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ABSTRACT 

The objective of the present study was to investigate the genetic and migratory differences 

among White-throated Sparrow populations in western Canada in order to locate the 

presence of a migratory divide. Deuterium isotopes and molecular markers were used to 

assess the migratory differences between sparrows west (Central Interior BC) and east (Peace 

Region BC) of the Continental Divide. Head feather isotopes showed that both populations 

are overwinter wintering in either the Pacific Coast, New Mexico/Arizona or 

Colorado/Kansas areas. Microsatellites and mitochondrial markers did not show genetic 

structure among populations, however tail feather isotopes were significantly different. 

Analysis of migratory samples is congruent with Peace region birds migrating east of the 

divide. The Central Interior birds were not detected in any migratory monitoring locations. 

Data of the present study is congruent with a migratory divide and an east/west migration 

pattern between Central Interior and the Peace Region populations. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 MIGRATORY ROUTES AND CONNECTIVITY OF BIRD POPULATIONS 

The study of migratory behaviour is important for determining the connectivity between 

breeding and wintering populations. Bird migration has been studied for many years, yet 

little is known about population specific migratory corridors and routes used by neotropical 

songbirds in North America. This lack of knowledge is of concern when human development 

is proposed along suspected migratory routes. In western Canada, increased interest in the 

development of wind energy is expanding in the northern Rocky Mountains (BC Hydro 

2009). As this area also corresponds to the confluence of two migratory corridors, it is 

important to understand how human-made structures might impact migratory populations. In 

order to assess this impact, full understanding of the migratory routes and wintering areas 

used by breeding populations of migrant species is necessary. Once migratory connectivity is 

more fully understood, it will then be possible to assess the impact that a disruption on a 

migratory route could have on a specific breeding population. 

A number of migratory routes have been recognized in North-America (Lincoln 1998). Even 

though it represents an oversimplification of a more complex situation, migratory routes have 

been grouped into four general flyways: Pacific, Central, Mississippi and Atlantic. The 

delimitation of these four migratory flyways has been used as a general tool to understand 

migratory behaviour. It should be noted that several migratory routes crossover each other 

and the exact routes change according to species (Lincoln 1998). The Pacific flyway extends 
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through the west from Alaska, following the Pacific coastline of British Columbia, 

Washington, Oregon, and California. The eastern extension of the Pacific flyway follows the 

eastern foothills of the northern Rocky Mountains where it eventually turns west heading to 

Oregon or California through several passes, including the Columbia or the Snake River 

valleys (Wythe, 1938). The Central flyway extends from breeding locations in the Northwest 

Territories around the Mackenzie River watershed and then follows the eastern foothills of 

the Rocky Mountains, where it overlaps with the eastern Pacific flyway. Instead of turning 

west towards the Pacific coast however, birds continue on the eastern aspect of the Rockies 

straight through the Great Plains to overwintering locations in Texas and Mexico (Lincoln 

1998). The Mississippi flyway also extends from the Northwest Territories, originating at the 

Mackenzie River delta and continuing unimpeded by mountains for more than 3000 miles to 

the Mississippi River delta (Lincoln 1998). The Atlantic flyway follows the Atlantic coast to 

Florida and South America. The Atlantic coast wintering area receives birds from three or 

four interior migration paths: coastal region south of Delaware Bay; Central Canada coming 

through the south-easterly path of the Great lakes; Ontario region, following the Ohio river 

valley or flying south-east crossing the mountains to the Atlantic coast (Lincoln 1998). 

Determining the migratory behaviour of an avian species can be very complex because birds 

can fly along the confluence of two or more migratory routes before heading to their final 

destination. In species' which utilize multiple migratory routes, these migratory overlaps 

complicate efforts to determine population-specific routes based solely on observational (i.e., 

banding station) information. However, it is essential to elucidate this complex network in 
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order to better infer which population(s) might be affected when human development is 

planned along known migratory pathways. 

A very important aspect of understanding migratory routes and behaviour of avian species is 

the study and delimitation of migratory divides. A migratory divide is a geographic boundary 

between two or more breeding populations that follow different migratory routes from each 

other (Irwin and Irwin 2005). In North America, the Rocky Mountains have long been 

considered to be an important migratory divide for some species. In northern British 

Columbia, breeding populations of several songbird species in the Peace River Region and in 

Central Interior British Columbia lie in a migratory divide (Dunn et al. 2006). Located in this 

area, however, there are two important passages through the Rocky Mountains (Pine Pass 

and Peace River) that are used by some migratory birds during fall and spring migrations. 

These passes may allow populations to breach the migratory divide or lead to areas of 

migratory overlap, i.e., between the Pacific and Central fly ways. In both cases, movement 

through a narrow mountain pass could be considered a migratory bottleneck. 

Migratory bottlenecks located in areas with abundant human structures (e.g. wind farm 

turbines, power lines) could represent a potential source of mortality for migratory species. 

Due to high wind speeds in the area, the eastern foothills are currently being developed for 

wind energy production (Environment Canada 2003). Previous studies have shown that 

wind farm facilities are a source of mortality for migratory birds. Wind farms in Buffalo 

Ridge (Minnesota) and Altamount Pass (California) showed an average of approximately 12 
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and 17.5 passerine casualties per year, respectively (Johnson et al. 2002; Smallwood and 

Thelander 2008). Although these numbers suggest a relatively low collision risk per wind 

farm, several of these facilities placed between nesting and wintering areas could act as a 

significant barrier to migration (Drewitt and Langston 2006). As birds will encounter several 

wind farms (plus several other man-made facilities) during migration, a barrier effect may be 

created due to these structures either compounding the collision risk, or by displacing 

migrants from their usual migratory route to a less efficient one, thereby altering fitness and 

increasing energy costs. 

In order to have a better understanding of the migratory populations of songbirds in western 

Canada, one can study a representative species that could be compared with species using 

similar migratory corridors. The White-throated Sparrow (Zonotrichia albicollis: 

Emberizidae) was chosen as a representative species because it is a common North American 

short distance migrant with a widespread distribution. It breeds mainly east of the Rocky 

Mountains (Campbell et al. 2001; Mazerolle and Hobson 2007), but a population located in 

the Central Interior of British Columbia (west from the Rockies), that is not included in most 

species breeding range maps also exists (e.g., Sibley 2000). The genetic relationship of the 

Central Interior population to those breeding east of the Rockies is unknown; however, 

preliminary data of song structure indicates some degree of differentiation (unpublished data, 

Mesias, V., Otter, K., Mora, M., Ramsay, S., and Murray, B.). There has been much 

speculation around the migratory behaviour of this population. It has been suggested by 

several authors (e.g., Campbell et al. 2001; Wythe 1938) that individuals from this 

population migrate to the disjunct south-western overwintering area of California and 
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Oregon instead of to the main overwintering area in the south-eastern United States (Figure 

1.1). The migratory routes used by populations on both sides of the Rocky Mountains are 

still undetermined. It is also unknown if these birds cross the Rocky Mountains at any point 

through the several mountain passes under consideration for wind development. 

The main objective of this study was to examine the genetic relationship and migratory 

behaviour of the White-throated Sparrow populations in northern BC. By examining the 

genetic relationships of populations on either side of the presumed migratory divide the 

degree of spatial genetic structure was assessed. Differences in migratory routes were 

inferred through the analysis of population specific markers in birds collected at breeding 

locations and during the autumn migration. Deuterium stable isotopes were used to infer 

differences in migratory routes and to identify potential wintering areas while molecular 

markers were used to attempt to genetically assign migratory individuals. 

Understanding the spatial genetic variation and migratory behaviour of White-throated 

Sparrow populations will provide useful information for proactive conservation plans. These 

include: the amount of genetic differentiation that exists between populations, an 

understanding of how each population could be affected if a migratory route is disrupted or 

altered, and an indication of how this disruption could affect gene flow between populations. 

This information may lead to a better understanding of the implications of human 

development on species that use corridors that cross migratory divides. 
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Figure 1.1 Classical Distribution of breeding (blue) and wintering (red) range of the White-

throated Sparrow (Zonotrichia albicollis) in North America. The non-migratory range is 

shown in purple. The red dot indicates the Central Interior BC population which it not shown 

in the classical distribution map. Black arrows represent two potential wintering areas used 

by the Central Interior population. The distribution map was constructed with ArcMaps with 

layers of passerine distribution ranges obtained from NatureServe (Ridgely et al. 2007). 
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1.2 WHITE-THROATED SPARROW 

The White-throated Sparrow (Zonotrichia albicollis: Emberizidae) is a common North 

American short distance migrant with a widespread distribution, mainly east of the Rocky 

Mountains (Campbell et al. 2001; Mazerolle and Hobson 2007). This species exhibits two 

distinct types of plumages or morphs, white and tan, which originate from a chromosomal 

polymorphism resulting from a pericentric inversion on the second chromosome (Tuttle 

2003). White morph birds are usually heterozygous for the inversion, while tan morph birds 

are homozygous non-carriers (Tuttle 2003). Phenotypically, both morphs differ from each 

other based on the brightness in the median and superciliary crown stripes (Tuttle 2003; 

Campbell et al. 2001). Additionally, polymorphisms coincide with behavioural differences. 

For instance, white morph birds tend to be more aggressive with less parental care than tan 

morph birds (Tuttle 2003). Both morphs mate disassortatively (white males mate with tan 

females and vice versa). The maintenance of the morph polymorphism found within 

populations has been attributed to disassortative mating (Tuttle 2003; Campbell et al. 2001; 

Knapton et al. 1984). Even though one of the two morphs has been reported to be in higher 

proportion in some populations, overall both morphs are equally represented through the 

entire breeding range (Falls and Kopachena 2010). 

Two hypotheses have been proposed to explain why this negative assortative mating has 

been maintained (Falls and Kopachena 2010). First, there is a possibility that homozygote 

individuals for the inversion are selected against as many deleterious mutations may have 

accumulated in the inverted region. Second, negative assortative mating could be maintained 

by a combination of different strategies. For instance, white birds tend to be more territorial 

while tan birds engage in higher levels of parental care. In this case, both strategies could 
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complement each other resulting in a higher fitness for mixed couples than for non-mixed 

couples that are very territorial but invest little in parental care or vice versa. 

White-throated Sparrow breeding populations are spread throughout large regions of Canada 

(Figure 1.1). Historically the distribution was believed to extend east from the slopes of the 

Rocky Mountains to the Atlantic coast, and north into large portions of the Yukon-Northwest 

Territories (Campbell et al. 2001). However, in 1919, breeding individuals were reported 

west of the Rocky Mountains in the Central Interior of British Columbia (Campbell et al. 

2001). The origin of this breeding population is unknown, and it currently extends from the 

town of Mackenzie in the north, to Quesnel in the south, and to Houston, and possibly the 

Kispiox valley, in the west (Campbell et al. 2001; Wythe 1938). No studies have analyzed 

the genetic relationship of this population to those found east of the Rocky Mountains. An 

analysis of song however found population differentiation based on discriminant function 

analysis (unpublished data, Mesias, V., Otter, K., Mora, M., Ramsay, S., and Murray, B.). 

This differentiation was found to be higher when individuals were grouped per region 

(Central Interior BC, Peace River Region, Alberta) than as sample area. Additionally, 

misclassified individuals were assigned mostly to geographically close groups, suggesting 

higher contact between the Peace River Region and Central Interior than between Peace 

River Region and Alberta or Central Interior and Alberta (unpublished data, Mesias, V., 

Otter, K., Mora, M., Ramsay, S., and Murray, B.). 
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Wintering grounds of White-throated Sparrows have been reported mainly in the east and 

southeast United States, from Minnesota to Maine in the north, along the Gulf of Mexico 

from Texas to Florida in the south (Campbell et al. 2001). This wintering range has been 

extended according to observational and banding information that reported the presence of 

this species in California (Figure 1.1). Initially noted in the first records available in 1888 

(Wythe 1938), these reports were first considered "accidental". However, with continued 

and increased reports in this area, authors like Whyte (1938) began to suspect that thousands 

of birds could be wintering along the Pacific coast. Reports of wintering sparrows have also 

been found in the coastal states north of California (i.e., Oregon and Washington). Wythe 

(1938) and Campbell et al. (2001) include all three states, as well as parts of southwestern 

British Columbia, as part of the White-throated Sparrow wintering range. Although the exact 

breeding location of these wintering coastal sparrows still needs to be determined, it has been 

speculated that the sparrows breeding in the Central Interior of British Columbia are the most 

likely source of sparrows wintering in this location (Wythe 1938). 

Compared with other wintering locations, White-throated Sparrows wintering in the Pacific 

coastal region have been reported to be rare but regular from Oregon to the Mexican border 

(Kucera 2008). Banding records of recaptures, obtained through literature searches and with 

the collaboration of the USGS Patuxent Wildlife Research Center Bird Banding Laboratory, 

as well as the 110th Annual Christmas Bird Count, seem to indicate that these birds are found 

mainly in coastal areas, or centered around northern California (Kucera 2008; Garrison 2008; 

Wythe 1938; National Audubon Society 2010) (Figure 1.2). 
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Figure 1.2 Banding recapture records in California obtained with the collaboration of the 

USGS Patuxent Wildlife Research Center Bird Banding Laboratory 

(http://www.pwrc.usgs.gov/bbl/). The map was constructed in Google Earth v.5.2. 
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1.3 OVERVIEW OF IMPORTANT MARKERS USED TO DELINEATE 

MIGRATORY POPULATIONS 

Stable isotopes, molecular markers and banding recaptures are the most commonly used 

markers to study migratory connectivity between breeding and wintering populations. Each 

technique has its own pros and cons (Coiffait et al. 2009); however, none of them has been 

shown to be powerful enough to answer all the questions about bird migration. For this 

reason, several studies have used different combinations of techniques to understand 

migratory connectivity (e.g., Boulet and Gibbs 2006; Clegg et al. 2003; Mazerolle and 

Hobson 2007; Norris et al. 2006). 

Analysis of stable isotopes is a useful technique to study migratory connectivity of bird 

populations. The strength of this technique relies on the fact that feathers only grow during a 

short period of time, after which they become inert. This technique measures isotopes, 

ingested with food or from the environment, that accumulate in certain tissues (like feathers 

or claws). Isotope patterns are therefore signatures of the location where feather molting 

occurred, which generally happens in the breeding or wintering territories (Farmer et al. 

2008). 

The most important disadvantages associated with stable isotopes (compared with other 

methodologies) are the effects of climatic variation and local environmental factors on the 

observed ratios. Hydrogen/deuterium presents a latitudinal gradient based on precipitation 

and altitude, so its utility as a marker depends also on the resolution of environmental isotope 
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maps available (Clegg et al. 2003). Isotope maps, however are based on long term averages. 

Year to year variation has been attributed to the amount of hydrogen exchanged between the 

feather and ambient water vapour in a given year (Mazerolle et al. 2005). To compensate for 

yearly variation, a discrimination factor is usually added to the predicted precipitation 

isotope ratios (Mazerolle et al. 2005). In addition to seasonal climatic changes in 

precipitation patterns, local anthropogenic factors, causing differences in moisture regimes, 

such as logging, can add variability to isotopes ratios (Coiffait et al. 2009), Other factors that 

can also increase local variability are the differences in proportions of isotopes absorbed, 

isotope fractionation, among organisms caused by different biological, physical or chemical 

processes (UGSS 2012). Isotopic fractionation can have great influence on the variability of 

isotope markers. For instance, differences in the diet (prey sources) between juveniles and 

adults have been suggested as a major cause of local variation in isotopic ratios of hydrogen 

(Langin et al. 2007). 

Another important tool for migratory connectivity studies are molecular markers. This 

diverse group of markers has proven to be very useful in differentiating east versus west 

populations that are normally located near a migratory divide (e.g., Zink 1994; Zink 2008; 

Lecomte et al. 2009; Perez-Tris et al. 2004). Nuclear markers such as microsatellites (e.g., 

Burg and Croxall 2001) and mitochondrial DNA sequences (e.g., Perez-Tris et al. 2004) are 

the two techniques most widely used for population genetic analysis. 
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Both of these techniques have their own advantages. On one hand, neutral microsatellites are 

codominant markers that can be very useful to determine population structure and genetic 

diversity due to their high mutation rate (Clegg et al. 2003). On the other hand, 

mitochondrial markers do not undergo recombination, and because of their relatively lower 

effective population size and maternal inheritance, can be very useful when studying 

populations that have differentiated recently in time (Zink 2008). 

The main disadvantage of genetic markers in connectivity studies is the dependence on 

finding a strong differentiation between populations. The degree of population structure 

observed depends on barriers to reproduction and on the time of divergence between 

populations. Genetic differentiation is an important prerequisite to effectively use a 

population assignment method to infer the breeding location of individuals collected along 

migratory routes or on wintering grounds. In order to find this differentiation, it may be 

necessary to develop a high number of markers, which can be difficult and time consuming 

in the case of non-model species. Additionally, finding population structure can be 

problematic in cases where avian species originate from a recent expansion from a single 

refugium (e.g., Davis et al. 2006). 

Other markers widely used in connectivity studies are leg/neck band recoveries. This is a 

cost-effective, widely-used method. Throughout North America, a large network of banding 

stations exists to aid in the study of bird migration and conservation. The biggest limitation 

with this technique is that, even in the most abundant species, low numbers of recaptures are 
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recovered (Mazerolle et al. 2005; Butler et al. 1996). However in spite of this limitation, 

several cases have shown that leg band recoveries provide useful information finding 

migratory differentiation when other techniques fail. For instance, Mazerolle et al.(2005), 

used hydrogen isotopes from tail and head feathers (collected in Delta Marsh banding 

station) in order to determine the breeding and wintering areas of White-throated Sparrows. 

In their study, stable isotope analysis was uninformative between estimated breeding and 

wintering areas (head and tail feather isotope ratios), while leg banding records showed that 

birds from breeding populations from western Canada (Alberta, Manitoba, Saskatchewan and 

British Columbia) wintered in more westerly locations than birds in central (Ontario and 

Quebec) and eastern (New Brunswick, Nova Scotia, Prince Edward Island, Newfoundland, 

and Labrador) Canada. 

In many cases, leg band recoveries are used to complement information from other markers. 

For example, Smith and colleagues (2003) used stable isotopes and leg band recoveries to 

study the spatial and temporal patterns of migration in sharp-shinned hawks. The stable 

isotope analysis data showed that early migrants passing through the migration site were 

from lower latitudes, while leg-band information indicated that these early migrants winter 

further south than birds passing later. These combined data suggest that sharp-shinned hawks 

use a chain migration pattern instead of leap-frog migration and illustrates the power of 

multiple markers to gain a full understanding of migratory behaviour. 
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1.4 MIGRATORY FLYWAYS AND BANDING RECOVERIES 

The migratory connectivity of White-throated Sparrows has been examined in only a few 

studies. Deuterium stable isotope samples from the Delta Marsh banding station in Manitoba, 

located in the Mississippi flyway, were used to determine the southeastern United States as 

the main wintering area for the birds passing through this migratory station (Mazerolle et al. 

2005). This study was unable to find differentiation between estimated breeding (measured 

by tail feather isotope ratio) and wintering (measured by head feather isotope ratio) isotopic 

ratios. Banding recoveries, however, showed a slight east/west differentiation in wintering 

areas used by western (Northeastern British Columbia, Alberta and Saskatchewan) and the 

rest of the eastern breeding populations (Mazerolle et al. 2005). It is important, however, to 

state that this study, as well as others, has not been performed on birds breeding in the far 

western portions of the range, specifically the Central Interior population of BC. 

It has long been speculated that there is a link between the western wintering distribution 

(California and Texas) and the western breeding distribution (Central Interior British 

Columbia and western Alberta/Peace River Region). Wythe (1938) hypothesised that 

sparrows breeding at the western limit of the range (described until 1938, i.e. Alberta/Peace 

River Region) could be wintering in Texas (possibly using the Central flyway). 

Additionally, he suggested that birds breeding in the Central Interior could be using a Rocky 

Mountain passage to cross the Rocky Mountains and then head southwest from Alberta to 

California (using for instance the Columbia River flyway). No studies, however, have 

provided detailed information on migratory routes used by sparrows breeding at the western 

distribution of the species range that would allow an examination of these hypotheses. 

15 



The Yellowhead, Peace River and Pine Passes are described by Wythe (1938) as three 

possible passages used by White-throated Sparrows for fall migration. The Yellowhead Pass 

elevation is 975 m, the Peace River 600 m and the Pine Pass has an elevation of 869 m above 

sea level. Wythe (1938) suggested the Pine Pass/Peace River as possible passages used by 

the White-throated Sparrows that founded the first breeding population in Central Interior 

BC. In this hypothesis, White-throated Sparrows could have arrived when birds (normally 

breeding east of the Rockies) deflected from their usual migratory path, and followed the 

Peace River system or Pine Pass until they found suitable habitats in the Central Interior 

region (Wythe 1938). This hypothesis would predict a close genetic relationship between the 

populations on either side of the continental divide and a shared post-glacial history. It is 

also possible that birds in the Central Interior represent a much older population with an 

independent postglacial history, i.e., have separate refiigia. Although evidence of breeding 

was first described in 1919, this date corresponds with the major influx of European 

settlement in the area. Historic breeding populations may have simple gone unrecorded until 

this date. 

1.5 BANDING STATION INFORMATION 

Another important source of information for understanding migratory behaviour is the 

banding records from banding stations across western Canada. From the banding stations that 

are located in BC and Alberta, eight collaborated with the present study. Five of these 
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stations arc located in British Columbia (Mackenzie, Tattlayoko, Revelstoke, Rocky Point, 

Vaseux Lake) and two in Alberta (Lesser Slave lake and Beaverhill). 

As expected from the species distribution maps, the Alberta banding stations reported the 

highest numbers of White-throated Sparrows during the Autumn migration. Beaverhill 

reports a total of 110 White-throated Sparrows (from 1997-2006) during the fall, and an 

average of 11 birds per fall (Priestley 2007), while Lesser Slave Lake reports a total of 161 

White-throated Sparrows (from 2005-2008) during the fall, and an average of 40.25 birds per 

fall (Krikun 2005; 2006; 2007; 2008). White-throated Sparrows are regularly reported in 

these banding stations in the top 10 list of species captured (Krikun 2005; 2006; 2007; 2008; 

Priestley 2007). 

The Mackenzie Nature Observatory reported the highest numbers of White-throated 

Sparrows in British Columbia. From 1995 -2009 this station reported a total of 170 White-

throated Sparrows, with an average of 11.33 birds per year each fall (note, reports from 

1995-1997 come from a smaller number of nets used) (Mackenzie Nature Observatory 

2009). Banding stations in the southern part of BC reported fewer numbers of sparrows. For 

instance, Rocky Point Bird Observatory reported only 38 banded/45 observed White-throated 

Sparrows from 1994 to 2009 (reports in 1998 and 2007 were not available) (Melcer and 

Nightingale 2009; David 2006; 2008; Jantunen 2003; 2004; Gibson 2002; Derbyshine 1999; 

2000). Only 3.5 birds per year where observed during this range of time with most 

individuals banded between mid-September to late-October. 
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Other stations in the south part of the province, such as Tatlayoko, Revelstoke and Vaseux 

Lake Bird Observatories, rarely report captures of White-throated Sparrows. Tatlayoko, for 

instance, had an average of one bird banded (or observed) per year, from 2006 to 2009 (Ogle 

2008; 2009a; 2009b). Vaseux Lake reports the same average from 2002 to 2009; however, 

their captures year-to-year are more inconsistent than Tatlayoko with a high of 3 sparrows 

captured in 2005 and a low of no sparrows captured in 2004, 2006, and 2007 (eBird Canada 

2010). 

1.6 RESEARCH OBJECTIVES AND THESIS ORGANIZATION 

The main objective of the present study was to investigate the genetic and migratory 

differences among White-throated Sparrow populations in western Canada. This information 

is needed to address hypotheses on the location of a migratory divide and on population 

specific migration routes that, in the context of ongoing development, can ultimately be used 

for proactive management. To do this, the differential use of migratory routes was inferred 

by analyzing the migratory connectivity between breeding populations and overwintering 

areas (Chapter 2), as well as the spatial genetic structure of breeding populations in Western 

Canada (Chapter 3). 

Chapter two compares natural ratios of deuterium in White-throated Sparrow head and tail 

feathers (5DF) with the latitudinal gradient displayed by deuterium isotope concentrations in 

precipitation (8Dp) in order to identify wintering grounds used by breeding populations in 
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British Columbia on either side of the continental divide. Head feathers 5Dfwere used to 

infer the wintering grounds used by birds from known breeding populations, while tail 

feathers 6Df were used to infer breeding areas used by migratory sparrows in order to infer 

migratory routes used by those birds. 

Chapter three uses neutral microsatellite markers and mitochondrial DNA sequences to 

determine the amount of genetic differentiation among breeding populations of White-

throated Sparrows in western Canada. This genetic structure was then used to attempt to 

assign migratory individuals captured with the collaboration of migratory banding stations 

across BC and Alberta. This technique could then allow us to establish routes of importance 

for many populations of White-throated Sparrows and help determine how different 

populations of these birds could be contributing to the mixed genetic stock found in each 

migratory corridor. 

Chapter four is a synthesis of the above information that indicates the utility of these 

techniques for proactive management of migratory bird species. This chapter also performs 

an assessment of the techniques used, describing their applicability to other species and how 

they can be improved. Additionally, this chapter shows how the present study contributed to 

the understanding of the migratory behaviour of White-throated Sparrows and what are the 

environmental and management implications that could be estimated based on the 

information obtained. 
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CHAPTER 2 

DETERMINATION OF MIGRATORY CONNECTIVITY AND MIGRATORY 

PATTERNS USED BY WHITE-THROATED SPARROWS IN WESTERN 

CANADA USING DEUTERIUM STABLE ISOTOPES 

2.1 INTRODUCTION 

Bird migration and the connectivity between breeding and wintering populations has been a 

central area of interest in ecological and evolutionary studies. Detailed knowledge of the use 

of migratory corridors and wintering areas by songbirds is important for understanding both 

their ecology as well as in the development of appropriate conservation plans for maintaining 

breeding populations. Such plans rely on an understanding of the connectivity between 

summer/winter grounds of individual populations and the potential impact that human-made 

structures may have as a result of altering or disrupting migratory routes. However, due to 

the inherent difficulty of tracking birds during migration, the study of migratory connectivity 

has been severely obstructed (Webster et al. 2002). 

The Peace River Region of British Columbia is one area of potential importance for bird 

migration and which is situated in a site of increasing human development (i.e., wind 

energy). The Peace River Region is located on the east side of the Continental Divide of the 

Americas, marked in this region by the presence of the Rocky Mountains. This region of the 

Continental Divide has also been associated with an important migratory divide for several 

avian species (Dunn et al. 2006). This region also has several passes that connect both sides 
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of the divide that are used by migratory birds. These passes are migratory bottlenecks for 

birds crossing both sides of the mountains. It is not known how human development in this 

area might affect migration. Depending on population specific migrations routes, 

bottlenecks could affect one or both of the populations on either side of the migratory divide. 

The White-throated Sparrow {Zonotrichia albicollis) is a common North American short 

distance migrant generally found east of the Continental Divide. Differences in song 

structure have been noted for a breeding population located west of the divide in the Central 

Interior of BC to those located east of the divide (unpublished data, Mesias, V., Otter, K., 

Mora, M., Ramsay, S., and Murray B.). It has also been proposed that the Central Interior 

population has a different migratory route and overwintering area than those found east of 

the divide (Whyte 1938; Campbell et al. 2001). Details on population specific migratory 

routes, however, are lacking and hypotheses of migratory connectivity have yet to be tested. 

Understanding population specific migratory connectivity and routes on both sides of the 

Continental Divide (also possibly a migratory divide for this species) is crucial in order to 

identify how these populations could be affected by human development. 

Unlike to more traditional markers, such as leg/neck banding, data collection is relatively 

rapid and does not suffer from the limitations associated with the low number of band 

recoveries (Coiffait et al. 2009). Stable isotopes are variants of individual atomic elements, 

which differ in the number of neutrons and therefore have unique atomic masses (Coiffait et 

al. 2009). The relative proportions of isotope that accumulate in growing tissue vary 
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according to the environment and diet. In birds, the use of isotopes to identify wintering or 

breeding habitats has exploited the fact that specific body tissues, such as feathers or claws, 

incorporate different isotope signatures from the environment (e.g. rain or diet) during the 

period of their growth. These tissues then become metabolically inert, preventing the isotopic 

signatures from fluctuating over time (Mazerolle et al. 2005). These characteristics have 

been very useful for determining animal movements across a landscape, especially across 

latitudinal migratory patterns (e.g., Clegg et al. 2003; Smith et al. 2003; Wassenaar and 

Hobson 2001; Hobson and Wassenaar 1997). 

Hydrogen/Deuterium has been one of the most successful isotopes in bird studies, showing a 

clear latitudinal differentiation in several studies (e.g., Mazerolle et al. 2005; Clegg et al. 

2003; Smith et al. 2003; Wassenaar and Hobson 2001; Hobson and Wassenaar 1997). 

Hydrogen isotopes (or deuterium 5D) have also been shown to be associated with rainfall 

patterns and other environmental variables. Levels of Deuterium seem to follow a latitudinal 

pattern decreasing at higher latitudes, elevations, and towards the continental interior (Clegg 

et al. 2003). However, temporal changes in climatic conditions and diet of birds can add 

variation to the observed isotope ratios (Wassenaar and Hobson 2006). 

The discrimination power of this element depends on the resolution of the environmental 

isotope map available (Clegg et al. 2003). These environmental maps are based on a 40-year 

average of both geographical and climatological isotope information available from the 

Global Network for Isotopes in Precipitation (GNIP) database. These models then use a 
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"kriging" statistical procedure to interpolate isotope data of unknown locations from known 

locations. In this method, a georeferenced isotope precipitation profile (5Dp) map is used to 

infer the location where tissue growth occurred based on the tissue, i.e., feather, isotope 

profile (&Df) (Meehan et al. 2004). 

Deuterium stable isotopes are particularly useful in White-throated Sparrows because these 

birds have two differential moults that happen during different parts of the season. The 

crown and tail feathers of this sparrow have different periods of growth that provide isotopic 

signatures of the breeding and winter grounds, respectively. In the first moult (on breeding 

grounds before fall migration) all feathers are replaced, while at the second moult (on 

wintering grounds before spring migration) only the body feathers in the head region are 

replaced (Mazerolle et al. 2005). Although this differential moult pattern is not present in all 

avian species, in the present study this characteristic was useful to determine wintering 

territories used by breeding individuals as well as to determine potential breeding areas used 

by migratory individuals. 

The first objective of this study was to use the head feather 5DF to establish the wintering 

areas used by western Canadian populations of White-throated Sparrows on both sides of the 

Continental Divide (i.e., Central Interior BC and Peace River Region). The second objective 

was to use the tail feather 5Df to estimate the most probable breeding grounds used by 

migratory individuals sampled at stopover sites and banding stations across British Columbia 
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and Alberta. These studies will provide evidence on the presence of a migratory divide and 

locations of migratory bottlenecks in northern British Columbia as well as the potential 

impact that human-made structures can have on the disruption of migratory routes of White-

throated Sparrows. Elucidation of population's specific migratory routes and wintering areas 

used by White-throated Sparrows are vital in order to delineate future conservation projects 

in which important areas for bird migration could be conserved, not only for these songbirds, 

but also for other species using similar migratory corridors. 
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2.2 METHODOLOGY 

2.2.1 STUDY AREA AND SAMPLE COLLECTION 

Standard mist-net technique was used to capture White-throated Sparrows from breeding and 

migratory locations (Figure 2.1). For most breeding birds captured (May2009- June 2010) in 

Prince George (n = 20) (19 tail and 18 head) and Dawson Creek (n = 27) (26 tail and 26 

head) both tail and head feathers were analyzed. In addition, tail samples from three breeding 

individuals (collected May 2009) from Sikanni River (most northern location) were included 

for calibration purposes. Seven banding stations across British Columbia (BC) and Alberta 

(AB) collaborated to sample migratory White-throated Sparrows (July - Sept 2009). The 

frequency of White-throated Sparrows sampled varied according to the banding station; with 

no sparrows being captured at Vaseux Lake, Tatlayoko, and Revelstoke, three samples from 

Rocky Point, nine from Mugaha Marsh, nine from Lesser Slave Lake and seven from 

Beaverhill banding station. 
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Figure 2.1 Map of sampling locations included in stable isotope analysis. Prince George 

(PG), Dawson Creek (DC), Sikanni (Sik), Mugaha Marsh (MBO), Rocky Point (RPBO), 

Vaseux Lake (VLBO), Mount Revelstoke (MRBO), Tattlayoko (TLBO), Lesser Slave Lake 

(LSLBO) and Beaverhill Bird Observatory (BBO) were included. Sampling locations west 

from the continental divide were grouped into the Central Interior population (in blue), and 

east from the divide were grouped as the Peace River Region population (in green). 

Sampling locations collected during fall migratory season in collaboration with banding 

station in BC and AB (in yellow) was also included. The number outside the parenthesis 

represents the amount of sparrows caught during the fall season of 2009 (if available).The 

first number inside parenthesis represent the number of samples obtained from each location, 

Second and third numbers represent the amount of tail (T) and head (H) samples analyzed 

per location. The map was constructed in Google Earth v.5.2. 
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2.2.2 SAMPLE PREPARATION AND ANALYSIS 

Tail and feather samples were subjected to three rounds of cleaning using a 2:1 

chloroform:methanol solution, rinsed with MilliQ H20, and air-dried for 24 hours under the 

fumehood (Wassenaar and Hobson 2006; Mazerolle et al. 2005). Entire head feathers and the 

terminal veins of the tail feathers were sub-sampled in the same location to avoid 

inconsistent periods of feather growth (Wassenaar and Hobson 2006). Subsamples were 

weighed until they reached an optimum weight (0.1 - 0.3 mg) and then packed into silver 

capsules (Isomass Scientific Inc). Silver capsules containing the feather samples were 

crushed into small balls and inserted in a 96-well PCR tray. Non-exchangable Hydrogen 

(5Df) of feathers was analyzed using a Hekatech HT Oxygen Analyzer interfaced to a PDZ 

Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK) at the University 

of California, Davis. The fraction of exchangeable hydrogen between feathers and 

environment was corrected using keratin standards as described by Wassenaar and Hobson 

(2003). Deuterium concentration was expressed in units per ml (%o) relative to the 

international standard V-SMOW (Vienna Standard Mean Ocean Water). 

To estimate the migratory areas used by White-throated Sparrows breeding populations, non-

exchangeable feather deuterium isotope ratio values (6Df) were compared with the 

precipitation deuterium isotope ratio values (5DP) for North America. However, &DF values 

are often different from 8Dp values [because of different variables, such as, fractionation 

factors or the percentage of Hydrogen that is exchangeable with the environment (Farmer et 

al. 2008)]. 
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Forty per cent of the feather hydrogen is potentially exchangeable with the environment 

(Hobson and Wassenaar 1997). To adjust for amount of hydrogen exchanged with the 

environment, a correction factor was used to modify the mean growing season precipitation 

(5Dp) map of Meehan et al (2004) (Figure 2.2). This map is based on a 40-year average of 

geographical (sometimes altitudinal data) and climatologically isotope information available 

at the Global Network for Isotopes in Precipitation (GNIP) database. To estimate the 

correction factor to be used, &DF values of tail feathers from individuals captured at known 

breeding locations (Prince George, Dawson Creek and Sikanni) were compared with 

predicted precipitation isotopes for those locations. Based on these comparisons, an 

adjustment factor -30%o was used to calibrate &DP precipitation values. Predicted 

precipitation isotopes were obtained using the Online Isotopes in Precipitation Calculator 

OIPC v2.2 (Bowen G.J 2011). The modified Meehan et al. (2004) GIS map layer was 

combined with a White-throated Sparrow range layer available on the NatureServe web site 

(Ridgely et al. 2007) in order to estimate isotope values for breeding (tail feathers) and 

wintering (head feathers) areas. These values were compared to observed &DF ratio of the 

White-throated Sparrow feathers. 
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Figure 2.2 Stable Isotope precipitation GIS map (5Dp) modified from Meehan et al. (2004). 

Isotope relief map contour areas from isotope environmental map were modified with 

adjustment factor of -30 %o to compensate the Hydrogen exchange of 5Df. A layer showing 

the White-throated Sparrow range was added; obtained from NatureServe (Ridgely et al. 

2007). GIS map obtained with permission of Tim Meehan (December 20, 2010). 
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2.2.3 STATISTICAL ANALYSIS 

All statistical analyses were done with SPSS v. 18.0 with and without outliers. Outliers were 

determined using a stem-and-leaf plot and according to reported wintering and breeding 

ranges in Western Canada (>-130 %o 5Df for wintering samples and < -131 %o &Df for 

breeding samples). Once outliers were detected they were removed for all subsequent 

analysis. Descriptive statistics (Mean, Standard Deviation and Confidence Intervals) were 

calculated and plotted. Frequency distribution of tail and head feathers 5Df values (%o) were 

plotted in a bar graph against corrected 6Dp ranges (based on Meehan et al. 2004 

precipitation map). Normality of samples for each sampling location was assessed using a 

Kolmogorov-Smirnov test. Head feather isotope ratios were analyzed with parametric one

way ANOVA and t-tests. 

To test statistical differences of tail feather isotope ratios, an initial comparison between all 

locations was done using Kruskal-Wallis tests. After this analysis, pairwise comparisons 

between Central Interior, Peace River Region and the banding stations were analyzed using 

non-parametric Mann-Whitney-U test. Additionally, in order to test if the date when birds 

were banded had any influence on the isotope ratios, ANCOVA analysis of banding stations 

data with date as a covariate was conducted. 
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2.3 RESULTS 

2.3.1 DISTRIBUTION AND OUTLIERS 

Most stable isotopes data from head and tail samples fit a normal distribution (P>0.5) 

(Kolmogorov-Smirnov for one sample test). The only sample location that showed 

significant deviation from a normal distribution was the tail-feather samples from the Peace 

River Region (0.01> P <0.05). As a result of this deviation from normality, tail-feather 

samples were analyzed using non-parametric statistics while head-feather samples were 

analyzed with parametric (ANOVA) statistics. 

Analysis of tail samples showed three values of 5Df values (-85%o, -89%o and -130%o) as 

clear outliers (Table 2.1a, b). These values lie outside of the values noted for the breeding 

distribution of White-throated Sparrows in western North America. Head-feather analysis 

failed to show statistical outliers; however, as four of the lowest values (from -137.2%o to -

145.9%o) clearly mapped outside of the wintering area, they were considered as outliers 

(Table 2.1c). Statistical analyses were done with and without outliers. However, as 

excluding outliers from analysis did not significantly change the outcome of the study all the 

analysis shown in the present study was done without outliers. 

31 



Table 2.1 A) Five highest and lowest &Df (%o) values of Central Interior tail feather samples. 

B) Five highest and lowest 5Df (%o) values of Peace River Region tail feather samples. C) 

Five highest and lowest 5Df (%o) values of head feather samples of all regions. 

A) 

Relative 
6Df (%0) 

Included or 
Rank Individual 6Df (%0) Excluded 

1 Zoal-jal74 -89.8 Excluded 
2 Zoal-jal77 -137.9 Excluded 

Highest 3 Zoal-jal76 -138 Included 
4 Zoal-jal70 -139.2 Included 
5 Zoal-jal71 -139.6 Included 
5 Zoal-jal83 -151 Included 
4 Zoal-jal73 -151.4 Included 

Lowest 3 Zoal-jal75 -152.3 Included 
2 Zoal-jal88 -156.7 Included 
1 Zoal-jal82 -156.8 Included 

B) 

Relative 
8Df (%«) 

Included or 
Rank Individual 8Df (%«) Excluded 

1 Zoal-jdl57 -85.1 Excluded 
2 Zoal-jdl47 -130 Excluded 

Highest 3 Zoal-jdl45 -138.3 Included 
4 Zoal-jdl56 -147.5 Included 
5 Zoal-jdl50 -148.6 Included 
5 Zoal-jdl55 -162.2 Included 
4 Zoal-jdl54 -163.6 Included 

Lowest 3 Zoal-jdl37 -164.3 Included 
2 Zoal-jdl38 -165.6 Included 

1 Zoal-jdl60 -167.6 Included 
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C) 

Relative 
6Df(%o) 

Included or 
Rank Individual 6Df(%o) Excluded 

1 Zoal-jdl41 -54.3 Included 
2 Zoal-jdl53 -55.2 Included 

Highest 3 Zoal-jdl60 -58.7 Included 

4 Zoal-jdl56 -59.1 Included 
5 Zoal-jal78 -60.4 Included 
4 Zoal-jal73 -123.2 Included 
3 Zoal-jdl48 -137.2 Excluded 

Lowest 2 Zoal-jd060 -138 Excluded 
1 Zoal-jal88 -138.7 Excluded 
5 Zoal-jdl46 -145.9 Excluded 

33 



2.3.2 HEAD FEATHER SAMPLE ANALYSIS 

Head feather 5Df (%o) values for each sampling location were binned (Figure 2.3) according 

to the relief map countour lines (Figure 2.2). The Central Interior samples &Df (%o) values 

were mainly distributed (-40%) between -69 - -83 %o, while the remaining samples were 

equally distributed in a lower percentage across four other areas (Figure 2.3). The Peace 

River Region had 5Df (%o) values distributed across five different relief map contour areas, 

with higher percentages (-30%) between -69 - -83 %o and -99 - -114 %o (Figure 2.3). Head-

feather samples showed a high standard deviation, which was twice as much as the standard 

deviation obtained from tail-feather samples. Central Interior head samples had a mean 5Df 

(%o) and standard deviation (-84.12±18.16 %o) lower than Peace River Region (-90.33±21.46 

%o). No statistical differences were detected using ANOVA (F: 0.931, P: 0.341) or T-tests 

(F: 1.47, P: 0.233). Confidence intervals at 95% of head feather samples were also much 

greater than tail feather samples (Figure 2.4). 
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A) Central Interior Head samples 
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Figure 2.3 Percentage of &Df(%o) from head samples (without outliers) binned based on the 

5DP (%0) relief contour areas from the modified Meehan et al. (2004) isotope environmental 

map (Figure 2.2). A) Central Interior, B) Peace River Region 
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Figure 2.4 Mean 5Df (%o) values of head samples with Confidence Intervals 95% (95% CI) 

bars. A) Central Interior and B) Peace River Region locations are shown. 
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2.3.3 TAIL FEATHER SAMPLE ANALYSIS 

To assess the distribution of data, tail feather 5Df (%o) values were also compared according 

to the &DP (%o) value relief areas (Figure 2.5) from the Meehan et al. (2004) isotope 

environmental map (Figure 2.2). All Central Interior sample &Df (%o) values were distributed 

between -130 %o - -160 %o zones (Figure 2.5A). In contrast the Peace River and Sikanni 

samples were distributed primarily in the -146 - -173 %o zones (Figure 2.5, B+C). Tail 

isotope values distribution from Lesser Slave Lake (LSLBO), Beaverhill (BBO) and 

Mackenzie (MBO) samples were mostly spread between -146 - -160%o, and -161 - -173%o 

while Rocky Point (RPBO) distributed in the -146 —160%o zone (Figure 2.5, D-G). 
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Migratory Locations 

0) Lesser Slave Lake- Tail samples 

so 
- 50 
| 40 

^ 20 

0 I I 
v? j9> s?> & J? N# -f 

- <i> «S» * 

cfDt^VSMOWj 

F) Mackenzie- Tail samples 

80 
~ 60 

3 40 

£ , ll 
<#> <£> <$> s\v <*? ^ „<§> 

* * * * «r>V>VV' 

dD<S.VSMOW) 

E) 

so 

160 
8 40 

^ 20 

0 

Beaverhill- Tail samples 

I I 
J* J1 J1 <? •$> •$> •? ^ 
* * * #' «j£* 

cfDCwVSMOW) 

q j  Rocky Point- Tail samples 

iOO 

so . 
i 60 
% 40 •••: 
ft. 

20 i 
o !  ̂& •,* # ? * * * * * N*- s>vVVV 

tffi(*«VSMOW) 

Figure 2.5 Percentage of 8Df (%o) from tail feather samples (outliers included) binned based 

on the &DP (%o) relief contour areas from the Meehan et al. (2004) isotope environmental 

map (modified with -30 %o adjustment). Locations: A) Central Interior, B) The Peace River 

Region, C) Sikanni River, D) Lesser Slave Lake bird observatory, E) Beaverhill bird 

observatory, F) Mackenzie bird observatory, and G) Rocky Point bird observatory are 

shown. 
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Samples collected from known breeding locations (Central Interior, Peace River Region and 

Sikanni) show mean values that agree with the expected latitudinal pattern, with mean &Df 

(%o) values that decreased (i.e., became more negative) as their latitudinal location increased 

(Figure 2.6). The Central Interior showed the highest mean (-146.04 ±6.29 %o SD) compared 

with the Peace River Region (-154.8 ±7.01 %o SD) and Sikanni (-158.63 ±2.87 %o SD). The 

Rocky Point Bird Observatory (RPBO) (-151.77 ±3.6 %o SD) mean value was intermediate 

between Peace River Region and Central Interior while the Mackenzie Bird Observatory 

mean (-159.95 ±4.56 %o SD) was very close to Sikanni River. The Alberta banding stations 

showed mean values within this range; however, their standard deviation and 95% CI were 

bigger than the rest of samples. Lesser Slave Lake had a higher mean value (-154.67 ±9.49 

%oSD) compared with Beaverhill mean (-158.08 ±8.74 %o SD). 

Initial comparison using Kruskal-Wallis test (Non-parametric alternative to ANOVA) 

showed highly significant differences (P <0.01) between means among populations. Pairwise 

comparisons using Mann-Whitney-U of Central Interior showed significant differences 

versus Peace River Region, Sikanni, Mackenzie and Beaverhill, and Lesser Slave Lake 

(Figure 2.6). On the other hand, The Peace River Region showed significant differences only 

against the Central Interior and Mackenzie. ANCOVA analysis showed no significant 

differences (P > 0.5) between banding stations isotope ratios with collection date as a 

covariant. 
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Figure 2.6 Mean 5Df (%o) values of tail samples with Confidence Intervals 95% (95%CI). 

Breeding locations: A) Central Interior, B) Peace River Region, C) Sikanni, as well as 

migratory locations: D) Mackenzie, E) Rocky Point, F) Lesser Slave Lake, G) Beaverhill are 

shown. Bold numbers indicate highly significant differences (P <0.01) in pairwise 

comparisons (using Mann Whitney-U), while smaller font not-bold numbers indicate 

significant differences (P < 0.05). 
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2.4 DISCUSSION 

2.4.1 DETERMINATION OF WINTERING TERRITORIES BASED ON HEAD 
FEATHER DEUTERIUM ISOTOPES 

Head feathers isotope values (6Df) presented a greater range of values compared with tail 

feather isotope values. This variability may reflect the higher complexity of the isotope 6DP 

relief patterns at the wintering range than at the breeding range and/or may be further 

influenced by the differential migration by males and females. Differential migration of both 

sexes, where females migrate longer (have more positive 8Df values) than males has been 

noted in White-throated Sparrows (Mazerolle and Hobson 2007) and could partially explain 

the wide distribution of head-feather samples. Differential migration could not be fully tested 

in this study because in many samples the sex of the bird could not be determined in the 

field. An alternative to avoid the difficulties of visual determination of sex in sparrows would 

be using molecular techniques for sex discrimination (such as the CHD gene amplification) 

for more detailed examination of sex specific migratory patterns (Dubiec and Zagalska-

Neubauer 2006). However if present, the effect of sex specific migration patterns would 

appear minimal as when the small number of known males were tested statistically (not 

shown) no differences were observed with the overall mean. 

The timing of moults can also influence the range of values observed. If a proportion of the 

birds moult during migration then the range of values might not only reflect the isotopic 

signal of wintering sites but those of stopover locations. This effect, however, was not noted 

in previous studies of White-throated Sparrows, which have shown that less than 4% of 
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individuals had not completed their prealternate moult when banded at spring migration 

monitoring banding stations (e.g., Mazerolle et al. 2005). Additionally, head feather samples 

compared with claws and blood samples were reported as the most accurate and consistent 

samples used for isotopes studies (Mazerolle and Hobson 2005). 

Head feather stable isotope values did not show significant differences between the Peace 

River Region and Central Interior populations. Both populations, however, had higher 

isotopic signatures than what were expected if they would be wintering in the southeastern 

US (Figure 2.2). The southeastern US (east of Great Plains) has been described as the main 

wintering ground used by White-throated Sparrows (Campbell et al. 2001; Falls and 

Kopachena 2010). Stable isotope analysis has also identified this area as the main wintering 

ground (expected 5Df between 0 and ~68%o) used by migratory White-throated Sparrows 

captured at the centrally located Delta Marsh (Manitoba) banding station (Mazerolle et al. 

2005). In contrast, the mean value of head feather 5Df observed in Central Interior and 

Peace River Region populations fit with the upper limit of the wintering range, limiting 

possible wintering areas used by these populations to three locations: The Pacific coast of the 

United States, New Mexico-Arizona and Colorado/Kansas (Figure 2.7). 

Previous studies have suggested that the Pacific coast is the most likely wintering area for 

breeding population of the Central Interior (Campbell et al. 2001; Wythe 1938). However, 

due to the overlap in expected isotope values we cannot differentiate among the Pacific coast 
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or the New Mexico-Arizona and Colorado/Kansas areas. In the Pacific wintering area, most 

White-throated Sparrows have been observed in the northern California coastal areas (e.g. 

San Francisco); although sparrows have been observed wintering in Washington and Oregon 

coasts and southeastern Vancouver Island (Kucera 2008; Garrison 2008; Wythe 1938; 

National Audubon Society 2010) (Figure 1.2). Very few birds have been observed wintering 

in the Sonora desert and at higher altitude in the Sierra Nevada Mountains (National 

Audubon Society 2010). This distribution predicts that the birds wintering along the Pacific 

coast should have a narrower isotope profile than birds wintering at the New Mexico/Arizona 

and Colorado/Kansas area (Figure 2.7). The Central Interior population does have a narrower 

isotope distribution than the Peace River Region, suggesting that this population could be 

wintering in the Pacific coastal region (Figure 2.3). 

The most parsimonious hypothesis for wintering areas used by the Peace River Region 

population would be that these birds are migrating to the New Mexico-Arizona and 

Colorado/Kansas region. Because of the proximity to the southern Rocky Mountains (altitude 

effect on 6Dp), these two regions present a wider range of isotope values (Figure 2.7), which 

seems to fit the pattern observed in the isotope distribution present at this population (Figure 

2.3). Note also that if at least some of these birds are wintering in more southern locations 

(i.e. northwest Texas), it would also explain the higher variance in this sample location. 

White-throated Sparrows band recapture information suggests an east-west segregation at 

wintering grounds of White-throated Sparrows (Mazerolle et al. 2005). The 5DF values of 
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head feathers of western Canadian populations obtained in the present study (Figure 2.4), as 

well as those examined in Delta Marsh Manitoba (Mazerolle et al. 2005), are congruent with 

an east-west segregation on the wintering grounds, in which eastern birds migrate towards 

southeast US, and western birds (Central interior and Peace River Region) migrate to either 

the Pacific west coast or to New Mexico/Arizona and Colorado/Kansas areas. These data 

suggest a general trend of parallel migration in North America and is consistent with the 

connectivity of the Central Interior with the Pacific coast and the Peace River Region with 

the New Mexico/Arizona and Colorado/Kansas areas. 
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Figure 2.7 Stable Isotope precipitation GIS map (5DP) modified from Meehan et al. (2004). 

Isotope relief patterns were modified with adjustment factor of -30 %o to compensate the 

hydrogen exchange of 5Df. A layer of showing the White-throated Sparrow range was 

obtained from NatureServe (Ridgely et al. 2007), and superimposed to the map. Blue circles 

show the probable wintering sites located east from the Rockies and the red circle shows the 

possible wintering area west from the Rockies. GIS map obtained with permission of Tim 

Meehan (December 20, 2010) 
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2.4.2 DETERMINATION OF BREEDING TERRITORIES BASED ON TAIL 
FEATHER DEUTERIUM ISOTOPES 

Analysis of tail-feather isotopes showed significant statistical differences among breeding 

sample locations. These differences were maintained when outliers were included, showing 

that extreme values on the distribution did not affect the results. Notably, significant 

statistical differences were seen between the Peace River Region and Central Interior 

populations. This distribution is expected and is consistent with the predicted geographical 

distribution of isotope values for each sampling location (Figure 2.2), where the mean value 

in Central Interior (-146 ±6.22 %o SD) is 8%o higher than the Peace River Region (-154 ±7.01 

%o SD) and 12%o higher than Sikanni River is (-158 ±2.87 %0 SD) (Figure 2.6). The 95% 

confidence intervals of Central Interior and Peace River Regions do not overlap, reflecting a 

high degree of confidence in assigning samples to either of these locations. This lack of 

overlap in confidence intervals is unexpected as a high degree of variance associated with 

within-population estimates has been recorded for some species (Langin et al. 2007). For 

instance, Farmer and colleagues (2008) estimated that it is necessary to have a difference of 

31%o in order to assign confidently two samples as coming from distinct latitudes. However, 

the confidence intervals at 95% values from Central Interior and Peace River Region showed 

that the 31%o value suggested by Farmer and colleagues (2008) might not apply for these 

populations. 

The banding stations in Alberta are important for the present study as they potentially capture 

White-throated Sparrow migrants using either the Central, Mississippi, or eastern Pacific 
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(Columbia River) flyways. Lesser Slave Lake Bird Observatory, located on the eastern shore 

of Lesser Slave Lake and, Beaverhill Bird Observatory, located 80 km southeast of 

Edmonton, is situated south of the sampled breeding locations, on the eastern side of the 

Continental Divide. Located at a convergence of the Mississippi, Central and eastern Pacific 

flyways (Krikun and Holroyd 2001) these banding stations have a high likelihood of 

capturing samples from the breeding locations tested if they are using a migratory path east 

of the Rocky Mountains. 

Tail feather isotopes of birds from Lesser Slave Lake and Beaverhill banding stations 

showed significant differences with the Central Interior suggesting that sparrows from this 

population are not being detected at these station (Figure 2.6). On the other hand, tail feather 

isotope ratio at these two banding stations showed no statistical differences with the Peace 

River Region. This is consistent with the Peace River Region birds are being detected at 

Beaverhill and Lesser Slave Lake. However, it is important to consider that other breeding 

locations (not sampled) will have similar isotope signatures and that the higher standard 

deviation (compared with the rest of locations) observed at both of these banding stations 

suggests that birds from more than one population are most likely being captured at these 

locations. The observed isotope signatures suggest that populations north of the Peace River 

Region are also being captured at these locations, since both banding stations sampled a 

number of birds from the -146 - -160 %o zone (Figure 2.2). 
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This data is consistent with the hypothesis that birds breeding in the Peace River region are 

using a Central migratory pathway to over wintering areas in New Mexico/Arizona and 

Colorado/Kansas areas. Although the use of the eastern Pacific flyway, crossing the Rockies 

at the Columbia River and proceeding to the Pacific coast area, cannot be rejected, the use of 

a northern Rocky Mountain pass seems unlikely. Data from Mugaha Marsh Banding Station 

also suggests that birds from the Peace River Region are not crossing through the Peace 

River Pass. 

Mugaha Marsh Banding Station is located 14km northwest of Mackenzie, BC, east of the 

Parsnip Reach of the Williston reservoir (Mackenzie Nature Observatory 2011) and may 

potentially capture birds using the two major mountain passes in this area, the Peace River 

and Pine Pass. The Williston reservoir is the impoundment of the Peace River watershed 

from the WAC Bennett Dam in the Peace Canyon, which cuts through the Rocky Mountains 

(600 m elevation), into the north and south arms west of the Rockies that extend along the 

former tributaries that flowed along in the Rocky Mountain trench. This banding station is 

also located 68 km from the entrance to the second major pass through the Rockies in this 

region, the Pine Pass. The Pine Pass (874 m elevation) has the distinction over other passages 

that it is the only one that cuts the Rockies in a transversal orientation (following the 

migratory direction). 

The Mugaha Marsh station has the highest amount of captures of White-throated Sparrows in 

British Columbia, with an average of 16.18 birds per year (1995 - 2011) and a high peak of 
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78 captures in the 2011 (Mackenzie Nature Observatory 2009). Because of being 

strategically located in the Rocky Mountains trench, Mugaha Marsh Banding Station is 

important for detecting birds that are using the Peace River Pass. Additionally this station is 

located near to the migratory divide for many bird species such as the Yellow-rumped 

Warbler (Dendroica coronata), Blackpoll Warbler (Dendroica striata), American Redstart 

(,Setophaga ruticilla), Northern Waterthrush (Seiurus novaboracensis) and Wilson's Warbler 

(Wilsoniapusilla) (Dunn et al. 2006). 

Tail feather isotopes samples from this banding station showed a different distribution from 

the rest of the banding stations. The distribution of samples at this station presented a high 

percentage of samples (-60%, 5/9) in the -161 - -173%o zone. This zone corresponds to the 

northern BC-Yukon border region (Figure 2.2). The high mean and distribution of &Df 

values at Mugaha Bird Observatory suggests that birds caught at this location could be either 

coming from a population north of the Peace River Region (east of the Rockies, e.g., 

Sikanni) or from a population north of Mackenzie (west of the Rockies, e.g., northern 

Williston Lake/Finlay River or even south-eastern Yukon following Liard river watershed). 

The lower standard error (CI 95%) (compared with the rest of banding locations) observed at 

this banding station may indicate that birds banded at this location come from a more narrow 

distribution than the Alberta banding stations. 

The range of values observed at Mugaha Marsh are significantly different from those 

observed in the Central Interior and Peace River breeding locations. Despite being located 

50 



on the western side of the Continental Divide, birds banded at this station have isotopic 

values that represent a higher latitudinal range than for both breeding locations. No evidence 

has been reported that the Central Interior population extends to such high latitudes along the 

west side of the Rocky Mountains. These data indicates that a third breeding population is 

potentially using the Peace River area during migration. 

The Rocky Point banding station also regularly captures White-throated Sparrows in British 

Columbia. With an average of 3 White-throated Sparrows each year (1994 to 2009), most 

banded between mid-September to late-October (Melcer and Nightingale 2009; David 2006, 

2008; Jantunen 2003, 2004; Gibson 2002; Derbyshine 1999, 2000), the number of recaptures 

at this station is lower than Mugaha Marsh. Because of being located at the south end of 

Vancouver Island, this station represents an important Pacific flyway sampling location. The 

mean SDfratio of migrants banded at Rocky Point banding station (-151.77 ±3.6 %o SD, n = 

3), as well as the lack of statistical differences with birds from Central Interior and Peace 

River Region suggest that birds from either Central Interior or Peace River Region breeding 

populations could be passing through this station and, as a result, using the Pacific Flyway. 

Given the small sample size, no definite conclusion can be drawn, although the low numbers 

of White-throated Sparrows annually banded at this station suggest that this is not a major 

migration route. The inclusion of other Pacific flyway banding stations (such as the Delta 

Marsh in Vancouver, not included in this study) may be more useful locations that could help 

in the understanding of the migratory behaviour of Central Interior and Peace River Region 

populations. 
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In summary, the results indicate that the populations breeding in the Central Interior and 

Peace River are overwintering in the western area of the wintering range. The results are 

also consistent with most parsimonious hypotheses of migration, i.e., that the Central Interior 

population overwinters in Pacific coast while the Peace River population overwinters in the 

New Mexico-Arizona and Colorado/Kansas area. Alternate hypotheses involving 

combinations of these breeding locations and wintering areas however could not be ruled out. 

Partial information on migratory routes was also obtained. Banding station data is consistent 

with birds from the Peace River region using the flyway east of the Continental Divide. At 

the same, time this data did not support use of this migratory corridor by the Central Interior 

population. 

A number of possible migratory pathways may be used by the Central Interior population. 

One possible migratory route would be that the sparrows are crossing through the Pine Pass 

and then following an undetected route, such as along the eastern foothills of the Rockies, 

before heading to their wintering destination. Another possibility is that Central Interior 

sparrows fly south following the Fraser River and then proceed down the coast. Other 

western inland routes seems to be unlikely as the Mount Revelstoke, Tattlayoko and Vaseux 

Lake banding stations rarely report White-throated Sparrow captures (eBird Canada 2010, 

Ogle 2008; 2009a; 2009b). Obtaining samples from additional banding stations in BC, e.g., 

Delta Marsh, and Alberta, e.g., Inglewood, as well as from strategically placed locations will 

be needed to provide the crucial evidence to support or refute these possible routes. It is also 
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recommended that both head and tail feathers be collected from all migratory samples so that 

both possible breeding and wintering locations can be linked to migratory samples. 

Based on the ability to successfully differentiate breeding populations on either side of the 

Continental Divide using tail-feather isotopes, one alternative study that would help 

understanding migratory behaviour would be to sample tail and head feathers from birds 

wintering along the Pacific coast or New Mexico-Arizona and Colorado/Kansas areas. These 

isotopic ratios could then be compared to the present study in order to infer breeding 

populations. A similar technique has been applied successfully before to other species, such 

as Swainson's Thrush (Catharus ustulatus) and has shown to be powerful enough to 

differentiate the origin of wintering individuals (Kelly et al. 2005) 

Elucidating the complexity of migratory routes in western Canada is crucial to understand 

the effects that local disruptions could have on White-throated Sparrow populations. These 

effects could be important as birds fly through migratory bottlenecks when they cross the 

Rocky Mountains. However, without detailed information on the migratory routes of western 

Canadian White-throated Sparrow populations, it would be very difficult to determine which 

population could be affected by a disruption on a migratory route and what would be the 

repercussions of these disruption events. 
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CHAPTER 3 

GENETIC DIFFERENTIATION ANALYSIS OF WESTERN CANADA WHITE-

THROATED SPARROW POPULATIONS AND GENETIC ASSIGNMENT OF 

MIGRATORY INDIVIDUALS 

3.1 INTRODUCTION 

Understanding genetic structure or differentiation of breeding populations along a migratory 

divide has been an important aspect of many migratory connectivity studies (i.e., Clegg et al. 

2003, Kelly and Hutto 2005, Ruegg and Smith 2002, Davis et al. 2006). These studies have 

used genetic differences among breeding populations to identify discrete migratory groups, 

which can confirm the presence of a migratory divide. The amount of genetic divergence 

among populations however, is related to a number of factors including 

population/evolutionary history, the presence of barriers to gene flow, and the resolution of 

the genetic marker system used. 

Population history (response to glaciation and post-glaciation events) has a strong influence 

on the population structure of avian populations as well as the evolution of migratory routes. 

Many cases of migratory and genetic differentiation among populations appear to be a result 

of the independent evolution of populations that have originated from separate refugia (and 

then have come into secondary contact) after a process of post-glacial range expansion.(e.g., 

Sylvia atricapilla, Perez-Tris et al. 2004; Dendroica petechia, Boulet and Gibbs 2006). 
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Additionally, as in Blackcaps a population bottleneck prior to post-glaciation expansion can 

affect the genetic differentiation among populations (Perez-Tris et al. 2004). In contrast, a 

lack of differentiation, as found in Black-throated Blue Warbler {Dendroica caerulescens), is 

usually attributed to a recent expansion from a single refugium (Davis et al. 2006). 

Demographic events and population history can not entirely explain how differences in 

migratory behaviour are maintained. Genetic and migratory differences can promote 

reproductive isolation by pre-zygotic and post-zygotic mechanisms and restrict gene flow 

after populations meet in a secondary contact zone (Irwin and Irwin 2005; Toews and Irwin 

2008). For example, the Greenish Warbler (Phylloscopus trochiloides) (Irwin and Irwin 

2005) and Yellow-rumped Warbler {Dendroica coronata) (Brelsford and Irwin 2009) have 

shown differentiation enhanced by a selective pressure against hybrid individuals. In these 

cases, secondary contact between populations with different migratory strategies resulted in 

hybrid individuals that exhibit a sub-optimal migratory strategy with a lower fitness than 

either parental lineage. This lower fitness could be influenced by the presence of an 

ecological or geographical barrier complicating migration of hybrids, as is the case in the 

Greenish Warbler {Phylloscopus trochiloides) where the barrier is the Tibetan Plateau (Irwin 

and Irwin 2005). 

In many cases, genetic differentiation follows a geographical pattern. This pattern can be 

influenced by a geographical barrier or by the dispersal ability of the organism. Being able 

to differentiate between two or more populations along a geographical divide is important as 
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it may indicate that these populations use different migration corridors or wintering areas 

(e.g., Clegg et al. 2003; Kelly and Hutto 2005; Irwin and Irwin 2005). The Rocky 

Mountains, which form the main geographic feature of the Continental Divide, are an 

east/west genetic and migratory divide for breeding populations of many avian species 

(Boulet and Gibbs 2006; Kelly and Hutto 2005). The White-throated Sparrow (Zonotrichia 

albicollis) has breeding populations on either side of the Rocky Mountains. Differences in 

song structure (unpublished data, Mesias, V., Otter, K., Mora, M., Ramsay, S., and Murray, 

B.) and, possibly, migration strategies have been noted between populations west of the 

Rocky Mountains in the Central Interior of BC and those east of the Rockies in the Peace 

River region (Chapter 2). The degree of genetic differentiation between these populations is 

unknown. 

In spite of the fact that bird species tend to have lower levels of genetic differentiation than 

other vertebrates, probably because of their higher mobility and larger population sizes 

(Winker et al. 2000), many studies using a variety of molecular markers have found genetic 

differentiation among populations of the same species (e.g., Boulet and Gibbs 2006; Clegg et 

al. 2003; Lecomte et al. 2009; Helbig et al. 1995; Winker et al. 2000). Different markers 

have distinct strengths that, when combined, can provide a more complete picture of the 

spatial genetic variation within a species. For instance, mitochondrial DNA is a maternally 

inherited marker which does not undergo recombination and has a higher substitution rate 

than corresponding sequences in the nuclear genome, making it an effective marker to study 

populations that have recently diverged (Zink and Barrowclough 2008) and for 

phylogeographic studies (Avise et al. 1998). Microsatellites, on the other hand, are nuclear 
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codominant markers that usually produce unique individual genotypes that are used for a 

range of applications, from paternity or forensic analysis to studying population or species 

relationships. 

The primary objective of the present study was to determine the genetic differentiation of 

White-throated Sparrow breeding populations distributed on both sides of the likely 

migratory divide (the Rocky Mountains). Eight neutral rnicrosatellite markers as well as a 

partial sequence (500bp) of the mitochondrial Cytochrome Oxidase Subunit I (COT) gene 

were assessed. The combination of these markers is useful not only to determine the presence 

or absence of structure/differentiation between White-throated Sparrow populations, but also 

to help us infer historical demographic events (i.e., the use of a single refugium or multiple 

refugia) that could influence genetic differentiation and migratory behaviour. The second 

objective, if evidence of genetic differentiation is noted, is to directly study migratory 

behaviour through the genetic assignment of migratory individuals, banded along important 

migratory routes in western Canada, to their likely breeding grounds. 
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3.2 METHODOLOGY 

3.2.1 STUDY AREA AND SAMPLE COLLECTION 

Based on White-throated Sparrow habitat preferences, sampling locations were located in 

shrub-dominated habitats (i.e., clearcuts, forest edges, oil and gas lines, and ATV trails) 

(Figure 3.1). One hundred and five feather samples from breeding birds were collected 

during the months of May-July of 2009-2010 across 3 regions in the Central Interior of 

British Columbia (BC), Canada; however, from these samples only one hundred and one 

samples were successfully used: Prince George (23), John Prince Research Forest (4) and 

MacLeod Lake (12), and 4 locations in Peace River Region of BC: Moberly Lake (11), 

Tumbler Ridge (11), Dawson Creek (37), and Sikanni River (3) (Figure 3.2). Additionally, 

20 blood samples from Algonquin Provincial Park (Ontario) and 20 blood samples from 

Prince George (43 in total for this location) were obtained in collaboration with Dr. Scott 

Ramsay (collected between 2004-2009). 

Sixty-seven samples from fall migratory birds were obtained in August-September of 2009. 

Seven banding stations across British Columbia (BC) and Alberta (AB) collaborated to 

sample migratory White-throated Sparrows: Rocky Point Bird Observatory (3), Mugaha 

Marsh Bird Observatory (9), Lesser Slave Lake Bird Observatory (9), Beaverhill Bird 

Observatory (8), Tattlayoko Bird observatory (0), Vaseux Lake Bird Observatory (0) and 

Revclstoke Bird Observatory (0). Additionally (38) were collected in Dawson Creek in the 

month of September 2009 (Figure 3.3). 
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White-throated Sparrows from breeding populations (and from Dawson Creek in the fall) 

were captures using active mist-nest techniques. Birds were attracted to the nest with seeds 

(fall) or using a playback (summer). Migratory samples from banding stations were captured 

using passive mist-net technique. Two feather samples from external tail rectrices were 

obtained from each bird prior to their release. Feathers were transported in hermetic Ziploc 

bags that were labelled detailing: date, banding location, species, CWS number, and 

individual code. 

Figure 3.1 Example of shrub-dominated habitat in Pouce Coupe (BC) where breeding 

and migratory birds were collected. Birds were attracted to the nest with seeds (autumn) or 

using a playback (summer). 
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Figure 3.2 Map of sampling locations from collected during breeding season. Prince 

George (PG), John Prince Research Forest (JPRF), MacLeod Lake (MacL), Tumbler Ridge 

(TR), Moberly Lake (ML), Dawson Creek (DC), and Sikanni (Sik) were included. Sampling 

locations west from the continental divide were grouped into the Central Interior population 

(in blue), and east from the divide were grouped as the Peace River Region population (in 

green). The first number in parenthesis represents the total amount of individuals collected 

per location; the second number represents the amount of individuals that were successfully 

genotyped for microsatellite analysis. Ontario samples were not included in map. The map 

was constructed with Google Earth v.5.2. 
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Figure 3.3 Map of sampling locations collected during the fall migratory season in 

collaboration with banding station in BC and AB. Mugaha Marsh (MBO), Rocky Point 

(RPBO), Tattlayoko (TLBO), Vaseux Lake (VLBO), Mount Revelstoke (MRBO), Dawson 

Creek-migratory (DC), Lesser Slave Lake (LSLBO) and Beaverhill Bird Observatory (BBO) 

were included. The number outside the parenthesis represents the amount of sparrows caught 

during the fall season of 2009 (if available). The first number inside parenthesis represents 

the total amount of individuals collected per location; the second number represents the 

amount of individuals that were successfully genotyped for microsatellite analysis. The map 

was constructed with Google Earth v.5.2. 
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3.2.2 GENOMIC DNA EXTRACTION 

Studies have indicated that blood sampling has the potential to lower survival probability of 

birds during the first year after sampling (Brown and Brown 2010). In order to decrease bird 

stress, mortality and simplify sampling, the terminal portion of feathers was used to obtain 

genomic DNA instead of blood. Feather tip samples (with the blood pulp included) were 

stored at -30°C in Lysis Buffer (50mM Tris-HCL, pH 8, 20mM EDTA, and 2 % SDS) prior 

to DNA extracted using a modified phenol/chloroform/isoamyl alcohol (25:24:1) procedure 

(Bello etal. 2001) 

3.2.3 MICROSATELLITE AMPLIFICATION 

Genomic DNA samples were diluted 1:10 in Nuclease free H2O before use to reduce the 

effects of possible contaminants. Twenty five microsatellite primers described for different 

avian species were screened in order to find suitable polymorphic primers, from which eight 

primers were chosen (Table 3.1) (Petren 1998; Dawson et al. 1997; Poesel et al. 2009). An 

M13-tailed dye-labelled primers technique was used for PCR amplification and fragment 

analysis (Ganache et al. 2001). For the first five primers (Zole-A08, Zole-BOl, Zole-B03, 

Zole-A02, Zole-C06), 3 |il of DNA (1:10) were added to 22 ^1 of Mastermix containing IX 

buffer (Invitrogen), 0.2mM dNTP's (each), 12.5^g of BSA, 3mM MgCl2, 0.26 of 

reverse, 0.26 of M13 dye-labeled primer, 0.13 fiM of M13-tailed Forward primer (Table 

3.1), and one Unit of Platinum Taq (Invitrogen). The amplification cycle was 94°C for 5 

minutes, followed by 12 cycles of 94°C for 30 seconds, 56°C (decreased 0.5°C per cycle) for 
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40 seconds, 72°C for 40 seconds, then 28 cycles of 94°C for 30 seconds, 50°C for 40 

seconds, 72°C for 40 seconds and a final extension of 72°C for 10 minutes. 

For the remaining three primers (Zole-Cl 1, Zole-C07, Zole-Fl 1), a preamplification method 

was used before the amplification with the Ml3 dye-labelled primer. The preamplification 

contained 3 jj.1 of DNA 1:10 added to a 22 [il of Mastermix containing IX buffer 

(Invitrogen), 0.2mM dNTP's (each), 12.5jug of BSA, 2mM MgCh, 0.26 fjM of untailed 

forward and reverse primers and 1 Unit of Platinum Taq (Invitrogen). The amplification 

cycle was 94°C for 5 minutes, followed by 40 cycles of 94°C for 30 seconds, 58°C for 40 

seconds, 72°C for 40 seconds, and a final extension of 72°C for 10 minutes. One microlitter 

of DNA from the preamplification was added to 24 ^1 of Mastermix, as above, containing 

M13 dye-labeled primer, 0.13 j^M of M13-tailed Forward primer (Table 3.1), and 1 Unit of 

Platinum Taq (Invitrogen). The same amplification protocol as for the preamplification was 

used with the exception that a 50°C annealing temperature was used instead of 58°C. 

3.2.4 MICROSATELLITE DATA ANALYSIS 

Microsatellite markers were sized using CEQ8000 Genetic Analysis system (Beckman 

Coulter) and scored using the Fragment Analysis Module (400 bp ladder, Cubic model). 

Only fragments located within the approximate size range described by Pocsel et al. (2009) 

were scored. Null alleles were minimized by re-amplifying samples that showed low quality 

signal (Segelbacher 2002). 
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Table 3.1. White-crowned sparrow (Zonotrichia leucophrys) microsatellite primers (5'- 3') 

that showed polymorphism in White-throated Sparrow (Zonotrichia albicollis) (Poesel et al. 

2009). All primers span a tetranucleotide repeat. The size range observed in White-crowned 

sparrows in base pairs (Poesel et al. 2009) is shown. 

Marker Forward* Reverse Size (Bp) 

Zole A08 ACCCAAAGTGCAAATCCCATC ACAAAGTCCCGTTTTCCTTGC 252-288 

Zole B01 GGACTGTGTTTCACTTCCTATC ACAGATGTTGCATTGCGG 250-304 

Zole B03 GCCAAACTCAGTGACCTGC AGTTCCTGCACGGTTCTTC 222-278 

Zole A 02 GCAGCCATTTTGCTGTCATTC CCATCTGTCTGTCTTTCTGTCTG 160-294 

Zole _C06 CCAGCCTGATTTCCCATGC TGTTGAGCATCTCTGGAGG 202-252 

Zole _C07 TGCCAGCAACTCTGCCTC TGAGCTTCCAGCCCTTCAG 188-280 

Zole CI 1 TCCATGCTTCTGAACTGCC ACACCTGCTTTTCCTGACTG 164-200 

Zole F l l  AACCAAGCCACCACAATGC GACAGGCACTAGGATGGGAG 205-291 
* an M13 sequence (TGTAAAACGACGGCCAG) was added 5' of each Forward primer 

Samples from breeding populations were grouped according to their geographical location 

(Central Interior, Peace River Region, and Ontario) into three classes for the genotypic 

analysis. Analysis of Molecular Variance (AMOVA) and pairwise Rst comparisons were 

performed using Arlequin v.3.1 (Microsatellite data type; Distance method: Sum of Squared 

size differences Rst; 1000 permutations). Population structure was analyzed using 

STRUCTURE v.2.3. Admixture and no-admixture models were used with correlated allele 

frequencies (length of burnin period: 100000; number of MCMC reps after burnin: 50000). 

Ten runs per each number of populations (k) examined (k = 1-7) were used in order to 

assume the correct number of populations. TESS v.2.3 was also used in order to include a 

geographical distance matrix based on latitude and longitude coordinates into the population 

structure estimation. For TESS a without admixture model was used with 100 runs per k (k = 

2-8), a burnin of 10000 and a running period of 50000. 
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Samples from migratory individuals were grouped according to sampling location. Potential 

breeding populations were assigned or excluded using the program Geneclass2 (Piry et al. 

2004). The Rannala and Mountain (1997) Bayesian method was used as the criteria of 

population probability. A Monte Carlo resampling simulation using the Paetkau et al. (2004) 

simulation algorithm was used to identify the probability of individuals to be excluded from 

a given population. In order to test confidence in the assignment, all breeding individuals 

were assigned to breeding population samples. 

3.2.5 MITOCHONDRIAL DNA AMPLIFICATION 

A 650 base pair (bp) fragment of the Cytochrome Oxidase subunit /(COT) gene was 

amplified. Three microliter of 1:10 diluted DNA was added to a 47 ̂ il PCR mastermix 

containing 5%Trehalose, IX buffer (Invitrogen), 0.2mM dNTP's (each), 2.5mM MgCb, 

0.2jiM of M13-tailed primer cocktails (Table 3.2), and 0.6 Units of Platinum Taq 

(Invitrogen). The amplification cycle was 94°C for 4 minutes, followed by 40 cycles of 94°C 

for 30 seconds, 52°C for 40 seconds, 72°C for 1 minute, and final extension of 72°C for 10 

minutes. 
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Table 3.2 PCR primers and cocktail combinations (Wong and Hanner 2008) used in 

amplification of mitochondrial COI gene from White-throated Sparrows. 

Name Cone. Primer 

COl-FW (cocktail) 

VF2 tl 0.1 nM TGTAAAACGACGGCCAGTCAACCAACCACAAAGACATTGGCAC 

FishF2_tl 0.1 nM TGTAAAACGACGGCCAGTCGACTAATCATAAAGATATCGGCAC 

COI-RV (cocktail) 

FishR2_tl 0.1 nM CAGGAAACAGCTATGACACTTCAGGGTGACCGAAGAATCAGAA 

F R l d t l  0.1 nM CAGGAAACAGCTATGACACCTCAGGGTGTCCGAARAAYCARAA 

Zoal COIF* 0.2 nM TGTAAAACGACGGCCAGGTACCGCCCTAAGCCTTCTC 

* This primer was designed using PRIMER 3 (Rozen et a/ 2000) 

Primers Zoal_COI_M 13 and COl RV were used to amplify 48 samples that failed using the first two 

cocktails of primers 

3.2.6 MITOCHONDRIAL DNA DATA ANALYSIS 

Mitochondrial COI gene fragments were sequenced using a CEQ8000 Genetic Analysis 

system (Beckman Coulter) or an ABI 3130x1 Genetic Analyzer (FADSS facility of the 

University of British Columbia-Okanagan). Sequence chromatograms were edited in 

program Sequencher 4.2 (Gene Codes, Ann Arbor, MI). Haplotype sequences were aligned 

using Mega v4.0 (Tamura et al. 2007) and variables sites only were exported to TCS vl.21 

(Clement et al. 2000) in order to avoid inconsistence with missing information while 

building a haplotype network tree. Additionally, AMOVA and haplotype frequencies were 

calculated using Arlequin v.3.1 (data type DNA; 1000 permutations). 
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3.3 RESULTS 

3.3.1 MICROSATELLITE BREEDING SAMPLES ANALYSIS 

Most of the microsatellites were within Hardy-Weinberg (H-W) expectations, with the 

exception of Zole CI 1, Zole-Fl 1 and Zole-C07 that were out of H-W equilibrium in one or 

two regions (Table 3.3). However, the preamplification method used in these microsatellites 

could increase the probability of null alleles altering the heterocigozity ratio. The effect of 

null alleles is also evidenced in the excess of homozygotes observed in microsatellites out of 

H-W equilibrium (Table 3.3). Extracted DNA yield from feather samples ranged from 0.15 

to 10.35 jxg. 

Eight polymorphic microsatellite markers were used to genotype 145 samples from breeding 

locations. In total 155 alleles were obtained from all loci: Zole-A08 (12), Zole-BOl (21), 

Zole-B03 (20), Zole-A02 (19), Zole-C06 (18), Zole-Cl 1 (14), Zole-C07 (32), Zole-Fl 1 (19). 

Fifty-four private alleles were observed in White-throated Sparrow breeding populations 

(Table 3.3). The Peace River Region contained the highest number of private (29) as well as 

total alleles (129), followed by the Central Interior region (115 total and 15 private alleles) 

and Ontario (84 total and 10 private alleles). 

AMOVA analysis (under Rst-like model) showed non-significant results (P> 0.05) with 1% 

of variation (Rst: 0.01031) explained among populations (Central Interior, Peace River 

Region, and Ontario) (Table 2.4). However, Pairwise Rst comparisons showed significant 
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differences (P < 0.05) between Central Interior and Peace River Regions (Rst: 0.02253), but 

non-significant (P > 0.05) between Central Interior and Ontario regions (Rst: -0.01452) 

(Table 3.5) and between Ontario and Peace River Region (Rst: -0.00255). 

Under a number of different models (e.g., Fst-like) the statistical results do not change even 

though the values change. Overall AMOVA still shows non-significant results (P > 0.05) but 

with a lower percentage of variation and Fst (Fst: 0.0028). Pairwise Fst comparisons showed 

similar results showing shallow non-significant results between Central Interior and Peace 

River Regions (Fst: 0.003) and all other comparisons. 

The symmetric proportion of samples assigned to each population showed that there is no 

structure in the samples analyzed (Pritchard et al.2007) with the program STRUCTURE 

which does not take in account geographical distances (Figure 3.4a). When the Estimated 

Logarithm Probability of Data [LnP(D)] was plotted against each estimated population (K), 

the curve does not plateau, also suggesting a lack of genetic structure (Figure 3.5a). This 

same pattern was observed in program TESS (which uses geographical distances) when the 

Deviance Information Criterion (DIC) was plotted against each K (Figure 3.4b, 3.5b). 
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Table 3.3. Amplification size (bp), number of alleles (Na), observed (Ho) and expected (He) 

heterozygosity, and number of private alleles (Pa) found for all eight microsatellite loci in 

each region: Central Interior, Peace River Region and Ontario. Heterozygosity values in bold 

represent significant differences after Bonferroni correction between Ho and He. 

Central Interior Peace River Region Ontario 

Marker Size (bp) Na Ho He Pa Na Ho He Pa Na Ho He Pa 

Zole-A08 252-286 9 0.71 0.78 1 9 0.64 0.72 1 8 0.75 0.77 2 

Zole-BOl 252-304 17 0.95 0.88 0 20 0.92 0.91 4 12 1 0.9 0 

Zole-B03 222-270 11 0.88 0.83 1 19 0.87 0.86 9 9 0.95 0.85 0 

Zole-A02 160-204 12 0.88 0.87 0 19 0.79 0.9 6 8 0.75 0.85 1 

Zole-C06 212-248 15 0.83 0.87 1 15 0.92 0.87 2 9 0.85 0.86 1 

Zole-Cl 1 180-200 13 0.65 0.85 5 9 0.87 0.8 1 7 0.9 0.84 0 

Zole-C07 192-280 23 0.61 0.95 3 24 0.79 0.95 2 21 0.85 0.96 5 

Zole-Fl 1 205-291 15 0.81 0.87 4 14 0.72 0.86 4 10 0.8 0.88 1 

Total 115 15 129 29 84 10 

Table 3.4 AMOVA from breeding population samples. Source of variation, degree of 

freedom (d.f), sum of squares and Percentage of Variation are shown. Distance method: 

Sum of Squared size differences Rst; 1000 permutations. 

Sum of 
Source of Variation d.f. Squares Percentage of Variation 

Among populations 2 3555.133 1.03 

Within populations 281 262410.628 98.97 

Total 283 265965.761 

R S T :  0 . 0 1 0 3 1  

P-value: 0.1417 ± 0.0089 

Table 3.5 Pairwise Fst Population Comparison between Central Interior (CI), Peace River 

Region (PR) and Ontario (ONT). Distance Method used: Sum of squared size differences 

(Rst). Significance (P-values) is shown in parenthesis next to Fst value. 

Central Interior Peace River Region Ontario 

Central Interior 0 

Peace River Region 0.0225 (0.0107) 0 

Ontario -0.0145 (0.9385) -0.0026(0.5615) 0 
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A.) 

Figure 3.4 A) Example of one of the 10 runs of Structure Bar plot with k - 2 .  Color lines 

represent probability of regions (1. Central Interior, 2. Peace River Region, 3. Ontario) to be 

assigned to a population k. B) Example of Tess bar plot of one of the 100 runs with K = 2, 

Bars represent probability of an individual sample to be assigned to a population. Green bars 

indicate that all individuals were assigned to the same population. 
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Figure 3.5 A.) Estimated Logarithm Probability of Data (LnP(D)) plotted against each 

estimated population (K), calculated with STRUCTURE. B.) Deviance Information 

Criterion (DIC) plotted against each estimated population (K), calculated with TESS. 
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3.3.2. MICROSATELLITE MIGRATORY SAMPLES ANALYSIS 

The self-assigning test using Geneclass2 showed that 50.7% of samples were assigned 

correctly to their breeding population (Table 3.6). John Prince and McLeod Lake, in spite of 

being located within Central Interior were mostly assigned to the Peace River Region. 

Similarly, more samples from Algoquin Park (ON) were assigned to Central Interior and the 

Peace River Region than to Ontario. 

Assignment test of migratory locations to breeding populations showed that for all locations 

samples were assigned to all three breeding locations. More samples from Mugaha Marsh 

and Rocky Point were assigned to the Central Interior while more samples from Lesser Slave 

Lake and Dawson Creek (migratory) were assigned to the Peace River Region (Table 3.7). 

For few samples the probability of assignment to a population was rejected (P < 0.05) (Table 

3.7). Notably, Mugaha Marsh showed the greatest amount of population rejection. Of 

interest, one breeding individual collected in Dawson Creek (Peace River Region) was 

recaptured the next year from a migratory flock captured at on the same location. 
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Table 3.6 Self-assignment of sampling locations during breeding season to their breeding 

regions using Geneclass2. The first number (outside the parenthesis) represents the number 

of individuals assigned with highest probability to each breeding region. In parenthesis is 

represented the number of individuals that were statistically rejected (P < 0.05) as being part 

of this location (using MonteCarlo resampling and Paetkau et al. 2004 simulation algorithm). 

Central Interior Peace River Region Ontario 
Prince John McLeod Moberlv Dawson Tumbler Sikanni Algonquin 
George Prince Lake Lake Creek Ridge River Park 

Central 
Interior 
Peace 
River 
Region 

Ontario 
Excluded 
from all 
locations 

26(2) 

1 1 ( 1 )  

6(3) 

0 

0(0) 

4(0) 

0(0) 

0 

2(0) 

10(0) 

0(1) 

0 

4(0) 5(2) 

6(0) 25(0) 

1(1) 4(5) 

0 3 

4(1) 

6(0) 

1(0) 

0 

2(0) 

0(0) 

1(0) 

0 

7(1) 

7(0) 

5(1) 

Table 3.7 Assignment of individuals from migratory sampling locations (Mugaha Marsh, 

Lesser Slave, Beaverhill, Rocky Point and Dawson Creek-migratory)to the three breeding 

regions (Central Interior, Peace River Region and Ontario) using Geneclass2. The first 

number (outside the parenthesis) represents the number of individuals assigned with highest 

probability to each breeding region. In parenthesis is represented the number of individuals 

that were statistically rejected (P < 0.05) as being part of this location (using MonteCarlo 

resampling and Paetkau et al. 2004 simulation algorithm). 

Mugaha 
Marsh 

Rocky 
Point 

Lesser 
Slave Beaverhill 

Dawson 
Creek (mig) 

Central Interior 4(2) 2(0) 3(0) 2(0) 7(2) 

Peace River Region 2(3) 1(0) 5(0) 2(0) 18(0) 

Ontario 2(2) 0(0) 1(0) 1(0) 6(0) 
Excluded from all 
locations 1 0 0 2 4 
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3.3.3 MITOCHONDRIAL DNA RESULTS 

One hundred and twenty nine COI sequences (461 bp with 17 variable sites) from three 

regions, Central Interior (56), Peace River Region (54) and Ontario (19), were determined in 

the present study (Table 3.8). In total, 19 haplotypes were found with four haplotypes (A, B, 

C, and K) found more than once (Table 3.9). A statistical parsimony network tree showed a 

star-like arrangement with the most frequent haplotype in all locations, B (68-83%), found in 

the center. Most haplotypes (except for haplotype J and R) differ from B by only one 

mutation (Figure 3.8). Haplotype C was also present in all three locations while haplotype K 

was found in the Central Interior and Ontario and haplotype A found in the Central Interior 

and the Peace River Region (Table 3.9, Figure 3.6). 

AMOVA results for mtDNA haplotypes showed similar results to the nuclear microsatellite 

markers with non-significant differences among the three locations (Fst = 0.01, P > 0.05) 

(Table 3.10). Pairwise Fst comparisons also showed non-significant differences between all 

sampling locations (Table 3.11). 
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Table 3.8 Number of mtDNA haplotypes per location and number of unique haplotypes as 

well as number of sequences 

Central Interior 
Peace River 

Region Ontario 

Haplotype number 8 10 7 

Unique haplotypes 4 7 4 
Number of 
sequences 54 53 19 

Table 3.9 Frequency of shared haplotypes per sampling location. Haplotypes name was 

stated with letters (A, B, C, and K). Central Interior, Peace River Region and Ontario 

populations were included. 

Frequency of shared haplotypes 
Peace River 

Central Interior Region Ontario 

A 0.070 0.150 0 

B 0.820 0.700 0.680 

C 0.018 0.019 0.050 

K 0.018 0 0.050 
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Figure 3.6 Statistical Parsimony tree of mtDNA haplotypes based on 17 variable sites of a 

461 bp CO/gene. Circle circumference is proportional with haplotype frequency. Colour 

represents the population where haplotypes are found: Central Interior (red), Peace River 

Region (blue) and Ontario (white). Bars represent number of nucleotide changes between 

haplotypes. 
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Table 3.10 AMOVA from mtDNA samples. Source of variation, degree of freedom (d.f), 

sum of squares and Percentage of Variation, and Fst are shown (1000 permutations). 

Source of Variation d.f. 
Sum of 
Squares Percentage of Variation 

Among populations 

Within populations 

2 

126 

0.596 

26.768 

1.01 

98.99 

Total 128 27.364 

FST: 0.0101 

P-value : 0.1975 ±0.0121 

Table 3.11 Pairwise Population Comparison of mtDNA haplotypes Fst between Central 

Interior, Peace River Region and Ontario. Statistical significance (P-value) are shown in 

parenthesis. 

Central Interior Peace River Region Ontario 

Central Interior 0 

Peace River Region 0.0110(0.17) 0 

Ontario 0.0157(0.14) 0.0039 (0.32) 0 
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3.4 DISCUSSION 

3.4.1 POPULATION HISTORY OF CENTRAL INTERIOR WHITE-

THROATED SPARROW POPULATIONS 

Neutral nuclear markers as well as mitochondrial COI sequences showed little evidence for 

genetic structure among the sparrow breeding locations tested. Pairwise differences were 

noted between the Central Interior and the Peace River Region, but these values were small, 

(Rst < 0.0225). This lack of differentiation is reflected in the results from Bayesian 

assignment techniques (TESS and STRUCTURE) where no evidence of population structure 

was observed (Figure 3.4, 3.5). This low differentiation precludes the assignment of 

migratory individuals to breeding populations, but it provides important evidence on the 

historical and evolutionary history of Central Interior White-throated Sparrow population. 

The lack of differentiation and low Rst/Fst values found with microsatellite and 

mitochondrial data suggests either high gene flow among all populations or a recent range 

expansion into the Central Interior by eastern populations (although both events are not 

exclusive from each other). The paraphyletic star-like COI tree pattern (Figure 3.6) is also 

consistent with range expansion in which a mutation-drift equilibrium has not been reached 

(Beebee and Rowe 2008). This same pattern has been observed in other passerine species 

such as the Black-throated Blue Warbler where using both microsatellite and mitochondrial 

markers, no populations differences were observed despite migratory and phenotypic 

differences (Davis et al. 2006). Davis and colleagues suggested that the star like phylogeny 

and lack of genetic differences indicates that populations expanded from a single glacial 
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refugium in the Pleistocene, and further that migratory and phenotypic differences appeared 

more recently. Other birds, such as the prairie warbler (Dendroica discolor) and the chipping 

sparrow (Spizella passerina), also have similar star-like mtDNA trees (even though the 

prairie warbler showed a significant genetic differentiation between subspecies D. d. dicolor 

and D. d. paludicola) suggesting a rapid post-glacial expansion during Pleistocene followed 

by a subsequent differentiation of migratory behaviour (Buerkle 1999; Mila et al. 2006). 

Consistent with evidence of a single Pleistocene refugium, Whyte (1938) suggested that the 

Central Interior population arose from an expansion from populations along the eastern side 

of the Rocky Mountains, crossing west through lower altitude mountain passes. The Pine 

Pass and the Peace River have been suggested as the most probable routes of these passages, 

as birds probably were deflected from their migratory routes following the Peace River 

system until they found suitable territories west of the Rocky Mountains (Wythe 193 8).The 

exact date of the establishment of the Central Interior population is unknown. The first 

historical records from the Central Interior are from around 1925 (Wythe 1938); however it 

is important to consider that banding information prior to the first influx of European settlers 

into the Central Interior in 1850's (Stevenson et al. 2011) is practically non-existent. Based 

on available information, a likely hypothesis would be that White-throated Sparrows have 

been breeding in the Central Interior in low numbers for at least a century, and that recently 

population numbers have increased as a result of the rise of the forest industry (around 

1960's) which significantly modified the landscape creating more suitable habitat. 
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Despite evidence of westward range expansion, the presence of a geographical barrier such 

as the Rocky Mountains is expected to act as a barrier to gene flow between the Central 

Interior and Peace River Region. Interestingly, pairwise AMOVA of microsatellite results 

showed a statistical difference between the Peace River Region and Central Interior, but no 

differences between the former two and the Ontario population (Table 3.5). Although these 

results may indicate that the Rocky Mountains are acting as a barrier to gene flow between 

Central Interior and the Peace River Region, the overall genetic data do not follow what was 

expected according to an isolation-by-distance model. A range wide lack of isolation-by-

distance would support the recent expansion hypothesis with high levels of gene flow. 

However, with only three sampling points conclusions are tentative and would require many 

more sampling locations in order to confirm a lack of isolation-by-distance among White-

throated Sparrow populations. 

Weak population structure (at drift-dispersal equilibrium) is usually considered to be the 

result of high dispersal and gene flow (Lecomte et al. 2009). This lack of structure would be 

expected in many migratory bird species where dispersal and effective population sizes are 

higher than in other vertebrates (Winker et al. 2000). However differences in song structure 

(unpublished data, Mesias, V., Otter, K., Mora, M., Ramsay, S., and Murray, B.) the small, 

but significant, statistical genetic difference between Peace River Region and Central Interior 

and the possible migratory differences (Chapter2) suggest that populations on both sides of 

the Rocky Mountains could be in the early stages of differentiation. 
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3.4.2 POPULATION STRUCTURE AND GENETIC ASSIGNMENT OF WHITE-

THROATED SPARROW POPULATIONS 

To test confidence of the assignment technique used in the present study, breeding 

individuals were assigned back to the breeding populations sampled (Table 3.6). Consistent 

with the general lack of structure, this technique showed that only 40-50% of samples were 

assigned correctly to their breeding locations and that there were very few population 

exclusions. In spite of the relatively low percentage of samples assigned correctly in the 

present study, this percentage was slightly higher than what was expected under simulation 

studies (from 25 to 30%) for an overall Fst of 0.01 (with 10 loci and 30 samples per 

population) (Cornuet et al. 1999). 

The self-assignment test showed that individuals from breeding sample locations located east 

of the Continental Divide were mostly assigned to the Peace River Region. The only 

exceptions were Sikanni that was assigned mostly to the Central Interior (although it only has 

a sample size of 3 individuals) and Ontario that was mostly assigned to the Central Interior 

and the Peace River Region. Sampling locations west of the Continental Divide had two 

different scenarios: Prince George which was assigned mostly to the Central Interior, and the 

John Prince Research Forest and MacLeod Lake that were assigned mostly to the Peace 

River Region. However, it is hard to make any conclusions based on this test because of the 

low genetic structure and different sampling sizes among locations. 
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Samples originating from the different migratory stations, i.e., Mugaha Marsh, Lesser Slave 

Lake, Rocky Point and Beaverhill, did not show a clear preference of assignment of 

individuals to any of the sampled breeding populations (Table 3.6). The lack of genetic 

structure has confounded the assignment of migratory individuals. It is important to state 

that this likelihood technique only calculates a probability of a sample belonging to a 

reference population. Analysis of tail feather isotopes signatures (Chapter 2) suggests that at 

least some of the migratory samples at these locations have values outside the range observed 

in the breeding populations indicating that they could be breeding in populations not 

sampled. The Mugaha banding station, although west of the Rockies had a distinct isotope 

signature from the Central Interior breeding birds. These migratory samples also showed the 

greatest amount of exclusions for the breeding populations tested. The combined results 

support the hypothesis that this station is capturing migrants breeding outside, presumable 

north, of the breeding locations sampled in this study 

Migratory birds were also captured in Dawson Creek where 18 out of 35 migratory birds 

were assigned most likely to the Peace River Region breeding population (Table 3.7). This 

result was expected since this sampling location of migratory birds was also used during the 

breeding season and it is the closest to migratory stopover location sampled to the breeding 

locations included in this study. For this reason, it is very possible that at least part of the 

migratory flock sampled came from breeding territories near that sampled stopover site. This 

was confirmed by a recapture of an individual (code: Zoal-jdl63/Zoal-idl34) sampled two 

times in the same area, the first one with the migratory flock on the fall of 2008 and the 

second time in his breeding territory in the summer of 2009. 
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Lack of resolution in assignment tests caused by a poor population structure could be 

resolved by using additional markers, such as selective markers that are able to detect recent 

differentiation events at a genetic level. Selective markers have been used in other studies 

(i.e., Bredford and Irwin 2009) to detect hybrid zones in avian species and could provide 

enough resolution to find the genetic differentiation necessary in order to effectively use 

assignment tests to elucidate migratory behaviour of White-throated Sparrows. 

In conclusion, results from microsatellite and mitochondrial data of this study could not 

determine the presence or absence of a migratory divide in western Canadian White-throated 

Sparrow populations. However, they provide evidence that suggests that the breeding 

populations studied arose from an expansion from single glacial refugium. Additionally, 

shallow but significant genetic differences, plus differences in song structure (unpublished 

data, Mesias, V., Mora, M., Ramsay, S., and Murray, B, and Otter, K.) between the Central 

Interior and Peace River Region suggest that both populations could be in an early stage of 

differentiation. This early stage of differentiation implies that determining the migratory 

behaviour of western Canadian White-throated Sparrows using genetic markers will require 

additional (locally adaptive) markers. Further the results of the Mugaha banding station 

indicate that additional breeding populations are migrating through Northern BC and point 

for the need of sampling a wider range of breeding locations in Western Canada. 
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GENERAL DISCUSSION 

4.1 MIGRATORY CONNECTIVITY BETWEEN BREEDING AND 

MIGRATORY POPULATIONS 

The aim of this study was to use genetic and stable isotope information in order to determine 

the migratory corridors and wintering areas used by western Canadian White-throated 

Sparrow populations. Elucidating the migratory connectivity of these populations will 

provide key information that could be applied to enhance conservation projects that aim to 

preserve ecological areas that are important for migratory species. Determining ecologically 

important areas of migratory birds is very important because if one of these areas is affected 

by human related activity, more than one breeding population could be threatened. 

One of the objectives of the present study was to elucidate wintering areas used by the 

Central Interior BC and Peace River Region populations. Deuterium stable isotopes did not 

completely elucidate wintering areas of these two populations; however, head feathers stable 

isotopes successfully narrowed down the tentative wintering areas to the south-western coast 

(California, Oregon, Washington) or to the northern isotopic limit of the eastern wintering 

range (New Mexico/Arizona or Colorado/Kansas) (Figure 2.7). Samples from head feathers 

isotopes did not show significant differences [but situated the 6Df mean value in the higher 

part of the wintering range (Figure 2.4 A, B)]. These values showed differences with other 

studies (e.g., Mazerolle et al. 2005) in which birds were wintering at the south-eastern part of 

the wintering range. 
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Another objective of this study was to investigate migratory differences among White-

throated Sparrow populations located on either side of the continental divide in western 

Canada. It was not possible to determine exactly the migratory routes being used by each 

breeding population, but the significant differences between tail-feathers samples of Central 

Interior and all of the rest of banding stations imply that Central Interior sparrows are not 

using routes that correspond to the geographic location of any of those stations (except 

maybe Rocky Point). This suggests that sparrows from Central Interior might not be 

crossing the Rocky Mountains during fall migration (Figure 2.6). Still, another possibility is 

that Central Interior birds could be crossing the mountains, but using an undetected pathway; 

for this reason it would be important to extend the sampling in the future to other areas that 

could be important for migration. 

A lack of differences between Peace River Region and Beaverhill and Lesser Slave Lake 

banding stations suggest that birds from these breeding populations are not crossing the 

Rocky Mountains during fall migration (Figure 2.6). The most parsimonious explanation 

would be that these birds are using the Central flyway to a wintering destination close to 

New Mexico/Arizona or Colorado/Kansas area. However, there is still a possibility that those 

birds could be using another migratory route like the Columbia River route to California or 

the Mississippi flyway to Texas. However, most of the data used in this study is based on the 

information gathered during the fall migration, and data collected during spring migration 

might also help to determine the migratory behaviour of these sparrows. 
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The banding station with the highest number of White-throated Sparrow captures west of the 

Continental Divide is Mugaha Marsh. Even though it is located within the Central Interior, 

this banding station seems to be capturing birds from higher latitudes than any of the 

breeding populations sampled. This is evidenced by the northern isotopic distribution of the 

tail feather isotopes found in sparrows banded at this station (Figure 2.6). These isotopic 

ratios are statistically different from Central Interior and the Peace River Region, suggesting 

that sparrows from these breeding populations are not being detected at this banding station. 

This evidence suggests the importance of the Mackenzie area for migration, because instead 

of capturing birds from Central Interior or the Peace River Region during the fall, the 

banding station apparently receives sparrows from higher latitudes which then could be using 

low altitude passages (e.g., Pine Pass) to cross the Rocky Mountains to their wintering 

destinations. From there, they may follow more direct routes (e.g. the Fraser River) to the 

Pacific coast. As the area on the opposite side of the Continental Divide from Mackenzie is 

proposed for intense wind and other energy development, evidence suggesting this region 

may be a confluence of migratory corridors is important. 

4.2 UNIQUE NATURE OF CENTRAL INTERIOR 

Molecular Genetic markers (Chapter 3) have been very useful to find genetic differentiation 

in migratory connectivity and behaviour studies (e.g., Boulet and Gibbs 2006; Clegg et al. 

2003; Lecomte et al. 2009; Winker et al. 2000; Helbig et al. 1995). However, in the present 
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study no population structure was found using neutral microsatellites and the partial coding 

sequence of the mitochondrial Cytochrome Oxidase I gene (Table 3.4, 3.10, Figure 3.4). 

Mitochondrial DNA data showed a star-like haplotype tree that lacked reciprocal monophyly. 

This tree, as well as the lack of overall structure found in microsatellite data suggests that 

White-throated Sparrow populations originated from single glacial refugia, followed by a 

range expansion to the Central Interior from an Eastern population. Similar results have been 

obtained in other avian passerine species such as the Black-throated Blue Warbler, in which 

lack of differentiation was attributed to similar phenomenon (Davis et al. 2006). On the other 

hand, birds which were originated from two or more refugia (e.g., Yellow Warbler) showed 

clear genetic differentiation along an East/West axis (Boulet and Gibbs 2006). 

The question that remains unresolved is how recent is this vicariant event? The complexity of 

the haplotype tree and the number of rare alleles/haplotypes (Table 3.3, 3.7) obtained in the 

Central Interior seems to suggest that this population could be older than what was suggested 

from the first records of White-throated Sparrows in the province (Whyte 1938). 

Additionally, song analysis showed some degree of differentiation in song structure between 

western Canadian populations (unpublished data, Mesias, V., Otter, K., Mora, M., Ramsay, 

S., and Murray, B.) and these differences reflect that the vicariant event could be old enough 

for song differences to become established in these populations. 
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4.3 ENVIRONMENTAL/MANAGMENT LMPLICATIONS 

As wind power industry keeps growing as an important source of energy in many countries, 

concerns about the environmental impacts that this technology could have are increasing. 

Studies in birds have shown that in spite of the fact that wind farms have less impact in terms 

of bird casualties than other man-made structures like power lines (Johnson et al. 2002), a 

high number of birds can be affected within certain wind farm locations. For instance, 

significant numbers of Gryphon Vulture (Gyps fulvus) casualties have been reported at the 

Strait of Gibraltar, because installations seems to be located at a migratory bottleneck (e.g., 

De Lucas et al. 2008; Bildstein et al. 2009). Wind farms located at these migratory 

bottlenecks have affected raptors more than any other group of birds (e.g., Madders and 

Whitfield 2006), however, possibly in a lower degree, passerines have also shown to be 

affected by wind power structures during migration (Johnson et al. 2002). 

In the case of the present study, the effect that cumulative effect of multiple wind farm 

facilities located at a migratory bottleneck for the western White-throated Sparrow 

populations, as well as potentially other song birds could be important. Due to the high 

average wind speed in the area, there is increasing interest in the Peace River Region to 

develop wind power projects (BC Hydro 2009). Migrants crossing the Rocky Mountains 

could be funnelled into narrow passes, and this funnelling might concentrate movement to 

areas that overlap with wind farm development. Birds tend to lower their flying height during 

migration in locations like coast-lines and when crossing a ridge (Drewitt and Langston 

2006), so migrants flying through the Pine Pass (or the Peace River) to eastern or western 

88 



wintering locations could be affected by potential wind power projects in the Peace River 

Region (plus several other wind farm projects in the United States). 

An extensive expansion of wind farm projects in Peace River Region could represent a 

significant impact on a disjunct population like the Central Interior. This impact would 

include a decrease on the gene flow between this population and the rest of the species' range 

(creating genetic isolation). However, it is hard to assess if Central Interior population would 

be affected by wind farms, because even though stable isotope evidence suggests that Central 

Interior birds might not be crossing the Rocky Mountains during the fall; this cannot be 

demonstrated with the data available so far. Additionally, Central Interior sparrows could 

still be funnelled into several wind farm projects while they cross the mountains in spring 

migration to northern breeding grounds. 

Estimating the impact that the cumulative effect of wind farm projects could have on 

migratory bird populations will be a difficult task, because as the White-throated Sparrow 

illustrate more than one population is likely to be affected. For instance, the Central Interior 

and Peace River Region are two likely populations to be affected by a wind farm project 

expansion. However, stable isotope results also suggest that Mugaha Marsh is banding birds 

from northern latitudes. These northern populations could be also affected by a sudden 

expansion in the wind power projects in the Peace River Region, because these birds could 

be funnelled into the area before or after crossing the mountains into the Mackenzie area 

during the fall (and possibly spring) migration. 
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4.4 IMPROVExMENTS TO THE TECHNIQUE 

In terms of efficiency, deuterium stable isotopes were effective in showing latitudinal 

discrimination. This is evident from feathers of White-throated Sparrows from the Central 

Interior and Peace River Region which indicate that these birds winter at latitudes with a 

higher isotopic signature than was obtained in previous studies (i.e., Mazerolle et al. 2005) 

for the rest of the distribution. However, deuterium isotopes were not able to discriminate 

wintering areas (Pacific South-west coast and New-Mexico/Arizona or Colorado/Kansas) at 

a longitudinal level. 

Other studies, such as Kelly and colleagues (2005), have used a combination of techniques to 

study connectivity between breeding and wintering areas at a longitudinal level (i.e., Coastal 

vs. Inland birds). These techniques include combining deuterium with sulphur isotopes and 

mitochondrial DNA data. Even though sulphur isotopes did not show differentiation by itself, 

it significantly increased the resolution of the technique when both isotopes were combined 

in a discriminant function analysis. 

Several other isotopes could be effectively used to complement the present study. Carbon 

isotopes have been effective in studying wintering habitat via reflecting the abundance of C3 

versus C4 plants (Bearhop et al. 2004; Chamberlain et al. 2000; Pain et al. 2004; Yohannes 

et al. 2005). This element, as well as nitrogen, has been used successfully to find 

differentiation along a migratory divide between two subspecies of the Willow warbler 

(Phylloscopus trochiius trochilus and Phylloscopus trochilus acredula) (Chamberlain et al. 
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2000). Other studies such as Chambelain et al. (1997) have not only found that Carbon and 

Nitrogen are useful for discriminating breeding areas of migratory populations, but have also 

used strontium isotopes to find East/West differentiation. 

The latitudinal discrimination of tail feather isotopes on breeding populations could be used 

in order to infer breeding territories of migrants captured at their wintering areas. Other 

studies such as Kelly and colleagues (2005) have successfully used feathers from Swainson's 

Thrush (Catharus ustulatus) migrants in order to infer breeding territories using deuterium 

isotopes and mitochondrial haplotypes. A similar strategy could be employed to complement 

this study, in which feathers from wintering areas such as California, Oregon, New Mexico 

Arizona, Colorado and Kansas could be sampled, and tail feather isotopes could then be 

compared to the data from the present study. 

Another way to increase the efficiency of the technique used in the present study is to 

improve the resolution of the genetic markers. Increasing the resolution of genetic markers is 

very important in order to delineate the population structure of White-throated Sparrow 

breeding populations. Finding population differentiation with genetic markers could be a 

challenging task, as in many cases, it is necessary to develop high number of markers, which 

can be difficult and time consuming in the case of non-model species (as the White-throated 

Sparrow). Additionally, avian species that have originated from a single refugium and have 

recently separated or high levels of gene flow could present low levels of differentiation 

between populations {e.g., Davis et al. 2006). 
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Increasing the number of microsatellite markers may not increase the resolution significantly, 

Adaptive markers have been shown to work effectively in cases where other markers have 

failed to find genetic differentiation. For instance, Brelsford and Irwin (2009) found genetic 

differences in two possibly adaptive markers (one autosomal and one sex-linked) with fixed 

differences across a hybrid-zone in the Yellow-rumped warbler, when little differentiation 

previously was reported using mtDNA markers. 

Other markers such as Exon-Primed Intron-Crossing (EPIC) markers and Expressed 

Sequence Tags (EST)-linked microsatellites have become available thanks to the increasing 

amount of information on bird genomic projects. The main advantage of EPIC markers is 

that they are highly variable because they have target intronic regions which are flanked by 

conserved exonic regions (Thomson et al. 2010). A high number of these markers have been 

developed for bird population studies because of their advantages (e.g., Backstrom et al. 

2008). For instance, besides been highly variable, they are also conserved at primer regions 

and can provide adaptive information via hitchhiking of close gene regions (Thomson et al. 

2010). 

On the other hand, EST-linked microsatellites are markers that can be more useful than 

EPIC's for adaptive population studies; this is because the microsatellite allele variation of 

these markers can be located within the transcript region and have an important effect in the 

protein coding sequence. Additionally, a high number of these markers have been described 
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in passerine species, most of which have been successfully transferred between different 

avian species (Dawson et al. 2010; Karaiskou et al. 2008). 

4.5 TECHNIQUE ASSESMENT 

Combining genetic data from mitochondrial and microsatellite markers with deuterium stable 

isotopes was useful for determining the population history and inferring the migratory routes 

in order to locate the presence of a migratory divide in White-throated Sparrows, however, 

the technique presented certain limitations that can be optimized to increase the resolution of 

this methodology. Several changes can be suggested for future projects in order to optimize 

these techniques including a fully integrated sampling strategy with additional sampling 

locations during both the breeding season, as well as, fall/spring migratory seasons to 

supplement banding station information. 

Lack of population structure in molecular genetic markers did not allow us to confidently 

estimate the origin of migratory individuals banded in western Canada. Adding more 

samples from other breeding populations would be very important to clarify if this lack of 

population structure is extended to all the breeding range or if there is a regional genetic 

structure that is not been detected. Understanding the genetic structure and the amount of 

gene flow between breeding populations of White-throated Sparrow can be very important to 

understand migratory behaviour since migration has a strong genetic component. 
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Besides the lack of structure obtained with genetic data, the significant differences observed 

on the tail feather isotopes ratios 5Df of Central Interior and the Peace River Region are 

promising, as they can be used in the future to estimate the breeding territories of migrants 

captured at their migratory and wintering grounds. Sampling birds at wintering and 

migratory grounds could be a great strategy to implement to optimize the techniques used in 

this study. This could be done by either choosing sampling sites that could complement 

migratory routes banded by banding stations (e.g., sampling birds in Quesnel that are flying 

down Fraser River or in Washington State (US) flying down the Columbia River drainage). 

Sampling birds from additional breeding locations could be also important to solve questions 

regarding genetic or demographic effects, such as isolation-by-distance, or bottleneck effects 

that could explain the genetic distribution. One alternative to study these effects would be 

sampling locations following one or two transects that cover both sites of the geographical 

divide. These two transects could be useful to determine if there is a general isolation-by-

distance pattern across the species range or if there is a point which forms a genetic divide 

between the Central Interior and eastern populations. 

Another improvement to the study would be using an integrated sampling strategy in which 

head feather samples are collected not only from breeding populations but also from 

migratory birds. Unfortunately in the present study this was not the case as only head feather 

samples of breeding individuals were taken (Table 4.1). Results, such as the tail feather 
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isotope signal of Mugaha Marsh migrants, indicate the importance of sampling head feathers 

from migrants at banding stations in future studies. 

Table 4.1 Summary of number of samples that were analyzed from each location for all the 

markers: Tail and Head feathers isotopes 5Df, Microsatellite, and Mitochondrial DNA. 

Tail Head 

Samples feather feather 
Collected 5 Df 5 Df Microsat mtDNA 

Regions Breeding 
Locations 

Prince 

Central Interior 
George 

John Prince 

44 

5 

19 18 43 

4 

40 

4 

McLeod Lake 12 - - 12 10 

CI Totals 

Dawson 

61 19 18 59 54 

Creek 37 26 26 37 32 

Peace River 
Region 

Moberly 
Lake 
Tumbler 

12 - - 11 9 

Ridge 12 - - 11 10 

Sikanni River 3 3 - 3 2 

PR Totals 64 29 26 62 53 

Ontario Ontario 20 - - 20 19 

Totals 145 141 126 
Migratory 
Locations 

Mugaha 
Marsh 9 9 9 

Rocky Point 3 3 - 3 -

Lesser Slave 9 9 - 9 -

Beaverhill 8 7 - 7 -

Dawson 
Creek 38 - - 35 -

Totals 67 63 
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In conclusion, the strategy of the present study of combining genetic data from mitochondrial 

and microsatellite markers with deuterium stable isotopes showed that White-throated 

Sparrow has a good potential for being an indicator species in migratory behaviour studies. 

Results obtained were successful in providing evidence to determine the population history 

and migratory connectivity of breeding and wintering populations of White-throated 

Sparrows. While the genetic data provided evidence of a recent expansion from single glacial 

refugia, head feather isotopes suggested that Central Interior and the Peace River Region are 

not following migratory routes to south-eastern wintering grounds. I suggest that both 

populations could be following an east/west migration pattern where Central Interior 

population could be migrating to the south-west Pacific Coast and the sparrows from the 

Peace River Region to the New Mexico/Arizona or Colorado/Kansas area. 

Improving the resolution of the molecular and isotopic markers as well as optimizing the 

sampling strategy could be a very successful tool to study the connectivity between breeding 

and wintering populations of migratory species. Preferentially, species with and east/west 

distribution that originated from different glacial refugia are recommended if this technique 

is going to be implemented. If that is not the case, local adaptive markers and a fully 

integrated sampling strategy could be applied. In summary, this technique showed that 

White-throated Sparrow has potential to be a good indicator species for proactive 

conservation studies on migratory connectivity of avian species, but that more work needs to 

be done before applying this strategy in this and other species. 
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APPENDIX 1 RAW DATA SUMMARY 

Table Al.l Raw data of breeding individuals including: Alleles of eight neutral microsatellites, mtDNA Cytochrome Oxidase I 

haplotypes, deuterium stable isotopes 5Df (%o) for tail and head feather samples. GPS coordinates were taken per sampling location. 

Additional 

Microsatellites MtDNA Stable isotopes Info 

Tail 6 D, Head 8d( Song 

Sample ID Location UTM Collection Date A08 B01 B03 A02 C06 Cll C07 Fll Haplotype <%•> (%o) recorded 

4-01 
Prince George - 272 

272 

284 

294 

254 

262 

182 

190 

232 

236 

180 

188 

224 

224 

261 

269 
B 

7 7 

-

4-02 
Prince George - 264 

280 

272 

294 

246 

262 

178 

194 

224 

252 

182 

182 

256 

256 

254 

265 
B 

7 7 

-

4-03 
Prince George - 268 

280 

268 

280 

258 

262 

190 

190 

232 

236 

190 

194 

240 

240 

249 

257 
B 

7 7 

-

4-04 
Prince George - 268 

268 

280 

294 

254 

258 

174 

194 

224 

224 

188 

188 

224 

248 

291 

291 
B 

7 7 

-

4-09 
Prince George - 268 

280 

284 

288 

258 

258 

178 

186 

232 

236 

194 

194 

256 

256 

249 

253 
B 

7 7 

-

4-10 
Prince George - 272 

272 

252 

282 

254 

262 

182 

190 

216 

232 

180 

194 

216 

260 

253 

261 
B 

7 7 

-

4-11 
Prince George - 268 

272 

256 

294 

246 

254 

174 

174 

224 

236 

184 

194 

216 

260 

249 

249 
B 

7 7 

-

4-12 
Prince George - 276 

284 

268 

284 

250 

258 

190 

198 

224 

228 

180 

196 

220 

220 

253 

277 
B 

7 7 

-

4-17 
Prince George - 272 

272 

288 

294 

250 

258 

170 

170 

224 

232 

180 

184 

276 

276 

245 

249 
A 

* -

-

4-18 
Prince George - 276 

276 

252 

288 

250 

254 

174 

194 

236 

240 

188 

194 

232 

232 

241 

257 
B 

7 7 

-

4-19 
Prince George - 272 276 246 182 216 194 236 245 

B 

7 7 

276 276 254 186 224 200 240 261 
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Table A 1.1 Continued 

Microsatellites MtDNA Stable Isotopes 

Additional 

Info 

Sample ID Location UTM Collection Date AOS B01 B03 A02 C06 Cll C07 Fll Haplotype 

Tail 5 D, 

<%•) 

Head 80f 

(%o) 

Song 

recorded 

4-20 
Prince George - - 272 

272 

280 

294 

246 

258 

174 

182 

216 

232 

180 

196 

224 

224 

253 

269 
A 

? ? 
-

4-21 
Prince George - 276 

284 

280 

284 

242 

254 

186 

198 

220 

224 

188 

194 

248 

248 

253 

253 

1 ? ? 
-

4-26 
Prince George - - 272 

276 

264 

268 

254 

262 

182 

186 

206 

206 

188 

192 

248 

276 

253 

253 
A 

- -

-

4-27 
Prince George - - 264 

276 

272 

288 

254 

258 

174 

182 

232 

240 

180 

188 

236 

276 

245 

249 
B 

? -> 

-

4-33 
Prince George - 272 

272 

280 

294 

246 

250 

188 

194 

228 

232 

190 

194 

256 

276 

261 

265 
B 

- -

-

4-34 
Prince George - - 276 

280 

288 

290 

250 

258 

186 

194 

224 

232 

180 

194 

205 

224 

249 

261 
B 

7 ? 
-

4-35 
Prince George - - 268 

272 

284 

294 

258 

266 

190 

194 

232 

236 

184 

184 

225 

232 

257 

257 
B 

? ? 
-

4-46 
Prince George - - 260 

260 

260 

294 

254 

258 

182 

190 

216 

228 

184 

184 

208 

234 

249 

257 
B 

? ? 
-

4-52 
Prince George - - 260 

280 

268 

294 

258 

266 

182 

190 

228 

228 

180 

180 

232 

248 

249 

253 
B 

? ? 

-

Zoal-ia008 
Prince George 10U 0512078 E 

5971972 N 

26-May-09 272 

276 

264 

280 

250 

258 

174 

186 

216 

232 

194 

196 

240 

240 

245 

261 
B 

? ? 

-

Zoal-ia009 
Prince George 10U 0512002 E 

5971738N 

27-May-09 276 

276 

268 

294 

254 

262 

174 

182 

232 

232 

180 

188 

260 

264 

265 

273 
B 

? ? 
-

Zoal-iaOlO 
Prince George 10U 0512078 E 

5971972 N 

26-May-09 268 

280 

264 

288 

246 

258 

178 

186 

224 

240 

194 

196 

252 

252 

253 

261 
B 

? -> 

-

Zoal-jal64 Prince George " - 276 

276 

280 

294 

242 

250 

182 

194 

216 

232 

184 

184 

232 

252 

269 

273 

B -148.7 -77.6 -
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Table A 1.1 Continued 
Additional 

Microsatellites MtDNA Stable Isotopes Info 

Sample ID Location UTM Collection Date AOS 801 B03 A02 C06 Cll C07 Fll Haplotype 

Tail 6 Or 

(%.) 

Head &Df 

(%.) 

Song 

recorded 

Prince George . 272 276 258 182 232 172 240 265 -150.9 -110.6 
Zoal-jal6S 

Prince George 
? -

276 298 266 198 232 196 240 269 

Prince George . 264 284 254 178 220 180 ? 253 -142.8 -107.6 
Zoal-jal66 B -

272 294 258 186 228 180 ? 261 

Prince George 268 280 254 190 220 180 228 249 -140.1 -91.5 
Zoal-jal67 B . 

276 294 270 190 224 194 234 261 

Prince George . 272 252 254 190 212 180 208 249 -141.9 -65.2 
Zoal-jal68 B -

280 294 262 194 236 194 236 269 

Prince George 280 284 232 166 232 180 232 245 -148.2 -95.6 
Zoal-jal69 B -

284 294 258 182 236 180 252 253 

Prince George 272 284 250 186 224 184 232 249 -139.2 -79.3 
Zoal-jal70 B -

284 294 250 190 232 184 252 273 

Prince George 276 272 246 182 228 168 228 ? -139.6 -77.2 
Zoal-jal71 B -

276 290 254 186 240 168 228 ? 

Prince George 264 260 254 186 212 184 232 241 _ _ 

Zoal-jal72 
Prince George 

B 
272 294 254 190 220 184 244 245 

Prince George . 268 288 250 178 216 180 216 205 -151.4 -123.2 
Zoal-jal73 B . 

276 294 254 194 236 188 248 205 

Prince George 10 U 0511144 E 30-May-10 268 264 242 182 232 180 228 253 -89.8 -73.6 
Zoal-jal74 

30-May-10 
B . 

5971689 N 272 294 258 194 240 180 228 253 

Prince George 10 U 0511144 E 30-May-10 272 294 242 178 228 180 216 241 -152.3 -64 
Zoal-jal75 

Prince George 30-May-10 
B . 

5971689 N 272 294 262 186 228 180 252 253 

Prince George 10 U 0511144 E 31-May-10 7 268 258 178 228 178 188 261 -138 -76.7 
Zoal-jal76 

31-May-10 
K . 

5971689 N ? 294 266 178 228 178 272 265 
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Table A 1.1 Continued 
Additional 

Microsatellites MtDNA Stable Isotopes Info 

Sample Tail8Dr HeadSDi Song 

ID Location UTM Collection Date A08 B01 B03 A02 C06 Cll C07 Fll Haplotype <%•) <%o) recorded 

Zoal-jal77 
Prince George 10U0511144E 

5971689 N 

30-May-10 272 

272 

280 

294 

242 

258 

178 

182 

224 

228 

180 

184 

228 

228 

241 

249 
O 

-137.9 -102.2 
-

Zoal-jal78 
Prince George 10 U 0511144 E 

5971689 N 

31-May-10 272 

276 

280 

290 

242 

250 

186 

198 

232 

232 

180 

180 

248 

264 

249 

261 
B 

-142.1 -60.4 
-

Zoal-jal79 
Prince George 10 U 0511144 E 

5971689 N 

31-May-10 268 

280 

276 

276 

258 

262 

182 

186 

228 

232 

180 

180 

188 

220 

249 

257 
D 

-142.7 7 

-

Zoal-jal80 
Prince George 10U0511144E 

5971689 N 

31-May-10 276 

276 

264 

290 

258 

262 

198 

202 

236 

236 

192 

192 

7 249 

253 
N 

-148.5 -65.7 

Zoal-jal81 
Prince George 10 U 0511144 E 

5971689 N 

31-May-10 268 

276 

290 

294 

246 

258 

182 

186 

220 

228 

7 

7 

257 

257 
B 

7 -81.3 
-

Zoal-jal82 
Prince George 10 U 0511144 E 

5971689 N 

30-May-10 272 

276 

272 

280 

254 

262 

182 

198 

220 

228 

188 

192 7 

253 

257 
7 

-156.8 ? 

Zoal-jal83 
Prince George 10 U 0511144 E 

5971689 N 

30-May-10 272 

280 

272 

290 

262 

266 

178 

180 

228 

232 

7 

7 

7 

7 

249 

273 
7 

-151 -78.3 
-

Zoal-jal88 
Prince George 10 U 0511144 E 

5971689 N 

30-May-10 7 

? 

7 

? 

? 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 
7 

-156.7 -138.7 

Zoal-ib025 
John Prince Forest 10U 0409749 E 

6055679 N 

17-Jun-09 272 

286 

272 

280 

246 

254 

182 

190 

214 

224 

184 

192 

236 

236 

249 

261 
B 

- -

-

Zoal-ib028 
John Prince Forest 10U 0416594 E 

6052975 N 

19-Jun-09 280 

280 

264 

272 

254 

258 

178 

194 

232 

248 

184 

188 

220 

248 

245 

261 
B 

- -

Zoal-ib045 
John Prince Forest 10U 0416594 E 

6052975 N 

19-Jun-09 280 

284 

280 

294 

246 

254 

194 

198 

224 

236 

188 

192 

212 

244 

249 

261 
B 

-

Yes 

Zoal-ib055 John Prince Forest 10U 0416594 E 19-Jun-09 268 280 254 186 232 188 268 249 C -

6052975 N 280 284 254 186 236 192 268 261 
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Table Al.l Continued 
Additional 

Mierosatellites MtPNA Stable Isotopes Info 

Sample ID Location UTM Collection Date AOS BOl B03 A02 C06 Cll C07 Fll Haplotype 

Tail SD, 

<%o) 

Head 6 D, 

(%») 

Song 

recorded 

MacLeod Lake 10U 0513725 E 26-Jun-09 272 264 254 182 228 180 220 237 - -

Zoal-ih019 6067293 N 280 294 266 186 228 192 234 261 B Yes 

MacLeod Lake 10U 0513725 E 26-Jun-09 272 284 257 174 210 184 224 249 - -

Zoal-ih020 6067293 N 276 294 262 182 236 192 224 257 B 

MacLeod Lake 10U 0498878 E 26 Jun-09 268 276 254 186 228 180 188 249 - -

Zoal-ih029 6108321N 272 300 254 194 236 192 252 261 B -

MacLeod Lake 10U 0500490 E 29-Jun-09 268 276 238 178 240 180 224 253 - -

Zoal ih031 6114644 N 282 294 266 190 245 196 240 269 B 

MacLeod Lake 10U 0500490 E 29-Jun-09 268 284 246 182 216 188 260 253 - -

Zoal-ih032 6114644 N 276 296 250 182 224 192 260 253 ? Yes 

MacLeod Lake 10U 0500490 E 29-Jun-09 272 252 250 170 212 192 264 249 - -

Zoal-ih033 6114644 N 272 292 254 178 236 192 268 261 B Yes 

MacLeod Lake 10U 0500490 E 29 Jun-09 272 268 254 180 228 180 220 257 - -

Zoal-ih034 6114644 N 276 294 254 198 240 192 240 265 A Yes 

MacLeod Lake 10U 0498878 E 26-Jun-09 272 264 250 178 220 188 212 245 - -

Zoal-ih046 6108321 N 280 280 254 186 228 192 240 245 B 

MacLeod Lake 10U 0508224 E 28-Jun-09 272 268 254 178 228 192 248 257 - -

Zoal-ih047 6078477 N 276 276 254 194 236 192 248 265 B Yes 

MacLeod Lake 10U 0513725 E 26-Jun-09 276 292 254 174 216 188 264 253 - -

Zoal-ih052 6067293 N 280 294 262 182 220 192 270 253 B 

MacLeod Lake 10U 0498993 E 26-Jun-09 276 260 250 182 220 176 212 249 - -

Zoal-ih053 6108354 N 280 294 258 190 232 188 212 287 B -

MacLeod Lake 10U 0498878 E 28-Jun-09 272 260 238 190 208 176 204 249 - -

Zoal-ih054 6108321 N 272 284 254 194 228 192 244 253 ? Yes 
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Table A 1.1 Continued 
Additional 

Microsatellites MtONA Stable Isotopes Info 

Tail 8 D, Head 6 0, Song 

Sample ID Location UTM Collection Oate A08 BOX B03 A02 C06 Cll C07 Fll Haplotype (%„) (%.) recorded 

Moberly Lake 10U 0588005 E 31-May-09 272 294 262 182 228 180 240 249 _ 

Zoal-ic012 A Yes 
6181234 N 272 296 262 198 232 188 240 253 

Moberly Lake 10U 0571140 E 31-May-09 264 288 250 186 224 184 248 241 -

Zoal-ic013 
31-May-09 

? 
6182770N 276 288 254 198 228 192 252 249 

Moberly Lake 10U 0588005 E 01-Jun-09 280 264 254 182 224 184 224 249 -

Zoal-ic014 H -

6181234 N 280 294 266 186 236 192 236 253 

Moberly Lake 10U 0571140 E 30-May-09 272 268 254 186 224 176 248 249 _ 

ZoaMc018 
30-May-09 

B 
6182770N 280 298 268 194 236 192 280 249 

Moberly Lake 10U 0571140 E 30-May-09 276 280 246 182 220 180 248 241 _ 
Zoal-ic039 

30-May-09 
B -

6182770 N 276 294 256 190 232 188 248 261 

Moberly Lake 10U 0571140 E 31-May-09 280 268 254 174 228 176 248 213 _ 

Zoal-ic040 
31-May-09 

B 
6182770 N 280 268 262 182 228 192 268 213 

Moberly Lake 10U 0571140E 30-May-09 272 280 246 170 224 180 240 245 _ 

Zoal-ic048 
30-May-09 

B Yes 
6182770 N 280 294 250 186 232 192 240 269 

Moberly Lake 10U 0571140 E 30-May-09 272 280 258 182 236 192 228 257 _ 

Zoal-ic049 
30-May-09 

B . 

6182770 N 272 284 266 190 248 192 228 261 

Moberly Lake 10U 0571140 E 30-May-09 276 272 246 170 232 188 232 237 _ 

Zoal-icOSO 
30-May-09 

B Yes 
6182770N 280 298 254 204 236 188 244 257 

Moberly Lake 10U 0571140 E 31-May-09 272 272 250 182 212 192 248 257 _ 

Zoal-ic058 
31-May-09 

B . 

6182770 N 276 276 254 186 248 192 272 261 

Moberly Lake 10U 0588005 E 29 May-09 272 264 250 190 228 188 208 249 _ _ 

Zoal-ic065 
29 May-09 

7 . 

6181234 N 272 284 262 198 228 192 260 249 

Dawson Creek 10U 0680870 E 02-Jun-09 272 280 262 170 228 164 244 233 _ _ 
Zoal-id007 B 

6176372 N 280 294 262 194 232 192 256 253 
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Table Al.l Continued 

Microsatellites MtDNA Stable Isotopes 

Additional 

Info 

Collection Haplotyp Tail §Dr Head 8Dt Song 

Sample ID Location UTM Date A08 B01 803 A02 C06 Cll C07 Fll e <%.) (%o) recorded 

Dawson Creek 10U 0680708 E 03-Jun-09 276 268 ? 178 224 192 200 245 _ 

Zoal-id015 B -

6177208 N 276 284 ? 180 228 196 228 261 

Dawson Creek 10U 0668852 E 04-Jun-09 272 272 246 178 216 184 244 249 _ 

Zoal-ie017 A 
6176114 N 272 290 250 178 224 192 276 253 

Dawson Creek 10U 0668852 E 04-Jun-09 286 280 246 186 232 180 252 239 _ _ 

Zoal-ie027 B . 

6176114 N 288 290 254 198 248 196 268 239 

Dawson Creek 10U 0668852 E 04-Jun-09 280 272 254 166 216 188 228 261 - _ 
Zoal-ie030 B Yes 

6176114 N 280 304 262 178 236 192 236 261 

Dawson Creek 10U 0680870 E 02-Jun-09 272 268 254 190 232 188 252 249 -153.5 ? 
Zoal-id038 ? 

6176372 N 06-Jun-10 276 272 254 194 236 192 268 253 

Dawson Creek 10U 0668852 E 04-Jun-09 264 280 246 178 220 184 220 257 _ _ 

Zoal-ie044 B 
6176114N 280 294 258 186 228 188 236 257 

Dawson Creek 10U 0668852 E 04-Jun-09 272 280 254 178 224 180 224 253 _ _ 

Zoal-ie051 B -

6176114N 272 294 262 186 228 180 240 269 

Dawson Creek 10U 0668852 E 04-Jun-09 264 252 250 182 220 188 228 249 -151.9 -138 
Zoal-ie060 L 

6176114 N 05-Jun-10 272 276 274 190 236 192 232 269 

Dawson Creek 10U 0680809 E 05-Jun-09 272 252 246 194 224 192 272 245 _ _ 

Zoal-id062 B . 

6176912 N 280 260 258 198 228 196 272 253 

Dawson Creek 10U 0668852 E 04-Jun-09 272 250 254 186 232 184 236 257 _ _ 

Zoal-ie064 B 
6176114N 276 284 254 190 236 192 272 257 

Dawson Creek 10U 0680721E 07-Sep-09 268 276 256 194 224 184 244 241 _ 
Zoal-iel34/Zoal-jdl63 

07-Sep-09 
B . 

6177627 N 05-Jun-10 272 294 270 198 232 188 276 249 

Dawson Creek 10U 0680721E 05-Jun-10 272 272 250 186 224 188 224 245 R -154.3 -116.8 
Zoal-jel36 

6177627 N 276 276 254 190 228 200 256 253 
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Table Al.l Continued 
Additional 

Microsatellites MtPNA Stable Isotopes info 

Sample ID Location UTM Collection Date A08 B01 B03 A02 C06 Cll C07 Fll Haplotype 

Tail 8 D, 

(%.) 
Head 80, 

(%„) 

Song 

recorded 

Dawson Creek 10U 0680721E 05-Jun-10 272 288 236 178 216 176 252 253 -164.3 -82.6 
Zoal-jel37 ? -

6177627 N 280 290 250 194 240 192 264 253 

Dawson Creek 10U 0680721 £ 05-Jun-10 272 280 250 162 228 188 234 241 -165.6 -117.1 
Zoal-jel38 B -

6177627 N 272 284 266 162 248 192 252 241 

Dawson Creek 10U 0680721E 05-Jun-10 268 284 242 182 216 184 220 245 ? -81.9 
Zoal-jel39 B 

6177627 N 276 294 246 186 244 188 264 249 

Dawson Creek 10U 0668826 E 0S-Jun-10 264 260 ? 182 220 188 232 225 -150.3 -101.4 
Zoal-jel40 B -

6176112 N 272 272 ? 294 244 192 248 273 

Dawson Creek 10U 0668826 E 05-Jun-10 272 268 226 170 232 180 240 249 -161.5 -54.3 
Zoal-jel41 A -

6176112 N 272 294 254 194 236 184 240 265 

Dawson Creek 10U 0680833 E 06-Jun-10 268 268 246 182 224 192 240 241 -160.3 -105.5 
Zoal-jdl42 M -

6176357 N 268 272 246 182 232 196 248 249 

Dawson Creek 10U 0680833 E 06-Jun-10 276 292 230 182 228 180 244 245 -149.9 -102.7 
Zoal-jdl43 B -

6176357 N 276 294 254 194 232 192 244 261 

Dawson Creek 10U 0680833 E 06-Jun-10 276 260 230 182 220 184 240 249 -150.6 -111.6 
Zoa!-jel44 A -

6176357 N 280 280 238 190 224 188 264 253 

Dawson Creek 10U 0680833 E 06-Jun-10 272 264 246 178 224 184 224 257 -138.3 -68.7 
Zoal-jel45 B -

6176357 N 280 280 262 190 232 188 228 257 

Dawson Creek 10U 0668675 E 07-Jun-10 272 268 234 162 232 196 256 253 -148.7 -145.9 
Zoal-jel46 ? -

6175712 N 276 280 254 190 240 200 256 253 

Dawson Creek 10U 0668675 E 07-Jun-10 276 268 246 162 224 188 228 249 -130 -109.6 
Zoal-jel47 ? -

6175712 N 284 284 254 166 224 196 260 257 

Dawson Creek 10U 0668675 E 07-Jun-10 272 280 222 194 214 188 207 ? -148.9 -137.2 
Zoal-jel48 C -

6175712 N 272 280 226 202 232 192 216 ? 
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Table Al.l Continued 
Additional 

Microsatellites MtDNA Stable Isotopes Info 

Sample ID Location UTM Collection Date A08 B01 B03 A02 C06 Cll C07 Fll Haplotype 

Tail 6Dr 

(%.) 

Head 50< 

(%„) 

Song 

recorded 

Dawson Creek 10U 0668675 E 07-Jun-10 268 268 246 177 224 188 252 253 -154.2 -89.9 
Zoal-jel49 S -

6175712 N 272 282 250 177 236 192 252 253 

Dawson Creek 10U 0668675 E 07-Jun-10 276 282 254 170 228 188 232 245 -148.6 -104 
Zoal-jel50 B -

6175712 N 284 282 258 186 232 192 272 253 

Dawson Creek 10U 0665804 E 07-Jun-10 280 288 262 194 228 176 212 253 -156.1 -75 
Zoal-jel51 B 

6173116 N 280 294 262 194 232 188 228 253 

Dawson Creek 10U 0665804 E 07-Jun-10 268 276 254 170 228 184 ? 245 -156.8 -106.8 
Zoal-jelS2 B -

6173116 N 272 288 278 178 244 192 ? 257 

Dawson Creek 10U 0665804 E 07-Jun-10 272 276 254 ? 224 188 200 249 -157.7 -55.2 
Zoal-jel53 ? -

6173116N 284 280 258 ? 240 200 244 257 

Dawson Creek 10U 0665804 E 07-Jun-10 272 272 254 180 224 184 192 245 -163.6 -121.1 
Zoal-jel54 B -

6173116N 276 294 270 188 232 188 252 245 

Dawson Creek 10U 0665804 E 07-Jun-10 272 256 254 180 230 188 264 241 -162.2 -81.6 
Zoa[-jel55 B . 

6173116 N 272 294 258 180 244 196 272 261 

Dawson Creek 10U 0665804 E 08-Jun-10 272 272 254 166 210 180 240 249 -147.5 -59.1 
Zoal-jel56 B -

6173116 N 276 294 258 202 232 196 244 253 

Dawson Creek 10U 0665804 E 08-Jun-10 272 264 242 194 228 180 240 253 -85.1 -103.9 
Zoal-jel57 A . 

6173116 N 272 294 258 194 232 188 244 261 

Dawson Creek 10U 0665804 E 08-Jun-10 264 268 252 178 210 184 224 249 -153.6 -97.9 
Zoal-jel58 B -

6173116 N 272 294 270 190 240 188 252 253 

Dawson Creek 10U 0665804 E 08-Jun-10 276 280 254 172 202 192 260 249 -149.4 -72.3 
Zoal-jel59 A -

6173116 N 276 288 258 172 248 196 260 257 

Dawson Creek 10U 0665804 E 08-Jun-10 264 272 262 186 220 184 220 241 -167.6 -58.7 
Zoal-jel60 B 

6173116 N 272 294 262 186 236 188 220 249 
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Table A 1.1 Continued 
Additional 

IVIicrosatellites MtDNA Stable Isotopes Info 

Tail &Df Head 6 D( Song 

Sample ID Location UTM Collection Date AOS B01 B03 A02 C06 Cll C07 Fll Haplotype (Xo) |%°) recorded 

Sikanni River 10U 0523139 E 08-Jun-09 264 256 250 182 216 188 244 257 
Zoal-if016 A -

6327484 N 264 294 258 198 236 188 276 265 

Sikanni River 10U 0523139 E 09-Jun-09 272 276 250 178 228 180 258 261 _ 

Zoal-if021 8 Yes 
6327484 N 272 294 254 178 232 192 268 261 

Sikanni River 10U 0523139 E 07-Jun-09 268 268 250 178 232 180 249 257 _ 

Zoal-if043 ? -

6327484 N 272 294 262 178 236 188 256 261 

Tumbler Ridge 10U 0631034 E 12-Jun-09 272 264 270 162 232 ? 246 261 -

Zoal-ig006 0 Yes 
6106110 N 276 264 274 194 232 ? 252 261 

Tumbler Ridge 10U 0625243 E 13-Jun-09 272 256 254 182 228 188 224 253 _ 

Zoal-ig022 ? -

6109316 N 280 266 266 190 252 188 224 257 

Tumbler Ridge 10U 0625243 E 13-Jun-09 272 284 254 182 224 180 260 257 _ 

Zoal-ig023 B -

6109316 N 272 294 254 186 224 196 272 261 

Tumbler Ridge 10U 0626343 E 13-Jun-09 276 276 254 182 240 180 220 253 _ 

Zoal-ig024 B Yes 
6110423 N 280 294 258 190 244 196 268 253 

Tumbler Ridge 10U 0625243 E 13-Jun-09 272 272 254 174 216 188 232 245 _ 

Zoal-ig026 Q -

6109316 N 276 280 262 182 220 192 232 261 

Tumbler Ridge 10U 0631034 E 12-Jun-09 272 268 258 178 224 192 232 ? _ 

Zoal-ig042 A -

6106110N 276 292 262 178 232 200 256 ? 

Tumbler Ridge 10U 0631034 E 12-Jun-09 264 280 246 174 220 180 236 233 _ _ 
Zoal-ig056 B Yes 

6106110N 276 290 258 194 224 188 264 249 

Tumbler Ridge 10U 0631034 E 12-Jun-09 272 280 254 186 236 180 224 253 _ _ 

Zoal-ig057 B Yes 
6106110 N 280 286 258 186 240 192 272 261 

Tumbler Ridge 10U 0614788 E 10-Jun-09 260 264 254 160 216 188 236 249 _ 

Zoal-ig059 ? 
6126559 N 272 276 258 186 232 188 252 253 
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Table Al.l Continued 
Additional 

Microsatellites MtDNA Stable Isotopes Info 

Tail 5 D, Head 60, Song 

Sample ID Location UTM Collection Date A08 B01 B03 A02 C06 Cll C07 Fll Haplotype (%.) (%•) recorded 

Tumbler Ridge 10U 0614788 E 10-Jun-09 272 264 246 168 216 180 268 253 _ 

Zoal-ig061 B -

6126559 N 272 294 250 180 228 192 280 261 

Tumbler Ridge 10U 0625243 E 13-Jun-09 272 268 254 182 224 172 224 245 _ 
Zoal-ig063 

Tumbler Ridge 
B Yes 

6109316 N 280 288 256 186 228 192 228 253 

Tumbler Ridge 10U 0625243 E 13 Jun-09 272 284 250 182 220 192 232 245 _ 
Zoal-ig066 B -

6109316N 280 288 274 194 224 192 248 249 

Ontario - - 272 260 258 182 220 176 192 261 _ 

5-24 B 
284 290 262 194 228 196 252 265 

Ontario - - 252 284 258 186 220 188 256 253 _ 
7-06 G -

280 288 262 190 220 196 268 257 

Ontario - 280 276 242 174 224 180 256 245 _ 

8-52 F 
280 294 250 186 224 196 268 253 

Ontario _ _ 272 276 242 190 232 184 236 241 
8-55 B . 

276 294 262 194 236 184 252 257 

Ontario - _ 268 288 258 186 232 192 220 253 _ 

9-05 B 
276 290 262 186 240 196 276 257 

Ontario _ _ 272 272 254 182 208 180 200 245 _ 

9-81 B -

280 284 258 194 240 192 218 257 

Ontario - _ 272 284 254 178 224 188 232 257 _ 

9-82 C 
276 288 258 178 224 188 252 273 

Ontario - 276 280 250 178 224 184 254 261 _ 

9-84 B . 

280 284 266 182 228 188 276 261 

Ontario - 272 252 254 178 228 192 224 257 _ 

9-85 B 
276 268 258 186 232 196 272 265 
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Table Al.l Continued 

Microsatellites MtDNA Stable Isotopes 

Additional 

Info 

Tail 5 D, Head 5 D, 

Location UTM Collection Date A08 B01 B03 A02 C06 Cll C07 Fll Haplotype (%„) (%o) 

Ontario - - 272 288 246 178 224 188 200 249 
B 

- -

111 292 258 178 232 196 200 249 
B 

Ontario - - 268 252 250 182 228 184 236 249 
B 

- -

272 290 254 194 236 188 252 249 
B 

Ontario - - 272 276 250 174 220 188 228 245 
B 

- -

272 294 258 174 232 192 264 261 
B 

Ontario - - 256 276 254 182 220 180 242 245 
J 

- -

268 294 266 194 228 188 242 249 
J 

Ontario - - 268 272 254 186 216 176 192 245 
K 

- -

272 294 268 186 232 188 236 249 
K 

Ontario - - 272 268 262 182 234 180 228 221 
r 

- -

276 294 268 184 240 188 236 253 
t 

Ontario - - 268 280 246 178 224 176 258 253 
B 

- -

272 294 250 186 240 180 264 257 
B 

Ontario - - 272 284 245 174 224 184 240 245 
B 

- -

272 288 258 190 232 196 276 257 
B 

Ontario - - 268 276 258 186 234 172 226 269 
B 

- -

272 284 268 190 240 188 278 269 
B 

Ontario - - 272 276 258 182 228 180 248 249 
? 

- -

276 300 262 198 232 184 256 261 
? 

Ontario - - 264 276 254 182 232 184 220 221 
B 

- -

264 294 254 186 240 192 220 249 
B 

Song 

recorded 

9-87 

9-89 

9-90 

9-91 

9-93 

9-94 

9-95 

9-96 

9-99 

9-100 

9-101 
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Table A1.2 Raw data of migratory individuals including: Alleles of eight neutral 

microsatellites, Deuterium Stable Isotopes 5Df (%0) of tail feather samples. 

Collection Tail 6 D, 

Sample ID Location UTM Date AOS B01 B03 A02 C06 Cll C07 Fll (X.) 

Zoal-ij097 Mugaha 

Marsh 

29-Aug-09 
268 272 250 186 232 188 248 249 

-161.2 Mugaha 

Marsh 

276 272 254 194 232 192 260 265 

Zoal-ij098 Mugaha 

Marsh 

29-Aug-09 
268 264 270 186 232 188 248 253 

-160.8 Mugaha 

Marsh 

272 294 274 190 240 192 272 257 

Zoal-ij099 Mugaha 

Marsh 

29-Aug-09 
272 292 258 190 228 188 228 249 

-168.2 Mugaha 

Marsh 

276 294 266 194 228 192 240 265 

Zoal-ij 100 Mugaha 

Marsh 

01-Sep-09 
272 284 250 182 214 180 234 

-163 Mugaha 

Marsh 

276 288 270 194 220 190 254 ? 

Zoal-ijlOl Mugaha 

Marsh 

09-Sep-09 
260 284 254 170 228 196 254 261 

-153.8 Mugaha 

Marsh 

264 288 242 174 228 196 266 265 

Zoal-ijl02 Mugaha 

Marsh 

13-Sep-09 
272 268 258 194 228 180 228 249 

-154 Mugaha 

Marsh 

276 290 258 194 232 192 240 257 

Zoal-ijl03 Mugaha 

Marsh 

14-Sep-09 
268 284 250 178 220 180 242 237 

-162.4 Mugaha 

Marsh 

280 288 260 186 228 186 266 261 

Zoal-ijl04 Mugaha 

Marsh 

16-Sep-09 
276 264 238 182 216 176 244 241 

-157.5 Mugaha 

Marsh 

280 268 250 194 224 196 272 245 

Zoal-ijlOS Mugaha 

Marsh 

18-Sep-09 
272 268 258 ? 232 194 250 243 

-158.7 Mugaha 

Marsh 

280 290 262 ? 240 194 282 251 

Zoal-iol06 Lesser 

Slave Lake 

16-Sep-09 
280 268 254 182 232 188 ? 261 

-142.8 

284 298 258 186 236 188 ? 269 

Zoal-iol07 Lesser 

Slave Lake 

22-Aug-09 
272 268 254 170 216 184 236 249 

-163.9 Lesser 

Slave Lake 

280 284 266 182 224 192 248 261 

Zoal-iol08 Lesser 

Slave Lake 

24-Aug-09 
276 254 254 174 228 184 240 257 

-151.1 

280 294 262 190 228 192 272 257 

Zoal-iol09 Lesser 

Slave Lake 

28-Aug-09 
272 288 258 186 232 188 236 245 

-148.8 

272 294 258 194 236 192 236 253 

Zoal-iollO Lesser 

Slave Lake 

16-Sep-09 
272 284 254 174 244 180 ? 249 

-149 

280 292 254 174 244 184 ? 261 

Zoal-iolll Lesser 

Slave Lake 

16-Sep-09 
268 288 258 182 228 180 220 253 

-154 

272 294 258 182 252 184 232 261 

Zoal-ioll2 Lesser 

Slave Lake 

16-Sep-09 
268 280 262 178 240 188 212 249 

-148.7 

280 294 274 186 252 188 260 261 
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Table A1.2 Continued 
Stable 

Microsatellite Isotopes 

Sample 

ID Location UTM 

Collection 

Date A08 B01 B03 A02 C06 Cll C07 Fll 

Tail &D[ 

<%•) 

Zoal-ioll3 Lesser - 16-Sep-09 268 280 238 170 220 188 208 257 -173.2 

Slave Lake 

272 284 254 186 224 192 232 273 

Zoal-ioll4 Lesser - 12-5ep-09 276 288 262 182 232 180 228 245 -160.6 

Slave Lake 

280 294 266 198 236 190 228 249 

Zoal-ikll5 Beaverhill - 16-Sep-09 268 276 254 174 232 172 228 245 -149.5 

272 294 258 194 240 192 252 249 

Zoal-ikll6 Beaverhill - 16-Sep-09 272 284 258 182 216 188 216 249 -158.7 

272 288 270 186 228 196 252 257 

Zoal-ikll7 Beaverhill - 16-Sep-09 274 258 248 194 220 184 ? 253 -175.7 

274 288 252 202 236 192 ? 253 

Zoal-ikllS Beaverhill - 16-Sep-09 280 284 254 184 228 192 216 249 -152.2 

280 284 258 194 232 192 264 265 

Zoal-ikl20 Beaverhill - 21-Sep-09 260 288 246 182 228 184 232 253 -163.2 

268 292 262 186 228 188 240 265 

Zoal-ikl21 Beaverhill - 21-Sep-09 268 260 258 194 228 192 240 245 -161.2 

268 264 262 194 232 192 272 249 

Zoal-ikl22 Beaverhill - 21-Sep-09 276 254 268 178 232 188 204 253 -150.2 

280 254 288 202 236 192 276 253 

Zoal-iml2B Rocky - 01-0ct-09 276 252 254 178 220 190 236 249 -151.5 

Point 

276 268 258 202 224 190 260 257 

Zoal-iml24 Rocky - 30-Sep-09 272 290 234 198 220 184 236 233 -148.3 

Point 

280 294 254 198 232 188 240 261 

Zoal-iml25 Rocky - 26-Sep-09 272 272 246 186 216 180 222 249 -155.5 

Point 

280 294 250 198 224 190 252 253 

Zoal-id068 Dawson 10U 0680970 E 08-Sep-09 268 288 254 182 214 182 254 261 -

Creek 

6177181 N 276 294 258 194 220 190 266 265 

Zoal-id070 Dawson 10U 0680970 E 08-Sep-09 276 294 254 186 224 172 272 249 -

Creek 

6177181N 280 304 258 190 232 188 272 261 

Zoal-id071 Dawson 10U 0680970 E 08-Sep-09 272 276 238 178 224 176 224 245 -

Creek 

6177181 N 280 290 250 194 224 184 244 269 

Zoal-id072 Dawson 10U 0680970 E 08-Sep-09 272 280 258 168 224 176 244 245 -

Creek 

6177181 N 272 282 262 194 236 188 260 253 

Zoal-id073 Dawson 10U 0680970 E 08-Sep-09 264 276 254 178 232 172 228 249 -

Creek 

6177181 N 276 294 254 186 232 192 240 249 

120 



Table A 1.2 Continued 
Stable 

Microsateilite Isotopes 

Collection Tail 6Df 

Sample ID Location UTM Date AOS B01 B03 A02 coe Cll C07 Fll (%.) 

Zoal-id074 Dawson 10U 0680970 E 08-Sep-09 266 234 250 190 198 176 256 253 -

Creek 

6177181N 274 240 254 194 228 192 256 269 

Zoal-id075 Dawson 10U 0680970 E 08-Sep-09 264 276 254 186 222 188 248 249 -

Creek 

6177181N 276 294 254 190 236 198 248 249 

Zoal-id076 Dawson 10U 0680970 E 08-Sep-09 272 268 254 178 224 176 224 249 -

Creek 

6177181N 276 294 266 198 228 192 236 249 

Zoal id077 Dawson 10U 0680970 E 08-Sep-09 264 276 254 182 228 196 192 249 -

Creek 

6177181N 276 294 254 198 232 200 248 253 

Zoal-id079 Dawson 10U 0680970 E 09-Sep-09 272 284 250 178 226 196 228 245 -

Creek 

6177181N 272 284 262 186 232 200 240 257 

Zoal-id080 Dawson 10U 0680970 E 09-Sep-09 ? ? 256 ? ? 188 252 249 -

Creek 

6177181N ? ? 256 ? ? 188 256 249 

Zoal-id081 Dawson 10U 0680970 E 09-Sep-09 264 264 250 194 220 176 240 257 -

Creek 

6177181N 276 276 264 202 240 188 248 261 

Zoal-id082 Dawson 10U 0680970 E 09-Sep-09 268 280 258 182 232 180 244 249 -

Creek 

6177181N 276 294 262 194 232 184 252 265 

Zoal-id083 Dawson 10U 0680970 E 09-Sep-09 272 280 246 178 232 188 266 249 _ 

Creek 

6177181N 284 294 258 182 244 196 272 257 

Zoal-id084 Dawson 10U 0680970 E 09-Sep-09 272 276 262 178 232 192 250 245 -

Creek 

6177181N 272 288 274 182 232 196 284 269 

Zoal-id085 Dawson 10U 0680970 E 09-Sep-09 256 232 254 194 232 184 252 241 _ 
Creek 

6177181N 272 268 266 198 256 184 260 265 

Zoal-id086 Dawson 10U 0680970 E 10-Sep-09 272 280 256 ? 224 180 252 261 -

Creek 

6177181N 276 294 266 1 232 188 266 265 

Zoal-id087 Dawson 10U 0680970 E 10-Sep-09 276 272 250 176 220 192 202 249 _ 

Creek 

6177181N 280 280 270 196 228 198 202 257 

Zoal-id088 Dawson 10U 0680970 E 10-Sep-09 260 268 250 178 220 180 232 249 _ 

Creek 

6177181N 272 300 254 194 230 192 242 257 

Zoal-id089 Dawson 10U 0680970 E 10-Sep-09 272 294 250 182 228 180 228 253 -

Creek 

6177181N 272 294 254 198 240 192 248 257 

Zoal-id090 Dawson 10U 0680970 E 10-Sep-09 272 284 254 182 232 180 236 261 _ 

Creek 
6177181N 276 288 266 194 232 190 260 265 
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Microsatellite Isotopes 
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ID Location UTM 

Collection 

Date A08 B01 B03 A02 C06 Cll C07 Fll 

Tail Sof 

(%.) 

Zoal-id091 Dawson 10U 0680970 E 10-Sep-09 276 276 258 182 220 184 214 245 -

Creek 

6177181N 276 288 266 190 228 188 224 253 

Zoal-id092 Dawson 10U 0680970 E 10-Sep-09 272 276 250 178 232 176 216 245 _ 

Creek 

6177181N 276 298 254 182 236 192 272 265 

2oal-id093 Dawson 10U 0680970 E 10-Sep-09 272 284 254 186 220 180 214 253 -

Creek 

6177181N 272 294 254 186 228 188 214 261 

Zoal-id095 Dawson 10U 0680970 E 10-Sep-09 272 268 254 174 232 192 228 249 -

Creek 

6177181N 280 268 254 182 236 192 228 265 

Zoal-id096 Dawson 10U 0680970 E 10-Sep-09 272 276 246 178 216 192 212 249 -

Creek 

6177181 N 272 288 260 194 224 196 264 253 

ZoaMdl26 Dawson 10U 0680970 E 07-Sep-09 272 284 262 182 224 180 234 253 -

Creek 

6177181 N 284 294 262 186 236 192 236 257 

Zoal-idl27 Dawson 10U 0680970 E 07-Sep-09 268 260 250 178 224 176 236 249 -

Creek 

6177181 N 284 290 258 186 240 188 248 253 

Zoal-idl28 Dawson 10U 0680970 E 07-Sep-09 272 276 246 178 216 192 212 249 -

Creek 

6177181 N 272 288 260 194 224 196 266 253 

Zoal-idl29 Dawson 10U 0680970 E 07-Sep-09 272 268 256 178 220 192 236 249 -

Creek 

6177181 N 280 288 260 186 224 192 260 269 

Zoal-idl30 Dawson 10U 0680970 E 07-Sep-09 272 280 254 186 232 180 224 245 -

Creek 

6177181N 276 294 262 190 232 192 252 249 

Zoal-idl31 Dawson 10U 0680970 E 07-Sep-09 264 284 254 178 224 188 200 241 -

Creek 

6177181 N 268 294 266 182 228 192 260 249 

Zoal-idl32 Dawson 10U 0680970 E 07-Sep-09 266 272 266 190 228 188 ? 257 -

Creek 

6177181 N 276 276 274 198 240 188 ? 265 

Zoal-idl33 Dawson 10U 0680970 E 07-Sep-09 ? 276 250 186 224 188 248 253 -

Creek 

6177181 N ? 276 254 206 228 196 242 257 

Zoal-idl3S Dawson 10U 0680970 E 07-Sep-09 276 268 254 182 220 180 224 249 _ 

Creek 

6177181 N 276 294 258 190 220 192 260 253 
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APPENDIX 2 MITOCHONDRIAL DNA HAPLOTYPES 
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Figure A2.1 Cytochrome Oxidase I (COI) fragment of the 19 different haplotypes of White-throated Sparrow sequences found during 

the present study at the breeding territories of Western Canada and Ontario. 
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