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Abstract 

Lipotoxicity is implicated as a mechanism for pancreatic P-cell dysfunction in 

obesity-induced type 2 diabetes (T2D). In vitro, peroxisome proliferator-activated 

receptor alpha (PPARa) protects against lipotoxic (3-cell dysfunction preserving insulin 

secretion. Utilizing an adeno-associated virus (dsAAV8), we induced overexpression of 

PPARa specifically in pancreatic p-cells of adult, C57B16 mice that were fed a high-fat 

diet for 20 weeks to induce obesity. We show that overexpression of PPARa in 

pancreatic P-cells, in vivo, protects P-cell function in obesity, improving glucose 

tolerance by preserving insulin secretion compared to obese controls. No change in islet 

morphology or P-cell mass was observed. Despite metabolic improvements observed in 

diet-induced obese mice, overexpression of PPARa in pancreatic P-cells of a genetic 

model of severe obesity (db/db) did not improve carbohydrate metabolism. We have 

developed the first in vivo model of p-cell specific PPARa overexpression to elucidate 

the mechanisms involved in P-cell lipotoxicity in obesity-induced T2D. 
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db/db n=6. Mean values with SEM are shown. Statistical significant variation was 
determined by 2-way ANOVA with Bonferoni Post Tests. *P<0.05, **P<0.01, 
***P<0.001. 
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CHAPTER 1 

A lipotoxic approach to understanding the link between 
obesity and type 2 diabetes 
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1.1 INTRODUCTION 

1.1 General introduction to obesity 

Obesity is the number one risk factor for developing type 2 diabetes (T2D) 

(Smyth and Heron 2006); however, the physiological mechanisms underlying this 

association is not fully understood. Obesity results from chronic positive energy balance 

with subsequent increase in triglyceride (TG) storage in adipose tissue (van Herpen and 

Schrauwen-Hinderling 2008). In addition to T2D, obesity is a risk factor for numerous 

diseases including and not limited to: insulin resistance, cardiovascular disease, cancer, 

osteoarthritis, and non-alcoholic fatty liver disease (Kahn et al. 2006; Shoelson et al. 

2007; van Herpen and Schrauwen-Hinderling 2008; Kusminski etal. 2009). Recently, 

rates of obesity, including childhood obesity, have reached epidemic proportions around 

the world (Deckelbaum and Williams 2001; Smyth and Heron 2006); where it has been 

estimated that obesity and its comorbidities are responsible for approximately 300,000 

deaths annually (Dixon 2010). Therefore it is not a surprise that obesity is associated 

with a plethora of complications resulting in long term suffering for patients and huge 

economic burdens to health care systems around the world (Dixon 2010). 

Adipose tissues comprise a complex organ composed of adipocytes, vascular 

tissue, and immune cells that has the ability to expand and proliferate to meet fat storage 

needs (Gray and Vidal-Puig 2007). In healthy individuals, adipocytes are responsible for 

the storage of fats as TGs and additionally act as endocrine cells regulating fat mass, 

nutrient homeostasis and immune response (Spiegelman 1998; Rosen and Spiegelman 

2006). As seen in figure 1.1, adipocytes are depots for storing energy in the form of TGs 

which are 
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Figure 1.1 The adaptability of adipose tissue and its role as a endocrine organ - modified 
from (Gray and Vidal-Puig 2007; Shoelson et al. 2007). Healthy adipose tissue is 
involved in metabolic homeostasis through the production and secretion of adipokines 
(TNF-a, IL-6, MCP-1, PAI-1, leptin, adiponectin and resistin), as well as the storage of 
TGs. When the storage capacity of the adipocytes is overloaded, as seen in obesity, lipids 
spill-over and accumulate in the surrounding non-adipose tissues. This increase in 
adiposity also alters the adipokine profile.TNF-a -Tumor Necrosis Factor alpha; IL-6 -
Interleukin 6; PAI-1 - Plasminogen Activator Inhibitor-1; MCP-1 - Monocyte 
Chemoattractant Protein-1; TGs - triglycerides 
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broken down into glycerol and fatty acids (FAs) when metabolic demand is increased and 

glucose stores are limited (Sethi and Vidal-Puig 2007). Healthy adipocytes have the 

ability to proliferate and undergo hypertrophy (Fig. 1.1) to accommodate the storage of 

excess lipids in times of over nutrition (Gray and Vidal-Puig 2007). In the non-obese 

state, adipocytes are continuously fluctuating between storage and lipolysis of TGs and 

FFAs to maintain lipid homeostasis (Greenberg et al. 2011). Lipolysis is the finely 

orchestrated regulation of lipid metabolism, controlled by various lipases including: 

hormone sensitive lipase (HSL), lipoprotein lipase (LPL) and adipose triglyceride lipase 

(ATGL) (Arner 2005; Carmen and Victor 2006; Haemmerle et al. 2006); where these 

lipases catalyze the hydrolysis of ester linkages in TGs and diacylglycerols (DAGs) to 

produce FFAs and glycerol (Arner 2005; Carmen and Victor 2006). Moreover, the liver 

is a primary organ involved in lipid metabolism, responsible for the production of 

cholesterols, TGs and lipoproteins (van Herpen and Schrauwen-Hinderling 2008). A 

recent study from Haemmerle and colleagues (2006) showed that a decrease in FA 

availability leads to increased glucose metabolism in adipose tissue and skeletal muscle 

in ATGL knockout mice (Haemmerle et al. 2006). Furthermore, this study showed that 

ATGL is a key mediator in TG catabolism in both adipose and non-adipose tissues 

(Haemmerle et al. 2006). 

Increased levels of basal lipolysis has been observed in obesity, and is thought to 

be due to ineffective actions of insulin (unable to inhibit lipolysis), increased levels of 

circulating leptin, and tumor necrosis factor-a (Duncan et al. 2007). Therefore, the 

inability to inhibit lipolysis in both the fed and fasted state greatly contributes to 

increased circulating levels of TGs and FAs, as well as disruption of TG storage in 
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adipocytes (Langin et al. 2005; Duncan et al. 2007). In the obese state, when the storage 

capacity of adipose tissue is challenged, excess lipids "leak" out of the adipocytes into 

the circulation. This "spillover" of lipids, results in elevated circulating levels of FAs and 

TGs contributing to abnormal accumulation of lipids in non-adipose tissues such as 

skeletal muscle, liver, heart and J3-cells of the pancreas (Eldor and Raz 2006; van Herpen 

and Schrauwen-Hinderling 2008), a phenomenon known as lipotoxicity. 

1.2 General introduction to lipotoxicity 

Lipid accumulation as a result of lipid spillover has been associated with having 

toxic effects in peripheral, non-adipose tissues; a term referred to as lipotoxicity. It 

should also be noted that lipotoxicity can also affect individuals who suffer from 

lipodistrophy (lack of natuarally occurring adipose tissue), as there is no natural storage 

depot for circulating FAs and TGs, therefore lipids begin to accumulate in non-adipose 

tissues (Unger 2002). 

Increased lipid accumulation in tissues such as liver, skeletal muscle, heart and 

pancreas have been associated with a plethora of dysfunctional consequences. Lipotoxic 

effects in skeletal muscle and liver have been associated with low-grade inflammation 

and insulin resistance; in addition the development of non-alcoholic fatty liver disease is 

also thought to be a consequence of lipotoxicity in the liver (van Herpen and Schrauwen-

Hinderling 2008; Chavez and Summers 2010). Abnormal lipid accumulation in the heart 

and vasculature has been associated with cardiomyopathy, heart failure ("lipotoxic 

heart"), inflammation and endothelial dysfunction (contributing to the progression of 

atherosclerosis) (Unger 2002; van Herpen and Schrauwen-Hinderling 2008; Imrie et al. 
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2010; Wende and Abel 2010). It is well established that lipid accumulation within the 

pancreatic P-cells has been associated with insulin resistance, P-cell dysfunction, and P-

cell failure (Prentki and Nolan 2006; Summers 2006; van Herpen and Schrauwen-

Hinderling 2008; Virtue and Vidal-Puig 2010). Insulin is responsible for activating LPL 

activity in adipocytes for increased FA storage, and decreases LPL activity in skeletal 

muscle (Farese et al. 1991; Lewis et al. 2002). In the obese state, LPL activity is 

inhibited in the adipocytes causing the storage of FAs to be distributed to the circulation 

and non-adipose tissues (Sadur et al. 1984; Yost et al. 1995; Lewis et al. 2002), thus 

insulin resistance is a "double-edged sword" further contributing to the vicious lipotoxic 

cycle. Lipotoxicty and its role in P-cell dysfunction will be discussed later in this review. 

There has been great debate in the literature as to whether it is the quantity or 

quality of lipid species that has the most detrimental toxic effects in non-adipose tissues. 

Ceramides and sphingolipids have been lipid species of intense study in obesity research 

as they have been found to be involved in inhibiting glucose uptake in cells as well as 

inducing oxidative stress (Holland et al. 2007). Ceramides have also been linked to 

influencing the regulation of various adipokines such as TNF-a (Summers 2006), as well 

as contributing to apoptosis through increased ROS production and activation of the NF-

KB pathways (Kusminski et al. 2009; Chavez and Summers 2010) inducing p-cell 

dysfunction and insulin resistance, as well as endothelial inflammation and dysfunction. 

Moreover it has also been shown that ceramides impair the translocation of GLUT4 on 

cellular membranes in muscle, adipose and liver tissue (JeBailey et al. 2007; Hoehn et al. 

2008). Combined, ceramide and sphingolipid species have been implicated as the toxic 

intermediates involved in lipotoxic accumulation in non-adipose tissues (Chavez et al. 
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2003; Summers 2006; Wende and Abel 2010), as well as contributing to inflammation 

through increased ER stress and reactive oxygen species (ROS) (Wende and Abel 2010). 

Additionally, adipokines, in association with the lipotoxic effects of lipid 

accumulation in non-adipose tissues, exacerbates the use of non-oxidative pathways 

(Kusminski et al. 2009) resulting in cellular dysfunction and apoptosis (Gray et al. 2006; 

Summers 2006). Thus the combination of lipotoxicity and pro-inflammatory mediators 

contribute to insulin resistance, oxidative stress, and P-cell dysfunction (Cave et al. 

2008). 

1.3 Changes in adipokine profiles: role in p-cell dysfunction and insulin resistance 

Until recently, it was thought that the primary role of adipose tissue was energy 

homeostasis and a depot for fat storage (Ahima 2006). It wasn't until the discovery of 

leptin, an adipocyte derived hormone, that adipose tissue was regarded as an endocrine 

organ (Zhang et al. 1994; Kershaw and Flier 2004; Ahima 2006; Friedman 2010). Leptin 

has been identified to play a role in fuel metabolism in peripheral tissues (Suzuki et al. 

2007), appetite suppression and reduced fat mass (Schroeder-Gloeekler et al. 2007), FA 

oxidation in skeletal muscle (Muoio and Lynis Dohm 2002), and glucose metabolism 

(Huynh et al. 2010). A more in-depth review of leptin will be covered in chapter 4. 

The adipose tissue acts as an endocrine organ producing and secreting adipocyte 

derived hormones (adipokines) that play a role in metabolic regulation (Gray and Vidal-

Puig 2007). It has been well established that adipokine production and secretion change 

in the obese state (Gray and Vidal-Puig 2007) as seen in figure 1.1. The change in 

adipokine profiles in the obese state is thought to contribute to a low-grade inflammatory 
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state and insulin resistance (Eldor and Raz 2006; Gray and Vidal-Puig 2007; Lago et al. 

2007). Recent studies have shown that adipokines involved in metabolic homeostasis 

include: tumor necrosis factor-a (TNF-a), interluekin-6 (IL-6), monocyte chemoattractant 

protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1), resistin, adiponectin and 

leptin (Shoelson et al. 2006). 

An increase in TNF-a, IL-6, MCP-1, PAI-1, and resistin as seen in obesity 

promotes a pro-inflammatory state that contributes to developing insulin resistance and 

also potentiates vascular disease (Esposito et al. 2006; Shoelson et al. 2007). Unlike the 

other pro-inflammatory adipokines, adiponectin which is reduced in the obese state, has 

anti-inflammatory, and insulin-sensitizing properties and has been found to be inhibited 

by TNF-a and IL-6 in obese states (Esposito et al. 2006; Lago et al. 2007). Likewise, 

leptin acts on the central nervous system and peripheral tissues to reduce fat stores by 

suppressing appetite, increasing metabolic rate, and activating thermogenesis (Muoio and 

Lynis Dohm 2002; Ceddia 2005; Unger 2005; Zhao et al. 2006; Gray and Vidal-Puig 

2007; Friedman 2010), it also functions in glucose metabolism, cytokine secretion, 

phagocytosis, and angiogenesis (Otero ct al. 2006; Lago et al. 2007). This ultimately 

contributes to localized disturbances in metabolic pathways contributing to increased 

macrophage infiltration, insulin resistance, and endothelial damage (Laclaustra et al. 

2007; Shoelson et al. 2007). Thus, obesity is a state of heightened inflammation, a 

process that contributes to the development of obesity-induced insulin resistance; 

therefore, these inflammatory mediators and the pathways in which they activate could be 

potential targets for therapeutic interventions or prevention for obesity induced insulin 

resistance and (3-cell dysfunction. 
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Lipotoxicity and changes in adipokine profiles have been discussed as obesity 

related hypotheses as contributing factors to insulin resistance and P-cell dysfunction. 

The remainder of my thesis will focus on the lipotoxic hypothesis and its role in P-cell 

dysfunction and failure in the progression of obesity-induced T2D. 

1.4 The pancreas: insulin secretion and action 

The pancreas functions as both an exocrine and endocrine organ; with the 

endocrine pancreas responsible for the production and secretion of several hormones that 

regulate carbohydrate metabolism, including insulin. The endocrine pancreas contains 

approximately one million islets composed of several cell types (a-cells, P-cells, 8-cells, 

F-cells, and e-cells). The pancreatic P-cells produce and secrete insulin promoting 

glucose uptake and storage within skeletal muscle and adipose tissue and glucose 

production and storage in liver. In addition to its role in regulating glucose metabolism, 

insulin also regulates lipid metabolism promoting the storage of fat within adipose tissue 

(Evans et al. 2004; Wellen and Hotamisligil 2005; Razani et al. 2008), and acting on the 

brain, specifically the hypothalamus to regulate energy balance by reducing food intake 

(Choudhury et al. 2005; Kahn et al. 2006). 

As shown in figure 1.2, nutrient stimuli such as glucose, amino acids and FFAs, 

get shuttled into the P-cell through their respected transporters. Once inside the cell, the 

glucose and amino acids (via pyruvate) undergo glycolysis in the mitochondria increasing 

intracellular levels of ATP (Las et al. 2006; Nolan et al. 2006). The increase in 

intracellular ATP causes ATP-sensitive K+ channels to close, depolarizing the cell and 

increasing membrane potential; subsequently opening Ca2+ channels and causing an 
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influx of Ca2+ into the cell (Henquin 2000; Nolan et al. 2006). The increase in 

intracellular Ca2+, activates a calmodulin cascade and release of insulin from secretory 

granules that undergo exocytosis (Henquin 2000) (Fig 1.2). Additionally, the binding of 

FFAs to the free fatty acid receptor-1/G-coupled receptor-40 (FFAR1/GPR40) receptors 

on the P-cell membrane causes an increase in intracellular Ca2+ further stimulating the 

calmodulin cascade and release of insulin (Prentki and Nolan 2006) (Fig 1.2). 

Insulin secretion can also be stimulated by the parasympathetic nervous system 

through the binding of acetylcholine (ACh) to the muscarinic receptor (M2) on the p-cell 

(Kahn et al. 2006). Binding of ACh can act through either the protein kinase C (PKC) 

pathway via phospholipase C or through phosphatidylinositol 3-kinase (PI-3K) and 

subsequent increase in Ca2f to stimulate insulin secretion (Kahn et al. 2006; Nolan and 

Prentki 2008). Moreover, the insulin secretion from the P-cell is also stimulated 

hormonally through the binding of incretin hormones such as glucagon-like peptide 1 

(GLP-1), glucagon-dependent insulinotropic peptide (GIP), pituitary adenylate cyclase-

activating polypeptide (PACAP), and vasoactive intestinal polypeptide (VIP) (Inagaki et 

al. 1996; Yamamoto et al. 2003; Hoist and Gromada 2004; Kieffer 2004). For example, 

binding of GLP-1 results in an increase in intracellular cyclic adenosine monophosphate 

(c AMP) causing the stimulation of protein kinase A (PKA) and subsequent closure of K+ 

channels and depolarization of the p-cell (Kieffer 2004; Kahn et al. 2006); thus 

contributing to the influx of Ca2+ and increase in intracellular Ca2f. 
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Figure 1.2 Schematic representation of insulin secretion in the pancreatic p-cell by 
endogenous stimuli - modified from (Boron and Boulpaep 2005). Nutrient stimuli (such 
as glucose, amino acids and FFAs) get shuttled into the p-cell through their respective 
transporters. Once inside the cell, through their respective pathways, the stimuli cause an 
influx of Ca2+ into the cell and release of insulin (via exocytosis of insulin secretory 
granules). Once secreted insulin binds to insulin receptors and increases glucose uptake 
and storage as well as increasing fat storage in adipose tissue. Abbreviations: +++ -
depolarization; GLUT2 - glucose 2 transporter; aa - amino acids; K+ channel; Ca2+ 

channels; ATP - adenosine triphosphate; FFAR1/GPR40 - free fatty acid receptor-l/G-
coupled receptor-40; FFA - free fatty acid. 
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Once secreted, insulin binds to insulin receptors on peripheral tissues such as 

muscle, liver and fat tissue, and stimulates tyrosine kinase activity and subsequent 

phosphorylation of insulin receptor substrates 1 (IRS-1) and IRS-2 (Aspinwall et al. 

2000). This phosphorylation leads to activation of the phosphatidylinositol 3-kinase 

(PI3K) pathway and production of downstream intermediates (Summers 2006). One 

example of a downstream target of this insulin signal transduction cascade is stimulation 

of the translocation of glucose transporter 4 (GLUT4), expressed in both muscle and 

adipose tissue, from the cytoplasm to the cell membrane allowing the influx of glucose 

into the cell for glycolysis or storage (Rose and Richter 2005; Summers 2006) (Fig 1.2). 

Another molecular action of insulin signaling is its ability to increase the action of 

lipoprotein lipase (LPL) to promote the storage of FA within the adipocytes (Razani et al. 

2008). As highlighted above, insulin secretion and insulin signaling are complex 

pathways regulated by many stimuli and affecting many molecular targets; therefore 

disruptions to the signal transduction pathways in a variety of cell types can be 

detrimental to whole-body carbohydrate metabolism. 

There is great debate in the literature about what comes first in the pathogenesis 

of T2D: insulin resistance or P-cell dysfunction? Both etiologies are characteristic of 

obesity-induced T2D and P-cell dysfunction required for the progression to T2D. Insulin 

resistance is a hallmark of the pre-diabetic state and is thought to be a critical 

pathophysiological event in the development of obesity-induced diabetes. As discussed 

above, changes in adipokine secretion, lipid storage and inflammatory profiles in obesity 

induce peripheral insulin resistance, resulting in compensatory hypersecretion of insulin 

from pancreatic P-cells to maintain glucose homeostasis (Prentki and Nolan 2006). If p~ 
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cell function cannot maintain compensatory increases in insulin secretion impaired 

glucose tolerance results and T2D develops (Fig. 1.3) (Gehrmann et al. 2010; Giacca et 

al. 2011). Hyperglycemia itself can also contribute to the activation of inflammatory 

pathways involving NF-KB and PKC through increased production of reactive oxygen 

species (ROS) (Lau et al. 2005) further contributing to p-cell dysfunction. Furthermore, 

ineffective insulin action effects lipoprotein metabolism due to a decrease in LPL action 

and decreased suppression of lipolysis resulting in increased small dense low-density 

lipoprotein (LDL) and decreased high-density lipoprotein (HDL) levels (Razani et al. 

2008). 

1.5 Pancreatic p-cell dysfunction: the lipotoxic hypothesis 

As discussed above, acute exposure of p-cells to free fatty acids (FFAs) is a 

physiological stimulus for normal insulin secretion and P-cell function (Nolan et al. 

2006). However, it is well established that chronic exposure of p-cells to high levels of 

FFAs is detrimental to P-cell health (Lee et al. 2007; Giacca et al. 2011). For example, 

Kim and colleagues (2003) showed that reducing circulating lipid in a genetic mouse 

model of insulin resistance and diabetes (the MKR mouse model - skeletal muscle-

specific impairment of IGF-1 receptor) using a hyperlipidemic agent (a fibrate) improved 

the diabetic state of this animal; suggesting that high circulating is associated with p-cell 

dysfunction (Kim et al. 2003). Excessive amounts of FFAs within the P-cell have been 

shown to interrupt glucose-stimulated insulin secretion and increase rates of apoptosis 

(Bonora 2008; Morgan 2009). 
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Figure 1.3 Obesity is known to cause insulin resistance and P-cell dysfunction - modified 
from (Kasuga 2006; Shoelson et al. 2007). Adipose tissue in the obese state contributes to 
altered adipokine profiles, and lipid accumulation in non-adipose tissues, causing insulin 
resistance and P-cell dysfunction. In the insulin resistant state, pancreatic islets make 
more insulin (hyperinsulinemia) to maintain normal glucose homeostasis. The islets 
"tire" from over-producing insulin and eventually fail resulting in T2D. 
Abbreviations: T2D - type 2 diabetes. 
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For instance, increased levels of FAs within the P-cell have been shown to modify the 

expression of uncoupling protein-2 (UCP2) which is linked to the subsequent decrease in 

ATP production (van Herpen and Schrauwen-Hinderling 2008), disrupting insulin 

secretion (Poitout and Robertson 2008). 

Mediators of FAs including long-chain acyl-CoAs (LC-CoA) have been 

implicated in hyperpolarizing the p-cell (reducing the influx of Ca2+ into the P-cell) as 

well as downregulating the PKC pathway, further disrupting the exocytosis of insulin 

(van Herpen and Schrauwen-Hinderling 2008). Moreover, FFAs have also been linked to 

increased apoptosis by enhancing ROS production and cellular stress (Prentki and Nolan 

2006) further contributing to P-cell dysfunction. Interestingly, studies involving GPR40 

knockout mice showed a reduction in hyperglycemia, hyperinsulinemia when on normal 

chow or high fat diet (Steneberg et al. 2005); thus providing further evidence that FAs 

shuttled into the p-cell, in excess, can have detrimental effects on P-cell function and 

whole-body carbohydrate metabolism. More recent studies involving the GPR40 

knockout mouse have shown that in response to endogenous stimuli in both the fasted 

and fed states, insulin secretion is impaired in these mice (Latour et al. 2007; Alquier et 

al. 2009). Combined, these studies have suggested GPR40 signaling pathways to be 

responsible for the potentiating effects of FAs on insulin secretion (Latour et al. 2007; 

Alquier et al. 2009). 

There is increasing evidence that the type of lipid accumulating within the P-cell 

may affect toxicity and p-cell failure (Virtue and Vidal-Puig 2010). In vitro studies 

involving the INS-IE or MIN6 p-cell lines have shown higher rates of apoptosis when 

treated with the saturated FA palmitate versus the unsaturated FA oleate (Furukawa et al. 

18 



1999; Karaskov et al. 2006; Frigerio et al. 2010). For example, the accumulation of 

diacylglycerols (DAGs) and ceramides in pancreatic p-cells and peripheral tissues have 

been shown to cause detrimental effects and may be key intermediates in lipotoxic 

induced p-cell failure and insulin resistance (Chavez and Summers 2010; Virtue and 

Vidal-Puig 2010). Itani and colleagues (2002) have suggested that DAGs, rather than 

ceramides, were primary mediators of lipid-induced insulin resistance using lipid-

infusion studies in whole animals (Itani et al. 2002). Conversely, Chavez and colleagues 

(2003) have shown endogenous ceramides were required for inhibitory effects of long-

chain saturated fatty acids on insulin signaling (Chavez et al. 2003) and Holland and 

colleagues (2007) further showed that modulating ceramide levels utilizing myriocin (a 

potent inhibitor of sphingosine biosynthesis) in obese rodents, ameliorates insulin 

resistance and subsequent development of diabetes (Holland et al. 2007). Therefore the (3-

cell is an attractive target for improved therapeutics and new treatment paradigms. 

This introductory chapter has highlighted the effects of obesity on peripheral 

insulin resistance and p-cell dysfunction through the "lipotoxic" accumulation of lipids. 

To summarize, increases in adiposity causes changes in adipokine profiles and levels of 

FAs accumulating and being metabolized in non-adipose tissues. These lipotoxic 

disturbances have a strong association with increased rates of insulin resistance and P-cell 

dysfunction in obese individuals through the disruption of various signaling pathways 

involved. The impact of lipotoxic lipid accumulation and metabolism in pancreatic P-

cells under conditions of obesity is the focus of my thesis. My work will help elucidate 

the mechanisms involved in P-cell lipotoxicity and may identify this area as a target for 

improved therapeutics and treatment paradigms. 

19 



As such, manipulating how lipids accumulate within P-cells may be a plausible 

approach to reducing lipotoxicity and preserving P-cell function. Peroxisome 

proliferator-activated receptors (PPARs) are a group of nuclear transcription factors 

involved in lipid metabolism (Chinetti et al. 2000; Lee et al. 2007); where PPARa has 

been identified as a key regulator of genes involved in P-oxidation, FA uptake, and co-

oxidation (Lee et al. 2007). PPARa will be discussed in detail in chapter 3. Using an 

adeno-associated virus serotype 8 (dsAAV8; discussed in detail in chapter 2) for targeted 

overexpression of PPARa in the pancreatic P-cells, my project aims to manipulate lipid 

metabolism in P-cells of mice on high-fat diet; with the expectation that overexpression 

of PPARa would affect whole-animal carbohydrate metabolism. Moreover, this would 

allow us to develop and test the lipotoxic hypothesis in an in vivo model of diet-induced 

p-cell lipotoxicity and T2D. Furthermore, we will be able to look at what subset of 

PPARa target genes (Acyl-CoA oxidase (AOX), carnitine palmitoyl transferase-1 

(CPTl), long chain acyl-coA dehydrogenase (LCAD), and uncoupling protein-2 (UCP2)) 

are involved in P-oxidative pathways within the P-cells; thus allowing us to elucidate 

possible mechanisms involved in protecting the p-cell from lipotoxic lipid accumulation 

in an in vivo model. 

1.6 Study objectives 

Lipid accumulation within the p-cell of the pancreas is a key contributor to 

inhibition of insulin secretion and P-cell apoptosis in the development of T2D in obesity. 

As such, manipulating how lipids accumulate within p-cells may be a plausible approach 

to reducing lipotoxicity and preserving p-cell function. The main objectives of this study 

are: 
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1. To establish whether associated-adeno virus serotype 8 (dsAAV8) is an 

effective and feasible targeted gene delivery tool to generate in vivo animal 

models overexpressing proteins of interest specifically in pancreatic P-cells to 

study lipotoxcity in obesity induced T2D (Chapter 2). 

2. To characterize the in vivo effects of PPARa overexpression in pancreatic P-

cells on lipotoxicity in a diet-induced obese model of T2D (Chapter 3). 

3. To characterize the in vivo effects of PPARa overexpression in pancreatic P-

cells on lipotoxicity in a genetic model of severe obesity and T2D (db/db 

mouse) (Chapter 4). 
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CHAPTER 2 

Utilizing dsAAV8 as a Tool to Overexpress Proteins Specifically in the Pancreatic P-
Cell In Vivo 
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2.1 INTRODUCTION 

Transgenic or knockout mouse models have been used to study various pathways 

and mechanisms involved in human diseases. Transgenic models are tools utilized to 

study gene function; specifically they provide in vivo models to examine the effects of 

overexpressing or knocking out genes of interest proving to be a critical link between 

bedside and bench (Miesfeld 1999). Additionally, the development of the Cre/loxP 

system for animal transgenics has allowed for infinite possibilities for conditional 

knockouts including developmental stage and tissue-specific gene knockout (Nagy 2000). 

As outlined in chapter 1, obesity has been implicated in increasing adiposity in non-

adipose tissues such as the p-cells of the pancreas contributing to insulin resistance, p-cell 

dysfunction and development of T2D (Kasuga 2006; Prentki and Nolan 2006; van 

Herpen and Schrauwen-Hinderling 2008). Thus making the P-cell an ideal target for 

elucidating the mechanisms involved in p-cell lipotoxicity in obesity-induced T2D. 

Therefore mouse models for p-cell-specific overexpression or gene knockouts are very 

relevant to the remainder of this study. 

Tissue specific promoters such as the mouse insulin promoter (MIP) and rat 

insulin promoter (RIP) have been used to develop P-cell specific transgenic mouse 

models (Gannon et al. 2000; Hara et al. 2003; Dahlhoff et al. 2011) by driving the gene or 

protein of interest directly to the insulin producing P-cells of the pancreas. It should be 

noted that the human genome contains a single copy of the insulin gene, whereas two 

variations are found in the rat (RIP1 and RIP2) (Odagiri et al. 1996; Hay and Docherty 

2006). RIP1 and RIP2 vary in size (448bp and 668bp respectively), however they both 

target the P-cells of the pancreas (Gannon et al. 2000; Hay and Docherty 2006). Hara et 
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al. (2003) developed transgenic mice expressing enhanced green fluorescent protein 

(eGFP) in pancreatic P-cells under the direction of the MIP (Hara et al. 2003). In 

addition, Hara and colleagues (2003) were able to show that under the control of MIP, 

eGFP was targeted to the P-cells and not the a-cells of the pancreas utilizing FACS to 

sort isolated islets (Hara et al. 2003), further confirming site-specific expression. 

It should be noted that utilizing the RIP to target the P-cells of the pancreas in a 

RIP-Cre transgenic has been associated with "extrapancreatic" expression in neural 

tissues of the brain (Gannon et al. 2000; Dahlhoff et al. 2011). Choudhury and 

colleagues (2005) were able to show expression of eGFP in the hypothalamic and 

forebrain neurons in addition to the P-cells of the pancreas in their RIPCreZEG 

transgenic mouse (Choudhury et al. 2005). This neuronal expression utilizing RIP-Cre 

transgenic mice was further supported by the results obtained by Choi and colleagues 

(2008) where RIPCre+Pte«fl,fl mice were found to be PTEN deficient in the insulin 

secreting neurons in the hypothalamus and not the p-cells of the pancreas (Choi et al. 

2008). Moreover, Gannon and colleagues (2000) expressed that caution needs to be 

exercised when using RIP2-Cre mice, as RIP2 directs expression of the gene of interest 

during embryogenesis in both the pancreas and brain, as well, the activation of RIP 

during early development may interfere with the populations of cells becoming P-cells 

(Gannon et al. 2000). All of this information needs to be taken into consideration when 

deciding if a transgenic mouse model is the most appropriate tool for P-cell-specific gene 

expression for in vivo overexpression studies. 

Novel methods involving the transfer of genes into specific tissues of interest 

using viral delivery have become more widely accepted and used in place of traditional 
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transgenic models. One emerging field is the use of adeno-associated viruses as a mode 

of viral gene delivery. Currently, three classifications of adeno-associated viruses exist: 

single stranded adeno-associated virus (AAV), recombinant adeno-associated virus 

(rAAV) and the double-stranded adeno-associated virus (dsAAV) (Wang et al. 2004; Wu 

et al. 2006); in addition there are several serotypes and hundreds of variations of AAV-

based vectors (Wu et al. 2006). 

Adeno-associated viruses are small, non-pathogenic, non-replicating, members of 

the Parvovirdiae family, requiring a helper virus for appropriate infection and site-

specific integration into tissues of interest (Wang et al. 2004; Inagaki et al. 2006; Wu et 

al. 2006). AAVs also exhibit low immune response, as well they can be used to transfect 

both dividing and non-dividing cell types (Gao et al. 2002; Gaddy et al. 2010; Riedel et 

al. 2010), making them an ideal and efficient tool for viral-mediated gene delivery. 

Tissue-specific delivery of the AAVs is dependent on the serotype capsid with which it is 

associated (Inagaki et al. 2006). Serotypes and their tissue specificity include: AAV1 

(CNS, skeletal muscle and adipose tissue), AAV2 (kidney), AAV4 (CNS, and 

photoreceptors), AAVS (CNS, and photoreceptors), AAV6 (skeletal muscle), AAV7 

(skeletal muscle), AAV8 (skeletal muscle, liver, heart and pancreas) and AAV9 (skeletal 

muscle, liver, lung) (Chao et al. 2000; Gao et al. 2002; Loiler et al. 2003; Wang et al. 

2004; Wu et al. 2006). Given AAV8 delivery is directed at tissues in the gut, therefore, 

site-specific delivery to the p-cells of the pancreas could be enhanced utilizing tissue 

specific promoters such as MIP or RIP (Wu et al. 2006). 

Based on the various tissue types dsAAVs can target as well as their low immune 

response, dsAAVs are becoming an increasingly attractive tool for gene therapy. 
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Recently, Gaddy and colleagues (2011) have utilized dsAAV8 driven by MIP to target 

interleukin-4 (IL-4) as well as combinations of glucagon-like peptide-1 and hepatocyte 

growth factor/NKl with IL-4 to the pancreatic P-cells in NOD mice (model of T1D) 

(Gaddy et al. 2011). Using dsAAV8, they were able to demonstrate that IL-4 as well as 

the various combinations (GLP-1 + IL-4 and NK1 + IL-4) reverse hyperglycemia in 

NOD mice through a single ip injection (Gaddy et al. 2011). Moreover, Montane and 

colleagues (2011) utilized dsAAV8 to target CCL22 (recruits Treg cells) to the p-cells of 

NOD mice, through an intraductal injection (Montane et al. 2011). Their results suggest 

that increasing expression of CCL22 in the pancreatic P-cells attenuates the autoimmune 

destruction of P-cells associated in T1D through the increased recruitment of Tregs 

(Montane et al. 2011). Combined, these studies show the remarkable potential of 

utilizing dsAAVs for human gene therapy. 

Double-stranded adeno-associated (dsAAV) viral vectors have been used as non

invasive tools for tissue-specific gene delivery to pancreatic p-cells. Extensive in vivo 

studies were conducted administering eGFP with various AAV serotypes under the 

direction of MIP to C57B16 mice via intraperitoneal, intraductal, and intravenous 

injection (Wang et al. 2006). Wang and colleagues (2006) concluded that viral delivery 

via interperitoneal injections were as effective as intraductal and intravenous when viral 

dose was increase to 5x10" viral/genomes per mouse (Wang et al. 2006); moreover 

dsAAV8 was more effective than dsAAVl, dsAAV2, dsAAV5 and dsAAV6 when 

targeting the pancreatic p-cells (Wang et al. 2006). In addition gene expression in 

pancreatic islets was observed for four months post infection via intraperitoneal injection 

(Wang et al. 2006). More recently, Kieffer and colleagues (2011) have conducted long-
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term expression studies, showing expression of dsAAV8-MIP-eGFP in the pancreatic P-

cells one year post-infection (Kieffer, TJ - personal communication). 

Furthermore, under the direction of MIP, Wang and colleagues did not detect 

eGFP expression in brain tissue of infected mice (Wang et al. 2006), indicating that using 

dsAAV8-MIP or dsAAV8-RIP to target pancreatic P-cells is an effective method for gene 

delivery without crossing the blood brain barrier. It should be noted that previous studies 

have indicated that utilizing dsAAV8 under the direction of MIP or RIP may cross the 

BBB due to dsAAV8's ability to increase vascular permeability in endothelial cell lining 

of blood vessels (Inagaki et al. 2006; Wu et al. 2006); further studies investigating the 

vasculature leakiness of dsAAV8 is required. 

More recently, Gaddy and colleagues (2010) have been able to successfully 

overexpress eGFP within pancreatic P-cells without causing changes in body weight or 

carbohydrate metabolism utilizing dsAAV8 (Gaddy et al. 2010; Riedel et al. 2010). 

These studies demonstrate using dsAAV8-RIP-eGFP as a control vector for in vivo 

overexpression studies is an appropriate tool for viral-mediated tissue specific gene 

delivery. Moreover, the use of dsAAV8 allows for targeted gene delivery at any stage in 

the rodent's life; essentially providing a model of "inducible transgenics" without the 

complications associated with conventional transgenic mouse models. Additionally 

dsAAV8 can be delivered prior to or after a treatment such as high fat diet; as well it can 

be delivered to various mouse breeds including the "standard" C57B16 or various 

transgenic models including db/db or ob/ob mouse (to be discussed in chapter four). 

The objective of this study is to establish an in vivo model and protocol of viral-

mediated gene delivery in our lab. This study will serve as control for data collection and 
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analysis prior to characterizing the in vivo effects of dsAAV8-RIP-PPARa 

overexpression in p-cell lipotoxicity in a diet-induced obese model of T2D. 
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2.2 MATERIALS AND METHODS 

Mice. 

All animal studies were approved by the University of Northern British Columbia 

Animal Care and Use Committee (protocol number 2011-21). For all experiments, 6-

week-old, male, C57B16 mice were purchased from Charles River Laboratories 

(Wilmington MA, USA) unless otherwise stated. Mice were maintained on a 12 hr 

light/dark cycle and received standard rodent chow diet (Rodent LabDiet, 5001, Leduc 

AB, Canada) ad libitum unless otherwise stated. Mice were allowed to acclimatize to the 

animal facility for 1 week prior to performing any experimental procedures. Body weight, 

4hr fasted blood glucose (OneTouch Ultra, Lifescan, Burnaby BC, Canada), oral glucose 

tolerance tests (OGTT) and insulin tolerance tests (ITT) were performed prior to viral 

injections to assess baseline carbohydrate metabolism. 

Double-stranded adeno-associated virus serotype 8. 

dsAAV8 transfer vectors were designed utilizing the rat insulin 1 promoter (RIP) 

(410 bp) placed upstream of either a sequence encoding eGFP (720bp) or the PPARa 

(1407bp) open reading frame, followed by the SV40 polyadenylation signal. Complete 

RIP-eGFP (5328bp) and RIP-PPARa (6015bp) vectors were sent to Children's Hospital 

of Philadelphia (CHOP) Research Vector Core Services (Philadelphia PA, USA) for 

AAV8 virus preparation. 

Pancreatic p-cell specific expression of eGFP. 

At 8 wks of age, C57B16 mice were infected with dsAAV8-RIP-eGFP virus by ip 

injection (n=7; 5xl012 viral genomes/284 |il/mouse) (P-eGFP-Chow) and control mice 

(saline) were given an ip injection of saline (n=7; 284(il/mouse) (Gaddy et al. 2010; 
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Riedel et al. 2010) (Fig. 2.1). Body weights, glucose tolerance and insulin sensitivity 

were assessed prior to and three weeks post-infection. Three weeks post-infection 

animals were sacrificed and pancreas was collected and stored in 4% paraformaldehyde 

for immunohistological analysis. 

Insulin tolerance tests. 

Mice were fasted for 4hrs and given an ip injection of human synthetic insulin at 

0.75U/kg or l.OU/kg (Novolin Ge, Toronto ON, Canada). Blood was sampled (l-2|il) 

from the saphenous vein and blood glucose measured (mmol/L) at 10, 20 30, 60, and 120 

min post injection, using a handheld glucometer (OneTouch Ultra Lifescan, Burnaby BC, 

Canada). 

Oral glucose tolerance and glucose-stimulated insulin secretion. 

Mice were fasted for 16 hrs and given 2g/kg D-glucose by oral gavage. Blood 

(15-20(^1) was sampled at 5, 10 and 180 minutes post glucose gavage from the saphenous 

vein and blood glucose (mmol/L) measured in 1-2(^1 blood at 5, 10, 30, 60, 120 and 180 

minutes post gavage using a handheld glucometer (OneTouch Ultra Lifescan, Burnaby 

BC, Canada) (Huynh et al. 2010). 

Immunohistological analysis. 

Whole mouse pancreas were fixed in 4% paraformaldehyde, embedded in paraffin 

and sectioned (5^m); n=5 per group (Wax-it Histology Services; Vancouver BC, 

Canada). All sections were de-paraffinized in xylene, rehydrated in ethanol (100%, 95%, 

and 70%) and rinsed in lxPBS as described previously (Riedel et al. 2010). Sections 

were incubated with polyclonal primary antibody to rabbit anti-eGFP (1:500) (Al 1122, 

Invitrogen Molecular Probes, Carlsbad CA, USA), polyclonal guinea pig anti-insulin 
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(1:1000) (4011-0IF, Millipore, Billerica MA, USA) and a monoclonal primary antibody 

to mouse anti-glucagon (1:1000) (G2654, Sigma, Oakville ON, Canada) overnight. 

Appropriate secondary whole (heavy and light chain) antibodies conjugated to Alexafluor 

488 (A21206 or A21202) or 594 (A 11076 or A11032) (1:1000) (Invitrogen Molecular 

Probes, Carlsbad CA, USA) were used to detect primary antibody immunoreactivity. All 

samples were visualized using a fluorescent light microscope (Olympus BX61) and 

images analyzed using Cell Sens Software (Olympus, Markham ON, Canada). 

Western blot analysis. 

Hypothalamus, liver, intestine, and skeletal muscle samples were collected and 

flash frozen. Protein was extracted using RIPA buffer (Thermo Scientific, Rockford IL, 

USA) and quantified using a BCA assay (Thermo Scientific, Rockford IL, USA). Protein 

(30|4.g) was separated on a 12% SDS-PAGE gel and transferred to a PVDF membrane 

(Millipore, Billerica MA, USA). Membranes were blocked with 5% non-fat dry milk in 

TBS-Tween 20 followed by overnight incubations with a polyclonal primary antibody to 

rabbit anti-eGFP (1:1000) (A11122, Invitrogen Molecular Probes, Carlsbad CA, USA), a 

monoclonal primary antibody to mouse anti-P-Actin (A5441, Sigma, Oakville ON, 

Canada), or a monoclonal primary antibody to mouse anti-a-tubulin (1:3000) (T8203, 

Sigma, Oakville ON, Canada) were used to normalize protein levels. Secondary 

horseradish peroxidase-conjugated antibodies (1:5000) (anti-rabbit IgG A4914, anti-

mouse IgG, A8924, Sigma, Oakville ON, Canada) were incubated for lhr and visualized 

by chemiluminescence (Amersham ECL plus, Baie d'Urfe QC, Canada) using the 

Carestream Software and Kodak Imager (4000MM Pro) (Kodak, Woodbridge CT, USA). 
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Statistical analysis. 

Results are expressed as mean ± standard error of the mean. Analyses were 

performed using paired student's t-test and 1-way ANOVA (significance between two 

groups), or 2-way ANOVAs (significance between groups over time) with Bonferoni 

Post tests using Graphpad Prism 5.0 software (La Jolla CA, USA). Significance was 

declared if p-values were less than 0.05. 
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Figure 2.1 In vivo experimental approach establishing effects of overexpressing dsAAV8-
RIP-eGFP in pancreatic p-cells in mice. Four-month-old male C57B16 mice were 
infected with either dsAAV8-RIP-eGFP (P-eGFP-Control) (5.0xl012 viral 
genomes/mouse) or saline (284|J/mouse). Body weights (weekly), 4hr fasted blood 
glucose readings (biweekly), oral glucose tolerance (end point), and insulin tolerance 
(end point) were assessed. Additionally western blot analysis was utilized to determine if 
eGFP was being expressed in other tissues other than pancreatic P-cells. Abbreviations: 
dsAAV8 - double stranded adeno-associated virus serotype 8; RIP - rat insulin promotor; 
eGFP - enhanced green fluorescent protein. 
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2.3 RESULTS 

Overexpression of dsAAV8-RIP-eGFP is targeted to P-cells and not the a-cells of the 

pancreas. 

Immunohistochemical analysis of pancreas sections collected from dsAAV8-RIP-

eGFP infected mice show eGFP immunofluorescence colocalized with insulin 

immunofluorescence (Fig. 2.2a) as indicated by the green and red overlay; whereas no 

colocalization was observed between eGFP and glucagon immunofluorescence (Fig. 

2.2b). These results are supported by previous studies from Gaddy et al (2010) and Riedel 

et al (2010); further confirming that eGFP protein expression using dsAAV8-RIP-eGFP 

is localized to the P-cell with no expression in the a-cell of the islets or the exocrine 

tissue of the pancreas. As expected, no eGFP expression was observed in pancreatic 

sections collected from saline infected mice. Moreover, eGFP was found to be expressed 

in 60% of the total islet area in eGFP infected islets from an ip injection (Fig 2.2c). 

Pancreatic p-cell specific overexpression of eGFP driven by the rat insulin promoter 

does not cross the blood brain barrier. 

Due to the observation that RIP-Cre transgenic mice have been shown to drive 

recombination of conditional gene knockouts in hypothalamic neurons as well as 

pancreatic p-cells (Choudhury et al. 2005; Choi et al. 2008), we examined if eGFP 

expressed from dsAAV8-RIP-eGFP and delivered by dsAAV8 was expressed in 

hypothalamic neurons of dsAAV-RlP-eGFP infected mice. Western analysis of protein 

extracts from hypothalamic tissue we detected no expression of eGFP suggesting the 

adeno-associated virus did not cross the BBB or the RIP promoter was not active in 

neurons of the hypothalamus in these mice (Fig. 2.3). 
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Figure 2.2 Immunohistochemical analysis to detect eGFP overexpression in pancreatic P-
cells. Overexpression of dsAAV8-RIP-eGFP shows targeted expression of eGFP in P-
cells (A) and not a-cells (B) of the pancreas of C57B16 mice. (C) Percentage of eGFP 
immunoreactive area in total islet area. Abbreviations: dsAAV8 - double stranded adeno-
associated virus serotype 8; RIP - rat insulin promotor; eGFP - enhanced green 
fluorescent protein; INS - insulin; GLC - glucagon . Saline-treated n=7, P-eGFP-Control 
n=7. Images taken at 20x magnification. Scale bar 50p.m. 
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Figure 2.3 Western blot analysis of dsAAV8-RIP-eGFP expression in non-pancreatic 
tissues. Overexpressing dsAAV8-RIP-eGFP in pancreatic p-cells does not cross the BBB 
showing no expression in the hypothalamus. 30]ig of protein per sample was loaded and 
run (see methods); (3-Actin was utilized as a protein control. Abbreviations: dsAAV8 -
double stranded adeno-associated virus serotype 8; RIP - rat insulin promotor; eGFP -
enhanced green fluorescent protein; NT - non-transfected MIN6 cells; (-) negative 
control; eGFPM - eGFP transfected MIN6 cells; (+) positive control. 
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Overexpression of dsAAV8-RIP-eGFP is not expressed in skeletal muscle or liver. 

We examined expression of eGFP in peripheral tissues (liver, intestine and 

skeletal muscle) of mice that received virus carrying dsAAV8-RIP-eGFP and saline 

control mice, using western blot analysis. No eGFP expression was observed in skeletal 

muscle or intestine protein extracts in both dsAAV8-RIP-eGFP expressing mice and 

saline control mice. Non-specific bands were observed in skeletal muscle and liver 

protein extracts of both |3-eGFP-control and saline mice (Fig. 2.4). It should be noted that 

the increased brightness observed in liver protein extracts raised concern and required 

further investigation as dsAAV8 has been reported to target liver and skeletal muscle 

tissue in addition to the pancreas (Chao et al. 2000; Gao et al. 2002; Wang et al. 2004; 

Wu et al. 2006); therefore we had to confirm if the non-specific bands were real. 

To do this, we decided to perform immunohistochemical analysis using the same 

antibodies utilized of the western blot. Skeletal muscle and liver tissue samples of both 

P-eGFP-control and saline mice were sectioned and stained for eGFP using 

immunohistochemistry. It was observed that eGFP was not expressed in either skeletal 

muscle or liver tissue (Fig. 2.5a) in both P-eGFP-control and saline mice. Intensity of 

eGFP observed was identical to the background staining in the no primary (1°) antibody 

control. As an additional control for immune reactivity, pancreatic sections (Fig. 2.5b) 

were stained for eGFP and insulin. This allowed us to confirm that under the same 

conditions and concentrations the antibody to eGFP and blocking solutions utilized for 

immunohistochemical analysis was able to detect eGFP in pancreatic P-cells as 

previously shown. 
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Figure 2.4 Western blot analysis of dsAAV8-RJP-eGFP expression in non-pancreatic 
tissues. Overexpressing dsAAV8-RIP-eGFP in pancreatic P-cells does not target skeletal 
muscle or intestine. Non-specific binding of eGFP was observed in liver tissue in both 
dsAAV8-RIP-eGFP mice and saline controls. 30(ig of protein per sample was loaded and 
run (see methods); P-Actin was utilized as a protein control. Abbreviations: dsAAV8 -
double stranded adeno-associated virus serotype 8; RIP - rat insulin promotor; eGFP -
enhanced green fluorescent protein; NT - non-transfected MIN6 cells; (-) negative 
control; eGFPM - eGFP transfected MIN6 cells; (+) positive control; SKM - skeletal 
muscle. 
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Figure 2.5 Immunohistoehemical analysis of dsAAV8-RIP-eGFP overexpression in non
pancreatic tissues. Staining revealed no eGFP expression in liver (A) or skeletal muscle 
(B) tissues above background staining (secondary antibody AF488 only) in p-eGFP-
Control mice when compared to saline controls. Pancreas sections (C) were stained as 
positive controls to show level of eGFP expression when cells are overexpressing eGFP. 
Abbreviations: dsAAV8 - double stranded adeno-associated virus serotype 8; RIP - rat 
insulin promotor; eGFP - enhanced green fluorescent protein; 10 - primary; CNTRL -
control. Images taken at 20x magnification. Scale bar 50|xm. 
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Pancreatic p-cell specific overexpression of eGFP using dsAAV8-RIP in mice does 

not affect carbohydrate metabolism. 

We utilized a RIP driven expression vector delivered by dsAAV8 to generate 

mice overexpressing eGFP specifically in pancreatic P-cells. We confirmed that control 

mice expressed eGFP specifically in pancreatic P-cells (dsAAV8-RIP-eGFP) with no 

effect on body weight, 4 hr fasted blood glucose levels, oral glucose tolerance or insulin 

sensitivity when compared to control mice injected with saline (Fig. 2.6 a-d). These 

results, and similar results from others (Gaddy et al. 2010) confirm dsAAV8-RIP-eGFP is 

an appropriate control virus for in vivo overexpression studies using dsAAV8. 
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Figure 2.6 Body weight and carbohydrate metabolism from 3wk post-infection with 
dsAAV8-RIP-eGFP (P-eGFP-Control) or saline (284|^l/mouse) by ip injection. 
Overexpression of eGFP in pancreatic P-cells resulted in no change in body weight (A), 
4hr FBG (B), glucose tolerance (C, 2g D-glucose/kg), or insulin sensitivity (D, 0.75U 
insulin/kg) compared to saline-treated mice on regular chow diet. Abbreviations: 
dsAAV8 - double stranded adeno-associated virus serotype 8; RIP - rat insulin promotor; 
eGFP - enhanced green fluorescent protein; FBG - fasted blood glucose. Saline-treated 
n=7, P-eGFP-Control n=7. Mean values +/- standard error of the mean are shown. 
Statistical significace was tested by 2-way ANOVA (over time) with Bonferoni Post 
Tests or Student's t-Tests (at specific time points). 
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2.4 DISCUSSION 

Transgenic mice driven by the RIP start expressing the gene or protein of interest 

as early as embryonic day 13.5 (Hara et al. 2003); thus, showing overxpression of the 

gene of interest before birth, from El 3.5. In addition, when utilizing RIP-Cre 

transgenics, there is a possibility that the protein of interest will also be expressed in the 

hypothalamic neurons of the brain (Choudhury et al. 2005; Choi et al. 2008; Dahlhoff et 

al. 2011). It has been described previously, that as little as a 10% reduction in body 

weight can have significant improvements in whole body carbohydrate metabolism 

(Smyth and Heron 2006). Since the hypothalamus is responsible for appetite regulation 

(Inui 1999), overexpression of proteins in the hypothalamus by RIP can impact 

carbohydrate metabolism and p-cell function. Choi and colleagues (2008) speculated that 

manipulating hypothalamic neuronal activity by overexpressing Cre and increased 

protein production can regulate whole body growth (Choi et al. 2008) as seen in their 

RIP-Cre mouse. These characteristics of RIP transgenics were considered when deciding 

on the most appropriate method for implementing P-cell specific overexpression of 

PPARa and assessing its effects on p~cell lipotoxicity in a diet-induced obese model of p-

cell failure and T2D. If we were to use a RIP-PPARa transgenic mouse overxpressing 

PPARa, we would induce PPARa expression from El3.5 in the developing pancreas as 

well as the potential expression in the adult hypothalamus. Thus, we would not be able to 

easily discern if the physiological results obtained are solely from pancreatic p-cell 

overexpression of PPARa or additionally related to these cofounding expression patterns. 

Therefore methods of inducible overexpression seem more favorable when characterizing 

genes of interest in an in vivo model. 
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Recently, a new gene delivery tool has been developed for targeted delivery of 

proteins to p-cells of the pancreas via intraperitoneal injection utilizing dsAAV8 vectors 

(Wang et al. 2006; Gaddy et al. 2010; Riedel et al. 2010) under the direction of the rat-

insulin promoter. Here we demonstrate that viral delivery of dsAAV8-RIP-eGFP is 

specifically targeted to pancreatic P-cells and not a-cells (Fig. 2.2 a, b) or exocrine tissue 

of pancreas. Overall these results indicate that the delivery of dsAAV8-RIP-eGFP via 

intraperitoneal injection prove to be an effective, non-invasive method of viral gene 

transfer for targeted protein delivery to the p-cells of the pancreas. 

By overexpressing eGFP in the P-cells of the pancreas, we are forcing the P-cell 

to increase the production of foreign proteins. This increased protein production could 

potentially lead to decreased insulin secretion and the development of P-cell dysfunction 

or P-cell exhaustion. Therefore it was crucial to determine if expressing foreign proteins 

would affect the overall health of the P-cell. We determined that overexpression of 

dsAAV8-RIP-eGFP in the pancreatic p-cells did not affect body weight or overall 

carbohydrate metabolism (Fig. 2.6), further proving to be a useful control vector for 

future in vivo studies involving diabetic models. 

Importantly, we have also confirmed that dsAAV8-RIP-eGFP does not cross the 

BBB (Fig. 2.4) similar to the results obtained by Wang and colleagues (2006), thus 

avoiding gene expression in hypothalamic neurons that may cause changes in appetite 

regulation controlled by the hypothalamus (Devaskar et al. 1994; Gannon et al. 2000). 

eGFP has been shown to be expressed in liver and skeletal muscle (Inagaki et al. 2006; 

Wu et al. 2006) when using dsAAV8. During western blot analysis non-specific bands 

were observed in both skeletal muscle and liver protein extracts (Fig. 2.4) from P-eGFP-
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control and saline mice. However, after close observation the bands observed were not 

detected at 27kDa (eGFP positive control) they were found to have a slightly higher 

molecular weight as seen in the shift on the membrane. It should be noted that protein 

extracts from liver in P-eGFP-control mice were found to have bands of increased 

intensity around 27kDa, indicating that eGFP may be expressed in these tissues; thus 

immunohistochemical analysis was also performed. Moreover, our group concluded that 

these bands were indeed non-specific based on the observation that chemiluminescence 

was detected in protein extracts of saline injected mice in both liver and skeletal muscle. 

Due to these unexpected results from western blot analysis, our group has 

confirmed that eGFP is not expressed in skeletal muscle or liver tissue of P-eGFP-control 

mice, using immunohistochemical analysis of paraffin embedded sections, that no eGFP 

staining was observed above background fluorescence (Fig 2.5a, b). To show positive 

staining of eGFP, pancreatic tissue sections were stained and used as a positive control 

for "real" eGFP staining (Fig. 2.5c). One may argue that there are intensely stained areas 

of green in the liver section of P-eGFP-control mice, however these intense patches of 

green were also observed in saline islets (Fig. 2.5c middle panel) indicating that these 

could be autofluorescing red blood cells, increased background staining, or non-specific 

staining observed in western results. 

Based on our results and those obtained by our colleagues (Gaddy et al. 2010; 

Riedel et al. 2010), it should be noted that utilizing dsAAV8 for P-cell specific gene 

delivery is an appropriate vector for developing and characterizing in vivo models of p-

cell overexpression. In addition we have been able to show effective gene delivery (Fig. 

2.2a, b) to the target tissue (P-cells) through a non-invasive interperitoneal injection. 
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Furthermore, we have shown eGFP expression to be observed in 60% of total islet area of 

infected islets (Fig 2.2c). Importantly, the use of an ip injection opposed to intraductal 

injections allows user groups to avoid complications associated with invasive surgery 

such as recovery time, weight loss and potential death. Having shown the same 

efficiency of viral delivery as our colleagues (Wang et al. 2006; Riedel et al. 2010), 

utilizing the interperitoneal injection for our future studies will prove to be critical, as we 

want to ensure that any changes observed in our model is due solely to the 

overexpression of PPARs in the p-cells, and not due to weight loss caused by the invasive 

surgery of performing intraductal injections. 

It has been proposed by Wang et al (2006), Gaddy et al (2010) and Riedel et al 

(2010) that there is the potential of utilizing dsAAV8 as a potential therapeutic for 

targeted pharmaceuticals or as a method of targeted gene therapy in diabetic individuals 

(Gaddy et al. 2010; Riedel et al. 2010). Again, the use of dsAAV8 under the control of 

RIP is also attractive as it specifically targets the pancreatic p-cells, therefore if it were to 

be used as a method of gene therapy in diabetes treatments, we could potentially avoid 

systemic complications as seen with some pharmaceuticals. As previously discussed, 

Gaddy et al. (2011) and Montane et al. (2011) have both utilized dsAAV8 mediated gene 

delivery to either reverse hyperglycemia or protect against further autoimmune 

destruction of P-cells in T1D mice (Gaddy et al. 2011; Montane et al. 2011). Moreover, 

improvements were seen after a single ip or intraductal injection (Gaddy et al. 2011; 

Montane et al. 2011). These studies have shown that dsAAV8 could be a potential 

therapeutic for the treatment of T1D, thus making it especially appealing to current 

patients, as well as parents of T1D kids as an alternative to islet transplantation. 
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The results obtained in this study were similar to those obtained by Gaddy et al 

(2010) and Riedel et al (2010); further proving to be an effective tool in in vivo diabetic 

models opposed to traditional models of transgenics. The major findings from this 

chapter are: 

1. dsAAV8 is an effective tool for gene delivery to the pancreatic P-cells. 

2. Overexpression of dsAAV8-RIP-eGFP is observed in p-cells and not a-cells 

of the pancreas as early as three weeks post infection. 

3. Overexpression of dsAAV8-RIP-eGFP is not expressed in the hypothalamus 

of the brain, or peripheral tissues (skeletal muscle, liver and intestine). 

4. Overexpression of dsAAV8-RIP-eGFP within the pancreatic p-cells does not 

affect body weight or carbohydrate metabolism. 
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CHAPTER 3 

Overexpression of PPARa in the Pancreatic p-cells Improves Carbohydrate 
Metabolism in a Model of Diet-induced Obesity 

A version of this chapter has been submitted as an abstract: 
Hogh, K-Lynn N., Uy, Christopher E., Fraser, J., Asadi, A., Baker, Robert K., Riedel, 
Michael J., Gray, Sarah L. 2011. Overexpression of PPARa in pancreatic P-cells 
improves glucose tolerance in diet-induced obese mice. Canadian Journal of Diabetes. 
35(4): 417. Canadian Diabetes Association AGM & Professional Meetings. Toronto ON. 
Oct 26-29 2011. 

A version of this chapter has been submitted: 
Hogh, K-Lynn N., Uy, Christopher E., Asadi, A., Baker, Robert K., Riedel, Michael J., 
Gray, Sarah L. 2012. Overexpression of PPARa in pancreatic P-cells improves glucose 
tolerance in diet-induced obese mice. Endocrinology. Manuscript Submission number: 
EN-12-1110. 
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3.1 INTRODUCTION 

As previously outlined in chapter one, lipotoxicity is implicated as a mechanism 

in p-cell dysfunction and development of obesity-induced T2D in (Virtue and Vidal-Puig 

2010). Therefore protecting the pancreatic P-cells from increased lipid accumulation may 

be a plausible approach to reducing lipotoxicity and preserving P-cell function. 

The peroxisome proliferator-activated receptors (PPARs) are nuclear transcription 

factors involved in the regulation of lipid metabolism (Chinetti et al. 2000). PPARa is 

often expressed in tissues including the liver, skeletal muscle, heart and pancreas (Lee et 

al. 2003). Activation of PPARa upregulates expression of p-oxidative genes (Tordjman 

et al. 2002; Lalloyer et al. 2006; Medina-Gomez et al. 2007) with subsequent 

improvements in glucose homeostasis by decreasing circulating lipids and lipid 

accumulation in non-adipose tissues such as liver and skeletal muscle, consequently 

reducing lipotoxicity and increasing insulin sensitivity (Sugden et al. 2003; Lalloyer et al. 

2006). Figure 3.1 illustrates the binding of PPARa to RXR where it forms a heterodimer 

prior to nuclear internalization. Once in the nucleus, the PPARa/RXR heterodimer binds 

to the PPAR response element (PPRE) where gene transcription remains inactive until the 

activating ligand (FA or FA derivatives, or PPAR agonist) binds to PPARa/RXR, causing 

the release of the corepressor complex (CRC) and histone deacetylases (HDACs) and 

subsequent binding of the coactivator complex (CAC) which recruits histone 

acetyltransferases (HATs). The PPARa/RXR/CAC complex is then active and the 

transcription of downstream target genes can occur, including the transcription of genes 

involved in fatty acid metabolism and p-oxidation (Reddy and Hashimoto 2001; Mandard 

et al. 2004). 
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Figure 3.1 - Regulation of gene expression by PPARs (Binding of PPAR/Retinoid 
Nuclear Receptor Family) modified from (Reddy and Hashimoto 2001). The PPAR/RXR 
family is involved in controlling gene transcription at the nuclear level. Abbreviations: 
FA - fatty acid; PPAR - peroxisome proliferator-activated receptor; Pa - PPARa; RXR -
retinoid-X receptor; CRC - corepressor complex; HDACs - histone deacetylases; PPRE 
- PPAR response element; CAC - coActivator complex; HATs - histone 
acetyltransferases. 
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When PPARa is activated, numerous downstream target genes involved in (3-

oxidation and lipid metabolism are turned on (Mandard et al. 2004). Some of the genes 

upregulated by PPARa include: Acyl-CoA oxidase (AOX), carnitine palmitoyl 

transferase-1 (CPT1), long chain acyl-coA dehydrogenase (LCAD), and uncoupling 

protein-2 (UCP2) (Reddy and Hashimoto 2001; Lee et al. 2003). Expression of these 

target genes varies depending on tissue selected (Mandard et al. 2004). Increased 

expression and PPARa activation occurs largely in the liver (Lee et al. 2003), where a 

decrease in triglyceride synthesis and increased oxidation of fatty acids is observed 

(Frederiksen et al. 2004). It should be noted that previous studies have reported that 

prolonged exposure to increased PPARa activity in the liver has been linked to 

heptacellular carcinoma in rats and mice (Qin et al. 1997; Gonzalez et al. 1998; Reddy 

and Hashimoto 2001). In contrast, PPARs have been found to be nonmutagenic in nature 

after increasing metabolic activity (Gonzalez et al. 1998; Reddy and Hashimoto 2001); 

therefore proving to be a potential tool in tissue-specific gene manipulation in in vivo 

studies. 

Studies utilizing PPARa null mice or systemic administration of PPARa agonists 

have contributed greatly to elucidating the physiological role of PPARa. Loss-of-function 

studies have shown that animals lacking PPARa are protected against high-fat diet 

induced obesity and insulin resistance (Guerre-Millo et al. 2001); where PPARa was 

found to be non-essential for the maintenance of euglycemia, but required to maintain the 

P-cell adaptive response to hyperglycemia (Guerre-Millo et al. 2001; Bihan et al. 2005; 

Yessoufou et al. 2009). Moreover, Lalloyer and colleagues (2006) utilized PPARa-null 

ob/ob mice to show that PPARa deficiency in a severely obese model (ob/ob) resulted in 
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increased P-cell dysfunction with reduced islet area and decreased glucose-stimulated 

insulin secretion (Lalloyer et al. 2006). It should also be noted that PPARa-null mice 

often suffer from hypoglycemia under prolonged fasting (Guerre-Millo et al. 2001; 

Lalloyer et al. 2006). This hypoglycemia is believed to be attributed to depleted 

glycogen stores in PPARa-null mice, (Kersten et al. 1999; Lee et al. 2003; Mandard et al. 

2004) 

Gain of function studies utilizing systemic administration of PPARa agonists in 

OLETF rats, prevented FFA-induced P-cell dysfunction (Koh et al. 2003; Lalloyer et al. 

2006). PPARa agonists have been shown to improve hepatic insulin sensitivity by 

enhancing hepatic expression of p-oxidative genes (Bergeron et al. 2006), strongly 

supporting the notion that PPARa agonists decrease lipid accumulation in peripheral 

tissues such as liver (Holness et al. 2003; Koh et al. 2003; Bergeron et al. 2006). 

Additionally, Yajima and colleagues (2003) have shown that administrating a 

combination of PPARa and PPARy agonists increased glucose-stimulated insulin 

secretion by increasing insulin stores in P-cells of db/db mice (Yajima et al. 2003). 

Because the above studies report the effects of systemic PPARa deletion or agonism, the 

direct effect of PPARa on pancreatic P-cell function cannot conclusively be determined 

as direct or secondary and thus it remains unclear if the beneficial effects of PPARa on P-

cell function are due to reductions in circulating lipid levels via actions on the liver, or 

direct effects on the p-cell itself. 

Studies utilizing both isolated islets and P-cell lines have provided evidence that 

PPARa activation is able to improve p-cell function directly. Hellemans et al (2007) 

showed that in isolated rat islets, activation of PPARa protected against palmitate-
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induced toxicity through increased mitochondrial and peroxisomal P-oxidation 

(Hellemans et al. 2007). More recently, Frigerio and colleagues (2010) utilized 

adenoviruses to overexpress PPARa and retinoid X receptor (RXR) in the INS-IE p-cell 

line (Frigerio et al. 2010). Overexpressing PPARa in this clonal cell line resulted in 

restored glucose-stimulated insulin secretion in oleate-treated cells by promoting glucose 

metabolism and fatty acid storage (Frigerio et al. 2010). Frigerio et al (2010) proposed 

that overexpression of PPARa in the INS-IE cells increased fatty acid turnover through 

consumption via p-oxidation; it was also proposed that the protective effects observed 

with PPARa overexpression could be due to increased triglyceride synthesis (Frigerio et 

al. 2010). Further supporting the protective effects of PPARa, Lalloyer et al (2007) were 

able to show that treatment with PPARa agonists under lipotoxic conditions improved 

insulin secretion in isolated human islets (Lalloyer et al. 2006). These improvements 

were associated with decreased islet triglyceride content and decreased palmitate-induced 

apoptosis (Lalloyer et al. 2006). Together, these studies provide evidence that activation 

of PPARa in isolated islets and p-cell lines may protect against lipotoxic induced P-cell 

dysfunction through the regulation of lipid metabolism in islets. 

Based on the above in vivo and in vitro studies showing favorable effects of 

PPARa agonism on p-cell function in the context of lipid exposure and high-fat feeding, 

we hypothesized that overexpression of PPARa specifically in pancreatic P-cells of obese 

mice, in vivo, would preserve pancreatic P-cell function and delay the onset of obesity-

induced diabetes. 
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3.2 MATERIALS AND METHODS 

Cell Culture. 

There are several p-cell lines currently utilized to study the in vitro effects of 

lipotoxicity on the P-cell and its role in the pathogenesis of T2D. When available, 

isolated islets are preferred; however islets are difficult to isolate, and can become 

expensive to obtain, as whole mice must be sacrificed for the collection of islets. In 

addition to primary islets, insulinoma cell lines are commercially available for in vitro 

studies looking at p-cell function. Of the P-cell lines, the MIN6 and INS-IE cells are 

often most utilized for their P-cell characteristics (Xiao et al. 2001; Tordjman et al. 2002; 

Ravnskjaer et al. 2005; Frigerio et al. 2010). The use of these cell lines will depend on 

what tests, and data one wants to collect. INS-IE cells have been found to be more easily 

cultured, however they have less regulation of insulin secretion and higher basal insulin 

levels without a stimulus (Skelin et al. 2010). Whereas the MIN6 cells, act and respond 

more like P-cells, in a glucose dependent manner; where insulin is secreted appropriately 

in response to a glucose stimulus (Skelin et al. 2010). 

MIN6 cells (passage 15- 25) were cultured at 37°C and 5% CO2 in media 

containing Dulbecco's Modified Eagle's Media (DMEM) (D5671, Sigma, Oakville ON, 

Canada), 200mM L-glutamine, 50jjmol/L P-mercaptoethanol, 10% FBS (vol/vol), and 

100 U/ml penicillin-streptomycin). Cells were transfected at 80-90% confluencey as 

previously described (Dalby et al. 2004) using lipofectamine 2000 (lfil) (Invitrogen, 

Burlington ON, Canada) and 1.6(ig of plasmid (plasmid dsAAV8-RIP-eGFP or plasmid 

dsAAV8-RIP-PPARa) (Fig. 3.2). Enhanced green fluorescent protein (eGFP) was 

visualized by fluorescent microscopy to assess transfection efficiency 24hrs post 
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transfection; experiments that produced 60% or more eGFP expressing cells were 

considered to be successfully transfected. For experiments requiring palmitate treatment, 

cells were exposed to the above culture media containing OjxM or 250[iM BSA-coupled 

palmitate (6:1) (Gwiazda et al. 2009) for 48hrs one day post-transfection. 20mM stock 

palmitic acid was prepared daily as follows: 5.6mg of palmitic acid was dissolved in 1ml 

of H2O containing l(il ofNaOH at 70°C; once dissolved 0.5ml of 20mM palmitic acid 

was added to 1.65ml of 20% FA free BSA, and added to 17.85ml of cell culture media 

for a final stock concentration of 500^M. Stock palmitate solutions were then diluted to 

working concentrations of 250fiM prior to treating cells. 

RNA extraction and cDNA generation. 

RNA was extracted (RNeasy kit, Qiagen, Valencia CA, USA) from cells 24 hrs 

post transfection. Genomic DNA was removed from RNA extracts using lOx TURBO 

DNAse buffer (5|il) and TURBO DNAse (1 jal) and incubated at 37°C for 1 hr as per the 

manufacturers protcol (TURBO DNAse Kit, Ambion, Burlington ON, Canada). RNA 

concentration and purity were assessed by spectrophotometry (nanodrop 

spectrophotometer, ND-1000, Thermo Scientific, Rockford IL, USA) and RNA integrity 

was assessed by visualizing intact 18s and 28s rRNA bands on a 1.5% agarose gel. Intact 

RNA (500ng) was reverse transcribed to cDNA using random primers (5jj.1), dNTPs 

(1 (.il), dH^O (jc-jj-1 to total volume of 13^1) and incubated at 65°C for 5min, then first 

strand buffer (4|il), 0.1M DTT (1 j_il) and superscriptlll (1 jj.1) added to each reaction and 

incubated in the thermocycler as per the manufacturers protocol (Superscript III Reverse 

Transcriptase kit, Invitrogen, Burlington ON, Canada). 

Quantitative Real-time PCR. 
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PPARa mRNA expression levels in MIN6 cells and induction of PPARa target 

gene mRNA expression were assessed using quantitative real-time PCR normalized to 

the reference genes p-Actin and 18s. Taqman primer and probe sequences for PPARa, 

carnitine palmitoyl transferase-1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), 

Acyl-CoA oxidase (AOX), uncoupling protein-2 (UCP2), P-actin and 18s are shown in 

Table 1 (Sigma,) and qPCR master mix contained: iQ Supermix, Taqman forward and 

reverse primers (5|iM), Taqman probes (5JJM), RNAse free H2O, cDNA (lfil) (BioRad 

Laboratories, Hercules CA, USA; Sigma, Oakville ON, Canada; Ambion, Austin TX, 

USA). The following reaction conditions were used for each RT-PCR: one cycle of 50°C 

for 2min, 95°C for lOmin followed by 40 cycles of 95°C for 15sec, 60°C for lmin 

(BioRad iQ5 Multicolor RT-PCR Detection System, BioRad Laboratories, Hercules CA, 

USA). All qRT-PCR reactions followed the MIQE guidelines (Bustin et al. 2009) where: 

1) Each biological replicate (experimental and control) was completed in 

triplicate 

2) RNA extracts were treated with DNAse to remove genomic DNA 

3) RNA quality was assessed using slab gel electrophoresis 

4) cDNA was prepared immediately after RNA quality assessment 

5) Primers and probes were previously designed by groups using qRT-PCR 

6) R2 values were 0.980 or greater, with efficiencies between 90-115% 

7) Several reference genes (18S and p-Actin) were used for normalization 

8) Each biological replicated was run as a technical triplicate for maximum 

reproducibility. 
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Table 3.1 Taqman primer and probe sequences used to assess mRNA expression levels of 
PPARa and PPARa target genes using quantitative PCR. 

Gene Forward Primer (5'-3') Reverse Primer (5'-3') Probe (5'-3') 

PPARa CCTCAGGGTACCACTACGGAGT GCCGAATAGTTCGCCGAAA CACGCATGTGAAGGCTGTAAGGGCTT 

CPT1 GCGTGCCAGCCACAATTC TCCATGCGGTAATATGCTTCAT CCGGTACTTGGATTCTGTGCGGCC 

LCAD GCATGAAACCAAACGTCTGGA TGTTTTGTAATTCAGATGCCCAGT TCCGGTTCTGCTTCCATGGCAAAA 

AOX AATTGGCACCTACGCCCAG AGTGGTTTCCAAGCCTCGAA CGGAGATGGGCCACGGAACTCA 

UCP2 GATCTCATCACTTTCCCTCTGGATA CCCTTGACTCTCCCCTTGG CGCCAAGGTCCGGCTGCAGA 

(3-Actin GCTCTGGCTCCTAGCACCAT GCCACCGATCCACACAGAGT GATCAAGATCATGCTCCTCCTGAGCGC 

18S CGGCTACCACATCCAAGGAA GTCGGAATTAC CGCGGCT GAGGGCAAGTCTGGTGCCAG 
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Glucose-stimulated insulin secretion. 

MIN6 cells were cultured and transfected with respective plasmids (plasmid 

dsAAV8-RIP-eGFP and plasmid dsAAV8-RIP-PPARa) and treated with either 0|iM or 

250|iM BSA coupled-palmitate for 48 hrs as described above. Cells were incubated for 

lhr in glucose-free KRH Buffer (5M NaCl, 1M KC1, 1M Mg2S04, 1M NaHCCh, 1M 

CaCl2, 0.5M KH2P04, 1M HEPES, 0.5g BSA) (Sigma, Oakville ON, Canada), before 

being exposed to basal (2.8mmol/l) and stimulating (20mmol/l) levels of D-glucose for 1 

hour each (Frigerio et al. 2010). After each incubation, 1ml of media was collected and 

insulin levels quantified. 5^1 of each sample was run in triplicate with conjugate buffer 

(75|il) and shaken at 800rpm on a microplate shaker for 2 hrs at room temperature. 

Samples were then washed with wash buffer and incubated for 15min at 800rpm with 

TMB substrate. Stop solution was then added to samples and quantified at 450nm on a 

plate reader (Ultrasensitive insulin ELISA assay, 80-INSMSU-E10, ALPCO, Salem NH, 

USA). Protein was extracted using 100(j.l RIPA buffer/well per 24-well plate (lOpl 

HALT buffer and 10|il EDTA per 1ml RIPA) (Thermo Scientific, Rockford IL, USA) 

and quantified in using a bicinchoninic acid (BCA) assay. 25^1 of each sample was run 

in triplicate with 200^1 of working reagent and incubated at 37°C for 30min. Plates were 

cooled to room temperature prior to quantifying at 560nm on a plate reader (Thermo 

Scientific, Rockford IL, USA). Secreted insulin levels (ng/ml) were normalized to total 

cellular protein (mg/ml) per well (ng/ml/mg protein). 
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Figure 3.2 In vitro experimental approach utilized in the expression of PPARa in MIN6 
cells (in vitro). Abbreviations: PPARa - peroxisome proliferator-activated receptor 
alpha; MIN6 - mouse insulinoma cell line; BSA - bovine serum albumin; GSIS -
glucose-stimulated insulin secretion. 
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Mice. 

AH animal studies were approved by the University of Northern British Columbia 

Animal Care and Use Committee (protocol number 2011-21). For all experiments, 6-

week-old, male, C57B16 mice were purchased from Charles River Laboratories 

(Wilmington MA, USA) unless otherwise stated. Mice were maintained on a 12 hr 

light/dark cycle and received standard rodent chow diet (Rodent LabDiet, 5001, Leduc 

AB, Canada) ad libitum unless otherwise stated. Mice were allowed to acclimatize to the 

animal facility for 1 week prior to performing any experimental procedures. Body weight, 

4 hr fasted blood glucose (OneTouch Ultra, Lifescan, Burnaby BC, Canada), oral glucose 

tolerance tests (OGTT) and insulin tolerance tests (ITT) were performed prior to viral 

injections to assess baseline carbohydrate metabolism. 

Double-stranded adeno-associated virus serotype 8. 

dsAAV8 transfer vectors were designed utilizing the rat insulin 1 promoter (RIP) 

(410 bp) placed upstream of either a sequence encoding eGFP (720bp) or the mouse 

PPARa (1407bp) open reading frame, followed by the SV40 polyadenylation signal. 

Complete dsAAV8-RIP-eGFP (5328bp) and dsAAV8-RIP-PPARa (6015bp) vectors 

were sent to Children's Hospital Of Philadelphia (CHOP) Research Vector Core Services 

(Philadelphia PA, USA) for AAV8 virus preparation 

Pancreatic P-cell specific overexpression of PPARa in high fat diet-induced obese 

mice. 

At 4-months old, C57B16 mice were infected with dsAAV8-RIP-PPARa virus (P-

PPARa-HFD, n=8; 5xl012 viral genomes/814.3}il/mouse) or dsAAV8-RIP-eGFP virus 

78 



(P-eGFP-HFD control group, n=6; 5xl012 viral genomes/552.5|il/mouse) via ip injection. 

Body weights were monitored weekly; 4 hr fasted blood glucose was monitored biweekly 

and glucose tolerance and insulin sensitivity were assessed monthly by OGTT and ITT 

respectively. Two days post injection mice were switched to a high fat diet containing 

45% kcal as fat (D12451, Research Diets, New Brunswick NJ, USA) ad libitum 

throughout the remainder of the experiment (20 weeks) when all animals were sacrificed 

(Fig. 3.3). Tissues were collected and flash frozen or fixed in 4% paraformaldehyde for 

48hrs and then stored in 70% EtOH. Whole pancreas sections were prepared by WAX-

IT histological services (Vancouver BC, Canada). 

Insulin tolerance tests. 

Mice were fasted for 4 hrs and given an ip injection of human synthetic insulin at 

0.75U/kg or l.OU/kg (Novolin Ge, Toronto ON, Canada). Blood was sampled (l-2jxl) 

from the saphenous vein and blood glucose measured (mmol/L) at 10, 20 30, 60, and 120 

min post injection using handheld glucometer (OneTouch Ultra, Lifescan, Burnaby BC, 

Canada). 

Oral glucose tolerance and glucose-stimulated insulin secretion. 

Mice were fasted for 16 hrs and given 2g/kg D-glucose by oral gavage. Plasma 

(15-20|xl) was sampled for insulin measurement at 5, 10 and 180 minutes post glucose 

gavage from the saphenous vein and blood glucose (mmol/L) measured in 1 -2|il blood at 

5, 10, 30, 60, 120 and 180 minutes post gavage using handheld glucometer (OneTouch 

Ultra, Lifescan, Burnaby BC, Canada) (Huynh et al. 2010). 

Overnight fasted and re-fed plasma insulin levels. 
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Mice were fasted for 16 hrs and blood collected in heparinized capillary tubes 

(Fisher Scientific, Ottawa ON, Canada) from the saphenous vein. Food was reintroduced 

for 2 hrs and plasma collected again. Blood glucose was determined using a handheld 

glucometer (OneTouch Ultra, Lifescan, Burnaby BC, Canada) and plasma insulin levels 

were assessed by ELISA (Ultrasensitive insulin ELISA assay, 80-INSMSU-E10, 

ALPCO, Salem NH, USA). 

Immunohistological analysis. 

Whole mouse pancreas sections fixed in 4% paraformaldehyde and embedded in 

paraffin were sectioned at 5^m thickness; n=5 per group (Wax-it Histology Services; 

Vancouver BC, Canada). All sections were de-paraffinized and rehydrated as described 

previously in chapter 2 (Riedel et al. 2010). Sections were incubated with polyclonal 

primary antibodies to rabbit anti-eGFP (1:500) (Al 1122, Invitrogen Molecular Probes, 

Carlsbad CA, USA), polyclonal guinea pig anti-insulin (1:1000) (4011-01F, Millipore, 

Billerica MA, USA) and a monoclonal primary antibody to mouse anti-glucagon (1:1000) 

(G2654, Sigma) overnight. Appropriate secondary whole (heavy and light chain) 

antibodies conjugated to Alexafluor 488 (A21206 or A21202) or 594 (A 11076 or 

Al 1032) (1:1000) (Invitrogen Molecular Probes) were used to detect primary antibody 

immunoreactivity. All samples were visualized using a fluorescent light microscope 

(Olympus BX61) and images analyzed using Cell Sens Software (Olympus, Markham 

ON, Canada). 

p-cell mass measurements. 

Insulin immunoreactive-positive area was measured in serial sections of the whole 

pancreas (2 serial sections, 200^m apart from the A. head, B. middle and C. tail of the 
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pancreas (total 3 sections/mouse, n= 4 per group)). Images were captured using the 

ImageXpress® Micro Imaging System and analyzed using MetaXpress® Software 

(Molecular Devices Corporation, Sunnyvale, CA, USA). Total insulin-positive area/total 

pancreas area was multiplied by weight of the whole pancreas (mg) to determine P-cell 

mass (Huynh et al. 2010). 

Statistical analysis. 

Results are expressed as mean ± standard error of the mean. Analyses were 

performed using paired student's t-test and 1-way ANOVA (significance between two 

groups), or 2-way ANOVAs (significance between groups over time) with Bonferoni 

Post tests using Graphpad Prism 5.0 software (La Jolla CA, USA). Significance was 

declared if p-values were less than 0.05. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 3.3 In vivo experimental approach characterizing the physiological effects of 
overexpressing PPARa in the pancreatic p-cells of C57B16 mice in vivo. Four month old 
male C57B16 mice were infected with either dsAAV8-RIP-eGFP ((3-eGFP-HFD) or 
dsAAV8-RIP-PPARa and placed on high-fat diet for 16 weeks. Abbreviations: dsAAV8 
- double stranded adeno-associated virus serotype 8; RIP - rat insulin promotor; eGFP -
enhanced green fluorescent protein; PPARa - peroxisome proliferator-activated receptor 
alpha; FBG - fasted blood glucose; HFD - high-fat diet; ip - intraperitoneal. 
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3.3 RESULTS 

Overexpression of pro-oxidative PPARa in MIN6 cells at a physiological level. 

MIN6 cells successfully transfected with dsAAV8-RJP-PPARa plasmid showed a 

253 + 28 fold increase in PPARa mRNA expression compared to control cells 

overexpressing dsAAV8-RIP-eGFP plasmid (1.0 ± 0.05) (Fig. 3.4a). The level of 

overexpression in MIN6 cells using plasmid dsAAV8-RIP-PPARa was compared to 

PPARa mRNA expression levels observed in fasted liver tissue. Comparison allowed us 

to determine that the levels of PPARa mRNA overexpression achieved in MIN6 cells 

with the above expression vector were within a physiological range, comparable to levels 

observed in fasted liver. 

Overexpression of pro-oxidative PPARa in MIN6 cells results in upregulation of the 

PPARa target gene CPT-1. 

In cells overexpressing PPARa mRNA and exposed to palmitate (250|iM) we 

detected upregulation of one of the four PPARa target genes measured (CPT1, LCAD, 

AOX, and UCP2) (Fig. 3.4b). The 2-fold increase in CPT1 expression that we observed 

has been observed previously in cell models of increased PPARa activity (Xiao et al. 

2001; Ravnskjaer et al. 2005; Hellemans et al. 2007; Frigerio et al. 2010). No significant 

increase in LCAD, AOX or UCP2 was observed in cells overexpressing PPARa with 

palmitate treatment. 
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Figure 3.4 Overexpression of PPARa in MIN6 cells. Overexpression of PPARa in MIN6 
cells occurs at physiological levels (A) and upregulates expression of CPT1 with 
palmitate treatment (B). Overexpressing PPARa in MIN6 cells did not change insulin 
secretion when stimulated with high levels of glucose without palmitate (C). 
Abbreviations: PPARa - peroxisome proliferator-activated receptor alpha; MIN6 -
mouse insulinoma cell line; eGFP - enhanced green fluorescent protein; CPT1 - carnitine 
palmitoyl transferase-1; LCAD - long-chain acyl-coA dehydrogenase; UCP2 -
uncoupling protein-2; AOX - acyl-CoA oxidase . Mean values with standard error of 
mean are shown. Statistical significance was determined by 2-way ANOVA with 
Bonferoni Post Tests or Student's T-Tests. *P<0.05, **P<0.01, ***P<0.001. 
****P<0 oooi 
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PPARa overexpression in MIN6 cells protects against palmitate-induced 

impairment of glucose stimulated insulin secretion (GSIS). 

Overexpression of PPARa in MIN6 cells in the absence of palmitate did not alter 

glucose stimulated insulin secretion (Fig. 3.4c left panel). As expected due to lipotoxic 

effects of palmitate on P-cell insulin secretion, blunted insulin levels were observed in the 

non-transfected, eGFP and PPARa MIN6 cells when treated with 250nM of palmitate 

compared to 0(iM palmitate. No significant difference was detected when comparing 

stimulation indexes of all groups (Fig. 3.4c inset). However, in the presence of palmitate, 

PPARa overexpression protected against palmitate-induced impairment of glucose-

stimulated insulin secretion (Fig. 3.4c right panel). These results are further supported by 

previous studies utilizing MIN6 and INS1-E P-cell lines (Ravnskjaer et al. 2005; 

Hellemans et al. 2007; Frigerio et al. 2010). 

Overexpression of PPARa in pancreatic p-cells protects against obesity-induced 

glucose intolerance. 

Increased PPARa overexpression was observed in the cytoplasm and nuclei in 

islets of P-PPARa-HFD mice compared to P-eGFP-HFD controls (Fig. 3a); arrows 

indicate increased nuclear staining. Fluorescent dyes were reversed (insulin green and 

PPARa red) in P-eGFP-HFD islets to ensure endogenous levels of PPARa were not 

mistaken for fluorescence from the presence of our control vector, eGFP. Sixteen weeks 

post-infection, we observed significantly improved glucose tolerance and lower overnight 

fasting blood glucose levels in diet-induced obese mice overexpressing PPARa (p-

PPARa-HFD) in pancreatic p-cells compared to diet-induced obese control mice (P-
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eGFP-HFD) (Fig. 3.5a). In fact, the improvement in glucose tolerance in p-PPARct-HFD 

mice is equal to that of age-matched, chow-fed control mice; a substantial improvement 

considering these mice have been on a HFD diet for 16 weeks (Fig. 3.5a). 

Specifically, blood glucose levels taken 10 minutes post glucose gavage were 

significantly lower in (3-PPARa-HFD (20.13 ± 0.46 mmol/L) mice compared to P-eGFP-

HFD controls (22.67 ± 0.75 mmol/L). It should be noted that although not significant 

over time, significantly lower 4 hr fasted blood glucose levels were observed in P-

PPARa-HFD mice at two significantly reduced time points (Fig. 3.5b) compared to P-

eGFP-HFD control mice. Improvements in glucose tolerance in obese P-PPARa-HFD 

mice were not associated with reduction in body weight (Fig. 3.5c) or improvement in 

whole body insulin sensitivity (Fig. 3.5d) compared to P-eGFP-HFD control mice 

suggesting improvement in insulin sensitivity did not account for the improvement in 

glucose tolerance. Moreover, a trend in improving glucose tolerance over time was also 

observed (Fig. 3.6 a-e). 
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Figure 3.5 (A) PPARa is overexpressed in the cytoplasm and nuclei (arrows) of P-
PPARa-HFD compared to P-eGFP-HFD controls. (B) Overexpression of PPARa in 
pancreatic p-cells of obese mice improved oral glucose tolerance (2g/kg D-glucose) 
compared to obese controls, with glucose tolerance similar to age-matched, chow mice. 
(C) Over time, no significant difference between 4 hr fasted blood glucose was observed. 
(D) PPARa overexpression did not affect body weight. (E), nor was insulin sensitivity 
affected (1U insulin/kg). Abbreviations: PPARa - peroxisome proliferator-activated 
receptor alpha; eGFP - enhanced green fluorescent protein; FBG - fasted blood glucose; 
HFD - high-fat diet. P-eGFP-HFD n=6, p-PPARa-HFP n=8. Mean values with SEM are 
shown. Statistical significant variation was determined by 2-way ANOVA with 
Bonferoni Post Tests or Student's T-Tests. *P<0.05, **P<0.01, ***P<0.001. 
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PPARa overexpression in pancreatic p-cells maintains 1st phase insulin secretion in 

obesity. 

Circulating insulin levels in P-PPARa-HFD (2.05 ±0.19 ng) mice were 

significantly higher than P-eGFP-HFD controls (1.05 ± 0.20 ng) 5 minutes post glucose 

gavage (Fig. 3.7a). No significant difference in fasting or refeed plasma insulin levels 

were observed (Fig. 3.7b) in P-PPARa-HFD mice compared to P-eGFP-HFD control 

mice (Fig. 3.7b). We did not observe any difference in islet morphology or p-cell mass in 

the two groups of mice (Fig. 3.7c). Additionally, Figure 3.8 shows no significant 

difference in body weight or tissue mass (liver, pancreas, gonadal white adipose, or 

subcutaneous white adipose) from either P-eGFP-HFD or P-PPARa-HFD groups, further 

suggesting that improvements in whole-body carbohydrate metabolism observed were 

associated with changes in p-cell function and not body composition. 
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Figure 3.6 Overexpression of PPARa in pancreatic P-cells shows a trend towards 
improved glucose tolerance over time (2g D-glucose/kg). Oral glucose tolerance tests 
over time (A) Baseline, (B) 1-month post-infection, (C) 2-months post-infection, (D) 3-
months post-infections (E) 4-months post infection. Abbreviations: PPARa - peroxisome 
proliferator-activated receptor alpha; eGFP - enhanced green fluorescent protein; FBG -
fasted blood glucose; HFD - high-fat diet. |3-eGFP-HFD n=6, P-PPARa-HFP n=8. Mean 
values with SEM are shown. Statistical significant variation was determined by 2-way 
ANOVA with Bonferoni Post Tests. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 3.7 Overexpression of PPARa in pancreatic P-cells maintains 1st phase insulin 
secretion in C57B16 mice on high-fat diet compared to obese controls. Glucose-
stimulated insulin secretion (A) but not overnight and refeed insulin levels (B) was 
significantly affected. Additionally, overexpression of PPARa in pancreatic p-cells did 
not change islet morphology or P-cell or a-cell mass (C) when compared to obese 
controls. Abbreviations: PPARa - peroxisome proliferator-activated receptor alpha; eGFP 
- enhanced green fluorescent protein. p-eGFP-HFD n=6, p-PPARa-HFP n=8. Mean 
values with SEM are shown. Statistical significant variation was determined by 2-way 
ANOVA with Bonferoni Post Tests or Student's T-Tests. *P<0.05, **P<0.01, 
***p<0 001. Images taken at 20x magnification. Scale bar 50|im. 
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Figure 3.8 Overexpression of PPARa in pancreatic P-cells does not cause changes in 
peripheral tissue mass on HFD. Abbreviations: PPARa - peroxisome proliferator-
activated receptor alpha; eGFP - enhanced green fluorescent protein; HFD - high fat 
diet; scWAT - subcutaneous white adipose tissue; gWAT - gonodal white adipose tissue. 
(3-eGFP-HFD n=6, (3-PPARa-HFP n=8. Mean values with SEM are shown. Statistical 
significant variation was determined by student's t-tests. 
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3.4 DISCUSSION 

Our group has shown for the first time that PPARu overexpression in pancreatic 

P-cells, in vivo, improves glucose tolerance and maintains 1st phase insulin secretion on 

HFD in a diet-induced obese model of T2D. Beneficial effects of systemic PPARa 

agonism on P-cell function and carbohydrate metabolism have been demonstrated 

(Guerre-Millo et al. 2000; Holness et al. 2003; Bergeron et al. 2006), however the impact 

of P-cell-specific PPARa overexpression on whole-body carbohydrate metabolism has 

yet to be explored in an in vivo model of obesity-induced T2D. Given the pro-oxidative 

potential of PPARa, we hypothesized that specific activation of PPARa in pancreatic p-

cells of obese mice may prevent lipid-induced p-cell failure. We show in vivo 

overexpression of PPARa specifically in pancreatic P-cells significantly improves whole 

animal glucose tolerance in diet-induced obese mice to levels equal to that of age-

matched, chow-fed, control mice (Fig. 3.5a). This is a substantial improvement 

considering p-PPARa-HFD mice have been exposed to a HFD for 16 weeks and we 

would not expect improvements in glucose tolerance to exceed that of the age-matched 

chow mice. This improvement in glucose tolerance is not due to reductions in body 

weight or improvements in insulin sensitivity. Instead we show 1st phase insulin 

secretion (5 minutes post glucose-gavage) is higher in P-PPARa-HFD mice compared to 

obese control mice. In addition to improvements in glucose tolerance, we observed lower 

overnight fasted blood glucose levels with a trend of decreased 4 hr fasted blood glucose 

levels. Despite increased insulin secretion, fasting and fed plasma insulin levels were not 

significantly higher in p-PPARa-HFD mice compared to control mice. Morphological 

analysis of pancreatic tissue did not show increased P-cell mass, suggesting P-cell 
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specific PPARa overexpression improved p-cell function rather than increasing P-cell 

mass. 

Further studies are required to determine the lipidomic profile of any accumulated 

lipids within the pancreatic P-cells of both our p-eGFP-HFD and p-PPARa-HFD mice. 

Additionally experiments will need to be conducted to determine the rate of lipid 

turnover within the pancreatic P-cells, as the majority of in vivo work attributes 

improvements in whole animal carbohydrate metabolism to lipid turnover in the liver. As 

Lee et al. (2003) have suggested that the increase in liver lipid accumulation and liver 

mass in PPARa-null mice further supports PPARa's role in lipid regulation, as well the 

liver being a site of lipid turnover (Lee et al. 2003). The authors also speculated that the 

hypoglycemia, and elevated FA plasma levels observed in PPARa-null mice were caused 

by the defective FA oxidation and uptake in the liver (Lee et al. 2003). Furthermore, a 

study involving fibrate treatment in primates resulted in an increased liver mass 

associated with an increase in number of peroxisomes, resulting in an increase in p-

oxidation (Hoivik et al. 2004). Combined, these studies suggest increased liver mass 

does affect PPARa's role in lipid metabolism, which subsequently effects whole-body 

carbohydrate metabolism. Together these studies have indicated that improvements in 

whole animal carbohydrate metabolism were due to PPARa's role in lipid turnover in the 

liver. Therefore, it is important that our group rule out the liver as a possible source of 

carbohydrate improvement. As discussed in chapter 2, our group has ruled out dsAAV8-

RIP-eGFP expression in the liver tissue of infected mice; therefore we assume dsAAV8-

RIP-PPARa would not be expressed in these tissues. Moreover, as seen in figure 3.8, we 

have shown no significant difference in liver mass between P-eGFP-HFD and P-PPARa-

99 



HFD mice, thus we suggest improvements observed were not due to changes in liver lipid 

metabolism. This data supports our observation that improvement in glucose tolerance in 

P-PPARa-HFD mice was due to the direct action of overexpressing PPARa in the 

pancreatic P-cells and not due to peroxisome proliferation and increased PPARa activity 

in the liver. 

Utilizing ob/ob mice, Lalloyer and colleagues were able to show that PPARa 

deficiency resulted in impaired GSIS and defective islet function (Lalloyer et al. 2006), 

suggesting PPARa may play an important role in preserving p-cell function in the obese 

state. Our results support a direct role for PPARa in improving pancreatic P-cell 

function, with overexpression of PPARa specifically within the pancreatic P-cells 

maintaining 1st phase insulin secretion impaired by obesity. Frigerio and colleagues 

(2010) have performed extensive in vitro studies that support this finding. Utilizing the 

INS IE cell line, they have shown that overexpression of PPARa is able to restore 

glucose-stimulated insulin secretion in the presence of oleate (Frigerio et al. 2010), while 

downregulation of PPARa expression exacerbated lipid-induced dysfunction (Frigerio et 

al. 2010). 

As with previous studies, our group has been able to show, in vitro, that 

overexpression of PPARa has protective effects against lipotoxic dysfunction in the 

presence of palmitate, which may be due to the increased P-oxidative activity from the 

induction of PPARa target genes. When activated PPARa increases transcription of 

downstream target genes involved in P-oxidation (Mandard et al. 2004); therefore it 

would be expected that in the presence of palmitate MIN6 cells overexpressing PPARa 

would show an induction of target genes. We show in the presence of palmitate, that the 
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PPARa target gene CPT1 is significantly increased in cells overexpressing PPARa 

(Ravnskjaer et al. 2005; Hellemans et al. 2007; Frigerio et al. 2010). CPT1 was found to 

have a two-fold increase (2.4+0.30) compared to eGFP-MIN6 controls (1.0+0.18), 

similar to results obtained by Frigerio and colleagues (2010). Levels of LCAD, AOX, 

and UCP2 induction were not found to be significantly increased, therefore we must also 

consider the fact that these PPARa overexpression studies also overexpressed an 

adenovirus for RXR in addition to PPARa (Ravnskjaer et al. 2005; Hellemans et al. 

2007; Frigerio et al. 2010). Overexpressing RXR in addition to PPARa may allow for 

increased formation of the RXR-PPAR heterodimer, and subsequent increase in 

transcription of the downstream (3-oxidative genes (Fig. 3.1). 

Therefore it is quite possible that the lack of increased P-oxidative gene induction 

observed is due to an excess of PPARa in the presence of endogenous levels of RXR 

within the MIN6 cell or the appropriate activating ligand for PPARa is not present in 

sufficient quantities. However, consistent with the previous studies our group has been 

able to show the overexpressing PPARa in MIN6 cells protects against lipotoxic 

impairment of glucose-stimuated insulin secretion (GSIS), showing that in vitro PPARa 

overexpression in the presence of palmitate protects MIN6 cells and enhances glucose-

stimulated insulin secretion. These findings are consistent with previous studies that have 

shown PPARa to protect p-cells from lipid-induced impairment of GSIS in INS-IE cells 

(Ravnskjaer et al. 2005; Lalloyer et al. 2006; Sun et al. 2008; Frigerio et al. 2010). 

Frigerio and colleagues (2010) have suggested that the improvement observed with 

PPARa activation is due to an increase in glucose metabolic pathways as well as safe FA 

storage in the form of neutral lipids such as TGs (Frigerio et al. 2010). Additionally, this 
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group was able to show that downregulation of PPARa worsened oleate-induced 

dysfunction in INS-IE cells (Frigerio et al. 2010); further supporting our results that 

PPARa overexpression has protective effects against palmitate-induced dysfunction. 

The lack of upregulation of PPARa genes may be due to the fact that palmitate 

may not be the appropriate ligand for PPARa; thus trying in vitro experiments with a 

different FA such as oleate or various ceramides could be used. After reviewing the 

literature, most studies utilize palmitate as their fatty acid treatment for either their MIN6 

or INS-1 cells. Studies have shown that palmitate treatment should be kept to a 

maximum of 48 hrs before proceeding with the remainder of the desired treatments. 

Hellemans et al. (2007), Frigerio et al. (2009), and Thorn and Bergsten (2010) have done 

extensive studies showing that cellular apoptosis increases with palmitate treatments in 

excess of 48 hrs (Hellemans et al. 2007; Frigerio et al. 2010; Thorn and Bergsten 2010); 

therefore we kept our palmitate incubations to 48 hrs at a concentration of 250|iM. 

Whereas it was found that oleate was not as toxic to the MIN6 and INS-1 cells in excess 

of 48hrs (Frigerio et al 2009). 

It has been documented that the rate of turnover of human pancreatic p-cells is 

slow (Riedel et al. 2010; Skelin et al. 2010), whereas the turnover time in murine models 

is approximately 47 days (Wang et al. 2004). Wang and colleagues (2004) have 

suggested it is very likely that P-cells infected with adeno-associated viruses are lost due 

to normal maintenance and cellular apoptosis (Wang et al. 2004). Recycling rates of 

PPARa overexpressing P-cells may explain why significantly lower 4 hr fasted blood 

glucose was observed during only two weeks (no significance over time) (Fig. 3.5b) and 

why impaired glucose tolerance was not maintained. 

102 



Synthetic PPARa agonists, such as fibrates, are approved for human use to lower 

elevated lipid profiles in individuals with hypertriglyceridemia; further, their systemic 

administration has been shown to induce improvements in carbohydrate metabolism 

(Staels et al. 2008). Our results suggest that PPARa may have direct effects on P-cell 

function that may be contributing to the improvements in carbohydrate metabolism 

observed with systemic administration of fibrates. Our model which specifically 

upregulates PPARa activity in pancreatic P-cells is the first in vivo model of P-cell-

specific PPARa overexpression and the first model that conclusively shows P-cell 

specific effects of PPARa agonism can impact whole-animal glucose homeostasis 

independently of systemic effects on liver and muscle lipid metabolism. Furthermore, our 

study has shown that targeted delivery of PPARa to the p-cell could serve as a potential 

site for therapeutic intervention for the preservation of P-cell function, in islet 

transplantation or in the treatment of obesity-induced T2D. In conclusion, we have 

demonstrated that targeted delivery of PPARa specifically to pancreatic P-cells in vivo 

preserves P-cell function and protects against glucose intolerance in diet-induced obesity, 

thus providing a valuable in vivo model to elucidate the mechanisms involved in p-cell 

lipotoxicity in obesity-induced T2D. The major findings from this chapter are: 

1. We have developed the 1st in vivo model of PPARa overexpression in 

pancreatic P-cells to further elucidate the mechanisms involved in P-cell 

lipotoxicity in a diet-induced obese model of T2D. 

2. Overexpression of dsAAV8-RIP-PPARa in pancreatic P-cells improves 

glucose tolerance in a diet-induced obese model of T2D. 
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3. Overexpression of dsAAV8-RIP-PPARa in the pancreatic P-cells maintains 

1st phase insulin secretion impaired by obesity. 

4. Overexpression of dsAAV8-RIP-PPARa within the pancreatic P-cells does 

not affect body weight, insulin sensitivity or weight gain in peripheral tissues. 

5. Using AAV8 plasmid, PPARa overexpression in MIN6 occurs at 

physiological levels and upregulates the ^-oxidative target gene CPT1 in the 

presence of palmitate. 

6. Overexpression of PPARa plasmid in MIN6 maintains glucose-stimulated 

insulin secretion when treated with palmitate. 
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APPENDIX 

Figure SI. Transfection efficiency of MIN6-eGFP cells. (A) 30% efficiency; 1 day post-
transfection. (B) 50-60% efficiency; 2 days post-transfection. Image taken with FITC 
filter at lOx magnification using confocal microscope (Olympus). 
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Figure S2. RNA Quality Control Gel for MIN6-eGFP and MIN6-PPARa Transfected 
Cells. Running Conditions (1.5% Agarose, lx TAE Running Buffer, 100V, 1 hour, 
Stained with EtBr). All samples show clean 18S and 28S bands indicating no 
degradation of RNA collected from the transfected MIN6 cells. 
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Figure S3. Double Restriction Digests of Purified Plasmid Samples for Viral Construct 
Preparation. Restriction digests were run using no digest, pure plasmid, and 1:10 dilution 
of plasmid. Restriction Enzymes for eGFP (Mlul and NotI), PPARa (Hindlll and Mlul). 
Running Conditions (1.5% Agarose, 0.5x TBE Running Buffer, 100V, 1 hour, Stained 
with SYBR Safe). 
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CHAPTER 4 

Overexpression of PPARa in Pancreatic p-cells Does Not Improve Glucose 
Tolerance in a Severely Obese Genetic Model (db/db mouse). 

A version of this chapter has been submitted: 
Hogh, K-Lynn N., Uy, Christopher E., Asadi, A., Baker, Robert K., Riedel, Michael J., 
Gray, Sarah L. 2012. Overexpression of PPARa in pancreatic P-cells improves glucose 
tolerance in diet-induced obese mice. Endocrinology. Manuscript Submission number: 
EN-12-1110. 
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4.1 INTRODUCTION 

Animals have been used in diabetes research as early as the 1880's (Rees and 

Alcolado 2005). The use of animals was best exemplified by Banting and Best in the 

1920's, when they used pancreatectomized dogs for the isolation and discovery of insulin 

(Banting et al. 1922; Bliss 1982; Rosenfeld 2002; Rees and Alcolado 2005). The use of 

mouse models in research has become increasingly important to elucidate the 

mechanisms involved in the progression of obesity-induced T2D. In addition to the diet-

induced obese model of T2D (C57B16 mice on HFD) used in chapter three, there are 

various obese and non-obese rodent models utilized in diabetes research, including: i) 

spontaneous/genetically derived (ie. ob/ob and db/db), ii) diet-induced (ie. C57B16), iii) 

chemically induced (ie. alloxan or streptozotocin), iv) surgically induced (ie. lesion of 

ventromedial hypothalamus), and v) transgenic/knock-out mice (ie. 03, GLUT-4, and 

IRS-1) (Rees and Alcolado 2005; Srinivasan and Ramarao 2007; Shafrir and Ziv 2009). 

As our lab is interested in elucidating the mechanisms involved in P-cell lipotoxicity and 

obesity-induced T2D, the severely obese ob/ob or db/db mouse models (Fig 4.1) are most 

appropriate for future studies involving the overexpression of PPARa in pancreatic P-

cells. Phenotypically the ob/ob and db/db mice are severely obese, hyperphagic, insulin 

resistant, hyperinsulinemic and hyperglycemic (Coleman and Hummel 1967; Coleman 

and Hummel 1973; Srinivasan and Ramarao 2007). Both of these mouse models involve 

either a mutation in the leptin gene (ob/ob) or leptin receptor (db/db) (Coleman and 

Hummel 1967; Coleman and Hummel 1973). 
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Figure 4.1 Comparing male C57B16 littermate controls to db/db (A) and ob/ob (B) mice. 
Mice purchased from JAX laboratories at four weeks of age. Images from Jackson 
Laboratories website: http://jaxmice.jax.org [electronic document] accessed Dec 15 2011. 
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The adipocyte-derived hormone leptin acts on the central nervous system and 

peripheral tissues to reduce fat stores by suppressing appetite, increasing metabolic rate, 

and activating thermogenesis (Muoio and Lynis Dohm 2002; Ceddia 2005; Unger 2005; 

Zhao et al. 2006; Gray and Vidal-Puig 2007; Friedman 2010). In a negative feedback 

loop, leptin acts on the receptors of the hypothalamus to regulate appetite and energy 

homeostasis (Friedman 2010); where increases in adiposity results in increased leptin 

levels and vice versa (Schroeder-Gloeckler et al. 2007; Friedman 2010). Leptin has also 

been implicated to have direct effects on glucose metabolism similar to that of insulin 

(Huynh et al. 2010). Kieffer and colleagues (1997) utilized patch clamps in ob/ob mice 

to show that leptin reduces insulin secretion through the activation of the KATP channels 

in the P-cells of the pancreas (Kieffer et al. 1997). These results were further supported 

by the work completed by Lee and Romsos (2003), where the authors were able to show 

that when treated with exogenous leptin, hypersecretion of insulin was normalized in 

ob/ob mice (Lee and Romsos 2003). Further adding to leptin's role in P-cell function, 

studies involving leptin therapy have shown a reversal in hyperglycemia in diabetic 

mouse models (Chinookoswong et al. 1999; Hidaka et al. 2002; Wang et al. 2010; 

Denroche et al. 2011) by lowering blood glucose and plasma insulin without affecting 

body weight (Kulkarni et al. 1997; Seufert et al. 1999; Gray et al. 2010). Clinically, 

Farooqi et al. (1999) were able to show that administration of recombinant leptin in 

humans reduces body weight and decreases food intake, as seen with their nine-year old 

patient with a frame-shift mutation in the leptin gene (Farooqi et al. 1999). This study 

further confirmed the importance of leptin in energy balance and appetite regulation 

(Farooqi et al. 1999). 
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The discovery of naturally occurring leptin mutations in mice has provided to be a 

useful tool in diabetes research, as it provides to be a model of severe obesity and 

diabetes. Leptin deficient (ob/ob) and leptin receptor deficient (db/db) mice were 

characterized by George Snell and Doug Coleman and colleagues from the Jackson 

Laboratories between 1950 and 1970 (Coleman and Hummel 1967; Coleman and 

Hummel 1973; Friedman 2010). Collectively the ob/ob and db/db mice show highly 

elevated plasma insulin levels, severely increased body mass, hyperphagia, no satiety, 

and hyperglycemia as early as three to four weeks of age (Coleman and Hummel 1967; 

Coleman and Hummel 1973; Zhang et al. 1994; Kobayashi et al. 2000). In 1994, Zhang 

and colleagues utilized positional cloning in C57B16 and DBA/2JA mice to determine 

that ob gene product was involved in the regulation of body fat deposition (Zhang et al. 

1994). More importantly, this study identified the ob gene as the leptin gene (Zhang et 

al. 1994). 

The ob/ob mouse is characterized by a mutation in the ob gene, which results in 

severe obesity through the disruption of the leptin signaling pathway (Zhang et al. 1994; 

Farooqi et al. 2002). The ob/ob mouse is characterized by an autosomal recessive 

mutation on chromosome 6 on the ob gene (Coleman and Hummel 1973; Srinivasan and 

Ramarao 2007). In addition to severe obesity, ob/ob mice develop extreme 

hyperglycemia and hyperinsulinemia by nine weeks of age, which results in hypertrophy 

and degranulation of pancreatic p-cells (Coleman and Hummel 1973; Srinivasan and 

Ramarao 2007). Interestingly, the ob/ob mice have also been observed to have transient 

hyperglycemia, followed by hyperinsulinemia and euglycemia (Coleman and Hummel 

1973). 
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In contrast to the ob/ob mouse, the db/db model is characterized by severe 

obesity, hyperinsulinemia, hyperglycemia, and dyslipidemia as early as three weeks of 

age (Coleman and Hummel 1967; Kieffer and Habener 2000). The db/db mutation is 

characterized by an autosomal recessive mutation on chromosome 4 of the db gene 

(Coleman and Hummel 1967; Srinivasan and Ramarao 2007; Shafrir and Ziv 2009), 

resulting in a defective leptin receptor encoded by the db gene (Coleman and Hummel 

1967; Friedman 2010). It should be noted that degranulation and increased apoptosis can 

be observed as early as 25 days after birth in db/db islets (Coleman and Hummel 1967; 

Kobayashi et al. 2000). Additionally islets of db/db mice have been observed to fail via 

increased pancreatic necrosis and atrophy (Coleman and Hummel 1967; Kobayashi et al. 

2000; Shafrir and Ziv 2009), thus resulting in end-stage p-cell failure. Therefore, as the 

severity of obesity and development of the diabetic phenotype occurs at an early age in 

both ob/ob and db/db mice, these mouse models are ideal for short-term studies 

elucidating the mechanisms involved in P-cell lipotoxicity, severe obesity and diabetes. 

The objective of this study is to utilize the db/db model of genetic obesity to 

replicate and tease apart the observations made in our model of P-cell specific 

overexpression of PPARa in a diet-induced model of obesity and T2D. We hypothesize 

that overexpression of PPARa in the pancreatic P-cells of db/db mice will delay the 

progression and severity of P-cell dysfunction in these mice compared to $-e,GY?-db/db 

controls. Additionally, this study will allow us to test the effectiveness and potency of 

PPARa overexpression in a severe model of genetic obesity; thus further characterizing 

the role of PPARa overexpression in pancreatic P-cells in vivo. 
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4.2 MATERIALS AND METHODS 

Mice. 

All animal studies were approved by the University of Northern British Columbia 

Animal Care and Use Committee (protocol number 2011-21). For all experiments, 3-

week-old, male, C57B16 mice (littermate controls) and db/db mice (BKS.Cg-w +/+ 

LeprdbIJ) were purchased from Jackson Laboratories (Bar Harbor ME, USA). Mice were 

maintained on a 12 hr light/dark cycle and received standard rodent chow diet (Rodent 

LabDiet, 5001, Leduc AB, Canada) ad libitum unless otherwise stated. Mice were 

allowed to acclimatize to the animal facility for 1 week prior to performing any 

experimental procedures. Body weight, 4hr fasted blood glucose (OneTouch Ultra, 

Lifescan, Burnaby BC, Canada), oral glucose tolerance tests (via OGTT) and insulin 

sensitivity tests (via ITT) were performed prior to viral injections to assess baseline 

carbohydrate metabolism as described below and in chapter 3. 

Pancreatic p-cell specific overexpression of PPARa in genetically obese mice. 

Six-week-old male db/db mice were infected with dsAAV8-RIP-PPARa adeno-

associated virus (P-PPARa-t/M/6, n=6; 5x1012 viral genomes/5 83 (il/mouse) or dsAAV8-

RIP-eGFP virus (p-eGFP-db/db control group, n=7; 5x1012 viral genomes/574(xl/mouse) 

by ip injection. A group of age-matched, male, wildtype, C57B16 mice were given an ip 

injection of saline to serve as lean controls (n=7; 574^1 saline/mouse). Body weight was 

monitored weekly, and blood glucose levels (OneTouch Ultra, Lifescan Burnaby BC, 

Canada) and circulating plasma insulin levels (ALPCO) were monitored twice weekly. 

Insulin sensitivity (ITT) was also assessed. All animals were sacrificed 4 weeks post

infection by C02 euthanization and cerebral-spinal dislocation. Tissues were collected 
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by dissection and flash frozen or fixed in 4% paraformaldehyde in IX PBS for 48 hrs and 

then stored in 70% EtOH. 

Insulin tolerance tests. 

Mice were fasted for 4 hrs and given an ip injection of human synthetic insulin at 

0.75U/kg or l.OU/kg (Novolin Ge, Toronto ON, Canada). Blood was sampled (1-2 ^1) 

from the saphenous vein and blood glucose measured (mmol/L) at 10, 20 30, 60, and 120 

min post injection (OneTouch Ultra, Lifescan Burnaby BC, Canada). 

Glucose-stimulated insulin secretion. 

Mice were fasted for 16 hrs and given 2g/kg D-glucose by oral gavage. Blood 

(15-20 |il) was sampled at 5, 10 and 180 minutes post glucose gavage from the saphenous 

vein and blood glucose (mmol/L) (OneTouch Ultra, Lifescan, Burnaby BC, Canada) 

(Huynh et al. 2010). 

Overnight fasted and re-fed plasma insulin levels. 

Mice were fasted for 16 hrs and blood collected in heparinized capillary tubes 

(Fisher Scientific, Ottawa ON, Canada) from the saphenous vein. Food was reintroduced 

for 2 hrs and blood collected again. Blood glucose was determined using a hand held 

glucometer (OneTouch Ultra, Lifescan, Burnaby BC, Canada) and plasma insulin levels 

were assessed by ELISA. 5(^1 of each sample was run in triplicate with conjugate buffer 

(75^1) and shaken at 800rpm on a microplate shaker for 2 hrs at room temperature. 

Samples were then washed with wash buffer and incubated for 15 min at 800rpm with 

TMB substrate. Stop solution was then added to samples and quantified at 450nm on a 

plate reader (Ultrasensitive insulin ELISA assay, 80-INSMSU-E10, ALPCO, Salem NH, 

USA). 
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Immunohistological analysis. 

Whole mouse pancreas sections were previously fixed in 4% paraformaldehyde 

and embedded in paraffin and sectioned at 5|am thickness; n=5 per group (Wax-it 

Histology Services; Vancouver BC, Canada). All sections were de-paraffinized and 

rehydrated as described previously in chapters 2 and 3(Riedel et al. 2010). Sections were 

incubated with polyclonal primary antibodies to rabbit anti-eGFP (1:500) (Al 1122, 

Invitrogen Molecular Probes, Carlsbad CA, USA), polyclonal guinea pig anti-insulin 

(1:1000) (4011-01F, Millipore, Billerica MA, USA) and a monoclonal primary antibody 

to mouse anti-glucagon (1:1000) (G2654, Sigma) overnight. Appropriate secondary 

whole (heavy and light chain) antibodies conjugated to Alexafluor 488 (A21206 or 

A21202) or 594 (Al 1076 or Al 1032) (1:1000) (Invitrogen Molecular Probes) were used 

to detect primary antibody immunoreactivity. All sections were blocked using serum-

free blocking solution (DAKO, Burlington ON, Canada) and heat-induced antigen 

retrieval performed using 6M citrate buffer. All samples were visualized using a 

fluorescent light microscope (Olympus BX61) and images observed using Cell Sens 

Software (Olympus, Markham ON, Canada). 

Statistical analysts. 

Results are expressed as mean ± standard error of the mean. Analyses were 

performed using paired student's t-test and 1-way ANOVA (significance between two 

groups), or 2-way ANOVAs (significance between groups over time) with Bonferoni 

Post tests using Graphpad Prism 5.0 software (La Jolla CA, USA). Significance was 

declared if p-values were less than 0.05. *P<0.05, **P<0.01, ***P<0.001. 
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4.3 RESULTS 

Overexpression of PPARa in pancreatic p-cells does not improve carbohydrate 

metabolism in a model of severe genetic obesity {db/db). 

P-eGFP-db/db control mice and p-PPARa-db/db mice had no significant 

difference for 2 hr fed blood glucose levels (Fig. 4.2a). PPARa overexpression 

specifically in pancreatic p-cells did not significantly affect body weight (Fig. 4.2b), or 

plasma (circulating) insulin levels (Fig. 4.2c) when compared to obese controls. As 

expected, both fasted and fed blood glucose and plasma insulin levels of P-eGFP-db/db 

and fy-WARst-db/db mice were significantly higher compared to C57B16 littermate 

controls. Additionally insulin sensitivity did not differ between groups, however as 

expected, both P-eGFP-db/db and P-PPARa-db/db are significantly more insulin resistant 

than the wild type controls (Fig. 4.2d). As expected with the insulin sensitivity (ITT) the 

wild type controls had a 50% reduction in blood glucose (10 minutes post insulin 

injection) and by 30 minutes post infection blood glucose levels were on the rise. The 

complete opposite was observed with the P-eGFP-db/db and p-PPARa-db/db mice, 

where a spike in blood glucose levels was observed 10 minutes post-injection; this rise in 

blood glucose could be attributed to their severe insulin resistance as well as an increase 

in counter regulatory and stress hormones. 
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Figure 4.2 Overexpression of PPARa in p-cells of genetically obese mice (db/db) did not 
improve glucose homeostasis. (A) Fast and fed blood glucose levels. (B) body weight, 
(C) plasma insulin levels, and (D) insulin sensitivity (0.75U/kg insulin for wild-type 
mice; 1.5U/kg insulin for db/db mice) in db/db mice. -db/db n=7, p-PPARa-
db/db n=6. *P<0.05. 
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Overexpression of PPARa in pancreatic p-cells does not affect islet morphology in 

genetically obese mice (db/db) 

Immunohistochemical analysis of insulin and glucagon in pancreatic p-cells 

overexpressing PPARa did not reveal any difference in insulin or glucagon positive 

immunoreactivity when compared to p-eGFP-db/db controls (Fig. 4.3). Additionally, 

islets were stained for eGFP/insulin and eGFP/glucagon immunoreactivity (Fig. 4.4) 

showing eGFP expression in islets of the db/db mice four weeks post infection. It has 

been suggested that dsAAV8 vectors do not elicit an immune response (Gao et al. 2002; 

Wang et al. 2006; Gaddy et al. 2010), however further analysis using appropriate 

apoptotic staining is required to confirm these results in db/db mice. Furthermore, total 

insulin and glucagon positive stained areas were not analyzed as no physiological 

changes were observed, therefore p-cell and a-cell masses were not calculated. 
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Figure 4.3 Overexpression of PPARa in P-cells of genetically obese mice (db/db) does 
not affect islet morphology of insulin immuno-positive area. Abbreviations: INS -
insulin; GLC - glucagon. Images taken at 20x magnification. Scale bar 50|am. 
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Figure 4.4 Overexpression of dsAAV8-RIP-eGFP in P-cells of genetically obese mice 
(idb/db) is targeted to the P-cells and not a-cells of pancreatic islets. Abbreviations: INS -
insulin; GLC - glucagon; GFP - green fluorescent protein. Images taken at 20x 
magnification. Scale bar 50(im. 
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4.4 DISCUSSION 

Utilizing a genetic model of severe obesity, specifically a mutation with the leptin 

receptor (db/db mice), our group characterized the effects of p-cell specific 

overexpression of PPARa to ascertain if improvements seen with glucose tolerance in a 

HFD model of obesity would be observed in a more severe model of genetic obesity. 

Our group has demonstrated that overxpressing PPARa in the pancreatic P-cells of db/db 

mice has no protective effects against P-cell dysfunction when compared to P-eGFP-

db/db controls. This study was carried out for a total of four weeks, where mice were 

infected for four weeks prior to collection. We speculate that the lack of protective 

effects observed in this model compared to the diet-induced model maybe; i) the db/db 

model of obesity is too severe and the levels of circulating TGs and FAs have 

overwhelmed the P-cell causing p-cell dysfunction, ii) p-cells of the db/db mice are 

severely impaired and have reached P-cell failure, and iii) four weeks of overexpression 

is too short to see the beneficial effects of PPARa observed in our diet-induced model. 

Gaddy and colleagues (2010) utilized the db/db mouse model to determine if 

expression of GLP-1 via dsAAV8 to the pancreatic P-cells improves the diabetic state 

(Gaddy et al. 2010). AAV direct targeting of GLP-1 in the P-cells has been shown 

previously to enhance islet proliferation and delay the progression of diabetes in db/db 

mice (Gaddy et al. 2010). Additionally, the authors used a dose of 4xlOnvg/mouse for 

their db/db mice and speculated that increasing the viral dose (greater than 10l2vg/mouse) 

would greatly enhance the efficacy of viral transduction compensating for increased body 

mass of db/db mice (Gaddy et al. 2010). Therefore, improvements in glucose tolerance 

may have been observed in P-PPARa-db/db mice had we increased the viral load per 
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mouse, as opposed to giving the standard 5xl012 vg/mouse. Additionally it has been 

suggested that the effectiveness of dsAAV8 virus delivery can be seen as early as four 

weeks post infection (Wu et al. 2006). We have conclusively shown in chapter 2, that 

eGFP is expressed in the pancreatic P-cells as early as three weeks post infection when 

utilizing dsAAV8-RIP-eGFP. Moreover, we have shown eGFP to be expressed in the 

pancreatic p-cells in db/db mice four weeks post infection (Fig. 4.4). Therefore it is 

possible that PPARa expression is present in the islets of db/db mice; however, as the 

duration of our study lasted four weeks post infection, the physiological effects and 

beneficial potential of PPARa overexpression may not have been observed. For example 

we would expect PPARa overexpression to turn on genes involved in P-oxidation, but 

was the duration long enough to decrease the amount of circulating lipids? 

We speculate that had we extended the db/db study by four to six weeks, 

improvements similar to those observed in P-PPARa-HFD mice may have been 

observed. The severity of the db/db phenotype was an indicator to terminate the study 

four weeks post infection. As shown in figure 4.2 a-c, blood glucose levels, body 

weights, circulating plasma insulin were significantly higher than age-matched C57B16 

littermate controls; indicating that the health of the pancreatic P-cells in the db/db mice 

were getting progressively worse. Both p-eGFP-db/db and P-PPARa-db/db mice showed 

severe insulin resistance when compared to C57B16 littermate controls (Fig. 4.2d); as 

blood glucose levels reached highs of 24.5mmol/L versus dropping to 4.8mmol/L 

(C57B16) post insulin injection. Moreover, it should be noted that a glucose tolerance 

test (OGTT) was not conducted on the db/db mice due to the severity of their phenotype; 

additionally we would have expected glucose levels post gavage to be extremely high, 
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and possibly too high to be detected by a handheld glucometer, given the rise in blood 

glucose levels observed when mice were challenged with 1,5U/kg of insulin (Fig. 4.2d). 

It should also be noted that due to a lack of physiological changes observed, further 

metabolic and immunohistochemical analyses of these islets was not performed. 

The whole body improvement in carbohydrate metabolism achieved with 

pancreatic p-cell specific overexpression of PPARa in a diet-induced model of obesity 

was not replicated in the severely obese, diabetic db/db mouse. The severely impaired 

carbohydrate metabolism of this genetic model of obesity was not reversed by four weeks 

of |3-cell specific overexpression of PPARa, suggesting that the short duration of PPARa 

overexpression may not have been sufficient to improve P-cell function or that the 

metabolic changes induced by PPARa by four weeks of overexpression could not 

overcome the extreme insulin resistance and lipidemic state induced by the lack of leptin 

signaling in these severely obese and diabetic mice. 
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CHAPTER 5 

Developing a model of PPARa overexpression in the pancreatic P-cells in vivo: 
concluding remarks, future directions and significance 
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5.1 CONCLUDING REMARKS 

It has been well established that lipotoxicity is an underlying mechanism involved 

in P-cell dysfunction and obesity-induced T2D (Kasuga 2006; Prentki and Nolan 2006; 

Poitout and Robertson 2008). Moreover, obesity, its associated comorbities and T2D 

have reached epidemic levels in the past few years and are placing an overwhelming 

economic burden on health care systems worldwide (Dixon 2010). Therefore it is 

important to elucidate the mechanisms involved in obesity-induced p-cell lipotoxicity to 

postulate appropriate treatment strategies, and new therapeutic paradigms. 

Our group is the first to have developed a new in vivo mouse model of P-cell 

specific overexpression of PPARa in obesity-induced P-cell lipotoxicity. Utilizing 

dsAAV8 as our tool of gene delivery we have avoided potential complications of 

utilizing transgenic mouse models (outlined in chapter 2). Furthermore, our study has 

provided insight into the direct in vivo effects of PPARa overexpression in the pancreatic 

p-cells and its impact in whole-animal carbohydrate metabolism. In addition, our lab has 

developed a model to study lipotoxic changes in the metabolism directly in the pancreatic 

P-cells. Having shown improved glucose tolerance and maintained 1SI phase insulin 

secretion, there is the possibility of using dsAAV8 delivered PPARa as a preventable 

therapeutic for preserving P-cell function in obesity-induced T2D. Moreover, it is likely 

to utilize PPARa treated isolated islets as a preventable therapeutic for islet 

transplantation; further protecting the islets from lipid accumulation and increasing the 

longevity of transplanted islets. 

Taken together, our findings have provided new insights and advancements for future 

studies involving in vivo PPARa overexpression in P-cell lipotoxicity. We have 
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developed an in vivo mouse model that can be utilized to elucidate the protective role of 

PPARa in p-cell dysfunction and lipotoxicity, as well as applying these findings to future 

treatment and therapeutics in obesity-induced T2D. 
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5.2 FUTURE DIRECTIONS 

As the work in this thesis demonstrates, our lab has developed an in vivo model of 

P-cell specific overexpression of PPARa in the context of obesity-induced T2D to 

examine the effects of P-cell lipotoxicity. It should be noted that this study has allowed 

or group to characterize the physiological consequences of p-cell specific overexpression 

of PPARa in vivo; thus we can now move forward with molecular analyses to uncover 

the mechanisms and specific changes in glucose metabolism in our model of P-cell 

lipotoxicity. In vitro, PPARa overexpression in MIN6 and INS-IE cells has been 

extensively studied by numerous groups (Ravnskjaer et al. 2005; Hellemans et al. 2007; 

Frigerio et al. 2010); therefore the following in vivo studies will be considered. 

There are several avenues that could be explored to further characterize the in 

vivo effects of PPARa overexpression on the pancreatic P-cells in a diet-induced obese 

mouse model. First and foremost immunofluorescent staining of PPARa in the 

pancreatic sections needs to be shown, similar to what is observed in mice overexpressing 

eGFP. This would allow us to correlate the improvements observed in glucose tolerance 

and maintenance of 1st phase insulin secretion with pancreatic PPARa overexpression on 

HFD. To do this, antibodies against PPARa must first be optimized utilizing tissue 

sections that would show positive PPARa staining, such as sections from fasted liver. In 

addition to optimizing antibodies, the immunohistochemical protocols must also be 

optimized for heat-induced epitope retrieval and protein blocking. Once optimized, the 

PPARa antibodies would then be used to stain for PPARa in the p-PPARa-HFD pancreas 

sections; these sections would be compared against no antibody control pancreas sections 

stained only with the secondary antibody to determine levels of positive staining over and 
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above background staining. In addition, dual staining for PPARa + insulin, and PPARa 

+ glucagon would be completed to show that PPARa is being expressed solely in the P-

cells and not the a-cells of the pancreas. If PPARa is being overexpressed in the 

pancreatic p-cells and immunofluorescent staining is not able to detect PPARa above and 

beyond background fluorescence, colormetric staining of PPARa could be an alternative 

solution. Colormetric staining could be advantageous for our sections, as it eliminates the 

autofluorescing from red blood cells that may be present in non-perfused tissue sections. 

Once we are able to show PPARa staining in the pancreatic sections, we could 

then carry out additional studies that would further characterize p-cell specific PPARa 

overexpression in vivo. As work completed in MIN6 cells has been utilized to support 

our in vivo work thus far, utilizing isolated islets from PPARa overexpressing mice 

would be our next option. A second cohort of mice (ideally n=10 mice per group) would 

be infected and subjected to HFD as carried out previously by our group. Having a larger 

cohort of mice would allow our group to collect whole pancreas (n= 1 or 2 per group) 

with the remainder being sacrificed for isolated islets. The whole pancreases would be 

sectioned and stained for PPARa to confirm overexpression. The isolated islets would 

then be utilized for gene expression studies, allowing our group to determine which 

PPARa target genes involved in P-oxidation are upregulated in our model. From our in 

vitro work, we would identify if acyl-CoA oxidase (AOX), carnitine palmitoyl 

transferase-1 (CPT1), long chain acyl-coA dehydrogenase (LCAD), and uncoupling 

protein-2 (UCP2) were upregulated in the pancreatic p-cell. Thus allowing us to correlate 

improvements in glucose tolerance with increased p-oxidation. These studies would 

allow us to further elucidate the mechanisms involved in preventing P-cell lipotoxicity. 
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In addition to gene expression studies, lipidomic profiling in isolated islets will be 

performed in collaboration with Matej Oresic from the Technical Research Center of 

Finland, using liquid chromatography-mass spectrometry (LC-MS) lipid profiling 

(Nygren et al. 2011). This study would allow our group to determine the lipid profiles 

and lipid levels in P-PPARa-HFD islets compared to islets from P-eGFP-HFD controls. 

If lipidomic profiling is not a feasible option, our group could also consider isolating 

islets and determining the levels of triglycerides (TGs) utilizing a standard TG 

determination kit (Sigma Aldrich, Oakville ON, Canada). This is a crude measure of 

total TG content, allowing us to determine the levels of lipid accumulation in the p-cells 

of P-PPARa-HFD and P-eGFP-HFD mice; these results could be correlated with levels of 

upregulation of p-oxidative genes or other lipid metabolic pathways observed utilizing 

qRT-PCR. This method would not allow us to determine which lipid species is being 

accumulated by the P-cells, nor will it allow us to distinguish which lipid species is being 

utilized as an activating ligand for PPARa in vivo as no definitive activating ligand has 

been identified outside of the liver (Chakravarthy et al. 2009). An alternative option 

would be to quantify lipid accumulation within pancreatic sections using lipophillic 

histological staining (either Oil Red O staining or BODIPY 493/503 staining); each of 

these methods is cost effective and is considered to be a good method for crude 

quantification of lipids. BODIPY 493/503 is a fluorescent label for lipid droplets (Ohsaki 

et al. 2010). Spangenburg and colleagues (2011) have demonstrated exceptional staining 

of lipid droplets using BODIPY 493/503 in skeletal muscle (Spangenburg et al. 2011). 

Combined immunofluorescent staining for PPARa and BODIPY staining of lipid would 

allow us to visually quantify lipid accumulation within PPARa overexpressing P-cells. 
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If feasible, to further understand the mechanisms involved in preserving p-cell 

function during lipotoxicity, repeating this study with another cohort of mice for taking 

whole pancreas and isolated islets at various time points would be advantageous. This 

type of study would allow us to determine levels of PPARa overexpression over time, as 

well determine the rate at which PPARa overexpressing p-cells are being recycled (Wang 

et al. 2004). Studying the rate of P-cell recycling could potentially explain why 

improving trends and improvements in glucose tolerance were only observed at a single 

time point and significance between P-PPARa-HFD and p-eGFP-HFD mice decreased 

over time. 

In addition to the studies listed above, the use of targeted PPARa delivery using 

dsAAV8 could potentially severe as a preventative therapeutic. One possibility is to 

transfect isolated islets for transplantation with PPARa to protect against lipid 

accumulation and P-cell dysfunction. Isolated islets would be treated with dsAAV8-RIP-

PPARa prior to transplanting in either the kidney capsule or hepatic portal vein of 

streptozotocin (STZ) induced diabetic mice. Mice would be placed on HFD for 20 weeks 

and monitored as previously described. The PPARa-treated transplanted islets (from 

kidney capsule or hepatic portal vien) of STZ-treated mice would be isolated and 

assessed for lipid accumulation. This study would allow us to test the therapeutic 

possibilities of PPARa as a preventative treatment protecting transplanted islets against 

lipotoxic dysfunction. 
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5.3 SIGNIFICANCE 

Characterizing the effect of in vivo pancreatic P-cell specific overexpression of 

PPARa in a model of obesity-induced T2D has provided novel insights on obesity-

induced p-cell lipotoxicity. More importantly, through the duration of my thesis project, 

we have developed the first in vivo model of P-cell specific overexpression of PPARa in 

a model of diet-induced P-cell lipotoxicity using the dsAAV8 as our tool for gene 

delivery. The data collected in this study presents significant information and provides a 

model of protecting P-cell function in diet-induced obesity. My results are summarized 

below: 

1. We have shown using AAV plasmid, in vitro, that PPARa overexpression in 

MIN6 cells occurs at physiological levels when compared to levels observed in 

fasted liver. Additionally, PPARa overexpression upregulates the P-oxidative 

target gene CPT1 in the presence of palmitate. Moreover, MIN6 cells 

overexpressing PPARa maintains glucose-stimulated insulin secretion when 

treated with palmitate. Taken together, these results provide in vitro support that 

our construct can be used to overexpress PPARa in a P-cell cell line. Thus 

allowing us to assess the expected expression levels of PPARa target genes that 

may be involved in P-oxidation in PPARa overexpressing islets in vivo. 

2. In vivo we have shown that dsAAV8 can be delivered through a non-invasive 

intraperitoneal injection to overexpress proteins of interest in the P-cells of the 

pancreas when used with RIP. In addition our group has shown that under the 
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direction of RIP, eGFP does not cross the BBB and is not expressed in the 

hypothalamus of infected mice. Thus dsAAV8 is a successful tool for targeting 

gene delivery to the pancreatic P-cells without expression in peripheral tissues. 

3. Overexpression of eGFP under the direction of RIP does not affect body weight 

or carbohydrate metabolism, therefore can serve as appropriate control vector for 

in vivo studies. 

4. Utilizing p-cell specific overexpression of PPARa during diet-induced obesity 

protects against glucose intolerance. We speculate that these observations may be 

due to decreasing lipid accumulation in the P-cell, preserving P-cell function. Our 

group has demonstrated that overexpressing PPARa in pancreatic P-cells 

maintains 1st phase insulin secretion impaired by obesity without changes in p-cell 

mass. In addition, PPARa overexpression in vivo does not affect body weight 

gain on HFD or insulin sensitivity when compared to obese controls. 

In addition the significance of this study can be addressed as follows: 

1. By manipulating the overexpression of PPARa in the P-cell, which makes up 

approximately 1% of the total weight of the pancreas, we have demonstrated that 

PPARa agonsim can impact whole-animal glucose homeostasis independently of 

systemic effects of liver and muscle lipid metabolism. Moreover, we have shown 
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the physiological phenotype of the first in vivo model of p-cell specific PPARa 

overexpression. 

2. We have demonstrated that targeted overexpression PPARa specifically in 

pancreatic P-cells in vivo preserves p-cell function and protects against glucose 

intolerance in diet-induced obesity. Thus providing an in vivo model to elucidate 

the mechanisms of P-cell lipotoxicity in obesity-induced T2D. 
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can lead to the development of (B) the Master's thesis. Permission for use of comics 
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