sediment 

delivered to them. Since the project aims to establish the ability of the two study wetlands 

to promote sedimentation under disturbance conditions, it was necessary to also evaluate 

lake sedimentation rates over time. 

2.1.1 Boswell Lake catchment 

The Boswell Lake catchment (52°32'25"N, 121°27'6"W; see Figure 2.2) is situated in the 

Quesnel River Watershed, and has an area of 2.1 km2. According to the Biogeoclimatic 

Ecosytem Classification (BEC) System, the catchment is located in an interior cedar hemlock 

zone characterized by a wet and cool climate (British Columbia Ministry of Forests and 

Range, 2008). Mean annual temperature for this BEC zone ranges from 2 to 8.7°C, mean 
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Figure 2.1: Map of the province of British Columbia. The rectangle indicates the ap­
proximate location of the Quesnel River Basin which is composed of three 
watersheds: the Cariboo River Watershed; the Quesnel River Watershed; 
and, the Horsefly River Watershed. 

annual precipitation is 500-1200 mm, 25-50% of which falls as snow (Ketcheson et al., n.d.). 

The local bedrock geology consists of basaltic volcanic rocks from the Upper TYiassic period 

(Massey et al., 2004). The maximum and average slopes of the catchment are 38° and 12°, 

respectively. 

The wetland bordering Boswell Lake (herein referred to as Boswell wetland) is situated 

at the inflow of the lake, and has a surface area of 0.020 km2 and a maximum width of 

approximately 85 m (measured from the wetland-land border to the lake edge). Four channels 

cross the wetland border flowing in a south to north direction from the deforested areas to 

Boswell Lake, and meandering through the wetland is low. Two of the four channels were 

identified as "major" channels, and the other two were labelled as "minor". based on their 

size, degree of inundation, and connectivity to the logged slopes. The two major channels 

were flowing during visits to the lake in the late spring, summer and fall, while flow in the 

minor channels was only observed in the spring and not during any other visit to the study 

site. Water depths in the major channels ranged from 10 to 65 cm with increasing depths 

downstream. The dominant vegetation types in the wetland and the wetland channels are 
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sedges (Carex spp.) and Yellow Water Lilies (Nuphar variegata). Sedges form the bulk of 

the vegetation in the wetland and were primarily observed closest to the lake edge where the 

wetland channels became diffuse. Based on these characteristics the Boswell wetland has 

been identified as a fen (MacKenzie & Moran, 2004). 

Forestry activities occurred in the catchment during two separate time periods. During 

the first period from 1960 to 1975, approximately 42% (0.873 km2) of the catchment was 

clearcut. Prom 1982 until 2008 clearcut logging affected another 15% (0.324 km2) of the 

catchment. Currently a 1.4 km active gravel road crosses through the catchment on the 

north side of Boswell Lake. A 14.4 km network of deactivated dirt roads associated with 

the first logging period (1960-1975) also exists on the south side of Boswell Lake. Field 

observations confirmed that these dirt roads are no longer in use as there is substantial 

vegetative growth along these roadways. 

2.1.2 Viewland Lake catchment 

The Viewland Lake catchment (52°25'44"N, 121°6'57"W; see Figure 2.3) is located in the 

Horsefly River Watershed, and has an area of 2.5 km2. It is located in an interior cedar 

hemlock zone having a wet and cool climate (British Columbia Ministry of Forests and 

Range, 2008). Mean annual temperature ranges from 2 to 8.7°C, mean annual precipitation 

is 500-1200 mm, 25-50% of which falls as snow (Ketcheson et al., n.d.). The local bedrock 

geology is composed of two groups; sedimentary rocks from the mid-to-Upper Triassic period, 

and basaltic volcanic rocks from the Upper Triassic period (Massey et al., 2004). Maximum 

and average slopes of the catchment are 35° and 7°, respectively. The Viewland Lake 

catchment area drains into three lakes all connected by a single channel running between 

them from north to south. The top two lakes are each fed by a channel that originates from 

the cutblock. 

The wetland bordering Viewland Lake (herein referred to as Viewland wetland) runs 

along the entire east side of the lake chain, and has a surface area of 0.074 km2 and a 
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width of approximately 30 m (measured from the wetland-land border to the lake edge). 

During site visits in late summer and autumn it was observed that the channel through the 

Viewland wetland was not flowing. It is currently unknown whether or not this channel 

experiences any degree of flooding during the year. Channel meandering was also found to 

be relatively low. Sedges were observed to be the dominant vegetation type in the wetland 

channel. Similar to Boswell wetland, sedges were densest near the lake edge. Yellow water 

lilies were also present, however, they only occurred near the lake edge where flooding was 

present. Based on these characteristics the Viewland wetland has been identified as a fen 

(MacKenzie Si Moran, 2004). 

Forestry practices in the Viewland Lake catchment occurred only in 1983 resulting in 

deforestation of 58% of the catchment. A deactivated unpaved road is present just east of 

Viewland Lake which crosses over the channel that flows into the lake. As the road has not 

yet been decommissioned, a culvert from the inital construction of the road still remains in 

place. Total road length in the Viewland Lake catchment is approximately 6.9 km. 

Morphometric characteristics of both Boswell Lake and Viewland Lake can be found in 

Table 2.1. Their bathymetric maps are presented in Appendix A. 

Table 2.1: Morphometric characteristics of Boswell Lake and Viewland Lake. Information 
for Boswell Lake was taken from The Angler's Atlas (2010). 

Measurement Boswell Lake Viewland Lake 

Catchment:Lake Area 0.06 0.03 
Surface Area (km2) 0.128 0.073 
Volume (m3) 148,000 219,030 
Mean depth (m) 1.2 3.0 
Maximum depth (m) 2.5 8.2 
Perimeter (m) 1850 1468 
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Figure 2.2: Map of the Boswell Lake catchment. Forestry practices were active in the 
catchment during two time periods: A) 1960-1975; and B) 1982-2008. Inset: 
Outline of the Quesnel River Watershed. The star represents the approximate 
location of the Boswell Lake catchment in the watershed. 

2.2 Sample collection and preparation 

2.2.1 Wetland coring 

Initially Boswell Lake was intended to be the primary study site with Viewland Lake acting 

as a secondary study site in the event that the cores taken from the primary site did not 

produce a useful core chronology. As a result, a more detailed sampling campaign was 

undertaken at Boswell Lake and wetland, and only one of the three lakes in the Viewland 

catchment was selected for coring. The middle lake was chosen because its stream drains a 

larger area that was impacted by forestry practices (see Fig. 2.3), and it was thought that a 

stronger logging signal may be observed in the middle lake. 

Six sampling locations were identified for Boswell wetland and one for Viewland wetland 

from which a single core was taken (Fig. 2.4(a)). Since wetlands typically do not possess a 

single deepest point where sediment focusing will occur (unlike many lakes), it was necessary 



Chapter 2. Methodology 25 

121*8*0 "W l21a7VW 121WW 121'5D"W 121WW 

62"26"0"N-

Studysite 
Contour 
Stream 

h::!^ VSWand 
I I Catchment boundary 

$$$ L°09«' 

Figure 2.3: Map of the Viewland Lake catchment. Forestry practices were active in the 
catchment in 1983 (A). Inset: Outline of the Horsefly River Watershed. The 
star represents the approximate location of the Viewland Lake catchment in 
the watershed. 

to identify areas in the wetland which, based on physical characteristics such as inundation 

and channelization, likely experienced the greatest sedimentation rates. Four channels were 

identified in Boswell wetland, and one in Viewland wetland, from which the sediment cores 

were taken. As both wetlands were not completely inundated, sediment transport and de­

position was assumed to have occurred primarily along these pathways. This assumption 

is consistent with the observations of Craft & Casey (2000) who found that "open" (e.g. 

riparian and floodplain) wetlands had greater sediment accumulation rates than "closed" 

(e.g. depressional) wetlands; where open and closed refer to the degree of connectivity to the 

hillslope and surface water bodies. 

At Boswell wetland, sampling areas were selected near the wetland inflow and outflow 

to characterize the sedimentation rates along each of the major channels (i.e. four sampling 

locations in total). Based on the characteristics of the two minor channels, described above, 

these pathways were considered to be relatively less important for sediment delivery and these 
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two sampling locations were not analyzed in the current study. In the case of Viewland 

wetland, only one sampling location was selected as only one channel exists between the 

deforested area and the middle lake (Fig. 2.4(b)). Core lengths were dependent on the 

characteristics of the sediment at each site and ranged between 0.25 and 1.0 m. Refer to 

Figure 2.4 for a map of the sampling locations at both sites. All wetland coring took place 

during July and August 2009. 

As this study is primarily concerned with contemporary sedimentation rates it was crucial 

to obtain profiles with intact upper sediment layers. It was decided that the open-barrel 

coring method was therefore more appropriate than other methods (i.e. Russian Peat Corer) 

as it minimally disturbs the top of the sediment profile (Glew, 2001). Using 2 m lengths of 

PVC piping, 7.6 cm in diameter, two 3.2 cm holes were drilled approximately 2.5 cm from 

the top of the PVC pipe. A metal rod 2.5 cm in diameter and 50 cm long was fit through 

the top holes to provide a handle to assist in core removal (Fig. 2.5). This corer design was 

adapted from Reinhardt et al. (2000). 

2.2.2 Lake coring 

For each of the two study sites, one core was retrieved from the deepest point of the lake 

using a percussion corer (Reasoner, 1993). A core catcher constructed from stove pipe metal 

was fixed in the bottom of the core tube to prevent captured sediments from being lost 

during retrieval. An additional short core was taken using an Ekman dredge to ensure that 

an undisturbed sample of the water-surface interface was taken. Coring at Boswell Lake 

occurred in October 2009. Since Viewland Lake does not have direct vehicle access, cores 

were retrieved in March 2010 when there was sufficient ice cover to provide a stable coring 

platform. 

All lake and wetland cores were transported back to UNBC where they were stored at 

a temperature of approximately 4°C to prevent decomposition of organic matter and any 

changes that may be associated with exposing anoxic soil to oxidizing conditions. Cores 
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(a) Boswell Lake and wetland 

• Processed core 

(b) Viewland Lake and wetland 

Figure 2.4: (a) Boswell Lake and (b) Viewland Lake and wetland coring locations. Codes 
containing a 'D' indicate an open barrel core, 'P' refers to a percussion core, 
and those with an 'E' denote a core taken with an Ekman dredge. Note: 
The location of the stream containing Boswell wetland core BL-D13 was not 
shown in original spatial dataset. This line feature was created by extracting 
point locations from a Google Earth image of the catchment. 
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Figure 2.5: Diagram of the open barrel corer used to retrieve wetland sediment cores. 

that were selected for further analysis were cut length-wise, photographed and logged prior 

to slicing the sediment at 1 cm intervals. 

2.2.3 Source materials 

To assess if forestry practices resulted in altered sediment source contributions and changes in 

the dominant sediment sources, sediment samples were collected from six source types: har­

vested surface soil material; harvested subsurface soil material; forested surface soil material; 

forested subsurface soil material; road surface soil material; and channel bank material. Ap­

proximately 5-8 samples were taken for each source type and a GPS coordinate was recorded 

for each sampling location. Samples were taken with a stainless steel trowel which was rinsed 

with distilled water and acetone between each sample to minimize cross-contamination. Each 

sample was itself a composite of 3-5 subsamples collected within an area of approximately 

5 m by 5 m to account for any local spatial variability. 

All source materials were air dried prior to laboratory analysis. Samples that contained 

moisture after air drying were placed in an oven at 60 °C until dry. Source materials were 

then disaggregated and sieved to <63 /im. Analysis of this particle size fraction was intended 

to minimize the differences in the particle size composition between core sediment and source 
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material (Carter et al., 2003; Motha, 2003) as most of the lake and wetland sediment was 

<63 fim. 

2.3 Radionuclides and core chronology 

2.3.1 Origin of lead-210 

Reconstructing sediment chronologies over the last 100-150 years requires the use of a ra­

dionuclide which has a relatively fast decay rate. Lead-210 (210Pb) has a half-life of 22.26 

years and is ubquitous in the environment as a result of the natural decay of 238U in bedrock 

(Binford, 1990). Following the decay of 238U to 226Ra, 226Ra then decays to 222Rn. 222Rn 

forms a gas which escapes to the atmosphere, and through several additional decays, becomes 

210Pb. In order for 210Pb to fall out of the atmosphere it needs to adsorb onto atmospheric 

particulates and/or water droplets which are typically delivered to land and water surfaces 

via precipitation. In the water column 210Pb binds to fine particles and organic material and 

is deposited on the bottom of the water body (e.g. ocean, lake, river, wetland). This fraction 

of 210Pb is referred to as unsupported 210Pb. 

222Rn is also produced in the soil which decays through the same decay series result­

ing in the in situ production of 210Pb. This is known as supported 210Pb (Binford, 1990; 

Noller, 2000). Unsupported 210Pb is calculated as the difference between the total 210Pb and 

estimates of the supported component. 

2.3.2 Lead-210 dating models 

Several models exist that utilize the unsupported fraction of 210Pb to assign chronologies 

to sediment core profiles. Most commonly used are the Constant Initial Concentration 

(CIC) and Constant Rate of Supply (CRS) models. The CIC model assumes that the 

initial concentration of unsupported 210Pb remains constant over the time that unsupported 

210Pb is measurable (Turner & Delorme, 1996). As a result, the log transformation of 
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unsupported 210Pb activities should yield a linear decrease over depth. When the CIC model 

is applied to a non-monotonic decay curve, resultant core chronologies include one or more 

time inversions. These occur because other processes acting on the sediment profile have 

impacted unsupported 210Pb activities leading to an imperfect decay curve. For example, 

Appleby et al. (1988) found that due to organic matter degradation and loss over time, the 

CIC model was not suitable for peat cores. Sediment dates (t) can be determined with the 

CIC model using: 

< " >  

where A is the radioactive decay constant for 210Pb, Cx (Bq kg-1) is the activity of unsup­

ported 210Pb at depth x\ and C0 (Bq kg-1) is the activity at the surface. 

The CRS model assumes that the absolute flux rate of 210Pb remains constant, regardless 

of background sedimentation, such that higher rates of background sedimentation will lead 

to lower 210Pb concentrations (Appleby &: Oldfield, 1978). Unlike the CIC model, it is able 

to account for fluctuations in unsupported 210Pb sedimentation which may have occurred 

either in response to climatic variations or anthropogenic disturbance (Brenner et al., 1999; 

Cohen et al., 2005). Futhermore, inversions in the unsupported 210Pb profile may be better 

explained by a dilution effect of unsupported 210Pb due to an increase in sedimentation rates. 

However, one limitation of the CRS model is that it tends to over-estimate sediment ages 

near the bottom of the profile. Sediment ages (t) based on the CRS model can be calculated 

by: 

(2-2) 

where Ax is the inventory of unsupported 210Pb (Bq m-2) to depth x; and A0 is the total 

inventory of unsupported 210Pb (Bq m~2). 

Other more computationally intensive models have been proposed, such as the Sediment 
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Isotope Tomography (SIT) model. Unlike the other dating models, the SIT model allows 

both the absolute flux rate of 210Pb and the sedimentation rate to vary (Carroll et al., 1995; 

von Gunten et al., 2008). Another difference between the SIT model and other conventional 

210Pb dating models is that it reconstructs the unsupported 210Pb activity profile before 

calculating a core chronology. This is accomplished by modelling nonexponential changes 

in unsupported 210Pb with a Fourier sine series, while any additonal changes caused by 

other processes are modelled with a Fourier cosine series. A 210Pb profile is selected when 

a pre-determined measure of fit (x2) is achieved which compares the modelled profile to the 

original unsupported 210Pb profile (Carroll & Abraham, 1996). See Table 2.2 for a summary 

of all model assumptions. 

Table 2.2: Summary of model assumptions. Adapted from Carroll & Lerche (2003). 

Model name Specific activity Accumulation rate Flux of 210Pb 

Constant Initial Concentration constant variable variable 
Constant Rate of Supply variable variable constant 
Sediment Isotope Tomography variable variable variable 

2.3.3 Caesium-137 

Ideally, paleoenvironmental studies should not rely on a single dating model, and would 

employ the use of a marker horizon to confirm the constructed chronology. The most com­

monly used marker horizon is caesium-137 (137Cs). 137Cs is an artificial fallout product of 

atmospheric bomb testing that began in the early 1950s and ended in the early 1970s. Peak 

fallout of 137Cs as a result of atmospheric bomb testing occurred in 1963 (Owens et al., 

1996), and is often represented in sediment profiles as a peak in down-core measurements. 

The location of the 1963 137Cs peak, as well as the onset of increasing 137Cs concentrations 

(1954), can be used paleolimnological studies to verify the accuracy of core chronologies (von 

Gunten et al., 2008). Good agreement between these peaks and the location of the modelled 

dates in the profile (i.e. using unsupported 210Pb) should indicate that the dating model 
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is appropriate for that environment. A secondary 137Cs peak produced by the explosion of 

the Chernobyl nuclear reactor in 1986 has also been used for the same purpose, but is not 

detected within western Canada. Post-depositional processes, such as mixing, can impact 

the 137Cs profile (He & Walling, 1996; Foster et al., 2006). Other studies have used Ambrosia 

pollen (Blais et al., 1995), tephra (Reasoner k. Healy, 1986), stable lead (Blais et al., 1998), 

and other metals and contaminants (Cooke & Abbott, 2008) to mark known historical events 

and verify core chronologies. 

2.3.4 Core chronology 

Since several cores were taken from Boswell wetland and not all could be analyzed due to time 

and financial constraints, it was necessary to select representative for laboratory analysis. 

Cores BL-D8 and BL-D10 from the far west channel were selected as the key wetland cores 

(Fig 2.4(a)). Several attempts were required to retrieve cores from the other major stream 

which likely disturbed and redistributed the top sediments contaminating other coring sites. 

Cores BL-D8 and BL-D10 were successfully removed on the first attempt minimizing the 

disturbance and redistribution of top sediments. 

Lake cores (BL-Pl and VL-P1) and selected wetland cores (BL-D8, BL-D10 and VL-Dl) 

were analyzed for 210Pb and 137Cs. 210Pb, with a half-life of approximately 22.26 years, 

was decided to be the most appropriate radionuclide for constructing a core chronology for 

the last 100-150 years1. Core chronologies were calculated using the CRS, CIC, and the 

SIT models. Details of all models are found in Section 2.3.2. Software for the SIT model 

was provided by Dr. J. Carroll of the Polar Environmental Centre, Norway. The final core 

chronology was selected based on the model whose assumptions were satisfied, and produced 

the smallest date errors (i.e. error bars). As it is assumed that similar processes are acting 

on these systems, a single dating model was selected for all cores. The results of the 210Pb 

dating models were also compared to 137Cs activities to verify model accuracy. 

1Most equipment for measuring radionuclide activities is only able to detect radionuclides up to 4-5 
half-lives 
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Approximately 1-3 g of sediment from each 1 cm core section was packed into a 4 mL 

plastic vial and left for three weeks to allow equilibrium to be reached between 214Pb and 

its parent radioisotope 226Ra (Kohler et al., 2000). Measurements of total 210Pb, supported 

210Pb and 137Cs activities were undertaken at the Plymouth University Consolidated Ra­

dioisotope Facility, England, UK using a EG&G Ortec well (GWL-170-16-S N-type) HPGe 

Gamma spectrometry system over a period of 24 to 48 hours for each sample. Longer mea­

surement times were necessary to minimize the higher error associated with lower sample 

masses2. 

2.4 Proxy measurements 

Proxy measurements were used to compile information on the physical and chemical char­

acteristics of the sediment trapped by the study wetlands and lakes over the last century. 

The data provided multiple lines of evidence for understanding the nature of the material 

captured by both wetland and lake environments and, therefore, the type of material being 

mobilized from the hillslopes. Dry bulk density and percent water content were also used in 

conjunction with magnetic susceptibility to match age-equivalent sediment layers in overlap­

ping sections of cores from each of the two lakes (i.e. Ekman and percussion cores) and create 

contiguous lake sediment profiles (Snowball & Sandgren, 2001). This process is similar to 

that of core correlation which aims to match cores taken from various coring locations so 

that chronologies may be extended to undated cores (Foster et al., 1985). The Boswell Lake 

core is therefore a combination of Ekman (BL-E1) and percussion (BL-P1) cores, however, 

it will be referred to as BL-Pl. Similarly, the Viewland Lake core is a combination of cores 

VL-E1 and VL-P1, but will be referred to as VL-P1. 

2The ideal mass for gamma spectrometry is 5 g. However, this mass could not be reached with the 
material retrieved from any of the sediment cores as they were highly organic and had low clastic contents. 



Chapter 2. Methodology 34 

2.4.1 Bulk physical properties 

Changes in dry bulk density and percent water content were used to provide information 

on the type of material being delivered to the lake and wetland. Increases in dry bulk 

density may be indicative of more minerogenic material which has been previously linked 

to the mobilization of subsurface soil material (Thompson et al., 1975). Each 1 cm section 

of sediment was placed in a pre-weighed plastic WhirlPak bag and re-weighed. Bags of 

sediment were frozen at —10 °C and subsequently placed in a freeze drier for approximately 

72 hours to remove all moisture. The bags were then re-weighed to determine the mass 

of dry sediment. Dry bulk density and percent water content were calculated according to 

Equations 2.3 and 2.4, respectively. 

. Dry mass (g) . 
Dry bulk density = —— -—5- (2.3) 

J J Volume (cm3) v ' 

^ Wet mass (g) - Dry mass (g) _ 
Percent water content = — — • 100 (2.4) 

Wet mass (g) 

2.4.2 Magnetic susceptibility 

Magnetic susceptibility is a measure of the concentration of magnetic minerals in the sedi­

ment, or the clastic content of the sediment. A large positive magnetic susceptibility value 

indicates that the materials in the sediment maintain a magnetic charge after the sediment 

has been exposed to a magnetic field. Conversely, low or negative magnetic susceptibility 

values indicate that the materials in the sediment do not maintain a magnetic charge after 

exposure to a magnetic field. For example, iron-bearing minerals have a high magnetic sus­

ceptibility values while wood and other plant materials have low values (Nowaczyk, 2001). 

Trends in down-core magnetic susceptibility have previously been linked to the timing of de­

forestation and erosion of minerogenic soils (Thompson et al., 1975), and were used for the 

same purpose in the present study. Magnetic susceptibility was measured in triplicate at each 
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1 cm interval for all wetland and lake cores using a Bartington MS2 Magnetic Susceptibility 

System at the University of Northern British Columbia. All magnetic susceptibility mea­

surements were normalized by sediment mass to give mass-specific magnetic susceptibility 

(Sandgren k. Snowball, 2001). 

2.4.3 Particle size 

Particle size analysis was completed for all lake and key wetland cores as well as all source 

materials of the <63 fxm particle size fraction. Variations in element concentrations may 

be related to grain size and must therefore be taken into account in the mixing model 

(described further below). Down core changes in particle size distribution have also been 

linked to historical changes in land cover and human activities (van Hengstum et al., 2007). 

Analysis of pre-logging conditions will provide background particle size distributions and 

their natural variations against which periods of forestry practices and post-logging can be 

compared. Particle size analysis could not be completed for several slices (6, 7, 11-14 cm) of 

the Viewland wetland core (VL-D1) as not enough inorganic material was present in these 

1 cm core slices to reach the recommended degree of obscuration3 (Sperazza et al., 2004). 

Sediment samples were pre-treated with 30% hydrogen peroxide and heated to approx­

imately 70 °C to digest organic material. Approximately 10 mL of a 0.55% sodium hex-

ametaphosphate solution, (NaP03)6, was added to each sample to promote dispersal of the 

individual sediment grains and prevent flocculation (Sperazza et al., 2004). Samples were 

stirred for approximately 30 seconds prior to particle size analysis to resuspend particles into 

the water column. Particle size distributions were determined using a Mastersizer 2000 laser 

diffractometry analyzer in the Department of Earth Sciences laboratory at Simon Fraser 

University, Burnaby, BC. 

3Obscuration is a measure of the quantity of sediment added to the analyzer. Between 15 and 20% 
obscuration has been recommended to minimize variability of results. 
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2.4.4 Total carbon and nitrogen 

As a result of low sample masses for each core section, measurements of total carbon (C) 

and total nitrogen (N) were used in lieu of organic matter content. Dry sediment samples 

(ca. 0.05 g) from each 1 cm core section were sent to the Forestry and Technical Services 

laboratory (Ministry of Forests and Range) in Victoria, BC for analysis of total C and total 

N content. A C:N ratio was then calculated from the total C and N percentages for each 1 cm 

core section to provide additional information on the source of organic matter. Typically 

C:N values between 4 and 10 represent organic matter derived from phytoplankton. Values 

greater than or equal to 10 are more indicative of vascular terrestrial vegetation (Meyers & 

Teranes, 2001; Kim, 2003). 

2.4.5 Geochemistry 

A suite of 34 geochemical properties4 were measured for all lake and wetland cores (except 

Boswell wetland core BL-D10), as well as all source materials. BL-D10 was not analyzed 

for geochemistry due to a miscommunication regarding sample priorities in other analyses 

and unavoidable time constraints. The geochemical properties then became the fingerprint 

properties used in the sediment source tracing procedure. Dry sediment samples were pre­

pared for geochemical analysis by adding concentrated acid (5 mL HN03 and 1 mL HC1) 

and further digesting the samples in a microwave digester. Digested samples were diluted 

with Milli-Q water such that the total volume equalled 50 mL. Samples were analyzed by 

Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) using a Leeman 

PS1000-UV to determine element concentrations. Sample preparation and ICP-AES anal­

yses were completed in the Central Equipment Laboratory at the University of Northern 

British Columbia. 
4The 34 geochemical properties measured were: lithium; beryllium; sodium; magnesium; aluminum; 

silicon; phosphorus; potassium; calcium; titanium; vanadium; chromium; manganese; iron; cobalt; nickel; 
copper; zinc; arsenic; selenium; strontium; zirconium; molybdenum; silver; cadmium; tin; antimony; barium; 
tungsten; mercury; thallium; lead; bismuth; and, uranium. 
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2.5 Climate and stream discharge 

Since sediment transport typically occurs during large precipitation events or spring snowmelt, 

historical climate data were compiled to determine whether any fluctuations in lake or 

wetland sedimentation rates could be explained by variations in weather patterns. A cli­

mate modelling program, ClimateBC, has been developed by British Columbia's Ministry of 

Forests and Range to estimate historical and future climate variables. This program requires 

a user input of latitude, longitude and elevation for the area of interest (Spittlehouse, 2006b). 

It calculates climate variables for that location by interpolating between existing weather 

stations. Although this program was created to produce climate data for areas where weather 

stations are limited, this in turn has become a limitation for the model itself. ClimateBC 

has been found to provide poor climate predictions for areas not well-covered by weather 

stations (Spittlehouse, 2006b). Despite this limitation, data calculated by ClimateBC span 

the full temporal range of the dated cores, and was thus chosen over the incomplete datasets 

from Environment Canada5. 

Latitude, longitude and elevation data were extracted from a digital elevation model for 

every 30 m grid in each catchment. These data were subsequently run in ClimateBC to 

produce climate data from 1901 to 2002. Each climate variable was then averaged over 

each catchment for every year that climate data were calculated. A full list of the variables 

produced by ClimateBC is provided in Appendix B. ClimateBC was downloaded from the 

University of British Columbia's Centre for Forest Gene Conservation (University of British 

Columbia, 2010). All mapping and spatial analyses were completed using ArcGIS 9.3. 

Although stream discharge data were not collected as a part of this study, data were 

available for the Quesnel River at Likely, BC (52°36'56" N, 121°34'16" W). These data do 

Environment Canada's National Climate Archive was found to have an incomplete dataset for the Likely, 
BC weather station (1974-1993) which is approximately 9 km from Boswell Lake. The next closest weather 
stations to Boswell Lake are located in Barkerville (1888-2008) and Williams Lake (1936-2009) which are 
both located approximately 60 km from Boswell Lake. A weather station situated at Gruhs Lake (1950-
2009), approximately 16 km from Viewland Lake, was the closest weather station that could be used to 
characterize weather conditions around Viewland Lake. 
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not reflect the same magnitude of water flow in the channels draining the Boswell Lake 

catchment, however, they provide an estimate of the trends that may have been observed 

over a similar time frame (1924-2009). As a nearby stream discharge gauge was not found 

for the Viewland Lake catchment, stream discharge are only presented for the Quesnel River 

(Boswell Lake catchment). Stream discharge data were downloaded from the Water Survey 

of Canada website (Environment Canada, 2010). 

2.6 Sediment source tracing 

2.6.1 Source groups 

Source materials were initially classified according to six source types: harvested surface soil 

material; harvested subsurface soil material; forested surface soil material; forested subsur­

face soil material; road surface soil material; and, channel bank material. However, since the 

source materials were all derived from a single bedrock type, and forestry practices do not 

typically alter the geochemical regime of the disturbed area, it was recognized that the source 

materials could have similar characteristics and may not be significantly different from one 

another. To determine if a different set of groups was more appropriate than the a priori 

groupings, a Principle Component Analysis (PCA) was performed on the geochemical data. 

Visual examination of the biplot of the first two principle components provided an estimate 

of the number of source groups. A fuzzy k-means clustering analysis of the geochemical data 

was subsequently used to confirm the number of source groups which informed the multi­

variate unmixing model. The aim of this statistical test is to establish the number of groups 

that minimizes Dunn's coefficient which measures the "fuzziness" of the resulting group(s) 

(Trauwaert, 1988). 
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2.6.2 Multivariate unmixing model 

The multivariate unmixing model described by Collins et al. (1997) was used to estimate the 

relative proportion of each source material in each 1-cm sediment core slice of all lake and 

wetland cores. The unmixing model is composed of a set of linear equations, which is subject 

to the conditions: (a) each source contribution must be greater than zero and less than one; 

and (b) the sum of the source contributions must equal one. A final solution is found when 

the sums of squares of the relative errors have been minimized, and all conditions have been 

met. The optimization routine was carried out using Microsoft Excel Solver (version 2003). 

Unlike the original model by Collins et al. (1997), Equation 2.5 does not include an 

organic matter correction factor. The inclusion of an organic matter correction factor, along 

with a particle size correction factor, may result in the over-correction of the fingerprint 

properties (Carter et al., 2003). The unmixing model is given in Equation 2.5: 

where Cj = concentrations of tracer parameters (i) in each 1 cm sediment core slice, Si 

= mean concentration of tracer parameter (i) for each source material, Z = particle size 

correction factor (ratio of core slice specific surface area to mean specific surface area for 

each source type), and Ps = percentage contribution from each source type (s = surface; sub 

= subsurface; cb = channel bank). 

2.7 Statistical analysis 

2.7.1 Pre- versus post-logging 

Two-sample t-tests were used to compare post-logging total (clastic and organic sediment) 

sedimentation rates to pre-logging rates. The two periods of forestry practices in the Boswell 

Lake catchment were combined and analyzed as a single "post-logging" period to improve the 

2 

(2.5) 
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statistical power since sample sizes were low in individual post-logging periods. Therefore, 

the post-logging period in the Boswell Lake catchment begins at the onset of logging and 

includes periods of active logging and the recovery periods (i.e. 1960-2009). A series of 

one-sample t-tests were also used to compare total sedimentation rates calculated for each 

post-logging 1-cm core slice to pre-logging rates. These comparisons were useful in identifying 

peaks or depressions in the post-logging period that represented significant departures from 

average pre-logging conditions. A Holm correction (sequential Bonferroni correction) was 

applied to the p-values of the 1-sample t-tests for each proxy within a given core to account 

for an inflated type I error that may occur as a result of multiple tests on a single group of 

data (Holm, 1979; Rice, 1989). See Figure 2.6 for a diagram comparing the 1- and 2-sample 

t-tests used on the lake and wetland core measurements. 

Y, 
Y2 

Y3 M Y4 

Y5 

YE 

X 

1-sample 2-sample 

Figure 2.6: Comparison of the 1- and 2-sample t-tests used to evaluate post-logging ( Y )  
changes in the sediment profiles against average pre-logging (X) conditions. 
For 1-sample t-tests, sedimentation rate and proxy values given by individual 
post-logging 1 cm core slices (Fj) represent the null hypothesis ( fx) .  

Where the assumption of normally distributed residuals was not met, non-parametric 

statistics were applied (e.g. Mann-Whitney U-test, Wilcoxon Rank Sum Test). The same 

approach was also taken for the analysis of each proxy indicator. It has also been recog­

nized that temporal autocorrelation is often an issue with sediment cores which violates the 
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assumption of independent samples. Temporal autocorrelation can be the result of lags be­

tween sediment erosion and delivery, physical mixing of the sediments, and post-depositional 

mobility of proxy indicators (e.g. radionuclides). Corrections for temporal autocorrelation 

often requires increasing the temporal separation between samples which can be achieved by 

combining samples. Not correcting for temporal autocorrelation can result in increased type 

I error (a); however, due to low sample sizes a correction was not applied. 

2.7.2 Climate and stream discharge trends 

To account for any potential effects of climate and stream discharge on lake and wetland 

total sedimentation rates stepwise linear regressions were fit. Variable selection was carried 

out in both directions (i.e. forward selection and backward elimination) and a final model 

was selected when the Akaike's Information Criterion (AIC) value was minimized. Predictor 

variables included climate variables produced by ClimateBC (mean annual precipitation, 

mean annual temperature, precipitation as snow, beginning and end of frost-free period), 

and stream discharge. It was necessary to narrow down the climate variables to a smaller 

set such that the total number of variables entered into the model did not exceed the total 

degrees of freedom. A factor was also included in the model to identify pre- and post-logging 

periods. Climate and stream discharge data were averaged for each core to match the time 

intervals represented by each 1 cm core slice. 

Although averaging the climate data was necessary to be included in the stepwise linear 

regression models, this also reduced the resolution of the climate series and flattened out 

annual variations. Trends in annual climate and discharge data were assessed using the 

method outlined by Tome (2004), which identifies breakpoints and linear trends in time 

series data. The sign and magnitude of the trends in between sets of breakpoints were 

examined with the regression lines produced by the model. A single regression line was also 

calculated for each full time series to observe long-term trends. 
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2.7.3 Correlations 

Pearson product moment correlations were used to relate changes in the contribution of each 

sediment source to down-core variations of total sedimentation rates, as well as those of each 

proxy indicator. A change in the dominant sediment source, or the relative proportions of 

these sources, may be the result of forestry practices; though, it is also possible that changes 

in source materials are not related to fluctuating total sedimentation rates in either the lake 

or the wetland. 

All statistical results were considered significant at an a level of 0.05. All statistical 

analyses were conducted using R 2.10.1 (2009). 
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Chapter 3 

Results: Lake and wetland sedimentation rates 

This chapter addresses the research questions: do wetland sedimentation rates increase in 

response to forestry activities?; and, are sedimentation rates in downstream lakes affected by 

forestry activities? The information presented here adresses the variations in sedimentation 

rates, as well as the physical and chemical properties of the sediment, before and during/after 

periods of active logging. Historical changes in climate and their impact on sedimentation 

rates and sediment properties have also been explored in addition to forestry practices. 

Finally, variations in bulk physical properties over the last century were compared to changes 

over the deeper undated profile to understand their importance in the context of the longer-

term natural variability. 

3.1 Physical descriptions 

Material in the Boswell Lake core was predominantly light brown, fine-grained organic sedi­

ment (gyttja) which was found throughout the top 80 cm of the core (see Figure 3.6). Below 

80 cm alternating bands of dark and light brown fine organic sediment were visible. A light 

grey tephra layer was found at 56 cm depth. Visual inspection of the tephra under a polar­

izing light microscope revealed chunky glass shards containing lineated gas vesicles. Based 

on the observed colour and glass shard morphology (Brian Menounos pers. comm.), it was 

concluded that the tephra originated from the Bridge River eruption ca. 2,410 calendar years 

ago (Clague et al., 1995). See Appendix C for a microscope image of the glass shards found 

in the Boswell Lake core. Other than the tephra there were no other obvious changes in 

texture along the length of the core. 
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The Viewland Lake core was primarily composed of light brown, fine-grained organic 

sediment (gyttja) similar to that found in the Boswell Lake core. A 0.5 cm layer of light 

grey, fine-grained clastic sediment was found 1.5 cm down-core below which was a thin layer 

of dark brown, fine-grained organic sediment. Alternating light and dark brown layers of 

sediment were also seen deeper (ca. 70 cm) in the core. However, the layers of sediment were 

not as well-defined as those found in the Boswell Lake core. A light grey tephra layer was 

found at 67 cm down-core that, based on colour and shard morphology, was correlative with 

the Bridge River event (Brian Menounos pers. comm.). 

Wetland cores from both sites consisted of dark brown, unsorted, organic-rich sediments. 

Large pieces of woody debris, roots and twigs were observed throughout all wetland cores 

in no observable pattern. The top 10 cm of the Viewland wetland core was predominantly 

composed of twigs and other woody debris. 

3.2 Lead-210 profiles and core chronologies 

In Boswell Lake, background concentrations of unsupported 210Pb were reached at 9 cm in 

the lake core (BL-P1), 13 cm in one wetland core (BL-D8), and 12 cm in the other wetland 

core (BL-D10). Background activities were reached by 19 cm and 16 cm in the Viewland Lake 

(VL-P1) and the wetland (VL-D1) cores, respectively. Shallower 210Pb profiles in the Bowell 

Lake core versus either of the wetland cores suggests that less material is accumulating in 

the lake as compared to the wetland. Alternatively, regular resuspension and transport of 

material from the lake bottom could lower 210Pb concentrations. The opposite is observed in 

the Viewland Lake scenario where, according to the 210Pb profile, the lake is accumulating a 

greater amount of material than the wetland. Since wetland cores were taken from channels, 

erosion of the channel bottom due to flowing water may have redistributed sediments creating 

unconformities in the depositional record. The implications of this sampling design are 

discussed in the study limitations (see Section 5.5). 

Before each 210Pb dating model was applied to the unsupported 210Pb activities of each 
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sediment core, the model assumptions were reviewed against the activity profiles of un­

supported 210Pb in Figures 3.1 and 3.3. Non-monotonic decreases in unsupported 210Pb 

activities in all cores confirm that the CIC model is not a suitable dating model. Modelled 

unsupported 210Pb activities produced by the SIT model were accompanied by relatively 

large x2 values (Table 3.1) which suggests that the model does a poor job reconstructing the 

original unsupported 210Pb profiles. This is consistent with the limitations of the SIT model 

as outlined by Carroll & Abraham (1996) which state that large fluctuations in unsupported 

210Pb activities may not be accurately modelled by a Fourier sine series. Thus, the final core 

chronologies were calculated using the CRS model - see Figures 3.2 and 3.4. 

With the exception of the VL-Pl core, well-defined 137Cs peaks are not present in any of 

the cores which suggests that post-depositional changes (i.e. bioturbation, upward/downward 

diffusion) have impacted down-core concentrations of 137Cs (Foster et al., 2006). As a result, 

137Cs was not used to verify core chronologies in this study. Despite a strong peak, 137Cs data 

were also disregarded for the VL-Pl core. Based on the resultant core chronologies there is 

a large discrepancy between the 137Cs peak and the CRS-modelled 1963 date for this core. 

The 137Cs peak also coincides with a layer of fine-grained silty-clay material which, through 

the binding effects of clay (Ambers, 2001), likely limited the mobility of 137Cs resulting in 

increased concentrations. Davis et al. (1984) stated that high mobility of 137Cs in organic-

rich sediments is the result of the breakdown of organic material. On the other hand, 210Pb 

is bound tightly to organic material (Dorr & Miinnich, 2006) suggesting that the use of 

210Pb to date organic-rich sediments is more reliable than 137Cs (Davis et al., 1984). A 

similar conclusion was reached by Foster &; Lees (1999) who also found 137Cs profiles to be 

unreliable. 
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Figure 3.1: Unsupported 210Pb and 137Cs activity depth profiles for Boswell Lake and 
wetland cores. Unsupported 210Pb error bars represent the sum of the total 
210Pb and supported 210Pb errors. Values without errors were measured at 
the minimum detectable limit of the gamma assay. 
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(a) Lake core (BL-P1) (b) Wetland core (BL-D8) 
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Figure 3.2: Core chronologies for (a) Boswell Lake (BL-P1) and wetland cores (b) BL-
D8, and (c) BL-D10 produced by the Constant Rate of Supply (CRS) model. 
Error bars were also calculated using the CRS model and represent the error 
on each of the calculated dates. 
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Figure 3.3: Unsupported 210Pb and 137Cs activity depth profiles for Viewland Lake and 
wetland cores. Unsupported 210Pb error bars represent the sum of the total 
210Pb and supported 210Pb errors. Values without errors were measured at 
the minimum detectable limit of the gamma assay. 

Table 3.1: Summary of the x2 values produced by the Sediment Isotope Tomography 
(SIT) model. These values represent the goodness-of-fit between an observed 
distribution (measured unsupported 210 activities) and a theoretical distribu­
tion (modelled unsupported 210Pb activities). For a sample size of 10, two sam­
ple distributions would be considered to be not significantly different (p>0.05) 
if the x2 value was <16.9. 

Core X2  (Bq kg"1) 

BL-P1 924 
BL-D8 80.3 
BL-D10 649 
VL-P1 11800 
VL-D1 181 
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Figure 3.4: Core chronologies for (a) Viewland Lake (VL-Pl) and (b) wetland (VL-Dl) 
cores produced by the CRS model. Error bars were also calculated using the 
CRS model and represent the error on each of the calculated dates. 
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3.3 Boswell Lake catchment 

3.3.1 Total sedimentation rates 

Comparison of pre- and post-logging sedimentation rates (Fig. 3.5) using two-sample t-tests 

showed that the two periods are not significantly different for any of the cores taken from 

Boswell Lake or the wetland (Table 3.2). Individual one-sample t-tests for each of the 1 cm 

increments in the post-logging period revealed no significant departures from average pre-

logging sedimentation rates in Boswell Lake. 

Above 10 cm (ca. 1938), a gradual increase in total sedimentation rates was observed 

in wetland core (BL-D8) and reached a maximum of 0.0756 g cm-2 y_1 in the top 1 cm. 

The second wetland core (BL-D10) had two distinct peaks in sedimentation rates at 3 and 

6 cm down-core. Both peaks corresponded to the two logging periods in the Boswell Lake 

catchment, however, neither was found to be statistically greater than average pre-logging 

sedimentation rates. 

Table 3.2: Summary of the two-sample t-tests results comparing pre- and post-logging 
total sedimentation rates (g cm-2 y-1) in Boswell Lake and wetland cores. In 
BL-P1, BL-D8, and BL-D10 the post-logging periods are above 4 cm, 7 cm, 
and 7 cm, respectively. Values in brackets denote sample size. 

BL-P1 (Lake) BL-D8 (Wetland) BL-D10 (Wetland) 

Period Mean sd p  Mean sd p  Mean sd p  

Pre 0.0057 0.0035 (3) 0.0342 0.023 (4) 0.0169 0.0109 (3) 
Post 0.0079 0.0013 (4) 0.386 0.0492 0.018 (7) 0.308 0.0466 0.0228 (7) 0.067t 

tp was calculated using non-parametric analysis as the assumption of normality was not 
met. 

3.3.2 Proxy indicators 

Depth profiles of all proxies are presented in Figure 3.6. Two-sample t-test results are 

summarized in Table 3.3. Median grain size in Boswell Lake (BL-P1) significantly decreased 

post-logging, and was the only proxy indicator for which a significant change occurred. One-
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Figure 3.5: Total sedimentation rates (calculated using the CRS model) for Boswell Lake 
and wetland cores. The highlighted areas represent the periods of time that 
forestry practices were present in the Boswell Lake catchment. Error bars 
on the sedimentation rates represent the standard error calculated using the 
CRS model. An error value could not be calculated for the bottom of the 
BL-D8 profile. 
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sample t-tests revealed that significant decreases in median grain size occurred at 1 (4=11.0, 

p=0.019), 2 (4=1.14, p=0.020) and 4 cm (4=9.70, p=0.019) down-core, all of which were 

within the post-logging periods. A small post-logging increase was observed in dry bulk 

density, which was mirrored by a small decrease in percent water content. The start of these 

changes, however, occurred approximately 20 years (ca. 1940) before the beginning of the 

first logging period. Maximum values of dry bulk density were reached at 3 cm and were 

followed by a decrease at 2 cm down-core, with the opposite pattern being observed for water 

content. At 6 cm depth, minor increases in magnetic susceptibility and C:N were observed 

along with small decreases in total carbon and total nitrogen. 

A significant post-logging decrease in median grain size was observed in wetland core BL-

D8. While generally smaller median grain sizes were observed post-logging, a small increase 

occurred during the first logging period. However, the second logging period did not produce 

any distinct changes in median grain size. Decreases in total C, total N and C:N occurred at 

the end of the first logging period. These three proxies continued to fluctuate throughout the 

second period of logging, but only C:N remained significantly lower than pre-logging values. 

On average, magnetic susceptibility values were found to be significantly higher during 

the post-logging period in wetland core BL-D10; yet, this change only appears at the end of 

the second logging period. Aside from a small decrease in dry bulk density at the end of the 

first logging period, no other notable changes were seen in the BL-D10 wetland core. 

3.3.3 Long-term changes in bulk physical properties 

Although 210Pb is only able to date (with any accuracy) approximately the last 100-150 years, 

data for the bulk physical properties were still collected beyond the 210Pb-dated region of 

the sediment cores. Long-term changes of these proxies allow recent changes to be placed 

in a broader context. Dry bulk density and percent water content were measured to various 

depths for all three cores (Fig. 3.7). The amount of data available is dependent on the length 

of core that could be retrieved from individual sampling locations. 
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Figure 3.6: The seven proxy indicators (dry bulk density, percent water content, magnetic susceptibility, median particle size, 
total C, total N, and C:N) are shown over time for the dated portion of each of the Boswell Lake and wetland cores. 
The highlighted areas represent the years that forestry practices were present in the Boswell Lake catchment. Core 
logs and general descriptions of the sediment are also provided for each core (top left). 
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Table 3.3: Summary of two-sample t-tests comparing the means of pre- and post-logging periods for each proxy indicator 
measured in the Boswell Lake and wetland cores. In BL-Pl, BL-D8, and BL-DIO the post-logging periods are above 
4 cm, 7 cm, and 7 cm, respectively. Values in brackets denote sample sizes which are consistent across all proxies. 

BL-Pl (Lake) BL-D8 (Wetland) BL-D10 (Wetland) 

Proxy Period Mean sd P Mean sd P Mean sd P 

Dry bulk density 
(g cm-3) 

Pre 

Post 

0.1038 

0.1156 

0.0088 (3) 

0.0260 (4) 0.451 

0.4453 

0.3139 

0.0971 (4) 

0.0698 (7) 0.065 

0.3101 

0.3011 

0.0317 (3) 

0.0511 (7) 0.747 

Water content (%) Pre 

Post 

89.24 

88.18 

0.79 

2.63 0.491 

74.66 

79.89 

5.09 

1.98 0.073* 

76.04 

74.97 

0.57 

2.29 0.284 

Magnetic susceptibility 

(SI x 10"8 m3 kg-1) 

Pre 

Post 

-0.1 

0.1 

0.1 

0.3 0.528 

0.3 

0.2 

0.1 

0.3 0.889 

0.2 

0.4 

0.1 

0.2 0.025* 

d50 (pm) Pre 

Post 

14.8 

10.1 

0.8 

2.6 0.031* 

209.4 

39.1 

131.6 

34.3 0.024*f 

Total carbon (%) Pre 

Post 

28.0 

29.4 

2.0 

0.7 0.348 

18.6 

18.2 

6.4 

8.4 0.922 

Total nitrogen (%) Pre 

Post 

2.19 

2.32 

0.08 

0.09 0.103 

1.02 

1.13 

0.36 

0.42 0.644 

C:N Pre 

Post 

12.7 

12.7 

0.5 

0.3 0.852 

18.4 

15.5 

0.9 

2.3 0.016* 

*Significant at p=0.05 
was calculated using non-parametric analysis as the assumption of normality was not met. 
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Figure 3.7: Long-term depth profiles of dry bulk density and percent water content for 
(a) Boswell Lake (BL-P1) and wetland cores (b) BL-D8, and (c) BL-D10. 
Values are presented over depth as they extend beyond the dated region of 
the sediment cores where 210Pb was not present in measurable concentrations. 
Highlighted areas represent years that forestry activities were present in the 
catchment. The date (2,410 yrs BP) provided at 56 cm is the location of the 
Bridge River tephra layer in the lake core. 
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Dry bulk density values from 10 to 50 cm in the lake core showed a gradually increasing 

pattern over increasing depth, which is consistent with sediment de-watering and compaction. 

Other than sudden increases at 42 and 57 cm, the latter being associated with the Bridge 

River tephra layer, little variation was observed. Above 10 cm, dry bulk density increased 

to approximately 0.135 g cm-3 after which point it decreased in the top 2 cm of the core. A 

similar pattern was seen in wetland core BL-D8, with gradually increasing dry bulk density 

values with increasing depth to a maximum depth of 25 cm. This pattern was not observed 

in the second wetland core (BL-D10); rather, dry bulk density values did not exhibit a long-

term trend and the range of variability was much smaller than that of the other wetland core 

(BL-D8). Percent water content generally mirrored dry bulk density patterns throughout 

each of the sediment cores. 

3.3.4 Hydrometerological influences and trends 

Several climate variables, along with stream discharge data and a before-and-after logging 

factor were examined to determine whether any changes in the lake and wetland sedimen­

tation rates could be explained by fluctuations in climate in addition to, or instead of, the 

timing of logging. According to the results of the stepwise linear regression, patterns of 

sedimentation rates could not be explained for any of the cores using any combination of 

climate variables, stream discharge data, or the presence/absence of logging. 

Based on the trend analysis (Tome, 2004), a breakpoint in stream discharge values was 

found at 1944 (Fig. 3.8). Following this breakpoint, average stream discharge values signifi­

cantly increased from approximately 3.77 km3 y"1 to 4.14 km3 y-1 (£=-2.46, p=0.018). This 

type of change in climate variables has been referred to a "step change" (Macklin & Lewin, 

2003) because it is an abrupt change which produces a new average condition or equilib­

rium. The breakpoint at 1944 was also associated with a significant increase mean annual 

precipitation (MAP) which increased from an average value of approximately 724 mm y_1 

to 787 mm y-1 (£=-3.31, p=0.001). An increase in the variability of MAP was also observed 
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after 1944. Prior to 1944, MAP values ranged between approximately 583 mm y_1 and 891 

mm y_1. After 1944, minimum MAP fell slightly to 580 mm y_1, however, the maximum 

value rose to 1023 mm y~x. Other climate variables were found to also significantly change 

after 1944, including: precipitation as snow (increase; t=-2.20, p=0.030), frost-free period 

(increase; t=-4.72, p<0.001), beginning of frost-free period (decrease; t=3.23, p<0.001) and 

the end of the frost-free period (increase; £=-4.46, p<0.001). 
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Figure 3.8: Annual stream discharge (1924-2009) and mean annual precipitation (1901-
2002) values. Stream discharge values are for Quesnel River at Likely, BC and 
were taken from the Water Survey of Canada (Environment Canada). Mean 
annual precipitation measurements are specific to the Boswell Lake catchment 
and were modelled using ClimateBC. The small dashed line represents the 
linear regression line for the full time series of stream discharge. The large 
dashed lines are linear regression lines in between each set of breakpoints. 
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3.4 Viewland Lake catchment 

3.4.1 Total sedimentation rates 

Post-logging sedimentation rates were not found to be significantly differently from pre-

logging rates in the Viewland Lake core (Table 3.4). The depth profile of Viewland Lake 

sedimentation rates (Fig. 3.9) shows a post-logging peak at 2 cm depth, however, a one-

sample t-test on this core slice revealed it is not significantly greater than pre-logging rates. 

On the other hand, the decrease found at the top-most layer (0-1 cm) does reveal that 

sedimentation rates dropped below pre-logging rates. This drop below pre-logging rates is 

due to the fact that sedimentation rates peak in the late-1940's and do not drop again until 

the late-1950's. 

On average, post-logging sedimentation rates in the wetland (VL-D1) were significantly 

higher than those before logging occurred in the catchment area (Table 3.4). Figure 3.9 

shows gradually increasing sedimentation rates over the pre-logging period. Post-logging 

sedimentation rates sharply increased at 3 and 6 cm, both of which are significantly greater 

than pre-logging rates (£=-13.0, p=<0.001; £=-11.7, p=<0.001). 

Table 3.4: Summary of the two-sample t-tests results comparing pre- and post-logging 
sedimentation rates (g cm-2 y-1) in Viewland Lake and wetland cores. In VL-
P1 and VL-D1, the post-logging periods are above 2 cm and 7 cm, respectively. 
Values in brackets denote sample size. 

VL-P1 (Lake) VL-D1 (Wetland) 

Period Mean sd p Mean sd p 

Pre 0.0282 0.0259 (15) 0.0163 0.0064 (7) 
Post 0.0206 0.0175 (2) 0.824* 0.0423 0.0101 (7) <0.001* 

*Significant at p=0.05 
tp was calculated using non-parametric analysis as the assumptions of normality were not 
met. 
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Figure 3.9: Total sedimentation rates (calculated using the CRS model) for Viewland 
Lake and wetland cores. The horizontal line at 1983 represents the year the 
Viewland Lake catchment was logged. Error bars on the sedimentation rates 
were also calculated using the CRS model. 
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3.4.2 Proxy indicators 

Depth profiles of all proxies are found in Figure 3.10. Two-sample t-test results are summa­

rized in Table 3.5. With respect to the Viewland Lake core, except for median grain size, 

little variation was observed in any of the proxies during the pre-logging period. Median 

grain size increased sharply at 13 cm and quickly decreased moving up-core. Apart from C:N, 

a significant post-logging change was evident in all proxies. Sharp increases were observed 

in dry bulk density and magnetic susceptibility, while percent water content, median grain 

size, total C and total N all decreased immediately after the catchment was logged in 1983. 

Although the change was not statistically significant, C:N shows evidence of a post-logging 

increase. All proxies returned to pre-logging conditions in the 0-1 cm core slice. 

Proxy indicators measured for the Viewland wetland core remained relatively consistent 

in both the pre- and post-logging periods. Magnetic susceptibility increases significantly 

post-logging from an average value of -0.03 to 0.00. At 2 cm, there is a sharp decrease in 

dry bulk density and corresponding increase in percent water content, both of which return 

to pre-logging conditions at 1 cm. 

3.4.3 Long-term changes in bulk physical properties 

Deeper profiles (30 cm) of dry bulk density and percent water content were also collected 

for the Viewland Lake and wetland cores (Fig. 3.11). The large increase in dry bulk density 

and corresponding decrease in percent water content that occurred immediately after the 

logging event in 1983 were much higher and lower, respectively, than any other changes that 

have taken place over the deeper profile of the lake core. Dry bulk density values calculated 

for the Viewland wetland core (VL-D1) increased consistently down-core which may be the 

result of sediment compaction over time. However, the post-logging decrease in dry bulk 

density observed at 6 cm appears to extend beyond the range of normal variability. The 

opposite pattern was observed for percent water content in the wetland core with a strong 

increase in percent water content at 6 cm depth. 
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Figure 3.10: The seven proxy indicators (dry bulk density, percent water content, magnetic susceptibility, median particle size, 
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cores. The horizontal line represents the year the Viewland Lake catchment was logged (1983). Core logs and 
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Table 3.5: Summary of the two-sample t-test results comparing the means of pre- and 
post-logging periods for each proxy indicator measured for the Viewland Lake 
and wetland cores. In VL-P1 and VL-D1, the post-logging periods are above 
2 cm and 7 cm, respectively. Values in brackets denote sample sizes. Total 
number of samples are given under dry bulk density. Other values are given 
where sample size was less than the total. 

VL-P1 (Lake) VL -D1 (Wetland) 

Proxy Period Mean sd P f  Mean sd P 

Dry bulk density Pre 0.1047 0.0111 (15) 0.1665 0.0162 (7) 
(g cm"3) 

Post 0.1967 0.0977 (2) 0.015* 0.1469 0.0382 (7) 0.312 

Water content (%) Pre 89.49 1.02 85.48 1.94 
Post 82.36 9.52 0.177 85.89 3.79 0.827 

Magnetic susceptibility Pre 1.4 0.7 -0.3 0.2 
(SI x 10-8 m3 kg"1) Post 5.3 2.2 0.030* 0.0 0.2 0.005* 

d50 (/an) Pre 13.4 4.5 (14) 15.9 0.8 (3) 

Post 3.6 2.1 0.017* 15.2 0.6 (5) 0.249 

Total carbon (%) Pre 24.5 1.8 43.2 3.6 
Post 10.8 6.1 0.015* 45.1 1.7 0.239 

Total nitrogen (%) Pre 1.69 0.11 2.00 0.09 
Post 0.75 0.49 0.015* 1.97 0.05 0.444 

C:N Pre 14.5 1.2 21.7 2.0 
Post 15.0 1.8 0.941 22.9 0.9 0.167 

*Significant at p=0.05 
tp was calculated using non-parametric analysis as the assumptions of normality were not 
met. 
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Figure 3.11: Long-term depth profiles of dry bulk density and percent water content for 
(a) Viewland Lake and (b) wetland cores. Values are presented over depth 
as they extend beyond the dated region of the sediment cores where 210Pb 
is not present in measurable concentrations. Horizontal lines represent the 
year that logging activities were present in the catchment. Although not 
show here, the Bridge River tephra layer (2,410 yrs BP) occurred at 67 cm 
depth in the lake core (VL-P1). 
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3.4.4 Hydrometerological influences and trends 

Based on the results of the stepwise linear regression (see Table 3.6), precipitation as snow 

(mm) was found to explain 44% (Fi i4=11.22, p=0.005) of the variation observed in Viewland 

Lake sedimentation rates (Fig. 3.12). Mean annual temperature, mean annual precipitation 

and the length of the frost-free period were not included in the final model as that produced 

models with higher AIC values. The before- and after-logging factor also was not included 

in the final model. 

Table 3.6: Final model produced by the stepwise linear regression for Viewland Lake 
(VL-P1) sedimentation rates. PAS=precipitation as snow. 

Variable Df Estimate Std Error t P 

Intercept 1 -0.0905 0.0359 -2.518 0.025 
PAS 1 0.0005 0.0001 3.350 0.005 
Residuals 14 0.0191 

The final model for the wetland core contained only the before- and after-logging factor 

(see Table 3.7). None of the climate variables (mean annual temperature, mean annual 

precipitation, precipitation as snow, and length of the frost-free period) were included in 

the final model produced by the stepwise linear regression. The logging factor accounted for 

72% (F1)12=31.29, p<0.001) of the variation in wetland sedimentation rates with rates being 

significantly higher in the post-logging period. 

Table 3.7: Final model produced by the stepwise linear regression for Viewland wetland 
(VL-D1) sedimentation rates. 

Variable Df Estimate Std Error t P 

Intercept 1 0.0400 0.0032 12.53 <0.001 
Logging (Before/After) 1 -0.0253 0.0045 -5.593 0.001 
Residuals 12 0.0085 
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Figure 3.12: Precipitation as snow (ram) and sedimentation rates (g cm-2 y-1) over time 
for the Viewland Lake core. Climate data are specific to the Viewland Lake 
catchment area and were modelled using ClimateBC. Sedimentation rates 
were calculated using the CRS model. 
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Chapter 4 

Results: Sediment source tracing 

Chapter four focuses on the sediment source tracing procedure outlined by Collins et al. 

(1997). Sediment source groups have been redefined using visual observations and statistical 

analysis. Long-term changes in sediment source contributions to both study lakes and wet­

lands were reconstructed using a multivariate unmixing model. Changes in the proportions 

of source materials have also been related to the sedimentation rates and proxy indicators 

measured for their respective cores which were presented in Chapter 3. 

4.1 Source groups 

The Principle Component Analysis (PCA) of the geochemical properties for the sediment 

source materials collected throughout each catchment revealed no obvious separations of the 

original (a priori) source categories (Fig. 4.1). Through visual examination of the biplot of 

the first two principle components it was observed that all natural forest samples (i.e. surface 

soil and subsurface soil) were interspersed with logged samples. The fuzzy-k clustering 

analysis confirmed these findings with Dunn's coefficient (see description in Section 2.6.1) 

being greatest for one group (D=l). A summary of the Dunn's coefficients for all groups 

(k=l,2,3,4,5) is given in Table 4.1. 

In the case of the channel bank samples, they generally fell within the range of the forest 

and logged samples, however, the channel bank samples tended to loosely cluster together. 

Similarly, the surface and subsurface samples belonging to each of the forest and logged 

groups showed a tendency to group together. A Kruskal-Wallis H-test was used to determine 

whether or not a sufficient number of geochemical properties could distinguish between 
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Figure 4.1: Results of the Principle Component Analysis (PCA) of the fingerprint prop­
erties for (a) Boswell Lake and (b) Viewland Lake sediment source materials. 
F=forest, F_sub=forest subsoil, L=logged, L_sub=logged subsoil, R=road. 
CB=channel bank. Biplots represent the first two principle components of 
the PCA. 

Table 4.1: Fuzzy k-means clustering results for Boswell Lake and Viewland Lake source 
materials. 

Dunn's coefficient 
No. of Groups Boswell Lake Viewland Lake 

1 1.000 1.000 
2 0.648 0.678 
3 0.513 0.465 
4 0.428 0.399 
5 0.364 0.339 
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surface, subsurface and channel bank samples (i.e. a fairly simple source categorization) 

to justify carrying out the final steps of the sediment source tracing procedure. For the 

Boswell Lake catchment, a total of 24 out of 34 geochemical properties were found to have 

significantly different mean values (corresponding to each of the three source categories; see 

Table 4.2). Similar results were found for the Viewland Lake catchment with 29 out of 34 

properties having significantly different mean values (Table 4.3). Based on these results it 

was determined that three source categories - surface soil material, subsurface soil material, 

and channel bank material - would be used in the subsequent sediment source tracing steps. 

4.2 Boswell Lake catchment 

4.2.1 Composite fingerprint 

From the 24 fingerprint properties that were identified by the Kruskal-Wallis H-test to have 

at least one pair of significantly different means (Table 4.2), a composite fingerprint was 

developed to correctly label the source group for each sample. Using stepwise multivariate 

discriminant function analysis (MDFA)1, Se and A1 were found to be the most appropriate 

combination of properties to use in the multivariate unmixing model as they were able to 

correctly assign 100% of the source materials to their original groups (Table 4.4). An addi­

tional fingerprint property, Ba, was incorporated into the composite fingerprint to increase 

the discriminatory power of the composite fingerprint. The additional property was selected 

on the basis of the next property provided by the results of the stepwise MDFA which would 

result in overall lower Wilks' lambda values. 

'This procedure selects a combination of fingerprint properties that minimizes Wilks' lambda and is able 
to distinguish source types within a given catchment. The selected properties then become the composite 
fingerprint to be used in the multivariate unmixing model. 
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Table 4.2: Kruskal-Wallis H-test probabilities (p) for distinguishing surface, subsurface 
and channel bank materials in the Boswell Lake catchment using individual 
fingerprint properties. Mean concentration values are also given for each fin­
gerprint property for each source type. 

Fingerprint Surface mean Subsurface mean Channel bank mean p 
property (mg kg"1) (mg kg *) (mg kg x) 

Li 6.38 16.42 3.71 0.002* 
Be 0.15 0.38 0.15 0.010* 
Na 141 265 107 0.110 
Mg 2654 7227 2505 0.018* 
A1 9177 22085 7265 0.006* 
Si 5588 13315 4430 0.006* 
P 955 890 1154 0.044* 
K 187 169 264 0.002* 
Ca 14673 10487 39240 <0.001* 
Ti 585 1119 346 0.073 
V 34.0 84.9 23.1 0.002* 
Cr 23.1 58.7 20.7 0.028* 
Mn 1316 525 421 0.008* 
Fe 11274 27715 9889 0.010* 
Co 5.9 13.3 3.9 0.035* 
Ni 12.3 31.9 13.8 0.078 
Cu 19.7 52.1 58.1 0.003* 
Zn 242.8 93.5 50.7 0.203 
As 4.0 20.8 8.4 0.004* 
Se 0.55 1.21 2.99 <0.001* 
Sr 68.8 49.5 129.4 <0.001* 
Zr 2.8 6.2 4.4 0.039* 
Mo 0.72 0.69 1.09 0.104 
Ag 0.37 0.63 0.61 0.039* 
Cd 0.58 0.46 1.13 <0.001* 
Sn 0.94 0.94 0.74 0.439 
Sb 0.13 0.47 0.45 0.163 
Ba 126.7 96.3 50.0 0.015* 
W 0.06 0.14 0.03 0.592 
Hg 0.19 0.07 0.23 <0.001* 
Tl 0.21 0.19 0.16 0.207 
Pb 11.62 7.55 6.06 0.008* 
Bi 0.16 0.26 0.07 0.199 
U 0.29 0.77 1.01 0.009* 

* Significant at p=0.05 
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Table 4.3: Kruskal-Wallis H-test probabilities ( p )  for distinguishing surface, subsurface 
and channel bank materials in the Viewland Lake catchment using individ­
ual fingerprint properties. Mean concentration values are also given for each 
fingerprint property for each source type. 

Fingerprint Surface mean Subsurface mean Channel bank mean p 
property (mg kg x) (mgkg x) (mgkg *) 

Li 5.03 13.05 5.68 0.002* 
Be 0.18 0.43 0.25 0.010* 
Na 160 301 204 0.110 
Mg 2943 6638 4077 0.018* 
A1 8181 18754 10472 0.006* 
Si 4926 11272 6358 0.006* 
P 1114 1060 1193 0.044* 
K 205 191 226 0.002* 
Ca 23122 11900 13350 <0.001* 
Ti 689 1200 486 0.073 
V 40.1 99.6 38.8 0.002* 
Cr 31.4 73.4 34.4 0.028* 
Mn 1085 805 241 0.008* 
Fe 11272 33005 12603 0.010* 
Co 5.0 13.1 5.0 0.035* 
Ni 13.4 32.6 21.3 0.078 
Cu 26.0 55.3 67.8 0.003* 
Zn 94.7 109.0 45.9 0.203 
As 1.6 4.1 1.5 0.004* 
Se 0.65 1.17 1.53 <0.001* 
Sr 94.7 80.9 71.6 <0.001* 
Zr 3.4 6.4 5.3 0.039* 
Mo 2.50 1.84 3.22 0.104 
Ag 0.54 0.54 0.55 0.039* 
Cd 0.78 0.57 0.42 <0.001* 
Sn 0.45 0.49 0.41 0.439 
Sb 0.10 0.14 0.19 0.163 
Ba 125.8 104.8 65.4 0.015* 
W 0.04 0.09 0.04 0.592 
Hg 0.20 0.08 0.19 <0.001* 
Tl 0.19 0.17 0.15 0.207 
Pb 10.31 6.23 3.06 0.008* 
Bi 0.03 0.06 0.02 0.199 
U 0.59 0.89 0.72 0.009* 

* Significant at p=0.05 
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Table 4.4: Fingerprint properties selected by the stepwise Multivariate Discriminant 
Function Analysis to distinguish source types in the Boswell Lake catchment. 

Fingerprint property Wilks' lambda Cumulative % source type samples classified 
correctly 

Se 0.427 77.1 
Al 0.241 100 
Ba 0.130 100 

4.2.2 Sediment source contributions 

The results of the multivariate unmixing model for Boswell Lake and wetland cores are 

shown in Figure 4.2. The dominant sediment sources for both cores were channel bank and 

subsurface material. It is important, however, to remember when interpreting these results 

that there are errors associated with these percentages. The errors for the Boswell Lake and 

wetland source tracing results are summarized in Table 4.5. The percent relative errors are 

considerably higher than values that have been documented by other source tracing studies 

(Collins et al., 1997; Carter et al., 2003), which report that errors below ±15% provide an 

accurate interpretation of the source material proportions. Here, errors range from ca. 5-40% 

in the lake core, and ca. 13-50% in the wetland core. These higher error values likely reflect 

the high degree of overlap observed among the three source groups with respect to their 

geochemical characteristics (see Fig 4.1(a)). 

At 6 cm down-core (ca. 1936), the lake core was composed of 100% channel bank material 

and gradually received a greater proportion of subsurface material up-core. A maximum of 

26% subsurface material was reached at 2 cm depth. A slight decrease to 23% subsurface 

material was observed at 1 cm with a corresponding increase in channel bank material. The 

increase in subsurface material also coincided with the time periods during which logging 

was present (1960-1975, 1982-2008), approximately 3 to 4 cm depth. 

The maximum percentage of subsurface material (62%) occurred at 11 cm depth (ca. 

1876) in the wetland core (BL-D8). A general decreasing trend of subsurface material was 

then observed up-core until a minimum of 16% was reached at 2 cm. Surface material 
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appeared along with subsurface and channel bank material in the top 1 cm, however, it only 

accounted for 6% of the material in the core. The beginning of the post-logging period, which 

occurred at approximately 7 cm depth in the wetland core, did not appear to correspond 

with any significant changes in sediment source contributions. 
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Figure 4.2: Results of the multivariate unmixing model for the (a) Boswell Lake and (b) 
wetland cores. Values on the secondary y-axis represent the dates calculated 
using the CRS model for each 1 cm core slice containing detectable concen­
trations of 210Pb. Each date aligns with the bottom of its respective 1 cm 
core segment. 

4.2.3 Correlations 

Table 4.6 provides a summary of all correlation coefficients and significance values. Sedi­

mentation rates were not significantly related to changes in any of the source materials in 

the lake core. Changes in source materials were, however, highly correlated with other proxy 

indicators (see Table 4.6). In the Boswell Lake core (BL-Pl), median grain size was found 

to be inversely related to percent subsurface material. Increasing proportions of subsurface 
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Table 4.5: Percent relative errors and standard errors for the unmixing model calculations 
for the Boswell Lake (BL-P1) and wetland (BL-D8) cores. 

BL-Pl BL-D8 

Depth (cm) % Error Standard error % Error Standard error 

1 22.0 0.52 23.1 0.01 
2 16.4 0.33 24.0 0.08 
3 18.5 0.04 15.6 0.12 
4 15.9 0.81 13.5 0.11 
5 16.7 0.01 13.7 0.21 
6 20.7 0.05 20.4 0.64 
7 20.2 0.01 17.8 0.54 
8 18.3 0.07 25.4 0.43 
9 15.8 0.29 19.1 1.07 
10 10.2 0.16 23.0 1.78 
11 30.2 0.04 21.0 1.66 
12 39.1 0.15 19.4 0.47 
13 35.7 0.07 31.1 0.92 
14 19.8 0.02 44.4 0.21 
15 16.2 0.00 41.9 0.26 
16 4.5 0.01 49.3 0.40 
17 8.0 0.05 41.5 0.65 
18 13.7 0.24 38.3 0.43 
19 17.4 0.09 45.4 0.68 
20 18.0 0.37 41.4 0.57 
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material were also associated with increases in total nitrogen. The reverse was true of chan­

nel bank material which had a positive relationship with median grain size and a negative 

relationship with total nitrogen. 

Sedimentation rates in the Boswell wetland (BL-D8) were negatively correlated with 

subsurface material, and positively with channel bank material, dry bulk density and median 

grain size increased with increasing subsurface material, while percent water content was 

found to decrease with greater proportions of subsurface material. Percent channel bank 

material had the opposite relationship with these proxy indicators; dry bulk density and 

median grain size decreased, and percent water content increased with increasing relative 

contributions of channel bank material. 

Table 4.6: Summary of the significant (p<0.05) correlations found between each source 
material and sedimentation rates, and proxy indicators. 

% Surface % Subsurface % Channel bank 

Lake (BL-Pl) r p r P r P 

Sedimentation rates NS NS NS 
dry bulk density NS NS NS 
Water content NS NS NS 
Magnetic susceptibility NS NS NS 

^50 NS -0.77 0.043 0.77 0.042 
Total carbon NS NS NS 
Total nitrogen 0.74 0.057 0.82 0.023 -0.83 0.022 
C:N NS NS NS 

Wetland (BL-D8) 

Sedimentation rates NS -0.67 0.024 0.62 0.041 
dry bulk density NS 0.88 <0.001 -0.85 <0.001 
Water content NS -0.88 <0.001 0.86 <0.001 
Magnetic susceptibility NS NS NS 
dso NS NS -0.92 <0.001 
Total carbon NS 0.92 <0.001 -0.93 <0.001 
Total nitrogen NS -0.77 <0.001 0.83 <0.001 
C:N NS NS NS 

NS = not significant 
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4.3 Viewland Lake catchment 

4.3.1 Composite fingerprint 

According to the Kruskal-Wallis H-test, 29 out of the 34 fingerprint properties were appro­

priate to continue on to the stepwise MDFA analysis (Table 4.3). From these 29 properties, 

Se and Pb were selected as the composite fingerprint as they were able to correctly identify 

the original source group for 100% of the source materials (Table 4.7). To ensure that the 

chosen composite fingerprint was a reliable source discriminator, a third fingerprint property, 

As, was added. Similar to the selection process for the source materials in the Boswell Lake 

catchment, As was chosen because it was the next property selected by the stepwise MDFA 

to lower Wilks' lambda values. 

Table 4.7: Fingerprint properties selected by the stepwise Multivariate Discriminant 
Function Analysis to distinguish source types in the Viewland Lake catch­
ment. 

Fingerprint property Wilks' lambda Cumulative % source type samples classified 
correctly 

Se 0.225 82.0 
Pb 0.129 100 
As 0.082 100 

4.3.2 Sediment source contributions 

Results of the multivariate unmixing model are provided in Figure 4.3. When interpreting 

the relative changes in the source type contributions over time it is important to keep in 

mind the errors associated with these values. The errors for the Viewland Lake core range 

from approximately 39% to 81%. Errors for the wetland core are considerably lower and 

range from approximately 12% to 39%. Similar to the unmixing results for the Boswell Lake 

catchment, these higher errors are likely due to the high overlap observed for the geochemical 

characteristics of the source types (see Fig. 4.1(b)). 
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Periodic changes in source type contributions are found throughout the Viewland Lake 

core. In general, the dominant source contributing to the lake was channel bank material. 

Subsurface material is present at 16 and 17 cm down-core constituting approximately 57% 

and 40% of the sediment, respectively. Relatively small amounts of surface materials are 

present at 11 to 14 cm down-core and do not appear again until 4 cm. Subsurface material 

is the dominant source (70%) at 2 cm with surface material making up the other 30%. 

Surface and subsurface materials are still present in similar proportions in the top 1 cm, 

however, channel bank material is present and accounts for 19% of the material in the lake 

core. The timing of these changes in the top 2 cm of the lake core align well with the onset 

of forestry practices. Logging in the Viewland Lake catchment area occurred only in 1983 

which coincides with 3 cm depth in the lake core. 

The wetland core (VL-D1) did not show any variations in source material composition 

over time and was composed entirely of channel bank material. 

Table 4.8: Percent relative errors and standard errors for the unmixing model calculations 
for the Viewland Lake (VL-P1) and wetland (VL-D1) cores. 

VL-P1 VL-D1 

Depth (cm) % Error Standard error % Error Standard error 

1 47.0 0.05 14.2 0.09 
2 44.8 2.28 12.0 0.10 
3 80.5 1.17 12.8 0.09 
4 63.2 0.85 13.5 0.11 
5 62.5 0.55 14.0 0.06 
6 61.3 0.47 13.3 0.11 
7 49.1 0.48 23.3 0.17 
8 51.4 0.48 28.5 0.27 
9 49.8 0.25 30.3 0.34 
10 61.0 0.65 31.7 0.40 
11 57.6 1.01 28.7 0.25 
12 50.7 1.22 39.1 0.62 
13 60.2 0.86 45.3 0.91 
14 56.4 0.83 38.1 0.52 
15 56.2 0.66 
16 38.6 0.60 
17 38.7 0.58 
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Figure 4.3: Results of the multivariate unmixing model for the (a) Viewland Lake and 
(b) wetland cores. Values on the secondary y-axis represent the dates cal­
culated using the constant rate of supply model for each 1 cm core slice 
containing detectable concentrations of 210Pb. Each date aligns with the 
bottom of its respective 1 cm core segment. The asterisk (*) identifies core 
slices that were not corrected for particle size due to a lack of material. 
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4.3.3 Correlations 

Correlation analyses were also used to determine if any relationships exist between sediment 

sources and sedimentation rates. Source material proportions were also compared to all 

proxy indicators (Table 4.9). Changes in sediment source materials were not found to have a 

significant relationship with sedimentation rates in Viewland Lake. They were, however, sig­

nificantly correlated with several proxy indicators. Increasing dry bulk density and magnetic 

susceptibility, as well as decreasing water content, total carbon and total nitrogen were all 

associated with increasing percentages of surface materials in the lake core. The same was 

true of subsurface material, which was also positively correlated with C:N. Increases in the 

percentage of channel bank material were related to decreasing dry bulk density and mag­

netic susceptibility, and increasing values of water content, median grain size, total carbon 

and total nitrogen. 

Variations in sediment source contributions were not compared to sedimentation rates in 

the Viewland wetland since sediment sources did not change over time and were composed 

entirely of channel bank material. 

Table 4.9: Summary of the significant (p<0.05) correlations found between each source 
material and each proxy indicator for the Viewland Lake core (VL-P1). 

% Surface % Subsurface % Channel bank 

Proxy r V r P r P 

Sedimentation rates NS NS NS 
dry bulk density 0.62 0.007 0.63 0.007 -0.72 0.001 
Water content -0.58 0.016 -0.58 0.015 0.66 0.004 
Magnetic susceptibility 0.78 <0.001 0.54 0.024 -0.70 0.002 
dso NS NS 0.52 0.038 
Total carbon -0.75 <0.001 -0.60 0.011 0.73 <0.001 
Total nitrogen -0.61 0.009 -0.77 <0.001 0.83 <0.001 
C:N NS 0.57 0.016 NS 

NS = not significant 
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Chapter 5 

Discussion 

The following chapter discusses the results for each study site independently as the char­

acteristics and histories of their catchments are different. Subsequent sections explore the 

impacts of local versus regional factors, as well as the importance of landscape position. 

Limitations of the study and future research directions are also provided at the end of the 

chapter. 

5.1 Boswell Lake catchment 

5.1.1 Lake sediment 

The results of the one and two sample t-tests indicate that lake sedimentation rates did not 

change significantly at any point during the post-logging period. A weak or absent logging 

signal in downstream lakes has been reported by other paleolimnological studies. Paterson 

et al. (1998) found that logging did not have a significant impact on lake chemistry and 

species composition, and indicated that site-specific characteristics such as buffer strips, or 

rapid re-growth of vegetation can minimize sediment transfers. However, slight increases in 

dry bulk density and magnetic susceptibility indicate a possible increase in the delivery of 

clastic sediment to the lake from allochthonous sources. Additionally, moderately high (>12) 

C:N values are present throughout the entire lake profile which suggests the majority of the 

sediment was delivered from a terrestrial source (Meyers & Ishiwatari, 1993), as opposed to 

an internal lake source. Furthermore, the underlying bedrock contains limestone (CaC03) 

which may cause the sediment to be enriched in inorganic carbon leading to high C:N values, 

although further research would be needed to confirm this. 
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Based on the source tracing results, the dominant sediment source to Boswell Lake is 

channel bank material, and the secondary source is subsurface soil material. After approx­

imately 1947, the proportion of subsurface material delivered to the lake increased. During 

this same period, a shift in each of the proxy indicators occurred all providing evidence 

for increasing proportions of clastic-rich sediment. This change to increasing proportions of 

clastic-rich sediment becomes particularly obvious when dry bulk density and percent water 

content are examined over a longer time period (Fig. 3.7). The peak in dry bulk density 

at approximately 1976 (3 cm depth) is the highest it has been in over 2,410 years (where 

56 cm down-core corresponds to the Bridge River tephra layer). The presence of subsurface 

material is, however, not sufficient to account for the unprecedented increase in dry bulk 

density since subsurface material has been observed before without similar increases in dry 

bulk density (e.g. 9 cm depth). 

Based on the location of the Bridge River tephra layer, average sedimentation rates over 

the last 2,410 years were found to be approximately 1.9 x 10-3 g cm-2 y-1. Compared to 

this value, sedimentation rates increased approximately 4-fold at the beginning of the 1940s 

and remained elevated throughout the remainder of the profile. High sedimentation rates 

coupled with the erosion of clastic-rich subsurface soil material could account for elevated 

dry bulk density values. However, since this shift to increasing proportions of clastic-rich 

sediment began in the 1940s, it cannot be attributed solely to forestry practices which began 

in 1960. 

Statistically, neither variations in Boswell Lake sedimentation rates nor the sediment 

characteristics could be explained using changes in climate variables; yet, visible changes in 

several hydrometerological variables should be discussed. A break point and subsequent step 

increase in average stream discharge for the Quesnel River at Likely, BC occurred in 1944. 

This step change was accompanied by increased stream discharge variability, increased mean 

annual precipitation, and an increase in the number of frost-free days. Dery et al. (2009) 

reported a similar trend in northern Canadian rivers which they described as an intensifica­
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tion of the hydrological cycle. They noted that large-scale climate processes are known to 

produce step changes or trend reversals in the hydrological regime of North American rivers. 

With respect to the present study, 1945/46 represents a phase shift in the Pacific Decadal 

Oscillation (PDO) to a "cool phase". Cool phases in northwestern North America are charc-

terized by above average October-March precipitation, as well as above average snow pack 

and spring stream flow (Mantua & Hare, 2002). This cool phase ended in approximately 

1976 and was followed by a warm phase which produced the opposite effect (Woo et al., 

2006). 

Surface erosion in an undisturbed catchment is dependent on climate, soil type, vegetation 

cover, and water input (Wondzell & King, 2003). Overland flow is not expected to have 

caused a significant increase in the erosion and delivery of sediment since it is unlikely 

that, based on this climate regime, rainfall intensity would have exceeded the infiltration 

capacity of the soil. Therefore, it is reasonable to assume that the majority of sediment 

erosion and delivery occurred within the channels. Hooke (1979) found that the amount of 

precipitation, antecedent soil moisture conditions, and peak discharge were strong predictors 

of channel bank erosion. Significant increases in the amount of precipitation after 1944 may 

have therefore driven channel bank erosion. Additionally, the magnitude and timing of spring 

snowmelt can strongly impact stream discharge. This biogeoclimatic zone receives up to 50% 

of its precipitation as snow. A significant increase in the frost-free period may have resulted 

in faster snowmelt thereby increasing channel bank erosion, and possibly the redistribution 

of channel bed sediment. 

5.1.2 Wetland buffering function 

The objective of this study was to characterize the response of the sediment trapping function 

of wetlands to a landscape disturbance (i.e. forestry practices). Several cores were taken 

throughout Boswell wetland, but only two were analyzed in this study. Cores taken from 

the far west channel were selected for analysis because they were successfully retrieved on 
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the first attempt and surface sediments were minimally disturbed. Additionally, cores were 

taken from near the wetland inflow and outflow to attempt to characterize the distribution 

of sediment along the length of the wetland channel. 

In general, the majority of sediment accumulation in the Boswell wetland occurred closest 

to the inflow and rapidly decreased moving toward the wetland outflow. This finding is con­

sistent with the results of other studies that examined wetland sediment retention (Brueske 

& Barrett, 1994; Cahoon, 1994; French et al., 1995; Reed et al., 1997). Forestry activities 

did not have a statistically significant impact on sedimentation rates in either wetland core. 

However, peaks in the sedimentation rates of the wetland outflow core (BL-D10) correspond 

to both periods of forestry activities. The spatial distribution of sediment in a wetland has 

previously been attributed to the characteristics of the wetland and channel flow patterns 

(Hupp & Bazemore, 1993; Harter & Mitsch, 2003). The only noticeable difference between 

the characteristics of the two coring sites in the Boswell wetland channel was the water depth 

which increased with increasing distance from the wetland inflow. Harter & Mitsch (2003) 

observed that deeper areas within two experimental wetlands had higher sedimentation rates 

than shallower areas of the wetlands. Since sedimentation rates were generally higher near 

the inflow where the channel is shallower, then the physical characteristics of the sediment 

may have influenced its spatial distribution in the wetland. 

Median grain size near the wetland inflow experienced a large decrease (i.e. sediment 

became finer) after the 1940s and remained significantly low during the active logging periods. 

A significant decrease in median grain size may have influenced the conditions necessary 

to facilitate sediment deposition. Finer material requires less stream power to remain in 

suspension and can therefore be transported over greater distances than coarser material 

(Duncan et al., 1987). However, the physical characteristics of the material near the outflow 

(i.e. reduced dry bulk density and relatively low magnetic susceptibility values) suggest that 

the sediment is not predominantly clastic. Despite the lack of sediment source tracing data 

for BL-D10, it could be assumed that a decrease in dry bulk density along with increased 
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sedimentation rates may have been the result of enhanced channel bank erosion (based on 

the source tracing results of BL-D8). Nevertheless, deeper areas near the wetland outflow 

may have provided more ideal conditions for the deposition and storage of fine sediment. 

Sedimentation rates in both wetland cores also possess the same step increase found 

in the Boswell Lake core at approximately 1940. Rates of sediment accumulation in the 

wetland core near the inflow (BL-D8; 5.2 x 10~2 g cm-2 y_1) are more than double that 

of the core near the outflow (BL-D10; 2.3 x 10~2 g cm-2 y_1) which suggests that this 

area of the wetland is providing a more effective trapping function. The 1940 step change 

also produced small decreases in dry bulk density and magnetic susceptibility. Although 

C:N was not greatly affected by the 1940 step change, indicating that the source of the 

sediment was still terrestrial, total C and total N experienced large increases shortly after 

1940. Total C more than doubled, rising from 11% to 24%. Total N increased from 0.56% 

to 1.3%, almost tripling its pre-1940 value. These changes in the physical and chemical 

characteristics of the sediment provide strong evidence that this section of the wetland is 

trapping primarily allochthonous organic material (Meyers & Ishiwatari, 1993). Moreover, 

the strong positive correlation between sedimentation rates and channel bank material along 

with a corresponding increase in discharge variability suggests that channel bank erosion 

likely intensified during this time. 

Although sharp increases in the sedimentation rates near the wetland outflow appear to 

correspond with the timing of logging, other drivers of wetland sedimentation rates should 

also be recognized. As a result of their sediment and nutrient trapping function, wetlands 

tend to be areas of high productivity. Sedimentation rates presented in the current study 

reflect total sediment accumulation over time. Trends in mean annual temperature (MAT) 

in the Boswell Lake catchment have been found to steadily increase over the last century 

by approximately 0.085°C y"1 (£=2.99, p=0.003). Therefore, it is possible that increases in 

primary production have contributed to increases in sedimentation rates. 
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5.2 Viewland Lake catchment 

5.2.1 Lake sediment 

The presence of active logging in the upstream areas of the Viewland Lake catchment did not 

have a statistically significant impact on the sedimentation rates found in Viewland Lake. 

Although a post-logging increase in sedimentation rates was observed, several much larger 

spikes in lake sedimentation rates occurred in the late 1940s to mid 1950s. The results of 

the stepwise linear regression for Viewland Lake sedimentation rates indicate that sediment 

delivery in this catchment is largely governed by regional climatic processes. Precipitation as 

snow experienced a large increase in the early 1900s, peaking in the late 1940s to mid 1950s, 

after which it declined until the end of the century. These observations correspond well with 

lake sedimentation rates (Fig. 3.12), as well as the phase changes in PDO. The shift to a cool 

phase in 1945/46 until approximately 1976/77 would have increased snow pack and spring 

freshet leading to greater runoff and sediment delivery (Mantua k Hare, 2002; Woo et al., 

2006). 

Despite consistently elevated lake sedimentation rates through the 1940s and 1950s, phys­

ical and chemical characteristics of the lake sediment did not change. A high background 

C:N suggests that the sediments are largely allochthonous and in-lake productivity does not 

make a significant contribution to Viewland Lake. A post-logging decrease in median grain 

size is consistent with the results of other studies that found logging activities to increase 

the production of fine-grained sediment (Reid &: Dunne, 1984; Tague & Band, 2001). Sharp 

increases in both dry bulk density and magnetic susceptibility have previously been associ­

ated with periods of land clearance (Thompson et al., 1975; Lott et al., 1994). Thompson 

et al. (1975) also noted a decrease in total carbon content, and concluded that these changes 

were all indicative of increasing contributions of inorganic allochthonous material. These 

changes in the physical properties of the sediment are also supported by the source tracing 

results which show evidence of a change from predominantly channel bank material to a mix 
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of subsurface material and surface material (Fig. 4.3(a)). 

The possible driver of the two increases in the proportion of subsurface materials found 

at the bottom of the core (16 and 17 cm) cannot be identified using the current dataset. 

Records of landuse activities are not available for the mid to late 1800s. As well, ClimateBC 

is only able to provide modelled climate data beginning in 1901. It has been recognized that 

a particle size correction was not available for either of these core slices; however, the inclu­

sion of a particle size correction would not drastically alter the source tracing results such 

that subsurface material would be excluded from the source tracing results. Based on the 

changes that have occurred during the last century it is unlikely that subsurface materials 

would have been transported in such high proportions without a significant disturbance. For 

example, mining activities would provide the necessary disturbance to increase the erosion 

and delivery of subsurface material to downstream waterbodies, and was also a prominent 

land use disturbance during this time (late 1800s). However, when considering the phys­

ical and chemical changes of the lake sediment associated with the presence of subsurface 

material, one would have expected to observe an increase in dry bulk density, magnetic 

susceptibility and C:N, none of which appear in the bottom 2 cm. 

5.2.2 Wetland buffering function 

Statistically, the timing of forestry practices was a significant predictor variable of wetland 

sedimentation rates; however, sedimentation rates began to rise in the early 1900s while 

logging only occurred in 1983. Although climate variables were not found to explain any 

additional variation in wetland sedimentation rates, an overall increase in mean annual pre­

cipitation of 0.466 mm y_1 (£=1.58, p=0.117) may have driven increased sediment transport. 

A similar line of reasoning was also used by Foster (1995) who could not find a detectable 

trend in annual precipitation, but suspected that an increase in precipitation provided the 

energy necessary to increase sediment yield. As was discussed for Boswell wetland, possible 

increases in primary production should be taken into account as they may have contributed 
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to wetland sedimentation rates. MAT was also found to significantly increase over the last 

century by approximately 0.0084°C y"1 (f=3.01, p=0.003). The steady increase of wetland 

sedimentation rates could thus be the result of increased MAT driving primary production. 

During visual inspection of the core it was found that above 10 cm (mid 1950s) the 

dominant material changed from dark brown organic sediment to woody debris. This is 

consistent with low magnetic susceptibility values, and decreases in dry bulk density and 

high C:N values. Cahoon (1994) found that unmanaged wetlands had higher rates of organic 

matter accumulation, especially closer to the wetland inflow. However, he also observed an 

increase in the accumulation of minerogenic material which was not observed in the Viewland 

wetland. If the wetland was performing a buffering function then evidence of minerogenic 

material should have been found in the wetland core. Additionally, such high proportions 

of surface and subsurface material should not have been observed in the lake core. Several 

explanations for the lack of subsurface material in the wetland core, as well as the presence 

of subsurface material in the lake core, have been described below. 

When wetland coring was being carried out (late summer) it was noted that water was 

not present in the Viewland wetland channel. In general, wetlands that are permanently 

inundated provide a more effective sediment trapping function (Johnston, 1991; Hupp & 

Bazemore, 1993). As well, the ephemeral nature of flooding in this channel would have pre­

vented the growth of wetland vegetation which play an important role in sediment trapping 

and stabilization of the wetland bottom. A study by Duncan et al. (1987) tested the ability 

of two ephemeral channels to capture various sediment grain sizes derived from logging roads. 

They found that throughout periods of active flow, differences in channel length, vegetation 

density and the amount of woody debris affected the ability of ephemeral channels to re­

duce the delivery of sediment greater than 63 yum to the mouth of the channel, regardless 

of stream discharge. However, these characteristics became less important with sediment 

less than 63 /mi. Only during extremely low flow conditions was fine sediment retained 

in the channels, and slight increases in discharge resulted in the resuspension of previously 
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deposited fine sediment. 

The presence of logging roads in the Viewland Lake catchment is thought to be a possible 

driver of fine-sediment production. Road density in this catchment is approximately 4-times 

that of the Boswell Lake catchment (2.76 km km-1 in the Viewland Lake catchment versus 

0.67 km km-1 in the Boswell Lake catchment). In general, surface erosion due to overland 

flow in the Viewland Lake catchment would not have contributed a large amount of sediment 

to surface waters since it is unlikely that rainfall intensity would not have exceeded infiltration 

capacity of the soil. However, surface erosion of roads and subsequent sediment transport 

would have been possible since the infiltration rate of compacted road surface is quickly 

exceeded during rainfall events. Furthermore, the arrangement of roads relative to streams, 

and the number of road-stream crossings can modify the direction and magnitude of water 

flow (Jones et al., 2000). The direct connection between the logging road and the Viewland 

channel likely increased the rate of sediment delivery from the road surface to the stream 

network. 

The Viewland Lake catchment was originally included in this study as a secondary site, 

and as a result, only one core was collected from the wetland. An upper section of the 

lake exists which is also bordered by a wetland with a channelized inflow and outflow (see 

Fig. 2.3). This upstream area was also impacted by forestry practices in 1983. Assuming 

low water and sediment residence times for the upper lake, and negligible wetland buffering, 

sediment could have been transported from another area of the cutblock to Viewland Lake. 

Finally, a particle size correction was not available (due to the lack of sediment for 

analysis) for the wetland core slice that, based on the timing of logging, would have been 

impacted by logging (6 cm). However, the inclusion of a particle size correction should not 

have impacted the rank order of the source groups and channel bank material would have 

remained the dominant source type. Additionally, changes in the physical and chemical 

characteristics do not provide any evidence of an input of subsurface material. 
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5.3 Importance of landscape position 

The concept of hydrological connectivity is important when considering the position of a 

disturbance in the landscape and its potential to increase sediment yield. At the patch scale, 

the factors that have the greatest influence on sediment yield are slope angle, slope length, 

and whether runoff will enter a dispersive or channelized pathway (Bracken &; Croke, 2007). 

Spicer (1999) used an impact factor in his statistical models to relate likely travel path and 

path distance to sedimentation rates in lakes in the central interior of British Columbia. 

The impact factor took into consideration slope angle as well as the path of least resistance 

down the hillslope. Steeper areas located a shorter distance to a stream or channel were 

more likely to deliver sediment to the downstream lake. While, due to sample size, it was 

not possible to incorporate an impact factor into the present linear models, the concept of 

hydrological connectivity can be used to help explain the spatial distribution of sediment in 

Boswell wetland, as well as the presence of subsurface material in Viewland Lake. 

Although logging activities had no apparent effect on Boswell Lake sedimentation rates 

(see Table 3.2), a disturbance response was observed in the wetland channel from which cores 

were collected and analyzed. Notably, the wetland core near the wetland outflow (BL-D10) 

exhibited the strongest responses to both logging events. These logging events resulted in 

similar areas of deforestation, and both occurred on slopes of moderate inclination. The 

main difference between these two events was their locations in the catchment relative to 

the channel and the wetland. The first logging event was higher in the catchment while 

the second occurred further downstream. By reducing the path length there would have 

been less opportunities for in-channel deposition and storage of sediment. Additionally, the 

decrease in median grain size observed near the wetland inflow (BL-D8) supports the idea 

that an increase in the length of the wetland channel would have been necessary to encourage 

sediment deposition, unless extremely low flow conditions were present. 
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5.4 Local versus regional effects 

A conceptual framework developed by Bracken & Croke (2007) identified five components 

involved in the hydrological connectivity of a catchment. Figure 5.1 shows four of the 

components surrounded by the fifth component, climate. Water and sediment yield, while 

they are strongly influenced by landscape position, delivery pathway, runoff potential and 

lateral buffering, all are driven by climate variables. The results of this study fit well within 

this framework as sedimentation rates in both Boswell Lake and Viewland Lake appear to be 

largely driven by regional, medium-term (i.e. decadal) climatic events rather than short-term 

localized logging events. In terms of forestry practices, other studies have also found that 

lake sedimentation rates (Blais et al., 1998) and resultant lake conditions (Paterson et al., 

1998) were more strongly influenced by regional climatic processes. 
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Figure 5.1: The components of catchment connectivity (from Bracken h Croke (2007)). 

Although forestry practices produced significant responses in sedimentation rates near 

the outflow of Boswell wetland (BL-D10), these changes were short-lived and pre-logging 

conditions were soon re-established (within approximately four years) . Comparatively, the 

step increase in Boswell Lake and wetland sedimentation rates beginning in the 1940s was 

sustained throughout the remainder of the sediment profiles and did not return to pre-1940 

rates. Similarly, the post-logging change in the dominant sediment source to Viewland 
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Lake from channel bank material to subsurface and surface materials was episodic, although 

the system has not yet returned to pre-logging conditions (i.e. dominated by channel bank 

material). Ambers (2001) suggested that logging practices "enhance the effect of big storms". 

In otherwords, forestry practices prepare the landscape for erosion and sediment transport, 

but ultimately suitable hydrological and climatic conditions (i.e. runoff) are required to 

mobilize and deliver sediment to downstream waterbodies. This is consistent with the idea 

that sediment delivery is limited by the total sediment supply. Therefore, forestry activities 

have the potential to increase the amount of sediment on the hillslopes available for transport, 

but do not necessarily result in the immediate increase in wetland or lake sedimentation rates. 

5.5 Study limitations 

The interpretation of the results presented is heavily dependent on the accuracy of the core 

chronologies. Conclusions made in this study have relied upon the changes in sedimentation 

rates, as well as changes in the physical and chemical characteristics, with respect to the 

timing of forestry practices in the catchment. Though, given a different core chronology the 

conclusions drawn from this study may have been different. As discussed in Section 2.3.4, the 

constant rate of supply (CRS) model was selected because its assumptions were best satisfied 

given the unsupported 210Pb profiles. However, the CRS model is not without its flaws. The 

calculated ages at the bottom of the profile tend to be over-estimated, and the model does not 

take into consideration variable fluxes of 210Pb as in the sediment isotope tomography (SIT) 

model. Additionally, the assumption of minimal post-depositional changes to supported and 

unsupported 210Pb was made as core chronologies could not be verified using 137Cs activities. 

Post-depositional changes to the sediment record are important to consider as they affect 

the reconstruction of the core chronology and the interpretation of past environmental condi­

tions. Wetland cores were taken from the channels flowing through the wetlands since it was 

suspected that the channels are the major delivery pathways for water and sediment moving 

down the hillslopes. Water flow in these channels was observed to be negligible and would 
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have facilitated sediment deposition. However, any increases in flow may have resulted in the 

erosion of the channel bottom and the subsequent redistribution of the deposited sediment. 

Figure 3.3(b) shows the 210Pb and 137Cs profiles for the Viewland wetland core. Compared to 

the Viewland Lake core (Fig. 3.3(a)), the activities of these radionuclides experience greater 

fluctuations over time. Erosion of the wetland bottom due to increases in channel flow may 

have caused these variations. Unconformities or hiatuses in the sediment record as a result 

of erosion would produce under-estimates of the total sedimentation rates in the wetland 

channels. 

Two important aspects of the wetland were not considered in this study which may 

have played a critical role in sediment trapping. Firstly, with changing discharge patterns 

over the last century, the water level in the lake and wetland would have been affected. 

Dead Black Spruce trees (Picea mariana) were found scattered throughout the wetland 

suggesting that the water level would have been sufficiently low at one time to allow for 

tree seed germination and tree growth. If channel length and depth are in fact critical for 

sediment trapping in wetlands, then water level fluctuations would have impacted where 

sediment deposition would have occurred in the wetland. As seen in Boswell wetland, a 

sediment trapping response to deforestation was more prominent in the coring site closest 

to the wetland outflow, presumably due to a fining of the sediment. With respect to sample 

collection, coring locations were selected based on the present-day wetland boundaries which 

were determined using spatial data obtained from the British Columbia Ministry of Forests 

and Range, as well as observed vegetation type. If locations of sediment deposition changed 

with changing water level, then the cores taken may not be representative of an overall 

wetland buffering function. Therefore it is possible that the changes in sedimentation rate 

noted for the wetland core collected at the wetland-lake interface (which coincided with the 

timing of forestry activities) may be due to changes in lake level caused by increased runoff to 

the lake as a result of forest harvest activities (i.e. tree removal and increased road network). 

Secondly, and also related to the first point, wetland vegetation type was not an integral 
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component of the study. During site investigation and coring it was noted that the domi­

nant species in both wetlands were sedges (Carex spp.) and the Yellow Water Lily (Nuphar 

variegata), however, the presence of these species and their spatial distributions could have 

changed depending on the extent of the water level fluctuations. This second point is not of 

major concern as it was pointed out by Duncan et al. (1987) that wetland vegetation did not 

have an impact on the deposition of the finest grain sizes (<63 /im) in channels, and stream 

discharge was a more important factor for sediment deposition. However, it is important to 

note that under certain conditions (i.e. ponded wetlands), vegetation type and density are 

strong determinants of sediment trapping and resuspension. 

5.6 Future research directions 

Certain aspects of the study design have limited the conclusions on the sediment trapping 

function to be extended to the full areas of Boswell wetland and Viewland wetland. Only 

two cores from Boswell wetland, and one from Viewland wetland, were analyzed. Although 

the assumption of negligible overland flow in the wetland area has been made, an additional 

three channels exist in each of the study catchments. A better overall assessment of the wet­

lands' buffering functions could have been attempted had cores from each of those channels 

been analyzed. Additionally, one of the channels in the Viewland Lake catchment was not 

affected by forestry practices. Natural temporal variability of these systems was established 

using a temporal control (i.e. pre-logging conditions), however, analysis of a core from the 

unaffected channel would have provided an appropriate control throughout both the pre- and 

post-logging periods. Therefore, future studies attempting to evaluate the sediment buffer­

ing function of wetlands should consider selecting a study site which has a combination of 

impacted and unimpacted areas. 

This study, like many others, has selected small catchments to address the research ques­

tions and objectives. The advantage of studying a small catchment is that they are generally 

less complex and offer fewer opportunities for terrestrial sediment storage which increases 
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the lag time between sediment mobilization and delivery to the catchment outlet. Addi­

tionally, these catchments were selected because the logged hillslopes were moderately steep 

and directly connected to the channels and thus the downstream wetlands. However, many 

catchments do not have such a simple topography, possess only one lake and one wetland, 

and have a history of only a single land use type at one point in time. These spatial and 

temporal complexities make cumulative effects of disturbance on sediment delivery and wa­

ter quality difficult to understand, especially when the disturbance(s) is a non-point source. 

Similarly, understanding the cumulative effects of wetland functions on sediment quantity 

and water quality is not a straightforward task, and has been largely unstudied. 

One study on the cumulative effects of wetlands on sediment and water quality was con­

ducted by Johnston et al. (1990) who analyzed 33 watershed variables extracted from aerial 

photographs, along with water quality data, for 15 watersheds in the Minneapolis-St. Paul, 

Minnesota, USA metropolitan area. This study aimed to identify wetland characteristics 

which are, statistically, more likely to impact stream water quality (i.e. improve or degrade) 

and quantity. Johnston et al. (1990) found that wetland proximity was an important factor 

in determining the water quality of downstream adjacent lakes and streams, and the effect 

of wetland functions on water quality was not detectable downstream of the wetland. It 

was recognized that further work needs to be done to determine the distance relationships 

between wetlands and downstream water quality. Moreover, this thesis has demonstrated 

that when landscape disturbances (e.g. forestry practices), which change the physical char­

acteristics of the eroded sediment (e.g. grain size), are coupled with hydroclimatic processes 

which increase sediment delivery (e.g. runoff), sediment retention in wetland buffers may 

either: a) not occur, or b) be limited due to sediment redistribution from wetland channel 

bottoms. Therefore, future studies on the cumulative effects of wetlands on water quality 

need to also consider how landscape disturbances have altered the hydrological connectivity 

of the watershed and the physical characteristics of the sediment, all in the context of local 

and regional climatic processes which are in a constant state of change. 
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Chapter 6 

Conclusions and management implications 

6.1 Conclusions 

The results of this thesis provide a description of how the sediment trapping function of 

two central interior British Columbia wetlands has changed over time in response to forestry 

activities and climate processes, in particular precipitation and snowfall. Previous studies 

have identified the need to understand wetland functions and their contributions to water 

quality over a long time frame as much of the literature contains primarily contemporary 

studies. This study has addressed this gap and has also provided information on the origin 

of the sediment deposited in the wetlands and the lakes that they buffer, once again in a 

temporal context of the last century. More specifically, this thesis aimed to determine if 

sedimentation rates and sediment source proportions in two wetlands and their downstream 

lakes were impacted by upstream forestry practices. 

It was demonstrated that forestry practices produced a strong increase in Boswell wetland 

sedimentation rates which was not observed in Boswell Lake. This suggests that Boswell 

wetland provides a buffering function which has not been compromised by an increase in 

sediment delivery. Nonetheless, differences in sediment deposition between the two wetland 

sampling sites (BL-D8 and BL-D10) suggest that certain areas of the wetland provide a more 

effective sediment buffering function than others. The effectiveness of the sediment retention 

function of wetlands has previously been related to several factors intrinsic to the wetland, 

including percentage of wetland coverage, vegetation type and density, and channel depth 

and length. Channel depth and length may have been an important factor in the Boswell 

wetland as stronger post-logging responses were observed near the Boswell wetland outflow 
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where the channel was deeper. However, sedimentation rates were generally higher near 

the wetland inflow which is consistent with the spatial distribution of sediment deposition 

reported for previously studied wetlands. 

A significant decrease in median grain size near the wetland inflow suggests that dif­

ferences in the sedimentation rates between these two sampling sites and their reponses to 

forestry practices may also be related to the characteristics of the sediment. It is well-known 

that, in addition to the water flow conditions, the properties of the sediment also affect 

settling rates. Additionally, forestry practices have been reported to increase the production 

of fine-grained sediment. A fining of the sediment delivered from the hillslopes could have 

increased the distance necessary for sediment deposition to take place. Similarly, in the 

Viewland Lake catchment, there was no evidence of wetland storage of minerogenic subsur­

face material, however, lake sediment was predominantly composed of subsurface material 

and also experienced a significant decrease in median grain size post-logging. It has been 

suggested that the ephemeral nature of the wetland channel, and the smaller width of the 

wetland (ca. 30 m) limited the buffering function of the wetland. Therefore, it is possible 

that the Viewland wetland did not provide a sufficient "buffering distance" to capture the 

fine-grained subsurface material observed in the lake. 

This study also showed evidence of a strong climatic control on wetland and lake sedi­

mentation rates. An intensification of the hydrological regime, which produced an increase in 

both the variability and the magnitude of mean annual precipitation and stream discharge 

in the Boswell Lake catchment, may have been the result of the 1944/45 shift to a cool 

phase in the Pacific Decadal Oscillation. Likewise, sedimentation rates in Viewland Lake 

were found to be strongly influenced by snowmelt. While it is unclear as to why these two 

catchments, which are relatively close in proximity, are impacted by two different climate 

forcings, these findings are ultimately consistent with those of others who have found that 

lake sedimentation rates were largely controlled by the amount of runoff generated. 

Since Boswell Lake was not significantly impacted by the forestry practices, it was not 
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possible to identify a recovery phase. The sedimentation rates at the outflow of the Boswell 

wetland have returned to pre-logging rates, however, they appear to have remained within the 

new climatic regime that began in the early 1940s. A consistent increase in the sedimentation 

rates near the wetland inflow suggests that sediment production from the hillslopes has not 

returned to pre-logging rates. Alternatively, increases in sedimentation rates were strongly 

related to increasing contributions of channel bank material which may have been eroded 

during periods of increased discharge. 

Based on the physical and chemical characteristics of the sediment, recovery to pre-

logging conditions has already occurred in Viewland Lake, however, the results of the un­

mixing model do not entirely support this finding. Subsurface material continued to be the 

dominant source material in the top 1 cm of the lake core. Since the dominant driver of sub­

surface sediment mobilization in this catchment has been assumed to be road construction, 

recovery of this system will depend strongly on the amount of use the road receives and the 

amount of sediment mobilized during road deactivation (i.e. culvert decommissioning). 

Phillips (1989) stated that wetlands offer sites primarily for temporary sediment storage. 

Johnston (1991) argued that wetlands are more likely to provide permanent storage, but also 

recognized that the importance of a wetland as a "storage compartment" depends on the 

flux into the wetland and the duration of retention. Forestry practices in both catchments, 

as well as local and regional climatic influences, were shown to impact both the amount 

of sediment, and the dominant sediment sources. Boswell wetland offered a more effective 

sediment buffering function than Viewland wetland which has been attributed to the depth 

and length of its channel, and thus the length of the wetland buffer. However, differences in 

the spatial distribution of sediment along the channel were likely influenced by the position 

of logging in the catchment relative to the wetland and lake, as well as the characteristics of 

the sediment produced by natural erosive processes and forestry practices. 

Finally, Smol (1991) recognized that the flow of information between "neolimnologists"1 

1Smol (1991) used the term "neolimnologist" to refer to a limnologist working with present-day aquatic 
systems. 
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and paleolimnologists needs to be bidirectional. Paleolimnology requires the understanding of 

present-day processes to interpret long-term findings, while conversely neolimnology should 

assess present-day processes in a long-term context. The purpose of this exercise would 

be to understand the importance of "unusual" events on a broader temporal scale. Based 

on the findings of this research I would extend this recommendation to paleolimnologists 

whose research focuses on the "medium-term". Changes in sedimentation rates and the 

characteristics of the sediment which appeared insignificant over the last century, proved to 

be meaningful over a longer time frame. Furthermore, larger scale processes such as climate 

forcings have been shown here and in other studies to have a greater and more prolonged 

influence on hydrological regimes and sediment delivery than forestry practices. 

6.2 Management implications 

According to the Forest Planning and Practices Regulations under the Forest and Range 

Practices Act set out by the British Columbia Ministry of Forests and Range, riparian 

reserve zones2 are not required for fish-bearing streams with a bank-full width less than 

1.5 m or non-fish-bearing streams (FPPR s.47(4)). Riparian reserve zones for wetlands are 

not required by this same legislation where wetlands are less than 5 ha in size, and not in dry 

or wetland sensitive bigeoclimatic zones. Similarly, wetland complexes that are not located 

in dry or wetland sensitive biogeoclimatic environments also do not require reserve zones if 

they have an aggreagate area less than 5 ha (FPPR s.48). 

A Riparian Management Area Guidebook has been established under the regulations to 

better define the purpose of these areas and how they should be applied to streams and 

wetlands. The objectives of the riparian management areas fail to recognize the importance 

of small streams as sediment delivery pathways, and the implications of increased sediment 

loading via these pathways as a result of forestry practices. This thesis has demonstrated 

2Riparian reserve zones are defined as zones within the riparian management area that are intended to 
protect fish, wildlife habitat, biodiversity and the water values of the riparian reserve zone. 
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that while wetlands can provide a sediment trapping function, this function can be impacted 

by the both the wetland and stream/channel characteristics, as well as the nature of the 

mobilized sediment. 

Furthermore, one must consider the prevalence of small streams and wetlands in the land­

scape versus that of larger streams and wetlands. In the case of the Quesnel River Basin, 

only 12% of the wetlands are greater than or equal to 5 ha while 88% are less than 5 ha. 

Watershed activities should take into account the cumulative effects on sediment yield at the 

basin scale and the consequences of not adequately protecting these smaller areas which are 

much more numerous. However, this then raises the point of, what is "adequate protection" ? 

Foster et al. (2011) recognized that paleolimnology offers the potential for watershed man­

agers to develop site-specific baseline data which can inform water quality guidelines and 

therefore management decisions. When regarded in association with wetland and stream 

characteristics and their potential for sediment deposition under applicable climatic and 

disturbance regimes, a more appropriate and comprehensive management strategy may be 

achieved. 

6.3 Final remarks 

Wetlands perform important hydrologic and geomorphic functions including buffering down­

stream waterbodies from accelerated hillslope erosion. However, landscape disturbances such 

as forestry practices have been shown to alter the physical characteristics of the sediment 

which, under certain hydrological conditions (i.e. high discharge) can cause the sediment 

trapping function of wetlands to be impaired. Therefore, additional research is needed to 

improve our understanding of wetland functions and their contributions to water quality, 

and the conditions under which landscape disturbances diminish those functions. 
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Figure A.l: Bathymetric map for Boswell Lake. Map was obtained online from the Anglers' Atlas. 
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Figure A.2: Bathymetric map for Viewland Lake. Map was created in ArcGIS using 
latitude-longitude coordinates and water depths obtained during a depth 
survey of the lake. 
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ClimateBC variables 

Directly calculated variables: 

MAT mean annual temperature (°C) 

MWMT mean warmest month temperature(°C) 

MCMT mean coldest month temperature (°C) 

TD temperature difference between MWMT and MCMT (°C) 

MAP mean annual precipitation (mm) 

MSP mean annual summer (May to September) precipitation (mm) 

AH:M annual heat:moisture index ((MAT+10)/(MAP/1000)) 

SH:M summer heat:moisture index ((MWMT)/(MSP/100)) 

Derived variables: 

DD<0 degree-days below 0°C, chilling degree-days 

DD>5 degree-days above 5°C, growing degree-days 

DD510o the Julian date on which DD>5 reaches 100, the date of budburst for most plants 

DD<18 degree-days below 18 °C, heating degree-days 

DD>18 degree-days above 18 °C, cooling degree-days 

NFFD the number of frost-free days 

FFP frost-free period 

bFFP the Julian date on which FFP begins 

eFFP the Julian date on which FFP ends 

PAS precipiation as snow (mm) 

EMT extreme minimum temperature over 30 years 



Appendix C. Microscope image of tephra 114 

Appendix C 

Microscope image of tephra 

250 pm 

Figure C.l: Microscope image of the tephra found in both the Boswell Lake and Viewland 
Lake cores. Tephra was identified as having originated from the Bridge River 
event (ca. 2,410 calendar years BP) based on the glass shard morphology and 
tephra colour. 
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2000 

(a) Boswell Lake core (BL-P1) (b) Wetland core (BL-D8) 

(c) Wetland core (BL-D10) 

Figure D.l: Comparison of the 210Pb-based depth-to-age models (CIC, CRS, SIT) for 
(a) Boswell Lake and wetland cores (b) BL-D8 and (c) BL-D10. Error bars 
are not given to enhance the readability of the figure. 
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(a) Viewland Lake core (VL-P1) (b) Wetland core (VL-D1) 

Figure D.2: Comparison of the 210Pb-based depth-to-age models (CIC, CRS, SIT) for (a) 
Viewland Lake and (b) wetland cores. Error bars are not given to enhance 
the readability of the figure. 


