
SECURE DATA COMMUNICATION OVER MOBILE DEVICES
IN HEALTH NETWORKS

by

Ashish Sachdeva

B.Tech, Uttar Pradesh Technical University, 2009

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SCIENCE
IN

MATHEMATICAL, COMPUTER, AND PHYSICAL SCIENCES
(COMPUTER SCIENCE)

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

November 2011

©Ashish Sachdeva, 2011

1+1
Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-494-87557-5

Our file Notre reference

ISBN: 978-0-494-87557-5

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

Abstract

The continuous developments in the field of mobile computing have made it possible to use

mobile devices for healthcare applications. These devices can be used by healthcare

providers to collect and share patients' medical data. However, with increasing adoption of

mobile devices that carry confidential data, organizations need to secure the data from

unauthorized users and mobile device theft. When unencrypted data is transmitted from

one device to another it faces various security threats from malicious code, unsecure

networks, unauthorized access, and data theft. The objective of this research is to develop a

secure data sharing solution customized for healthcare environments, which would allow

authorized users to securely access and share patients' data over mobile devices. We identify

the vulnerable locations in mobile communication network that can possibly be exploited by

unauthorized users or malicious code to access the confidential data, and develop an

efficient security protocol that provides end to end data protection without compromising

device's performance.

To demonstrate the feasibility of our proposed data sharing architecture, a prototype

customized for Point-of-Care-Testing (POCT) scenarios was built in collaboration with

Northern Health, Prince George. Simulations were performed to analyze and validate our

solution against the pre-defined requirement criteria.

11

Table of Contents

Abstract ii

Table of Contents iii

List of Tables vi

List of Figures vii

Acknowledgement ix

Mobile Healthcare and Security Issues 1

1.1 Introduction 1

1.2 Security Issues in Mobile Data Sharing Environment 4

1.3 Proposed Work and Contribution 6

1.4 Research Methodology 8

Literature Review 10

2.1 Introduction 10

2.2 Securing Sensitive Data 14

2.2.1 Securing data from malicious code 14

2.2.2 Securing Data Privacy 19

2.2.2.1 Mobile Data Sharing Solutions 21

2.3 Common Drawbacks of Existing Security Solutions 30

Secure Data Sharing Architecture (SDSA) 33

3.1 Definitions of Key Terms 33

3.2 Underlying Protocols and Definitions 36

3.2.1 Secure Socket Layer (SSL) 36

iii

3.2.1.1 SSL Handshake Protocol 38

3.2.1.2 ChangeCipherSpec Protocol 42

3.2.1.3 Alert Protocol 43

3.2.1.4 Record Protocol 43

3.2.2 Hashed-Message Authentication Code (HMAC) 44

3.3 Secure Data Sharing Architecture: SDSA 48

3.3.1 Architecture Components 49

3.3.1.1 Client Application 50

3.3.1.2 EMR Application 50

3.3.1.3 Web API 51

3.3.1.4 EMR Data Transfer Agent 52

3.3.1.5 Data Store 52

3.3.2 Healthcare Industry Data Exchange Standards and Specifications 53

3.4 Securing Sensitive Data 54

3.4.1 Authentication 55

3.4.1.1 Device and User Registration 56

3.4.1.2 Establishing a Session 58

3.4.1.3 Accessing Data on the Server 59

3.4.1.4 Exchanging Data with Other Users 61

3.4.1.5 Terminating the Session 63

3.4.2 Data Encryption 64

3.5 Contribution and Comparison of SDSA 64

3.5.1 SDSA versus Blackberry Enterprise Server 67

3.5.2 SDSA versus Apple's iCloud 71

iv

Experimentation and Results 73

4.1 Introduction 73

4.2 Prototype Design 74

4.3 Prototype Implementation 77

4.3.1 Web Application Programming Interface (API) 78

4.3.2 SDSA Data Store 80

4.3.3 EMR Data Transfer Agent 82

4.3.4 Client Application 82

4.3.5 EMR Application 85

4.3.6 Error Handling and Logging 86

4.4 Experimentation Requirements 87

4.4.1 Usage Scenario 88

4.5 Validation against Criteria 89

4.5.1 Usability Criteria 89

4.5.2 Technical Criteria 93

4.6 Summary of Validation against Criteria 108

Conclusion and Future Work 109

5.1 Limitation(s) of Proposed Work Ill

5.2 Future Work 111

Bibliography 113

Appendix 1 120

v

List of Tables

Table 2.1 Software versus Hardware based Encryption 21

Table 2.2 Notations used in Figure 2.4.1 and 2.4.2 26

Table 3.1 Differences between SDSA and other Data Sharing Architectures 66

Table 4.1 Web Services Provided by the API 79

Table 4.2 Network Connection Speed 99

Table 4.3 Message Read/Write Times 102

Table 4.4 SDSA versus SSS 104

Table 4.5 SDSA Web Server Performance Test Results 108

Table 4.6 Summary of Validation against Criteria 108

VI

List of Figures

Figure 2.1 Mobile Security Classification 14

Figure 2.2 Marvin Architecture 16

Figure 2.3 Transient Authentication 22

Figure 2.4.1 Read Process 25

Figure 2.4.2 Write Process 25

Figure 3.1 SSL Protocol Stack 36

Figure 3.1.1 SSL Handshake Protocol 38

Figure 3.1.2 Establishing Security Capabilities 39

Figure 3.1.3 Server Authentication and Key Exchange 40

Figure 3.1.4 Client Authentication and Key Exchange 41

Figure 3.1.5 Finalizing the Handshake Protocol 42

Figure 3.1.6 SSL Record Protocol 44

Figure 3.2 Message Authentication Code (MAC) 45

Figure3.2.1 HMAC Implementation 47

Figure 3.3 Secure Data Sharing Architecture (SDSA) 49

Figure 3.4 Accessing Data using SDSA 55

Figure 3.4.1 Device Registration at the Server 58

Figure 3.4.2 Establishing a Session between the Client and the Server 59

Figure 3.4.3 Data Modification using SDSA 61

Figure 3.4.4 Sending a New Message 62

Figure 3.4.5 Forwarding an Existing Message 63

Figure 4.1 SOA Components 76

vii

Figure 4.2 Mapping between SDSA and SOA 77

Figure 4.3 SDSA Data Store Schema 81

Figure 4.4 Model View Controller Design 83

Figure 4.5 Error Message Received From the API 87

Figure 4.6.1 iOS Client Application Screenshot - Compose Message 91

Figure 4.6.2 iOS Client Application Screenshot - View Message 92

Figure 4.7 Read Time Using SDSA 100

Figure 4.8 Write Time Using SDSA 101

Figure 4.9 Read/Write Time versus Message Size 103

Figure 4.10 CPU Performance Monitor 105

Figure 4.11 SDSA Web Server Performance Test Results - Read Data 106

Figure 4.12 SDSA Web Server Performance Test Results - Write Data 107

viii

Acknowledgement

Firstly, I would like to express my sincerest gratitude to my supervisor, Dr. Waqar Haque,

for his invaluable mentorship and feedback. His personal commitment, professionalism, and

persistent encouragement were truly outstanding, and I will be continually grateful for his

patience and generosity throughout this endeavor. He has been immensely helpful and I

could not have accomplished this without his constant and unwavering aid, reassurance and

support.

I would like to extend thanks to the committee members, Dr. Alex Arvind and Dr.

Pranesh Kumar for the time and effort they have put into this work. The level of personal

encouragement they have shown me has been paramount to the success of my research, and

I am indebted to them both. I would also like to thank my friends Anthony McCann and Han

Wei Chan for their valuable feedback and creative support. Their conversations and

discussions helped me expand the boundaries of my thoughts and opinions about various

software and hardware issues related to this thesis.

Lastly, I would like to thank my family for always remaining a pillar of support, no

matter where things have taken me. This would not have been possible without their

continued faith in me.

ix

Chapter 1

Mobile Healthcare and Security Issues

This chapter provides an overview of growing mobile device industry, and its applications

in healthcare. We discuss security issues involved in sharing sensitive data over mobile

devices, and introduce our proposed work that efficiently overcomes these issues.

1.1 Introduction

Mobile devices such as smartphones, Personal Digital Assistants (PDA), tablets, and laptops

are available at an affordable cost today. With advancements in technology these devices

have become computationally powerful and can be used for accessing emails, sharing

multimedia, browsing the web, and much more. The mobile device industry is growing at a

rapid rate, and the average time spent by users on mobile applications (mobile apps) has

surpassed web browsing [1]. Approximately 80 million smartphones were sold just in third

financial quarter in 2010 [2]. Technology analysis firm Gartner predicts that by year 2013

there will be 1.82 billion smartphones alone (not including tablets), which will be higher

than 1.78 billion Personal Computers (PCs) [3]. There are over 4.6 billion subscriptions of

mobile applications that enable users to accomplish majority of tasks currently done on their

desktop computers. For example, Salesforce mobile application [4] provides instant access

1

to business and client data, logs sales, accesses charts and graphs directly on the mobile

device. Square [5] is another popular mobile app that enables any compatible mobile device

to accept credit card payments using a portable credit card reader. Mobile banking

applications are available for accessing financial information, transferring funds, and

making payments.

Mobile devices have the potential to provide preeminent infrastructure for

implementing healthcare applications that enable physicians, pharmacists and nurses to

access patients' health data from any remote location, and share it amongst them. For

example, a physician could use a smartphone or a tablet to access information about

patient's health such as lab results or medical history during a home visit, or share this

information with another physician at a remote location. Future developments would enable

using mobile devices to be connected to medical devices such as glucose monitors and blood

pressure monitors. A study from Manhattan Research found that 71% of physicians who

participated in a study consider smartphones to be essential to their practice and 84% of the

physicians said that the Internet is critical to their jobs [6], Using mobile devices in

healthcare increases the accessibility of patient data and greatly improves the accuracy and

speed with which medical decisions can be made.

Data sharing over mobile devices offers many potential benefits to the healthcare

industry. However, there are several issues that must be handled before data sharing

solutions can be deployed. Mobile devices have small screen size and limited input

capability, which makes designing an optimal user interface difficult. Mobile computing

platforms are different than conventional desktop platforms and have limited computational

and battery resources. It is challenging to design a single application that would be

compatible with mobile devices using different platforms [7]. Installation of third party

2

applications with unknown security vulnerabilities, or accidental navigation to untrusted

sites introduce security risks such as downloading of malicious code without the knowledge

of the user. Furthermore, mobile devices are prone to loss and theft due to their compact and

portable nature.

Around the globe, attempts have been made to improve the way in which data can be

accessed in terms of location, speed, and convenience; although data security on mobile

devices is still an open challenge [8]. Due to strict privacy laws that protect patient data, it is

crucial that all pertinent data is secured from theft or exploitation by unauthorized users. To

fight against spamware, malware or any other malicious code, a solution that currently exists

is installing an antivirus application on the mobile device that detects and removes the

infection. Scanning mobile devices for malicious code, or having an antivirus program run

as a background application can slow down the performance of the device making it

unusable for other tasks [9] [10] [11]. Simply relying on antivirus software is not enough as

they provide protection against threats from malicious code, but doesn't protect against theft

or unauthorized access. Even if the mobile device is stolen, there should be no situation in

which a patient's data could be compromised. One possible solution to this problem is data

encryption, but the encrypted data still remains available to the unauthorized person in

possession of the stolen device. There is always a possibility that a brute force attack may be

applied and data may be revealed.

All the existing solutions ensuring data privacy depend on encryption using strong

cryptographic algorithms that use large sized keys. The problem with such solutions is high

implementation complexity and computational cost that affects the mobile device's

performance, making such solutions less desirable. Most solutions encrypt the entire data on

the device memory, and decrypt it every time data needs to be viewed. In this situation, the

3

time and computation resources required for read/write operation can become excessive.

Mobile device security is a crucial area of research, but unfortunately, not many solutions

are available that are affordable, efficient and scalable, and almost none are available which

could be directly applied to health industry. The aim of this research is to find an efficient

data sharing solution that is specially customized for health industry, and can be practically

applied to provide data security without compromising mobile device's performance.

1.2 Security Issues in Mobile Data Sharing Environment

The following is a general chain of events that occur when mobile devices exchange data:

the sender sends the data to the server via a network connection (either wireless or wired).

The receiver is then notified about new data, at which point the receiver connects to the

server and retrieves the data. The security threats in sending data from one mobile device to

another can be classified into three major categories based on the location of attacks [12]

[13] [14].

1. Insecure Networks: Data must be protected during transmission. An attacker may

eavesdrop on the network connection or tamper with the data, the communication

channel should therefore be encrypted. It is important to provide typical

cryptographic security services such as entity authentication, data authentication, and

data confidentiality [14] . Using standard mechanisms like Secure Socket Layer

(SSL) / Transport Layer Security (TLS) at the transport layer or IPsec at the Internet

layer can safeguard the network against such threats [14] [15]. For this research, we

assume that the communication channel is secure and uses SSL / TLS at the transport

layer.

4

2. Insecure Servers: "The data server is most susceptible to compromise due to

mismanagement, improper configuration or worse, a hacker" [13]. There could be

different types of attacks on the server, like a denial of service attack, malware or

virus infections, spamware, or even worse a hacker may attack and take over control

of a server. The hacker can then access and modify critical data. Storing data that is

encrypted can protect against such attacks. Since servers host large quantities of data,

encrypting/decrypting the entire collection of data every time an access is required

can be expensive in terms of computational cost [13]. Optimization techniques must

be applied to reduce computational cost involved. Finding such optimization

techniques is an important component of this research.

3. Insecure Terminals: The mobile device itself is susceptible to various threats for a

multitude of reasons. These devices resemble PCs in that they utilize complex

software, which invariably contains bugs and vulnerabilities. These vulnerabilities

have posed serious threats by allowing attackers using Bluetooth to completely take

over a device [11]. Security experts are finding growing number of viruses, worms

and Trojan horses that target mobile devices. The attacks are not just theft of user's

financial information but also include deletion of information, artificial inflation of

bills and blocking network traffic [16], There have been popular malicious codes

such as Cabir (a worm that arrives on mobile devices running on Symbian platform

and uses the Bluetooth connection to replicate itself on other devices), Skull (a

Trojan horse that disables Bluetooth, Internet, and SMS communication on the

mobile device), and Mquito (a virus that once installed automatically sends

international SMS to inflate the monthly bill) [16], Using a firewall, access control,

or antivirus software protects the mobile device against such threats, but such

solutions are too demanding in terms of computational and memory resources for

5

real-time detection and removal of the threats [17]. Mobile devices usually use

removal media such as subscriber identification module (SIM) and micro Secure

Digital (SD) cards that can store data. The combination of the portable device size

and the additional removable memory capacity, create opportunities for sensitive and

proprietary data to be removed from a facility and stored in an insecure fashion [18].

In addition to the above threats, the loss of encryption keys must also be handled. Assuming

that organizations use encryption techniques to protect the data on mobile devices and

servers, it becomes important to secure the encryption keys. If an unauthorized user gains

access to the keys the data is no longer secure. It is important that the users such as ex-

employees of an organization, who have had access to the critical data in past, should not be

allowed to access data or the encryption keys. About 60% of the reported attacks have been

from disgruntled users who are either current employees or former employees [13]. Data

access privileges of such users must be immediately revoked to disable any further access to

the data.

1.3 Proposed Work and Contribution

We propose the development of a low cost, secure data sharing architecture that meets

Health Level Seven (HL7) standards [19] for exchanging medical data. The architecture

would allow healthcare providers to securely access patients' health data using mobile

devices that are registered with health organizations. It integrates with Electronic Medical

Record (EMR) applications that are directly connected with existing lab delivery networks

inside a healthcare system. This integration enables receiving patients' lab results directly on

the mobile devices. The architecture employs standard security mechanisms such as

6

authentication, authorization, and encryption to protect sensitive data and overcome the

security issues identified in section 1.2.

The goal of the research is providing end to end data security, which includes securing the

data while it is on the server, on the mobile device, and in transit. The solution enhances

existing security protocols by reducing their current complexity and computation cost. It has

been designed to meet the following fundamental requirements as defined in [20]:

1. Unauthorized access to the data must be denied.

2. Lost data should be recoverable to a new mobile device.

3. Read / write operations on the data should occur in a reasonable amount of time.

In addition to the above, our solution accomplishes the following extended requirements:

4. Only authorized devices must be allowed to access data.

5. A user must be allowed to register multiple devices, and data should be synchronized

across all the devices.

6. Mobile devices should be able to securely interact with the registered EMR

applications, in order to make its data available wirelessly on the device.

The main contribution of this research is the data sharing architecture designed specifically

for healthcare environments. It consolidates data into a single data-store located at the server

side, and provides security mechanisms that ensure data privacy and integrity. Our data

sharing architecture outperforms existing data sharing solutions in terms of time taken for

data read/write operations (see section 4.5). By moving majority of cryptography operations

on the server instead of the device, we have been able to significantly reduce the

computational resources required on the mobile device. The solution uses strong encryption

7

and hashing algorithms that have been recognized as standards by National Institute of

Standards and Technology (NIST). It integrates with an organization's existing user-

management services such as Active Directory, and doesn't require purchasing additional

hardware to provide security. Furthermore, the use of open standards such as XML and

SOAP eliminates language or operating system dependency, and ensures interoperability

between mobile devices with different platforms. Hence, the deployment cost for our

solution is lower than existing data sharing solutions which are strictly proprietary in terms

of supported standards and applications.

1.4 Research Methodology

We use Constructive Research Methodology to build our solution. Constructive research is a

well-established practice in the field of software engineering. It aims at producing novel

solution to practically and theoretically relevant problems [21]. It involves problem solving

through the construction of models, diagrams, plans and strategies, with well-defined phases

of research. The methodology can be summarized as follows:

1. Identify a practically relevant problem.

2. Obtain comprehensive understanding of the problem

3. Construct a solution to the research problem, and build a prototype to demonstrate

the feasibility of the solution.

4. Show original research contribution and theoretical relevance

5. Examine the scope for practical usage of the solution.

Following this methodology, our approach to design a secure data sharing architecture was

as follows:

8

1. Identify the challenges in designing and implementing a secure mobile data sharing

system.

2. Architect a solution to overcome the challenges

3. Build a prototype to demonstrate the feasibility of the solution

4. Run simulations to perform thorough testing; ensuring scalability and security, and

5. Evaluate the usability of the system through feedback from general physicians

In order to identify the challenges related to our research, we studied existing literature on

mobile device security, and data sharing solutions in medical and non-medical areas.

Through an extensive literature review we found out the strengths and weaknesses of

different approaches. We then constructed a solution that meets the requirements identified

from our initial motivation (as discussed in section 1.3) and subsequent literature review. To

demonstrate the feasibility of the researched solution, a prototype customized for data

sharing within a health organization was built. The prototype consists of an Apple iOS [22]

based mobile application that runs on any Apple mobile device (iPhone, iPod or iPad), and

enables healthcare providers to gather, share, or monitor data related to patients' health. We

present the literature review in chapter two, our proposed solution in chapter three, and

prototype implementation in chapter four. Chapter five presents the conclusions of our

research.

9

Chapter 2

Literature Review

This chapter provides an overview of various mobile healthcare applications, and existing

data security solutions in mobile environments. We discuss the salient features of different

security techniques and existing data sharing solutions. We identify their strengths and

weaknesses, and summarize the common drawbacks and limitations.

2.1 Introduction

Clinical care requires healthcare professionals to be able to access patients' health data in an

efficient and timely manner. Mobile healthcare has untapped potential and is still in early

stages of development. Many mobile applications have been developed to aid different

medical purposes ranging from general purpose applications used for broadcasting health

tips, to more specialized ones for emergency or ambulatory environments. Some popular

mobile healthcare applications include:

• ECG-Notes: An application to assist healthcare providers in interpreting

Electrocardiographs (ECGs). It is designed to be a reference guide for physicians and

surgeons, and helps in identifying any abnormalities in patients' ECG by comparing

the graphs with stored diagnostic criteria. It also provides useful information that

10

outlines critical medications needed in a cardiac emergency along with indications,

dosage, contraindications, precautions and side effects for major emergency drugs

[23].

HealthReflex: An application that enables users to track their personal and family

health information by using any iOS or Android based mobile device. Users can

store clinical reports, immunizations, procedures, test results and manage their

medication history on the device, and share this information with a physician who

can then track prescription history or diagnostic reports [24].

BodyMedia: An application to help control obesity by using wireless sensors to track

users' physical activities, calories and sleep patterns. The sensors collect more than

5000 data readings every minute that can be accessed by an authorized user such as a

physician or dietician through an online website [25],

Electronic Point-of-Care (e-POC): A PDA based electronic healthcare system that

manages patients' information in an ambulatory care environment [8] [26]. "Paper

based information is available to a clinician at a point-of-care scenario is effectively

limited to what the clinicians are able to carry" [27], e-POC helps removing this

limitation by allowing physicians to collect and exchange medical data in real time

using a PDA with Internet connection.

mCare: A telephony-based messaging system developed by U.S. army to send

messages via cell phones to wounded soldiers in the outpatient phase of their

recovery [28]. Patients with mild traumatic brain injuries are the target population for

mCare, and receive a minimum of six messages per week about general health tips,

appointment reminders and general announcements. These messages are

disseminated from a central website where healthcare provides can enter and control

11

message content. The messages are sent over a secure Virtual Private Network

(VPN) tunnel and can be accessed by patients by entering a Personal Identification

Number (PIN) chosen by the user during registration for the service [28].

In addition to above mentioned, the following prototypes have been built:

• Northern Arizona State University developed a mobile app to assist with healthcare

crisis due to insufficient medical staff, facilities, and funding in tribal areas of

Arizona State [29]. The application was deployed on a ViewSonic Pocket PC to

collect data related to patients' diabetes while conducting a home visit. Data gathered

includes a thorough analysis of the patient's feet in order to uncover potential foot

wounds. Healthcare providers are able to enter notes, schedule appointments, and

make referrals all of which is stored as a part of patient's record. The information

resides in a relational database stored on the mobile device and can be transferred to

other medical facilities over the Internet.

• The Automated Remote Triage and Emergency Management Information System

(ARTEMIS) is an ongoing research which aims at improving the clinical care under

emergency/disaster situations by providing real-time physiological information of

injured soldiers to first commanders/responders and command personnel [8] [30].

The application monitors patients' data using a mobile device and transmits it to

remote medical facilities. This allows medical facilities to initialize triage processes

(process of determining the priority of patients' treatments based on the severity of

their condition [31]) and efficiently deliver treatment procedures to the medic. The

primary target population is the 25% of soldiers who die between five minutes to six

hours of injury due to lack of efficient communication with remote medical facilities

that causes delays in providing the treatment on time [32].

12

A common drawback with such applications is lack of measures to protect patients' data

from theft and unauthorized access. Most of the times patients' data is stored as plain text

locally on the mobile device, making the data open to many security risks. This discourages

wide adoption of such applications within health organizations in spite of many potential

benefits [33]. Mobile healthcare is an emerging area and requires regulatory standards to

control thousands of available applications. Several obstacles still need to be addressed

before mobile healthcare can be widely deployed. Based on different types of security

scenarios discussed in Chapter 1, the work done in mobile security can be classified in two

categories - securing the data (including when it is on the server and on the device), and

securing the communication network. Figure 2.1 shows the classification of related work.

For this research we assume that the communication can be secured by using the standard

SSL protocol. We explain how SSL protocol protects data during communication in section

3.2.1.

13

Mobile Security

Securing Sensitive
Data

Related Work

Out of scope

Securing data from
malicious code

Securing data privacy

Securing the data on
server

Securing the data on
mobile device

Securing the
Communication Channel

Figure 2.1 Mobile Security Classification

2.2 Securing Sensitive Data

The work done to protect the data while it resides on the mobile device can be classified into

two categories: 1) Securing data from malicious code. 2) Securing data privacy.

2.2.1 Securing data from malicious code

Installing antivirus software on a traditional desktop PC is a common measure to protect

data from malicious code such as spamware and malware. Such software scans the files

stored on the device to identify and eliminate any malicious code by examining files for

known viruses using a virus dictionary, or by identifying suspicious behaviours in programs

14

that may indicate infection [34]. Currently, Mobile antivirus software replicates traditional

desktop model where detection services are performed on the device [10]. Due to different

hardware and software characteristics the security mechanisms designed for desktop

computers are not adequate for mobile devices. Antivirus software is resource intensive and

is not suitable for mobile devices due to their limited computational resources. Cloud-based

antivirus solutions can help reduce on-device resource consumption by moving the data (or a

copy of data), and the virus detection functionality to off-device network service [10].

A cloud-based security architecture called Marvin is proposed in [11], where

detection of attacks is decoupled from mobile device by placing the detection engine on a

remote server (cloud). A powerful intrusion detection technique called Dynamic Taint

Analysis is then used to detect different types of exploits (buffer overflows, format string

attacks, double free, and so on) that change the control flow of the program. A prototype

application was developed and deployed on HTC Dream / Android G1 phone platform.

Figure 2.2 illustrates the architecture. The architecture has two main components:

1. A tracer: It resides on the mobile device and intercepts and records all signals,

system calls, and read-write operations performed on the device's memory.

2. A replayer: It resides on the server and replays the execution trace sent by the tracer

to perform a thorough analysis in order to detect any attacks.

15

smartphone server-side
replica

UMTS
Internet

mirrored
traffic

regular
traffic flow

logging
data

REPLAY RECORD

logging
data

logflush *
smartphone

emulator
kernel] 8W08

mirrored
traffic proxy API

Fig 2.2 Marvin Architecture [11]

The tracer continuously monitors for any new activities on the mobile device. As soon as it

records a new event, it transmits the recorded information (called trace) to the security

server. The security server maintains a copy of Data stored on the smartphone, and performs

a dynamic taint analysis to detect intrusions. This is achieved by re-executing the processes

(as recorded in trace) on a replica of data by using a smartphone emulator. Whenever an

intrusion is detected the user is informed and, depending on an organization's policy,

immediate recovery procedures are started. Various options are suggested for recovery

procedures such as remote locking the mobile device to prevent unauthorized access, or

remote wiping the data. The strength of Marvin architecture depends on the following three

main factors:

16

1. Location of the security server: It is assumed that the server will be hosted at a secure

place.

2. When to transmit trace data: Determining the frequency of transmitting data to server

is a crucial task. Transmitting data in real-time may not be necessary and the

frequency of transmitting data must be optimized to conserve network resources of

the mobile device. However, it should still be regular so that the delay between

attack and detection can be minimized.

3. Informing the user about an attack: The user must be warned when an attack is

detected, and recovery procedures must start immediately.

Since the server stores a copy of the data, Marvin provides ability to restore lost data in case

of device theft or a critical attack by malicious content.

Another 'in-cloud' security model has been proposed in [10] that aim at reducing the

device's C.P.U, memory, and power resources consumed by antivirus software. This is

accomplished by moving the detection service from mobile device to a server. Similar to

Marvin architecture, this model consists of two primary components:

1. Host Agent: A lightweight application that runs on mobile device and inspects file

activity on the system. It acquires files and sends them to the server for analysis.

2. Network Service: The network service runs at the server. It receives files from the

host agent and performs file analysis to detect malicious content.

Access to each file on the mobile device is trapped and diverted to a handling routine that

generates a unique identifier (UID) (such as hash) for the file. The unique identifier is

compared against cached UIDs of previously analyzed files [10]. When a UID is not found

in the cache list, the host agent acquires the corresponding file and sends it to the server.

17

When network service receives the file a thorough file analysis is performed to detect any

malicious content. The architecture doesn't specify recovery measures in case a threat is

detected.

Benefits of cloud-based antivirus solutions

Such solutions have three prime benefits:

1. Better detection of malicious content: Since the detection service is hosted on a

computationally powerful desktop computer instead of the mobile device, several

detection engines can be used for file analysis enhancing the accuracy of threat

detection.

2. Reduces on-device resource consumption: On-device resources can be conserved by

transferring files to a server for threat detection.

3. Reduces on-device software complexity: By deploying a relatively simple software-

agent on the mobile device and pushing the complex detection software on the

server, the complexity of mobile software can be minimized.

Limitations of cloud-based antivirus solutions

1. Disconnected operation: The data security in such solutions always relies on a

network connection. Mobile devices may enter a disconnected state where the mobile

agents may not be able to effectively utilize the network-based security services. In

such an event, data can be compromised.

2. Data Privacy: Such solutions require sensitive data to be sent to the server for

analysis. It is important that users understand the privacy implications of such

18

solutions and organizations be able to enforce limitations on what data is transmitted

to the security server.

Relying on antivirus software for data security is not enough. The virus definitions in

software's virus-dictionary must be updated in a timely manner. The virus authors are ahead

of the curve and have started writing "Polymorphic Viruses". Polymorphic viruses in part or

whole encrypt or modify themselves in order to not match their definitions in a virus

dictionary [34], Antivirus software is passive in nature as it waits until an attack is detected.

Delay in attack detection can cause critical security breach as the data might get

compromised by the time an attack is detected. Antivirus software does not provide

protection against unauthorized data access. Hence, using antivirus software alone for

healthcare applications would not provide adequate security measures required to protect

sensitive data.

2.2.2 Securing Data Privacy

Data privacy can be ensured by using appropriate encryption and authentication techniques.

Authentication and encryption are the fundamental blocks for any security mechanism that

protects data from unauthorized access and ensures data confidentiality. For this research,

we need a reliable authentication technique that provides both user and device

authentication. Encryption can be hardware-based or software-based. In hardware-based

solutions the encryption/decryption functionality utilizes the device's high-speed physical

memory, which accelerates the overall speed of encryption/decryption process. It protects

the data even if the operating system is not active, for example if data is read directly from

the hardware [35]. Software-based solutions do not facilitate their own dedicated physical

memory. They use device's C.P.U and main memory through interfaces provided by the

19

underlying operating system. As stated in [35] "The security level of a software-based

cryptographic module is upper-bounded by the security level of the mechanism that protects

the secrecy and integrity of the memory space it uses", the operating system usually

provides protection against any other applications attempting to access the memory at the

same time. The strength of the memory protection is often dependent on the robustness of

operating system and its being free from flaws [36], Most cryptographic algorithms require

intermediate results to be stored on a temporary memory. These results could be closely

related to the secret keys, and therefore it is essential that the memory space is secure and

protected from unauthorized access.

Due to dedicated physical memory, the hardware-based solutions offer higher degree

of data security and faster performance in comparison to software-based solutions. However,

such solutions are expensive and proprietary, which bounds users to be dependent on a

vendor for products and services. This restricts interoperability between different mobile

devices and restrains users from switching to another vendor without substantial costs [37].

Hardware-based solutions have been criticized for poor documentation as the details of

implementation are not always published by the vendor. This leaves the user unable to fully

evaluate the security of the product and potential attack methods [35]. Software-based

solutions are easy to implement and do not require purchasing special hardware to perform

cryptographic operations. Most application development languages offer standard

cryptography libraries which make software-based solutions easier to develop and maintain.

A software-based encryption solution can be used for multiple applications and purposes

including message encryption and digital signatures. For this research, we use software-

based cryptography solution due to its low deployment cost, high usability and

interoperability between mobile devices with different platforms. We assume that the

20

underlying operating system of the mobile device is robust and secures the shared memory

used for performing cryptographic operations. Table 2.1 summarizes the comparison

between software and hardware encryption.

Software-based Encryption
Hardware-based

Encryption

Performance Slow Fast

Management support for

the solutions
Easy to manage

Poor: lack of built-in

management software

Application(s)

Message encryption

Digital Signatures

Encrypt files and folders

Encrypt a disk or partition

Encrypt a disk or partition

Encrypt files and folders

Implementation Cost Low High

Platform Independence High
Low; mostly tied up to a

specific vendor.

Table 2.1 Software versus Hardware based Encryption [42]

2.2.2.1 Mobile Data Sharing Solutions

In this section we present some mobile data sharing solutions that are directly related to this

research.

21

Transient Authentication

Transient Authentication [38] [39] provides user-authentication by using a hardware 'token'

(key-fob), such as IBM Linux watch, that must be carried by the user all the time. For

authentication, user provides a password to the token, which wirelessly interacts with mobile

device on behalf of the user and provides the decryption key. The data on the mobile device

remains decrypted and cannot be accessed without token's interaction with the device. At

first, user unlocks the token by providing a pin/password, and binds the token and the

laptop. This prevents token to accept unknown key-requests from other mobile devices.

After a mutual authentication between the token and the laptop over a wireless link, a

session key is exchanged and the session is established for a specified time. Since the

decryption keys are automatically provided by the token, user does not have to directly

interact with the mobile device while accessing data. The cached data objects on the token

are encrypted while the token is out of range from the laptop. Figure 2.3 illustrates the

process of decrypting file contents.

Key-Encrypting
Key

Key-Encrypting
Key

File Key

Session
Encryption Token Laptop

File

File Key
File Key

File Key

Key-Encrypting
Key

Fig 2.3 Transient Authentication [39]

22

Transient Authentication scheme is designed to work with laptop computers with high

degree of computing power. Users potentially have multiple mobile devices which would

require carrying multiple tokens, which is inconvenient. Encrypted data always remains on

the device, and in the case of theft or loss an attacker can remove and inspect hard drive

contents with another machine [39]. If a user loses both the token and the device, the data

can be compromised. Currently, organizations are unable to audit data breaches from this

event due to lack of data access tracking.

Secure Data Sharing Architecture in Mobile Environments

An approach for secure data sharing among members of a particular group is proposed in

[20]. The architecture is designed to meet two key requirements:

1. In case of loss or theft of mobile device, non-group members should not be able to

access data.

2. In case of loss or theft of mobile device, the original data must be recovered on a

new device.

The following technologies are used to meet these requirements:

1. Key Encapsulation Mechanism (KEM): A cryptographic mechanism based on

public key cryptosystems, used to securely exchange keys among two entities. It

takes a public key as input and generates an encryption key for data.

2. Threshold Cryptography: It is a technique in which the private key is distributed

among N number of members. When receiver needs to decrypt the data using the

private key, each member computes a partial result by using their share of the

23

private key. All the members send their respective partial results to the receiver, who

combines the results into the original message.

At first a Key Distribution Center (KDC) generates public-private key pairs using Rivest,

Shamir and Adleman (RSA) algorithm [40] for the group members among whom the data

has to be shared. The group's private key is divided into two shares (parts). The first share is

sent to the server where the data is stored, and the second share is divided iurther into N+1

sub-shares where N is the number of group members. The sub-shares are distributed to each

of the members and the server. Since the private key is reconstructed by obtaining more than

two sub-shares, it remains protected even if some of the group's mobile devices are stolen or

server's share of the key is revealed.

When data needs to be shared, a group member generates an encryption key using

KEM. KEM takes group's public key as input and generates a key which is used to encrypt

the data. The encrypted-key, which is generated by KEM, and the encrypted data, is sent to

the server. When a group member needs to access data, a request is sent to the server for

encrypted data and the encrypted-key. The server generates a partial-encrypted key by using

server's share of the group's private key, and the encrypted-key. The partial-encrypted key,

encrypted-data and the encrypted-key, is sent back to the member in reply to the data-access

request. Subsequently, the member decrypts the encryption key by using member's share of

group's private key and the information from the server. The data is decrypted with

encryption key. Figure 2.4.1 and 2.4.2 illustrates the data read and write process. Table 2.2

summarizes various notations used in figure 2.4.1 and 2.4.2.

24

(Ral). user authentication

(Ra3). CQ , C/, EK M(M)

(Ra7). SK M J

MT

(Ra2). generate C } from Co, sk2 , $k/

(Ra8). delete C(H CH M. EKM(M)

(Ra4). compute KM with Co, Ci, sk/

(Ra5). decrypt EKM(M) with KM
(Ra6). compute SKMJ with MS^ KM

Figure 2.4.1 Read Process [20]

(W1). user authentication

(W5). Co. w EK„m

ACK

(W6). delete KS{, SK M j . C,. M. EK M{Af)

(W2). generate C„. KM from pkG

(W3). encrypt M with KM(EKM(W))

(W4). compute SKU, with MS,, KSI

Figure 2.4.2 Write Process [20]

25

Symbol Description

MT Mobile Terminal

C0>C, Encrypted Key

Km Encryption Key

M Data that needs to be shared

Pkg Group's public key

Table 2.2 Notations used in figure 2.4.1 and 2.4.2 [20]

Advantages

1. Protection against lost or theft of mobile device: since the data is encrypted and

resides only at the server, even if the device is lost or stolen data remains secure.

2. Group data sharing: the data can be securely shared within a group. This is an

important feature in healthcare applications as patient's data might need to be shared

with other healthcare providers for consultation purposes.

Limitations

1. Poor data read-write performance: Multiple encryption-decryption operations are

performed when data needs to be accessed. In a group of two members, the write

process takes 2.4 seconds and the read process is 3.1 seconds (for the first read). The

time increases noticeably with larger data size [20], In the healthcare scenario, with

hundreds of messages sent in parallel, current times would further increase causing

poor data read-write performance. Currently, the mobile device needs to perform

multiple encryption-decryption operations for writing or reading data. An alternate

26

solution that reduces the number of times these processes on the mobile device can

greatly help improving the current results. For example, sending the data as plain text

over an encrypted SSL channel would provide equivalent security with faster

performance.

2. Scalability and Key Management: To protect data against lost or theft of mobile

device, the group's private key is divided into two parts, one of which is further

divided into N+l shares where N is the number of group members. In addition, every

group member generates an encryption key that is used for encrypting the data. Each

mobile device must store at least two different keys and request for more keys from

other group members to access data. In case one of the members loses the mobile

device, all keys must be regenerated and redistributed to all group members.

Managing so many different keys could be a challenging task, especially in a large

group where there may be hundreds to thousands of members. If a user is associated

with more than one group then it will further increase the overhead.

3. Data visibility among all group members: Shared data is visible to all participating

group members. If the data needs to be shared only among few specific members of

the group, a new group with different group keys must be formed. In healthcare

organizations patients' data may need to be shared between few specific members

only. Patient data is sensitive in nature; it should not be visible to unintended

members.

Concord: A Secure Mobile Data Authorization Framework for Regulatory Compliance

Another security solution called Concord ensures data privacy by involving the

organization, that owns the data, in data access process [13]. Data access requires

organization's permission, and consent from an authorized user. This is implemented by

27

using 2-out-of-2 threshold cryptographic technique that requires at least two entities to

approve data access. Mediated RSA (mRSA) cryptographic protocol is used to monitor user

activities. It uses a public key cryptography where a public key is associated with two

private keys. The Security Mediator (SEM) and the client get a private key each. The key to

decrypt the data is constructed by using private keys of both SEM and the client. Hence,

client cannot decrypt data without interacting with SEM, or vice-versa.

Concord has five main components - Trust Key Server, Connected Enforcer (C-

Enforcer), Disconnected Enforcer (D-Enforcer), Data Server (DS), and the Mobile Device.

Trust Key Server generates keys for other components and the data-units. The data is

partitioned into various blocks referred to as data units; each unit is encrypted using data-

unit keys. When data needs to be decrypted, C- Enforcer (available over wired or wireless

networks) provides data-unit keys to the mobile device. D-Enforcer caches a part of the data

unit keys and has the same functionality as C-enforcer; it is used only if C-enforcer is

unavailable. The mobile device stores the encrypted data and a part of encryption/decryption

key. A copy of data and a decryption-key is stored as encrypted at the server.

When data needs to be accessed on the mobile device, a request for decryption key is

sent to C-enforcer, who decrypts the decryption-key and sends it back to the mobile device

for decrypting the 'data unit key' already stored on the device. The data-unit key can now be

used to access the data. If in case, C-Enforcer is not available then D-enforcer is used for

acquiring decryption keys. D-enforcer is another mobile device such as cell phone or a PDA

owned by the user.

28

Advantages

Since a user must interact with the security mediator (controlled by the organization) for

data access, organizations can monitor and control access rights on the data. In the event of

loss or theft of a mobile device, further requests for data accesses to previously-unread data

on the mobile device can be discontinued. The organization can track down detailed

information about the data that has been exposed enabling them to initiate steps for

regulatory compliance [13].

Limitations

Concord requires every user to have at least two mobile devices in order to access data, as

authors believe that the chances of losing both of the devices at the same time are minimal.

However, if both the devices are lost or stolen the data is no longer secure. The encrypted

data always remains on the device and can be brute forced in the event of loss or theft of

device. Concord focuses on securing data for a single user only and doesn't supports data

sharing amongst a group, which is unlikely in healthcare as patients' information may need

to be shared with other healthcare providers. The computation cost and system resources

required for encryption/decryption in this approach is excessive, and authors have

acknowledged this limitation as well [13]. A laptop computer was used as mobile device for

testing Concord's prototype. The performance results provided in [13] will degrade further if

a less powerful device such as Apple iPhone, iPad or Android-based tablet is used.

A quick enhancement to Concord's framework could be using alternate threshold

cryptographic solutions that would be able to reduce number of operations performed to

read-write data. Alternate cryptographic solution could be using elliptic curve cryptography

for encryption/decryption instead of RSA. ECC is suitable for resource constrained devices

29

because of smaller key size compared to traditional schemes using RSA to provide

equivalent security. A 163-bit ECC provides a level of security equivalent to that provided

by a 1024-bit RSA key [41].

2.3 Common Drawbacks of Existing Security Solutions

1. High deployment cost: Most solutions require buying special hardware, key-fobs,

certificates, or even an additional mobile device that can store encryption/decryption

keys and authentication information. Such solutions can be very expensive and

impractical to deploy.

2. High complexity and computational cost: All solutions perform

encryption/decryption/hashing multiple times, on the device and the server, in order

to access the data. This requires dedicated system resources, and introduces

additional overhead.

3. Difficult to integrate with existing applications: Potentially, health organizations

need data sharing solution that can be embedded with their existing EMR

applications and lab delivery networks. The data sharing solutions discussed in this

chapter fail to provide support for this integration. Furthermore, it is essential that

any security mechanism can be integrated with an organization's existing security

measures. For example, most organizations use a user-management service, such as

Active Directory, to strictly control authorizations and data access permissions. It is

required that the new data sharing solution should provide support for such services.

4. Scalability: Most solutions depend on certificates for authentication, and require

mobile devices and the server to store multiple cryptography keys. For example, data

sharing solution discussed in (20) depends on threshold cryptography that requires

30

every mobile device to store at least two keys. In order to decrypt the data, a user

must contact all other group members who are equally involved in decryption

process, and send back the partial results to the user. A major drawback of such

approaches is challenging key management. If any of the group members loses the

device, all the keys for entire group must be regenerated. If a group member is not

available or reachable over the network, user would not be able to decrypt the data.

Similarly, other solutions such as Concord require mobile device to store multiple

keys, and use them to request an additional decryption key from the server.

Managing group members, participating devices, and the keys in such scenarios

becomes challenging as the group size increases.

5. Data access cannot be controlled in offline (disconnected) mode: With the current

solutions, unauthorized access to data stored on the device cannot be monitored or

controlled without the network connectivity. While the device is operating in

disconnected mode, the organizations would not be able to perform any preventive

measures such as restricting the data access, or remotely deleting data on the device.

6. Entire data is encrypted: Most solutions keep the entire data and even

cryptography keys as encrypted. This requires more computational and memory

resources and increases the data read-write times. The data must be categorized

based on sensitivity and encrypted only if required. This could reduce computational

resources required, as not everything needs to be encrypted.

The National Encryption Survey held in 2006 found three most significant reasons given by

the security and privacy professionals for not encrypting sensitive and confidential data to be

as follows [42] [43]:

31

1. System Performance: Sixty nine percent of the participants believed using

encryption would somehow affect the system performance.

2. Complexity: Forty four percent of the participants felt encryption techniques are too

complex.

3. Cost: Twenty five percent of the participants did not support encryption because of

additional costs involved in implementing encryption based solutions.

Hence, we conclude that all the existing security solutions are either too complex or

expensive to provide adequate security measures, or they are not secure enough. Therefore,

the problem of secure data sharing is still an open challenge. We propose a new data sharing

solution in chapter 3, which overcomes many limitations exhibited by the existing solutions

and efficiently secures the data.

32

Chapter 3

Secure Data Sharing Architecture
(SDSA)

In this chapter, we present our solution to the research problem described in chapter 1. We

first discuss important terminology and underlying algorithms that make the foundation for

our work, and later we describe our solution in detail.

3.1 Definitions of Key Terms

This section outlines the important terminology used in subsequent sections of the chapter.

Authentication: It is a technique where one party proves its identity to another party. It is

the fundamental block in every security mechanism that helps in distinguishing legit user

from an invader. Authentication can be performed at two levels - message authentication

and entity authentication. Message authentication aims at identifying the origin of message,

whereas, entity authentication aims at identifying the entity itself. An entity can be a person,

a client, or a server. The party who needs to prove its identity is called claimant, and the

party that is trying to confirm the identity of the other party is called verifier [15].

33

Data Confidentiality: It refers to concealing data in a way that prevents disclosure of

information. It is designed to protect data against two types of attacks - snooping and traffic

analysis. Snooping refers to an attack under which the invader eavesdrops on the

transmission network to intercept data and reveal its contents. A common measure to

prevent snooping is encrypting data so that it is unintelligible even when it is intercepted by

an attacker. However, the attacker may still intercept encrypted data and perform analysis to

guess the nature of data by collecting information such as sender's or receiver's address,

time of transmission, number of requests and responses. This is referred to as Traffic

Analysis [44].

Data Integrity: It refers to allowing modification of data by authorized entities and through

authorized mechanisms only. The data integrity can be threatened by several kinds of attacks

such as modification, replaying, and repudiation [44], Modification includes an attacker

eavesdropping on the transmission link to capture data packets, and modifying its contents

before it is received by the recipient. For example, an eavesdropper can capture a message

from Alex to his bank requesting transfer of $100 into Bob's account. The eavesdropper

may then modify the message and request transferring of $200 into Bob's account instead.

Replaying attack involves intercepting messages during transmission, and resending them to

the receiver. For example, an attacker may resend an intercept message requesting a money

transfer of $100. Repudiation refers to a situation where the sender or receiver decline to

accept that the message was sent by them. For example, the sender may refuse that he ever

requested money transfer.

Encryption and Decryption: It is a technique for converting plain text into cipher text, a

form that is unreadable or unintelligible to unauthorized entities. It is achieved by using an

encryption algorithm such as RSA [40], and Advanced Encryption Standard (AES) [45] that

34

uses mathematical calculations and algorithmic schemes to perform the transformation.

Encryption requires secret key(s) as input to these algorithms. The secret key(s) are known

by sender and receiver, and only they can convert back cipher text into original plain text.

Decryption is a technique for converting cipher-text into plain text [15].

Digital Signature: It is an electronic signature used by sender to sign the data. It is used to

verify the identity of the sender and data integrity. Depending on the underlying algorithm

used, the sender creates a signature on the data by using his/her private key. The signature

and the data are sent to the receiver, who uses sender's public key to recreate the signature.

Sender's identity can be verified by matching the two signatures [15].

Hashing: It is a mathematical concept to generate a fixed short length output by applying a

hash function that performs various transformations on data. The output of this function is

called message digest. It is generated in a way that given just the message digest, it is

impossible to regenerate the original data. Hashing is commonly used in calculating digital

signatures to provide data integrity [15].

Man-in-the-middle attack: It is an attack under which the invader eavesdrops on the

private network link between the sender and the receiver to intercept messages exchanged

between them. The attacker can reveal the contents of intercepted messages, and perform a

replay attack by sending a same message again, or inject modified messages during the

communication with receiver. Common defense against such an attack involves using data

encryption and digital signatures that ensures message confidentiality and integrity.

35

3.2 Underlying Protocols and Definitions

We use SSL protocol to ensure secure encrypted communication of data over unsecure

networks. Hashed Message Authentication (HMAC) is used for device authentication

purposes. We describe both of these concepts in this section. These concepts have been

summarized from [15] [46].

3.2.1 Secure Socket Layer (SSL)

SSL is a standard protocol developed by Netscape to provide security and compression

services to data during transmission over networks. It ensures data confidentiality and data

integrity by signing and encrypting the data received from the application layer. It uses a

reliable transport layer protocol such as Transfer Control Protocol (TCP) [47], and four

security protocols to accomplish a secure data transmission. The four protocols, as shown in

Figure 3.1, include Handshake, ChangeCipherSpec, Alert, and Record protocol. SSL

requires six cryptographic secrets/keys and two initialization vectors to establish a secure

session between client and server, and exchange data.

Application Layer

SSL

Transport Layer

Alert Protocol
Change CipherSpec

Protocol
Handshake Protocol

Record Protocol

Figure 3.1 SSL Protocol Stack [15]

36

SSL clearly differentiates a session from a connection. "A session is an association between

the client and a server", once the session is established the two entities (client and server)

have common information such as a session identifier, the cipher-suit1, and a master secret

that is used to create keys for message authentication and encryption. To be able to

exchange data two entities need to create a connection between them. In a session, one of

the entities is treated as client and the other as server, whereas both the entities are treated

equal (peers) in a connection. A session can consist of many connections, but a connection

always belongs to a single session. A connection may be terminated and reestablished within

the same session. When a connection is terminated, the session can also be terminated but it

is not mandatory. A session can be suspended and resumed again. When an old session is

resumed by creating a new connection, the two entities can skip a part of negotiation

process. The master keys need not to be created every time a session is resumed. The

separation of session from connection prevents the high cost of creating a master key every

time a session is resumed.

In order to exchange data between two entities, a session needs to be established.

This is accomplished by following a SSL Handshake protocol. During the handshake, both

entities negotiate on the SSL version and various compression/encryption methods to be

used. By the end of initial handshake both entities are authenticated and have shared a pre-

master secret. Both entities compute a master key and other cryptographic parameters by

using the pre-master secret. The ChangeCipherSpec protocol is used to notify that the

entities are ready to exchange data. Once the entities are in ready state, the SSL Record

protocol accepts data from the upper layer protocols and fragments it into small blocks of 214

bytes or less. Each fragment of data is compressed using one of the lossless methods

1 Cipher-suit represents the key exchange, hashing, and encryption algorithms that are being used for SSL
session.

37

negotiated between the entities during initial handshake. Finally, each data block is

individually signed, encrypted, and transmitted over network.

3.2.1.1 SSL Handshake Protocol

The objective of Handshake protocol is to negotiate the cipher-suite, authenticate client with

server and server with client, and exchange other information necessary for building

cryptographic secrets. Handshake is done in four phases, as shown in Figure 3.1.1.

n;
a

Client Server

Phase Establishing Security Capabilities

Server Authentication and Key Exchange

Phase 3 Client Authentication and Key Exchange

Finalizing the Handshake Protocol

Phase 2

Phase 4

Figure 3.1.1 SSL Handshake Protocol [15]

38

Phase 1: Establishing Security Capabilities

During this phase, the client and the server publish their security capabilities and negotiate

SSL version; algorithms for key exchange, compression, message authentication, and

encryption. Finally a random number is selected by client and server each. This is used for

creating a master secret. Figure 3.1.2 illustrates the steps of phase 1.

Client Server

Client Hello

Version
Client random Number
Session ID
Cipher suite
Compression methods

Version
Client random Number
Session ID
Cipher suite
Compression methods

Server Hello

Version
Server random Number
Session ID
Selected Cipher suite
Selected Compression method

Figure 3.1.2 Establishing Security Capabilities [15]

Phase 2: Server Authentication and Key Exchange

The goal of phase 2 is server authentication. By the end of phase 2, the server is

authenticated to the client and the client knows the public key of the server. The server sends

list of certificates for authentication and sends its public key using the key exchange

39

algorithm negotiated during phase 1. The server may request client to authenticate itself by

sending a message to the client requesting for its certificate. Figure 3.1.3 illustrates the steps

of phase 2.

Client Server

Certificate

Ser\>erKey Exchange

Certificate request

ServerHello Done

No Contents

Server Public Key

A chain of certificates

List of acceptable certificates
List of acceptable authorities

Figure 3.1.3 Server Authentication and Key Exchange [15]

Phase 3: Client Authentication and Key Exchange

This phase is similar to phase 2, it is designed to authenticate the client to the server and

exchange a pre-master secret. Figure 3.1.4 illustrates the details of phase 3.

40

Client Server

Certificate

ClientKey Exchange

Certificate Verify

Hash code to prove certificate

Chain of certificates

Client Public Key

Figure 3.1.4 Client Authentication and Key Exchange [15]

Phase 4: Finalizing the Handshake Protocol

In phase 4, the client and the server change their cipher-spec from pending state to active

state by using ChangeCipherSpec protocol. The client and server send a finish message to

each other notifying their ready state. Both the client and the server are now ready for

exchanging data. Figure 3.1.5 shows the messages exchanged during phase 4.

41

Client Server

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

ChangeCipherSpec Value

MD5 Hash + SHA Hash

MD5 Hash + SHA Hash

ChangeCipherSpec Value

Figure 3.1.5 Finalizing the Handshake Protocol [15]

3.2.1.2 ChangeCipherSpec Protocol

When the client and the server are ready to exchange data, they need to notify each other

about the same. SSL mandates that the two entities cannot use their cryptographic

parameters until they receive a special message, the ChangeCipherSpec message. The

message is exchanged during the Handshake protocol, and defined in the ChangeCipherSpec

protocol. To keep track of parameters and secrets, the client and the server both have two

states - active state and pending state. The active state represents that the sender/receiver is

ready and has all the cryptographic parameters necessary to exchange data. The

sender/receiver is in pending state if it is still waiting to create cryptographic parameters. In

42

addition, every state can have two sets of values - read (for inbound messages) and write

(for outbound messages). When client needs to send the data, it moves the write (outbound)

parameters from pending to active state, and informs the server about the same by sending

the ChangeCipherSpec message. When the server receives the message from the client, it

moves its read (inbound) parameters to active state, and sends the message back to the

client. The client and server are now ready to exchange data, and can use their cryptographic

parameters to sign/verify and encrypt/decrypt the data.

3.2.1.3 Alert Protocol

Alert protocol is simply used to send error notifications and report any abnormal conditions.

It has only one message type called Alert-Message that describes the problem and its level

[15]. Some of the problems that can be notified include no-certificate, unsupported

certificate, illegal parameter, handshake failure, and decompression failure.

3.2.1.4 Record Protocol

SSL uses Record protocol to sign and encrypt messages. Record protocol accepts the data

from application layer and other upper layer protocols. At the sender's end, the data is

fragmented into small blocks of 214 bytes with last block possibly smaller than this size.

These blocks are optionally compressed, and a Message Authentication Code (MAC) is

computed and padded on every message block by using the negotiated hash algorithm (MD5

[48] or SHA-1 [49]). The compressed message block and the MAC are encrypted using the

negotiated encryption algorithm. Finally, the encrypted message is sent to the receiver over

network using a reliable transport layer protocol such as TCP.

At the receiver end, the received message is decrypted and a MAC is re-computed on

the message. Message integrity is verified by comparing re-computed MAC with the MAC

43

received in the message. On verifying all the received messages, the fragments are combined

together to make a replica of the original message. Figure 3.1.6 shows steps performed by

record protocol.

Other Values

Write MAC Secrct

Compressed Message

Write Cipher Secret

SSL Paytoad

I I \ 1 \ (

Ri'H

HASH

Compression

Compressed Message

Encryption

Encrypted Fragment

Payload from upper layer protocol

Figure 3.1.6 SSL Record Protocol [15]

3.2.2 Hashed-Message Authentication Code (HMAC)

MAC is the output of a hash function applied on messages to ensure data integrity and data

origin authentication. To provide data origin authentication, MAC includes a secret, such as

a secret key, which is known to the sender and the receiver only. The sender concatenates

44

the secret key with the message and computes a MAC using any hash function such as MD5

or SHA-1. The sender sends the message and the MAC to the receiver. At the receiving end,

a new MAC is created on the message and is compared with the one received. If the two

MACs match, the message is authentic and has not been modified by an adversary [15].

Figure 3.2 shows the process of creating and sending MAC.

Key

Message M A (

MAC

Hash

Message

Client

Network Channel

Accept

Server

Figure 3.2 Message Authentication Code (MAC) [15]

A major issue with simple MAC is its inability to defend against man-in-the middle attack.

Suppose an attacker intercepts the message and the MAC, an exhaustive search could be

performed by appending all possible keys with the message to replicate the intercepted

MAC. If the MAC is successfully replicated, the secret key would be revealed and any

45

future messages can be compromised. To prevent such situations, nested MACs were

designed in which hashing is performed in two steps to increase the complexity of

computing hash, and therefore increasing the cost and effort to replicate the MAC. At first,

the secret key is concatenated with the message to create an intermediate message digest.

Secondly, the key is concatenated with the intermediate message digest to create final digest

[15].

For this research we use a standard nested MAC algorithm, called Keyed-Hash

Message Authentication Code (HMAC), as issued by National Institute of Standards and

Technology (NIST) for authentication and verifying data integrity [50]. As recommended by

NIST, we use HMAC-SHA-256 variant that uses SHA-1 hashing algorithm with fixed 256-

bit key length, which is equal to the output-length2. Key length is a crucial element in

determining security strength of any cryptography algorithm. With HMAC-SHA-256, using

a key length that is smaller than the output length can decrease security strength of the

algorithm. However, due to the unique design of the algorithm key length larger than the

output length does not significantly increases security strength [51]. The HMAC

implementation is much more complex than simplified MAC as it includes operations such

as padding and truncation to enhance security. Figure 3.2.1 shows implementation details of

HMAC algorithm.

2 Output-length refers to the size of the hash value produced by the underlying hashing algorithm [51].

46

(padded to b bits)

ipad

(padded to b bits)

opad-
n bit!

Intermediate HMAC

(padded to b bits)

bits

Key

Key

Hash

Hash

Ml Mn M2

b bits b bits b bits

• • •
b bits

HMAC

Figure 3.2.1 HMAC Implementation [15]

To generate HMAC every message is divided into n blocks of b bits each. If any block is

less than b bits in length, it is padded with O's to create b bits. The secret key is left padded

if it is less than b bits in length. An exclusive-or (xor) function is applied on the secret key

and a constant called input pad (ipad), to create a b-bit block. The result of the xor operation

is prepended to the N-block message, and the concatenated message is hashed to create an

intermediate message-digest. The intermediate message digest, also called intermediate

HMAC, is left padded with O's to make a b-bit block. An xor operation is applied on this b-

bit block and a constant called output pad (opad). The result of the xor operation is hashed

again to create the final n-bit HMAC [15].

47

3.3 Secure Data Sharing Architecture: SDSA

For this research, we have designed and developed a low cost data sharing architecture,

called Secure Data Sharing Architecture (SDSA), which enables healthcare providers to

securely collect, access and share patients' data using mobile devices. In order to facilitate

data exchange, SDSA integrates with physicians' mobile devices, medical office Electronic

Medical Record (EMR) systems, and existing lab delivery networks. Healthcare providers

greatly benefit from this integration as it allows them to carry patients' health information

on their mobile devices while they are out for field visits. The increase in data availability

assists them in making effective decisions related to patients' treatment and improving

overall patient care. Using SDSA, healthcare providers can securely share patients' medical

information over mobile devices with other physicians for consultation. They can even

request to receive, on their mobile devices, patients' lab results and other critical data such

as medical history, prescriptions, and payment information that is stored on the EMR

systems at their clinic.

In order to protect data from various security threats as discussed in chapter 1, we

have designed a custom security protocol that secures communications between different

components of our architecture, and protects confidential data while it is being accessed on

the mobile device. The protocol is designed to meet health industry specifications (see

section 3.3.2) for exchanging medical information, and makes use of strong encryption and

hashing algorithms as recommended by National Institute of Standards and Technology

(NIST). SDSA is platform independent allowing it to be deployed on mobile devices from

different vendors and operating platforms. It supports both proprietary and open-source

technologies, such as database management systems and server operating systems, which

48

not only increases interoperability between different systems but also helps in reducing the

overall deployment cost of our solution. SDSA is scalable in nature and can be used for

organizations of all sizes. It has the ability to integrate with more than one organization or

clinic at the same time.

3.3.1 Architecture Components

The SDSA architecture consists of five prime components - Client application, Electronic

Medical Record (EMR) application, Web Application Programming Interface (API), EMR

Data Transfer Agent, and the Data Store. Figure 3.3 illustrates the architecture.

Legend

SSL Connection
SQL Connection •

1. Client Application

Firewall

4. EMR Data Transfer Agent / HL7 Broker

2. EMR Application

Figure 3.3 Secure Data Sharing Architecture (SDSA)

49

3.3.1.1 Client Application

The client application is installed on mobile devices, and communicates with the Web API

in order to securely access Data stored at the server. When the client application is launched

on mobile device, the user is requested for credentials to perform authentication. These

credentials are transmitted to the Web API over wired or wireless network encrypted by

SSL, which ensures privacy and integrity of data while in transit. Once the user has been

authenticated by the Web API, data access permissions are granted for a fixed time interval.

Instead of using native mobile web-browser to access data, we make use of the client

application to display the results of various requests (sent to the API) to the user. This

ensures that the security of our architecture is not compromised due to bugs and issues that

might exist in the device's native web-browsers. The client application is responsible to

perform the following tasks:

• Secure data transmission between the client device and the Web API

• Secure access to local and server-side data

• Sending/receiving of messages related to patients' health, labs and results

3.3.1.2 EMR Application

The EMR application is used by physicians to collect and store patients' medical data in a

digital format. It is typically installed at hospitals and physicians' clinics, and may contain

complete medical information of patients including their demographics, medical history,

diagnosis, treatments, lab results and payment information. EMRs have been revolutionizing

health industry for over ten years by eliminating the limitations of paper based medical

records which require massive storage space, contain redundant data, and inconvenience of

physically carrying and securing paper records. Computerizing medical records improves

50

overall efficiency in terms of storage and tracking medical history. SDSA extends the

functionality of EMR application by making patient data, stored inside the application,

available over mobile devices in a secure way. In order to facilitate this extension, we use an

EMR data transfer agent that is responsible for extracting data from the application's

database, and loading it into our Data Store located at the server side.

3.3.1.3 Web API

Web API is the backbone of our architecture. It has been built to facilitate the secure

exchange of patient data among client applications and EMR systems. It is an interface that

integrates with all other components of our architecture to enable secure sending, receiving

and storing of data. It acts like a security gatekeeper that is situated behind a secure firewall

at the server side, and allows only authorized users and mobile devices to access data, by

performing various authentication checks (see section 3.4). It stores the

encryption/decryption keys, and is responsible for encrypting data before it is stored inside

the Data Store, and decrypting it when access is requested. If the client application needs to

access data, a request is sent to the API which communicates with the Data Store, decrypts

the data, and sends it to the client over an SSL connection. The API has the following

functionality:

• Send/receive patients' data from client applications, and EMR Systems.

• Encrypt and store received data into the Data Store

• Decrypt the Data stored in Data Store and send it to client applications

• Authenticate users using Active Directory

• Authenticate devices using API keys

• Provide access control on the data

51

3.3.1.4 EMR Data Transfer Agent

The EMR Data Transfer Agent uses SSL to facilitate a secure connection, between an

existing EMR system and the Web API. This connection enables extracting Data stored at

the EMR system and submitting it to the Web API. For data exchange between the EMR

system and the Data Store, the agent converts data into XML formatted using Health Level

Seven (HL7) specifications. The agent runs as a background system service at the server

side, situated behind a secure firewall, and periodically pulls data from the target EMR in

order to keep Data Store updated.

3.3.1.5 Data Store

Over years, security experts have made their best efforts to consolidate data in a central

repository as it is more effective and efficient to protect Data stored at a single location

versus it being spread out. It is like securing the money deposited in banks by placing it

inside a single locker and applying security measures on the locker. If the money is spread-

out over different locations within a bank, every location would need its own security

mechanisms. This not only increases the overall cost of security solution but also increases

risk of theft, as there is more than one location from where the money can be stolen. With

mobile devices being rapidly used to download and access confidential data, the data is

scattered again. This increases data theft vulnerability as it is challenging to apply security

measures on mobile devices and control data usage. Most security solutions discussed in

chapter two have one fundamental problem in their approach. They all assume that the data

would be secure if it is stored as encrypted on the mobile device. Storing encrypted data

ensures data-confidentiality; however, if the mobile device is stolen or lost the encrypted

data still remains visible to any unauthorized user that possesses the device.

52

SDSA consolidates all sensitive data into a single Data Store located at the server side.

Since server has high degree of computational power we can easily apply strong security

measures to protect the data without compromising the overall performance of the system.

This also mitigates the risk of losing data from the mobile devices, and allows organizations

to maintain a log of various data access activities on the Data Store. The data is temporarily

stored on the mobile device for a short duration, while it is being viewed by the user, and

must be secured on the device. We explain how data is secured while stored inside the data-

store, and while it is on the mobile device in section 3.4.

3.3.2 Healthcare Industry Data Exchange Standards and Specifications

The organization and delivery of healthcare services is an information-intensive effort. In

order to exchange data electronically in healthcare environments, it is essential to use

standard data formats that ensure interoperability between different computer applications

within an organization. For this research we use HL7 standard version 2.3.1, as used by

Northern Health, for data exchange between various components of SDSA. HL7 is an

American National Standards Institute (ANSI) accredited standard that is compatible with a

large variety of programming languages and operating systems. It supports communications

in a wide variety of communications environments, ranging from a full, OSI-compliant,

7-level network "stack" to less complete environments including primitive point-to-point

RS-232C interconnections and transfer of data by batch media such as floppy disk and tape

[52].

HL7 standard specifies the organization structure for XML messages, and enforces

messages to use specific data types and field lengths. Every HL7 message has a message

header segment that specifies the encoding character used. HL7 specifies few required

53

fields, such as Message Header Segment (MSH), Patient Identification (PID), and

Observation Segment (OBX), that must be filled before a message can be exchanged. This

ensures maximum interoperability when exchanging data among mobile devices and EMR

applications. A sample HL7 message is shown in Appendix 1.

3.4 Securing Sensitive Data

SDSA provides full security for sensitive data, during transmission, while it is on the mobile

device, and while it resides on the server. We make use of data encryption and combination

of different authentication techniques to safeguard the sensitive data. Instead of storing data

on the mobile devices, the data of every user is stored as encrypted in a consolidated data-

store at the server side. The data is made available to its owner (user) as a service. In order

to access data, the user must send a request to the Web API asking for data-access

permissions. The request contains the details about what data needs to be accessed, and the

credentials of the user for authentication. Once the user's identity is verified the requested

data is decrypted by Web API and sent back to the client/user over SSL connection. The

data is always formatted according to HL7 specifications for data exchange. Figure 3.4

illustrates the process of data access using SDSA.

54

Server Client

{API Key, Usemame,
Password, DeviceJD)

{initiate a session)

1. Data Access Request
2. Verify Device Authenticity

3. Verify User Authenticity + Check
for data access permissions

(Data Access Permission Granted) 4. Establish the Session

5. Access Data {messageJd)

6. Fetch the requested message
from data store

7. Decrypt the requested message
and send the result to client

(Message Contents)

(HL7-XML) 8. log-out / Terminate
Session

(log-out)

^>9. Session Terminated

Figure 3.4 Accessing Data using SDSA

3.4.1 Authentication

In order to facilitate authentication, we have designed a two-step authentication process that

performs device authentication at step one, and user authentication at second. User

authentication ensures that only authorized users can access data, whereas device

authentication ensures that only registered mobile devices are being used. Users must

register their mobile device with the server in order to access data. Device registration is

55

only a one time requirement, once the device is registered users are allowed to access data

by simply using their authentication credentials. Registering devices with the server, allows

organizations to control data access and revoke permissions in case the device is lost or

stolen.

In theory there are many ways to authenticate the user. To be authenticated the

claimant (user) must identify himselfTherself to the verifier (server) by using one of the

following witnesses:

• Something known: A secret that is known only by the claimant, like a password,

pin or a secret key etc.

• Something possessed: Something that user may have such as a token or a smart

card.

• Something inherent: An inherent characteristic of the claimant such as, finger

print, voice, retinal pattern, or any facial characteristics.

For our research, we use username-password (something known) based authentication

technique due to its simplicity and convenience for users to remember a small paraphrase

instead of a large size encryption key. Username-password based authentication allows

integration with services like Active Directory that makes users-management easy and

enables creating user-groups and hierarchies to enforce different data access permissions for

different types of users [53] [54].

3.4.1.1 Device and User Registration

For user registration a new Active Directory account is created on the server where user

selects a unique usemame and password. We assume that the organizations use Active

56

Directory to register users, and users are pre-verified by the organizations through their

internal policies and procedures before signing up for our service. This allows organizations

to have complete control on who is permitted to access data. Based on type of data-access

permissions needed by the user, he/she is added to a particular domain group such as

physicians, pharmacists, nurses, or administrators. Every user-group has its own unique set

of permissions. Different types of permissions include read-only, write-only, and read-write

data access. Categorizing users into different user-groups allows data abstraction which is

important as not everyone should be able to see patients' data in its entirety. For example, a

physician should be allowed to see complete medical history of patients, whereas, a

pharmacist should just see patients' prescriptions.

Every user must do one-time registration for all their mobile devices that would be

used for accessing data. In order to register devices, the server generates a cryptographically

secure 224-bit long random number for every device [44] [55]. This random number is

appended with a four digit number chosen by the user. This string, 256-bit in total, is used as

a secret key that is known only to the user. We call this secret key as API key. Next, the

server generates a hash on the API key by using HMAC-SHA-256 algorithm. The output of

this step is a 256-bit long HMAC which is used to verify device authenticity. The server

stores the HMAC only. The API key is given to the user and is permanently deleted from the

server. Hence even if the server is compromised, the user keys are not revealed. The user

permanently stores a part of the API key, the 224 bits or 28 bytes out of the entire length, on

the mobile device, and remembers the rest 32bits or 4 bytes. Figure 3.4.1 shows device

registration process at the server.

57

Cryptographically
random 28 Digits

API's Secret Key

Data Store

HMAC

I 'scr's 4 Diiiits

Figure 3.4.1 Device Registration at the Server

3.4.1.2 Establishing a Session

To access data on server, user needs to establish a session with the server. The user and the

server undergo a handshake initiated by the user in order to establish the session. During the

handshake, server verifies device's and user's authenticity, and determines type of data-

access permissions. The user sends his/her credentials (username and password) along with

the device's API key to the server over network using SSL connection. Device's API Key is

constructed by combining the partial key stored on the mobile device, with the four digits

entered by the user. On receiving this information, the server extracts the API key from the

received message and generates an HMAC by using HMAC-SHA-256 algorithm, for device

authentication. The new HMAC is compared with the HMAC that was stored on the server

during device registration. If the two HMACs match, the device is authentic. Next, user's

username and password are extracted from the message and are verified against Active

Directory. Appropriate data-access permissions are given once the user and the device have

been authenticated. Figure 3.4.2 shows steps of this handshake between the client and the

server.

58

SSL

User sends Hello Message

Data Access Request

U semame
Password
API Key
L'DID

User makes the request to establish a session by sending his/her

credentials.

Server receives the request and extract user's credentials

from the message.

Generate HMAC

32-digit API Key j •••tf HMAC 1 S i V I Calculation I

Scnvr cxtracn the API Kc\ from ihc request. hash ii usinx HS1AC-
SUA256

Device Authentication

SERVER GENERATED HMAC HMAC STORED AT THE SERVER

Device is authenticated by matching the newly generated HMAC

with the one stored at the server.

User Authentication

Extract the credentials from the request and authenticate the user

with Active Directory

Once User and Device have been authenticated, the server sends back

o hello message to the client and the session is established.

Figure 3.4.2 Establishing a Session between the Client and the Server

All the data exchanged between the server and the user is wrapped in an XML

message. XML messages are portable and platform independent which allows using separate

programing technology on the server and mobile device.

3.4.1.3 Accessing Data on the Server

Once the session has been established between the client and the server, user is allowed to

access data until the session is terminated. Currently, data can be accessed only in

'connected mode'. Every user has a data storage space on the server; we call this storage

space as user's mailbox. User can view data that resides in his/her mailbox only. Once

59

authenticated, user gets full access to the mailbox and can read or write new data. The

mailbox can be accessed over multiple mobile devices that are registered by the user.

Currently, SDSA does not support concurrent sessions between different devices and single

mailbox. There can be only single active session between the client application and the

mailbox. Unlike most commercial data sharing solutions such as Blackberry Enterprise

Server (BES), Dropbox, and Apple's iCloud, which downloads a copy of data on the mobile

device every time access is required, our solution instead allows client application to directly

modify the data on Data Store itself by using various Web API calls. Since, there could be

only one active session the data remains consistent and synchronized between all the mobile

devices registered by the user. Figure 3.4.3 shows process of accessing and modifying data

on the server.

60

Client Server

Messagejd for requested
message

1. Display Message
Request

2. Fetch the requested
message from the data store

3. Decrypt the requested message
arid send results

(HL7-XML result)

4, Modify Data messagejd, Modified content)

(HL7 - XML)

5. Update the message contents

6. Encrypt the message and store
it in data store

7. Send Success notification

Figure 3.4.3 Data Modification Using SDSA

3.4.1.4 Exchanging Data with Other Users

A user can either create and send a new message, or forward an existing message to other

users. When the message needs to be sent, a request is sent to the Web API indicating the

recipient and the data that has to be sent. The server acts like a postman who takes the data

from user's mailbox and keeps it in the mailbox of the recipient. In order to view received

data, the recipient needs to establish a session with the server. The data can be shared among

61

registered users only. Figure 3.4.4 shows the process of sending a new message to other

registered users. Figure 3.4.5 shows how an existing data/message can be shared among

other users.

ft As-ft

Client Server

1. Request Send Messag Message Contents

(HL7-XML result)

MessageJd, recipient's id,
Message Contents

-v. 2. Create a copy of the message
\ and store it in sender's mailbox

marked as sentjtems

3. Encrypt the
) received message and

<4__———place it in recipient's
mailbox.

Message Sent Successfully
4. Notify Sender

Figure 3.4.4 Sending a New Message

62

Client Server

1. Request Send Message Message id, recipient's id

2. Fetch message from the data

store.

3. Create a copy of

the message and

place it in recipient's

mailbox.

Message Sent Successfully
4. Notify Sender

Figure 3.4.5 Forwarding an Existing Message

3.4.1.5 Terminating the Session

After accessing the data, the user must terminate the session. This prevents unauthorized

personnel from accessing data while the user is away. The session can be terminated by

simply sending a termination-message to the server. In addition to manual termination of the

session, we recommend that organizations should enforce time-out policies which would

automatically terminate the session after a certain time-period. This protects from any

security breach in case the user forgets to terminate the session while away from the mobile

device. By default we set the time-out to be two minutes, that is, the user is automatically

logged-out of the service after two minutes of idle status. We also recommend organizations

to enforce authentication time-outs to prevent brute-force attacks. A user should only be

given certain number of attempts to prove identity. If a user fails to identify, he/she must be

locked out and must contact the system administrator.

63

3.4.2 Data Encryption

The data stored in Data Store is always encrypted. The Web API encrypts data using a

private-key encryption algorithm, AES [56], AES was chosen as a standard encryption

algorithm by NIST in year 1991. It is a block cipher that uses 128-bit block size and up to

256-bit key size. The API encrypts the data before storing it inside the Data Store, and

decrypts it when data access is requested. Instead of encrypting/decrypting the entire

database, SDSA individually encrypts all messages. Hence, only the requested message

needs to be decrypted instead of the entire database. This improves the overall data

read/write performance. The encryption/decryption key is stored at the server, and is

accessible only by the Web API. Encrypting data inside Data Store protects data privacy

from any attacks on the server, and prevents employees at server side without proper

authorization to access sensitive data.

3.5 Contribution and Comparison of SDSA

The main contribution of our work is a low-cost, secure data sharing architecture that is

customized especially for healthcare organizations. It enables safe exchanging of medical

data over unsecure wired or wireless networks using mobile devices. The architecture can be

integrated with any EMR application inside a healthcare system and provide extensions that

facilitate data sharing over mobile devices. Unlike other data sharing solutions, our

architecture makes use of HL7 specifications for data exchange ensuring maximum

interoperability between EMR systems and mobile devices from different vendors. Our

solution provides end to end data protection, including the time when data is on mobile

devices, without any significant performance overhead. By moving most of the

cryptographic computations on the server side instead of mobile devices, we have been able

64

to achieve significant improvement in time taken to send and receive data, versus other

approaches where computations are mostly done on the mobile device. We present these

results in next chapter.

The security protocol provides authentication for both - device and user, ensuring

that data is accessed by authorized personal over an authorized device only. We use

username-password based user authentication, and a custom authentication technique for

mobile devices, in which every device is issued a cryptographically random API key. Since

the API key is divided into two parts, with one part stored on the mobile device and other to

be remembered by the user, we are able to protect the API key even when the mobile device

is stolen. This solves one of the main problems with using certificates based device

authentication. The certificates stored on the mobile device can be stolen and forged to be

used with another unauthorized device. With our protocol, even if a part of key is stolen

somehow, the information is useless without the second part of the key (a four digit number)

that is known only to the authorized owner of the mobile device. By allowing only the Web

API to access the Data Store with encrypted data, we ensure that sensitive data is not visible

to unauthorized employees. Furthermore, our architecture is an open system which supports

integration with various open source and proprietary technologies, unlike other commercial

data security solution such as Blackberry Enterprise Server (BES) which is strictly

proprietary and closed in terms of supported applications. Our architecture provides data

security without requiring data to be transmitted to a third party Network Operation Center

(NOC), which raises many privacy concerns such as data being visible by employees at

NOC, and discourages many enterprises from using such solutions. Table 3.1 summarizes

some important differences between our work and other existing data sharing solutions

discussed in section 2.3.2.

65

SDSA
Other Medical Data Sharing

Architectures

Perform Device Authentication Yes
No, only Transient Authentication

performs device authentication.

Perform User Authentication Yes Yes

Integration with EMR

applications and Lab Delivery

Networks

Yes No

Resources Required to Protect

Data at Server
Low High

Resource Requirements to

Protect Data on Mobile Device
Low High

Overall Complexity and

Computational Cost
Low High

Scalability High Low

Store Encryption/Decryption

Keys on device

No, only a part of

API key is stored.
Yes

Perform Resource Intensive

Computations on Device
No Yes

Require Additional

Hardware/Software for data

Security

No

Yes. Transient authentication

requires key-fobs. Concord requires

an additional mobile device to store

keys.

Deployment Cost Low
High, due to additional

hardware/software required.

Table 3.1 Differences between SDSA and Other Data Sharing Architectures

66

3.5.1 SDSA versus Blackberry Enterprise Server

The Blackberry Enterprise Server (BES) is a commercial solution designed to extend an

organization's communication methods to Blackberry mobile devices. It consists of various

products and components that allow accessing confidential data such as mails, tasks, and

calendars, over any Blackberry device that is registered with the organization. BES uses

symmetric key cryptography to encrypt data during transmission over network, and while

the data is stored on the device itself. It uses username-password based authentication, smart

card based authentication, or combination of both to provide user authentication. Some

important distinguishing features between our solution and BES are as follows:

1. Difference in techniques used for device authentication: By default, BES

secures data by using user authentication only. Although, it offers an additional

policy that enforces devices to authenticate itself before any data can be

accessed. In order to perform device authentication BES uses a unique alpha­

numeric PIN, which is assigned to all Blackberry devices by default for

identification purposes. BES maintains a list of devices that are allowed to access

data. The list is stored on the server located inside the organization. On every

data access request, BES checks if the device's PIN is on the list of authorized

devices. If the device is not on the list, data access is denied. There are two main

problems with such an authentication technique. Firstly, the PIN is always stored

on the device, and it can be revealed if the device is lost or stolen. An attacker

may even forge an unauthorized device's PIN to be the same as the one stolen

from an authorized device. This could be a critical security breach that could

potentially allow an unauthorized device to be able to access organization's

confidential data. Since the unauthorized device is not tied up to follow any

67

security policies which were enforced on the authorized device, BES might not

even be able to revoke permissions, or delete data that has been already

downloaded on such a device. Secondly, if an invader attacks the server, and is

able to retrieve the list of authorized devices, same security breach would be

introduced. Currently, the solution to prevent such an attack is by encrypting the

list on the server. However, the PIN is still visible on the mobile device, and the

first problem still applies.

In our architecture, devices are authenticated using cryptographically random

API key that is used as device identifier. We compute a hash on this key using

HMAC-SHA-256, and store the hash on server for device authentication. Even if

the list consisting of device's hash is somehow revealed to an attacker, the

original API key can still not be reproduced due to the irreversible nature of

hashing algorithm used. Furthermore, we only store a part of the API key on the

device which is useless without combining it with the other part, that is, the four

digit passcode remembered by the user. Hence, even if the part stored on the

device is stolen or revealed, our architecture still prevents security risks

associated with BES' device authentication.

2. BES forwards data to RIM's Network Operation Center (NOC): In order to

exchange data within an organization, BES connects with organization's

messaging server, its application server(s), and Research in Motion's NOC. To

ensure that only legit data-access requests are received by BES, it accepts

incoming transactions from only one place - NOC. When data needs to be sent

from a Blackberry device to the server, it is passed to NOC which forwards it to

the organization's server. This means RIM tracks all the transactions between the

68

device and the BES, which could discourage organizations dealing with highly

confidential data from using this service. SDSA uses SSL to provide the same

functionality, without sending data to any third party server that is not controlled

by the organization. During the SSL Handshake protocol, the device and the

server exchange important information for authentication. SSL uses a reliable

transport layer protocol such as TCP to ensure that messages are being sent to

intended recipient from a legit sender.

3. BES is strictly platform dependent: BES requires specific hardware and

software configurations before it can be deployed. Minimum hardware

requirements of BES are high computing multicore CPUs such as Intel Xeon

processors, and at least three gigabytes of RAM. For an optimized performance,

it is suggested that BES should be deployed on Windows server operating system

only. These specific requirements, along with an expensive licensing fee to use

BES, make it a very expensive solution especially for smaller organizations. BES

works with Blackberry devices only, which means, organizations have to restrict

its users to use these devices only.

4. BES supports limited applications and lacks support for connectivity with

EMR applications: The types of data that can be accessed by using services

provided by BES includes emails, calendars, tasks, notes, and files & documents.

Basically, BES makes desktop applications such as Microsoft Outlook, or Lotus

Notes available over Blackberry devices. In order to connect with the existing

EMRs, any system must support standards specific to health industry, such as

HL7 for exchanging medical data. Currently, BES doesn't use any such

specifications for data sharing, and hence fails to directly integrate with the EMR

applications. Since SDSA is customized specifically to healthcare industry, we

69

ensure all healthcare standards are followed, ensuring smooth integration with

the existing EMR applications.

5. BES stores data and encryption keys on the device: BES allows storing

encrypted data on the device. It uses eight different keys to encrypt/decrypt data,

and encrypt/decrypt the encryption-keys itself. The encryption keys used for

encrypting data are encrypted themselves by using two types of keys called

ephemeral key and device transport key. Since keys are always stored on the

device, including the master keys that encrypt other keys, the data could be

revealed in case the device is stolen or lost. An attacker can find the master key

stored on the device, and use it to decrypt all other keys and the data. SDSA on

the other hand, doesn't allow storing any sensitive data on the device. Only a part

of the API key is stored on device, which is useless to an attacker without the

second part of the key.

6. Difference in verifying message integrity: BES uses symmetric key

cryptography to verify data integrity. Every device registered with BES is given a

private key, called as message key. Only BES and the device know the value of

this key. The mobile device uses this key to encrypt data while sending it to BES

over network. BES recognizes the format of a decrypted and decompressed

message. A message is automatically rejected if it is in not encrypted with keys

that BES recognize as valid [57], A big drawback with this method is that it

requires special keys to be stored on the mobile device and perform additional

encryption operations in order to ensure data integrity. This introduces a

performance overhead, and if the device is lost the encryption keys might be

revealed. SDSA minimizes the amount of cryptographic secrets that need to be

stored on the mobile device, and minimizes any computationally intensive tasks

70

such as encryption/decryption by moving it onto the server instead. This ensures

that even if the device is stolen, minimal information is available for an

unauthorized personal to access sensitive data. In order to provide message

integrity services, SDSA use SSL protocol which doesn't requires storing any

secrets/keys on the device.

3.5.2 SDSA versus Apple's iCloud

Apple's iCloud is an 'online-storage' solution that allows users to upload and store their

personal data such as mails, photos, and music on a cloud (server) controlled by Apple.

Users who potentially have multiple devices can benefit greatly from iCloud, as it provides

them a central storage space. The best feature of iCloud is its capability to automatically

synchronize data among different Apple devices owned by the user. It is still in beta testing,

and the final release is due this year [58]. Even though iCloud allows secure access to data,

it cannot be used in healthcare application. Following are some limitations of iCloud, and its

differences from SDSA.

1. iCloud does not support data sharing: iCloud provides functionality that allow

users to download data over multiple devices owned by the user. However, the

data cannot be shared with other users. With healthcare applications, data sharing

ability is a key requirement.

2. iCloud lacks device authentication: In order to access data stored on iCloud

server, user needs to provide Apple id along with the password for

authentication. Users could use any Apple device, and use their credentials to

gain data-access permissions. This might be unacceptable in an organizational

environment which requires only authorized devices to be able to access sensitive

71

data. SDSA provides a cryptographically strong device authentication technique

to fulfill this requirement.

3. The user authentication technique used by iCloud cannot be integrated with

organization's current user management software such as Active Directory:

A user must have an Apple id to be able to access data. Since only Apple knows

user ids, they cannot be shared with the organization. This means every user must

have separate credentials for using iCloud services, and for using other legacy

services hosted inside an organization. SDSA makes use of user's existing

username-password registered with any user management service, such as Active

Directory, for user authentication. This allows SDSA to successfully integrate

within an organization's existing IT infrastructure.

4. iCloud is only for Apple devices: Like most commercial solutions, iCloud is

strictly closed in terms of which devices can be used. It supports only Apple

devices using iOS5 operating system. SDSA on the other hand, makes use of

HL7 specification for sharing data on mobile devices with different platforms.

5. iCloud server is controlled by Apple: A major drawback that would discourage

many organizations from allowing its users to store sensitive data on iCloud is

that the data is stored on a server over which the organization has no control.

This means organizations would have to depend on Apple to provide security

measures or any important updates that are critical to data security. There is also

a possibility that the employees at Apple who are otherwise unauthorized to view

data, may be able to access data and reveal its contents. With SDSA, data is

always encrypted when on the server, and only Web API can decrypt the data

and provide necessary data access permissions. Hence, even if organizations

chose to host its server outside its premises, the data is assured to be protected.

72

Chapter 4

Experimentation and Results

In this chapter we present design and implementation of the prototype built for testing our

secure data sharing architecture proposed in chapter three. We discuss various test cases and

outputs of rigorous testing performed on the prototype. We also evaluate security strength of

our solution, and analyze how it protects data against various threats.

4.1 Introduction

To demonstrate our security architecture proposed in chapter three, a fully functional Point-

of-Care-Testing (POCT) system was developed in collaboration with the team at Business

Intelligence Research Group (BIRG), UNBC. POCT refers to medical testing performed at

or near the site of patient care [59]. The motivation behind POCT is to reduce the time taken

in conducting tests, and quickly provide healthcare providers with lab results, in order to

assist them in making immediate decisions on patients' health. POCT includes blood

glucose testing, hemoglobin diagnostics, cholesterol screening, and other tests which can be

easily performed by using portable instruments that provide test results instantly. The main

benefit of such tests is seen when the test output is immediately made available as an

electronic record. Electronic records allow sharing results with other members of the

medical team for their expert opinion. For this research, POCT is accomplished by using

73

mobile devices that communicate with our backend services running at the server, in order

to collect patients' test data, or retrieve patients' existing medical information stored in

EMR applications. We have implemented all components of SDSA, as discussed in previous

chapter, and integrated them together to build an automated mobile lab delivery system.

In order to determine the usability and practicality of this research, we have closely

worked with the physicians and technical systems analysts at Northern Health Authority

(NHA), Prince George. Northern Health is one of the largest publically-funded healthcare

providers that cater 300,000 people over an area of 600,000 square kilometers in the

province of British Columbia [60], With the valuable feedback from Northern Health, we

have been able to refine our prototype such that it can be integrated with Northern Health's

existing EMR applications and lab delivery network. This integration would allow

physicians at NHA to use their mobile devices that are registered with NHA, to securely

access patients' data stored in EMR applications at their clinic. Physicians would be able to

use mobile devices while they are on field visits, to collect observations on patients' health.

This information is saved electronically, and is transmitted to the Data Store located at the

server for later use.

4.2 Prototype Design

We follow Service Oriented Architecture (SOA) to design our prototype. SOA is based on

request/reply paradigm that separates an application's business logic from the presentation

layer, and presents it as a set of services to client applications. Service is a term that refers to

a well-defined function that can access data, perform various operations on it, and return the

result to the service requester. SOA consists of three components — the service provider

74

which is the backend application located at the server side, the service consumer which is

the front end application that directly interacts with users, and the service directory which

contains description for all the services that are offered by service provider. The main

benefit of using SOA is its platform independent nature. SOA components are loosely

coupled and the service interface is independent of implementation technology. This implies

that a service-provider can be implemented by using any language or platform, and does not

necessarily need to be the same as the one used by service-consumer. This allows

application developers or system integrators to build applications by composing one or more

services without knowing the services' underlying implementations [61].

In our prototype, the service provider constitutes the Web API that integrates with

the Data Store, and the EMR data transfer agent. It provides the necessary services for

authentication and secure data exchange between the devices and EMR applications. The

service consumer includes the client application that runs on mobile devices, and the EMR

applications. Figure 4.1 shows different components of SOA.

75

Service Request

Service Provider Service Consumer

Service Reply

Figure 4.1 SOA Components

When the service consumer needs to access any services or resources, request is sent to the

service provider over the Internet. The service provider and consumer follow Simple Object

Access Protocol (SOAP) for message exchange. SOAP is a standard lightweight protocol

recommended by World Wide Web Consortium (W3C) for exchanging structured

information in a distributed environment [62] [63]. It is based on XML, and is platform &

language independent. It is especially designed for communication between applications

over HTTP and HTTPS, which is a better way of communication since it is supported by

most of the Internet browsers [62]. SOAP defines a specific message format in which the

XML messages are divided into two parts - the body and the header. The message body

contains the actual message, and the header contains application specific information such as

authentication, and payment. Figure 4.2 shows the mapping of SDSA's components to SOA.

76

SOAP,
SOAP

Service Request (XML
SQL

Client Application
iService Reply

(HL7-XML)

Service Provider EMR Applications

Service consumer

Figure 4.2 Mapping between SDSA and SOA

4.3 Prototype Implementation

As discussed in chapter three, SDSA consist of five components -Web API, Data Store,

EMR data transfer agent, client applications, and an EMR application. The implementation

details of all the components are described in the following sub-sections.

77

4.3.1 Web Application Programming Interface (API)

The Web API has been built as an ASP.NET 3.5 web application to provide various data

exchange services to client applications. It uses C# as the underlying programming

language, and directly communicates with the Data Store and the EMR data transfer agent.

It uses default SQL Server 2008 connection manager provided by .Net framework, in order

to communicate with the Data Store. All the methods defined in the API have been written

as web methods, which allow us to create a standard service directory by using Web Service

Description Language (WSDL). WSDL is an XML based language for describing the

definitions of web services offered by the API, and methods to access them. The service

directory is especially useful when different implementation technologies and platforms

need to be used among different components of SOA. Table 4.1 on the next page shows

various services along with their descriptions that are offered by the API.

78

Service Name Description

FetchlnboxMessagelds Fetches the list of messages currently available in the user's

inbox.

AcknowledgeMessageld Marks message as acknowledged.

FetchDraftMessagelds Fetches the list of messages currently available in the user's

draft messages folder

FetchSentMessagelds Fetches the list of messages currently available in the user's

sent messages folder.

FetchMessage Fetches a specific message from the database.

SaveMessage Saves a draft message in the DB.

UpdateDraftMessage Update the contents of a previously saved draft message.

SendMessage Sends a message to mirth and the storage DB.

ForwardToEmr Forwards a message to user's EMR application.

Authenticate Authenticates a user against the Active Directory.

GetMessageld Queries the DB for the MSP of a user based on the username.

AddMobileDevice Registers a mobile device's information in the DB.

SearchForUser Searches for existing users in DB, based on MSPs, first name,

and last name.

GetU ser AddressBook Fetches the address book for a specific user in XML format.

AddT oAddressBook Adds a user to the address book.

MarkMessageDeleted Marks a message as deleted.

UnmarkMessageDeleted Removes a delete flag from a message.

FetchZdr Extracts the ZDR segment from the HL7 message.

F etchProviderlnfo Extracts the provider's information from the HL7 message.

Table 4.1 Web Services Provided by the API

The SDSA Web API accepts SOAP based XML requests from client applications, and sends

back the service results using the same. Any message/request that contains medical data is

79

formatted using HL7 specifications. For converting messages into HL7 specifications, the

API uses a third party, java based open source HL7 broker called mirth-connect [64]. We

select mirth-connect due to its widespread use in northern British Columbia, and ability to

handle scalable message volumes at low licensing cost. Another option considered for the

HL7 broker was Microsoft's BizTalk [65], but the proprietary nature and licensing cost

made it unfeasible for this research.

Following the best practices for writing secure code, we encrypt and store all the

connection strings from the API to different components in Web.Config file [66]. This keeps

sensitive information such as username-password for database connection confidential. We

have parameterized all the SQL queries used by the API in order to protect our code from

SQL injection attacks3. Furthermore, instead of simply using string variables in the API to

temporarily store sensitive information, we make use of SecureString class provided by .Net

library. SecureString is a special class that encrypts the text when being used, and deletes it

from the computer memory when no longer needed [67]. This protects our code from

memory based attacks where an invader tries to access sensitive data from the shared

computer memory.

4.3.2 SDSA Data Store

The SDSA Data Store is a Microsoft SQL Server 2008 database that acts as the central

repository for POCT data including users, address books, devices, and messages. User data

is used to identify POCT users within the system. The Medical Service Plan (MSP) number

is used as the main identifier. Address books contain the information which allows a user to

3 SQL injection is a technique for exploiting any security vulnerability of an application at the database level,
by embedding modified database queries with the user input. Vulnerabilities are present when the user input on
the front-end is incorrectly filtered for string literal and escape characters embedded in SQL statements [73],

80

quickly find other users for the purpose of sending a message. Device information includes

the unique device id, associated user, API key, and the salt-value. Messages are stored in

XML format identified by the message ID with a separate lookup table associating users to

messages. This database is encrypted by using AES-256-bit encryption, and accessed only

via the API to provide proper security. Standard Windows-based authentication and access

procedures for SQL Server 2008 are used for accessing the database. Figure 4.3 shows

the database schema.

MagStorage
msgjd
insertion.ttne
roessage_xrri

AddressBook
! MSP

ContactMSP
CantactfHrstName
Contactl-astNaroe

msp

username

title
frsfc_name

mid<Je_name

lastjvame

suffix

Bmad

degree

5endToErnr

UserOevlces
9 DID

Apj

Salt

Msp

Descrpbon

Law
Enabled

bO—»OC
MsqLookip

msgjd

msp

acknowtedge_statu5

ackrowtedgejime

folder _tag

download Jime

deleted

FrstName

LastName

Report Type

Figure 4.3 SDSA Data Store Schema

81

4.3.3 EMR Data Transfer Agent

The EMR data transfer Agent is installed on the machine that hosts EMR application. The

agent periodically triggers a sequence of actions that allow it to download new messages

from the EMR application and submit them to the API. It connects to the API and requests

the timestamp of the last message submitted, and then uses it to get a list of message

IDs from the API. These IDs are used to filter out duplicate messages. The EMR Data

Transfer Agent queries the EMR database for the IDs of all messages with data and time

greater than the timestamp received from the API. The message IDs are then checked

against the list obtained from the EMR Data Transfer Agent and any duplicates are removed.

The agent then iterates through the remaining message IDs and queries the database for all

required fields for the HL7 message. These fields are assembled into an XML formatted

HL7 message and transmitted over an authenticated HTTPS channel to the API Web

Service.

4.3.4 Client Application

We have implemented an iOS based client application that can be installed on any Apple

mobile device including iPad, iPhone, and iPod touch that runs on iOS 4.0 or above. The

application is written in Objective-C4. It is built upon Model-View-Controller (MVC) design

paradigm where the Model contains classes that encapsulate application data, View is made

up of the windows, controls, and other elements that user can see and interacts with,

and Controller mediates the logic between Model and View. The separation of

responsibilities in MVC simplifies the design and maintenance of an application by

allowing changes to different components independently. Figure 4.4 shows the MVC

design paradigm.

4 Objective-C is the native language supported by Apple devices.

82

Database / Other

Storage

Mechanism

Figure 4.4 Model View Controller Design

Objective-C allows manual de-allocation and dereferencing of objects created throughout

the application. This is better than automatic garbage collection especially when using

devices with limited memory resources. Since automatic garbage collection can sometimes

delay releasing resources, it is difficult to estimate and manage the actual size of the

working set in memory. The delay also interferes with releasing other resources, such as

descriptors and view handlers, which causes resource starvation. Garbage collection

demands CPU time for memory management, but, with manual memory management this

time can be saved. In order to ensure data confidentiality on the device, we restrict our

83

application to release all objects and dereference them to 'nil', as soon as our application is

interrupted by another process running on the device, such as a phone call or receiving a text

message. This protects data that is temporarily stored and being reviewed on device, from

any malicious processes that could possibly manipulate device's shared memory to access

the data. With manual memory management it is possible to restrict any unauthorized

process or method call running on the device to access data. The user must establish a new

session with the server every time an application is interrupted or intentionally closed. The

only limitation with this is the inconvenience of re-establishing the session. Although, this

could be improved if credentials can temporarily be cached on the device, as this would not

require users to re-enter their credentials every time. Temporarily caching credentials

presents many security risks and the solution to protect credentials would be different for

different mobile platforms. A possible solution to this could be using hardware encryption, if

supported by the mobile device, to encrypt the credentials while they are cached in the

memory. However, securing the cache memory of the device is out of scope of our research

work.

Since iOS Software Development Kit (SDK) does not include constructs to consume

SOAP based web service, we use a third party open source tool, called SudzC [68], to

generate the corresponding objective-C code. SudzC reads the application's service

directory created in WSDL, and generates the corresponding source code that allows

communication between the client application and the Web API. Current functionality of the

application includes:

• Device and User Authentication: When the application launches on the device, users

are prompted to enter their credentials (username-password and a four digit key).

Every device securely stores a partial API key that was provided during device

84

registration. We use Apple's keychain5 to store the key. On every data access

request, user's credentials and the device's API key are sent to the Web API for

authentication. The data access permission is given to the user on successful

verification of user's credentials.

• Send Messages: Users can compose and send messages related to a patient's health.

For example, a physician can send a message indicating lab results of a patient

to another physician. The messages must include all the required fields of the CIX

specification.

• View Messages: After successful authentication, the application downloads a list of

sent/received/draft messages from the API and displays this list to the user; allowing

them to view the content of each individual message. Users can also subscribe to

receive a copy of messages that are stored in their EMR.

• Save/Compose Drafts: While composing a new message user can save the

incomplete message as draft. This allows message composition to be resumed later.

Using this feature, users can quickly take notes on patient's health during a home

visit and complete the full message at a later time.

• Forward to EMR: A message composed on an iOS device can be forwarded to

physicians' EMR to allow continued authoring of the message at a later date. This

feature is dependent on support provided by the EMR application, and may not be

compatible with all applications.

4.3.5 EMR Application

We use Medical Office Information System (MOIS) as EMR application due to its

popularity and widespread use within northern British Columbia. MOIS is capable of

integrating with lab delivery networks within healthcare organization, and receive lab results

from various facilities inside the organization. It is primarily used by physicians for medical

5 Keychain is a secure, encrypted container provided by Apple to store sensitive data such, as username-
passwords, on the device. The keychain data for an application is stored outside the application's sandbox and
is controlled directly by iOS. Only authenticated application processes are allowed to access application data
stored in keychain [74],

85

office billing, scheduling, and documenting key elements of patient medical records

including encounter notes, past procedures, prescriptions, allergies, consultation and referral

reports [69]. We assume that all lab reports are delivered to MOIS, and it acts as data source

for our prototype. The amount of patients' previous health information, such as previous lab

reports, is limited by the amount of information stored in MOIS. Although, new data

collected by using our client applications is independent of MOIS.

4.3.6 Error Handling and Logging

The implementation provides several levels of error handling and logging, offered at the

Web API, the Data Store, and the client application. The Web API is written to catch any

errors and exceptions in performing API service calls. Whenever an exception is raised, the

API returns useful error messages indicating the reason for failure. The client application

can use these error messages to debug the problem. Figure 4.5 shows the client application

displaying an error message received from the API. The client application logs various

actions performed by the application by using NSLog and NSAssert classes available in

Objective-C. We also store a log of all the activities performed on the data-store by using

SQL-Server's logging system. This information is particularly useful while debugging

errors, and when administrator needs to trace and analyze various activities on the database.

86

POCT
sachdeva

Aulhenticalion Failure

Figure 4.5 Error Message Received From the API

4.4 Experimentation Requirements

By simulating a mobile POCT system we have been able to perform series of experiments at

BIRG research lab to determine the feasibility of our proposed architecture. Through these

experiments we analyze the usability, deployment cost, security, and scalability of the

prototype. We use standardized performance monitoring tools and applications, such as

87

Apple's Xcode performance instruments, to collect and store our test results. To obtain

accurate results, the performance testing is done on the mobile devices, and on the server.

We define usage scenarios for our prototype in section 4.4.1. The specific criteria that are

used for evaluating the prototype are defined in section 4.5. We have divided the evaluation

criteria into two broad categories - usability and technical. Usability criteria include

requirements that should be fulfilled from user's perspective such as assessing user

friendliness, platform independency, and ease of software installation. The technical criteria

focus on requirements such as memory and CPU resources consumed by the application to

perform various operations.

4.4.1 Usage Scenario

There are two main scenarios where our prototype can be used.

1. Using POCT system inside a clinic or hospital: Our solution can be used by

healthcare providers, inside their clinics or hospitals. In this case, the POCT client

application, installed on their registered mobile devices, is used to note observations

on a patient's health, and to compose new EMRs. These EMRs can be forwarded to

physician's EMR desktop application that directly connects with existing lab

delivery networks inside a clinic or a hospital. The client application allows

physicians to create quick drafts on the mobile device and store it in POCT Data

Store. These drafts can be resumed later and can be forwarded to EMR application

on completion. Using our system, physicians can also request to download lab results

of a patient from the EMR application. These results, by default, are forwarded by

various facilities within the hospital to the EMR desktop application. The user

establishes a secure session with the Web API, which extracts the lab results from

88

EMR application and makes it available on mobile devices. Our client application

has the capability to embed various templates that can be used to collect medical data

of different types. Such templates include blood-glucose tests, clinical summaries,

referrals, prescriptions, and general observations.

2. Using POCT system during a field visit: In this scenario, we assume the user is

travelling and cannot access the local-network that is available from within the

organization. An organization usually implements security mechanisms, such as

authentication with Active Directory, to protect its services from unauthorized

access. However, additional security measures must be applied when accessing these

services from outside the local-network. Our prototype allows users to use all the

services, as described in the first scenario, while roaming. By using special device

and user authentication mechanisms, the access of services while roaming can be

considered strongly authenticated. In order to access the services, the mobile traveler

establishes a secure session with the Web API by using HTTPS connection over the

Internet.

4.5 Validation against Criteria

4.5.1 Usability Criteria

Criterion 1: The solution should be easy to use.

The User Interface (UI) of client application needs to be simple and intuitive. Since mobile

devices have limited screen size, the UI should not be congested for users to input patient

data. It is important that the text is clearly displayed and has a readable font size. The client

application should be responsive and should be free from delays in view transformations.

89

The application should also be easy to install for users and administrators. This criterion

also contributes to commercial viability of the solution.

Validation: Our client application has a very simple navigation-based, default iOS

application design. The application is carefully designed to be similar to iOS default mail

application, so that it looks familiar to users. The application consists of clear text menus

that are intuitive and easy to read. It requires no additional software to be installed on the

mobile device, than the application itself, in order to connect with rest of our system. The

application displays error messages by using pop-up notifications, in case of any exceptions

related to either data entry or any other failure during message transmission. Figure 4.6.1

and 4.6.2 shows screenshots of the client application.

Since the Web API runs as a background web service on the server side, minimal

interaction is needed by the administrator. For device registration, a C# console application

has been built, that allows administrators to generate a cryptographically random device-API

key. The administrator enters the information about mobile device and the end user by using

command line input. All other components of SDSA run as background services which are

configured to automatically start on system boot. Everything on the server side, except for

device registration, is automated and requires minimal user-interaction. Hence, we consider

criterion 1 to be fulfilled.

90

New Message

To Anthony McCann, Ashish Sachdeva

Patient Identification

Sending Facility

Report Data

Blood Sugar: Normal

Temperature: 99f

Allergies: none

Additional Notes

Viral infection.

O

Mallet Amanda

r'l C-: : X -Sii'': X

Patient Type

PRE OUT ER

Report Type

MICROBIOLOGY BLOOD BANK

Observation Date & Time

Date 21 08 2011 Time 12 20

Figure 4.6.1 iOS Client Application Screenshot - Compose Message.

91

TEST. TROY - MB - 7/25/2011 11:46:51 AM

Mills MH

TEST, TROY
Sex:

Admit Date:

Healthcare#:

Ordering:

Copies To:

Age:

NH#:

DOB:

5T, TROY 11-0785-

44

ROUTINE CULTURES

PDT

PDT

PROCEDURE: Wound Culture
SOURCE: Wound

BODY SITE: Arm

COLLECTED: 09/16/2010 09:44

STARTED: 09/16/2010 14:57

ACCESSION: 24-10-259-8002

STAINS / PREPARATIONS

Gram Stain Report
Verified:09/L6/2010 14:57 PDT
No organisms .seen.

FINAL REPORT

Final Report
verified:09/16/2010 14:59 PDT
No growth at 24 hours.
No arowth at 48 hours.

Coimr.ents:

£ Mi IliiM &
Figure 4.6.2 iOS Client Application Screenshot - View Message.

92

Criterion 2: The solution should be platform independent.

The solution should not be limited to a particular platform or a set of platforms.

Validation: We use ASP.Net framework to build the web service API. The functionality of

web service is platform independent, and would remain the same even if it is written using

any other programming language. We restrict the web service to accept XML formatted

strings as input, and for sending results. This allows smooth integration with mobile devices

of different platforms, as long as client applications can parse XML formatted strings. XML

itself is a platform independent standard for data exchange. We use WSDL to create the

service directory which is accessed by client applications written in different programming

languages. Our Web services are currently hosted on the server using Internet Information

Services (IIS) 7.0. However, the services are compatible with many other web servers as

well. Hence, we consider criterion 2 to be fulfilled.

4.5.2 Technical Criteria

Criterion 3: The underlying cryptography algorithms must be NIST certified.

It is important to select strong cryptography algorithms for encryption and hashing

purposes. These algorithms are the core of any security solution. The level of security

provided by any solution directly relies upon the security strength of these algorithms. It is

also important to use only those algorithms which are popular and are widely used in

industry, to ensure maximum compatibility between different components of our

architecture.

Validation: All cryptography algorithms used in our solution have been recognized as

standard algorithms by NIST. We use HMAC-SHA1-256 algorithm as our hashing

93

algorithm, and AES-256 as encryption algorithm. These are cryptographically strong

algorithms that are broadly used in industries dealing with highly sensitive data. Hence,

criterion 3 should be considered fulfilled.

Criterion 4: The keys should be generated using a secure random number generator

and must be of standard length as recommended by NIST.

All security keys must be generated in a secure way by an authorized entity only. The keys

should be unique and random for every mobile device. It is important that a strong

cryptography algorithm is used to generate random numbers, otherwise the security

strength of the key is considered weak.

Validation: All keys used in SDSA are generated by using a specially designed C# console

application. The application uses RNGCryptoServiceProvider class [70] provided by .Net

cryptography library to generate random numbers. This is considered a standard technique to

implement secure random number generator. As recommended by NIST, we use 256-bit key

length for our hashing algorithm, and the same for encryption algorithm. Hence, criterion 4

should be considered fulfilled.

Criterion 5: The private keys should be securely stored on the device and server.

If the private keys are compromised it defeats the whole purpose of performing

authentication of mobile user. It is important that these keys are stored securely and can

only be accessed by authorized users/entities.

Validation: Storing keys on the device can cause critical security breach in any solution. If

the keys are revealed, the data can be considered compromised. SDSA is designed to

minimize the number of keys that need to be stored on the mobile device. Since, most of the

94

cryptography operations are moved to the server side, mobile devices store just a single API

key used for device authentication. To protect the key while it is stored on the device, we

divide it into two parts, and store only one of the parts on the device. Hence, even if the

partial key stored on the device is compromised, it is useless without the other part that is

known only to the authorized owner of the device. To further protect the key, we store the

partial key in a secure storage space provided by mobile devices, such as Apple's Keychain.

It is assumed that every mobile device that is supported by SDSA would already have a

default built-in secure storage space that can only be accessed by authorized application and

processes.

In SDSA, the server stores just a single key for encrypting/decrypting data in the

data-store. This key is encrypted and stored in web.config file of the Web API. When a new

device API key is generated for any new device, the server uses HMAC-SHA1-256

algorithm to calculate a hash on the key. The server stores this hash value for device

authentication, and discards the original key after it is distributed to the user. Since hashing

function is irreversible in nature, even if the hash value is revealed corresponding key cannot

be recomputed. Thus, we consider SDSA secures keys while on the device or at the server.

Hence, we consider criterion 5 to be fulfilled.

Criterion 6: In case of loss or theft of mobile device, data must remain protected from

unauthorized access and must be able to recover on a new device.

If a mobile device is lost or stolen, the patient data must remain secure. Under no

circumstances an unauthorized user should be able to access patient data, or reveal any

other sensitive information (such as private keys) that would cause a security breach. It is

95

important that if a mobile device is damaged or lost, user should be allowed to restore all

the data and application settings on the new device.

Validation: Unlike other data sharing solutions, SDSA enforces that data should be

consolidated into a single repository stored at the server side. Data of every user is stored on

the server, and not on the mobile device. Hence, even if the user loses the device, all the data

can be restored on a new device. The user must request the administrator to register the new

device with the Web API, by generating a new device API key and discarding the old one.

Since, the old key is discarded the lost mobile device is deauthorized and cannot be used to

access data anymore. Hence, we consider criterion 6 to be fulfilled.

Criterion 7: The sensitive data should remain protected and secure from employees at

mobile telecommunication provider.

When data is exchanged between the mobile device and the web API, it must be protected

from employees at the telecommunication providers. This is an important requirement, as

the telecommunication providers can sometimes route data packets to locations which are

outside the home country of the hospital. This can raise many privacy concerns, and would

discourage organizations dealing with confidential data from using such solutions.

Validation: Some data exchange solutions, such as BES, requires data to be forwarded to a

third party Network Operation Center (NOC). The data packets, exchanged between the

server and the mobile device, remain at NOC until the recipient is ready to receive data. This

introduces a critical security risk. SDSA does not forwards data packets to NOC. It instead

establishes a direct SSL connection between the server and the mobile device, and performs

mutual authentication. The data is divided into small packets which are encrypted

individually. The data is sent over the network by using a reliable transport layer protocol,

96

such as TCP/IP. This ensures that the data remains protected during transmission and would

be delivered to correct recipient only. We consider criterion 7 to be fulfilled.

Criterion 8: Data should be protected while it is stored at the server.

Organizations usually host servers in a virtualized environment, with same server providing

different type of services to different user groups. This helps in optimizing system resources

of the server, and conserves resource requirements of an organization. The Data stored at

the server must remain secure from any personnel who is not authorized to access patients'

data, but still has authorization to access other services hosted by the server.

Validation: The data stored in Data Store is always encrypted and cannot be accessed by

any component of SDSA other than the Web API. Only API has access to the decryption

key. In addition to storing data as encrypted, the data-store requires user authentication to

provide access to administrators. The user authentication is linked with Active Directory,

which categorizes users in different groups based on their credentials. In our implementation

of SDSA, we have configured the Data Store, a SQL Server 2008 relational database, to be

visible only to users who are classified under administrator user-group. The data inside

remains encrypted to ensure data confidentiality. Hence, we consider criterion 8 to be

fulfilled.

Criterion 9: Data must be protected while being viewed on the mobile device.

When the user establishes a session with the web API for accessing data, it is important that

data remains secure throughout the session. Once the session is terminated, no trace of data

should be available on the mobile devices. This is an important requirement to protect data

from any malicious code attempting to access sensitive data.

97

Validation: When user establishes a session with the Web API, in order to access the data,

data-access permission is granted by the server for a fixed time-interval (e.g. five minutes).

The user must re-establish the session after the fixed time interval. If there is no activity

from the user for about five minutes, our client application automatically terminates the

session and locks out the user. The user must provide all the credentials again to reestablish

the session. If the user continues to use the application beyond the fixed time interval, then

instead of locking out the user, the application automatically extends the current time limit.

When an application is closed by the user, or minimized, or interrupted by another

application, all the objects created by the application are dereferenced and released. Once

the application is closed, no data trace is available. Hence, we consider criterion 9 as

fulfilled.

Criterion 10: Data read/write operations must be performed within an acceptable

amount of time.

This is one of the most important criterions that evaluate the overall performance of any

security solution. It is important that users are able to access data within a reasonable

amount of time; otherwise it might discourage them from using the solution.

Validation: The time taken to perform read/write operation includes the time spent in

performing user/device authentication, time taken to transmit data over the network, and

time taken by the server to format the message with HL7 specifications. In order to monitor

the performance of our system, we ran series of tests on a first generation iPad. We created

various tests cases using different parameters, such as number of messages sent/received,

message size, and connection type. The data was recorded by using Apple's Xcode

performance instruments. The results of each test case are discussed as follows:

98

Read/Write performance by network connection

We have designed two test cases for recording the read/write time based on type of network

connection. In first case, we run the tests using a high speed Wi-Fi network with various

batches of messages. This case simulates the usage scenario where the user accesses data

from within an organization. In second case we simulate mobile traveller by using a 3G

network connection to send and receive messages. Four different batch sizes, ranging from

10 to 500 messages per batch were used for testing. The sample message contains textual

information, and is 4KB in size. We record time taken to read and write individual

messages, and calculate the average time taken by each batch. We also record the maximum

and minimum time for each batch to represent the best case and worst case scenario.

UNBC's Wi-Fi network and 3G connection by Bell, Canada was used to run the tests. Table

4.2 shows the network speed that was available for running the tests. Figure 4.7 and Figure

4.8 shows different graphs representing the results of our tests.

Connection Type Downstream Upstream Latency

Wi-Fi 4.95 Mbps .733 Mbps 45ms

3G 0.92 Mbps 0.33 Mbps 324ms

Table 4.2 Network Connection Speed

99

Read Time - WiFi

• Avg. Time U Min Time —A—Max Time

120

100

80

60

40

20

0
50 100 500 10

Number of Messages

Read Time - 3G

Time B Min Time * Max Time

1000

300

200

100

0 -T-- - 7 — - "1 -
10 50 100 500

Number of Messages

Figure 4.7 Read Time using SDSA

100

Write Time - WiFi

Avg. Time U Min Time A Max Time

900

800

700

600

500

j= 400

300

200

100

500 50 100 10

Number of Messages

Write Time - 3G

1400

1200

1000

E
c
0)
E

800

•Avg. Time Min Time Max Time

10 50 100

Number of Messages

500

Figure 4.8 Write Time using SDSA

101

From the graphs shown in figure 4.10 and 4.11, we find that the average time taken to read

or write messages significantly varies between 3G and Wi-Fi network. On an average, write

time over Wi-Fi is 23ms (4.03 %) less than 3G. The read time is 383.5ms (89.97%) less than

3G. The improvement in message read/write time when using Wi-Fi is due to its faster

downstream/upstream speed and low network latency of only 45ms. Network latency is

dependent on many factors such as propagation delay, router delays, computer hardware

delays, and interference due to weather and electromagnetic signals. It is one of the key

factors that affects the network performance, and therefore affects the read and write times.

Unfortunately, we cannot control high latency involved with the 3G networks. Eliminating

network latency is a broad problem, and is out of scope of this work.

In our testing, we observed that while reading/writing messages in batch mode, there

were few random peaks in read/write times caused due to network latency as well as the

application latency. Application latency involves the delay in manipulating and presenting

data, caused due to intense disk input/output operations and hardware limitations such as

amount of main memory. This causes the average maximum time to be exceptionally large.

Although, the average time taken for sending/receiving messages always remains close to

the minimum range. This implies that most samples are unaffected by random latency peaks.

Table 4.3 summarizes the average data read/write times.

3G Wi-Fi

Read Write Read Write

Average Time [ms] 426.25 570.25 42.75 547.25

Average Min Time [ms] 388.00 516.75 34.25 492.25

Average Max Time [ms] 709.95 876.00 75.25 759.25

Table 4.3 Message Read/Write Times

102

Read/Write performance by message size

In order to evaluate the effect of message size on the performance, we calculate the average

time taken by the iPad to send and receive sample messages of varying sizes. We ran five

test cases that use different sample messages of size 4KB, 8KB, 10KB, 50KB, and 100KB.

Each test case was run in a loop of hundred, and the average time taken to read and write a

message was recorded. Figure 4.9 shows the results of our tests.

Read/Write Time Versus Size (Wi-Fi)
» Read • Write

1800

1600

1400

1200
</>

E 1000 c
ai
E 800
i-

600

400

200

0

Figure 4.9 Read/Write Time versus Message Size

Comparison with other data sharing solutions

Due to unavailability of performance results of other data sharing solutions, we are limited

to compare our test results with Secure Sharing Scheme (SSS) only. Furthermore, SSS is the

Size in Kbytes

103

only mobile data security solution that is designed specifically for data sharing among group

members. In order to perform fair comparison, we use Wi-Fi network connection with

2.4Mbps downlink and 153Kbps uplink speed to meet the specifications as published in

[20]. Since SDSA performs most cryptography operations on the server instead of the

device, it significantly outperforms SSS both in terms of time required to read and write

data. Table 4.4 summarizes the comparison. We consider criterion 10 to be fulfilled.

SDSA SSS

10KB 50KB 100KB 10KB 50KB 100KB

Write 1 3.77 5.45 4.18 11.9 21.5

Read .05 .09 .15 2.99 3.30 4.91

Table 4 .4 SDSA versus SSS

Criterion 11: On-device resource consumption must be optimized.

Most security solutions are highly resource intensive. Due to limited resources available on

mobile devices, it is important that the security solution must optimize resource utilization.

Validation: To determine the on-device resources used while using our application, we

record CPU and memory usage on the mobile device using Xcode performance monitoring

instruments. Figure 4.10 shows a snapshot of device's CPU activity, while the client

application is being used. Our application only takes 13 MB of disk space on the device.

Since most of the cryptographic operations are performed at the server, the only overhead

involved at the client application is for establishing the SSL connection and

sending/receiving SOAP requests. The CPU usage is 0-25% while browsing contents of the

application. The application takes about 36.53 MB of physical memory. We consider our

104

application to be a low resource consuming application, and consider criterion 11 to be

fulfilled.

lOVMeNfor

** * ^ H Q.qno ftiU

^7

PBIBHSS2M

0 Tr»ck Mspcceon he«ct
Us*«

* imw iii» ip— rawrii•
C«*»td A KM 8W*8

J GS Suramwy» Samples
PTIKCU © fr«MS hint UMT Name
>i« unuuyMfvt! mow*
S«0 dfbMftsfvtf mobMe
909 debu$*«nr*! moMe
729 4ebu$t*fver mobile
«B 1 detK }̂ifv«r mobile
1020 debu$*«rver mobile
1116 ptpd mown
1121 tytk>$_fcUy mobHt
1126 no*>fk«io mobile
1129 mobile II ?«

fcCWJ »Threads MMkwy Virtuat Utnx»> Arcf»«w<*w** CKi Time
372.00 Ki
372.00 KB 6M.0QKB
600.00 K«

732.00 KB
2.B4MB

*40.00 KB
S04.00 KB

7.29 MB
MtfWAi
2.251-

12.01 MB ARM
12.01 MB ARM
13 02 MB ARM
12.01 MB ARM
13.02 MB MM
39 SS MB ARM
12,21MB ARM
12 £7 MS ARM
64.42 MB ARM

00 02
00 02

00 03
00.02

DO 07
00 37
00.22 00 00
01.64
00.01 POCT

Figure 4.10 CPU Performance Monitor

Criterion 12: Solution must support both Wi-Fi and 3G network connections.

Mobile devices not always support Wi-Fi or 3G network connectivity. It is important that the

solution must be able to provide its services over Internet regardless of the type of network

connection used. This would allow using the solution while the user is travelling and does

not have any Wi-Fi connectivity.

Validation: Our solution is compatible with both Wi-Fi and 3G network connection. We

have tested our application with both connection types, as discussed in validation for

criterion 10. Hence, we consider criterion 12 to be fulfilled.

105

Criterion 13: The solution must be scalable.

The solution must be scalable to accommodate growing number of users and mobile devices

used by them. Users must be allowed to register more than one mobile device to be able to

access the services provided by our POCT system.

Validation: SDSA allows multiple users to register for the services provided by the Web

API. Users are allowed to register multiple devices without any restrictions. The Web API is

hosted on a virtual machine running Windows Server 2008 platform. The virtual machine

utilizes single core processor with speed up to 3.2 Ghz, and 4 gigabytes of memory. We use

IIS 7.0 webserver to host our web services. In order to load test the functional behaviour and

measure performance of our webserver, we use soapUI performance monitor [71]. Using the

performance monitor we collect the average time taken to read/write a 4KB message, when

multiple users request data-access concurrently. We created test cases with different number

of users - 10, 50, 100, 250, 500, 750, and 1000. Figure 4.11 and Figure 4.12 shows the

results.

Server Performance

—•—Read Time

1500

£ 1000

E 500

o 4~-

10

-•«

50 100 250 500

Number of users

750 1000

Figure 4.11 SDSA Web Server Performance Test Results - Read Data

106

Server Performance

Write Time

60000

E 40000

E 20000

c

0
10 50 100 250 500

Number of users

750 1000

Figure 4.12 SDSA Web Server Performance Test Results - Write Data

We found that the read time remains unaffected when 100 users request data access

concurrently. The message read time increases by 55.2% when number of users grows to

250. The time continuously increases as the number of users grow beyond 500. Even with

1000 users concurrently requesting read data access, the time taken to read a message is just

1.42 seconds. We observe that similar to read performance, the write time performance

degrades linearly with growing number of users. Although, the performance degradation

with write data operation is much higher than the read operation, due to the nature of write

operations and limitations of underlying hardware of the server. Since we are using only

single core CPU, the growing number of concurrent write operations, that involves intensive

disk I/O and SQL data-integrity checks, increases the CPU load up to 100%. This causes

significant increase in the average time taken to perform write data operation. However,

even under high load our server can handle over few thousand messages in an hour. The

solution can easily be scaled up by using more powerful server machine, or hosting the Web

API on more than one servers and load balancing the requests. Table 4.5 shows the test

results. We assume criterion 13 to be fulfilled.

107

No. of users 10 50 100 250 500 750 1000

Read Time [ms] 14.87 32.34 39.8 88.9 367 885 1424

Write Time [ms] 384.5 3762.64 6789 12480.37 32382.41 42769.69 50923.14

Table 4.5 SDSA Web Server Performance Test Results

4.6 Summary of Validation against Criteria

Criterion Description Fulfilled

1 Easy to use solution Yes

2 Platform independent solution Yes

3
Using Standard cryptographic

algorithms
Yes

4
Secure generation of public-private

keys
Yes

5
Secure storage of private keys on server

and the device
Yes

6 Data recovery in case of device theft Yes

7
Securing data from employees at

telecommunication provider
Yes

8 Securing data while it is at the server Yes

9
Securing data while it is being viewed

on the mobile device
Yes

10 Low data read/write time Yes

11 Low on-device resource consumption Yes

12 Support for Wi-Fi and 3G Yes

13 Scalability of the solution Yes

Table 4.6 Summary of Validation against Criteria

108

Chapter 5

Conclusion and Future Work

Using mobile devices for healthcare is an emerging field that can significantly improve the

way in which EMRs are currently stored and accessed. It increases the availability of

patients' medical data especially during field visits and POCT scenarios, which assists

healthcare providers in making better decisions regarding patients' health, therefore

enhancing the quality of patient-care. However, there are number of challenges in

implementing mobile data sharing solutions before adoption by healthcare systems (see

chapter 1).

Mobile data sharing solutions proposed in various research papers, as discussed in

chapter 2, fail to fulfill security requirements, and do not use mandatory standards for

exchanging medical data. Most solutions assume encrypted data on the mobile device is

protected. However, encryption just provides data-confidentiality, and does not provide data

privacy. Another critical problem with these solutions is the way in which cryptography

keys are managed. The keys are either stored on the mobile device or an additional hardware

such as another mobile device, portable flash memory, and a key fob, is used to store the

keys. Storing keys on the device introduces the risk of keys being stolen. Using additional

hardware to provide keys can be a costly solution, especially when deployed for

109

organizations with large number of users. It also involves additional responsibility of

securing the hardware from theft or loss.

Our proposed model has identified various vulnerable locations in mobile data-

communication infrastructure that could possibly cause security breaches and compromise

sensitive data. We have designed a low cost secure data sharing architecture called SDSA

that addresses the aforementioned challenges. SDSA provides end-to-end data security

during transmission, on the device, and the server. It consolidates data into a central

repository located at server side behind a secure firewall, and uses standard security

mechanisms such as authentication and encryption to provide data confidentiality and

privacy. SDSA only allows registered devices to be used for accessing data. It performs

two-step authentication that verifies the user and the device identity. By using simple

username-password based authentication, SDSA allows integration with user management

applications such as Active Directory. This allows organizations to categorize users in

different groups and effectively control data access permissions for individual groups.

SDSA divides the device's API key (used for device authentication) into two parts. The

mobile device stores only one of the two parts, and therefore the API key remains secure in

case of loss or theft.

Use of open standards such as XML, HTTPS, and SOAP ensure interoperability

between different components, and allow integration with EMR applications. Various

usability and technical criteria were designed to evaluate the security and feasibility of this

work. A prototype application customized for the POCT scenario was built, and

demonstrated that our solution meet all the requirements. Our solution outperforms data

sharing solution proposed in [20] in terms of required computation resources and time taken

110

to read/write data. In addition to general data sharing, our solution has the ability to connect

with EMR applications and retrieve patients' lab results collected from various facilities.

5.1 Limitation(s) of Proposed Work

1. SDSA allows users to securely access data by establishing a session with the remote

server. Data access in connected mode enables organizations to keep complete

control of the data usage and ensure that it is being accessed by authorized users.

However, this makes data access limited to network availability, and data cannot be

accessed in disconnected mode. In order to mitigate the downtime, SDSA supports

both Wi-Fi and 3G network connectivity, which increases network availability.

2. HL7 specifications require all the mandatory data fields to be filled before data can

be exchanged. This introduces an overhead in terms of message size. With our

current implementation, the minimum message size would always be 4KB. Since we

have implemented only few HL7 data fields, our prototype currently limits the

usability to currently available fields. This limitation can be easily eliminated by

including more number of data fields, as needed.

5.2 Future Work

A desirable feature in any data sharing solution is the ability to operate in disconnected

mode. The increase in availability of Wi-Fi and 3G technologies have made it possible to get

Internet connectivity almost everywhere, especially in developed countries. However,

during field visits, healthcare providers may need to access data in rural areas with no

network connectivity. A possible solution to this could be allowing user to temporarily

download part of the data, while the network connectivity is available, and access it in

111

disconnected mode later. However, it would be impossible for organizations to control user

authentication and track data access in disconnected mode. We would further research and

discover possibilities of an effective offline authentication mechanism that would ensure

data privacy.

We would like to extend our prototype to support connectivity with portable medical

devices such as glucometer, and blood pressure monitors. This would benefit healthcare

providers by enabling them to use mobile devices for conducting tests in real time, and

directly storing the results as EMRs. Integration with medical devices involves compatibility

and security issues. Few medical devices are currently available that support mobile

connectivity. These devices use proprietary software applications and do not allow

integration with other data sharing solutions.

In addition to the iOS client application, we have deployed our data sharing solution

on an Android based Samsung Galaxy Tablet 10.1, by using Adobe's Flex framework [72].

Flex allows building mobile applications for iOS, Android, and Blackberry platform, by

using single source code. We would conduct performance testing on Flex mobile

applications, and compare it with native client applications. We would also like to deploy

our prototype in an actual hospital/clinic, and further understand specific requirements to

enhance the usability of our solution.

112

Bibliography

[1] Charles Newark-French, "Flurry: Time Spent On Mobile Apps Has Surpassed Web
Browsing," Flurry, Inc., 20 June 2011. [Online], Available:
http://techcrunch.com/2011/06/20/flurry-time-spent-on-mobile-apps-has-surpassed-web-
browsing/. [Accessed 27 June 2011].

[2] Tomi Ahonen, "Analysis: Record 80 Million Smartphones sold in 3Q 2010," 22
November 2010. [Online], Available:
http://www.brightsideofnews.eom/news/2010/l l/22/analysis-record-80-million-
smartphones-sold-in-3q-2010.aspx. [Accessed 27 June 2011].

[3] "How smartphones and tablets are taking over," Gartner, 16 April 2011. [Online].
Available: http://www.techradar.com/news/mobile-computing/how-smartphones-and-
tablets-are-taking-over-942724. [Accessed 27 June 2011].

[4] Salesforce Inc, [Online]. Available: http://www.salesforce.com/. [Accessed 27 June
2011],

[5] Square Inc, [Online], Available: https://squareup.com/. [Accessed 27 June 2011].

[6] "Smartphones, Tablets Seen Boosting Mobile Health," 29 July 2010. [Online], Available:
http://www.pcworld.com/businesscenter/article/202224/smartphones_tablets_seen_boosti
ng_mobile_health.html. [Accessed 29 June 2011],

[7] P. Tarasewich, R. C. Nickerson and M. Warkentin, "Issues in Mobile E-Commerce,"
Communications of the Association for Information Systems, 2002.

[8] B. Arunachalan and J. Light, "Middleware Architecture for Patient Care Data
Transmission using Wireless Networks," Honolulu, Hawaii, USA, 2007.

[9] "Norton Seems to Make Your PC Slow," [Online]. Available:
http://www.computergeeksonline.net/spyware/norton-your-pc-Running%20Slow.asp.
[Accessed 30 October 2010],

[10] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn and F. Jahanian, "Virtualized In-
Cloud Security Services for Mobile Devices," in The First Workshop on Virtualization in

113

http://www.salesforce.com/
https://squareup.com/
http://www.computergeeksonline.net/spyware/norton-your-pc-Running%20Slow.asp

Mobile Computing, Breckenridge, CO, USA, 2008.

[11] G. PortoKalidis, P. Homburg, N. F. Dale, K. Anagnostakis and H. Bos, "Protecting Smart
Phones by Means of Execution Replication," Amsterdam, 2009.

[12] W. Yu, "The Network Security Issue of 3G Mobile Communication System Research,"
pp. 373-376, 2010.

[13] G. Singaraju and B. Hoon Kang, "Concord: A Secure Mobile Data Authorization
Framework for Regulatory Compliance," in Large Installation System Administration
(LISA), 2008.

[14] J. Claeassens, B. Preneel and J. Vandewalle, "How Can Mobile Agents Do Secure
Electronic Transactions on Untrusted Hosts?," in ACM Transactions on Internet
Technology (TOIT), 2003.

[15] B. A. Forouzan, Cryptography and Network Security, New York: McGraw Hill, 2008.

[16] N. Leavitt, "Mobile Phones: The Next Frontier for Hackers," Technology News, pp. 20-
23, April 2005.

[17] A. Boukerche and Y. Ren, "A Security Management Scheme Using a Novel
Computational Reputation Model for Wireless and Mobile Ad hoc Networks," in
Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks,
Vancouver, BC, Canada, 2008.

[18] B. Halpert, "Mobie Device Security," in 1st annual conference on Information security
curriculum development, Kennesaw, GA, USA, 2004.

[19] "Health Level Seven (HL7)," [Online]. Available: www.hl7.org. [Accessed 18 May
2011],

[20] T. Matsunaka, T. Warabino and Y. Kishi, "Secure Data Sharing in Mobile
Environments," Fuijimino, Saitama, Japan, 2008.

[21] C. Lassenius and T. Soininen, "Constructive Research," [Online], Available:
www.cs.uta.fi/~TKOPS407/sd-seminar-19-9-2007.pdf. [Accessed 12 October 2011].

[22] Apple, "iOS," Apple Inc., [Online]. Available: http://www.apple.com/ios/. [Accessed 15
May 2011],

114

http://www.hl7.org
http://www.cs.uta.fi/~TKOPS407/sd-seminar-19-9-2007.pdf
http://www.apple.com/ios/

[23] T. Lewis, "ECG Notes is an impressive ECG reference guide, but not designed for
beginners," 19 July 2011. [Online]. Available:
http://www.imedicalapps.com/2011 /07/ecg-notes-highly-detailed-ecg-reference-guide/.
[Accessed 20 August 2011].

[24] "Stay connected to your Health records on the GO.," MobileReflex, [Online]. Available:
http://www.mobilereflex.com/services/hreflex.html. [Accessed 15 October 2011].

[25] B. Edwards, "BodyMedia is using wearable sensors to fight the obesity epidemic one
step at a time," 25 July 2011. [Online]. Available:
http://www.imedicalapps.com/2011/07/bodymedia-wearable-sensors-fight-obesity-
epidemic-step-time/. [Accessed 20 August 2011].

[26] "electronic Point Of-Care," [Online]. Available:
http://www.itacs.uow.edu.au/cear/ehealth/ePOC/. [Accessed 07 June 2011].

[27] P. Eklund and J. Sargent, "ePOC: Mobile Clinical Information Access and Diffusion in
Ambulatory," in 10th Australian Document Computing Symposium, Sydney, 2005.

[28] R. Poropatich, H. H. Pavliscsak, J. Rasche, C. Barrigan, R. A. Vigersky and S. J. Fonda,
"Mobile Healthcare in the US Army," in Wireless Health, San Diego, USA, 2010.

[29] S. A. Becker, R. Sugumaran and K. Pannu, "The Use of Mobile Technology for
Proactive Healthcare in Tribal Communities," in Annual National Conference on Digital
Government Research, 2004.

[30] "ARTEMIS," 01 January 2004. [Online]. Available:
http://www.srdc.metu.edu.tr/webpage/projects/artemis/. [Accessed 06 June 2011],

[31] "Triage," [Online], Available: http://en.wikipedia.org/wiki/Triage. [Accessed 29 July
2011],

[32] S. P. McGrath, E. Grigg, S. Wendelken, G. Blike, M. De Rosa, A. Fiske and R. Gray,
"ARTEMIS: A Vision for Remote Triage and Emergency Management Information
Integration," [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.4959. [Accessed 21 June
2011],

[33] R. G. Jahns, "Will smartphone apps become the killer application of the mHealth
market?," October 2010. [Online]. Available: https://www.research2guidance.com/will-
smartphone-apps-become-the-killer-application-of-the-mhealth-market. [Accessed 18
June 2011].

115

http://www.mobilereflex.com/services/hreflex.html
http://www.itacs.uow.edu.au/cear/ehealth/ePOC/
http://www.srdc.metu.edu.tr/webpage/projects/artemis/
http://en.wikipedia.org/wiki/Triage
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.4959

[34] "How does Anti-Virus Softwares Work?," [Online]. Available:
http://www.antivirusworld.com/articles/antivirus.php. [Accessed 15 November 2010].

[35] "Disk Encryption Hardware," [Online]. Available:
http://en.wikipedia.org/wiki/Disk_encryption_hardware. [Accessed 15 August 2011].

[36] Hagai Bar-El, "Security Implications of Hardware vs. Software," [Online]. Available:
http://hbarel.com/publications.htm. [Accessed 21 September 2011].

[37] "Vendor Lock In," [Online], Available: http://en.wikipedia.org/wiki/Vendor_lock-in.
[Accessed 15 August 2011],

[38] M. D. Corner and B. D. Noble, "Protecting Applications with Transient Authentication,"
in Mobile systems, applications and services, Ann Arbor, 2003.

[39] M. D. Corner and B. D. Noble, "Zero Interaction Authentication," in The Annual
International Conference on Mobile Computing and Networking, Ann Arbor, 2002.

[40] R. L. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures
and Public- Key Cryptosystems," pp. 120-126, 1978.

[41] J. Light and D. David, "An Efficient Security Algorithm in Mobile Computing for
Resource Constrained Mobile Devices," in 4 th ACM symposium on QoS and security for
wireless and mobile networks, Vancouver, 2008.

[42] J. Heitala, "Hardware versus Software," SANS Whitepaper, 2007.

[43] "What Security Professionals Think about Encryption," 24 February 2006. [Online],
Available: http://www.cs00nline.c0m/article/214971 /what-security-professionals-think-
about-encryption. [Accessed 01 July 2011],

[44] B. A. Forouzan, Cryptography and Network Security, McGraw Hill.

[45] J. Daemen and V. Rijmen, "AES Proposal: Rijndael," [Online], Available:
www.cryptosoft.de/docs/Rijndael.pdf. [Accessed 21 October 2011].

[46] W. Stallings, Cryptography and Network Security Principles and Practices, Upper Saddle
River: Prentice Hall, 2005.

116

http://www.antivirusworld.com/articles/antivirus.php
http://en.wikipedia.org/wiki/Disk_encryption_hardware
http://hbarel.com/publications.htm
http://en.wikipedia.org/wiki/Vendor_lock-in
http://www.cryptosoft.de/docs/Rijndael.pdf

[47] "TRANSMISSION CONTROL PROTOCOL," 1981. [Online], Available:
http://trac.tools.ietf.org/html/rfc793. [Accessed 11 October 2011],

[48] R. Rivest, "The MD5 Message-Digest Algorithm," April 1992. [Online], Available:
https://tools.ietf.org/html/rfcl321. [Accessed 21 October 2011].

[49] D. Eastlake and P. Jones, "US Secure Hash Algorithm 1 (SHA1)," September 2011.
[Online]. Available: http://tools.ietf.org/html/rfc3174. [Accessed 20 October 2011].

[50] D. L. Evans, P. J. Bond and A. L. Bement, "The Keyed-Hash Message Authentication
Code," Federal Information Processing Standards Publication, 2002.

[51] S. Kelly and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-
512 with IPsec," 2007. [Online]. Available: http://www.ietf.org/mail-archive/web/ietf-
announce/current/msg03683.html. [Accessed 02 November 2010].

[52] J. Quinn, "Health Level Standard Specifications," Health Level Seven, 1999.

[53] "Active Directory," [Online], Available: http://en.wikipedia.org/wiki/Active_Directory.
[Accessed 20 March 2011].

[54] Microsoft Corporation, "Active Directory Benefits for Smalled Enterprises," 2004.
[Online]. Available: http://www.techrepublic.com/whitepapers/active-directory-benefits-
for-smaller-enterprises/177983. [Accessed 02 November 2011].

[55] "Secure Random Numbers," Windows Developer Magazine, [Online], Available:
http://erngui.com/articles/rng/index.html. [Accessed 21 March 2011].

[56] Advanced Encryption Standard (AES), National Institutue of Standards and Technology,
2001.

[57] "BlackBerry Enterprise Solution: Security Technical Overview," Blackberry, [Online].
Available:
http://d0cs.blackberry.c0m/en/admin/deliverables/l 6648/index.jsp?name=Security+Tech
nical+Overview+-
+BlackBerry+Enterprise+Server5.0.2&language=English&userType=2&category=Black
Berry+Enterprise+Solution+Security&subCategory=. [Accessed 12 October 2011].

[58] "iCloud," Apple Inc., [Online]. Available: http://www.apple.com/icloud/. [Accessed 15
September 2011],

117

http://trac.tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfcl321
http://tools.ietf.org/html/rfc3174
http://en.wikipedia.org/wiki/Active_Directory
http://erngui.com/articles/rng/index.html
http://www.apple.com/icloud/

[59] "Point-of-eare testing," [Online]. Available: http://en.wikipedia.org/wiki/Point-of-
caretesting. [Accessed 5 October 2011].

[60] "About Us," Northern Health, [Online]. Available:
http://www.northernhealth.ca/AboutUs.aspx. [Accessed 06 October 2011].

[61] "What is service-oriented architecture?," [Online]. Available:
http://www.javaworld.eom/javaworld/jw-06-2005/jw-0613-soa.html. [Accessed 05
October 2011].

[62] "SOAP Introduction," [Online]. Available:
http://www.w3schools.com/soap/soap_intro.asp. [Accessed 05 October 2011],

[63] "SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)," [Online].
Available: http://www.w3.Org/TR/soapl2-partl/#intro. [Accessed 05 October 2011].

[64] "Mirth Connect," [Online]. Available: http://www.mirthcorp.com/products/mirth-
connect. [Accessed 09 October 2011].

[65] "BizTalk Server," Microsoft, [Online]. Available:
http://www.microsoft.com/biztalk/en/us/accelerator-hl7.aspx. [Accessed 13 October
2011],

[66] "Encrypting Configuration Information Using Protected Configuration," Microsoft,
[Online]. Available: http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx. [Accessed
13 October 2011],

[67] "SecureString Class," Microsoft, [Online]. Available: http://msdn.microsoft.com/en-
us/library/system.security.securestring.aspx. [Accessed 10 October 2011].

[68] "SudzC," [Online]. Available: http://sudzc.com/. [Accessed 05 October 2011].

[69] "Medical Office Information System (MOIS)," AIHS, [Online], Available:
http://www.aihs.ca/products/. [Accessed 5 October 2011].

[70] "RNGCryptoServiceProvider Class," Microsoft, [Online]. Available:
http://msdn.mierosoft.com/en-
us/library/system.security.cryptography.mgcryptoserviceprovider.aspx. [Accessed 05
October 2011].

118

http://www.northernhealth.ca/AboutUs.aspx
http://www.javaworld.eom/javaworld/jw-06-2005/jw-0613-soa.html
http://www.w3schools.com/soap/soap_intro.asp
http://www.w3.Org/TR/soapl2-partl/%23intro
http://www.microsoft.com/biztalk/en/us/accelerator-hl7.aspx
http://msdn.microsoft.com/en-us/library/53tyfkaw.aspx
http://sudzc.com/
http://www.aihs.ca/products/

[71] "soapUI," SmartBear Software, [Online]. Available: http://www.soapui.org/. [Accessed
02 November 2011].

[72] "Flex," Adobe, [Online]. Available: http://www.adobe.com/products/flex.html.
[Accessed 02 November 2011].

[73] "SQL Injection," Microsoft, [Online]. Available: http://msdn.microsoft.com/en-
us/library/msl61953.aspx. [Accessed 01 October 2011].

[74] "Keychain Services Programming Guide," Apple Inc., [Online], Available:
http://developer.apple.eom/library/mac/#documentation/Security/Conceptual/keychainSe
rvConcepts/Olintroduction/introduction.html. [Accessed 11 October 2011].

119

http://www.soapui.org/
http://www.adobe.com/products/flex.html

Appendix 1

XML Message Format using HL7 version 2.3.1

<?xml version-'1.0" encoding="UTF-8" standalone="no"?>
<message>

<MSH>
<sendingApplication></sendingApplication>
<sendingFacility></sendingFacility>
<messageDateT ime></messageDateT ime>
<messageT ype></messageT ype>
<messageControlID></messageControlID>
<processingID></processingID>
<versionID></versionID>

</MSH>
<PID>

<internalPatientID></internalPatientID>
<patientN ame></patientN ame>

</PID>
<PV1>

<patientClass></patientClass>
</PVl>
<NTE>

<comments></comments>
</NTE>
<ORC>

<orderControl></orderControl>
</ORC>
<OBR>

<setID></setID>
<placerOrderNumber></placerOrderNumber>
<fillerOrderNumber></fillerOrderNumber>
<universalServiceID></universalServiceID>
<observationDate></observationDate>

</OBR>
<!-- multiple OBX segments are permitted. We only support the 'TX' type —>
<OBX>

<setld></setld>
<Typex/Type>
<observati onx/ob servation>

</OBX>

120

<ZDR>
<provider>

<providerMnemonic></providerMnemonic>
<lastName></lastName>
<firstN ame></firstN ame>
<middleName></middleName>
<suffix></suffix>
<title></title>
<degree></degree>
<providerCategoryCode></providerCategoryCode>

</provider>
</ZDR>

</message>

121

iOS Client Application Screenshots

POCT

northern health
' the northern way of caring

POCT

Login

122

Main Menu
'frrfiMfinitftfffi

Create Message

Inbox

Sent Items

Drafts

123

mm mm
New Message

To: Anthony McCann

Patient Identification

Q

Chen Paul

pf 'Of :X S u M i x
r>

Sending Facility

George

Patient Type

PRE OUT
. J .

Report Type

MICROBIOLOGY

ER

BLOOD BANK

Observation Date & Time

Date i 21 2011 Time 12] ! 20

Report Data

Blood Sugar : Normal

Temperature: 99F

Additional Notes

Forward to EMR

124

TEST, TROY - MB - 7/25/2011 11:46:51 AM
mm m

Milts MH

TEST, TROY
Sex:
Admit Date:
Healthcare#:
Ordering:
Copies To:

Age:
NH#:

DOB:

TEST, TF.GY

44

11-073E

ROUTINE CULTURES

PDT

PDT

3TAINS

PROCEDURE: Wound Culture

SOURCE: wound

BODY SITE: Arm

PREPARATIONS

COLLECTED: 09/1C/2010 09:44

STARTED: 09/16/2010 14:57

ACCESSION: 2 4-10-259-8002

Gram Stain Report
Verified:09/16/2010 14:57 PDT

No organisms seen.

FINAL REPORT

Final Report

verified:09/I 6/2010 14:59 PDT

No growth at: 24 hours.

No growth at 4 8 hours.

125

