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A b s t r a c t 

Face Recognition is an important problem for Artificial Intelligence Researchers, 

with applications to law enforcement, medicine and entertainment. Many different 

approaches to the problem have been suggested; most approaches can be catego­

rized as being either Holistic or Local. Recently, local approaches have shown some 

gains. This thesis presents a system for embedding a holistic algorithm into a local 

framework. 

The system proposed builds on the concept of Regional Voting, to create Weighted 

Regional Voting which divides the face images to be classified into regions, performs 

classification on each region, and finds the final classification through a weighted 

majority vote on the regions. Three different weighting schemes taken from the 

field of Regret Minimization are suggested, and their results compared. Weighted 

Regional Voting is shown to improve upon unweighted Regional Voting in every 

case, and to outperform or equal many modern face recognition algorithms. 
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Chapter 1 

Introduction 

1.1 Overview 

Face Recognition has become a very important and popular field of Computer Sci­

ence. It has wide ranging applications, from smart homes[69] to entertainment[56] 

to security[51] [42]. It is a problem that is easy to understand, and very difficult 

to solve. In 1966, a well known researcher by the name of Marvin Papert assigned 

an undergraduate student to work over the summer on solving the problem of com­

puter vision, of which face recognition is a small part, thinking this student would 

be finished by the end of the summer. This student failed completely to accomplish 

much of anything, and a significant portion of Artificial Intelligence Researchers 

have spent over 40 years attempting to solve that summer problem[13] 

Face recognition, in the broadest possible terms, is the process of assigning an 

identity to an image of a face. However, face recognition is divided into two cat­

egories of problems: verification and identification. Verification is a one to one 

problem, ie it attempts to determine if the image is of a particular person. Identi­

fication is a one to many problem, ie it attempts to find the identity of the person 
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in the picture. Although the system presented here is one for identification, I feel it 

could easily be extended to the verification problem as well. 

In order to carry out this task, a working knowledge of digital image processing 

is required. An image is assumed to be composed of pixels. Each pixel corresponds 

to a point of colour in the image. An image is then an hx w matrix of pixel values, 

where h is referred to as the height of the image, and w is referred to as the width. 

Most face recognition systems in general, and the one outlined here in particular, 

assume that the image is grayscale. Thus, each pixel represents only the intensity of 

the gray, and can be represented by a single number. Thus, an image can be assumed 

to be composed of an m x n matrix of positive real valued numbers representing 

pixel intensities. 

Visual approaches attempt to perform classification based entirely on the pixels 

that comprise the image. Other approaches use other biometric data for recognition, 

such as range data[2] [77] [43], thermal imaging[5], [84] [14] or 3D data[44], [71] [6]. 

1.2 Contribution 

The major contribution of this thesis is a new system for face recognition that is 

based on adding weights to the already proven system of Regional Voting. Regional 

Voting has been shown to be very stable in the face of a noisy system, and the 

weighting algorithms proposed here improve on the already best in class results of 

Regional Voting, in some cases cutting the error rate in half. 

The remainder of the thesis is structured as follows: Chapter 2 contains an 

overview of the field of face recognition and a survey of pertinent literature. Chapter 

3 gives a detailed description of the proposed algorithm. Chapter 4 details the 

experiments performed to verify the performance of the system. Chapter 5 analyzes 
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the results of the experiments and Chapter 6 summarizes the concepts presented 

and suggests some future directions. 
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Chapter 2 

Literature Survey 

Most humans have little difficulty with face recognition. This ability is mostly 

developed by the age of one year [62]. Thus, we as humans assume it must be an 

easy problem to solve. A computer should simply replicate the process that humans 

go through to recognize a face. 

However, psychological research has found strong indicators that face recognition 

is a specialized task [62]. Several case studies have been done on individuals who 

have lost the ability to recognize faces, but retain the ability to recognize all other 

classes of objects (for example, McNeil and Warrington[57] and Farah[27]). In fact, 

there is a marked decrease in the ability of humans to recognize faces when the faces 

are upside down[82], belonging to other species of primates[68] or even of members 

of other ethnic groups[58]. Although there is some evidence to support the idea that 

the latter two cases are caused by a lack of exposure to non members of species or 

ethnic group, McNeil and Warrington[57] [28] showed that a subject who is unable to 

distinguish faces when right side up is better at distinguishing them when they are 

upside down, indicating that right side up face recognition is a specialized process. 

Thus, it seems face recognition is more than a matter of matching objects that 
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are similar. Furthermore, given the lack of knowledge as to how precisely human 

face recognition works[62], it is very difficult to design an algorithm to replicate 

it. As the brain is made of hundreds of billions of neurons, it may also be that 

the mechanism that the brain uses is infeasible for computational use. So, modern 

face recognition systems attempt to find different approaches to performing the face 

recognition problem. 

In order to create a system that is capable of recognizing human faces, several 

steps must be handled: 

1. Capture the image of a face 

2. Digitize the image 

3. Locate the face 

4. Normalize the location of the face 

5. Pre-process the face data 

6. Perform face recognition 

Although all the steps are important, for the system proposed here, the first 

five steps are assumed to have already taken place. For an overview of each step, 

please see Gonzalez et al[33]. In particular, we assume that the images are grayscale, 

aligned based on pupil location, and cropped to a common size. 

Even within the face recognition step, there are many problems to be dealt with. 

How can we deal with variation in lighting? How can we recognize that faces belong 

to the same person when they have different expressions? Can we be sure the system 

will still identify faces correctly when they are subject to normal cosmetic changes 

(facial hair change, glasses on or off), or when the face ages? 
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Generally speaking, the problem of Face Recognition has been approached in one 

of two ways: with holistic approaches or local approaches[91]. Holistic approaches 

use the entire image as input data. Local approaches attempt to identify salient 

features of the face and perform recognition based on those. Each has their own 

advantages and disadvantages. 

2.1 Holistic Approaches 

Holistic Approaches are so named because they incorporate the whole of the image 

data at once. In general, a holistic method treats the h x w matrix that represents 

the image as a vector of length hw. This vector can in turn be interpreted as a point 

in hw dimensional space. 

Once the data is in vector form, any kind of pattern matching algorithm can be 

used, such as neural networks[59] or support vector machines[70]. Some approaches 

attempt to convert the image into a different domain, such as Gabor Wavelets 

[74]. However, the most common form of holistic algorithms used are based around 

dimension reduction. 

A dimension reduction approach requires some training images for each face to 

be recognized. These are referred to as the gallery. Let Q = {gi,g2,g3, • • g«} be 

the gallery. Then our training data X can be viewed as a matrix containing n rows 

of hw vectors: 

gi 

X 

g2 

g3 
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The first step for dimension reduction is to solve a generalized matrix problem 

XP = B 

where P is a linear projection function represented as a hw x k matrix, and B is a 

n x k matrix corresponding to the basis of a reduced k dimensional subspace of X. 

Each of the rows in B is assumed to correspond to the identity of one of the images 

inX. 

If we have a new probe image y, we arrange it into a vector of length hw, and 

compute yp = yP. Then, using some measure, the best match between yp and the 

rows of B is found. 

The idea is that an image contains redundant information. The process of pro­

jecting it into a lower dimensional space eliminates redundancy and highlights the 

important information carried by the image. This point will be illustrated through 

four examples of Holistic Matching that will be embedded in the proposed system: 

Principal Component Analysis, Fisher's Linear Discriminant, Spectral Regression 

and Locality Preserving Projections. 

2.1.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical technique for determining a 

basis for a vector space that accounts for as much of the variance within that space 

as possible [3]. This approach was first applied by Sirovich and Kirby to the problem 

of image compression[75, 46]. Shortly thereafter, Turk and Pentland [80] reasoned 

that if the important information in a facial image could be compressed to a smaller 

size, perhaps that compressed data could be used to classify the face. They named 

their approach Eigenfaces, after the nature of the calculation that is required. 
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Let X be the training gallery, as defined above. Then the first step is to calculate 
n 

the average face g = / , § « We then create a mean-centred version of X, labelled 

Xm, where 

i = i 

-A-m 

gl ~ g 

g 2 - g 

g 3 - g 

g n - g 

We then calculate the covariance matrix C of Xm, which can be found to be 

r< v' Y (2.1) 

We are trying to maximize variance between data points. This can be formalized 

as attempting to find a P such that P optimizes 

P = argmax{| |P 'CP| |} 

This P can be found through eigenvectors, giving the approach its name. We find 

the eigenvectors v% and eigenvalues /i, of the covariance matrix, which are the set of 

vectors and associated values which satisfy 

Cv% = nlvl 

However, this calculation is very large, and very time and memory consum­

ing, resulting in the calculation of hw eigenvectors. Furthermore, only at most n 

eigenvalues will be non-trivial. Instead, we can calculate the eigenvectors a% and 
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eigenvalues j3% associated with the matrix 

D — XmXm (2.2) 

of which there are only n. We arrange a% in decreasing order according to /3t. 

We can recover the original eigenvectors u% by 

^z = c x l - g[ 

Using the notation introduced for the general case of dimension reduction, we 

let k = n and set 

P and B 

In order to classify a new face image y, we simply find ym = y — g and then 

compute yp = ymP. We then find the identity in B most closely related to yp. 

In their original paper, Pentland and Turk suggest treating the vectors as points 

in n dimensional space, and computing the simple Euclidean distance: ||yp—v%\\. The 

classification is selected as the identity of the image that has the smallest Euclidean 

distance. This is the metric used in this thesis for this and other holistic classifiers. 

However, since the introduction of Eigenfaces, other techniques for selecting the 

closest identity have been suggested. 

In 1997, Moghaddam and Pentland [60] suggested using the Principal Compo­

nents, along with other information from the image space to create a probability 

distribution over the images in the gallery for each probe image. The classifica-
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tion can be performed using a maximum likelihood estimator. At the time of its 

publication, this technique achieved the highest results on the FERET[64] dataset. 

Li and Lu [50] propose that instead of simply finding the Euclidean distance 

between the probe image and each image in the gallery, a so called "feature line" 

should be drawn between the point in space corresponding to each pair of images 

belonging to the same person. Then, instead of classifying based on the distance 

between each image, the distance between the probe image and each feature line is 

used. Li and Lu reported that this approach performed 43.7% to 65.4% better than 

the standard Eigenface method on a custom dataset, and 81% better on the ORL[8] 

dataset. 

It's clear from its long usage that PC A is a feasible approach to face classification. 

However, the principal components it finds only maximize the amount of variance 

between each image. At no point does PCA take into account the similarities and 

differences between faces belonging to the same person. This suggests that another 

approach, one which includes information about identity in the training process, 

might show an advantage over PCA. 

2.1.2 Fisher's Linear Discriminant 

The Fisherface technique was developed in 1997 by Belhumeur et al[9] to address 

the limitations of PCA analysis. Since the principal components only maximize 

variance between each face, regardless of identity, the criteria it uses for maximizing 

faces might be responding to environmental factors such as lighting change, differ­

ing expressions, eyewear or facial hair. The Fisherface approach finds components 

that separate the faces based on identity, thus ignoring the effects of environmental 

factors. 

The Fisherface technique is based on Fisher's Linear Discriminant[29]. In Fisher's 
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original 1936 paper, he suggests a technique for differentiating between members of 

two classes based on maximizing the ratio between the differences of the class means 

and the standard deviations within species. 

More formally, let X and Xc be defined as in the eigenface approach. However, 

instead of finding the covariance matrix, and maximizing based on that, we find 

two matrices, Sw and SB, where Sw is called the within class scatter matrix and 

SB is called the between class scatter matrix. We assume that we are classifying p 

separate identities of person. Thus, we can find the covariance of the images within 

each class. We call the matrix for each class c Sc, where c is the identity of some 

person to be classified. Using this we can calculate Sw as 

1 P 

Sw — — y s( 
n *•—' c=l 

The between class scatter matrix CB can be found by 

1 P 

SB = - ^{Wc -*)-{Wc- x) ' 

where JTC is the mean for class c, and x is the overall mean for all training data. 

So, we are looking for a projection P that maximizes the between class scatter, and 

minimizes the within class scatter. Formally, we want a matrix P such that 

P = a r g % a X | ^ ^ | ( 2 ' 3 ) 
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It has been shown[9] that if we let 

P a3 

ar, 

where a% corresponds to the zth generalized eigenvector solution of the equation 

for some eigenvalue /54, then P maximizes equation (2.3). 

This general approach for finding a projection works quite well, but has a problem 

when applied to face recognition. The matrix Sw is typically singular as the number 

of classes p is far far less than the number of dimensions hw. Thus, a projection P 

can be found that makes \P'Sy/P\ exactly zero. 

To get around this problem, Belhumeur et al[9] suggest first projecting the data 

Xm down to a smaller dimensional space using PCA, then reducing it further using 

Fisher's Linear Discriminant. So, we find our P as follows: 

P *pca *fld 

Ppca — a r g in ax {PpcaCPpCa\ 

Pfld = 
Vfld Ppca $B Ppca Pfld\ 

arg max -.— r 
\rfldrpcaDWrpca*fld\ 

(2.4) 

(2.5) 

(2.6) 

where C is found according to equation (2.1). The PCA projection can be configured 

to project into an hw — p dimensional space, thus circumventing the possibility of 
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a singular Sw The P that is found will be of rank at most p — 1, so that the 

dimensionality of the projection will be p — 1. Thus, if we have five classes, we will 

project into a four dimensional space; with twenty classes, we will have nineteen 

dimensions etc. 

Once we have found our P, classification proceeds precisely as it does with 

eigenfaces: the original data Xm is projected by B — XcP and then compared with 

probe images y by projecting y according to yP. 

The approach outlined above is the Fisherface technique in its simplest form, 

and will be the approach that is embedded into the proposed system. However, 

there are many variations. 

Contemporaneous with Belhumeur et al, Etemad and Chellappa[26] proposed a 

technique for performing linear dimension analysis for face recognition, but instead 

of using the Euclidean distance between points in the feature space, they calculate 

a weight for each dimension in the feature space, and find the distance between a 

probe image and the gallery images as a weighted sum of the distance along each 

dimension. They also suggest that their approach can be combined with a wavelet 

transformation to perform classification based on multiple criteria. Their experi­

ments were performed on an augmented ORL[8] dataset, and are quite impressive, 

getting a error rate of only 1%. However, no comparison is made to other ap­

proaches, and it is unclear exactly how many images are used for training for each 

individual, or whether the benefit was due to the pre-processing and augmentation 

applied to the dataset, or the algorithm itself. 

Similar to the above is a more recent approach proposed by Yang et al[87] called 

"Fuzzy 2DFLD", which approaches the problem of face classification as a series of 

two class problems. For each identity, there are two possible classes: either the face 

belongs to that person or it does not. The Fuzzy 2DFLD approach uses Fisher's 
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linear discriminant for each classification problem. Then, the k nearest neighbours 

to each gallery image are found. The number of these neighbours that belong to 

the given class is used as a class membership weight. The class membership is 

calculated for each gallery image for each class. These weights are then used to 

modify the scatter matrix used for Fisherface, to project probe images as closely as 

possible to the class centre. This approach provides a 33% — 50% improvement over 

the standard Fisherface technique, when applied to Yale[85], ORL[8] or FERET[64] 

datasets. 

In 2003, Bressan proposed a non-parametric extension of Fisherfaces[12], based 

on the observation that Fisher's linear discriminant makes an assumption of nor­

mality on the distribution of faces, which may not be valid. His experiments show 

that the non-parametric assumption does improve face recognition slightly, but not 

as much as it improves other related fields, such as letter recognition or gender clas­

sification. This may indicate that the assumption of normality within classes is not 

an invalid one. 

Cai et al[16] suggest an approach that builds on Fisher's linear discriminant by 

including unlabelled face data to the pre-labelled training data required by Fish­

erface. The concept is based on Regularized Discriminant Analysis(RDA)[31]. In 

RDA, the discrimination optimization equation, equation (2.3), is modified to 

\P'SBP\ ,n „s 
P = arg max — - — (2.7) 

P \P'bwP + aJ{P)\ 

where a is a scaling factor and J(W) corresponds to the model error. Cai et al 

suggest using the J(W) term to incorporate the structure of the unlabelled data. 

This approach yielded a significant benefit. Although they do not compare their 

approach to traditional LDA, it shows a large improvement for face recognition over 
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PCA when tested on the CMU PIE[81] dataset. 

2.1.3 Spectral Regression 

Fisherfaces is very effective at classifying multi-dimensional data, and has a high 

degree of success with face recognition. However, it suffers from at least two prob­

lems above those addressed in the various algorithms listed above. The first is that 

it requires the calculation of eigenvalues, not once but twice. This is a rather large 

computation, especially when performed on the entire covariance matrix, as is done 

for the PCA reduction step. The second problem is the PCA reduction step itself. 

Although not very much information is lost in the dimension reduction, some is. It 

may be valuable to try to retain that information in the discriminant analysis phase. 

Spectral Regression Dimension Analysis (SRDA) [17, 18] is both a framework and 

an algorithm designed to reduce the computational complexity of not only LDA, but 

also many other dimension reduction techniques. SRDA builds on the framework of 

Graph Embedding[86] to present a more efficient LDA algorithm. 

Yan et al[86] propose the generalized framework of Graph Embedding for solving 

dimension reduction problem. The framework can handle linear, kernel and tensor 

reductions, although only the linear approach is treated here. 

The concept of graph embedding is to treat each image as a vertex in a graph. 

Thus, if there are n images, there are n vertices in the graph. The edges are 

represented by the n x n matrix of real numbers W, where the i,jth entry of W 

is the (possibly zero) edge weight between vertex i and vertex j . The purpose of 

the graph reduction model is to represent the vertices of the graph as a vector with 

dimension lower than hw. If B is an n x k matrix that is the reduction of A" to a 
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lower dimensionality k, where 

B = 

bi 

b 2 

b 3 

K 

then the optimal B is given by minimizing 

T,(bt - b3)*Wti (2.8) 
hj 

That is, if vertex % and vertex j have a large weight, then bl and b3 should be close 

together. It has been shown that these optimal 6s can be found by finding solutions 

to the equation 
Ih'T/I/hl 

(2.9) 
IbWbl 

b = a r g m
b

a x ^ ^ b T 

where D is a diagonal matrix whose entries are column sums (that is, DVi 

Y^ W]i) a n d that the solutions to this equation are the eigenvector solutions to 
3 

Wb=XDb (2.10) 

However, since the translation from X to B will be linear, we know that PX = B 

Thus, we can reformulate the optimization given in equation (2.9) as 

Ip'X'WXpl 
argmax -;—,^ ^ ^ , 6 P \p'X'DXp\ 

(2.11) 

and the associated eigenvector problem becomes 

XWX'p = XXDX'p (2.12) 
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Cai et al[17] show that if 

b = X p (2.13) 

is a solution to equation (2.10), then p will be a solution to the eigenvector problem 

in (2.12). Thus, if we can find B, we can find P, if we can determine the vectors p 

that are a solution to (2.13), we can avoid having to solve equation (2.12). 

The advantage to avoiding equation (2.12) is that finding eigenvalues is a com­

putationally expensive procedure, and furthermore, can't be done if XDX' is non-

singular, which it is when the number of features in the image is larger than the 

number of images. So, solving equation (2.13) is more efficient, if the eigenvectors 

are easier to find. Note that D is always non-singular, so it will always be possible 

to perform this eigen decomposition. 

This generalized framework can be made specific through the choice of W. Cai et 

al [17] provide examples of a W for several linear dimension reduction strategies, in­

cluding LDA [9], Locality Preserving Projection[38] and Neighbourhood Preserving 

Embedding[37] In particular, W for LDA can be determined as 

{— if vertex i and vertex j both belong to the cth class 
(2.14) 

0 otherwise 

where nc is the number of samples from class c. From this, it is clear that D = I. 

We can assume without loss of generality that the images in X are ordered 

according to identity. Then it is easy to see that W is the block diagonal matrix 
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given by 

jy(i) 0 ••• 0 

0 W™ ••• 0 

0 0 ••• W{p) 

where each W^ is an nc x nc matrix. So, we can find the eigenvectors of Wh — XDb 

by finding the union of the eigenvectors of each of the blocks, and padding them 

with zeros to get the appropriate length. 

From examining equation (2.14) it can be seen that there will be an eigenvector 

bj = [ 1 , 1 , 1 , . . . , 1] with associated eigenvalue 1. This is not a useful eigenvector, 

as the response of all data points is the same. So we take it along with the other 

p—1 eigenvectors associated with non-zero eigenvalues, and apply the Gram Schmidt 

algorithm. Then, we can remove the all ones eigenvector from the orthogonal basis, 

leaving us with a p - 1 dimensional basis, similar to the LDA approach outlined in 

section 2.1.2. 

If we let B be the basis found through the application of the Gram Schmidt 

process, then we can attempt to find a matrix P such that 

B = X F 

In particular, for each b8 in B, we must find a pt such that 

^ = X • p» 

However, such a pt may not exist. So we can approximate pj by finding the p 
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that minimizes 
n 

p = argmin V V x j P — hl3) (2.15) 

where htJ is the j t h element of vector b, and x3 is the j th column of X. Equation 

(2.15) can be minimized by a least squares approximation technique. There are many 

such algorithms that can handle large scale least squares problems very efficiently, 

such as LSQR [67]. 

As the number of faces n is typically far smaller than the original dimensionality 

of the images hw, the minimization problem in equation (2.15) is ill posed. Thus, 

there are infinitely many solutions to this equation. In fact, if we introduce a 

regularizing condition, then we can find only the projective functions that would 

have been found via the original dimension reduction problem, before being analysed 

through graph spectral analysis. The regularized least squares optimization problem 

is given by 

n 

p = argmin y ^ ( x j p — b„ + a||p||2) (2.16) p u 
where a is a shrinkage parameter. 

The advantage of this approach is that, while it is more complex and less direct, 

the number of computations performed is drastically reduced. Furthermore, there 

is no need to perform a reduction on the face image data prior to performing LDA 

analysis. Experimental results[17] have shown that performing spectral regression 

dimension analysis performs roughly on par with Regularized Discriminant Analysis 

[16], which outperforms LDA. However, Spectral Regression takes approximately 

l/20th the time of RDA, implying that much more complex methodologies could 

be embedded in this framework, and even better results could be achieved, without 

too much of a time penalty. 
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2.1.4 Locality Preserving Projections 

Another approach that uses the graph embedding model is Locality Preserving 

Project ions [38] (LPP). Building on the framework outline above, the LPP graph 

is constructed by placing an edge between two vertices if they are "close." He et 

al[39] suggest two methods for determining "closeness:" fc-nearest neighbours and e 

distance. That is, W can be defined by either 

Wt, = { ^ " > ' " (2.17) 

0 otherwise 

or 

exp ( ' Xj J if j is among the k nearest neighbours of i 
WXJ = { V " > (2.18) 

0 otherwise 

where rj € M is a tuning parameter. 

The goal is to minimize equation (2.8), which is 

J2(k - b,)2Wt, 

It can be shown that this equation is equivalent to 

P'XLX'P (2.19) 

under the assumption that B = PX, and L is the so called "Laplacian Matrix" of 

W. L can be found by L = D — W where D is a diagonal matrix of column sums 

of W (see section 2.1.3). 
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Similar to the Spectral Regression approach, equation (2.19) can be minimized 

by solving the generalized eigenvector problem 

XLX'p = XXDX'p (2.20) 

So, the projection matrix P is simply the collection of all eigenvectors p that satisfy 

equation (2.20). 

However, like LDA, because the number of pixels is so much higher than the 

number of face images for training, XLX' is usually singular, which means that 

equation (2.20) cannot be solved. To get around this problem, as in LDA, prin­

cipal component analysis is first used to reduce the number of dimensions, before 

attempting to solve the eigen problem. 

Locality Preserving Projections have been shown to be extremely effective at 

solving the face recognition problem. He et al [39] show a dramatic improvement 

over PCA and LDA for face recognition on the CMU PIE[8l], Yale[85] and MSRA 

datasets. 

Since the publication of the Locality Preserving Projection paper, there have 

been numerous investigations into improving and applying LPP in various ways. In 

2006, Cai at al[19] built on the idea of Locality Preserving Projection with Orthog­

onal Locality Preserving Projections (OLPP). OLPP employs a similar algorithm 

to standard LPP, constructing the same graph, minimizing the same function, and 

solving the same eigenproblem. However, once the eigenvectors have been found, the 

eigenvector corresponding to the smallest eigenvalue is used, and then the algorithm 

modifies the eigenproblem and re-solves it, finding another set of eigenvectors which 

are orthogonal to the first. Again, the eigenvector corresponding to the smallest 

eigenvalue is selected, and the process is repeated k times, yielding k eigenvectors. 
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The OLPP algorithm shows a performance increase over standard LPP, in the 

Yale [85], ORL [8] and CMU PIE [81] datasets. In some cases, OLPP cut the error 

rate for LPP in half. However, OLPP, like many dimension reduction techniques, 

is sensitive to changes in dimensionality. Unlike Fisherface, there is no way to 

determine what dimensionality should be used. 

A separate technique for improving LPP suggested independently by Whittier 

and Qi [83] and by Zheng et al [92] is Supervised Locality Preserving Projection 

(SLPP). The standard approach to LPP does not take class labels into account. 

However, the graph construction step can easily be modified to take this information 

into account. Instead of placing an edge between two vertices if they are close by 

some metric, an edge is placed between two vertices if they are in the same class, 

and optionally also if they are close. 

Zheng et al demonstrate SLPP showing a significant improvement over standard 

LPP [92]. However, the testing methodology described uses a custom face detection 

system, as well as gabor wavelets for classification, so direct comparisons with previ­

ous results cannot be made. Nevertheless, the results demonstrate the effectiveness 

of using class labels in the training step. 

Yu Teng and Liu [88] suggest a similar idea called Discriminant Locality Pre­

serving Projection (DLPP), but take the idea of including class labels a step further. 

They suggest modifying the objective function for LPP outlined in equation (2.8) 

to one inspired by a Fisher type approach, namely: 

^ (2.21) 
E(m,-m j)W^ 

where p is the number of individuals in the database, nc is the number of images 
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belonging to individual c, m8 is the mean face of individual i and Wf and WE are 

within class and between class weightings respectively. 

This objective function can be solved by an eigenvector equation, and from there 

the algorithm proceeds as standard LPP. 

Although this algorithm is shown to have improvements over LPP, the improve­

ments are not as dramatic as those demonstrated by either SLPP or OLPP. However, 

it is impossible to know if this is because it is a weaker algorithm, or simply a result 

of different testing environments. It seems that DLPP should offer some improve­

ment over SLPP, as DLPP not only minimizes within class scatter, like SLPP, but 

also maximizes between class scatter, but the literature is not clear on this point. 

2.2 Local Approaches 

Unlike the holistic approaches described above, local approaches do not treat the 

entire image as a pattern to be classified. Instead, they break the image up into 

smaller pieces, and perform classification based on these. There are a wide variety 

of local approaches, which differ not only in how the face is broken up, but how 

the pieces are compared, and how the overall classification is determined from the 

classification of the features. 

Hidden Markov Model (HMM) based approaches use some technique to extract 

information about the forehead, eyes, nose mouth and chin, and then train a Hidden 

Markov Model [40] to recognize each individual. The HMM approach was first 

suggested by Samaria and Young in 1994 [72]. Their approach extracts strips of 

pixels corresponding to the important features, and trains the model based on this. 

Hidden Markov Models are designed for one dimensional data; to extend it to a 

two dimensional case is NP-hard. Thus, the strips are presented as one dimensional 
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data, which loses the vertical spatial relationships. 

Nefian and Hayes [61] improved upon the speed of Samaria and Young's results 

by using a Discrete Cosine Transform on the strips of pixels corresponding to the 

original data. They achieve a slight improvement on the ORL [8] dataset, but see a 

more than lOx speed up of recognition rate. 

Later researchers have employed further variations on the concepts outlined here. 

Hu and Liu [41] suggest a Hidden Markov Model based around the Fast Fourier 

Transform and the Partial Least Squares approach. Bicego et al [10] suggest using 

Haar Wavelets[25] instead of DCT, and achieve similar results, but are able to 

improve on these results through a clever model selection process. In fact, based on 

their experiments, HMM + Haar Wavelets achieves 100% recognition accuracy on 

the ORL dataset. 

A popular method for finding features in a face is based on Scale Invariant Fea­

ture Transform (SIFT)[53]. SIFT, as its name implies, generates a large collection 

of features that are invariant to scale, rotation or translation. These features are 

extracted from each image, and compared. Images that have a large number of 

matching features are considered to belong to the same class. 

SIFT was originally suggested for general object recognition, but has since been 

applied to Face Recognition by several researchers, first by Mohamed Aly in a term 

paper[7]. Aly directly follows the approach laid out for general object recognition, 

and achieves better accuracy than Fisher or Eigenfaces. 

Bicego et al [11] and Luo et al[54] suggest grid and clustering approaches respec­

tively. In essence, they suggest finding the features of local regions of the image, 

and classifying based on those. This not only improves the accuracy, but decreases 

the amount of computational power required to perform the calculation. Majum-

dar and Ward [55] suggest an approach inspired by Fisher's Linear Discriminant, 
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wherein features that have a high class discriminative power are selected. Geng and 

Jiang [32] outline two algorithms that modify the features themselves for improved 

accuracy. 

Another common approach uses textures to perform some form of matching[76] 

[52] . One of the most well known approaches to using textures for matching is 

Local Binary Pattern analysis. 

2.2.1 Local Binary Pattern 

Local Binary Patterns (LPB) were first introduced by Ojala et al [66] in 1996, 

building on a previous idea proposed by Wang and He [36]. In its most basic form, 

LPB works as follows: 

A 3 x 3 window is created around each pixel (except the ones on the outside 

edge of the image). A pattern is generated starting with the top leftmost pixel, and 

proceeding clockwise around the centre pixel. If the current pixel is greater than 

the centre pixel, then the pattern is a 1, if less, then the pattern is a 0. Thus, there 

are eight binary digits (one for each non-centre pixel in the window), which when 

concatenated together form an 8-bit integer. This 8-bit integer then represents the 

pattern surrounding the central pixel. 

Although this approach shows some positive results for pattern classification, 

Ojala et al[65] propose some extensions to their original suggestion, to ensure that 

their classification is rotation and grayscale independent. Their suggestion is two­

fold. First, instead of using a rectangular 3 x 3 window, use a circular window. The 

points that do not lie in the centre of a pixel can be estimated using interpolation. 

Then, since the pattern should be invariant to the selection of the first pixel in the 

window, all patterns that are the same except for rotation are classified as the same. 

This leaves 36 distinct patterns. The second idea proposed in [65] comes out of 
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the observation that one type of pattern makes up about 90% of patterns observed 

in the data. This type of pattern, which they call a uniform pattern, is one in which 

there are two or fewer transitions from 0's to l's or l's to 0's. For example the 

patterns 00000000 and 00111000 are uniform, whereas the pattern 01100100 is not. 

Ojala et al suggest classifying all non-uniform patterns in the same class, thus using 

only uniform patterns for classification. Their justification is that the remaining 27 

patterns don't appear often enough to learn anything useful about their probability. 

Once the patterns have been found, they are used to construct a histogram, 

which can then be compared to perform matching. However, Ahonen et al [4] 

suggest a further improvement for face recognition. LBP as it is provides excellent 

information about micro-structures, but carries no information at all about the 

spatial relationship of the data. The suggestion is to break the image up into 

regions, find a histogram for each region, and then concatenate the histograms from 

each region together in order to perform global matching. 

There several ways to compare histograms, including Histogram Intersection: 

D(S, M) = Y^ min{5,,r, Mhr) (2.22) 
i,r 

Log-likelihood: 

L(S, M) = Y s*,r log MJ>r (2.23) 
i,r 

and Chi squared statistic (x2) 

where 5 and M are the histograms to be compared and St,r is the frequency of 

pattern i in region r in histogram S. In their experiments, Ahonen et al found 
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that using a x2 statistic worked better than the other approaches, so that is the 

comparison that they used. 

The approach outlined above was tested on the FERET[64] dataset, and achieved 

a high accuracy rate compared to the Eigenfaces technique, in some cases halving 

the error rate. 

Like other approaches mentioned in this chapter, various improvements over the 

original strategy have been suggested. Zhang et al [89] convert the face classification 

problem into a two class problem by creating a classifier for each individual in the 

database, and classifying each image as either being of that individual or not. Then 

the Adaboost[30] algorithm learns the similarity between every face pair. This 

approach shows a competitive result on the FERET fa/fb partition. 

Zhang et al [90] suggest combining Local Binary Batterns with Gabor Wavelets. 

In their approach, each region is convolved with its Gabor filters, to generate so 

called Gabor Magnitude Pictures (40 for each region). These Gabor Magnitude 

Pictures are then subjected to Local Binary Pattern analysis, and classification 

proceeds as normal. The inclusion of Gabor filters dramatically improves on the 

performance of Local Binary Patterns when tested on the FERET[64] dataset. 

2.2.2 Volterrafaces 

Volterrafaces is a very new technique, suggested by Kumar et al in 2009[48]. Al­

though it could be used holistically, the authors apply it as a local approach, so 

that is what is followed here. Volterrafaces is based around the idea of the Volterra 

Series. 

Volterra series can completely describe any non-linear translation invariant func-

27 



tional H : / / —>• H which maps the function x(t) to y(t) with 

oo oo 
oo „ „ 

$S(x(t)) = y{t) = ^2 / • • • / hn(TU ..., r n )x(<ri) . . . x(ir„)dri • • • drn (2.25) 
n = l 

—oo —oo 

where hn(r\,..., r„) is referred as the Volterra Kernel of the functional. 

Since digital images are only discrete approximations of continuous functions, 

we can use the discrete form of the equation: 

oo / oo 

3(x(i)) = y(t) = J2[ S ••• J2 hn(qi,...,qn)x(tqi)...x(tqn)\ (2.26) 
n=i. \<ji=-oo qn=-oc J 

However, if we want to perform any computations, we must approximate these 

infinite sums with 

%p(x(t)) = x(t) ®p h(t) (2.27) 

where p denotes the number of terms being used in the approximation, (g>p represents 

the convolution operator, and h(t) stands in for all the different orders of kernels. 

Under this approach, the goal is to approximate a functional H that can map 

images of faces to identities with a low error. We can evaluate the goodness of H at 

this task with a so called goodness functional defined as: 

l^ckecZ^m£ck.n(£ck I M P ( x " i ) ~ ^ P ( x n ) | | 

where c is the set of all identities. Using equation (2.27) we can rewrite the above 

as 

O(QP) = ^C f c € c Eijecfc Hx' ®P K ~ XJ ® P ^11 /2 2Q, 
zlckec 22meck,nfck \\Xm ®p K - X.n ®p K\\2 

where K is the Volterra Kernel that will be described shortly. 

The convolution of the image and the kernel is easiest done if it is linear. Thus, we 
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transform X first, and then perform a linear product with the kernel to approximate 

Qp. The image x, is represented in two dimensions. Then the transformed version 

of X, labelled A, is dependent on the order of the approximation. The Volterraface 

paper outlines first and second order approximations, and provides a framework for 

higher order approximations (although they are not usually necessary). 

For a first order approximation, X is transformed into the matrix A by finding a 

6x6 neighbourhood of each pixel in X, vectorizing each neighbourhood, and stacking 

the results to form a new matrix A. For a second order approximation, not only is 

each pixel in the neighbourhood converted into a vector, but each neighbourhood's 

vector includes the product of each pixel in the neighbourhood with every other 

pixel. 

Now that we have transformed the input data, we can replace 

xt®pK = A%-K 

and so our objective function from equation (2.29) becomes 

v^ v \\ A . K — A • K\\2 

u \ ^ ) - v v \\A - K - A • K\\* [ ' 

or 

<W = %%£ (2.3D 

where 

S^ = E E ( ^ - V ( A - ^ ) 
ck€ajeck 

SB = J ] J ] (Am-An)'(Am~-An) 
ckec meck,n£ck 
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It can be shown that equation (2.30) can be minimized by finding the eigenvector-

corresponding to the smallest eigenvalue of S^Sw- This eigenvector is taken to be 

K. 

In order to classify an image, first the kernel is found on the training set. Any 

new images to be classified are convolved with the kernel and then compared to the 

convolved gallery. The image is then classified by nearest neighbour. 

The authors of the Volterraface paper suggest that better results can be found 

by dividing the image into regions and performing Volterrafaces on each region 

separately. The overall class can be found by a vote over the all the regions. Through 

cross validation, the authors found that 8 x 8 patches work best. The authors also 

tried overlapping vs non-overlapping regions, as well as different sizes for the kernel. 

Only the best results for all combinations of parameters in a dataset are re­

ported. On the Yale [85], CMU PIE [81] and Extended Yale datasets, first order 

approximations were shown to outperform second order approximations, but both 

outperformed all other face classification systems tested (including PCA, Fisherface 

and LPP). 

As of yet, there has been no work to extend the ideas presented in this paper, 

but such a promising algorithm should be investigated more fully in the near future. 

2.3 Regional Voting 

Unlike all of the above algorithms, the Regional Voting framework suggested by 

Chen and Tokuda [21] [22] [23] is not a specific face classification technique. Instead 

it is a framework for embedding any holistic matching technique. 

In the Regional Voting framework, the image is broken up into non-overlapping 

regions. Each region is classified separately by the holistic classification scheme 
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being used. The overall classification is found by a simple majority over all the 

regions. 

The idea to break an image into regions for facial recognition has been used 

many times by many researchers. As mentioned above, both Local Binary Pat­

terns [4] and Volterrafaces[48] suggest breaking the image into regions to maintain 

spatial information. Breaking the image into regions has also been suggested for 

Eigenfaces[24, 78, 34], SIFT [11] as well as Gabor Wavelets[93] [35], and Discrete 

Cosine Transform [1]. 

A major difference between the above systems and the Regional Voting frame­

work suggested by Chen and Tokuda, aside from one being a framework, and the 

others being specific methodologies, is the method that is used to combine the re­

gions together. Although Kumar et al in 2009[48] and Zhou et al in 2007 [93] both 

advocate a majority vote, all other systems simply concatenate the results from 

each region together and perform final classification based on that. In 1999, when 

Regional Voting was first suggested, local based approaches were just gaining no­

tice, and there was no previous work on combining regions together with a simple 

vote [79]. 

More formally, the Regional Voting approach assumes a gallery of images Q = 

{gi, c/2, • • • gn} with associated identities 1 = {it, i2, • • • in}, and a holistic face recog­

nition system H : V -» X, where V is the set of all possible probe images of faces. 

Each gt in the gallery is divided k times vertically and t times horizontally to 

create k x £ non-overlapping regions. For a region r, we denote the region in image 

g% by g[ and the region in every image in the gallery by Qr. The holistic algorithm 

% is trained using Qr for each region r. We call this regionally trained algorithm 

W. 

To classify a probe image p £ V, each region is classified separately. That is, for 
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Figure 2.1: Regional Voting Algorithm 

for each image gt E Q do 
Divide gt k times horizontally and £ times vertically 

end for 
Let TZ be the set of regions that each image is broken into. 
for each region r £ 7Z do 

Train H on QT 

end for 

Classify the image by argmax < \ eq(Hr(p) = i) > 
l£l [r J 

each region r, the result of H(pr) is found. The overall winner is taken to be the 

identity that has the most regional classifications. The algorithm is given in Figure 

2.1. 

This approach is very straightforward, but it yields very powerful results. Chen 

and Tokuda[23] show that their approach improves the face recognition accuracy of 

any holistic approach that is embedded into it on the Yale [85], ORL [8] and CMU 

PIE[81] datasets, typically halving the error rate. Their experiments show that a 

region size of between 4 x 4 and 5 x 5 usually yields the best results. 

The reason suggested by Chen and Tokuda for the improvement is the increase in 

stability. They define stability as invariance to noise, and use two types of noise: uni­

form and concentrated. They have shown for both binary images [21] and grayscale 

using the Hamiltonian distance[22] that Regional Voting increases stability to both 

types of noise. The reason posited for the increase in stability is that Regional Vot­

ing is able to contain noise contamination to the regions affected, so that it takes 

widespread noise to change the classification of the system. 
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Chapter 3 

Proposed Algorithm 

The proposed algorithm builds on the success of Regional Voting by applying weights 

to each region. The idea is motivated by the observation that there should be some 

regions of the face that are more important than others. This concept has been ex­

ploited as early as the 1970's in some of the earliest research into face recognition[45]. 

More recently, Adaptively Weighted Sub-Pattern PCA [78] as well as weighted local 

Gabor wavelets[93] have been suggested. The system at hand is distinct from these 

approaches in that the weights are estimated independent of any human knowledge 

of the structure of the face or of the underlying algorithm. 

To modify the Regional Voting Algorithm into a Weighted Regional Voting 

(WRV) algorithm, we assume that each region r has an associated weight wr £ [0,1]. 

Then the final classification step in Figure 2.1 becomes 

argmax < Nw re<7(i7 r = i) > 

Although it does not deal specifically with face recognition, the paper "Com­

bining Classifiers: A Theoretical Framework" by Kittler et al[47] provides a strong 

theoretical foundation for why a weighted vote provides the best estimation of the 
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overall classification of several sub-classifiers. Under the assumption that the data 

provided to each classifier is independent (non-overlapping blocks) and each classi­

fier selects one class for the input, then a weighted vote is the maximum likelihood 

estimator for the output of the combination of the classifier. 

In their paper, Kittler et al suggest doing a search over the entire state space 

to find the best weights for each classifier. Although this is possible, for the case of 

face recognition, if the image is divided 15 times horizontally and 15 times vertically, 

there are 255 weights to be estimated, and no suggestion as to how to find these 

weights. 

The main contribution of this thesis is the suggestion of several techniques for 

weight estimation. These weight estimation techniques are simple, and computa­

tionally feasible to implement. 

A very simple approach to estimating the weights is to simply make them pro­

portional to the accuracy of the system. That is, \iright{r) is the number of training 

images H is able to classify in region r then we can simply use 

wr = right(r)/n (3.1) 

where n is the total number of images in the gallery. However, there may be more 

sophisticated approaches to weight estimation. The concepts used are taken from 

Regret Minimization, so we take a brief detour before describing the weight estima­

tion techniques. 

3.1 Regret Minimization 

Regret minimization is a technique borrowed from algorithmic game theory for mak­

ing decisions in the face of uncertainty. Formally, regret minimization works as 
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Figure 3.1: Polynomial Weights Algorithm 
Require: wf — 1 and pi = l/\A\ for a € A 

for each time t do 
for each action a 6 A do 

Let^-^Vtl-r/L^a)) 
Let p4

a = u^/Wt where Wt = ^ if" 

end for 
end for 

follows: 

Let A = {ai,a,2, • • •, an} be the set of allowable actions. At each discrete time 

t, we assume there exists a function Lt : A —> [0,1], called the loss function, which 

assigns a loss for each action that we can take. Our goal then is to select actions to 

minimize the amount of loss we suffer. 

There is a significant amount of theory surrounding this idea (see [20], [63] for 

example). Here we distill only what we need. It is fairly plain to see that selecting 

only one action all the time may not be the best approach. For example, when 

playing rock paper sissors, it is not a good strategy to always pick rock. But it is a 

good strategy to randomly choose between rock, paper and sissors. Thus, what we 

are looking for is a distribution over the actions, p : [0,1] —>• A such that 2_,p(a) = 1 
a€A 

It can be shown the algorithms in Figures 3.1 and 3.2 minimize the expected 

loss, if the action at time t is selected according to distribution pl. So, p% is the 

amount of weight distribution p places on action a at time t. wl is similar, but isn't 

normalized. The parameter r\ is a tuning paramter typically between 0 and 0.1. See 

[20] for a derivation of this proof and how to find r\ 

To apply the above approach to face recognition requires a few changes and 

assumptions. Firstly, we don't have actions take take. Instead, we have regions. 

Each 'action' corresponds to selecting a particular region as the classifier. Secondly, 
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Figure 3.2: Exponential Weights Algorithm 

Require: w% = 1 and pi = 1/\A\ for a G A 
for each time t do 

for each action a G A do 
Let < = < _ 1 e - , ' i t - l ( o ) 

Let p" = Wt/Wt where W< = \^ w% 
aeA 

end for 
end for 

there is no concept of time. Each t corresponds to a training image. Thirdly, the 

loss function is either 0 or 1: 0 if the classification is correct, 1 if it is not. Lastly, 

and most significantly, instead of selecting the classification based solely on one 

classifier, we will use p a s a weight on each region and sum the weighted votes for 

each classifier to select our overall classification. 

Essentially, I am adopting the weighting for actions from regret minimization, 

and applying them to Regional Voting. This means that I've lost the theoretical 

guarantees of minimization, but have gained the stability of Regional Voting. I will 

show empirically that this trade-off is worthwhile. 

3.2 Estimating Regional Weights 

As outlined in Section 3.1, I make several changes to the ideas of Decision Theory in 

order to apply them to Regional Voting. I show the adaptation of the Exponential 

Weights algorithm, as the derivation for Polynomial is similar. 

Making the changes outlined in Section 3.1 to the algorithm given in Figure 3.2 

yields the algorithm given in Figure 3.3, we see that the function Lr : I —> {0,1} is 

defined as Lr(gt) = 0 if region r of image gt is classified as the identity of image gt, 

and Lr(gl) = 1 otherwise. 

Examining the result of pr after updating for every image, we see that wr is only 
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Figure 3.3: Exponential Weights Algorithm 
Requ i re : w\ — 1 and p\ = l/\A\ for a G A 

for each gallery image <?, G Q do 
for each region r G TZ do 

Let < = vfa e^Lr{g%) 

Let fgi = wrJW9l where W ,̂ = J^ wgt 

g.eg 
end for 

end for 

updated if the loss function is 1, or if the region is incorrectly identified. In that 

case, wr is multiplied by e~v. So, if we count the number of times the weight for 

each region is updated, we can reduce the weight update process to 

Wr = e-^rong{r) ^ 

where wrong(r) is the number of times that region r incorrectly classifies an image 

in the training set. We can derive the formulation of polynomial weighting similarly 

to arrive at the equation 

u;r = (1 - r))wrm9{r) (3.3) 

I further note that since I am no longer using weights as a probability distribution, I 

can drop the requirement that YlrenP(r) = 1> an<^ instead set p(r) = wr. There are 

now three possible weighting approaches, given in equations (3.1), (3.2) and (3.3). 

Although I have used the notations wrong(r) and right(r), I have given no 

indication as to how to calculate these. Since we are attempting to fit a model to 

our output, the standard approach is cross validation. In particular, I use leave one 

out cross validation to estimate the weights, as well as finding the optimal parameter 

i]. The process is as follows: 

For each individual in the database, select one image as the probe image. Train 
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the holistic classifier in each region using the remaining images. Then attempt 

to classify each of the probe images and store the result. Repeat the process by 

selecting a distinct set of probe images from the gallery. Continue repeating the 

process until all of the training images have been used exactly once. Then check 

the accuracy of each region at classifying the probe images. This is used as input 

for wrong(r) and right(r). 

Cross validation has the added bonus of allowing the system to estimate an 

optimal value for 7/. Once the estimated classifications for each image in each region 

is known, the weights can be estimated using different values of 77. The 77 that results 

in the best classification rate for the training data is the 77 that is selected, and the 

corresponding weights used for the final classification. 

Any of the three weighting equations introduced can be used as part of the 

algorithm. I will call equation (3.1) Direct Proportional weighting, equation (3.2) 

Exponential Weighting and equation (3.3) Polynomial Weighting. Thus, the final 

overall algorithm can be seen in Figure 3.4. 
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Figure 3.4: Weighted Regional Voting Algorithm 
for each image g% G Q do 

Divide gt k times horizontally and £ times vertically 
end for 
Let 1Z be the set of regions that each image is broken into. 
for each region r G 71 do 

Train Hr on Qr 

for each imagea g% G Q do 
Classify Hr(gt) 
Record the result 

end for 
Find wr using a weighting equation and the results above 

end for 

Classify the image by argmax < \ w' eq(Hr (p) 

aAs a timesaver, instead of taking out all images one at a time, one sample from all identities 
can be removed, and processed simultaneously. 
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Chapter 4 

Experiments 

Extensive experiments were carried out to validate the Weighted Regional Voting 

approach. For each dataset, the images were divided k times horizontally and k 

times vertically for k = 1,2, . . .20 . Four different holistic classifiers were used: 

Eigenfaces[80] (see section 2.1.1), Fisher faces [9] (see section 2.1.2), SLPP[92](see 

section 2.1.4) and SRDA[17] (see section 2.1.3). Each of the holistic classifiers was 

trained on the gallery. Probe images were reduced using the linear reduction found 

during the training phase, and then classified by nearest neighbour classification. 

Each image to be classified was normalized by scaling the representative vector so 

that it had a unit sum. All gallery images were perturbed up to two pixels in each 

every direction, to account for possible misalignment issues. The closest match from 

among all the perturbed images was selected. 

All four dimension reduction techniques were embedded using code from Deng 

Cai's website[15]. For the Eigenface approach, the eigenvectors corresponding to the 

largest 80% of the eigenvalues were used to calculate the projection function. For the 

Fisherface approach, the data was first reduced using PCA, and then reduced using 

Fisher. For the SRDA approach, the a selected for regularization was a = 0.01. For 
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SLPP, cosine similarity was used to calculate the distances in the adjacency matrix. 

Again, the a selected for regularization was a = 0.01. 

In order to validate the Weighted Regional Voting approach, three different 

datasets were used: Yale database[85], the Olivetti Research Laboratory database[8] 

(ORL) and the Carnegie Melon University Pose, Illumination, and Expression database[81] 

(CMU PIE). 

The Yale dataset comes unsurprisingly from Yale University and contains 165 

grayscale images in GIF format of 15 individuals. There are 11 images per subject, 

one per different facial expression or configuration: centre-light, with glasses, happy, 

left-light, with no glasses, normal, right-light, sad, sleepy, surprised, and wink[85]. 

The ORL dataset conies from the now defunct Cambridge AT&T Laboratory, 

formerly Olivetti Research Laboratory. In this database, there are ten different 

images of each of 40 distinct subjects. For some subjects, the images were taken at 

different times, varying the lighting, facial expressions (open / closed eyes, smiling 

/ not smiling) and facial details (glasses / no glasses). All the images were taken 

against a dark homogeneous background with the subjects in an upright, frontal 

position (with tolerance for some side movement) [8]. 

The CMU PIE database was taken at Carnegie Melon University between Oc­

tober and December 2000. There are 41, 368 images of 68 people. For each person, 

there are 13 different poses, 43 different illumination conditions and four different 

facial expressions [81]. The experiments performed here, however, used only the five 

frontal poses (C05, C07, C09, C27, C29), for a total of 170 images per individual, 

except for six indivudals with only 169 images each. 

The faces for all three datasets were normalized by manually finding the eye 

positions, scaling and translating the faces so that they were aligned on the eyes, 

and cropping the images to 64 x 64 pixels. This process was done prior to being 
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Figure 4.1: Embedding various holistic classifiers in different sized regions on Yale 
with 2 training images and exponential weighting 

Eigenfaces 
Fisherfaces 

SRDA 
SLPP 

0 5 10 15 20 
Divisions 

downloaded from Deng Cai's website[15]. 

In the first set of experiments, conducted on the Yale and ORL datasets, each 

of the four holistic classification techniques mentioned above were embedded in the 

Weighted Regional Voting framework, with different numbers of regions, from l x l 

to 20 x 20. That is, each image was first left undivided, then divided twice vertically, 

and twice horizontally, and then thrice each direction and so on up to 20 divisons 

vertically and 20 horizontally. For these experiments, exponential weighting was 

used (see equation (3.2)), to demonstrate the validity of weighting in general. The 

weights were estimated using cross-validation as outlined above. Each algorithm is 

evaluated being split into training and testing data randomly, in 50 different ways 

for each number of regional divisions. The same 50 splits were used for each regional 

division The results for the Yale dataset for 2 and 5 training images are given in 

Figures 4.1 and 4.2 respectively. The results for the ORL dataset for 2 and 5 training 

images are given in Figures 4.3 and 4.4. 

Another set of experiments were run, to test the performance of the various sug-
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Figure 
with 5 

4.2: Embedding various holistic classifiers in different sized regions on Yale 
training images and exponential weighting 
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4.3: Embedding various holistic classifiers in different sized regions on ORL 
training images and exponential weighting 
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Figure 4.4: Embedding various holistic classifiers in different sized regions on ORL 
with 5 training images and exponential weighting 

- • - Eigenfaces 
-* - Fisherfaces 
-— SRDA 
-* - SLPP 

0 5 fO 15 20 

Divisions 

gested weighting schemes across various numbers of divisions. All three suggested 

weighting schemes - exponential weighting (see equation (3.2)), polynomial weight­

ing (see equation (3.3)) and directly proportional weighting (see equation (3.1)) -

as well as equal weighting were compared. Equal weighting corresponds to standard 

regional weighting[22] (see section 2.3). The weighting schemes were tested using 

by embedding SLPP. As above, each division was tested with the same 50 random 

splits for each dataset. The results for the Yale dataset for 2 and 5 training images 

are given in Figures 4.5 and 4.6 respectively. The results for the ORL dataset for 2 

and 5 training images are given in Figures 4.7 and 4.8. 

For comparison, the same tests were run, but instead of finding the best weights 

based on cross validation, the weights that gave the best results on the testing images 

was used. The results for the Yale dataset with two and five training images are 

given in Figures 4.9 and 4.10 respectively and The results for the ORL dataset with 

two and five training images are given in Figures 4.11 and 4.12 respectively. 

More tests were done to compare the results of Weighted Regional Voting with 
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Figure 4.5: Comparing various weighting schemes in different sized regions on Yale 
with 2 training images and SLPP as the regional classifier 
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Figure 4.6: Comparing various weighting schemes in different sized regions on Yale 
with 5 training images and SLPP as the regional classifier 
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4.7: Comparing various weighting schemes in different sized regionson ORL 
training images and SLPP as the regional classifier 
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Figure 4.8: Comparing various weighting schemes in different sized regions on ORL 
with 5 training images and SLPP as the regional classifier 
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Figure 4.9: Comparing various weighting schemes in different sized regions with best 
weights on Yale with 2 training images and SLPP as the regional classifier 

o 
d 

o 
o 
< 

Equal 
Direct 

• Exponential 
Polynomial 

10 15 
Divisions 

20 

Figure 4 
best wei 

10: Comparing various weighting schemes in different sized regions with 
fits on Yale with 5 training images and SLPP as the regional classifier n 

Equal 
Direct 

- Exponential 
- Polynomial 

10 15 
Divisions 

47 



Figure 4.11: Comparing various weighting schemes in different sized regions with 
best weights on ORL with 2 training images and SLPP as the regional classifier 
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the results of some top face matching algorithms. The result of performing Weighted 

Regional Voting with 16 x 16 divisions is compared to performing the holistic ap­

proach with no regional divisions. The results are also compared to two local feature 

based approaches: Local Binary Patterns[4] (see section 2.2.1) and Volterrafaces[48] 

(see section 2.2.2). For the Yale and ORL datasets, the results over 50 random 

splits are compared using both 2 subjects for training and 5. For CMU PIE, only 

one random split was used, with 5 training subjects. 

Each of the other algorithms was tested locally. The Local Binary Pattern algo­

rithm was taken from the University of Oulu's Computer Science and Engineering 

website[73]. The Volterrafaces code provided by Ritwik Kumar on the MATLAB 

Central website[49] was modified to run on my face data. For Local Binary Pat­

terns, the results using histogram intersection and a neighbourhood of 16 circular 

pixels with distance two from the centre are shown. For Volterrafaces, 8 x 8 patches 

were used, with each patch overlapping the next by four pixels, using a linear kernel 

of size 5 x 5 . These parameters were chosen to yield the highest results across all 

datasets.1 

The results for the Yale Dataset for 2 training subjects and 5 training subjects 

are given in Tables 4.1 and 4.2 respectively. The results for the ORL dataset with 

2 and 5 training subjects are given in Tables 4.3 and 4.4. The results for the CMU 

PIE dataset for five training subjects are given in Table 4.5. 

l r rhe Volterra code was modified by Liang Chen to work with the the datsets I was using. The 
experiments using the Volterra and LBP algorithms on these data sets were carried out by Dr. 
Liang Chen and summaries presented in this thesis are based on results are provided courtesty of 
him. 
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Table 4 

Alg 

PCA 
Fisher 
SRDA 
SLPP 
LBP 

Volterra 

1 Comparison of various face classifiers on 
Polynomial Weighting 

Error Rate 

10 90% ± 3 34% 
13 54% ± 3 29% 
10 53% ± 3 08% 
9 70% ± 3 25% 

-
-

Exponential Weighting 
Error Rate 

10 90% ± 3 34% 
13 54% ± 3 29% 
10 53% ± 3 08% 
9 70% ± 3 39% 

-
-

Yale Database with two training subjects with 16 x 16 divisions 
Proportional Weighting 

Error Rate 

11 97% ± 3 22% 
12 87% ± 2 91% 
10 79% ± 2 37% 
10 40% ± 3 01% 

-
-

No Weights 
Error Rate 

15 36% ± 3 07% 
15 29% ± 2 62% 
14 03% ± 2 82% 
13 66% ± 3 04% 

-
-

Global 
Error Rate 

44 40% ± 5 14% 
43 02% ± 4 67% 
30 71% ± 4 69% 
32 50% ± 4 44% 
24 78% ± 6 19% 
28 99% ± 3 91% 



Table 4 

Alg 

PCA 
Fisher 
SRDA 
SLPP 
LPB 

Volterra 

.2: Comparison of various face classifiers on 
Polynomial Weighting 

Error Rate 

3 73% ± 2 08% 
4 07% ± 2 12% 
4 27% ± 2 24 

3 29% ± 2 07% 
-
-

Exponential Weighting 
Error Rate 

3 67% ± 2 04% 
4 07% ± 2 12% 
4 24% ± 2 27% 
3 31% ± 2 08% 

-
-

Yale Database with five training subjects with 16 x 16 divisions 
Proportional Weighting 

Error Rate 

4 56% ± 2 16% 
4 20% ± 2 07% 
4 80% ± 2 07% 
4 07% ± 2 07% 

-
-

No Weights 
Error Rate 

5 98% ± 2 46% 
5 40% ± 1 92% 
6 31 ± 2 17% 

5 40% ± 2 36% 
-
-

Global 
Error Rate 

33 84% ± 3 38% 
33 84% ± 3 16% 
11 38% ± 2 96% 
12 93% ± 3 60% 
14 06% ± 2 97% 
14 06% ± 2 81% 



Table 4 

Alg 

PCA 
Fisher 
SRDA 
SLPP 
LBP 

Volterra 

3 Comparison of various face classifiers on 
Polynomial Weighting 

Error Rate 

10 12% ± 2 10% 
11 21% ± 2 25% 
9 16% ± 2 08% 
9 69% ± 2 22% 

-
-

Exponential Weighting 
Error Rate 

10 17% ± 2 06% 
11 24% ± 2 27% 
9 19% ± 2 06% 
9 79% ± 2 27% 

-
-

ORL Database with two training subjects with 16 x 16 divisions 
Proportional Weighting 

Error Rate 

9 74% ± 1 91% 
10 65% ± 2 44% 
8 92% ± 0 796% 
9 09% ± 2 14% 

-
-

No Weights 
Error Rate 

10 12% ± 2 23% 
10 79% ± 2 40% 
9 24% ± 2 13% 
9 48% ± 2 14% 

-
-

Global 
Error Rate 

29 29% ± 3 15% 
22 28% ± 2 82% 
18 19% ± 2 81% 
17 53% ± 3 04% 
15 38% ± 2 73% 
24 46% ± 2 53% 



GO 

Table 4 4 Comparison of various face classifiers on ORL Database with five training subjects with 16 x 16 divisions 

Alg 

PCA 
Fisher 
SRDA 
SLPP 
LBP 

Volterra 

Polynomial Weighting 
Error Rate 

1 26% ± 0 929% 
1 49% ± 0 886% 
1 15% ± 0 814% 
1 20% ± 0 889% 

-
-

Exponential Weighting 
Error Rate 

1 26% ± 0 929% 
1 51% ± 0 886% 
1 14% ± 0 800% 
1 22% ± 0 890% 

-
-

Proportional Weighting 
Error Rate 

1 14% ± 0 866% 
1 35% ± 0 814% 
1 03% ± 0 796% 
1 09% ± 0 785% 

-
-

No Weights 
Error Rate 

1 31% ± 0 916% 
1 45% ± 0 934% 
1 20% ± 0 742% 
1 17% ± 0 840% 

-
-

Global 
Error Rate 

11 48% 3= 2 26% 
3 45% ± 1 30% 
3 44% ± 1 19% 
2 62% ± 1 20% 
3 74% ± 1 30% 
7 71% ± 1 83% 



Table 4.5 

Alg 

PCA 
Fisher 
SRDA 
SLPP 
LPB 

Volterra 

Comparison of various face classifiers on CMU PIE Database with five training 
Polynomial Weighting 

Error Rate 

20 55% 
20 47% 
20 00% 
18 85% 

-
-

Exponential Weighting 
Error Rate 

20 55% 
20 47% 
20 00% 
18 85% 

-
-

Proportional Weighting 
Error Rate 

20 46% 
20 65% 
20 34% 
19 00% 

-
-

No Weights 
Error Rate 

23 21% 
22 46% 
22 44% 
21 38% 

-
-

; subjects wi 
Global 

Error Rate 

35 63% 
35 63% 
29 76% 
28 72% 
37 71% 
19 37% 



Chapter 5 

Analysis 

It is easy to see that embedding a holistic classifier into the Weighted Regional 

Voting framework improves the accuracy of the classifier. Figures 4.1, 4.2, 4.3 and 

4.4 all show that as the number of regions increases, so too does the accuracy of the 

system. However, after a certain point, the regions become too small to be effective 

classifiers, and the accuracy begins to drop. This is precisely the pattern shown by 

standard Regional Voting[22]. 

Figures 4.5, 4.6, 4.7 and 4.8 demonstrate that Weighted Regional Voting outper­

forms standard Regional Voting, as soon as the number of regions is large enough for 

the weights to make a difference. On the ORL dataset, weighted voting and stan­

dard voting are approximately equally powerful. In particular, on the ORL dataset, 

directly proportional weighting performs the best. This is likely because standard 

Regional Voting is already so accurate on the ORL dataset that it is difficult to 

improve upon. 

Since Weighted Regional Voting is dependent on the training data to estimate 

regional weights, it is instructive to examine the accuracy that can be achieved 

in the best possible case. Figures 4.9, 4.10, 4.11 and 4.12 demonstrate the accu-
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racy of the system when weights are selected that are optimal for the testing set. 

An actual system would not be able to select this ahead of time, but the greatly 

increased accuracy demonstrates that better weight selection algorithms will yield 

better results. 

As Weighted Regional Voting embeds a holistic approach and makes it local, it 

is important to compare the results of Weighted Regional Voting with well known 

local approaches. Tables 4.1, 4.2, 4.3, 4.4 and 4.5 demonstrate the advantage of 

Weighted Regional Voting over Volterrafaces and Local Binary Patterns. 

On the Yale dataset, both polynomial and exponential Weighted Regional Vot­

ing beats out standard Regional Voting. It is also clear from comparing the error 

rate that Weighted Regional Voting outperforms Volterrafaces and Local Binary 

Patterns. On the ORL dataset, the advantage is not as clear, but Weighted Re­

gional Voting is certainly competitive with the other approaches listed, especially 

for the case where there are only two training images. On the PIE dataset, there 

is not enough data to perform statistical inference, but the advantage of Weighted 

Regional Voting over the other techniques is clear. 

Figure 5.1 shows the relationship between r\ and the accuracy of the system 

for SLPP on the Yale dataset with 5 Training images at 16 x 16 with polynomial 

weighting for several different random splits. This shows that accuracy is highly 

dependent on a good selection of 77, but also that different gallery images have 

different optimal choices for 77. However, there are choices of 77 which will yield good 

results regardless of the gallery images. 

From the graphs, it is clear to see that as the number of regions increases (and 

the sizes of the regions decreases correspondingly) that all dimension reduction 

techniques begin to perform about the same. However, SLPP appears to be the 

most stable, as it outperforms the others at every size. 
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(a) Original Im- (b) Exponential (c) Polynomial (d) Propor-
age Weights Weights tional Weights 

Figure 5.2: Regional Weights for Yale at 16 x 16 

Since the system automatically determines the optimal weights for various re­

gions, it is interesting to see what regions are weighted higher than others. Figure 5.2 

shows the various regional weighting schemes when SLPP is embedded in Weighted 

Regional Voting for 16 x 16 divisions on the Yale dataset. Brighter colours corre­

spond to a higher weight for that region. 

Counter to intuition, the regions of the face that yield best accuracy are not 

the nose and mouth. In fact, those regions seem to have the lowest accuracy, and 

thus the lowest weights. The eyes, cheeks and forehead instead seem to be the 

regions that yield the best recognition accuracy. This demonstrates the advantages 

of using an automatic weight estimation technique instead of attempting to use 

human knowledge to combine various regions together. 

Figure 5.3 graphs the numerical difference between the three suggested weighting 

techniques on the Yale dataset, with 5 training images and 10 x 10 divisions. From 

this figure, it is easy to see that polynomial and exponential weighting yield almost 

identical weights, whereas direct proportional weighting has more extreme variation 

in values, while keeping the same general shape. All weights have been scaled to fit 

between 0 and 1. 

Lastly, Weighted Regional Voting has a very fast running time, at least during 

the testing phase. The time complexity is obviously dependent on the time com­

plexity of the embedded algorithm. If c is the time of the holistic classifier, then the 
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Figure 5.3: The weighting of regions using each of the three suggested weighting 
schemes 
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time complexity of Regional voting is simply re where r is the number of regions. 

Assuming a linear dimension reduction classifier, then the complexity of c is one 

matrix multiplication (with complexity of hwk where h and w are the height and 

width of the image and k is the reduced dimension), followed by a distance calcu­

lation between the probe and each image in the gallery (complexity hum). So the 

total complexity is simply 0(rhw(k + n)). 

The situation for training is much more complex, and because of the disparity 

in complexities for different holistic algorithms, can't be found directly. But if 

we assume that t is the complexity of the classifier's training process, then we 

can provide an estimate of the training complexity. We will perform this trainign 

r times, once for each region. Then for leave one out cross validation, we will 

perform n training classifications, so the cross validation process requires nrhw(k + 

n) operations. The brute force finding of the best parameter for rj will try as many 

values for 77 as is desired. Let b be the number of values of r] tested (this paper 

used 100,000,000,000,000). Each time required r operations to calculate the weights 

and another r to find th final vote. So, the total number of operations required is 

0(rt + nrhw(k + n) + br). 
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Chapter 6 

Summary 

The field of Face Recognition is a very popular area for researchers. Many re­

searchers have suggested varying approaches to the problem of Face Recognition. 

These approaches can be broadly categorized into being either holistic or local al­

gorithms. Although initially holistic algorithms were in favour, in the last decade, 

local approaches have seen a rise in popularity and accuracy. This thesis attempts 

to provide a framework for embedding a holistic approach into a local algorithm. 

Regional Voting has been shown to be a very stable framework for embedding 

holistic approaches. Regional Voting consists of dividing the images into non-

overlapping regions, performing classification within each region, and classifying 

the result as the majority vote winner over all the regions. 

Weighted Regional Voting, the contribution of this thesis, builds on the success 

of Regional Voting by estimating a weight for each region. Three different weighting 

schemes are suggested: one that is directly proportional to the accuracy of the region 

at classifying the images, and two that are borrowed from Regret Minimization: 

Exponential Weighting and Polynomial Weighting. These latter two approaches are 

dependent on parameter selection, but are more sophisticated in how they apply the 
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weights. 

Extensive experiments were run to validate Weighted Regional Voting as a face 

classification method. Weighted Regional Voting was shown to improve the results of 

every holistic classifier embedded in it. Weighted Regional Voting was also shown to 

improve upon the results of standard Regional Voting. In particular, the Exponential 

and Polynomial weighting schemes achieved almost identical, top of the line results. 

Weighted Regional Voting was also compared to two current local approaches, and 

was shown to improve on their results. 

Experiments testing the performance of the system under ideal conditions demon­

strate that improving the algorithm used for weighting can improve the performance 

of the system even more. This suggests an avenue of future research: finding an 

improved weighting scheme. Either another approach from regret minimization, or 

one from machine learning, such as Adaboost should be investigated. 

Furthermore, both Local Binary Patterns and Volterrafaces involve dividing the 

image into regions. More research could be done in applying a weighting mechanism 

to those two approaches. 

Weighted Regional Voting provides an improvement over any current holistic 

approach, and is better or equivalently accurate with other local based approaches. 
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