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ABSTRACT 

Across the circumpolar north, many herds of Rangifer have decreased in abundance. 

In the Canadian central Arctic, the Bathurst herd of barren-ground caribou {Rangifer 

tarandus groenlandicus) declined from 472,000 ± 72,900 (± 95% confidence interval) 

caribou in 1986 to 31,900 ± 10,900 caribou in 2009 (Gunn et al. 2008, Adamczewski et al. 

2009). A reduction in winter forage due to forest fires has been suggested as a factor 

contributing to the decline. I employed a multi-scale study design to identify the influence of 

vegetation, fire history, snow cover, and predation risk on the occupancy of winter habitats 

by Bathurst caribou. Between 2008 and 2009,1 collected forest stand and understory data at 

habitats used by caribou, as well as paired control sites. At a larger spatial scale, I used 

animal location data recorded from 1996 - 2009 to characterise the spatial and temporal 

distribution of Bathurst caribou on the winter range. 

At the scale of the feeding patch, caribou foraged in habitats with a high-percentage 

ground cover, high biomass of lichen, and few or small trees. Similarly, the consensus 

among the models of habitat selection was that collared caribou avoided areas of the winter 

range with a high density of burns and favoured older patches of forest characterised by a 

high percentage of ground cover of lichen and herbaceous forage and a close proximity to 

lakes and rivers. However, there was considerable use of habitats adjacent to the burn 

boundary, and some caribou occupied early-seral habitats significantly more than expected. 

Although the abundance of fruticose (having branched, shrubby thalli) lichens was relatively 

high (2464 kg/ha) in areas burned within the last 43 - 264 years, my results suggest that an 

increased incidence and severity of forest fires due to climatic warming could cause a 

temporary decrease in the habitat available to the Bathurst caribou herd during winter. In the 
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event that reduced lichen availability becomes a limiting or regulating factor for caribou, fire 

suppression may be necessary to mitigate other climate- and anthropogenic-related pressures 

affecting the population and distribution dynamics of Bathurst caribou. 
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CHAPTER 1 - THESIS INTRODUCTION 

CONTEXT 

Barren-ground caribou {Rangifer tarandus groenlandicus) are arguably the most 

physiologically adapted Cervidae inhabiting the northern taiga (Telfer and Kelsall 1984, 

Klein 2000). Fossils dating to 1.8 million years ago reveal a long evolutionary history, and 

an ability to endure great environmental change. An important adaptation of caribou for 

survival during prehistoric climatic extremes was their wide-ranging food habits, which 

included lichens, bryophytes and the deciduous spermatophytes (Klein 1982, Russell et al. 

1993, Bergerud et al. 2008). Furthermore, caribou developed physiological and 

morphological adaptations that have allowed them to withstand temperature extremes of -60° 

to +33 °C (Russell et al. 1993, Bergerud et al. 2008). 

Today, wild caribou and reindeer herds encompass much of the circumpolar north, 

varying from boreal and montane ecotypes, to the mainland-migratory subspecies (CARMA 

2010). Across the Canadian central Arctic, seven distinct populations of migratory barren-

ground caribou span both tundra and taiga ecozones (Appendix A). These caribou are known 

for their long-distance migrations, where herds may travel up to several hundred km to reach 

distinct seasonal ranges. During the summer, barren-ground caribou dwell primarily on the 

tundra. Here, they rely on a quick-growing, nutrient-dense diet of graminoids, sedges, and 

shrubs to acquire adequate protein and fat stores for the winter (Russell et al. 1993). In 

contrast, winter ranges for most migratory herds are below treeline, and are characterised by 

mature coniferous forest yielding abundant fruticose (having branched, shrubby thalli) 

lichens (Klein 1982, Thomas et al. 1996, Bergerud et al. 2008). 
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Winter is a critical period for caribou. Continuous snow cover and ice-bound 

vegetation can significantly limit access to forage resources. Taiga woodlands provide 

shelter from the wind and expansive mats of ground-dwelling lichens. Caribou often 

consume a diet of 60 - 80% terrestrial lichens during winter (Parker 1981, Thomas and 

Hervieux 1986, Gauthier et al. 1989, Klein 1991, Jandt et al. 2003). Moreover, nutritional 

analyses reveal that lichens contain high levels of available energy, making them ideal winter 

forage for caribou (Wales et al. 1975) when supplemented with high-protein vascular 

vegetation (Jacobsen and Skjenneberg 1975). Although lichens often comprise a large 

proportion of available phytomass in northern ecosystems (Helle and Aspi 1983), they grow 

slowly (4 to 6 mm yr"1, Pegau 1968) and they are vulnerable to disturbance, including 

foraging and trampling by caribou (Pegau 1969, Moser et al. 1979, Joly et al. 2007b, 2010). 

Following a major disturbance such as fire or heavy grazing pressure, the recovery of lichen 

mats may take a lengthy period of time (~45 kg ha" yr" , Auclair 1985) preventing their use 

by caribou for up to 50 years (Scotter 1964, Kelsall 1968, Klein 1982, Joly et al. 2003, 

2007a, Jandt et al. 2008). 

Fire is a dominant disturbance agent in boreal forests (Johnson 1992) that may have a 

negative influence on caribou habitat due to the slow recovery of mat-forming lichens. 

Lichen species favoured by caribou (e.g., Cladina rangiferina, C. mitis) are associated with 

late-successional serai stages in boreal forests (Maikawa and Kershaw 1976), and in the short 

term are lost following fire. Many authors have argued that fire plays an important 

regenerative role in boreal forests (Bergerud 1974, Miller 1976), and may be necessary for 

the long-term productivity of lichen stands (Klein 1982, Schaefer and Pruitt 1991, Sulyma 

and Coxson 2001). By consuming organic materials bound in the forest floor, fires 



immediately increase nutrient availability (Viereck and Schandelmeier 1980), and provide 

the periodic mineralisation necessary to sustain fruticose lichens, as well as renew growth of 

alternative caribou forage such as sedges and shrubs (Kershaw et al. 1975). Fires also enable 

mature forests to retain an open canopy, which allows sunlight to penetrate the tree cover and 

sustain terrestrial lichens (Bonan and Shugart 1989). Extensive lichen mats, in turn, reduce 

soil temperatures and sunlight infiltration to the forest floor. This retards both tree growth 

and seedling development, essentially maintaining a microclimate that supports lichen 

establishment (Kershaw et al. 1975, Maikawa and Kershaw 1976). 

Although fire produces more heterogeneous northern forests (Miller 1976, 1980), 

there is a long-standing concern about the amount and the connectivity of mature forested 

habitat available to caribou on winter range (Klein 1982). In addition to lower lichen 

biomass, recently burned habitats yield deeper and denser snowpacks and greater amounts of 

accumulated deadfall (Schaefer and Pruitt 1991). Especially in interiors of burns, increased 

sun and wind exposure usually result in greater snow depths and a thicker layer of surface 

crust (Thomas et al. 1998). Alternatively, older forests provide greater thermal cover and 

more favourable snow conditions compared to younger stands (Thomas et al. 1998). Mature 

or near-mature spruce forests {Picea glauca and P. mariana) >80 - 100 years of age generally 

contain lower snow depths, and, where thick tree branches are present, can prevent ice layers 

from forming on lichen mats (Thomas 1998b). This may be especially important to caribou 

in late winter, when snow depth and hardness attain maximum levels (Thomas 1998a). 

Snow cover can limit the availability of terrestrial lichen for caribou (Bergerud 1974, 

Thomas et al. 1998). Greater snow depths increase the energetic requirements of locomotion 

and foraging (Fancy and White 1985), and higher snow densities impede the ability of 
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caribou to detect lichens even where snow accumulation is relatively shallow (Fancy and 

White 1985). Maximum snow-depth thresholds for effective cratering (foraging for ground 

vegetation by pawing through snow) by caribou are 50 - 80 cm (Pruitt 1959), and particularly 

deep or wind-hardened snow can decrease the availability of forage by up to 90% (Collins 

and Smith 1990). Numerous studies have shown that caribou select foraging sites with 

relatively lower snow depth, snow hardness, or both (LaPerriere and Lent 1977, Cichowski 

1993, Johnson et al. 2001). At a larger spatial scale, some barren-ground herds have likely 

adapted to the long-term variation in snow depth across their winter ranges. The Beverly and 

Porcupine herds {R. t. groenlandicus and R. t. granti, respectively), for example, generally 

occupy areas that will later support greater snow accumulation early in the winter, before 

heavy snowfall impedes movement and foraging (Russell et al. 1993, Thomas 1998b). 

The reduction in the availability of forage resulting from snow and ice can lead to 

malnutrition or even death of caribou (Cameron et al. 1993). This is particularly true for 

herds that are confined to small, insular ranges and cannot migrate to areas where food is 

more accessible (Tucker et al. 1991). Numerous die-offs have occurred in such spatially-

restricted populations, especially where harsh snow conditions coincided with high 

population densities (Klein 1968, Skogland 1985, Gates et al. 1986, Adamczewski et al. 

1988). Although mainland populations of caribou rarely starve due to their flexible range use 

(Skoog 1968), severe winter-weather events have been linked to both reductions in annual 

recruitment and fitness of calves, likely due to the inability of females to meet the heightened 

nutritional requirements of pregnancy (Bergerud 1971, Couturier et al. 1990, Cameron et al. 

1993, Adams and Dale 1998). 



The importance of winter versus summer forage in the density-dependent regulation 

of caribou remains controversial (Heggberget et al. 2002, Bergerud et al. 2008). While a 

shortage of winter lichens may not lead to starvation for caribou in good physical condition, 

inadequate forage intake during summer can amplify the effects of winter-forage restriction, 

leading to increased mortality (Bergerud et al. 2008). More importantly, a rapid reduction in 

forage resources due to any combination of seasonal factors can markedly disrupt population 

dynamics. Insufficient forage intake during winter can reduce the body condition of females, 

causing low birth weights of calves (Chan-McLeod et al. 1999, Adams 2005, Tveraa et al. 

2007), and may ultimately affect future reproductive potential if body condition does not 

recover to allow conception the following autumn (Cameron et al. 1993). Likewise, climate-

related increases in harassment by biting and parasitic insects can restrict time spent foraging 

and the use of preferred summer habitats (Russell et al. 1993). Such losses are especially 

detrimental for newborn calves, as adequate forage for cows is crucial for supporting a calf s 

growth and development and preventing premature weaning (Russell et al. 1993, Brotton and 

Wall 1997). 

Northern landscapes are changing at an unprecedented rate (Johnson et al. 2005, Joly 

et al. 2009a, Vors and Boyce 2009). A warming climate will likely affect the distribution 

and the availability of terrestrial lichens, via higher frequencies of fire, extreme winter-

weather events, and changes in the composition of plant communities (Cornelissen et al. 

2001, Olthof et al. 2008, Joly et al. 2009a, Vors and Boyce 2009). Such conditions both 

increase the energy required to search for food resources (Fancy and White 1985, Brotton 

and Wall 1997) and decrease the nutrient gains obtained from foraging for lichens. 

Moreover, these losses could be additive with poorer summer-range condition and increasing 
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human disturbance across seasonal ranges (Harrington and Veitch 1991, Dyer et al. 2001, 

Mahoney and Schaefer 2002, Frid 2003, Nellemann et al. 2003, Johnson et al. 2005). 

Changing plant and insect phenologies will likely influence caribou movements and energy 

budgets (Vors and Boyce 2009), and the expansion of anthropogenic activities may disrupt 

long-term patterns of caribou distribution and the availability of preferred habitats across 

seasonal ranges (Bergerud et al. 1984, Johnson et al. 2005). Ultimately, a reduction in the 

availability or quality of forage resources could cause herds to adopt an alternative 

geographic distribution (Joly et al. 2009a, 2010), distant from dependent human 

communities. 

Vors and Boyce (2009) reported that at least 34 of 58 major caribou and reindeer 

herds throughout Russia, Alaska, and Canada are currently declining. Especially in the 

Canadian central Arctic, numbers of barren-ground caribou have markedly decreased since 

the late twentieth century. For example, the Bathurst barren-ground herd was estimated at 

472,000 ± 72,900 (± 95% confidence interval) caribou in 1986, slowly declined through the 

1990s, and then more rapidly during the late 2000s (Figure 1; Gunn et al. 2008, 

Adamczewski et al. 2009). The June 2009 census of the Bathurst herd revealed 31,900 ± 

10,900 animals, representing a decline of 70% in three years (Adamczewski et al. 2009). 

Although conditions for individual herds of caribou and reindeer are undoubtedly unique, a 

changing climate may be driving these declines at a large spatial scale (Gunn 2003, Vors and 

Boyce 2009). 
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Figure 1. Population estimates and 95% confidence intervals for the Bathurst caribou herd. 
Values are based on calving ground photo surveys. 

The recent precipitous decline of Bathurst caribou is consistent with that of the 

neighbouring Cape Bathurst and Bluenose-West barren-ground caribou herds. As with the 

Bathurst herd, these populations initially decreased at a steady rate of about 5% per year. At 

lower herd sizes, rates declined dramatically by up to 23% per year in the Bathurst herd. 

Late calving and low calf-cow ratios revealed that the caribou from these three herds were 

likely nutritionally limited from 2000 to 2006, and would have experienced a downward 

trend from natural factors alone (J. Nagy, Government of the Northwest Territories -

Department of Environment and Natural Resources, unpublished data). Recent 

improvements in body condition and calf-cow ratios suggest that environmental conditions 

for Bathurst caribou improved in 2007 to 2009; however, a more variable climate, and the 

overall trend towards warmer and wetter conditions could result in future declines 

(Adamczewski et al. 2009). 

Although increases in temperature and precipitation have increased plant biomass on 

the Bathurst range, forage quality has generally declined. On the summer range, an increase 
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in mean foliage biomass over the last half of the 20th century is contrasted with a general 

decline in leaf nitrogen, an index of forage protein content (1985 - 1996, Adamczewski et al. 

2009). Furthermore, lichen-rich habitats, vital to caribou during winter, have decreased 

largely due to increases in forest fires, which are shown to correlate with an increase in mean 

summer (June 1 - September 30) temperature over the Bathurst winter range (1959 - 2006, 

Chen et al., Natural Resources Canada - Canada Centre for Remote Sensing, unpublished 

manuscript). Also, warmer winter temperatures have caused denser and harder snowpacks. 

Such unfavourable snow and ice conditions decrease the accessibility of lichen mats for 

caribou (Bergerud 1974, Thomas et al. 1998). Of greater concern, warmer winters can result 

in an increase in the frequency of freezing-rain events that lock lichen pastures under 

impenetrable layers of ice. The mobility of Bathurst caribou to relocate to other areas of the 

winter range may dampen the effects of localised forage restriction via extreme winter-

weather events. However, Chen et al. (Natural Resources Canada - Canada Centre for 

Remote Sensing, unpublished manuscript) revealed increasing ice layers in snow in 

association with a warming climate across the range of the Bathurst herd, 1960 - 2006. 

Considering the recent declines in the numbers of Bathurst caribou, an examination of 

the combined effects of seasonal limiting factors is necessary for developing effective range 

or caribou management practices. If the rate of climate warming continues, as predicted, the 

frequency and severity of fire in northern forests will increase (Stocks et al. 1998). Although 

increased precipitation during summer could compensate for the effects of hotter 

temperatures on the fire regime (Thomas 1998b), current models suggest that high rates of 

burning will likely continue to consume even greater areas of forested habitat that serves as 

winter range (McCoy and Burn 2005). Furthermore, a changing climate may result in 
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heavier snowfall and more frequent ground-icing (Brotton and Wall 1997), thereby 

compounding the effects of fire-induced limitations on forage availability. Given the current 

consensus on global climate change (IPCC 2007) and simultaneous declines of Rangifer 

herds across the circumpolar north (Vors and Boyce 2009), increased understanding and 

awareness of the processes that affect Bathurst caribou on the winter range are both vital and 

timely. 

STUDY OBJECTIVES 

To assess ecological factors affecting the distribution of Bathurst caribou during 

winter, I examined the use of winter range at multiple spatial and temporal scales. I used 

both field-based and remote-modelling techniques to evaluate the influence of ecological 

features such as lichen abundance and snow conditions on the occupancy of winter habitats. 

The global objective of the thesis was to identify areas on the winter range that were 

important to the persistence of the Bathurst caribou herd, and to provide insights into the 

significance of fire and snow on the forested ranges of barren-ground caribou in the 

Northwest Territories, Canada. Specifically, I addressed the following two research 

objectives: 

1) assess the influence of forest stand attributes on foraging-site selection by Bathurst 

caribou during late winter; and 

2) model resource selection by Bathurst caribou in the early- and late-winter seasons, 

focusing on differences in selection among individuals within the population. 
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THESIS ORGANISATION 

This thesis is organised into two separate results chapters following this introduction. 

They are based on a hierarchical study design for understanding the foraging and distribution 

dynamics of Bathurst caribou on the winter range. The field-based study (Chapter 2) 

involved a survey of ecological conditions at experimental (i.e., observed caribou foraging) 

and control plots. Using these data, I identified habitat attributes that influenced selection of 

areas of winter range by caribou for foraging. At a broader spatial and temporal scale, I used 

13 years of location data for Bathurst caribou to develop resource selection functions. Using 

these statistical models, I identified the combination of habitat attributes that best predicted 

the occurrence of a caribou across the early- and late-winter range (Chapter 3). The thesis 

concludes with a comparison of the results from both the fine- and landscape-level 

investigations, as well as a discussion of the management implications of my findings. 
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CHAPTER 2 - SELECTION OF FORAGING PATCHES BY BATHURST 
BARREN-GROUND CARIBOU DURING LATE WINTER 

SUMMARY 

I used an Information Theoretic Model Comparison (ITMC) approach to investigate 

the influence of forest stand attributes on the occupancy of winter habitats by Bathurst 

caribou {Rangifer tarandus groenlandicus) in the Northwest Territories, Canada. I used field 

data describing forest stand and understory attributes to develop multinomial regression 

models that predicted feeding-site selection of Bathurst caribou on the winter range. Eight 

models were compared using Akaike's Information Criterion (AIC). These analyses 

identified a combination of ground cover type and tree volume (i.e., stand basal area) as best 

able to describe the observed selection of feeding sites. An observed increase in the percent 

ground cover of lichen had a positive influence on site selection, while an increase in the 

percent rock cover and basal area of conifer trees had a negative influence on selection of 

feeding sites by caribou. The most parsimonious regression model predicted with an 

accuracy of 87% whether or not Bathurst caribou foraged at a patch of winter range habitat. 

Lastly, I used equations developed by Moen et al. (2007) to determine the biomass of 

fruticose lichens on experimental and control sites classified as unburaed. My data indicate 

that fruticose lichen biomass on the winter range of Bathurst caribou is high compared to 

winter habitats of caribou in Alaska and the Yukon Territory, and falls in the general range of 

lichen values reported for the more easterly Beverly herd, as well as portions of 

Saskatchewan, Manitoba, and Ungava. Overall, the analyses of feeding-site selection 

suggest that Bathurst caribou forage in areas with a high-percentage ground cover and a high 

biomass of lichen, and that future increased incidence and severity of forest fires could cause 

a temporary decrease in the winter habitat available to the herd. 
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INTRODUCTION 

Scenarios depicting future climates for northern latitudes predict that warmer annual 

temperatures and drier summer weather may lead to an increased frequency and severity of 

forest fires (Rupp et al. 2006), as well as deeper and denser snowpacks, with an increase in 

severe winter-weather events (Vors and Boyce 2009). In addition, climate-induced increases 

in the abundance of vascular plants will likely result in declining macrolichen biomass in 

subarctic ecosystems (Cornelissen et al. 2001). Such conditions could substantially alter 

both the distribution and the accessibility of winter habitat for barren-ground caribou. From 

a management perspective, it is crucial to have an understanding of what effect, if any, a 

change in the amount or connectivity of lichen-rich habitat may have on the current 

distribution and foraging ecology of caribou. 

At least 34 of 58 major Rangifer herds throughout Russia, Alaska, and Canada are 

currently declining in numbers (Vors and Boyce 2009). In particular, populations of barren-

ground caribou in the Canadian central Arctic have markedly decreased since the late 20th 

century. For example, the Bathurst barren-ground herd was estimated at 472,000 ± 72,900 (± 

95% confidence interval) caribou in 1986, slowly declined through the 1990s, and then more 

rapidly during the late 2000s (Figure 1; Gunn et al. 2008, Adamczewski et al. 2009). The 

June 2009 photo survey of the Bathurst herd provided an estimate of 31,900 ± 10,900 

caribou, representing a decline of 70% in three years (Adamczewski et al. 2009). In addition 

to the rapid decline in numbers of caribou, potential shifts in their geographical distribution 

threaten northern communities with strong cultural and subsistence ties to the land. A further 

reduction in the availability or quality of forage could cause herds to adopt an alternative 

winter range (Joly et al. 2009a, 2010), distant from dependent human communities. 
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The influence of forage type and snow conditions on the selection of winter feeding 

sites by barren-ground caribou has been relatively well studied. Most literature suggests that 

caribou prefer mature, forested habitat with abundant mat-forming lichens (Scotter 1964, 

Kelsall 1968, Klein 1982). These authors believe that fire has a negative effect on caribou 

habitat, due to the slow recovery time of terricolous (ground-dwelling) lichens that form the 

majority of a caribou's diet during winter (60 - 80%; Scotter 1964, Kelsall 1968, Klein 1982, 

Fleischman 1990, Joly et al. 2003). Although researchers have noted that caribou sometimes 

forage in recently burned habitats (Johnson and Rowe 1975, Joly et al. 2003), they are mostly 

observed to avoid these areas in favour of older, lichen-rich communities (>55 years of age; 

Klein 1982, Thomas et al. 1996, Joly et al. 2003, 2009a). Lichen species preferred by 

caribou (e.g., Cladina rangiferina, C mitis) are associated with late-successional serai stages 

in boreal forests (Maikawa and Kershaw 1976), and in the short term are lost following fire 

(Klein 1982, Thomas et al. 1996; Joly 2003, 2007a, 2009a). 

In addition to a high biomass of terricolous lichens, mature stands of winter range 

generally yield more favourable snow conditions compared to younger stands (Thomas et al. 

1998), allowing caribou to access lichen mats while expending less energy (Pruitt 1959, 

Skogland 1978, Fancy and White 1985). When snow is particularly deep or hard, the amount 

of energy required to excavate a feeding crater increases substantially, decreasing the 

nutritional gain from ingesting lichens (Fancy and White 1985, Russell et al. 1993, Brotton 

and Wall 1997). Snow cover can also affect caribou at larger spatial and temporal scales 

(Turney and Heard 1991, Russell et al. 1993, Thomas et al. 1998), even where snow is not 

particularly deep. The Beverly and Porcupine herds {R. t. groenlandicus and 7?. t. granti, 

respectively), for example, generally occupy areas that will later support greater snow 
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accumulation early in the winter, before heavy snowfall impedes movement and foraging 

(Turney and Heard 1991, Russell et al. 1993, Thomas 1998b, Thomas et al. 1998), and 

Bluenose caribou use areas of the winter range at lower elevations that are characterised by 

lower snow depth and hardness (Carruthers et al. 1986). 

I assessed the influence of forest stand attributes on the occupancy of winter habitats 

by a population of barren-ground caribou. I focused sampling and analysis on components of 

caribou habitat that were related to vegetation dynamics following wildfire. Between 2008 

and 2009,1 collected forest stand and understory data at habitats used by caribou, as well as 

paired control sites on the winter range of the Bathurst herd, located in the Northwest 

Territories, Canada. I used multinomial logistic regression and an Information Theoretic 

Model Comparison (ITMC) approach to identify factors associated with the use of forest 

patches by caribou as foraging habitat. I present these findings in the context of other 

populations of migratory caribou experiencing changing fire dynamics and range quality. 

STUDY AREA 

I investigated winter range habitat for the Bathurst caribou herd across a broad area 

north and northwest of Yellowknife, Northwest Territories, Canada. Sample sites were 

dictated by locations of collared caribou monitored during February and March of 2008 and 

2009. Historical boundaries of the winter range were approximately delineated by Territorial 

borders to the north and east, and by Great Slave Lake and Great Bear Lake to the south and 

northwest, respectively; however, the distribution of Bathurst caribou has extended as far 

south as northern Saskatchewan (Figure 2; Gunn et al. 2002). 
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Figure 2. Locations of field sites investigated during late winter and summer (2008 - 2009) 
on the winter range of the Bathurst caribou herd in the Northwest Territories. Treeline 
represents the northern extent of forested habitat. 
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The winter range of the Bathurst herd spans both Taiga Shield and Southern Arctic 

ecozones, which are divided by the northern treeline (Ecological Stratification Working 

Group 1996). Above treeline, lichen barrens and graminoid-tundra and dwarf-shrub 

communities characterise most of the caribou summer range, as well as portions of the winter 

range. Below treeline, vegetation on the winter range is characterised by northern boreal 

forest ecosystems where dominant tree and shrub species include black spruce {Picea 

mariana), white spruce {P. glauca), jack pine {Pinus banksiana), willow {Salix) and 

blueberry/cranberry {Vaccinium) species. Gently rolling hills, punctuated by numerous small 

lakes and eskers, are visible across the landscape, and are overlain by discontinuous 

permafrost (Walton 2000). The climate reflects that of the semi-arid Canadian continental 

interior. Temperatures often fall below -30°C in winter, while average summer highs are 

10°C (Walton 2000). Annual snowfall is approximately 150 cm with accumulations reaching 

maximum depths in late winter and on southeastern portions of the winter range (Gunn et al. 

2002). 

METHODS 

Sample Design and Field Methods 

I premised sample design and resulting field methods on the comparison of three 

treatment types: forest sites used by caribou (n = 33), paired control sites of similar 

vegetation classification (i.e., random lichen-bearing habitats, n = 22), and burned (>20 and 

<40 years post-fire, GNWT - RWED 2002, n = 20) habitats where caribou were absent 

during late winter. I defined a foraging site as a collection of feeding craters occupying a 

plot of forest (also referred to as patches henceforth). Likewise, control sites consisted of 

forest stands where caribou did not feed. Caribou occupied less than 1% of burned sites that 
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I investigated, allowing me to justify the use of burned sites with no documented feeding 

activity as controls. The age class for burned habitat reflected the post-fire interval at which 

lichen-bearing vegetation communities were assumed to be unproductive caribou habitat 

(Klein 1982, Joly et al. 2003). Foraging sites were chosen based on recent locations of 

collared caribou. Control sites consisted of random plots of adjacent lichen-bearing and 

burned habitat near lakes that were within 17.5 km of the paired foraging site (Figure 3). The 

acceptable radius for sampling random lichen-bearing and burned control sites was defined 

by the average distance collared caribou move in a week (Gunn et al. 2002) during late 

winter (February - March). By using this radius to guide my selection of control plots, I 

assumed that these sites were within a distance that was accessible to caribou, but that 

caribou chose to occupy the paired foraging site instead. Based on my observations of the 

Bathurst winter range, there is a high heterogeneity of vegetation types within the 17.5-km 

buffer. This phenomenon should increase the odds of a caribou travelling farther to reach 

optimal foraging habitat, as well as the likelihood of a caribou using both the lichen-bearing 

and burned control sites. 

During February and March of 2008 and 2009,1 used a small fixed-wing aircraft to 

locate areas on the Bathurst winter range where caribou were observed foraging and not (i.e., 

controls). The primary purpose of these investigations was to confirm caribou activity at 

experimental sites and the absence of caribou at control sites (n = 75 total sites). Upon 

landing at 27 sites, I measured snow depth, density, and hardness using a ruler, cylinder of 

known volume, and a homemade ramsonde penetrometer (Skogland 1978) at three randomly 

selected undisturbed and open locations. 
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^ ^ Feeding site 

\ ^ Lichen control site 

4jp Burn control site 

\y Lichen & burned habitat 
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Figure 3. Sampling design used to investigate feeding and control sites on the Bathurst 
winter range. Feeding sites showed evidence of foraging by caribou. I randomly selected 
control sites from nearby lichen-bearing and burned habitats where caribou did not feed. 
Control sites consisted of adjacent 0.09-ha plots of lichen-bearing and burned habitat that fell 
within a 17.5-km radius from the paired feeding site. 

During July and August of 2008 and 2009,1 revisited all sites and documented lichen 

diversity and abundance, as well as forest stand attributes that may have influenced the 

distribution of caribou relative to forage availability. Specifically, I measured the following: 

percent ground cover of lichen; volume of terrestrial lichen; occurrence of bryophytes, 

shrubs, and graminoids; tree and shrub cover; canopy closure; and stand age. Each foraging 

and control site that I investigated was approximately 0.09 hectares (30 m x 30 m), 

representing the minimum size of a foraging area noted during initial field investigations of 

the Bathurst winter range (February - March 2008). At each foraging and control site, I 

flagged seven, 30-m transects occurring at 5-m intervals perpendicular to the baseline 

transect (Figure 4). 
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Figure 4. Sampling scheme for summer vegetation inventories. I randomly sampled seven 
quadrats with a 50 x 50-cm, 16-point frame to determine the abundance and cover of 
terrestrial lichen ( • ) . I measured canopy closure and tree cover from two random locations 
occurring on transects two and six (~T~), and I measured shrub cover from a 5.64-m radius 
plot at the centre of the site (=(&). 

I used a 50 x 50-cm point frame with 16 pins to determine the volume of terrestrial 

lichen taxa at seven randomly selected quadrats at each study site. Quadrat sampling for 

volume required that observations were independent, the area sampled was known, and the 

organisms were relatively immobile (Higgins et al. 2005). In order to meet the assumption 

of independence, eliminate bias, and ensure a representative measurement, I used a 

systematic random sampling design to mark one location per transect for quadrat sampling. 

At each pin on the point frame, I recorded the species (or at least genus) and height of lichen 

or other ground cover. I later used equations developed by Moen et al. (2007) to estimate the 

biomass of fruticose lichens at experimental and control study sites classified as unburned. I 
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categorised percent ground cover of vegetation into species and groups based on relevance to 

caribou foraging ecology and reliability of identification in the field (Holleman and Luick 

1977, Thomas et al. 1984, 1996, Russell et al. 1993). Specifically, I identified five taxa of 

lichen found in abundance on the winter range of barren-ground caribou including Cladina, 

Cladonia, Cetraria, Peltigera, and Stereocaulon species. I classified Cladina stellaris, C. 

rangiferina I stygia, C. mitis I arbuscula, Cladonia uncialis, CI. gracilis, Cetraria nivalis, 

Cet. cucullata, and Cet. islandica I ericetorum as caribou forage lichens and all other taxa as 

non-forage lichens. I also considered graminoids, forbs, bryophytes, dwarf shrubs (<30 cm 

tall), litter, soil, and rock as independent groups of ground cover. 

I used a systematic random design to select two locations within a site on transects 

two and six, and I measured crown closure and tree cover at each location. I obtained crown 

closure with a spherical densiometer. I then used a metric clear-glass prism with a basal area 

factor of four to separately estimate the basal area of surrounding coniferous and deciduous 

trees. Next, I used a fixed-area plot (5.64-m radius, 0.01 hectares) placed at the centre of the 

site to visually estimate percent cover of short and tall shrubs (<2 and >2 m, respectively). In 

order to estimate stand age, I extracted wood core samples from several of the largest trees of 

each species within a site. Core samples were later analysed using dendrochronological 

techniques to determine the approximate stand age of each site. 

Model Development and Assessment 

I used multinomial logistic regression to contrast forest stand and understory 

attributes measured at sites used by caribou and paired control sites of similar vegetation 

classification, as well as burned habitats where caribou were absent. Choosing from the 

predictor variables identified at study sites, I developed a set of eight candidate models to 
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assess the influence of percent cover of vegetation and associated forest stand attributes on 

feeding-site selection by caribou (Table 1). These models represented ecologically-plausible 

hypotheses that explained the distribution of barren-ground caribou across forest patches 

relative to their foraging ecology. Weather and time constraints prevented me from 

completing assessment of snow conditions at all study sites during the winter field seasons (n 

= 27 of 75 total sites). Also, we could not reliably age all stands. Thus, snow and stand age 

data were not considered within the model comparison procedure. Here, I assumed that 

lichen volume and cover served as an appropriate proxy for stand age (Russell et al. 1993, 

Thomas et al. 1996). I used tolerance scores to assess excessive collinearity (threshold of 

<0.2) among the variables in each model (Menard 2001). 

Adopting an ITMC approach for model selection, I used Akaike's Information 

Criterion (AIQ) for small sample sizes (Anderson et al. 2000) to select the most 

parsimonious model of the candidate set. The 'best' model had the lowest AICC score. Also, 

I reported the AAIC and Akaike weights (w), which represented the difference in AIQ values 

between each model and the lowest ranked model, and the approximate probability that a 

particular model was the best in the candidate set, respectively. One of the main criticisms of 

the ITMC method is that it allows for too many models to be tested (Guthery et al. 2005). I 

avoided this problem by limiting the number of competing hypotheses to eight. 



Table 1. Candidate models for predicting feeding sites used by Bathurst caribou during late winter (2008 - 2009). 

Model Theme Model Parameters 

Lichen volume + Forest understory 

Percent lichen cover + Forest understory + Tree cover 

Lichen volume + Forest understory + Tree cover 

Lichen volume + Forest understory (short shrubs only) + 
Tree cover 

Percent lichen cover + Forest understory + Forest canopy 

Lichen volume + Forest understory + Forest canopy 

Percent lichen cover + Forest understory + Tree cover + 
Forest canopy 

Full model 

Volume of Cladina, Cladonia, Cetraria, and Stereocaulon species; 
% cover of moss and litter 

% cover of lichen, moss, litter, and rock; basal area of conifers 

Total lichen volume; % cover of shrubs, moss, litter, and rock; 
basal area of conifers 

Volume of Cladina mitis, C rangiferina, Cetraria nivalis, and 
Stereocaulon species; % cover of short shrubs, moss, litter, and 
basal area of conifers 

% cover of lichen, shrubs, moss, litter, and rock; % canopy closure 

Total lichen volume; % cover of shrubs, moss, litter, and rock; 
% canopy closure 

% cover of lichen, moss, litter, and rock; basal area of conifers; 
% canopy closure 

Total lichen volume; % cover of lichen, shrubs, moss, litter, and rock; 
basal area of conifers; % canopy closure 
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I used the receiver operating characteristics (ROC) score to assess the ability of the 

model to differentiate between sites classified as used and random. The area under the ROC 

curve (AUC) is useful for determining predictive accuracy when true presence and absence 

data are available (Fielding and Bell 1997). The AUC is the proportion of correctly and 

incorrectly classified cases when presence is predicted across the entire range of probability 

thresholds (0 to 1, Fielding and Bell 1997). AUC values of 0.5 indicate that a model has no 

predictive ability to discriminate beyond random assignment of cases, and a value of 1.0 

indicates that a model is a perfect predictor. Values ranging between 0.7 and 0.9 suggest that 

the model possesses good discriminatory ability (Fielding and Bell 1997). I used 95% 

confidence intervals to assess the relative strength of selection or avoidance for each 

covariate in the models. Covariates with confidence intervals that did not overlap zero were 

considered significant predictors of the distribution of barren-ground caribou across forest 

patches relative to their foraging ecology. I used odds ratios to interpret the effect of each 

covariate on the differentiation of site types. In order to provide a relative measure of habitat 

features not included in the models, I used 95% confidence intervals to test for differences in 

mean stand age and snow conditions between used and control sites. All statistical analyses 

were completed using Stata (ver. 9.2, StataCorp LP, 2006). 

RESULTS 

Stand Attributes 

I sampled 75 sites over two winter and summer field seasons. Of these sites, 33 

showed evidence of caribou foraging, 22 were random lichen-bearing habitats, and 20 were 

random burned habitats (Appendix B). During 2009, snow depth at used and random lichen-
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bearing habitats averaged 56.6 ± 4.6 (± 95% confidence interval) and 59.3 ±3.6 cm, 

respectively. Contrary to my hypothesis, snow hardness and snow density were slightly 

greater at used (0.158 ± 0.016 g/cm2 and 0.222 ± 0.034 g/cm3) than at random (0.141 ± 0.016 

g/cm2 and 0.218 ± 0.016 g/cm3) sites (Figure 5). Snow conditions at sites used by caribou 

differed significantly between years. Average snow depth was 24.7% higher in 2009 than 

2008 (56.6 ± 4.6 cm versus 45.4 ± 2.2 cm, respectively); however, both snow hardness and 

snow density were significantly lower in 2009 than in 2008 (Figure 5). 

• Feeding site (2008) A Feeding site (2009) 

• Unburned control site (2009) 

Figure 5. Mean (± 95% confidence intervals) a) snow hardness and b) snow density 
at caribou feeding sites (n = 5 in 2008, n = 11 in 2009) and random sites classified as 
unburned (n = 11 in 2009) on the Bathurst winter range. 

Eleven distinct species of ground-dwelling fruticose lichens and eight types of ground 

cover were regularly observed at both feeding and control sites. Arboreal lichens {Bryoria 

species) were also present in some areas, but they were not prevalent enough to be included 

in the analysis. Percent cover and volume of lichens were greater at feeding sites than at 

random lichen-bearing and burned sites (Figure 6). Cladina species such as C. mitis and C. 
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rangifer ina were the most prevalent at used sites, averaging 27% and 18% of total lichen 

volume, respectively (Figures 7, 8). Stereocaulon species and Cetraria nivalis were also 

common. In contrast, control sites classified as unburned had a greater percent cover of 

moss, grass, and forbs than feeding sites (Figure 9). Burned sites were characterised by a 

low biomass and cover of ground lichens (Figure 6), as well as a comparatively high 

percentage of ground cover of litter and rock (Figure 9). 

Biomass of fruticose lichens did not differ significantly between used and random 

sites classified as unburned, perhaps due to the past foraging as observed at most feeding 

sites. The average biomass of fruticose lichens at feeding sites was 241 ± 34 g/m2 (2412 ± 

338 kg/ha), compared to 252 ± 37 g/m2 (2516 ± 370 kg/ha) at unburned controls. 
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Figure 6. Mean (± 95% confidence intervals) a) lichen cover and b) lichen volume at 
caribou feeding sites (n = 33) and random lichen-bearing (n = 22) and burned sites (n 
= 20) on the Bathurst winter range (2008 - 2009). 
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Figure 7. Mean (± 95% confidence intervals) volume of lichen taxa at caribou 
feeding sites (n = 33) and random lichen-bearing (n = 22) and burned sites (n = 20) on 
the Bathurst winter range (2008 - 2009). 
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Figure 8. Mean (± 95% confidence intervals) volume of lichen species at caribou 
feeding sites (n = 33) and random lichen-bearing (n = 22) and burned sites (n - 20) on 
the Bathurst winter range (2008 - 2009). Lichen species, as listed from left to right: 
Cladina stellaris, C mitis, C. rangiferina, Cladonia uncialis, CI. gracilis, Cetraria 
cucullata, Cet. nivalis, Cet.islandica, and Stereocaulon species. 
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Figure 9. Mean (± 95% confidence intervals) percent ground cover of vegetation at 
caribou feeding sites (n = 33) and random lichen-bearing (n = 22) and burned sites (n 
= 20) on the Bathurst winter range (2008 - 2009). 'Dw. shrub' indicates dwarf shrub, 
which is classified as woody vegetation <30 cm tall. 

Lichen biomass was not calculated for burned sites because these types of sites did not fit the 

assumption of a lichen-dominant habitat, which is required to compute reliable assessments 

of biomass (Moen et al. 2007). Instead, I relied on lichen volume as an indicator of lichen 

quantity in burned habitats. A comparison of all three site types showed that burned sites had 

the lowest amount of terrestrial lichen, most of which were Cladonia species, a genus not 

highly sought after by caribou (exceptions include Cladonia uncialis and CI. gracilis, Russell 

etal. 1993) (Appendix B). 

Total shrub cover was less on feeding sites than on paired unburned and burned 

controls (1.6 ± 1.8%, 5.7 ± 3.4%, and 6.5 ± 5.9%, respectively), predominantly due to a low 

cover of short shrubs in areas used by caribou. Basal area of conifer trees was also less on 

used sites than on lichen-bearing control sites (6.4 ± 2.0% and 11.7 ± 3.9%, respectively), but 

higher than values for burned sites (4.7 ± 2.1%). Similarly, canopy closure was lower at 
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feeding sites than at unburned control sites, ranging from an average of 17.5 ± 5.6% at used 

sites to 27.4 ± 8.8% at random lichen sites. The trees at feeding sites (n = 13) were older 

than those at lichen-bearing control sites (n = 8). The average stand age of a feeding site was 

143 ± 35 years compared to 96 ± 19 years for random sites in comparable habitat types. 

However, these differences were not statistically significant, perhaps because of the 

relatively small sample size (n = 75 sites for all attributes except snow and stand age) 

(Appendix B). 

Model Fit 

The most parsimonious multinomial logistic regression model used to describe 

selection of feeding sites by caribou contained predictors for basal area of conifers, percent 

ground cover of lichen, moss, litter, and rock (Table 2). The second ranked model differed 

by nearly three AIC points and included an additional variable for percent canopy closure. 

The best model had good discriminatory ability (AUC = 0.873). Variables that had a positive 

influence on feeding-site selection included percent ground cover of lichen, litter, and rock; 

basal area of conifers and percent ground cover of moss had a negative influence on feeding-

site selection (Table 3). Burned sites were more likely to have a lower basal area of conifers 

and percent ground cover of lichens, with a higher percent ground cover of moss, litter, and 

rock. However, only lichen cover made a statistically significant (P = 0.057 ± 0.055) 

contribution to the differentiation between feeding sites and unburned control sites; both 

lichen and rock cover had a significant (P = 0.152 ± 0.090 and p = -0.225 ± 0.218, 

respectively) effect in distinguishing feeding sites from burned sites (Table 3). The odds 

ratio implied that for every 1% increase in lichen cover, caribou were 15.2% more likely to 

use a known feeding site versus a burned site. Similarly, a 1% increase in lichen cover 
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would raise the likelihood of a caribou choosing a known feeding site over a random 

unburned site by 5.7%. 

Holding values for all other covariates in the best model at their mean (i.e., basal area 

of conifers and percent ground cover of moss, litter, and rock), I calculated the probability of 

a caribou choosing a known feeding site over both lichen-bearing and burned control sites as 

the percent ground cover of lichen increased (Figure 10). Relative to unburned areas, caribou 

were more likely to feed in a patch of forest when cover of lichen exceeded 43%. Similarly, 

these data suggest that caribou will occupy previously burned patches of forest when lichen 

cover is greater than 33%. Considering only the percent cover of lichen, caribou have a 

lower threshold for using burned sites compared to unburned sites where no signs of foraging 

were detected. 

Table 2. Model-selection statistics for candidate models used to predict feeding-site 
selection by Bathurst caribou during late winter (2008 - 2009). 

Model Rank AMc.c w 

Percent lichen cover + Forest understory + Tree cover 

Percent lichen cover + Forest understory + Tree cover + 
Forest canopy 

Percent lichen cover + Forest understory + Forest canopy 

Lichen volume + Forest understory 

Lichen volume + Forest understory + Tree cover 

Lichen volume + Forest understory + Forest canopy 
Lichen volume + Forest understory (short shrubs only) + 

Tree cover 

Full model 

1 
2 

3 

4 

5 

6 

7 

8 

0.00 

2.97 

5.41 

13.38 

15.99 

17.49 

19.60 

53.25 

0.7720 

0.1750 

0.0516 

0.0010 

0.0003 

0.0001 

<0.0001 

<0.0001 
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Table 3. Selection coefficients for parameters in the best (Table 2) multinomial logistic 
regression model used to predict feeding-site selection by Bathurst caribou during late winter 
(2008 - 2009). 

Feeding Sites vs. Unburned Control Sites (n = 75) 
Model Parameters 

Basal area of conifers 
Lichen cover 
Moss cover 
Litter cover 
Rock cover 
Constant 

3 
-0.071 
0.057 

-0.061 
0.180 
0.003 

-1.710 
Feeding Sites vs. Burned Control Sites 
Model Parameters 

Basal area of conifers 
Lichen cover 
Moss cover 
Litter cover 
Rock cover 
Constant 

3 
0.022 
0.152 

-0.031 
-0.091 
-0.225 
-2.054 

SE 

0.054 
0.028 
0.057 
0.043 
0.067 
2.076 

(n = 75) 
SE 

0.088 
0.046 
0.064 
0.053 
0.111 
2.434 

95% CI 

-0.177-0.035 
0.002-0.112 
-0.173-0.051 
0.096 - 0.264 
-0.128-0.134 

95% CI 

-0.151 -0.195 
0.062 - 0.242 
-0.156-0.094 
-0.200-0.013 
-0.443 - -0.007 

Odds Ratio 

-7.1% 
+5.7% 
-6.1% 

+18.0% 
+0.3% 

Odds Ratio 

+2.2% 
+15.2% 
-3.1% 
-9.1% 

-22.5% 

15 30 45 60 75 90 
Lichen Cover (%) 

-*— Feeding site - a - Unburned site —•• • Burned site 

Figure 10. Predicted probability of a positive identification of forest stands, relative 
to the percent cover of lichens measured at three site types on the winter range of 
Bathurst caribou. Values for all other covariates in the model (i.e., basal area of 
conifers and percent ground cover of moss, litter, and rock) were held at their mean. 
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DISCUSSION 

Most continental populations of caribou forage primarily on terricolous lichens 

throughout winter, focusing on fruticose species such as Cladina rangiferina and C. mitis 

(Pegau 1968, Russell et al. 1993, Thomas et al. 1996, Joly et al. 2007b), and choosing 

mature forested habitats over recently burned areas of winter range (Klein 1982, Thomas et 

al. 1996, Joly et al. 2003, 2007a). My results agree with those findings. With few 

exceptions (Joly et al. 2007a), however, most studies have failed to investigate habitat 

selection at a geographic scale that is representative of the movement patterns of caribou 

during the winter. Rather, studies of the foraging ecology of barren-ground caribou have 

focused on quantifying general winter range conditions (Russell et al. 1993, Jandt et al. 

2008) and feeding habits (Thomas and Hervieux 1986, Russell et al. 1993), examining 

patterns of habitat use (Carruthers et al. 1986), assessing feeding-site selection within a 

foraging patch (Saperstein 1996), and comparing site conditions and caribou use at burned 

and unburned habitats across the seasonal range (Thomas et al. 1996, Joly et al. 2010). Here, 

I have expanded upon those works by quantifying the influence of lichen cover and 

associated stand characteristics on the selection of feeding sites by Bathurst caribou with 

respect to paired random unburned and burned sites at a geographic scale that is equivalent to 

the weekly movement patterns of the herd. 

Selection of Feeding Sites by Caribou 

Using data collected over two successive winter and summer field seasons, I 

developed a model to predict feeding-site selection by Bathurst caribou on late-winter range. 

This model contained covariates for basal area of conifers and percent ground cover of 

lichen, moss, litter, and rock. Predictive accuracy of the model was relatively high (87.3%), 
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but may have improved with the inclusion of other ecologically-plausible variables. For 

example, snow conditions, particularly snow depth and snow hardness, are important to 

caribou when selecting an area to forage during winter (Pruitt 1959, Carruthers et al. 1986, 

Tucker et al. 1991, Saperstein 1996). Although average snow depths across the Bathurst 

winter range were considered low in 2008 and 2009 (45.4 ± 2.2 and 56.6 ± 4.6 cm, 

respectively) compared to previous years (Adamczewski et al. 2009), these values still 

approach thresholds of maximum snow depth for effective cratering by caribou (50 - 80 cm, 

Pruitt 1959). In fact, numerous studies have shown that caribou choose to forage at sites 

yielding lower snow depth, snow hardness, or both, within a habitat (LaPerriere and Lent 

1977, Cichowski 1993, Saperstein 1996, Johnson et al. 2001). Research on the adjacent 

Bluenose caribou herd {R. t. groenlandicus) revealed that caribou disproportionately 

occupied areas with lower snow depth and snow hardness, compared to unoccupied habitats 

across their winter range (Carruthers et al. 1986). Likewise, the Beverly and Porcupine herds 

generally inhabit areas that will later support greater snow accumulation early in the winter, 

before heavy snowfall impedes movement and foraging (Turney and Heard 1991, Russell et 

al. 1993, Thomas 1998b, Thomas et al. 1998). 

Considering the importance of lichens on feeding-site selection by caribou, the lack 

of difference in biomass of fruticose lichens at used and random sites classified as unburned 

suggests that my data for lichen abundance underestimated the pre-foraged ground cover and 

height of lichen at feeding sites. Although I rarely observed evidence of caribou trampling or 

cropping the entire lichen thallus, caribou may have reduced the lichen mat through ancillary 

digging and pawing actions while cratering (Pegau 1969). If present, this bias would force 

me to test a more conservative model that reduced the likelihood of differentiating foraging 
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sites from random controls and surveyed burns. Alternatively, one could use exclosures to 

quantify the long-term effects of grazing on lichen abundance. 

Influence of Ecological Factors on Site Selection 

Past research on the winter ecology of barren-ground caribou suggests that herds 

prefer areas with a high abundance of fruticose lichen, low snow depths, and access to small 

lakes (Klein 1982, Carruthers et al. 1986, Thomas et al. 1996, Joly et al. 2010). Although 

the role of fire is widely debated, most researchers agree that a lack of available forage 

caused by frequent fire activity can influence the distribution dynamics of caribou on 

forested winter range (Klein 1982, Thomas et al. 1996, Joly et al. 2003, 2007a). The most 

notable research on caribou winter range in northern Canada consisted of a seven-year 

comprehensive study of the more easterly Beverly herd. Thomas et al. (1996) reported that 

lichens preferred by caribou required 80 - 150 years to reach maturity, and that an abundance 

of these lichens may be a primary reason that caribou favour stands that are 151 - 250 years 

of age. Within the context of these works, my results add to the understanding of feeding-

site selection on a small spatial scale by illuminating differences between used and 

comparable random and burned habitats. Furthermore, I show that percent ground cover of 

lichen may be a primary factor driving the selection of feeding sites by Bathurst caribou. 

However, the discrepancy in lichen thresholds when comparing foraged to burned and 

unburned sites (Figure 10) suggests that other factors influence the foraging decisions of 

caribou. For example, a lower volume of trees on burned sites relative to feeding sites 

(Appendix B) may provide some ecological gain for caribou related to travel or predator 

detection. 
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My model of feeding-site selection indicates that Bathurst caribou chose to forage in 

areas that are characteristic of mature stands of spruce. Used sites displayed a high 

percentage of ground cover of lichen and a low volume of conifer trees compared to control 

sites. Feeding sites were also older than random sites in comparable habitats (143 + 35 years 

versus 96+19 years, respectively). These findings are in accordance with studies of winter 

foraging ecology of caribou across North America. For example, Thomas et al. (1996) 

reported that caribou favoured stands with a high abundance of terricolous lichens, 

particularly Cladina mitis and Cetraria nivalis, and generally occupied forests older than 150 

years. Likewise, Saperstein (1996) found that Alaskan caribou {R. t. granti) 

disproportionately cratered at sites yielding high lichen to moss ratios, and Joly et al. (2003) 

determined that caribou in the Nelchina Alaskan herd avoided burned areas <50 years old. 

Although feeding-site selection does not appear to be linked to specific species of 

terrestrial lichen, caribou in this study selected habitats with a greater percent ground cover 

and volume of certain fruticose lichens, suggesting their importance to the Bathurst herd 

during late winter. The majority of lichens at used sites were Cladinas, with C. mitis and C. 

rangiferina exceeding all other species in cover and volume except Stereocaulon species 

(Appendix B). Cetraria nivalis was another biologically significant species. This coincides 

with Thomas et al. (1996) findings that Beverly caribou responded most to the forage lichens 

Cladina mitis and Cetraria nivalis, and to a lesser extent, Cladina rangiferina. 

Below-average snow depths during 2008 and 2009 (Adamczewski et al. 2009) may 

have masked the effect of snow on the selection of feeding sites by caribou. Frid (1998) 

identified a similar phenomenon regarding crater-site selection by woodland caribou in the 

Yukon Territory, likely due to the shallow snowpack of the study area (31.5 cm ± 5.8 SD). 
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Alternatively, it is possible that caribou displayed a selection response to snow at a finer 

spatial scale than observed in this study. For example, Saperstein (1996) reported that snow 

depth and hardness were significant factors influencing the selection of feeding craters by 

Alaskan caribou. Although there were no significant differences in snow conditions between 

burned and unburned areas of Alaskan winter range, snow near feeding craters was often 

shallower and softer than in adjacent undisturbed areas. A second possibility is that caribou 

responded to snow conditions at a much larger spatial scale, as observed in studies of the 

winter ecology of the Beverly and Porcupine caribou herds (Russell et al. 1993, Thomas et 

al. 1996). 

Importance of Lichen Biomass 

There is increasing evidence that abundant lichen forage is an important determinant 

of caribou distribution on winter range (Klein 1982, Thomas et al. 1996; Joly et al. 2003, 

2007a, b, 2010). In the absence of sufficient lichen forage, caribou herds may experience 

altered distribution patterns (Joly et al. 2003; 2007a, b; 2010) and in some cases declining 

recruitment (Skogland 1986). However, moderate lichen depletion has not been shown to 

affect caribou population dynamics in North America, except during unusually severe 

winters (Fleischman 1990). Until recently, the Beverly caribou herd maintained a high 

reproductive rate and fair body condition (Thomas and Kiliaan 1998) despite a high 

frequency of forest fires on their winter range (Scotter 1964, Miller 1976, Thomas 1991, 

Thomas and Kiliaan 1998). According to Fleischman (1990), depletion of lichens is mostly a 

concern on early-winter ranges, as lichen availability in late winter is typically low. In order 

to determine the amount of lichens sufficient to prevent significant fitness effects, one must 

take into account the availability of alternative forage, distribution of lichen habitats (i.e., 
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foraging efficiency), abundance of lichens on non-traditional ranges, severity of snow 

conditions, and body condition at the onset of winter. 

Although my data on lichen abundance fall short of a range-wide analysis, I was able 

to capture site conditions in traditional areas of the winter range used by Bathurst caribou. I 

employed equations developed by Moen et al. (2007) to determine the biomass of fruticose 

lichens (excluding Stereocaulon species) at experimental and control sites classified as 

unburned. My data indicate that the biomass of fruticose lichens on the winter range of 

Bathurst caribou is high (2464 ± 248 kg/ha) compared to winter habitats of caribou in Alaska 

and the Yukon Territory (Fleischman 1990, Russell et al. 1993), and falls in the general 

range of lichen values reported for winter habitats of the more easterly Beverly herd, as well 

as portions of Saskatchewan, Manitoba, Ungava, and Scandinavia (Table 4; Scotter 1970, 

Miller 1976, Gaare and Skogland 1980, Helle 1981, Crete et al. 1990, Thomas et al. 1996, 

Arsenault et al. 1997, Bergerud et al. 2008). 

Differences in study design and sampling technique are inherent limitations when 

comparing data from multiple studies. My data are based on values of lichens from mature 

lichen-dominant communities (43 - 264 years old), while some studies report the mean value 

of lichen biomass from all community types. In addition, I separated the live portions of the 

lichen thallus from the base when measuring height values used to calculate biomass. I 

believe that this provides a more accurate depiction of the amount of lichen available to 

caribou for food and generates a more conservative measure of biomass. Furthermore, many 

researchers have included lichen biomass of Stereocaulon species in their assessments, while 

I did not. 



Table 4. Lichen biomass measurements for select winter ranges of caribou and reindeer {Rangifer tarandus). Range types reported in 
the various studies included habitats used by caribou versus those not used by caribou, distinct age classes of habitat, lichen-
dominated communities, heath forests, and all community types present. Thallus indicates whether or not the dead bases of lichen 
thalli were included in the biomass estimates. 

Location 

Northwest Territories 
Northwest Territories 
Northwest Territories 
Northwest Territories 
N. Saskatchewan 
N. Saskatchewan 
N. Manitoba 
Ungava 
Ungava 
N. Quebec 
N. Quebec 
N. Quebec 
N. Quebec 
Central Yukon 
Central Alaska 
Central Alaska 
Northwest Alaska 
Northwest Alaska 
Northwest Alaska 
N. Finland 
Norway 

Herd 

Bathurst 
Bathurst 
Beverly (west block) 
Beverly (east block) 
Beverly/Kaminuriak 
Kaminuriak 
Kaminuriak 
Leaf River 
George River 
George/Leaf River 
George/Leaf River 
George/Leaf River 
George/Leaf River 
Porcupine 
Delta (traditional areas) 
Delta (peripheral areas) 
Western Arctic Herd 
Western Arctic Herd 
Western Arctic Herd 
Reindeer 
Reindeer 

Range Type 

Used unburned forest 
Random unburned forest 
All present 
All present 
Lichen-dominant 
Lichen-dominant 
Lichen-dominant 
Lichen-dominant 
All present 
Forests <30 years 
All present 
Forests >90 years 
Lichen-dominant 
All present 
All present 
All present 
Used unburned forest 
Random unburned forest 
Random burned forest 
Heath forest 
Climax forest stands 

Thallus 

No 
No 
No 
No 
No 
Yes 
Yes 

Unknown 
Unknown 

No 
No 
No 
No 
Yes 

Unknown 
Unknown 
Unknown 
Unknown 
Unknown 

No 
Unknown 

Biomass (kg/ha) 

2412 
2516 
2594 
6250 
810 

5850 
4270 
1223 
3170 
530 

2800 
8010 
5440 
508 

100-850 
>2000 
3007 
1260 
818 
520 

11000 

Reference 

This study 
This study 
Thomas et al. 1996 
Thomas et al. 1996 
Scotter 1970 
Miller 1976 
Miller 1976 
Crete et al. 1990 
Bergerud et al. 2008 
Arseneault et al. 1997 
Arseneault et al. 1997 
Arseneault et al. 1997 
Arseneault et al. 1997 
Russell et al. 1993 
Fleischman 1990 
Fleischman 1990 
loly etal. 2010 
Joly etal. 2010 
Joly et al. 2010 
Helle 1981 
Gaare and Skogland 1980 
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Based on estimates provided by Bergerud et al. (2008:166,495,497,500,501), my data 

for lichen abundance suggest that conditions on the late-winter range of Bathurst caribou 

may support a herd density of approximately 1 - 2 animals per km2 in unburned areas. 

Considering that the area of mature winter range (i.e., not classified as post-fire) below 

treeline totals approximately 240,186 km2, current lichen stores could support between 

240,186 and 480,372 caribou. Given the number of ecological factors that are known to 

affect barren-ground caribou populations (e.g., weather, insects, plant phenology; Post and 

Stenseth 1999), this is a very simplistic index of population carrying capacity. Also, I did not 

perform a systematic sampling of lichen abundance across the entire winter range. 

Nonetheless, these estimates offer some insight on possible mechanisms for the recent 

decline of Bathurst caribou. A shortage of winter forage has not likely contributed to the 

decline of the herd, which peaked at a density of 1.83 ± 0.28 caribou per km2 (472,000 ± 

72,900 caribou) across the winter range in 1986. However, a more conclusive analysis of 

winter range conditions would account for the size and distribution of mature lichen 

communities, since spatial variation contributes largely to foraging efficiency (Fleischman 

1990). Possible causes of the decline in numbers of Bathurst caribou include a deterioration 

in the quality of summer forage as well as a reduced time spent foraging due to insect 

harassment on the summer range, both likely driven by large-scale climatic factors (Gunn 

2003). Population dynamics aside, a change in the spatial availability of caribou can have 

large implications for access by harvesters. My data suggest that wildfire can influence the 

distribution of caribou as they seek out individual stands or areas of the winter range with 

longer fire-return intervals and more abundant terrestrial lichen. 
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CONCLUSIONS 

Specific habitat features such as lichen cover and stand age are important 

variables to consider when evaluating winter range for barren-ground caribou in the 

Northwest Territories. Bathurst caribou selected for mature habitats with a high 

percentage of ground cover of fruticose lichen and few or small conifer trees. Estimates 

of lichen biomass show that sufficient winter forage is present for the current population 

of Bathurst caribou; however, more frequent and severe wildfires resulting from climate 

warming (Stocks et al. 1998, Rupp et al. 2000, McCoy and Burn 2005) may temporarily 

reduce the quantity and quality (e.g., changes in the composition of lichen communities) 

of lichen resources available to caribou (Joly et al. 2007b, 2010). As demonstrated in 

other herds, such reductions could lead to declines in recruitment and body size of adult 

females (Skogland 1986), as well as altered distribution patterns (Joly et al. 2003; 2007a, 

b; 2010). 

Although forage was the most important variable to explain feeding-site selection 

during winter in this study, the observed pattern of caribou distribution may actually be a 

product of numerous environmental and cognitive factors that vary from early to late 

winter, and at broader spatial scales. Confounding factors related to foraging conditions, 

but not quantified in this study, include: distribution of predators, snow conditions, and 

ease of mobility (e.g., steepness of terrain). A hierarchical analysis that examines 

foraging ecology at multiple spatial and temporal scales should be pursued in order to 

more fully understand the effects of lichen abundance and associated stand attributes on 

caribou distribution during winter (Johnson 1980, Johnson et al. 2001). Future research 

on the winter range ecology of the Bathurst herd should also take into account the 
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distribution of mature lichen communities and the abundance of lichens on non-

traditional and early-winter ranges. 
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CHAPTER 3 - SPATIAL AND TEMPORAL DISTRIBUTION DYNAMICS OF 
BATHURST BARREN-GROUND CARIBOU ON WINTER RANGE 

SUMMARY 

Scientists have not fully quantified the range-wide and long-term use of winter 

habitats by barren-ground caribou. Given the current consensus on climate change and 

likely increases in wildfire across northern forests, models quantifying patterns of habitat 

use by caribou can help direct management strategies by revealing important resources 

that may affect the persistence of a population. I used an Information Theoretic Model 

Comparison (ITMC) approach to investigate the influence of ecological variables on the 

distribution of Bathurst barren-ground caribou {Rangifer tarandus groenlandicus) in the 

Northwest Territories, Canada, during winter. Specifically, I used logistic regression-

based resource selection functions (RSFs) to model habitat selection by caribou on early-

and late-winter range according to environmental variables related to snow cover, 

vegetation, fire history, and predation risk. I evaluated multiple sets of models 

constructed across years for all caribou (pooled models) and for individual caribou by 

season (early and late winter). Winter range habitats important to caribou were 

characterised by a high percentage of ground cover of lichen and herbaceous forage and a 

close proximity to lakes and rivers. The consensus among the pooled and individual 

models was that caribou avoided areas densely populated with burns; however, there was 

considerable use of habitats adjacent to the burn boundary. Also, the data documenting 

the distribution of caribou and burns suggested that some individuals used early-seral 

habitats. Disparate selection strategies among caribou highlight the importance of 

investigating both individual and global resource selection models. These results suggest 
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that at some spatial and temporal scales, barren-ground caribou of the Bathurst herd may 

be less averse to fire than previously thought. 

INTRODUCTION 

There is a long-standing and entrenched concern about the frequency of fire and 

the area of burned habitats on the winter range of barren-ground caribou (Clarke 1940). 

Early literature suggests that fire has a negative influence on caribou habitat, due to the 

slow recovery of mat-forming lichens (Scotter 1964) which constitute the majority of a 

caribou's diet during winter (60 - 80%; Scotter 1964, Kelsall 1968, Parker 1981, Klein 

1982, Thomas and Hervieux 1986, Gauthier et al. 1989, Klein 1991, Jandt et al. 2003). 

Some researchers have argued that fire plays an important restorative role in boreal 

forests (Bergerud 1974, Miller 1976). These authors believe that fire destroys a minor 

amount of caribou habitat, but improves forests by maintaining heterogeneity within 

stands and across landscapes (Miller 1976, 1980). 

Although fire may be necessary for the long-term productivity of lichen stands by 

eliminating competing vegetation (Klein 1982, Schaefer and Pruitt 1991, Sulyma and 

Coxson 2001), the short-term effects of fire can be negative for caribou (Scotter 1964, 

Kelsall 1968, Klein 1982, Thomas et al. 1996, Thomas and Kiliaan 1998, Thomas et al. 

1998; Joly et al. 2003, 2007a, b, 2010). The post-fire period required for most forage 

lichens to attain a significant biomass exceeds 50 years, and the types of lichens preferred 

by caribou generally do not occur in the initial stages of succession (Maikawa and 

Kershaw 1976). The greatest abundance of forage lichens occurs 60 - 80 years following 

fire, when the Cladina species prevail in robust growth forms (Thomas 1998a). 
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Some researchers have posited that a graminoid-dominated diet, as opposed to a 

diet consisting predominantly of lichens, may be more optimal for overwintering 

Rangifer populations (Bergerud 1974, Heggberget et al. 2002); however, such claims are 

generally based on insular or non-migratory herds that are limited to confined winter 

grazing areas. Studies of winter habitat use by migratory herds of caribou have primarily 

shown an overwhelming avoidance of portions of the range consisting of early-seral 

forests (Thomas et al. 1996, Joly et al. 2003, 2007a). Use of burned habitats typically 

occurs on a limited temporal basis and as a means of accessing upland areas of unburned 

forest or during movements through large post-fire areas (Thomas et al. 1998). 

Alternatively, an abundance of vascular forage available in burned habitats may 

attract caribou for brief periods such as during the early winter or spring when snow 

accumulations are low (Joly et al. 2003). Shallow and soft snowpacks during early 

winter enable efficient foraging and easy access to vegetation growing in depressions and 

lowland areas (Fleischman 1990). In addition, many wintergreen foods are higher in 

protein and minerals during early winter (Luick 1977, Fleischman 1990) especially when 

compared to the traditional winter diet of lichen. Recent studies of migratory caribou 

herds in Alaska revealed that use of burned habitats was greatest in early winter 

(November - December), likely due to the presence of early-successional graminoids and 

other vascular forage typically found in burns. When available, certain herbaceous and 

woody species (e.g., fireweed [Epilobium augustifolium], mountain cranberry [Vaccinium 

vitis-idaea], and labrador tea [Ledum groenlandicum]) are avidly sought by caribou 

(Scotter 1964, Kelsall 1968); however, their abundance and palatability decline in as little 

as two decades post-fire (Viereck and Schandelmeier 1980, Thomas and Kiliaan 1998). 
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Unfavourable snow conditions and a high density of dead, fallen trees have been 

suggested as deterrents to caribou movement and use of recent burns (Schaefer and Pruitt 

1991). Immature stands typically yield deeper and denser snowpacks, as well as a greater 

accumulation of debris and a lower biomass of fruticose lichens compared to mature 

stands. Especially in interiors of burns, increased sun and wind usually result in higher 

snow density and a thicker layer of surface crust (Thomas et al. 1998). Although 

increased visibility and ease of movement in sparsely treed or open areas may prompt 

caribou to use burn perimeters as a movement corridor or for predator avoidance, 

interiors of burns are largely avoided by caribou on the winter range. For example, Joly 

et al. (2003) described the selection strategies of Nelchina caribou in Alaska as strongly 

averse to burned habitats, with core areas of burns being the most underutilized. 

The effects of wildfire on the winter range ecology of caribou are complex and 

potentially wide-ranging (Klein 1982). Barren-ground caribou display variable responses 

to post-fire habitats across seasonal ranges, and a lack of understanding of these 

relationships limits predictions of the consequence of future climate-related events for 

populations of caribou. An increase in the frequency and severity of fire is predicted to 

impact northern landscapes across the winter ranges of barren-ground caribou herds 

(Rupp et al. 2006), potentially reducing the quantity and altering the distribution of lichen 

resources available to caribou (Cornelissen et al. 2001, Olthof et al. 2008). From a 

management perspective, it is crucial to have an understanding of what effect, if any, a 

change in the amount or connectivity of lichen-rich habitat may have on the current 

distribution and foraging ecology of the Bathurst herd. 
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I assessed the influence of ecological features on the occupancy of winter habitats 

by a population of barren-ground caribou. Considering the hypothesised influence of 

wildfire and snow on caribou distribution (Klein 1982, Schaefer and Pruitt 1991, Thomas 

1991, Thomas et al. 1998; Joly et al. 2003, 2007a, 2010), I focused my analysis on forest 

stand attributes that are a result of fire history, as well as ecological parameters related to 

foraging efficiency during winter, such as snow cover and risk of predation. I 

hypothesised that Bathurst caribou would spend more time in herbaceous- and shrub-

dominant habitats early in the winter, and that selection for lichen-rich areas would 

predominate in late winter, when vascular plants are less accessible and less nutritious. 

Alternatively, forage type may predominantly influence habitat selection early in the 

winter, whereas snow conditions become more important in late winter as forage 

availability declines (Russell et al. 1993, Thomas 1998b) and the risk of predation by 

wolves {Canis lupus) increases (Adams 2005). 

The study was based on locations of individual caribou recorded between 1996 

and 2009 using global positioning system (GPS) and satellite collars. These data were 

used to develop logistic regression-based resource selection functions that represented 

habitat selection by Bathurst caribou on early- and late-winter range. I used an ITMC 

approach to compare multiple sets of models across years for all caribou (pooled models) 

and for individual caribou by season. I discuss the implications of these findings for the 

distribution of barren-ground caribou in the context of forage availability, snow 

conditions, and the risk of predation as influenced by wildfire. 
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STUDY AREA 

The winter range of the Bathurst caribou herd is located in the eastern-interior 

region of the Northwest Territories, Canada, and encompasses an area of approximately 

260,000 km2. Locations of satellite- and GPS-collared caribou monitored during the 

winters of 1996 through 2009 suggest a winter range boundary delineated by Territorial 

borders to the north and east, and by the Great Slave Lake and Great Bear Lake to the 

south and northwest, respectively; however, the distribution of Bathurst caribou has 

extended as far south as northern Saskatchewan (Figure 11; Gunn et al. 2002). A more 

detailed description of the study area can be found in Chapter 2. 

METHODS 

Animal Locations and Designation of Seasons 

I used animal location data collected during previous studies of caribou and grey 

wolves to generate the models of habitat selection by Bathurst caribou (Walton et al. 

2001, Gunn et al. 2002). Eighty-four female caribou of the Bathurst herd were fitted with 

ST-10 and ST-14 satellite radio-collars (Telonics, Mesa, AZ, USA; Ballard et al. 1995) 

using standard helicopter darting techniques and monitored between 1996 and 2009 

(Gunn et al. 2002). In the fall of 2008, 20 additional female caribou were captured and 

equipped with GPS collars. Satellite collars were programmed to transmit locations 

every 5 (ST-10 collars) to 7 (ST-14 collars) days during the winter seasons. GPS collars 

collected locations at 4-hour intervals and were monitored during the winter of 2008 and 

2009. 
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Figure 11. Winter range boundary delineated by locations of Bathurst caribou collected 
from 1996 - 2009. Treeline represents the northern extent of forested habitat. 
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A total of 23 wolves from 19 different packs were fitted with ST-10 and ST-14 satellite 

collars using a net fired from a helicopter and monitored every 5 (ST-10) to 14 (ST-14) 

days during the winters of 1997 (n =151), 1998 (n = 785), and 1999 (n = 958). The 

number of satellite- and GPS-collar locations obtained per caribou varied from 2-169 

and 303 - 879 with a mean of 53 and 825 locations, respectively. The accuracy of animal 

locations collected with satellite collars ranged from 150 - 1000 m (Argos 2011). The 

potential error radius for GPS-collar locations was less, at 10 - 30 m for all locations. 

Details of capture efforts and deployment histories are documented elsewhere for 

satellite-collared caribou and wolves (Cluff et al. 2002, Gunn et al. 2002). 

I defined the winter season as occurring from November 1 - March 31. Bathurst 

caribou migrate annually from summer habitats in the tundra to forested areas south of 

treeline during winter (Gunn et al. 1997). The southern migration of caribou usually 

occurs between September 1 and October 31, and coincides with the rut. By the middle 

of April, caribou begin their northern spring migration back towards the calving grounds, 

marking the end of winter. Because of suspected within-season differences in forage 

availability, I divided winter into two periods, November - December and January -

March, which were designated as early and late winter, respectively. 

Environmental Variables for Resource Selection Models 

I identified environmental variables that may explain the observed distribution of 

Bathurst caribou on winter range. These variables represented three broad explanatory 

mechanisms for resource selection: vegetation, disturbance history as a function of 

wildfire, and predation risk. I derived vegetation types from Landsat Thematic Mapper 

satellite imagery compiled and air-truthed by the Northwest Territories Forest 
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Management Division (GNWT - RWED 2002). Classification accuracy of the study area 

ranged from 75 - 80% for all vegetation types, excluding non-forested wetland types 

(GNWT - RWED 2002). To increase accuracy and improve confidence in statistical 

analyses, I reclassified the 22 original vegetation types into seven super types relating to 

the winter foraging ecology of barren-ground caribou (Table 5). 

I obtained geographic information system (GIS) coverage of burn perimeters 

dating to 1965 from the Government of the Northwest Territories, Forest Management 

Division. Fire history maps for the study area were not available prior to 1965. At the 

scale of the patch, I classified burned area into five different age classes: <10, 11 - 20, 21 

- 30, 31 - 40, and 41-44 years since fire. These categories were based on patterns of 

vegetation succession in taiga regions (Viereck 1973, Collins and Schwartz 1998) and 

their applicability to barren-ground caribou foraging ecology (Thomas et al. 1996, Joly et 

al. 2003). Also, I tested the influence of the ecotone separating burned from unburned 

areas on the distribution of GPS-collared caribou. I generated 500-m wide buffers inside 

and outside the perimeter of the burn and compared use by caribou in these areas with 

interior burned areas and unburned areas >500 m outside the burn perimeter. 

I investigated the effect of burned area on caribou distribution at a scale larger 

than the single patch. I classified burns into three classes based on the area affected by 

fire: <10,000 ha, >10,000 - <50,000 ha, and >50,000 ha. I based these class breaks on the 

work of Thomas et al. (1998) who reported that Beverly caribou generally avoided small 

burns <10,000 ha in size and that larger burns, >50,000 ha in size caused caribou to 

deflect their movement pattern upon encountering the burn perimeter. 
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Table 5. Independent variables used to model resource selection by Bathurst caribou on 
winter range in the Northwest Territories (1996 - 2009). 

Variable Description 
Vegetation Types 
Non-vegetated 
Sparsely-vegetated 
Shrub-dominant 
Deciduous-dominant 
Conifer-dominant 
Herb-dominant 
Lichen-dominant 

<1% vegetative cover 
1-10% vegetative cover 
>75% deciduous shrubland cover 
>75% deciduous crown cover 
>75% evergreen crown cover 
>75% herbaceous cover 
>50% lichen cover 

Fire-Related Variables 
Burned Area 
0 - 1 0 years 
11 - 20 years 
21 -30 years 
31 - 40 years 
41 -44 years 
Burn density 
Burn Perimeter Use 
Core 
Inner buffer 
Outer buffer 
Unburned area 
Distance to Burned Area 
Distance to small burns 
Distance to medium burns 

Distance to large burns 

Post-fire areas <10 years old 
Post-fire areas >10 and <20 years old 
Post-fire areas >20 and <30 years old 
Post-fire areas >30 and <40 years old 
Post-fire areas >40 and <44 years old 
Regional density of post-fire areas 

Burned area >500 m inside the burn boundary 
Burned area <500 m inside the burn boundary 
Unburned area <500 m outside the burn boundary 
Unburned area outside the outer burn buffer 

Distance (km) to the nearest burn < 10,000 hectares 
Distance (km) to the nearest burn >10,000 and 
<50,000 hectares 
Distance (km) to the nearest burn >50,000 hectares 

Predation-Risk Variables 
Wolf occurrence 

Snow water equivalent (SWE) 
Distance to watercourse 

Predicted likelihood of encountering a wolf relative 
to vegetation type and snow conditions 
Interpolated map of snow water equivalent values 
Distance (km) to the nearest lake or river 
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For each caribou location, I calculated the distance to the nearest burn perimeter and 

recorded both the distance to the perimeter of the burn and the size class of the burn. I 

used a Gaussian (i.e., distance squared) term to consider nonlinear responses by caribou 

to the proximity of burned habitat. Lastly, I calculated the relative density of patches of 

burned area (1965 - 2008) on the winter range. Density was the number of patches (i.e., 

pixels 60 m x 60 m) classified as burned found within an area approximating the average 

home range of individual Bathurst female caribou during winter (13,230 km2; 1996 -

2009; T. Barrier, unpublished data). I hypothesised that caribou would avoid areas of the 

winter range that contained a high density of burned habitat. 

I generated an interpolated map of snow water equivalent (S WE) (Derksen 2008) 

to gauge the effect of snow conditions on the large-scale distribution of Bathurst caribou 

during late winter. Snow water equivalent is an indicator of both snow depth and snow 

density, and is determined by the relative quantity of moisture in the snowpack. 

Specifically, I used the inverse distance weighted (IDW) technique to create a continuous 

surface of SWE from values plotted in a grid at 25-km intervals. Interpolated values 

were more strongly influenced by SWE data that were geographically closer. This 

method allowed me to estimate snow conditions for each pixel (i.e., 60 m x 60 m) across 

the study area. I predicted that caribou would associate with lower SWE values in order 

to reduce the energetic demands of foraging and movement (e.g., travel or predator 

escape) in high-SWE habitats. 

I used maps predicting the distribution of wolves during early and late winter to 

investigate the influence of predation risk on the distribution of caribou. The maps were 

generated using a similar method to that reported for the caribou resource selection 
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functions. In the case of wolves, however, covariates predicting distribution were 

restricted to vegetative cover and snow water equivalent (SWE data available for late 

winter only). These maps represented the relative probability of wolf occurrence across 

the winter range, assuming that habitat-use patterns of tundra wolves have remained 

relatively stable over the past decade. Although the distribution of both caribou and 

wolves has fluctuated to some extent, I assumed that large-scale patterns of habitat use 

exhibited by these species remained consistent over time. I hypothesised that caribou 

would avoid high-risk areas throughout winter, and that the greatest avoidance of habitats 

frequented by wolves would occur during February and March when snow accumulation 

peaks. Wolf kill rates of ungulates typically increase during late winter when snow depth 

and snow density reach maximum annual values (Chan-McLeod et al. 1999, Adams 

2005). Thus, I also considered SWE values as a proxy for predation risk. 

As a third measure of risk-averse behaviours by caribou, I measured the distance 

from each caribou location to the nearest lake or river. Here, I also included a Gaussian 

term to account for nonlinear responses by caribou as distance to the nearest watercourse 

increased. Traditional and scientific ecological knowledge suggests that caribou spend a 

significant amount of time on frozen lakes and watercourses to reduce the risk of 

predation (Ferguson and Elkie 2005). Thus, caribou may forage in habitats closer to 

watercourses as an escape strategy to minimize the risk of being ambushed by wolves. 

Model Development and Assessment 

I used RSFs to quantify the relationship between the observed occurrence of 

caribou and vegetation type, fire history, snow cover, and risk of predation. An RSF is a 

mathematical equation consisting of weighting coefficients (3 values) that indicate the 
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relative probability of occurrence of an organism relative to some set of resource features 

(Manly et al. 2002). For these analyses, I used logistic regression to generate coefficients 

representing the strength of selection or avoidance of a resource feature relative to the 

availability of that feature. 

I used locations collected from adult female caribou to identify habitat use. For 

each caribou location, I generated five, paired random locations that represented the 

availability of each resource. These random locations were selected from within an area 

based on the potential distance that a caribou could have traveled between known 

locations. Availability radii were equal to the 95% movement distance for a particular 

collar relocation interval (Manly et al. 2002, Johnson et al. 2005). 

For caribou locations collected with satellite collars and matched random 

locations, I generated spatial buffers with radii equal to the quality of the location (10 -

1,000 m). I used a GIS to extract the mean value of each resource feature within that 

buffer in order to obtain the most accurate representation of habitat conditions for a 

particular location, despite the variability inherent within large spatial buffers. For 

location data collected with GPS collars I extracted the exact resource value. 

I constructed four different candidate sets of logistic regression models to explain 

the distribution of satellite- and GPS-collared caribou on early- and late-winter range. 

Location data for the satellite-collared caribou were pooled to maintain sufficient sample 

sizes for analysis. In contrast, I constructed RSF models for individual caribou 

monitored with GPS collars. I used a matched fixed-effects logistic regression to contrast 

caribou and paired random locations (Manly et al. 2002). This method allowed me to 
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apply a more precise definition of availability recognising that selection may change 

throughout the winter and across the seasonal range. 

I used an ITMC approach to rank models within each of the four model sets. This 

technique is more robust than standard null-hypothesis tests (Anderson et al. 2000), as it 

allows for an analysis of multiple, competing hypotheses, each representing a 

biologically-plausible explanation for the observed data. The ITMC approach is 

particularly advantageous in complex ecological systems where multiple variables may 

be involved. 

I used Akaike's Information Criterion (AIC) (Anderson et al. 2000) to select the 

most parsimonious model of the candidate set. The 'best' model had the lowest AIC 

score. I also reported the AAIC and Akaike weights {w) which represented the difference 

in AIC values between each model and the lowest ranked model and the approximate 

probability that a particular model is the best, respectively. AIC provides a relative 

measure of model performance, but does not assess the predictive performance of the 

models (Pearce and Ferrier 2000). Thus, I used &-fold cross-validation (Boyce et al. 

2002) to assess the ability of the top models to predict the distribution of caribou. I 

performed the &-fold procedure five times for each top model. In addition, tolerance 

scores were used to test for excessive collinearity (threshold of <0.2) among the variables 

in each model (Menard 2001). 

I calculated averaged resource selection coefficients and their variance for 

covariates from individual resource selection models. Because individual caribou of the 

Bathurst herd occupied unique home ranges, I assumed that each caribou was 

independent of other sampled caribou. I averaged the individual resource coefficients 
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and calculated a conservative estimate of variance (Equation 1), which accounted for 

inter-animal variation as well as the variance due to calculating the individual coefficients 

{Marzluff et al. 2004): 

These 'average' coefficients allowed me to test for population-wide consistency in 

selection and to rank the relative importance of each resource to the population. For all 

models, I used 95% confidence intervals to assess the strength of selection or avoidance 

by caribou to each predictor covariate. Responses of caribou to resource features were 

considered significant where coefficients and their confidence intervals did not overlap 

with zero. 

I used the RSF value [w{x)] as a relative measure of habitat quality across the 

winter range of Bathurst caribou (Manly et al. 2002): 

[2] w{x) = exp{Blxl + B2x2 + ... + Bixi) 

Specifically, I applied the RSF coefficients generated for satellite-collared female caribou 

to the respective GIS data (Equation 2). This map represented the relative probability of 

occurrence of caribou, and thus the relative value of those habitats for Bathurst caribou 

across the study area. I used quartiles to categorise the continuous surface of RSF values 

into four classes defined as poor-, low-, good-, and high-quality habitat. The resolution 

of the map was equal to the size of the pixel used to calculate habitat selection in the 

RSFs (60 m x 60 m). All statistical and GIS analyses were completed using Stata (ver. 

9.2, StataCorp LP, 2006) and ArcMap (ver. 9.3, ESRI, 2008), respectively. 



56 

RESULTS 

A total of 55 and 15 satellite- and GPS-collared female caribou provided location 

data from 1996 - 2009 and from 2008 - 2009, respectively. Satellite-collared animals 

were evenly distributed across the winter range of Bathurst caribou, an area 

encompassing approximately 260,000 km2. However, GPS-collared caribou were 

aggregated mostly in the northern region of the winter range near the towns of Gameti 

and Wekweti, Northwest Territories, Canada (Figure 2). 

Resource Selection: Individual versus Pooled Models 

Due to seasonal differences in forage availability, I hypothesised that caribou 

would use early-seral vegetation types during low-snow conditions and that selection for 

lichen-rich stands would intensify as winter progressed. In contrast to my hypothesis, the 

RSF models for pooled animal locations from satellite-collared caribou showed that 

caribou avoided post-fire vegetation types throughout winter, while selecting stands 

comprised largely of herbaceous forage and terricolous lichens. Models for GPS-collared 

caribou reflected similar patterns of selection, but also showed an affinity for sparsely-

vegetated habitats. Especially during late winter, GPS-collared caribou preferred habitats 

characterised by sparse and low-growing herbs and shrubs in addition to lichen-rich 

areas. 

There was a relatively high conformity between the covariates present in the top 

models of pooled and individual caribou (Tables 6, 7). The 'best' logistic regression 

models used to describe selection of feeding patches by satellite-collared caribou 

contained covariates for vegetation type, post-fire age of a habitat patch, distance to the 

nearest watercourse, distance to the nearest burn and size of burn, regional density of 
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burned area, and wolf occurrence (covariate present in late-winter model only) (Table 6). 

The most parsimonious logistic regression models used to describe the distribution of 

GPS-collared caribou contained the covariates for vegetation, fire parameters, proximity 

to watercourses, snow water equivalent, and wolf occurrence with substantial differences 

in selection occurring among individuals (Table 7). Models of satellite-collared caribou 

offered good predictive success (*% = 0.758 and 0.860 for early- and late-winter models, 

respectively) compared to models for individual animals (^s = 0.118 - 0.731). Likewise, 

the maps used to investigate the influence of predation risk on caribou distribution proved 

to be reliable predictors of wolf occurrence across the winter range (*% = 0.826 and 0.761 

for early- and late-winter models, respectively). 

Table 6. Differences in Akaike's Information Criterion (AIC) scores (A) and AIC 
weights (w) for candidate resource selection models for satellite-collared caribou 
monitored from 1996 - 2009 across the Northwest Territories. Data representing snow 
conditions were not available for early-winter models. Variables are defined in Table 5. 

Model AIC A; AIC WJ 
Early Winter 
Veg. + burned area + distance to water + distance to burns + burn density 
Veg. + burned area + distance to water + distance to burns + burn density + wolf 
Veg. + burned area + distance to water + distance to burns + wolf 
Veg. + burned area + distance to burns + burn density 
Veg. + burned area 
Veg. + burned area + distance to water + burn density + wolf 
Late Winter 
Veg. + burned area + distance to water + distance to burns + burn density + wolf 
Veg. + burned area + distance to water + distance to burns + burn density + wolf + snow 
Veg. + burned area + distance to water + distance to burns +burn density 
Veg. + burned area + distance to water + distance to burns + burn density + snow 
Veg. + burned area + distance to water + distance to burns + wolf + snow 
Veg. + burned area + distance to burns + wolf 
Veg. + burned area + distance to water + burn density + wolf 

0 
1.77 
7.67 
9.85 
17.27 
46.12 

0 
1.79 
6.39 
6.69 
8.63 
122.89 
159.14 

0.694 
0.286 
0.015 
0.005 
<0.001 
O.001 

0.667 
0.273 
0.027 
0.024 
0.009 
O.001 
<0.001 



Table 7 Number of top-ranked RSF models and mean (SD) and range of AIC weights for GPS-collared caribou (n = 15 in early 
winter, n = 14m late winter) for each hypothesised model Individual GPS-collared caribou were monitored from 2008 - 2009 across 
the Northwest Territories Data for snow conditions were not available for early-winter models Variables are defined in Table 5 

Top Model No of Caribou XAlCw, SD Range 
Early Winter 
Veg + burned area + distance to water + distance to burns + buffer use 
Veg + burned area + distance to burns + buffer use 
Veg + burned area + distance to water + buffer use 
Veg + burned area + distance to water 
Veg + burned area + distance to water + burn density + buffer use 
Late Winter 
Veg + burned area + distance to water + distance to burns + burn density + buffer use + wolf 
Veg + burned area + distance to water + distance to burns + burn density + buffer use + snow 
Veg + burned area + distance to water + buffer use + wolf 
Veg + burned area + distance to burns + buffer use 
Veg + burned area + distance to burns + burn density + buffer use + wolf 
Veg + burned area + distance to water + distance to burns + burn density + buffer use + wolf + snow 

6 

4 

3 

1 

1 

5 

4 

2 

1 

1 

1 

0715 

0 527 

0 452 

0 632 

0 993 

0 529 

0 406 

0 562 

0 654 

0 422 

0316 

0 214 

0 225 

0 136 

0 161 

0 052 

0 252 

0 472-

0 340-

0 299-

0 304-

0 336-

0 383-

-0 986 

•0813 

-0 559 

-0 724 

-0 462 

-0 740 
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Although there were some seasonal differences in the selection or avoidance of 

resource variables represented in the top models for pooled caribou, the majority of 

covariates produced consistent coefficients across the two winter seasons. This was not 

true, however, for habitat selection modelled for individual caribou. These analyses 

revealed disparate and inconsistent selection strategies within the herd, particularly with 

regards to the use of burned areas (Tables 7, 8). While the top seasonal models for 

satellite-collared caribou differed only by the inclusion of wolf occurrence in the late-

winter season, a mere 40% and 36% of GPS-collared caribou displayed identical 

selection strategies during early and late winter, respectively, as indicated by the choice 

of the best model (Table 7). In addition, none of the models for individual caribou 

corresponded completely with the types and magnitude of coefficients included in the 

pooled models. For example, caribou avoided sparsely-vegetated and recently burned 

areas (11 - 20 years) during early winter according to the selection coefficients for 

satellite-collared caribou, but at least half of the individual models demonstrated an 

affinity for habitats within the core or perimeter (<500 m inside the burn boundary) areas 

of burns throughout winter (Table 8). 

Vegetation Type 

Satellite-collared caribou consistently avoided non- or sparsely-vegetated and 

shrub-dominant areas and selected for herbaceous and lichen-dominant areas throughout 

the winter, with little differences occurring as the season progressed (Figure 12, 

Appendix C). Although GPS-collared caribou avoided non-vegetated areas and selected 

for herbaceous and lichen-dominant areas, they also selected for sparsely-vegetated 

stands (Figure 13). 
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Table 8. Significant selection coefficients for covariates from pooled and individual 
resource selection models of Bathurst caribou on early- and late-winter range. Numbers 
listed under + and - represent the number of individuals (n = 15 in early winter, n = 14 in 
late winter) that displayed a significant response to a particular attribute. 'GPS' indicates 
average values for significant 3 coefficients from the individual models (Marzluff et al. 
2004). 'Satellite' indicates values for significant 3 coefficients in the pooled satellite 
models. 

Covariate 

Vegetation Types 
Non-vegetated 
Sparsely-vegetated 
Shrub-dominant 
Deciduous-dominant 
Conifer-dominant 
Herb-dominant 
Lichen-dominant 
Fire-Related Variables 
Burned Area 
0 - 1 0 years 
11 - 20 years 
2 1 - 3 0 years 
31 - 40 years 
41 -44 years 
Burn density 
Burn Perimeter 
Core 
Inner buffer 
Outer buffer 
Unburned area 
Distance to Burned Area 
Distance to small burns (km) 
Distance to small burns (km2) 
Distance to medium burns (km) 
Distance to medium burns (km2) 
Distance to large burns (km) 
Distance to large burns (km ) 
Predation-Risk Variables 
Wolf occurrence 
Snow water equivalent 
Distance to watercourse (km) 
Distance to watercourse (km2) 

(+) 

0 
1 
0 
2 
0 
2 
7 

0 
0 
1 
0 
8 
0 

4 
7 
0 
1 

2 
5 
1 
0 
1 
0 

1 
2 

Early Winter 

(") 

7 
0 
0 
1 
2 
0 
0 

2 
2 
2 
2 
1 
1 

0 
0 
8 
6 

3 
3 
0 
1 
0 
1 

0 
1 

GPS 

-0.33 
0.20 
-0.25 

0.23 
0.18 

-0.79 
-0.61 

-0.05 

0.40 
-0.52 

0.15 
0.003 
0.06 

-0.001 

NA 
0.15 
-0.08 

Satellite 

-0.32 
-0.34 

0.52 
0.27 

-1.93 

-0.002 

NA 
NA 
NA 
NA 

-0.01 
-0.001 

NA 
-0.02 
0.01 

(+) 

0 
0 
0 
0 
1 
3 
5 

0 
0 
0 
0 
5 
2 

0 
6 
1 
0 

4 
1 
5 
0 
2 
0 

1 
4 
1 
1 

Late Winter 

(-) 

4 
0 
0 
7 
0 
0 
0 

1 
0 
1 
3 
0 
2 

0 
0 
7 
3 

2 
4 
2 
4 
0 
2 

2 
1 
2 
0 

GPS 

-0.26 
0.19 
0.18 
-0.34 

0.18 
0.22 

-1.07 
0.42 

0.68 

0.22 
-0.01 

Satellite 

-0.22 

-0.40 
-0.30 

0.49 
0.30 

-0.002 

NA 
NA 
NA 
NA 

-0.06 
0.002 
0.04 

-0.001 
0 
0 

2.43 

-0.24 
0.06 
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nonveg sparse shrub decid conifer herb lichen 

A Early Winter • Late Winter 

Figure 12. Selection coefficients and 95% confidence intervals for vegetation 
types used by satellite-collared caribou on early- and late-winter range in the 
Northwest Territories (1996 - 2009). 'Nonveg' represents non-vegetated habitat, 
'sparse' represents sparsely-vegetated habitat, 'shrub' represents shrub-dominant 
habitat, 'decid' represents deciduous-dominant habitat, 'conifer' represents 
conifer-dominant habitat, 'herb' represents herb-dominant habitat, and 'lichen' 
represents lichen-dominant habitat. 
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nonveg sparse shrub decid conifer herb lichen 

• Early Winter • Late Winter 

Figure 13. Averaged selection coefficients and their variance (Marzluff et al. 
2004) for vegetation types used by GPS-collared caribou on early- and late-winter 
range in the Northwest Territories (1996 - 2009). See Figure 12 for a description 
of abbreviations for vegetation covariates. 
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Especially during late winter, GPS-collared caribou collectively sought habitats with a 

large component of shrubs and post-fire vegetation types and avoided deciduous stands. 

Predation Risk 

The pooled model of habitat selection showed that caribou favoured areas with a 

higher risk of predation during late winter (Table 8). However, two out of three 

individuals with a response to wolf occurrence selected areas that were less likely to be 

occupied by wolves, and the 'average' response of GPS-collared caribou was not 

statistically significant. The analysis of snow water equivalent also revealed conflicting 

results. In contrast to my hypothesis, four out of five caribou preferred habitats with high 

SWE values during late winter, indicating that caribou sought out habitats with a deeper, 

denser snowpack compared to surrounding areas. As a third measure of risk-averse 

behaviours, I tested for patterns of resource use based on proximity to watercourses. In 

contrast to the RSF- and SWE-based measures of predator avoidance, late-winter habitats 

occupied by satellite-collared as well as the majority of GPS-collared animals were 

significantly closer to lakes and rivers than random locations. 

Fire History 

Range-wide use of areas categorised as 11 - 20 years post-fire was much lower 

than younger and older age classes (1-10, 31 - 40, and 41-44 years). Individual caribou 

showed the greatest aversion to recently burned areas; individuals avoided all burns <40 

years old and only selected stands 41-44 years post-fire (Table 8). GPS-collared caribou 

also showed an aversion to areas of the winter range landscape with a high density of 

burned area. Models for pooled caribou revealed selection for areas closer to small burns 

(<10,000 ha) and farther from medium burns (10,000 - 50,000 ha) during late winter 
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(Figure 14). Although overall use of bumed areas was significantly lower than expected 

based on their availability, models of resource use by individual caribou confirmed an 

affinity for habitats adjacent to the bum boundary. According to the 'averaged' selection 

coefficients, GPS-collared caribou selected bumed areas within 500 m of the bum 

perimeter throughout the two winter seasons, and they were also located within core areas 

of burns significantly more than expected during early winter (Table 8). 
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Figure 14. Selection coefficients and 95% confidence intervals for proximity to 
bums of various sizes from habitats used by satellite-collared caribou on early-
and late-winter range in the Northwest Territories (1996 - 2009). 

Spatial Representation of Resource Selection 

Although there were some discrepancies in habitat selection between the pooled 

and individual models, an emphasis on mature lichen-bearing areas close to water was 

prevalent throughout the analyses. Models of satellite-collared caribou offered better 

predictive success (^s = 0.832) and were representative of a much longer period of time 

than the GPS models (13 years versus 1 year). Hence, I relied on the specific values of 
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resource variables associated with the pooled model of satellite-collared caribou 

(Appendix D) to generate a map of the predicted value of habitats for caribou on winter 

range in the Northwest Territories (Figure 15). The greatest concentrations of high-

quality habitat occurred in the northwestern and southern regions of the winter range. In 

particular, areas with fewer and smaller young burns appeared to be most favoured by 

caribou. 

DISCUSSION 

My findings on the spatial-temporal dynamics of barren-ground caribou in the 

Northwest Territories complement previous studies of habitat use by other herds during 

winter (Skoog 1968, Bergerud 1972, Miller 1976, 1980, Schaeffer and Pruitt 1991, 

Thomas 1991, Russell et al. 1993, Thomas et al. 1996; Joly et al. 2003, 2007a, 2010). 

Most studies of migratory caribou populations, however, have employed a herd-wide 

analysis of habitat use and have failed to recognise the individual-level variation in 

resource selection. I have expanded upon these works by quantifying patterns of habitat 

selection demonstrated by both the individual caribou and a subset of the population. In 

addition, I used location data from collared caribou monitored over a relatively long 

period of time (13 years) to investigate habitat selection during two winter seasons. 

Selection Patterns of Post-fire Habitats 

My findings corroborate research from migratory populations of caribou in 

Alaska (Joly et al. 2003, 2009a) and elsewhere in northern Canada (Thomas et al. 1996). 
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function for satellite-collared caribou monitored from 1996 - 2009. 
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Caribou selected mature stands for winter range habitat (>40 years old) and avoided 

younger stands, with few observed differences in selection between collar type and 

season. Although caribou mostly avoided recently bumed patches of winter range and 

large tracts of bumed taiga, there was significant selection of early-seral habitats and 

stands adjacent to the burn boundary. In particular, some individual caribou displayed an 

affinity for post-fire vegetation (i.e., sparse and low-growing herbs and shrubs), areas 

with a high density of bumed habitat, and burned areas within 500 m of the bum 

boundary. 

Researchers have posited that an increased abundance of vascular plants present 

in bumed areas may benefit caribou by providing ample quantities of nutrients and 

protein (Joly et al. 2003). My research shows that while caribou generally avoided 

bumed habitats on winter range, they disproportionately occupied burned stands adjacent 

to the bum boundary, as well as those characterised by sparse, low-growing herbs and 

shrubs. Joly et al. (2003) reported similar findings for Nelchina caribou in Alaska, 

attributing the use of 11- to 20-year-old stands to an abundance of vascular forage found 

in immature habitats. Use and selection of post-fire areas adjacent to the bum boundary 

suggests that these habitats provide some ecological gain for caribou related to travel, 

foraging, or predator avoidance. By providing access to diverse forage types and 

enhanced visibility for predator detection, the juxtaposition between bumed and mature 

habitat may serve an important function for wintering caribou. 

Selection Patterns in Relation to Predators and Snow 

My findings failed to support the hypothesis that caribou favour habitats 

estimated to have a lower risk of predation. Satellite-collared caribou on late-winter 
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range actually selected for habitats more likely to be inhabited by wolves. Similarly, four 

out of five individual caribou used habitats with comparatively high values of SWE 

during late winter, indicating that these caribou sought out or incidentally used areas with 

denser or deeper snowpacks, potentially causing them to be more vulnerable to predation 

(Adams 2005). Mattson et al. (2009) reported a slight positive trend between wolves and 

areas with a greater amount of caribou habitat. Hence, my findings of selection for high-

risk habitats by caribou may have occurred as a consequence of wolves seeking habitats 

where caribou are more likely to be found. 

Caribou may have few options to avoid wolves at the scale of the winter 

landscape. However, at a finer spatial and temporal scale, caribou likely display 

behavioural responses to predation risk such as changes in vigilance and aggregation 

(Creel and Christianson 2007). Due to the lack of alternate prey such as moose {Alces 

alces), tundra wolves in the Northwest Territories may track the distribution of wintering 

caribou versus occupying traditional pack ranges (Walton et al. 2001). Wolves in this 

study displayed patterns of habitat selection similar to caribou, indicating that wolves 

sought areas with a greater amount of high-value caribou habitat. Specifically, both 

wolves and caribou avoided non-vegetated areas and targeted high-SWE habitats yielding 

a high percentage of ground cover of herbaceous and lichen forage, especially during late 

winter. Maintaining large group sizes and remaining close to lakes and open habitats 

(i.e., young burns, mature spruce-lichen stands) with adequate escape routes may be the 

most effective strategy for avoiding predation by wolves. Analyses of the Bathurst herd 

reinforced these anti-predator behavioural responses in that caribou frequently 

congregated in groups of 25 - 50 individuals (Mattson et al. 2009, T. Barrier, unpublished 
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data), and chose to occupy habitats close to lakes and rivers, especially during late winter. 

Alternatively, caribou may use waterways to navigate the winter range to locate 

predictable forage patches and to maximize movement efficiency due to the improved 

traction afforded by shallower and harder snow on frozen lake surfaces (Bergerud et al. 

2008). 

Individual Variation in Resource Selection 

Resource selection functions are a common approach for examining the 

distribution and habitat selection of wildlife species. Typically, individual animals are 

monitored and pooled in order to gauge population-level responses to resources 

(Gillingham and Parker 2008). However, these types of analyses risk losing important 

information on individual variability. In order to quantify variation in resource selection 

by Bathurst caribou, I used location data from both pooled and individual animals. My 

analyses show that despite the general agreement in selection coefficients between collar 

types, patterns of habitat selection varied greatly among individuals. In addition, 

inferences drawn from the 'average' response of GPS-collared animals were often based 

on only a few caribou, and sometimes led to misleading conclusions. For example, data 

from averaged individuals suggested that caribou avoided areas of early-winter range 

with dense aggregations of bumed habitats; however, this inference was based largely on 

the selection coefficient for one individual. The late-winter data showed that this 

particular caribou displayed conflicting selection strategies when compared to other 

individuals. These results suggest that where pooled data are used for resource selection 

functions, one should attempt to minimize bias by maintaining a balanced sample size of 
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locations among individuals or determine individual differences using a random effect 

(Gillies et al. 2006, Hebblewhite and Merrill 2008). 

The RSF models generated using locations from satellite-collared caribou offered 

good predictive success (r s = 0.758 and 0.860 for early- and late-winter models, 

respectively) compared to models for individual animals {r s = 0.118 - 0.731) suggesting 

that most individual models were unable to differentiate habitats used frequently by 

caribou. Possible errors may have included an inability of the model to detect differences 

between used and random sites (i.e., Nielsen et al. 2002, Boyce et al. 2003) due to a 

relatively constrained definition of habitat availability (i.e., shorter availability radii 

resulting from a relatively short time lapse between each known location). In addition, 

caribou may have perceived their environment according to various unidentified habitat 

features prevalent at finer spatial scales (Johnson et al. 2001). Although the predictive 

accuracy of these models was low, it is worth noting that many of the covariates had 

significant coefficients. Individual caribou were selecting for attributes of the 

environment. 

Although global models of resource selection are often the most practical 

approach for guiding the management of wildlife populations (Saher and Schmiegelow 

2005), my study indicates that variation among individual animals is an important 

consideration. Caribou employed diverse and variable selection strategies, which would 

have been masked by a global model. Animals will likely display many departures from 

the average selection responses predicted by global models, and differences among these 

individuals should be investigated, as they may illuminate important variation in the use 

and availability of resources across the landscape (Gillingham and Parker 2008). 
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Individuals that deviated in the use of post-fire areas, for example, may have occupied 

distinct home ranges with a higher proportion of bumed to mature habitats. 

IMPLICATIONS FOR MANAGEMENT 

My data suggest that specific habitat features such as stand age, vegetation 

composition, and proximity to bums and watercourses are important considerations when 

evaluating the availability of winter habitat for barren-ground caribou in the Northwest 

Territories. Bathurst caribou displayed an affinity for mature stands of forest with a high 

percentage of ground cover of lichen and herbaceous forage as well as post-fire areas 

adjacent to the bum boundary. Although my data do not reveal directly the mechanisms 

of selection or reasons for particular habitat use, other studies suggest that these habitats 

provided ecological benefits related to foraging, travel, or predator avoidance (e.g., 

Chapter 2). Assuming that current climatic trends continue (IPCC 2007), an increase in 

fire activity across northern landscapes will substantially reduce the availability of 

forested taiga (Rupp et al. 2006) for caribou. In addition, warmer annual temperatures 

may have consequences for lichen abundance via changes in the composition of plant 

communities (Comelissen et al. 2001, Olthof et al. 2008). My analyses suggest that at 

some spatial and temporal scales, barren-ground caribou of the Bathurst herd may be less 

averse to bumed areas than previously thought. However, models of resource selection 

indicate that caribou in this study maintained access to mature patches of lichen and 

alternate forage species (i.e., herbaceous vegetation) throughout winter, despite use of 

early-seral habitats. According to the RSF map of the predicted value of habitats for 

caribou (Figure 15), larger and more abundant bums, in addition to fewer older and 
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lichen-rich stands, could significantly reduce the area or connectivity of high-quality 

habitat on the winter range of Bathurst caribou. Ultimately, a reduction in the availability 

or quality of winter range could lead to density-dependent effects of winter forage 

restriction including reductions in recruitment and body size of adult females (Skogland 

1986), as well as altered distribution patterns (Joly et al. 2003; 2007a, b; 2010) that 

would influence access to caribou by harvesters. 

RSF models and maps from this study can help fire managers by providing a 

baseline data set for the development of modelling scenarios illustrating the 

consequences of various rates and intensities of fire activity for the distribution and area 

of habitat on the caribou winter range. In addition, maps can be used to delineate the 

magnitude of effects of proposed resource activities on winter range and to visualize the 

consequences of development on caribou habitat over a large geographic area (Johnson et 

al. 2005). However, these insights on large-scale patterns provide only partial 

understanding of the dynamics of barren-ground caribou during winter. Future research 

on the winter range ecology of the Bathurst herd should investigate the relationship 

between habitat quality (i.e., area of high-quality habitat and amount of lichen forage) 

and caribou population demographics in order to define mechanistic links between fire 

activity, winter severity, and caribou distribution (Boyce and McDonald 1999, Johnson et 

al. 2005). Such works might include long-term monitoring of body condition and 

population trends, models linking animal nutrition, habitat supply, and reproduction, and 

finer-scale studies that reveal individual mechanisms driving the larger-scale processes 

that I observed. Ultimately, these studies would be linked to investigations on other 
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seasonal ranges to provide a more complete understanding of the factors that drive 

caribou population cycles. 
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CHAPTER 4 - GENERAL CONCLUSIONS AND RECOMMENDATIONS 

SUMMARY 

Many Rangifer herds across the circumpolar north are currently experiencing 

severe declines in numbers and distribution (Vors and Boyce 2009). In the Canadian 

central Arctic, the Bathurst barren-ground herd declined from 472,000 ± 72,900 (± 95% 

confidence interval) caribou in 1986 to 31,900 ± 10,900 caribou in 2009 (Gunn et al. 

2008, Adamczewski et al. 2009). A reduction in winter forage due to forest fires has 

been suggested as a factor contributing to the decline. I employed a multi-scale approach 

to identify the influence of ecological variables related to vegetation, fire history, snow 

cover, and predation risk on the occupancy of winter habitats by caribou. Between 2008 

and 2009,1 collected forest stand and understory data in areas used by caribou, as well as 

at paired control sites. At a larger spatial scale, I used animal location data recorded from 

1996 - 2009 to characterise the spatial and temporal distribution of Bathurst caribou. 

Considering the recent decline of caribou in the central Arctic, these models are useful 

for exploring factors that may limit or influence the distribution of caribou herds on 

winter range. Habitat relationships derived for the Bathurst caribou herd may have 

application to other herds of barren-ground caribou experiencing similar dynamics and 

possible increases in fire frequency resulting from climate warming. 

Caribou-Habitat Relationships 

At the scale of the feeding patch, caribou foraged in habitats with a high-

percentage ground cover, high biomass of lichen, and few or small trees. Similarly, the 

consensus among the models of habitat selection by collared caribou was that they 

avoided areas of the winter range densely populated with bums and favoured older 
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patches of forest characterised by a high percentage of ground cover of lichen and 

herbaceous forage and a close proximity to lakes and rivers. However, there also was 

considerable selection for habitats adjacent to the bum boundary, and some individual 

caribou occupied early-seral habitats significantly more than expected, indicating that 

these sites provided ecological benefits related to foraging, travel, or predator avoidance. 

The flush of herbaceous and woody forage species associated with immature 

patches of winter range may be a prominent attractant to caribou. Quick-growing 

vascular species found in young stands have been described as highly desirable to caribou 

(Scotter 1964, Kelsall 1968) on a winter diet otherwise lacking in protein-rich forage 

(Fleischman 1990). Alternatively, caribou may occupy bums to minimize predation risk 

or to maximize movement efficiency when traveling between patches of foraging habitat 

(Miller 1976, Thomas et al. 1998). Caribou generally travel along waterways and 

lowland areas; thus, continuing along these routes when they bisect burns would require 

less energy than detouring around a bum (Thomas et al. 1998). 

The strong association between the distribution of caribou and lichen cover, 

which covaries with stand age across two different spatial scales (i.e., the forest patch and 

the winter range landscape), indicates that barren-ground caribou in the Northwest 

Territories rely on mature patches of the winter range to obtain forage resources. Even 

where caribou selected for post-fire habitats near the bum boundary, they also chose to 

occupy mature stands of forest yielding abundant lichen. Contrary to my hypothesis, 

caribou did not appear to avoid habitats likely to be inhabited by wolves, and selection 

models revealed that caribou used habitats with comparatively high values of SWE. Both 

results suggest that at the scale of the landscape, caribou did not or could not avoid areas 
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of relatively high predation risk. Although I was unable to identify or test behavioural 

factors that allowed caribou to reduce the hunting success of wolves, these may have 

occurred at a finer scale than I measured (e.g., Creel and Christianson 2007). 

Pooled and Individual Resource Selection Models 

Although global models of resource selection are often the most practical 

approach for guiding the management of wildlife populations (Saher and Schmiegelow 

2005), my study indicates that individual variation is an important consideration. 

Caribou employed diverse and variable selection strategies that would have been masked 

by a global model. In addition, inferences drawn from the 'average' response of 

individual animals were often based on only a few caribou, and sometimes led to 

misleading conclusions. Despite the general agreement in selection coefficients between 

collar types, none of the models for individual caribou corresponded completely with the 

types and magnitude of coefficients included in the pooled models. These results suggest 

that differences among individual animals should be investigated, as they may illuminate 

important variation in the use and availability of resources across the landscape 

(Gillingham and Parker 2008). Caribou that deviated in the use of post-fire habitats, for 

example, may have occupied distinct home ranges with a higher proportion of bumed to 

mature habitats. Alternatively, where pooled data are used for resource selection 

functions, one should attempt to minimize bias by maintaining a balanced sample size of 

locations among individuals or determine individual differences using a random effect 

(Gillies et al. 2006, Hebblewhite and Merrill 2008). 
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Forage Supply 

Accepting the guidance of Bergerud et al. (2008:166,495,497,500,501), my data 

on lichen abundance suggest that conditions on the late-winter range of Bathurst caribou 

could support a herd density of approximately 1 - 2 animals per km2 in unburned areas 

(240,186 - 480,372 total caribou). Given the number of ecological factors that are known 

to affect barren-ground caribou populations (e.g., weather, insects, plant phenology; Post 

and Stenseth 1999), this is a very simplistic index of population carrying capacity. 

Nonetheless, these estimates offer some insight on possible mechanisms for the recent 

decline of Bathurst caribou. A shortage of winter forage has not likely contributed to the 

decline of the herd, which peaked at a density of 1.83 ± 0.28 caribou per km2 (472,000 ± 

72,900 caribou) across the winter range in 1986. Assuming that current climatic trends 

continue (IPCC 2007), an increase in fire activity across northern landscapes would 

substantially reduce the availability of forested taiga (Rupp et al. 2006) for caribou. In 

addition, warmer annual temperatures may have consequences for lichen abundance via 

changes in the composition of plant communities (Comelissen et al. 2001, Olthof et al. 

2008). My analyses suggest that at some spatial and temporal scales, barren-ground 

caribou of the Bathurst herd may be less averse to fire than previously thought. 

However, models of resource selection indicate that caribou in this study maintained 

access to mature patches of lichen and alternate forage species (i.e., herbaceous 

vegetation) throughout winter, despite use of early-seral habitats. According to the RSF 

map of the predicted value of habitats for caribou (Figure 15), larger and more abundant 

bums, in addition to fewer older and lichen-rich stands, could significantly reduce the 

area or connectivity of high-quality habitat on the winter range of Bathurst caribou. 
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Ultimately, a reduction in the availability or quality of winter range could lead to density-

dependent effects of winter forage restriction including reductions in recruitment and 

body size of adult females (Skogland 1986), as well as altered distribution patterns (Joly 

et al. 2003; 2007a, b; 2010) that would influence access to caribou by harvesters. 

RECOMMENDATIONS 

Considering current climate uncertainty and a lack of research on winter range 

ecology, we require an increased understanding of caribou-winter range relationships to 

ensure effective management and conservation of caribou (Joly et al. 2007a, 2009a, b; 

Jandt et al. 2008). Findings of this study suggest that fires affect the distribution of 

caribou at two spatial scales. However, my sampling of lichen abundance across a 

portion of the winter range, while limited, suggests that the aggregate amount of lichen 

forage is likely adequate given historical numbers of Bathurst caribou. Furthermore, 

availability of lichen for Bathurst caribou is comparable or greater than many other herds 

of caribou with similar population dynamics and foraging ecology (Table 4). 

In the event that reduced lichen availability becomes a limiting or regulating 

factor for caribou, fire suppression may be necessary to mitigate other climate- and 

anthropogenic-related pressures affecting the population and distribution dynamics of 

barren-ground caribou. For example, a warming climate will likely affect the distribution 

and the availability of terrestrial lichens via higher frequencies of fire, extreme winter-

weather events, and changes in the composition of plant communities (Comelissen et al. 

2001, Olthof et al. 2008, Joly et al. 2009a, Vors and Boyce 2009). These losses could be 

additive with poorer summer-range condition and increasing human disturbance across 
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other seasonal ranges (Harrington and Veitch 1991, Dyer et al. 2001, Mahoney and 

Schaefer 2002, Frid 2003, Nellemann et al. 2003, Johnson et al. 2005). Changing plant 

and insect phenologies will likely restrict time spent foraging and influence caribou 

movements and energy budgets (Russell et al. 1993, Vors and Boyce 2009), and the 

expansion of anthropogenic activities may dismpt long-term patterns of caribou 

distribution and the availability of preferred habitats (Bergerud et al. 1984, Johnson et al. 

2005). 

The remoteness of caribou winter range from human settlements is a major 

limitation to effective fire management. If predicted increases in fire activity occur 

(Stocks et al. 1998), fire suppression may be necessary to maintain the area or 

connectivity of mature winter habitat available to caribou. Identifying priority areas for 

fire suppression based on the current distribution of Bathurst caribou in relation to fire-

fighting centres may be a realistic goal for strategic fire management where resources and 

access are limited. Caribou typically inhabited regions of the winter range within close 

proximity to Gameti and Wekweti, Northwest Territories, as well as areas to the south 

and southeast of these towns following treeline towards the East Arm of the Great Slave 

Lake. Managing these areas for long fire-return intervals would allow lichen stands to 

reach maximum levels of production, thereby increasing their value to caribou. 

Specifically, fire managers should focus on retaining select tracts of mature forested 

habitat (>90 years) within a mosaic of stand types, while allowing numerous small 

(< 10,000 ha) fires to burn. In addition to contributing to the natural cycles of renewal 

and succession in taiga ecosystems (Bergemd 1974, Kershaw et al. 1975, Miller 1976), 
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numerous small fires would serve as a firebreak for future large fires (Beverly and 

Qamanirjuaq Caribou Management Board 1994). 

Future research should focus on: 

1) More intensive inventory and monitoring of lichen abundance across the 

winter range of Bathurst caribou. A reduction in the prevalence of lichen communities is 

expected to occur as a consequence of increased dominance of vascular plants across the 

ranges of caribou (Comelissen et al. 2001, Olthof et al. 2008). In addition, a changing 

climate may result in heavier snowfall and more frequent ground-icing (Brotton and Wall 

1997), thereby decreasing the accessibility of lichen mats for caribou (Bergerud 1974, 

Thomas et al. 1998). 

2) Monitoring wolf numbers on the winter range of Bathurst caribou. Few studies 

have quantified the influence of wolf predation during winter on the population dynamics 

of barren-ground herds. However, Bergerud et al. (2008) suggested that a density of 

seven wolves per 1000 km2 could cause caribou populations to decline. Wolf numbers 

will likely increase as an indirect result of climate warming across caribou ranges 

(Bergerud et al. 2008). Coupled with a deeper snowpack and possibly a shorter duration 

and extent of the frozen lake period, caribou will be especially vulnerable to predation. 

However, this may be less of a concern if wolf productivity is regulated by caribou 

abundance. 

3) Modelling the expected effects of future fire regimes (i.e., fire frequency, 

severity, and size), climate (i.e., snow indices), and succession of lichen woodlands on 

winter range habitats to forecast the long-term availability of lichen-bearing range for 

Bathurst caribou. Scenarios depicting future climates for northern latitudes predict that 
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warmer annual temperatures and drier summer weather may lead to an increased 

frequency and severity of forest fires (Stocks et al. 1998, Rupp et al. 2000, McCoy and 

Bum 2005), which could reduce the quantity and alter the distribution of lichen resources 

available to caribou (Comelissen et al. 2001, Olthof et al. 2008). Large-scale predictive 

modelling is a useful approach for developing strategic insight and objectives for 

managing winter range. 

4) Identifying linkages between habitat quality and caribou population 

demographics in order to define mechanistic links between fire activity, winter severity, 

and caribou distribution. An understanding of such relationships will allow wildlife 

managers to evaluate winter range conditions and proposed developments in terms of 

risks to population numbers and the distribution of caribou relative to harvesters (Boyce 

and McDonald 1999, Franklin et al. 2000, Johnson et al. 2005). Also, such approaches, 

either modelling or monitoring, will allow for a better understanding of the connections 

between winter range dynamics and population change as influenced by other seasonal 

constraints on caribou distribution and productivity. 
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APPENDIX A - MAP OF ANNUAL RANGE USE BY BARREN-GROUND 
CARIBOU HERDS ACROSS THE NORTHWEST TERRITORIES 

Figure A. Annual range use by collared female caribou from barren-ground herds across 
the Northwest Territories (Dolphin - Union herd, 2001 - 2006; all other herds, 2005 -
2010). 
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• Taloyoak 
Kugaaruk 

•Gjoa Haven 

J^"\ 
"TVNK) L. 
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APPENDIX B - STATISTICAL SUMMARY OF FOREST STAND AND 
UNDERSTORY ATTRIBUTES ON THE BATHUST WINTER RANGE 

IN THE NORTHWEST TERRITORIES 

Table B Statistical summary of forest stand and understory attributes at caribou feeding 
sites (n = 33) and random lichen-bearing (n = 22) and bumed sites (n = 20) on the 
Bathurst winter range in the Northwest Territories (2008 - 2009) All units represent site 
attributes per 0 09-ha plot 

Stand Attribute 

2008 Snow Cover 

Snow depth (cm) 

Snow density (g/cm3) 

Snow hardness (g/cm2) 

2009 Snow Cover 

Snow depth (cm) 

Snow density (g/cm3) 

Snow hardness (g/cm2) 

Lichen Height (cm) 

Lichen Volume (cm3) 

Total lichens 

Fruticose lichens 

Cladina species 

Cladina stellaris 

C mitis 

C rangiferina 

Cladonia species 

Cladonia uncialis 

CI gracilis 

Stereocaulon species 

Fohose lichens 

Cetraria species 

Cetraria cucullata 

Cet nivalis 

Cet islandica 

Peltigera species 

Crustose lichens 

Ground Cover (%) 

Lichen 

Grammoid 

Forb 

Bryoid 

Litter 

Rock 

n 

5 

5 

5 

11 

11 

11 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

33 

Feeding 

X 

45 360 

0 657 

0 229 

56 561 

0 222 

0 158 

1 98 

10583365 

10280844 

4935633 

0 

2828571 

1947078 

1860633 

201136 

14610 

2339367 

302435 

1140097 

140260 

969399 

30438 

179221 

85 2 

57 44 

0 75 

0 73 

5 20 

16 13 

4 11 

Site 

SE 

1 105 

0110 

0 022 

2 358 

0017 

0 008 

0 14 

992335 

981543 

803343 

0 

452979 

482939 

219669 

72133 

8711 

585468 

65252 

282313 

50084 

289382 

19316 

57628 

32 2 

2 27 

0 20 

0 26 

0 79 

1 58 

0 94 

n 

0 

0 

0 

11 

11 

11 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

22 

Unburned Site 

X 

-

-
-

59 288 

0218 

0 141 

2 07 

8029972 

7982752 

4321753 

29221 

2555357 

1541761 

1326258 

237419 

7305 

1718547 

357589 

585146 

47484 

537662 

0 

219521 

105 9 

42 74 

3 14 

1 76 

13 47 

17 95 

3 10 

SE 

-

-

-

1 851 

0 008 

0 008 

0 18 

1106393 

1204163 

790891 

22769 

434659 

437753 

214612 

98414 

7305 

620222 

89150 

241899 

24031 

242840 

0 

81987 

57 3 

3 97 

1 20 

0 55 

3 00 

1 62 

0 99 

n 

0 

0 

0 

0 

0 

0 

20 

20 

20 

20 

20 

20 

20 

20 

29 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

Burned Site 

X 

-

-

-

-

-

179 

3531496 

3123884 

670179 

0 

402991 

267188 

2205402 

34152 

16875 

138616 

407411 

103661 

0 

101652 

2009 

339911 

200 9 

23 62 

3 56 

1 50 

1146 

30 48 

6 24 

SE 

-

-

-

-

-
-

0 25 

516728 

482716 

394680 

0 

150381 

252674 

372691 

21671 

16875 

87226 

107492 

40267 

0 

40483 

2009 

109755 

84 6 

2 20 

1 24 

0 73 

2 30 

2 68 

1 61 
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Soil 

Dwarf shrub (<30 cm) 
Shrub Cover (%) 
Total shrubs 
Short shrubs (<2 m) 

Tall shrubs (>2 m) 
Basal Area of Trees (%) 
Total trees 
Deciduous trees 

Coniferous trees 
Crown Closure (%) 

Stand Age (years) 
Elevation (m) 

33 0 92 0 49 
33 21 23 1 81 

33 1 628 0 932 
33 1589 0 923 
33 0 038 0 038 

33 

33 

33 

33 

13 

33 

7 15 

0 73 

6 42 

17 51 

142 6 

338 9 

1 13 

0 39 

1 02 

2 84 

178 

80 

22 1 87 1 62 

22 22 32 2 82 

22 5 700 1 746 

22 5 301 1 598 

22 0 400 0 369 

22 

22 

22 

22 

8 

22 

12 91 

1 18 

1173 

27 36 

95 9 

340 4 

2 32 

0 50 

2 01 

451 

94 

125 

20 1 16 0 75 

20 24 84 4 25 

20 6 518 3 031 

20 5 363 2 868 

20 1155 0 613 

20 

20 

20 

20 

20 

20 

6 00 

130 

4 70 

19 47 

29 0 

346 2 

1 18 

0 70 

1 07 

5 13 

2 1 

11 2 



APPENDIX C - SUMMARY OF VEGETATION USE BY BATHURST CARIBOU ON WINTER RANGE IN THE 
NORTHWEST TERRITORIES 

Table C Summary of vegetation use by satellite- and GPS-collared female caribou of the Bathurst herd monitored from 1996 - 2009 
(November - March) across the Northwest Territories. 'Total Locs' represents the total number of used and available locations 
acquired for each caribou and collar type. Data under numbers 1-7 represent the percentage of caribou and random locations in each 
vegetation type during early and late winter. Data for satellite-collared caribou represent the average area of each vegetation type 
withm the buffered caribou locations 'One' represents non-vegetated cover, '2' represents sparsely-vegetated cover, '3 ' represents 
shrub-dominant cover, '4' represents deciduous-dommant cover, '5 ' represents conifer-dominant cover, '6' represents herb-dominant 
cover, and '7' represents lichen-dominant cover 

Caribou Early Winter Late Winter 

Satellite (Used) 

Satellite (Avail) 

GPS (Used) 

GPS (Avail.) 

Caribou 1 (Used) 

Caribou 1 (Avail) 

Caribou 2 (Used) 

Caribou 2 (Avail) 

Caribou 3 (Used) 

Caribou 3 (Avail) 

Caribou 4 (Used) 

Caribou 4 (Avail) 

Caribou 5 (Used) 

Caribou 5 (Avail) 

Caribou 6 (Used) 

Caribou 6 (Avail) 

Caribou 7 (Used) 

Locs 

2217 

9865 

5479 

27359 

370 

1849 

399 

1991 

347 

1725 

362 

1807 

350 

1749 

360 

1795 

363 

1 

20.7 

24.1 

17.2 

24.5 

187 

26 9 

160 

25 8 

13 6 

24 8 

11 1 

173 

16 3 

25 3 

21 9 

27 0 

16 5 

2 

2.5 

3.7 

3.7 

3.3 

3 0 

2 4 

0 

0 

87 

8 8 

2 2 

2 9 

1 7 

2 7 

3 6 

2 9 

3 9 

3 

4.5 

6.1 

1.0 

1.3 

0 3 

0 5 

2 5 

3 2 

0 

0 4 

0 6 

0 2 

0 6 

0 5 

0 3 

0 3 

0 3 

4 

16.8 

17.4 

17.2 

17.5 

20 3 

20 1 

183 

18 3 

27 1 

22 3 

9 4 

11 8 

11 4 

15 0 

11 1 

153 

14 9 

5 

7.2 

7.9 

5.6 

5.9 

4 3 

5 0 

10 0 

8 6 

5 5 

5 9 

3 9 

3 4 

6 0 

4 8 

3 1 

3 5 

5 0 

6 

2.4 

2.0 

3.1 

2.5 

5 7 

3 6 

0 

0 2 

5 5 

6 4 

2 8 

2 5 

1 1 

1 3 

2 5 

2 9 

2 5 

7 

43.6 

36.3 

52.3 

45.1 

47 8 

41 3 

53 1 

43 9 

39 8 

31 5 

70 2 

61 8 

62 9 

50 4 

57 5 

48 1 

57 0 

Locs 

1452 

6862 

4897 

24290 

354 

1770 

353 

1764 

334 

1670 

353 

1747 

354 

1770 

351 

1749 

354 

1 

20.7 

23.2 

16.1 

20.8 

24 9 

30 6 

162 

25 1 

16 8 

21 6 

11 9 

17 5 

20 3 

28 7 

21 7 

23 3 

7 4 

2 

2.8 

3.3 

3.1 

2.8 

4 5 

3 0 

0 

0 

6 6 

8 0 

0 

0 

2 0 

1 7 

0 

0 

0 

3 

4.4 

6.8 

0.6 

0.5 

0 

0 

4 0 

4 1 

0 

0 

0 

0 

0 

0 

0 

0 

11 

4 

14.0 

18.0 

10.9 

15.0 

9 3 

14 5 

162 

18 7 

21 0 

27 6 

1 1 

3 2 

9 6 

13 3 

7 1 

13 7 

13 3 

5 

6.9 

6.9 

3.3 

3.4 

5 7 

5 3 

9 4 

8 3 

5 4 

7 0 

0 

0 

5 9 

5 9 

0 

0 

0 

6 

3.4 

2.4 

7.2 

6.1 

6 5 

4 6 

0 

0 

7 2 

5 8 

3 7 

5 0 

4 5 

2 2 

4 8 

3 1 

16 1 

7 

45.8 

36.9 

58.6 

51.4 

49 2 

42 0 

54 4 

43 7 

43 1 

30 0 

83 3 

74 3 

57 6 

48 2 

66 4 

60 0 
62 2 



Caribou 7 (Avail) 

Caribou 8 (Used) 

Caribou 8 (Avail) 

Caribou 9 (Used) 

Caribou 9 (Avail) 

Caribou 10 (Used) 

Caribou 10 (Avail) 

Caribou 11 (Used) 

Caribou 11 (Avail) 

Caribou 12 (Used) 

Caribou 12 (Avail) 

Caribou 13 (Used) 

Caribou 13 (Avail) 

Caribou 14 (Used) 

Caribou 14 (Avail) 

Caribou 15 (Used) 

Caribou 15 (Avail) 

1813 

361 

1805 

414 

2070 

365 

1825 

385 

1923 

328 

1636 

371 

1853 

301 

1505 

403 

2013 

22 5 

169 

23 2 

13 5 

23 9 

11 8 

18 7 

19 0 

24 3 

189 

22 3 

164 

24 9 

30 6 

34 4 

174 

26 8 

4 0 

3 6 

2 8 

3 4 

2 0 

6 3 

7 5 

7 5 

6 0 

6 1 

4 0 

4 9 

3 6 

0 

0 

0 

0 

0 4 

0 6 

0 8 

3 4 

2 5 

0 

0 4 

0 

1 1 

1 2 

17 

1 1 

1 0 

1 7 

2 7 

2 7 

3 7 

15 4 

13 3 

137 

22 5 

20 5 

17 0 

166 

24 2 

28 8 

25 3 

24 6 

14 8 

14 7 

8 6 

8 4 

19 6 

162 

4 6 

14 

3 4 

4 4 

5 7 

9 0 

113 

4 7 

5 7 

7 6 

7 6 

4 6 

5 1 

6 3 

5 9 

7 7 

8 3 

2 1 

8 0 

3 7 

6 5 

3 6 

0 

0 

7 8 

5 7 

2 1 

1 3 

19 

3 4 

0 

0 

0 

0 

51 0 

56 2 

52 5 

46 4 

419 

55 9 

45 5 

36 9 

28 3 

38 7 

38 5 

56 3 

47 3 

52 8 

48 6 

52 6 

45 1 

1764 

351 

1647 

352 

1741 

355 

1775 

350 

1747 

351 

1756 

333 

1630 

0 

0 

352 

1760 

9 4 

162 

22 4 

15 9 

14 8 

8 5 

14 4 

12 6 

17 3 

20 8 

26 3 

162 

19 7 

-

-

15 3 

19 9 

0 

0 

0 

102 

8 6 

3 1 

3 8 

6 9 

6 2 

3 4 

2 5 

0 

0 

6 8 

6 0 

1 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 6 

1 8 

20 1 

0 

0 

18 5 

26 1 

9 3 

13 4 

21 7 

21 8 

12 3 

184 

0 

0 

13 1 

19 7 

0 

0 

0 

2 3 

4 0 

6 5 

7 4 

0 

0 

9 7 

6 2 

0 

0 

6 0 

3 5 

11 7 

5 4 

5 2 

8 8 

9 8 

1 1 

1 6 

26 9 

22 5 

6 6 

5 1 

6 0 

5 3 

3 4 

3 2 

57 8 

78 4 

72 4 

44 3 

36 8 

71 6 

59 4 

32 0 

32 2 

47 3 

41 7 

77 8 

75 0 

52 8 

45 9 



APPENDIX D - RESOURCE SELECTION FUNCTION VALUES USED TO MAP 
HABITAT QUALITY FOR BARREN-GROUND CARIBOU ON WINTER 

RANGE IN THE NORTHWEST TERRITORIES 

Table D. Parameters of the 'best' global resource selection model for satellite-collared 
female caribou of the Bathurst herd monitored from 1996 - 2009 (November - March) 
across the Northwest Territories. Coefficient values (P) were used to map habitat quality 
for barren-ground caribou on the winter range in the Northwest Territories (Figure 15). 

Model Parameters 3 SE 95% CI 
Vegetation Types 
Non-vegetated -0.121 
Sparsely-vegetated -0.225 
Shmb-dominant -0.401 
Deciduous-dominant -0.093 
Conifer-dominant 0.022 
Herb-dominant 0.524 
Lichen-dominant 0.295 
Fire-Related Variables 
Burned Area 
0 - 1 0 years -0.009 
11 - 20 years -0.992 
2 1 - 3 0 years 0.013 
3 1 - 4 4 years 0.988 
Bum density -0.002 
Burn Perimeter 
Core NA 
Inner buffer NA 
Outer buffer NA 
Unburned area NA 
Distance to Burned Area 
Distance to small bums (km) -0.019 
Distance to small bums (km2) 0 
Distance to medium bums (km) -0.001 
Distance to medium bums (km2) 0 
Distance to large bums (km) -0.002 
Distance to large bums (km2) 0 
Predation-Risk Variables 
Wolf occurrence NA 
Snow water equivalent NA 
Distance to watercourse (km) -0.055 
Distance to watercourse (km2) 0.011 

0.050 
0.104 
0.083 
0.050 
0.067 
0.097 
0.038 

0.435 
0.537 
0.531 
0.583 

0 

NA 
NA 
NA 
NA 

0.006 
0 

0.003 
0 

0.002 
0 

NA 
NA 

0.027 
0.002 

-0.219--0.024 
-0.428 - -0.021 
-0.564 - -0.239 
-0.191-0.004 
-0.110-0.154 
0.334-0.714 
0.219-0.370 

-0.862 - 0.843 
-2.045 - 0.061 
-1.028- 1.054 
-0.154-2.130 
-0.002 - -0.001 

NA 
NA 
NA 
NA 

-0.032 - -0.007 
0 

-0.007 - 0.005 
0 

-0.006 - 0.002 
0 

NA 
NA 

-0.108--0.001 
0.006-0.015 


