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Abstract 

Face recognition is heavily studied for its wide range of application in areas such 

as information security, law enforcement, surveillance of the environment, entertain­

ment, smart cards, etc. Competing techniques have been proposed in computer vision 

conferences and journals, no algorithm has emerged as superior in all cases over the 

last decade. In this work, we developed a framework which can embed all available 

algorithms and achieve better results in all cases over the algorithms that we have 

embedded, without great sacrifice in time complexity. 

We build on the success of a recently raised concept - Regional Voting. The new 

system adds weights to different regions of the human face. Different methods of 

cooperation among algorithms are also proposed. Extensive experiments, carried out 

on benchmark face databases, show the proposed system's joint contribution from 

multiple algorithms is faster and more accurate than Regional Voting in every case. 
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Chapter 1 

Introduction 

Biometrics is tagged as one of the 'top ten emerging technologies that will change 

the world' in 2001 by the MIT Technology Review [Heyer. 2008], With potential to 

stamp out forgery and theft possible with other methods, it is a good fit for security 

authentication problems. 

The face stands out as a biometric compared to several other popular physiological 

or behavioral characteristics for the purpose of distinguishing between individuals: 

1. The fingerprint can be defected by chemical contaminations; 

2. The iris is not workable with diabetic victims; 

3. The retina is not convenient during data collection for operational biometric 

systems; 

4. The voice changes when a person's throat is infected and is sensitive to noise. 

As a biometric, face recognition uses faces to identify a person. The history of face 

recognition, began with excessive optimism followed by scepticism. After a continuous 

effort to overcome the exposed limitations, face recognition has become 'one of the 

most successful applications of image analysis and understanding [Zhao et al., 2003]." 

1.1 Motivation 

Face recognition is broadly defined as assigning identity to one or more input face 

images with a registered identity in the database [Ijiri and Sakuragi. 2006]. Its usage 

is generally divided into: 1) identification and 2) verification. Identification is a 

"one-to-many" search to answer questions like "Who is he? " and is more common in 

surveillance. It is a closed set problem assuming that the input face image corresponds 

to an identity stored in the system. It is also referred to as a forced-choice experiment 

in the psychology literature [Moon and Phillips. 2001]. Verification is a "one-to-one" 
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search to answer question like "Is he Eric?" Given a probe image and a claimed 

identity, a decision, either "accept" or "reject" has to be made. This is more frequently 

used for security access. The latter is an open set problem as there may be no 

corresponding identities stored in the system. This research deals with the "one-to-

many"' problem, but the system is believed to perform equally well on the "one-to-one" 

problem as well. 

A face recognition system automatically identifies a human face from database 

images. It is challenging as it needs to account for all possible appearance variations 

caused by change in illumination, facial features, occlusions, etc [P. Latha and An-

nadurai, 2009]. It has drawn a huge surge of attention due to its commercial potential 

and cultural significance. The need for face recognition can be found in smart envi­

ronment [Pentland and Choudhury, 2000], entertainment, smart cards, information 

security [Ijiri and Sakuragi, 2006], law enforcement and surveillance systems [Zhao 

et al., 2003]. 

Over the past semi-century, many approaches have been developed. All ap­

proaches require comparison of an input face image with face images labelled with 

known identities stored in a database to claim a match. There are two types of so­

lutions for the comparison problem: the first is a step-by-step based decision-making 

process, and the other is a 'learning mechanism' based decision-making process such 

as a neural network. A "step-by-step' system carries out executions previously de­

signed and set. It does not interact with an environment or get modified based on 

the result accumulated up to that point. A learning mechanism is a more dynamic 

system, presumably using what it. has learned. It identifies the information needed 

for its ongoing performance. Most face recognition systems belong to the former 

category. "'A step-by-step" system is adopted in this thesis. 

1.2 Major Contribution 

In this thesis. I studied strategies for adopting a two-layer voting scheme for face 

recognition. A quick summary of the major contribution of this thesis is as follows: 

1. Based on the regular face recognition procedure. I constructed a new face recog­

nition system adopting a two-layer voting scheme. Five top face recognition 

algorithms over the last decade have been employed. They are: 
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Prominent traditional approaches include Principle Component Analysis (PCA) 

and Fisherface which have profound effects. 

Newly developed algorithms published in leading journals and conferences: Spec­

tral Regression Dimension Analysis (SRDA) [Cai Deng and Jiawei. 2008]. Spa­

tially Smooth Version of Linear Discriminant Analysis (S-LDA) [Cai D. and 

Huang, 2007] and Spatially Smooth Version of Locality Preserving Projection 

(S-LPP) [He Xiaofei and Hongjiang, 2005]. 

2. The system is not specific for embedding the algorithms mentioned above, but 

also available for some other-class approaches, local approaches such as Local 

Binary Patterns (LBP) [Tirno Ahonen and Pietikainen, 2004] for instance. 

3. In the newly proposed system, weight takes a key role. I proposed three methods 

for generating weights. 

4. Extensive experiments, carried out on benchmark face databases, show the pro­

posed system is faster and holds a lead in every case over an already proven 

system-Regional Voting which has been shown to be very stable in the face of 

a noisy environment. In a lot of cases, the weighting algorithms and ensemble 

among different embedded approaches proposed here reduce the error recogni­

tion rate by more than half. The same promising results on experiments of 

datasets with small number of images per person in the gallery images deserves 

emphasis as it belong to a especially sticky problem in the face recognition area: 

the SSS (small-sample-size) problem which will be further addressed in Chapter 

3. 

We have only just scratched the surface with this introduction for the time being. 

The thesis is broken into "chunks" designed to fill different, needs. The following 

does not cover anything in depth, but instead gives a high-level overview of how 

the thesis is structured. The rest of the thesis is organized as follows: Chapter 2 

traces the pertinent literature on face recognition. Chapter 3 elaborates the design 

of the proposed system. Chapter 4 demonstrates the performance of the system by 

results from the experiments followed by a result analysis in chapter 5. Chapter 6 

summarizes the system presented and provides suggestions for future work. 



Chapter 2 

Literature Review 

To distinguish a person from hundreds of others by just a mere glance despite varia­

tions in viewpoint, lighting, emotional expression and hairstyle, face recognition is one 

of the most amazing features of the visual system [McKone E. and N., 2009]. Previous 

efforts on prosopagnosia (a symptom that people fail to recognize human faces) have 

unveiled some properties of how human brain mechanisms function [Tranel and Dama-

sio, 1985]. In 1991, against the conventional opinion for over the past 30 years that 

face recognition develops very slowly throughout infancy, childhood and adolescence 

[McKone E. and N., 2009], a two-process theory of infant face recognition based on 

experiments on infants supported the conclusion that infants are born being aware 

of information and structure of faces. It further brought forth two terminologies: 

CONSPEC and CONLEARN to reveal how infants foster their ability in face recog­

nition gradually [Morton and Johnson, 1991]. CONSPEC guides the preference for 

facelike patterns for newborn infants. CONLEARN is responsible for learning visual 

characteristic. A review of the effect of inversion upon face recognition claimed that 

face recognition is 'special" [Valentine, 1988]. This phenomenen was further validated 

in 1996 by evidence from neuropsychology [Farah, 1996]. In 1997, a cross-species 

study on face recognition in primates: monkey and adult humans, showed that both 

species have novel preference for their own species [Pascalis and Bachevalier, 1998]. 

In 2001, a meta-analytic review claimed that own-race faces are better remembered 

compared to other faces [Meissner and Brigham. 2001]. Over the last two decades in 

neuroethology. cognitive and neural mechanisms have been looked into with focus on 

their potential roles in enabling humans to recognize faces [McKone E. and N., 2009]. 

Similar to the behavior of a human brain that associates memory to distinguish 

between faces, face recognition tries to retrieve from a gallery of images labeled with 

known identities and assign an identity to a given probe image. It is easy to describe 

but hard to implement. Even though humans have always had the innate ability to 
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recognize faces, automatic face recognition systems are still in an early stage either 

due to the lack of awareness of how human cognition works, or the infeasibilitv at 

computationally modeling billions of neurons. So. different, approaches have been 

proposed for the face recognition problem. The rest of this chapter is divided into 

seven sections. The first section starts with a review of the procedures of a face recog­

nition system, followed by an overview of solutions in the second section. Then, the 

most popular solution, the holistic approach, is elaborated, illustrating five impor­

tant algorithms within this family. The last section is a review of a recently proposed 

technique which has achieved great success: regional voting. 

2.1 Procedure of Face Recognition Systems 

The procedure can be broken into six segments, to be handled regardless of the specific 

method used [Zhao et al., 2003]: 

1. : Capture image 

2. : Face location (detection) in image 

3. : Face image pre-processing 

4. : Feature extraction 

5. : Template comparison 

6. : Match declaration 

Figure 2.1 shows a more detailed processing flow of a face recognition system. 

First, the image is assumed as a structured collection of pixels. The acquisition 

can be accomplished either by scanning existing photographs or shooting live pictures 

of a person with a camera. Usually several samples have to be taken for a bigger 

possibility to be matched. Video is also considered as a source, as it consists of a 

sequence of still images. Detecting the face in an image alone is a hard task. Once the 

face images have been targeted, pre-processing starts the refinements on the images. 

Figure 2.2 shows the detailed steps in this segment. 

Pre-Processing includes the following four steps as shown in order: (1) finding 

the location of the pupil. (2) rotating to have pupils aligned. (3) scaled and (4) 
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Figure 2.1: Face Recognition Processing Flow 

cropped. The "original image"' comes from the Olivetti Research Laboratory (ORL) 

database1. The following three images having pupils darkened show the intermediate 

stages during the process. At last, after cropping, images finally become the objects 

which are going to be classified by face recognition systems. To stay focused on 

the proposed system, we assume that the four steps have already taken place. For an 

overview of each step, please see Gonzalez et al [Gonzalez et al., 2009]. The algorithms 

on how Pre-processing plays around the eyes can be found in P. Wang et al [P. Wang 

and Wayman. 2005]. 

(a) Original (b) Pupil  Lo- (c) Rotating (d) Scaling (e) Cropping 
Image eating 

Figure 2.2: Pre-Processing 

After pre-processing, images are cropped to a smaller size with pupils aligned. A 

face image becomes an h x iu matrix of pixel values having each of them standing for 

a colour value (h and w refers to the height and width of the image respectively). The 

*AT <k T (ORL) Database: http:/ /www.cl.cam.ac.uk/research/dtg/attarchive/ 
facedatabase.html 
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pixel value here is a single real number representing the intensity of gray particularly. 

Grayscale images are employed in this thesis. More recently, face recognition systems 

use 3D images to analyze skin or skull geometry. But some 3D face recognition 

systems are expensive such as the ones using laser to capture images. Tao et al [Tao Q 

and Weber, 2007] constructed a multimodal or fusion approach for facial verification 

which shows that a combination of both 2D and 3D information significantly improves 

performance. Generally, 2D images are adopted by most current face recognition 

systems due to a better cost/benefit trade off. 

Then comes the key segment of a face recognition system: feature extraction. For 

holistic approaches, Dimension reduction algorithms will be used here. After this, 

the full length face vectors are projected to a lower dimensional subspace. Each face 

image is represented by a much shorter vector with redundant information removed. 

The output of this segment is a set of feature vectors in a lower dimensional space. 

They are referred to as templates representing an enrollec's face. In the next (fifth) 

segment, the generated templates are compared with the enrolled templates stored in 

the database. Finally, the classifier yields a score on how close they are matched in 

order to identify the enrollee. 

2.2 Overview of Approaches 

Despite of the fact that there are methods for commercial use which are proprietary by 

the vendors, broadly speaking, all the methods fall into the following four categories: 

local approaches, holistic approaches, neural networks and automatic face processing 

[Das. 2011]. All approaches share some traits and differ from each other with their 

own specialties in the meantime. For instance: all are best suited with front-on images 

and a well-lit environment. 

Local approaches attempt to extract specific features from different regions of 

face images. They are advantageous over other facial recognition system in their 

robustness against variance in appearance or angles a face is presented towards input 

sensors(2D video or digital camera). 

Holistic approaches incorporate the entire face image. A grayscale image of h 

pixels tall and w pixels wide is represented as a slim vector of length h x w. Each 

face image (slim vector) can be interpreted as a point in a high dimensional space 
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R/|X"'. Each pixel in an image can be taken as a coordinate in Natural 

images contain clouded, unclear and redundant data[Ruderman, 1994]. Again, the 

redundancy problem for face images particularly is deteriorated by normalization with 

respect to scaling, translation and rotation [Penev and Atick, 1996, Zhao W. and J.. 

1999]. Thus, dimension reduction of the long thin vectors to get compressed data 

with redundancies removed is the core of this set of approaches. 

Given gallery images: Q = {g\.g2-, • • • •g«}, the projection matrix P is trained on 

the gallery images by solving a generalized matrix problem: 

G P  =  B  (2.1) 

P  is a linear projection function matrix (K X h w ) .  After projection: Q n x h w  

BnXK, i m a g e s  w i t h  h i g h l i g h t e d  f e a t u r e s  a r e  k e p t  i n  a  l o w e r  d i m e n s i o n a l  s u b s p a c e  ( K 
<C hw). The same dimension reduction technique is implemented on probe images 

Y. Given a probe image y EY, we compute yp = yP'. Now with both probe images 

and gallery images in a lower dimensional subspace, there is a set of measurements 

to compare the similarities between feature vectors: Li distance, L2 distance, Maha-

lanobis distance, angle between feature vectors, etc. L2 (Euclidean) distance is used 

in this thesis. Taking Euclidean distance as a reference for closeness, the classifica­

tion can be ranked. Finally, some classification method is implemented to make the 

selection and the nearest neighbourhood is chosen so that the best match between yp 

and the rows of B can be found (each row in B corresponds to the identity of one of 

the images G) and the closest identity is assigned to the probe image. Five holistic 

approaches that will be embedded in the proposed system are elaborated in detail 

in the following sections as examples illustrating different techniques the projection 

matrix, P. is adopting. 

Neural network approaches have addressed several issues: gender classification, 

face recognition and facial expression classification [R. Chellappa and Sirohey. 1995]. 

The earliest face recall application using neural networks (NN) is reported in Koho-

nen's associative map [Kohonen. 1988]. A device named WISARD for face recog­

nition. expression analysis and face recognition using a single layer adaptive NN is 

reported by Stonham [Stonham. 1986]. Classification is achieved by determining the 

classifier which replies strongest to the input image. Later systems based on dynamic 

link architecture (DLA) have been proposed [M. Lades and Wurtz, 1993, Ellis, 1986]. 
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There is a dynamic variable (J) between two neurons (i.j). J t j  will be increased or 

decreased if there are positive or negative connections between neurons respectively 

and finally return to a resting state;: thus, the weights that are associated with cer­

tain features can be modified. Neural network mapping attempts to utilize as many 

features as possible to ascertain a match between the enrolment and references in the 

database [Heyer. 2008]. 

Automatic face recognition systems acquire matches using distance or dependent 

variables of distance (distance ratios for instance) between salient features of the face. 

It is almost the simplest approach; thus, it does not have parameters to be tuned to 

different environments: dim light for instance [Heyer. 2008]. 

The latter two categories are listed above due to the consideration of integrity. The 

former two are more competitive and thus have been frequently referred to regarding 

solutions for the face recognition problem. A hybrid approach which combines both 

techniques is also categorized as an individual branch of solutions for face recognition 

problems. 

2.3 Principal Component Analysis (PCA) 

PCA. a valuable technique from applied linear algebra, selects a subspace preserving 

as much variation as possible [Ahmed and Rao, 1975]. The first breakthrough among 

the subspace approaches [Wang and Tang, 2003], it is used abundantly in analysis from 

neuroseience to computer vision for its simple non-parametric properties extracting 

relevant information from large or confusing data [Shlens. 2005]. Turk and Pentland 

first used it in face recognition in 1991 and named it as eigenface which is a reflection 

of the nature of the calculation [Turk and Pentland. 1991]. By reconstructing face 

images from lower dimensional subspace accounting for as much variance as possible 

[Ahmed and Rao, 1975], PCA has been one of the driving forces behind a broad 

spectrum of studies, including face detection, recognition [Zhao et al.. 2003] and sex 

classification [Ahmed and Rao. 1975]. 

First, we create a mean centred matrix G m  using gallery images: Q  =  {<71, <72,. . . .  g n }  



and n is the total number of gallery images. 
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gi - g 

g2 - g 

Gm = g3 - g (2.2)  

g n g 

n 

where g = ̂ gt / n .  

Then we arrive at a definition for the covariance matrix Ca. 

ri — /-' f I 

11 — 1 
(2.3) 

Thus the diagonal terms of CQ denote the variance of particular measurement 

types: the pixel values standing for the intensity of gray in different dimensions 

in this case2. Our goal is to maximize the variance and minimize the redundancy 

which is measured by covariance of measurement types; more specifically, the off-

diagonal terms of Co- An ideal covariance matrix is an "optimized" matrix having 

all off-diagonal terms "0". Diagonalization can be done by finding some orthonormal 

matrix P where GM = PX. P is constituted of the principal components of X. By 

substituting GM in the above equation 2.3. we get: 

In the above equation, we get a symmetric matrix XX 1 .  This can be further 

diagonalized by an orthogonal matrix of its eigenvectors: 

where D is a diagonal matrix and E is a matrix of eigenvectors of XX'1 arranged 

i n  c o l u m n s .  I n  o r d e r  t o  a v o i d  m a s s i v e  c a l c u l a t i o n ,  w e  s e l e c t  e i g e n v e c t o r s  o f  X X T  

as rows of matrix P. Thus. P = ET. Substituting into equation 2.5. CC will finish 

evaluating by: 

2Xote: n  —  1 in the equation is the proper normalization for an unbiased estimator. 

C G  = -^-~P(XX T )P R  

n  —  1  
(2.4) 

X X T  =  E D E T  (2.5) 
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C o  = - P X X r P r  

n  —  1  

= —I-P(P T DP)P T  

11 — 1 

= —^—{PP T )D(PP T )  
11 — 1 

= —-—(PP~ 1 )D(PP~~ L )  
n  —  1  

Eventually, the subspace (eigenspace) in this case is spanned by k eigenfaces with 

the largest eigenvalues. PCA has become a de facto benchmark algorithm due to 

its ease of implementation and its reasonable performance levels [Phillips P J and S, 

1997]. The non-parametric property can be also viewed as a weakness for there are few-

tuning opportunities. Some prior non-linear transformations (sometimes termed as 

kernel transformations) are introduced to PCA and have been proposed to incorporate 

selected parameters with known priorities. Common kernel transformations include 

Fourier and Gaussian transformations and the entire parametric algorithm is named 

kernel PCA. PCA constrains the data to be Gaussian distributed. The "Gaussian 

distributed" constraint has only recently been solved via ICA (Independent Com­

ponent Analysis) [Shlens. 2005]. Though ICA is a form of nonlinear optimization 

which is powerful for solving a new class of problem, exponentially distributed data 

for instance, it is difficult to calculate in practice. 

2.4 Fisherface 

Belhumeur proposed Fisherface in 1997. It aims to maximally discriminate intra-elass 

and inter-class and is claimed to be strong under large variations in illumination and 

facial expressions [Belhumeur. P and D. 1997]. Lighting variability includes intensity, 

direction and light sources. Variations between images of the same person caused by 

lighting variabilities are larger than those due to different identities [Y. Moses and 

Ullman, 1994]. Although PCA is optimal for reconstruction from a lower dimensional 

basis, Fisherface advances over it from a discrimination point of view. Fisherface is 
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a derivative of Fisher's Linear Discriminant (FLD). It is a "classical" technique in 

pattern recognition [Duda and Hart. 1973] and was first developed by Robert Fisher 

in 1936 for taxonomic classification [Fisher, 1936]. 

In general, Fisherface uses a class specific linear method: Fisher's Linear Discrim­

inant (FLD) [Fisher. 1936] for dimensionality reduction and a simple classifier in the 

low dimensional space of feature vectors. More formally, in order to "'shape'' the scat­

ter, we use S\y and Sb denoting the within class scatter matrix and the between class 

scatter matrix separately. More formally, we assume that the classification is among 

n different identities. Let G, Gm and n be defined as in the eigenface approach. Let 

</; stand for the the number of different subjects to be classified. They are calculated 

by the following equations. 
V 

= (2-6) 
i=I 

Pr(wi) is the prior class probability. In practice, with the assumption of equal 

priors, it is usually replaced by St\ the covariance of the images of class u>i is the 

sample vectors g of around its mean /j,t: 

S i  =  -  t h ) T \ u  =  Wj] (2.7) 

Sb = g) ' (Pi ~ g)' (2.8) 
v tr 

where n and are defined the same as in equation 2.7. and g is the overall mean 

for gallery data. The projection matrix P we are looking for this time is oriented to 

satisfy the following equation: 

I P T  S  P I  
P  = arg max ^ p T  ̂  =  \ p m  • • • P m ]  (2-9) 

where { p t \ i  =  1,2. • • • . m} are generalized eigenvectors corresponding to m largest 

eigenvalues {A,|> = 1. 2. • • • . rn} of Sb and Sw-

SbPI = XiSwPi- i = 1. 2. • • • , m (2.10) 

where m is upper bounded to v  - -  1. for the number of nonzero generalized eigen­

values is at most f — 1 [Duda and Hart. 1973]. 
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This works pretty well for general finding projection problems. While in the face 

recognition problem, the matrix Sw is probably singular for the number of classes 

to be classified, n is far less than the number of dimensions, hw. This threatens the 

denominator in equation 2.9. {P1 SwP\ is exposed to the risk of becoming zero as 

no such projection P can be found. Belhumeur et al [Belhumeur. P and D, 1997] 

overcame the complication of a singular Sw by a method called Fisherface. PCA is 

first used to reduce the dimension of the feature space to n — y. where an alternative 

criterion is proposed to 2.9: 

Pit = PjldPpca (2-11) 

then Fisher's Linear Discriminant, defined in 2.9, is used to reduce the dimension to 

0 — 1 .  

P p c a  = argmax {Pp C a C G P p c a }  (2.12) 

where CG  is computed by equation 2.3. 

D \PfldPpca^nPpc<iPfld\ fo n\ 
P f l d  = argmax (2.13) 

'  I Pfld F
S , ra b wPpcaPf ld\  

Note that the optimization for P p c a  is performed over hw x (n — y)  matrices, hw 

is the number of pixels in an image of height h and width w. Constrained to the 

condition that the data for each class is approximately Gaussian distributed [Yan 

et al., 2005] again. Fisherface encodes information in a linear separable space unlike 

the orthogonal linear space the way PCA encodes. Extensive experiments have been 

carried out comparing eigenfaces versus Fisherfaces [Belhumeur. P and D. 1997], The 

results have demonstrated Fisherface's superiority to PCA in handling variations in 

lighting and expression. 

2.5 Spectral Regression 

The two most popular holistic face recognition methods, unsupervised PCA and su­

pervised Fisherface. deteriorate rapidly when there are large variations in viewpoint, 

illumination or facial expression [Juwei Lu and Li. 2006]. Linear Discriminant Anal­

ysis (LDA). which the Fisherface method is based on. has been widely used in fields 

such as machine learning, data mining, information retrieval, and pattern recognition 
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[Cai Deng and Jiawei. 2008]. The projection functions of LDA extract features pre­

serving class separability by maximizing the between class covariance and minimizing 

the within-class covariance simultaneously. However, the computation of LDA in­

volves dense calculations on matrices. For instance, eigen - decomposition, which can 

be computationally expensive both in time and memory, is involved twice when the 

scatter matrix is singular. Thus, utilization of LDA on large scale high dimensional 

data is infeasible. Spectral Regression Dimension Analysis (SRDA) [Cai et al., 2007b, 

Cai Deng and Jiawei, 2008], built on the framework of Graph Embedding [Yan et al., 

2005], is both a framework and an algorithm. It reduced the computational complex­

ity of the dimension reduction techniques (a more efficient LDA is introduced in [Yan 

et al., 2005]). 

Suppose there are n h  x w face images. A symmetric n x n matrix can be con­

structed having the weight of the edge joining vertices i and j Wij as entries. The 

collection of vertices can be denoted in a vector representation: {gt}^=l C R/lxu' and 

G — [gi-, • • • •gn]• This graph reduction model is oriented to represent the vertices of 

the graph as a vector with dimension lower than hw. The reduction matrix B (an 

n x K matrix) of G to a lower dimensionality K: 

B  =  

b, 

b2 

b3 (2.14) 

should minimize the following: 

(2.15) 
I - j  

That is, a heavy penalty will be incurred if neighboring vertices i  and j  are far 

apart. B* (optimal B) can be found by solving equation 

Ib'Ubl 
b = arg max i 

B b b'Db 
(2.16) 

where D  is a diagonal matrix whose entries are column (or row. since W  is symmetric) 

sums of \ V .  D U  = and the solutions to this equation are the eigenvector 
j  
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solutions to 

Wb = XDb (2.17) 

The optimization given in equation (2.16) can be reformulated via a linear trans­

lation from G to B: PG = B as: p = argmaxp 

Finding eigenvalues is computationally exhaustive and. furthermore, can't be done 

if GDG' is non-singular when the number of images is far less than the number of 

features in the image. To get around this issue, Cai et al [Cai et al., 2007b] show that 

p will be a solution to equation 2.5 if b = pG satisfies equation 2.17. 

In a more efficient LDA [Yan et al., 2005]. W is determined as: 

{— if vertex i  and vertex j  both belong to the cth class 
(2.18) 

0 otherwise 

where n c  is the number of samples from class c .  While this leads to a useless eigen­

vector: bj = [1,1,1,... , 1] with associated eigenvalue 1 in the orthogonal basis, the 

G r a m  S c h m i d t  a l g o r i t h m  i s  a p p l i e d  h e r e  t o  g e t  a r o u n d  t h i s  p r o b l e m ,  d e r i v i n g  a ^ - 1  

dimensional basis. 

After having found the basis, B,  via Gram Schmidt process, the matrix P in 

B = PG can be approximated by: 

n 

p = argmin^(pgj - b,,) (2.19) 
3 = 1 

where b,j is the jth element of vector b, and gj  is the jth vector of G. Least squares 

approximation technique such as LSQR [Paige and Saunders, 1982] are popular solu­

tions for this. 

The number of computations performed is drastically reduced and more complex 

methodologies could be embedded in this framework. Experimental results [Cai et al.. 

2007b.a] have shown that SRDA (spectral regression dimension analysis) outperforms 

LDA. 

2.6 Spatially Smooth Subspace Learning 

Holistic appearance-based face recognition algorithms such as the ones introduced 

above: Principal Componant Analysis (PCA), Linear Discriminant Analysis (LDA) 
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which Fisherface is based on have attracted considerable interests in recent years 

[Cai D. and Huang. 2007]. Many subspace space learning algorithms such as Locality 

Preserving Projection (LPP) [He and Xiyogi. 2003], Neighborhood Preserving Em­

bedding (XPE) [He et al., 2005], Marginal Fisher Analysis (MFA) [Yan et al.. 2005] 

and Local Discriminant Embedding (LDE) [H.-T. Chen and Liu. 2005]. have been 

proposed to estimate the geometrical and topological properties of the submanifold 

from random points ("scattered data") lying on this unknown submanifold. What 

if the face image lying on a nonlinear submanifold [He Xiaofei and Hongjiang. 2005] 

is missing? Besides, all the above methods consider an image of size h x w a vector 

(point) in R/iXU' and the pixel values in the vectors independent. While the intrin­

sic representation of an image in a plane is a matrix, or 2-order tensor, the spatial 

relationship of the pixels is lost in this case. A "Spatially Smooth Subspace" pro­

posed for Face Recognition using a Laplacian penalty to constrain the coefficients to 

be spatially smooth fixed the above problems. This model can feed all the existing 

subspace learning methods [Cai D. and Huang, 2007]. 

The remainder of this section is structured as follows: Subsection 2.6.1 provides 

a brief review of the two subspace learning algorithms: LPP and LDA. Susection 

2.6.2 introduces their tensor extension. Subsection 2.6.3 details the Spatially Smooth 

Subspace Learning (SSSL) model followed by experimental results and concluding 

remarks. 

2.6.1 Locality Preserving Projections (LPP) and Linear Discriminant 

Analysis (LDA) 

Other approaches that use the graph embedding model outlined above in section 2.5 

include: Locality Preserving ProjectionsfHe and Xiyogi. 2003] (LPP), Linear Discrim­

inant Analysis (LDA), XPE. MFA and LDE with different choices of W and D. The 

choice for LDA has been introduced in the previous section so that the choice of W 

for LPP (another algorithm embedded in the proposed system) is briefly listed below. 

Again, the LPP graph is constructed by placing an edge between two vertices if 

they are "close." Two criteria for determining "closeness" are suggested: /.--nearest 
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neighbours and e distance [He Xiaofei and Hongjiang. 2005], 

jexp(Mi) 

otherwise 

if ||gj - gj ||2 < t 
(2.20) 

or 

otherwise 

if j  is among the k  nearest neighbours of i  
(2-21) 

where T] G M is a tuning parameter. 

2.6.2 Tensor Extensions 

The relationship between nearby pixels of the face images might be important for 

finding a projection. In order to keep the spatial relationship of the pixels, the 

tensor-based approaches operate directly on the matrix representation of face images. 

Let be the orthonormal basis of R'1 and R(" separately. It is shown 

that Ui ® Vj forms a basis of the tensor space R'1 & Ru' [Lee, 2002], More specifically, 

the projection of T G R'1 0 Ru' on the basis 7/j (8) Vj can be computed as their inner 

product: 

Unlike the ordinary vector-based approaches which are linear, i.e. y, = a1 Qi where 

gl G Rhw is the vector representation of the i-th image and yt is the lower dimensional 

vector after projection by dimension reduction vector (basis vector) a. The tensor-

based approaches are multilinear, i.e. = u^TjV where Tt G Rh & R"' is the matrix 

representation of the i-th image and N = h x w. In a tensor basis uvT. the degrees of 

freedom are down to h + w. In fact, with the following constraint, the tensor-based 

approach becomes, a special case of vector-based approaches: 

2.6.3 Spatially Smooth Subspace Learning 

Intuitively, the element pixel values in basis function would be similar if they are 

spatially close. Intending to suggest the spatial smoothness of the basis function by 

(T ,  Ui  0  Vj )  =  (T ,  Ui i j )  =  u-  TVj  (2.22) 

+ — 1) "I'J (2.23) 
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the spatial correlation of pixels in a face image, a 2-D discretized Laplacian penalized 

function is introduced to measure the smoothness of the basis vectors of the face space 

which is the core of the Spatially Smooth Subspace Learning (SSSL) approach. 

Let </j stand for a vector in K h w  representing an h x w as described above, a t € R/"' 

be the bases vectors (projection functions) and H = h x w. The region of interest, 

the face image, which is a twro-dimensional rectangle face image is denoted by Q or 

[0 ,  l ] 2  for  nota t ional  convenience.  Let  £  =  where  hi  = l /h  and h 2  = l /w.  

is constituted of two-dimensional vectors t t  = (t i 1 . t n ) with t n  = (?i — 0.5) • h 

and ti2 = (12 — 0.5) • w for 1 < i\ < h and 1 < i2 < w. The total number of 

grid points in this lattice is N. Let Dj be an h x h or w x w matrix that yields a 

discrete approximation to d2/dt2y Thus if u = [u(ti),-- - ,u(inj)} (where 1 < j < 2 

and n\ = h, n2 = w) is an iij dimensional vector which is a discretized version of a 

function u{t), then Dj has the property that: 

d 2 u( t l )  
[ •

D Mi dt 2  
(2.24) 

for i  =  1, • • • , r i j .  Many possible choices are available for Dj [B. L. Buzbee and 

Nielson, 1970] and the following is the modified Xeuman discretization [O'Sullivan, 

1991]: 

D>  - 1 ]  

-1 1 0 

1 1 

1 1 

(2.25) 

Given D }  where 1 < j  <  2. a discrete approximation for two-dimensional Lapla­

cian L is the N x K matrix: 

A =  I ) \  / .  -  / i  I )  ,  (2.26) 

where Ij is the iij x rij identity matrix for j = 1.2 and X is the Kronecker product 

[Horn and Johnson. 1991]. For a nx x n2 dimensional vector 7. to check its smoothness 

on the i) 1 x ??2 lattice, we can check that || A • is proportional to the sum of the 
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squared differences between nearby grid points of 7 with its matrix form. Given a 

pre-defined graph structure with weight matrix W\ the SSSL approach is oriented for 

maximizing the following: 

''GU'G^ (2.27) 
(1 — a)y T GDG T ~/  +  Q E(7 ) : 

where 0 < a < 1 controls the smoothness of the estimator and E is the discretized 

Laplacian regularization function: 

E(7) = |l A-7||2 = 7 r  A rA7 (2.28) 

The 7(>l,t which maximizes the objective function 2.29 can be derived bv the max­

imum eigenvalue solutions to the following general eigenvalue problem. 

GWG 1 7 = A((l - q)GDG r  + a AtA)7 (2.29) 

With the options of different W as described in subsection 2.6.1, spatially smooth 

version of LDA and LPP are hence derived. He et al [He Xiaofei and Hongjiang, 2005] 

showed a dramatic improvement of S-LPP over PCA and LDA for face recognition 

on the the Carnegie Melon University Pose. Illumination, and Expression database 

(CMU PIE)3 and Yale4 databases. S-LDA and S-LPP developed methods based 

on the SSSL model outperform the ordinary subspace learning algorithms and their 

tensor extensions. Zheng et al demonstrate SLPP showing a significant improvement 

over standard LPP [Z Zheng and Yang, 2007]. 

2.7 Regional Voting 

Large variations in viewpoints, illumination or facial expressions always lead to a 

highly nonconvex and complex distribution of face images [Biehsel and Pentland. 

1994]. Thus their success is limited to their linear nature [Juwei Lu and Li, 2006]. 

Either nonlinear models or a mixture of locally linear models could handle the non-

convex problem [Juwei Lu and Li. 2006]. Regional Voting, a framework proposed by 

Chen and Tokuda[Chen and Tokuda, 2010], is one solution for the latter case. It em­

beds all holistic algorithms. The image is broken into non-overlapping equally sized 

3CMU PIE database; http://www.ri.cmu.edu/research_project_detail.html7project. 

id=418&menu_ id=261. 
4Yale Database http://cvc.yale.edu/projects/yalefaces/yalefaces.html. 

http://www.ri.cmu.edu/research_project_detail.html7project
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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windows. Holistic classification and national voting are applied inside each window 

(region). After all the windows are enumerated, record the result for each region. 

The majority winning windows has the last word. 

This method is a complementary to holistic approaches which lack the knowledge 

of the spatial structure of the face and is more accommodating to ;noise\ Chen and 

Tokuda reconstruct face recognition as a 'stability' problem [Chen and Tokuda, 2010]. 

Under this concept, the probe image has undergone transformations caused by the 

environment: 'being obliterated7 for instance. From this point of view, this system 

will still work as a whole even if some regions have been occluded. A deeper analysis 

of regional voting over national voting can be seen in Chen and Tokuda [Chen and 

Tokuda, 2005, 2003]. 

While since each window could work as a classifier, it naturally raises questions 

on the topic of classifier combination [Kittler and Matas, 1998]. Combining classifiers 

works best when they are different [Ali and Pazzani, 1995]. For example, two popular 

ensembles of classifiers employ majority voting, based on labels and label ranking 

respectively [Bagui and Pal, 1995], [T.K. Ho and Srihari, 1994], The hope, when 

multiple algorithms are embedded into one framework, is they will complement one 

other and contribute jointly to the final decision making. 



Chapter 3 

Proposed Approach 

Holistic face recognition approaches based on statistical learning, such as the ones 

based on LDA. often suffer from the SSS (small-sample-size) problem, where the 

dimensionality of the sample images far exceeds the number of training sample images 

available for each subject [Raudys and Jain, 1991], [Juwei Lu and Li, 2006]. Building 

on the success of Regional Voting, we present a system called Weighted Regional 

Voting Based Ensemble of Multiple Classifiers (WREC) for face recognition. This 

idea exploits the fact that face regions are of different significance when recognizing a 

face. This concept can be traced back as early as 1970's in "'computer recognition of 

human faces" [Kanade, 1977]. Recent exploitations of the weight distribution can refer 

to "A Weighted Voting and Sequential Combination of Classifiers Scheme for Human 

Face Recognition [Xiaoyan Mu and Watta, 2005]", Local Binary Patterns by Timo 

Ahonen and others [Timo Ahonen and Pietikainen, 2004]. An automatic weighting 

evaluation is implemented in this thesis so that a more robust system having a larger 

capacity of bearing the variance of the face images is constructed. It is independent of 

human knowledge of the underlying structure of the face. For instance, images with 

exaggerated facial expressions in which symmetry has been violated is still tolerated 

by the system. The ensemble of multiple face recognition algorithms is motivated 

by the fact that different algorithms address different obstacles in face recognition. 

Though new algorithms have been added to the face recognition literature, none of 

them is able to integrate all the advantages into one. WREC provides an interface for 

different algorithms bringing their good attributes into full play. It has the following 

key features: 

1. Images are partitioned into non-overlapping regions: 

2. For each region, multiple holistic algorithms are employed: 

3. A weight is associated with each holistic algorithm for each region: 

21 
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4. The decision is made based on layers of voting schemes (Details will be illus­

trated in Subsection 3.2.) 

3.1 Weighting Scheme 

First of all, we partition each image into a number of equally sized non-overlapping 

regions in a consistent manner. In order to better illustrate this, we make the following 

assumptions and formalize a set of corresponding denotations. 

Assuming we partition the image into I x m regions and name the region R(p,q) 

re fe r r ing  t o  the  obse rva t ion  in  row p  and  co lumn q  where  1  <  p  <  I and  1  <  q  <  m.  

The regional scheme is shown in Figure 3.1. 

1 
Regional Scheme 111 

1 

2 •  • •  

•  

•  

•  

•  • •  

l •  • •  

1 > 

Figure 3.1: Regional Scheme 

Assuming that, in our gallery, there are N subjects Si .S?. - - -  .Sy .  Each sub­

ject.  S t .  has  K images  Gn.Gi2.  •  •  •  .  G x K •  There  is  a  se t  of  hol is t ic  a lgor i thms H = 
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{hi .  h '2-  •  •  •  .  h t } .  For each holistic algorithm h 6 H. on each region, we use a gener­

ated "leaving one out" strategy to test the effectiveness of the holistic algorithm on 

that region and take it as the weighting value of that region for algorithm h. For each 

j, 1 < j < K, we select ; • • • -GNJ as the testing set and take the remaining 

images in the gallery as the training set. By doing so. for each j ,  we find correctly rec­

ognized images for each region by that algorithm: riyht(r\hj))- The weighting value 

on region r for holistic algorithm h w^,r) *s calculated in an accumulated manner. It 

is formally defined in equation 3.1: 

^2?right{r { h J ) )  

W{h 'r )  =  ~ YVN  

The weighting evaluation procedure on a region is shown in Figure 3.2. Thus. 

u\h.r) stand for the average recognition accuracy on region r by holistic algorithm h 

and 0 < it\h,r) < 1- Besides regional scheme, there are three key segments: "leaving 

one out" strategy, lower dimensional subspace and regional weights generator. Lower 

dimensional subspace includes a series of dimension reduction techniques, like holistic 

algorithms: PCA, Fisherface, SRDA, S-LDA and S-LPP in this case. The regional 

weights generator compares the subspace regional feature vectors by Euclidean dis­

tance and selects the closest one as the classification sticking to the nearest neighbour 

classifier. After calculating the regional weighting of holistic algorithm h according 

to equation 3.1. it implements one of the equations among equations 3.2. 3.3 and 3.4. 

During this stage, each region is an independent classifier. 

The "'leaving one out'' strategy is shown in Figure 3.3. For each region, we use all 

the gallery images for training. The ''leaving one out" strategy is used to divide the 

regional gallery images into subTrain and subTest sets. It includes K iterations of 

splitting0. To describe the "'leaving one out" strategy, assume a k training dataset6 

with n different people in total. Wo denote the gallery images as: 

the  f i rs t  image of  subject1 .  subject2 ,  subjectn  

the  second image of  subject  1 ,  subject2 .  • •  •  subjectn  

the  k th  image of  subject  1 .  subject2 ,  •  •  •  subjectn  

"splitting here refers to the division of gallery images into subTrain and subTest sets, not the 
split mentioned in the Chapter 4: Experiments, which refers to a component in the database. 

6k refers to the number of images per subject for training (gallery). 
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Figure 3.2: Weighting Evaluation 

Each time, each row is "left in" and selected as the probe, all the rest are "left out"' to 

become training images. Then during all rounds of splitting, we project the regional 

subTrain and subTest images into a subspaee and find the recognition accuracies. 

Figure 3.3 shows splitting during one iteration. From the picture, we can see that, 

each time, the images of the same color are selected as the test images, keeping the 

rest as the training images. 

In this thesis, five holistic algorithms are embedded in the framework and thus 

t = 5. hi, h,2i h3. hi and in turn correspond to algorithms: PCA. Fisherface. 

SRDA. S-LDA and S-LPP. With their weighting distributions over all regions of a 

face image, three different schemes are adopted in this thesis for the final weight to be 

used during the test stage after accepting probe images. We call them: '"One Applies 

One", ""One Applies All' and ""Joint Weight" respectively. The following equations 

show the difference among the above three weighting schemes. In all cases, 

stands for the final weight which is going to be assigned to the region r for holistic 
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Region(p.q) Region(p,q) 

for person 1 for person 2 

• 
Region(p.q) 
for person k 

Figure 3.3: Splitting Iteration 

algorithm h. 

3.1.1 One Applies One 

^ 'F(h.r)  ^(/i,r) (3.2) 

3.1.2 One Applies All 

W p ( h , r )  =  w { h 5 . r )  (3-3) 

Here, during the weighting evaluation on the training set. only the effectiveness of 

S-LPP algorithm is tested. During the test stage having all probe images included, 

all algorithms (including S-LPP) use the weighting evaluated by S-LPP: 

3.1.3 Joint Weight 

U'F(h.r) = ̂ 2'lu\hal,r) (3.4) 
a l  

where u\h„, , r )  refer to the weighting assigned to region r evaluated bv algorithm 

hai GH. 

3.2 Classifier Set Up and Recognition 

This section involves two layers of voting/scoring models. The first layer is within 

the probe image. As we have a database of gallery regional vectors and a database of 
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regional weights, for each holistic algorithm h €  H.  we implement a regional weighting 

based classification of any probe image during the test stage. Euclidean distance is 

used during the matching procedure for comparison purpose and the smallest distance 

value identifies the subject ID of the probe image. Figure 3.4 describes this process. 

Test Image 

Database of Gallery 

Regional Subspaee 

Vectors 

Gallery 

Regional Subspaee 

Vectors 

Matching 

Regional Weights 

Similarity Value 

Regional 

Scheme 

Voting/Scoring 

Model 
(Classifier 

Setting up) 

Database 

of Regional 

Weights 

Figure 3.4: First layer Voting 

The weighted scoring model is shown in Figure 3.5. To avoid non-meaningful 

comparisons, shifting is implemented. For even after pre-processing, pupils, mouth, 

chin, forehead etc. may still locate in different regions with respect to different face 

images. Thus, we perturb each gallery region up to two pixels in four directions (north, 

south, west and east) to compensate for misalignment issues. All regional gallery 

images in all (25 in total) nearby positions are compared with the regional probe 

image using a nearest neighbour classifier and the results are stored. By selecting 

the closest one as the identity of the holistic algorithm, h. on that region, we get the 

classification on region r: hr(pr). Instead of one vote a region cast for an identity 

i £ I. u'F(h.r) is used as the "number" of votes identities get from each region. What 

the voting machine does is sum up the number of votes each identity gets. The one 

that gets the "biggest number" of votes is taken as the subject ID for probe image. 
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p, by that algorithm (h). 

At this point, for each region r ,  for each holistic algorithm h.  by using al l  gallery 

images, we obtain a classifier hT(pT), where p is a probe image and p e P. The clas­

sifier set up is shown in Table 3.1. Table 3.2 returns the corresponding classification 

for each classifier: hr(pr). The identity that wins the biggest "number" of votes is the 

final classification of holistic algorithm, h, on that probe image, p. By now, the first 

layer of voting for classification is set up. 

Table 3.1: Classifier Set Up 
h r p r  

(1,1) 
h r p r  

(1:2) 
h r p r  h r p r  

(l,m) 
h r p r  

(2,1) 
h r p r  

(2,2) 
h r p r  h r p r  

(2,m) 

h T p r  

(U) 
h r p r  

M) 

h r p r  h r p r  

( .l,m )  

Table 3.2: Classification on each region by one holistic algorithm for the probe image 
k  12 
13 i  l 12 

12 In  ij d 

n in Table 3.2 is the total number of different identities to be classified and 1 < 

id < n. Thus, for each holistic algorithm h G H. we get its classification for each 

region. 

The second layer of voting is among the different holistic algorithms. Each algo­

rithm casts one vote to its identity and the final decision is made by a "winner takes 

all" strategy. That is. the identity voted by the majority of holistic algorithms is 

taken as the final result. After this round of voting, the final decision is made. 
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Chapter 4 

Experiments 

In order to validate the WREC approach, three benchmark databases were used. 

They decrease the technical difficulties with face recognition by: 

• control of the environment such as background, lighting, camera angle and so 

on: 

• control of the subject's pose; 

• getting cooperation from subjects: having diverse images variant in expressions 

and accessories, wearing or not wearing glasses for instance. 

The Yale database from Yale University contains 11 grayscale GIF images variant 

in facial expression and configuration - centre-light, with glasses, happy, left-light, 

with no glasses, normal, right-light, sad, sleepy, surprised, and wink7 - of each of 15 

individuals in total. Figure 4.1 is a glimpse of the Yale database8. 

Figure 4.1: Yale Face Database 

The ORL database comes from Cambridge AT &; T Laboratory, formerly Olivetti 

Research Laboratory. It contains ten different images of each of 40 distinct subjects. 

The images were taken at different times, varj'ing the lighting, with different facial 

expressions (open / closed eves, smiling / not smiling) and with different facial details 

(glasses / without glasses)9. Figure 4.2 comes from the ORL Database10. 

'  See footnote 4 
8See footnote 4 
9See footnote 1 

10See footnote 1 
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Figure 4.2: ORL Face Database 

The Carnegie Melon University Pose, Illumination, and Expression database (CMU 

PIE) from Carnegie Melon University contains 41,368 images of 68 people. For each 

person, there are 13 different poses, 43 different illumination conditions and four 

different facial expressions11. Figure 4.3 is a glimpse of the PIE database12. 

Following the custom of researchers in this field, the faces for all three databases 

were simply manually aligned by pupils and cropped to 64 x 64 pixels with 256 

gray levels per pixel. Here, I wrant to clarify that the alignment with respect to 

pupils as opposed to other features of the face, such as the nose or lip corners, is for 

the "state of art comparison". All the experiments are carried out exactly on the 

same data. As a matter of fact, though eye positions and inter-ocular distance are 

quite commonly used [P. Wang and Wayman, 2005], it does not mean that all pre­

processing approaches have to wrap around the pupils. For instance, the Texas 3D 

Face Recognition Database (Texas 3DFRD)13 has all faces normalized to the frontal 

position and the tip of the nose positioned at the center of the image14. It is difficult 

to standardize the face images with exactly the same techniques, thus it is hard to 

reproduce the face recognition algorithms of others to achieve the same performance. 

Therefore, it is fair to use published standardized data so that the comparison among 

the face recognition approaches is valid. To exclude any possible bias, including the 

pupil locating, rotating, scaling and cropping approach used for "standardization" 

during the Pre-Processing stage above mentioned, the UIUC versions of the ORL. 

Yale and PIE face databases are used. UIUC's version of the PIE database uses the 

near frontal poses (COS. C07. C09. C27, C29) which leaves us 11,554 face images. 

Each subject has 170 images, except subject 38 who has only 164 images. These 

11 See footnote 3 
12See footnote 3 
13http://live.ece.utexas.edu/research/texas3dfr/ 
14The description of the Texas 3DFRD could be found here: http://www.face-rec.org/ 

databases/ 
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pre-processed, scaled and rotated images were provided by Deng Cai10. 

Neutral Smile Blinking 

Figure 4.3: PIE Face Database 

Two baseline approaches (PCA and Fisherface) and three newly developed ap­

proaches (SRDA, S-LPP and S-LDA) are compared. For the Eigenface approach, 

the eigenvector corresponding to the largest eigenvalue was removed accounting for 

noise caused by illumination, a — 0.01 was selected for regularization in SRDA and 

S-LPP approaches. For SLPP, cosine similarity was used to calculate the distances 

in the adjacency matrix. All gallery images were perturbed up to two pixels in each 

direction to make up for misalignment. All vectors(representation of images) were 

normalized to the length of 1. Probe images were linearly reduced and then classified 

according to nearest neighbour classification. 

In the first set of experiments, images were divided d (d  = 11,16) times hori­

zontally and vertically because these numbers yielded the best results with regional 

voting on the respective databases. And in this set of experiments, only the first 

weighting scheme was implemented. More specifically, in this set of experiments, 

WREC was using the "One Applies One"' weighting scheme. The results for 2. 5 

and 8 training datasets16 on ORL and Yale databases are given in Tables 4.1 and 4.2 

respectively. The results on the PIE Database for 5. 30. 80 and 130 training datasets 

are given in Table 4.3. In addition, a simple version of WREC named REC was also 

carried out in comparison. REC. as seen from the name, is a framework of WREC 

without weighting. 

15All data and holistic algorithms were taken from http://www.zjucadcg.cn/dengcai/Data/ 

FaceData.html. 
162. 5 and 8 refer to the number of images per subject for training (gallery). The rest data sets 

mentioned later in this thesis follow the same custom. 
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Table 4.1: WREC and REC in comparison with various face recognition algorithms 
; Database o ' 2, 5 and 8 training datasets with l x l l  a n d  1 6  x  1 6  d i v i s i o n s  

2 Train 5 Train 8 Train 
Alg. Error Rate±Std Error RateiStd Error Rate±Std 

PCA 44.40% ±5.15% 33.84% ± 3.38% 30.93% ± 5.67% 
Fisheface 43.02% ± 4.67% 10.73% ±3.16% 7.24% ± 3.41% 

SRDA 30.71% ± 4.69% 11.38% ±2.96% 6.80% ± 4.06% 
S-LDA 29.90% ± 5.09% 13.58% ±3.11% 8.98% ±4.17% 
S-LPP 32.50% ± 4.40% 12.93% ± 3.60% 8.22% ± 4.38% 

REC(ll) 13.99% ± 2.54% 5.33% ± 2.45% 2.90% ± 2.24% 
WREC(ll) 11.16% ±2.37% 4.26% ±2.10% 2.18% ± 2.02% 
REC(16) 13.57% ± 2.79% 5.29% ± 2.44% 2.51% ± 2.01% 

WREC (16) 10.26% ± 2.76% 4.10% ± 1.95% 1.91% ± 2.01% 

In the second set of experiments, conducted on the Yale and ORL datasets, WREC 

were carried out with different number of regions, from 7 x 7 to 20 x 20. That is, 

each image was first divided 7 times vertically, and 7 times horizontally, and then 8 

times each direction and so on up to 20 divisions vertically and 20 horizontally. This 

time, all three weighting schemas were implemented in this set of experiments. The 

results for the Yale database on 2, 5 and 8 training datasets are given in Figures 4.4. 

4.5 and 4.6 respectively. And the results for the ORL database on 2, 5 and 8 training 

dataset are given in Figures 4.7, 4.8 and 4.9 respectively. 

On the PIE database, due to time constraints as well as the possible distribution 

of the best results, the experiments were carried out on divisions from 7 up to 16 with 

only one weighting scheme: One Applies One. As the recognition accuracy for the 5 

Train dataset differs a lot from the rest of the datasets. we put it aside in a separate 

figure to have a better representation of the result . The result is shown in Figure 4.10 

and 4.11. 
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Joint Weight 
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10 12 14 16 18 20 
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Figure 4.4: WREC on Yale database (2 training dataset) with divisions from 7 up to 
20 

• One Applies One 
Joint Weight 

- One Applies All 

6 8 10 12 14 16 18 20 

Divisions 

Figure 4.5: WREC on Yale database (5 training dataset) with divisions from 7 up to 
20 
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Figure 4.6: WREC on Yale database (8 training dataset) with divisions from 7 up to 
20 
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Figure 4.7: WREC on ORL database (2 training dataset) with divisions from 7 up 
to 20 
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Figure 4.8: WREC on ORL database (5 training dataset) with divisions from 7 up 
to 20 
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Figure 4.9: WREC on ORL database (8 training dataset) with divisions from 7 up 
to 20 
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Figure 4.10: WREC on PIE database (5 training dataset) with divisions from 7 up 
to 16 

10 12 14 

Divisions 

16 

30Train 
SOTrain 
130Train 

Figure 4.11: WREC on PIE database (30. 80 and 130 training datasets) with divisions 
from 7 up to 16 
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Table 4.2: WREC and REC in comparison with various face recognition algorithms 
on the ORL Database of 2. 5 and 8 training datasets with 11x11 and 16 x 16 divisions 

2 Train 5 Train 8 Train 
Alg. Error Rate±Std Error Rate±Std Error Rate±Std 

PCA 29.29% ±3.15% 11.48% ± 2.26% 6.05% ± 2.27% 
Fisheface 22.28% ± 2.82% 3.45% ± 1.30% 1.65% ± 1.18% 

SRDA 18.19% ±2.81% 3.44% ± 1.19% 1.80% ± 1.50% 
S-LDA 16.45% ± 2.92% 2.47% ± 1.08% 0.83% ± 1.14% 
S-LPP 17.23% ± 3.04% 2.62% ± 1.20% 0.93% ± 0.99% 

REC(ll) 8.84% ± 2.05% 0.81% ± 0.85% 0.16% ±0.39% 
WREC(ll) 8.44% ± 1.90% 0.64% ±0.78% 0.14% ±0.38% 
REC(16) 8.97% ±2.14% 0.96% ± 0.75% 0.43% ± 0.58% 

WREC(16) 8.50% ±2.02% 0.87% ±0.76% 0.31% ± 0.52% 

Table 4.3: WREC and REC in comparison with various face recognition algorithms 
on the PIE Database of 2, 5 and 8 training datasets with 11x11 and 16 x 16 divisions 

5 Train 30 Train 80 Train 130 Train 
Alg. Error Rate Error Rate Error Rate Error Rate 

PCA 70.23% 26.53% 7.18% 2.43% 
Fisheface 30.28% 12.04% 8.16% 5.71% 

SRDA 28.32% 5.01% 3.12% 2.65% 
S-LDA 25.82% 3.50% 1.83% 1.58% 
S-LPP 27.71% 4.79% 2.58% 1.66% 

REC(ll) 15.63% 1.01% 0.24% 0.13% 
WREC(ll) 13.97% 0.95% 0.18% 0.09% 

REC(16) 20.19% 1.79% 0.57% 0.31% 
\VREC(16) 17.71% 1.62% 0.49% 0.29% 



Chapter 5 

Analysis 

The experiments demonstrate WREC's significant performanee advantages compared 

to several other leading approaches. The results shown in the tables achieve over­

whelmingly better recognition accuracy than all the other algorithms in all cases over 

all datasets. In a lot of cases, the error recognition rate drops more than half. Figures 

4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11, all show the same pattern as Regional Voting 

[Chen and Tokuda, 2005] that accuracy goes up as the number of regions increases. 

After a certain point, the accuracy begins to drop for the regions become too small 

to distinguish from national voting. The above observations from the figures match 

precisely the theory of "Electoral College and Direct Popular vote". 

Besides, Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10 show the transition 

point (the division where the recognition performance peaks) in WREC system appear 

earlier than Regional Voting. In this set of figures. WREC is represented by using the 

"One Applies One" weighting scheme for face recognition and accuracy does not differ 

much from the variant weighting versions for WREC. Even though, for each region, 

more algorithms are involved, we can achieve the best result within a shorter time. 

From the tables, we can see that the pure ensemble of multiple classifiers without 

weights also outperforms standard regional voting. 

Regarding the acceptable error rate for face recognition, we have to keep in mind 

that it is not governed by a formal theory. Different from that in physics or mathe­

matics. there is no absolute cutoff value (an error rate that can be applied to all other 

applications). Face recognition, although it has been an active research topic for more 

than 20 years, is still not mature enough to have a generally acceptable standard. The 

statistical success and failures are application-dependent. [R. Chellappa and Sirohey. 

1995], 

Figure 5.11 shows the weighting distribution for 16 x 16 divisions on the Yale 

dataset (2 Training Dataset) by different classifiers. 
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Figure 5.1: WREC compared to various individual holistic algorithms in different 
sized regions on Yale 2 training dataset 
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Figure 5.2: WREC compared to various individual holistic algorithms in different 
sized regions on Yale 5 training dataset 
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Figure 5.3: WREC compared to various individual holistic algorithms in different 
sized regions on Yale 8 training dataset 
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Figure 5.4: WREC compared to various individual holistic algorithms in different 
sized regions on ORL 2 training dataset 
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Figure 5.5: WREC compared to various individual holistic algorithms in different 
sized regions on ORL 5 training dataset 
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Figure 5.6: WREC compared to various individual holistic algorithms in different 
sized regions on ORL 8 training dataset 
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Figure 5.7: WREC compared to various individual holistic algorithms in different 
sized regions on PIE 5 training dataset 
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Figure 5.8: WREC compared to various individual holistic algorithms in different 
sized regions on PIE 30 training dataset 
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Figure -5.9: WREC compared to various individual holistic algorithms in different 
sized regions on PIE 80 training dataset 
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Figure 5.10: WREC Compared to various individual holistic algorithms in different 
sized regions on PIE 130 training Dataset 
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Figure 5.12 shows the weighting distribution for 16 x 16 divisions on the Yale 

dataset (8 training dataset) this time. The more faces involved in calculating the 

weighting, the closer it should be able to derive the face features. 

The brighter the region is. the higher the weight associated with that region. The 

figures, either Figure 5.11 or Figure 5.12 which draw weighting distributions from a 

larger pool of samples, tell us that salient features like eyes, mouth and nose do not 

necessarily yield higher weights. This confirms the superiority of using an automatic 

weighting estimation technique. Different weighting schemes have been proposed [Xi-

aoyan Mu and Watta, 2005, Timo Ahonen and Pietikainen, 2004] and in this thesis, 

an automatic weighting system is adopted. Thus, unlike the weighting algorithm 

Timo Ahonen et al proposed [Timo Ahonen and Pietikainen, 2004], which produced 

a symmetric weight distribution on classifiers, it treats each region separately. Com­

bining classifiers mentioned in Chapter 2, should work better than having symmetric 

weights attached to the regions. 

Finally, regarding time complexity, obviously, it is dependent on that of the embed­

ded algorithms. Despite the fact of the disparity in complexities for different holistic 

algorithms, we denote the time cost for each holistic algorithm as r. Then the time 

complexity of Regional Voting is IT where t is the number of regions. Examining each 

dimension-reduction algorithm, the time complexity of r is made up of the matrix 

multiplication with time complexity of O(ihwn) where h and w are the height and 

width of the image and k is the number of dimensions of the reduced subspace. After 

that, a classification based on the measurement of the distances between probe image 

and each gallery image (including all its neighboring images by shifting) is performed. 

During this stage, the time complexity is O(thivpn) where p is the total number of 

shifts and n is the total number of different subjects to be classified. Assume we have 

t holistic algorithms embedded in total. So the total complexity is 0(tihw(K + pn)) 

in the test stage. Examining the time complexity of the training, it is much like the 

that of the test stage except multiplying by k. where k is the number of images per 

person in the gallery, since a "leaving one out strategy" is implemented. For each 

algorithm, after k iterations, ki,hw(h- + pn) operations (shifting is again applied in the 

training) are required. 

Of the three different weighting schemes we have implemented in this thesis. "One 
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Applies One". "One Applies All" and "Joint Weight" - for both "One Applies One" 

and "Joint Weight" schemes, all holistic algorithms embedded are used. Thus the time 

complexity is tkihw(K + pn). And lastly, the "One Applies All" weighting scheme 

shortens the training period roughly to 1/5 as long for only one holistic algorithm is 

used in the training stage instead of five. The complexity is down to kihw(n + pn). To 

this scheme's credit is that face recognition accuracy still runs neck to neck compared 

with that of the other two schemes. 
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Figure 5.11: Weighting Distribution by Different Classifiers on 16 x 16 division of 
Yale Data Set(2 training dataset) 
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Figure 5.12: Weighting Distribution by Different Classifiers on 16 x 16 division of 
Yale Data Set(8 training dataset) 



Chapter 6 

Summary 

Face recognition is an emerging technology. Though it is by no means perfect, there 

is no denying its tremendous potential. Compared to human facial surveillance, au­

tomatic systems have a longer attention span, can be exposed to larger amounts of 

information and work in the same manner reliably in all cases. Holistic approaches, 

based on the concept of reducing the high dimensionality of the raw face image are 

regarded as the most popular solution for the face recognition task. 

Regional voting is a new approach for the face recognition problem which divides 

the image into equally sized non-overlapping regions and treats each region as an 

independent classifier. Within each region, holistic algorithms are implemented and 

the classification result is recorded. After all, a vote over all regions is carried out 

and the classification with majority votes is selected as the final result. 

WREC builds on the success of Regional Voting in the following way: 

1. The Electoral College framework is adopted into the proposed system success­

fully. 

2. An automatic weighting calculation method independent of human knowledge 

is implemented. This enables a more robust system accommodating face im­

ages having a bigger range of variance: for example, face images having non-

symmetric face features violated by postures, face expressions or occlusions. 

3. Three different schemes for weighting are proposed. 

4. In the newly proposed system, embedded algorithms are not independent any­

more. Two layers of voting models are included in the system. 

o. Extensive experiments are carried out on benchmark face databases. The pro­

posed system shows superiority over several other leading algorithms as well as 

the already best in class results of regional voting. The same promising results 
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are also derived on experiments of datasets with small number of images per 

person in the gallery. 

WREC, as a solution to the face recognition problem, is validated by extensive 

experiments, outperforming any individual holistic approaches embedded. Even a 

REC (a regional based ensemble of multiple classifiers) system shows promising results 

on datasets with a smaller number of gallery images. 

Finally, there are some points regarding the design of this experiment. This may 

suggest avenues for future work. Firstly, during the splitting, after each round, we 

get two sets of images: SubTest and SubTrain. Figure 6.1 shows the division on part 

of the ORL 8 training dataset picking up the first image of a person as the SubTest 

images. This splitting is easy to implement, while it does not include all objects that 

can be used for matching. The first image of the person himself is excluded as there 

is no distance at all between one and himself, while the other people's first image are 

also excluded by this algorithm. Both images come from the ORL Database17. 

(b) SubTraining Images 
Sub-
Test 
Im­
ages 

Figure 6.1: Example of regional divisions on gallery images 

So. in the future, we could include more information provided by the gallery images 

during weighting evaluation to test the effectiveness of an algorithm on each region. 

Also, we can embed a wider range of algorithms, like the ones under local branch, for 

example. And lastly, the system could be expanded for face verification. 

17See footnote 1. 



Bibliography 

Nasir U. Ahmed and K. Ramamohan Rao. Orthogonal Transforms for Digital Signal 
Processing. Springer-Verlag New York. Inc.. Secaucus. NJ. USA, 1975. 

K.M. Ali and M.J. Pazzani. On the Link Between Error Correlation and Error Re­
duction in Decision Tree Ensembles. Technical report. 95-38. ICS-UCI. 1995. 

G. H. Golub B. L. Buzbee and C. W. Nielson. On Direct methods for solving poisson's 
equations. SIAM Journal on Numerical Analysis, 7(4):627-656, 1970. 

S.C. Bagui and N.R. Pal. A Multistage Generalization of the Rank Nearest Neighbor 
Classification Rule. Pattern Recognition Letters, 16:601-614, 1995. 

Hespanha. J Belhumeur. P and Kriegman. D. Eigenfaces vs. Fisherfaces: Recognition 
Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 19(7):711-720, 1997. 

M. Bichsel and A.P. Pentland. Human face recognition and the face image set's 
topology. CVGIP: Image Understanding, 59:254-261, 1994. 

Deng Cai, Xiaofei He, and Jiawei Han. Semi-supervised Discriminant Analysis. In 
2007 IEEE 11th International Conference on Computer Vision, pages 1-7. IEEE. 
2007a. 

Deng Cai. Xiaofei He, and Jiawei Han. Spectral Regression for Efficient Regular­
ized Subspace Learning. IEEE 11th International Conference on Computer Vision 
(2007), L(05):l-8, 2007b. 

Y. Hu J. Han Cai D., X. He and T. Huang. Learning a spatially smooth subspace 
for face recognition. IEEE International Conference on Computer Vision Pattern 
Recognition, 0:1-7, 2007. 

He Xiaofei Cai Deng and Han Jiawei. SRDA: An Efficient Algorithm for Large-Scale 
Discriminant Analysis. IEEE Transactions on Knowledge and Data Engineering. 
20( 1): 1—12, 2008. 

Liang Chen and Naoyuki Tokuda. Robustness of regional matching scheme over global 
matching scheme. Artificial Intelligence. 144(l-2):213-232. 2003. 

Liang Chen and Naoyuki Tokuda. A general stability analysis on regional and national 
voting schemes against noise-why is an electoral college more stable than a direct 
popular election? Artificial Intelligence, 163(1):47-66. 2005. 

Liang Chen and Naoyuki Tokuda. A unified framework for improving the accuracy of 
all holistic face identification algorithms. Artif. Intell. Rev., 33(1-2):107-122. 2010. 

50 



51 

Ravi Das. An Application of Biometric Technology: Facial Recognition: 
http://www.technologyexecutivesclub.com/Articles/security/ artBiometricsFacial-
Recognition.php, 2011. 

R. Duda and P. Hart. Pattern Classification and Scene Analysis. New York: Wiley. 
1973. 

H. D. Ellis. Processes underlying face recognition: Introduction in The Neurophysiol­
ogy of Face perception and Facial Expression. Hillsdale, NJ: Erlbaum, 1986. 

Martha J. Farah. Is face recognition 'special' Evidence from neuropsychology. Be­
havioural Brain Research, 76:181-189, 1996. 

Ronald Aylmer Fisher. The Use of Multiple Measures in Taxonomic Problems. Annals 
of Eugenics, 7:179 188, 1936. 

Rafael C Gonzalez, Richard E Woods, and Barry R Masters. Digital Image Processing, 
Third Edition. Journal of Biomedical Optics. 14(2):029901, 2009. 

H.-W. Chang H.-T. Chen and T.-L. Liu. Local discriminant embedding and its vari­
ants. In Proc. CVPR, 2005. 

Xiaofei He, Deng Cai, Shuicheng Yan, and Hong-Jiang Zhang. Neighborhood Pre­
serving Embedding. In Tenth IEEE International Conference on Computer Vision 
ICCV05 Volume 1, volume 2, pages 1208-1213. Ieee, 2005. 

Xiaofei He and Partha Niyogi. Locality Preserving Projections. Advances in Neural 
Information Processing Systems, 16:153-160, 2003. 

Hu Yuxiao Niyogi Partha He Xiaofei, Yan Shuicheng and Zhang Hongjiang. Face 
recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Ma­
chine Intelligence, 27(3):328-340. 2005. 

Rebecca Heyer. Biometrics Technology Review 2008. Land Operations Division De­
fence Science and Technology Organisation, 2008. 

R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University Press. 
1991. 

Y Ijiri and M Sakuragi. Security Management for Mobile Devices by Face Recognition. 
In 7th International Conference on Mobile Data Management MDM06. pages 49-
49, 2006. 

A. N. Venetsanopoulos Juwei Lu, K. N. Plataniotis and Stan Z. Li. Ensemble-based 
discriminant learning with boosting for face recognition. IEEE Transactions on 
Neural Networks. 17:178. 2006. 

Takeo Kanade. Computer recognition of human faces. Interdisciplinary Sys- tems 
Research, page 47. 1977. 



52 

Hatef Mohamad Duin Robert P. W. Kittler. Josef and Jiri Matas. On Combining 
Classifiers. IEEE Trans. Pattern Anal. Mach. Intell., 20:226-239. 1998. 

T. Kohonen. Self-Organization and Associative Memory. Springer. 1988. 

J. M. Lee. Introduction to Smooth Manifolds. Springer-Verlag New York. 2002. 

J. Buhmann J. Lange C. v. d. Malsburg M. Lades. J. Vorbruggen and R. Wurtz. 
Distortion invariant object recognition in the dynamic link architecture. IEEE 
Trans. Computers, 42:300 311, 1993. 

Crookes K. McKone E. and Kanwisher X. The cognitive and neural development of 
face recognition in hum,ans. Cambridge, MA, Bradford Books, 2009. 

Christian A Meissner and John C Brigham. Thirty years of investigating the own-race 
bias in memory for faces: A meta-analytic review. Psychology Public Policy and 
Law, 7(l):3-35, 2001. 

Hyeonjoon Moon and P Jonathon Phillips. Computational and performance aspects 
of PCA-based face-recognition algorithms. Perception, 30:303-321, 2001. 

John Morton and Mark H. Johnson. Conspec and Conlearn: A Two-Process Theory 
of Infant Face Recognition. Psychological Review. 98, No.2:164-181, 1991. 

F. O'Sullivan. Discretized laplacian smoothing by fourier methods. Journal of the 
American Statistical Association, 86(415) :634 -643, 1991. 

L. Ganesan P. Latha and S. Annadurai. Face Recognition using Neural Networks. 
Signal Processing: An International Journal (SPIJ), 3:153-160, 2009. 

Q. Ji P. Wang, M.B. Green and J. Wayman. Automatic eye detection and its valida­
tion. In Proc. of 2005 IEEE Conf. on Computer Vision and Pattern Recognition 
-Workshops, 3:164. 2005. 

Christopher C Paige and Michael A Saunders. LSQR: An Algorithm for Sparse Linear 
Equations and Sparse Least Squares. ACM Transactions on Mathematical Software. 
8(1):43-71, 1982. 

Olivier Pascalis and Jocelyne Bachevalier. Face recognition in primates: a cross-
species study. Behavioural Processes. 43(l):87-96, 1998. 

P. Penev and J. Atick. Local feature analysis: A general statistical theory for object 
representation. Netw.: Comput,. Neural Syst.. 7:477-500. 1996. 

Alex Pentland and Tanzeem Choudhury. Face recognition for smart environments. 
Computer. 33(2):50-55. 2000. 

Rauss P Phillips P J, Moon H and Rizvi S. The FERET evaluation methodology 
for face recognition algorithms. In Proceedings of Computer Vision and Pattern 
Recognition 97, 1997. 



53 

C.L. Wilson R. Chellappa and S. Sirohey. Human and Machine Recognition of Faces: 
A Survey. Proceedings of the IEEE, 83:705 740. 1995. 

S.J. Raudys and A.K. Jain. Small sample size effects in statistical pattern recognition: 
Recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell., 13: 
252-264, 1991. 

D. L. Ruderman. The statistics of natural images. Netw.: Comput. Neural Syst., 5: 
598 605, 1994. 

J. Shlens. A Tutorial on Principal Component Analysis. Technical report, Institute 
for Nonlinear Science, UCSD, 2005. 

T. J. Stonham. Practical face recognition and verication with wisard. Aspects of face 
processing,Kluwer Academic Publishers, 1986. 

R Veldhuis R Gehlen S Tao Q, Van Rooseler and Weber. Optimal Decision 
Fusion and Its Application on 3D Face Recognition: http://www.3dface.org/ 
files/papers/veldhuis-CAST20070ptimalDecisionFusion.pdf, 2007. 

Abdenour Hadid Timo Ahonen and Matti Pietikainen. Face recognition with local 
binary patterns. Lecture Notes in Computer Science, 3021/2004:469-481, 2004. 

J.J. Hull T.K. Ho and S.N. Srihari. Decision Combination in Multiple Classifier 
Systems. IEEE Trans. Pattern Anal. Mach. Intell., 16:66-75, 1994. 

D Tranel and AR Damasio. Knowledge without awareness: an autonomic index of 
facial recognition by prosopagnosics. Science, 228:1453-1454, 1985. 

Matthew Turk and Alex Pentland. Eigenfaces for Recognition. Journal of Cognitive 
Neuroscience, 3:71-86, 1991. 

T Valentine. Upside-down faces: a review of the effect of inversion upon face recog­
nition. British journal of psychology London England 1953, 79 ( Pt 4)(4):471-491, 
1988. 

Xiaogang Wang and Xiaoou Tang. Unified Subspace Analysis for Face Recognition. 
Proceedings of the Ninth IEEE International Conference on Computer Vision. 2: 
679686, 2003. 

Mohamad Hassoun Xiaoyan Mu and Paul Watta. A Weighted Voting and Sequential 
Combination of Classifiers Scheme for Human Face Recognition,. In International 
Conference on Computer Vision and Pattern Recognition (CVPR 2005), 2005. 

Y. Adini Y. Moses and S. Ullman. Face recognition: The problem of compensating 
for change in illumination direction. In In European Conf. On Computer Vision. 
1994. 



54 

S Yan, D Xu, B Zhang, and Hong-Jiang Zhang. Graph Embedding: A General Frame­
work for Dimensionality Reduction. In 2005 IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition CVPR05. volume 2, pages 830-837. 
Ieee. 2005. 

W Tan J Jia Z Zheng, F Yang and J Yang. Gabor feature-based face recognition using 
supervised locality preserving projection. Signal Processing, 87(10):24732483, 2007. 

W Zhao, R Chellappa, P J Phillips, and A Rosenfeld. Face recognition: A Literature 
Survey. ACM Computing Surveys, 35(4):399-458, 2003. 

Chellappa R Zhao W. and Phillips P. J. Subspace linear discriminant analysis for 
face recognition. Technical report, Center for Automation Research, University of 
Maryland, College Park, MD., 1999. 


