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ABSTRACT 

Factors that trigger population transitions of mountain pine beetle from endemic to 

incipient-epidemic levels are poorly understood. The population dynamics of this insect may 

be influenced by associations with trees colonized by other bark beetles. This study explores 

the spatial and temporal relationships between mountain pine beetle and non-eruptive bark 

beetle species in lodgepole pine stands of southern British Columbia. Increasing populations 

of non-eruptive bark beetles were positively correlated with each other, and with endemic 

mountain pine beetle. Endemic and incipient-epidemic levels of mountain pine beetle were 

often positively spatially associated with the bark beetles Pseudips mexicanus, Orthotomicus 

latidens, Ips pini, and Hylurgops species, which themselves frequently colonized the same 

host trees. As populations grew, mountain pine beetle shifted from attacking 

injured/previously colonized hosts to uncolonized hosts. Identifying these potential triggers 

of population phase transitions may help prevent future epidemics in areas of economic 

importance. 
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CHAPTER 1 

General Introduction 

The weevils (Coleoptera: Curculionidae) comprise the largest of the beetle families. 

With more than 50,000 species worldwide, they are easily the largest family of all animals 

(Ohsawa 2005). Nearly all curculionids feed on living or dead plants, with many specializing 

on woody material. The diverse group of curculionids known as bark beetles (Curculionidae, 

Scolytinae) primarily feed within the subcortical region of their host trees (Coulson 1979, 

Wood 1982a). Excluding a brief period of host-seeking dispersal, these insects complete 

their entire life cycle in or under the bark or within the cones of their host (Rudinsky 1962). 

Bark beetles are vital components of forest ecosystems as they contribute to the break

down and turnover of senescent, weakened, dying, and dead trees (Wood 1982a). Turnover 

activity is a key component of forest succession and is essential for the perpetuation of forests 

with vigorously growing trees (Mattson and Addy 1975, Lundquist 1995, Jones et al. 1997). 

However, many bark beetles, as agents of ecological disturbance (Raffa and Berryman 1987), 

may increasingly pose a threat to previously unsuitable habitats in concert with a changing 

climate (Carroll et al. 2004, Hicke et al. 2006). 

Bark beetles have been informally classified as "primary" or "secondary" species, 

depending on the characterization of their colonization behaviour (Rudinsky 1962, Wood 

1982a). "Primary" bark beetles are generally more aggressive species that are capable of 

overcoming the defenses of healthy trees. Typically, under outbreak conditions, primary bark 

beetles rely on the death of their host in order to successfully complete their life cycle 
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(Berryman 1972). Large population fluctuations of primary bark beetles tend to be 

intermittent. In outbreak situations, these eruptive herbivores can cause landscape-level 

mortality to mature trees (Amman 1977, Wood 1982b, Safranyik and Carroll 2006). 

"Secondary" species typically reproduce in material from weakened or dying host 

trees, including those damaged by fire, lightning, windthrow, drought, disease, and 

defoliation, as well as those suppressed by competition (Rudinsky 1962, Wood 1982a). 

Subsistence in weakened trees is not universally true, however. For example pine engraver 

beetle, Ips pini (Say) may kill healthy trees on occasion when populations reach sufficient 

numbers (Paine et al. 1997, Steed and Wagner 2004). 

Even though records of outbreaks date back only to the early 1900's, mountain pine 

beetle, Dendroctonus ponderosae Hopkins, is believed to have been inhabiting pine 

ecosystems in western North America for millennia (Amman 1977, Seybold et al. 2000, 

Taylor and Carroll 2004). The insect is capable of colonizing both native and exotic species 

of pine within its range (Furniss and Schenk 1969, Cerezke 1995). In outbreak stages, aduit 

beetles are able to overwhelm the defenses of vigorous host trees through mass attacks 

mediated by pheromones (Vite and Pitman 1968, Raffa and Berryman 1983) and by 

innoculating hosts with mutualistic fungi (Francke-Grossman 1967, Berryman 1972, 

Safranyik et al. 1974). These fungi are transported in specialized cuticular structures called 

mycangia (Paine et al. 1997). Fungi exhaust the defensive capacity of host trees, and may 

also provide nutritional benefits for phloem-feeding larvae (Ayres et al. 2000, Bleiker and Six 

2007). 
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Development of mountain pine beetle is temperature-dependent. Adults typically 

emerge in late July through August, disperse via flight, and seek new hosts (Rasmussen 1974, 

Bentz et al. 1991). Female beetles construct straight vertical galleries and lay individual eggs 

within niches along the sides of these galleries (Furniss and Carolin 1977). Mountain pine 

beetles typically require one year to complete their life cycle, overwintering as larvae or 

adults (Furniss and Carolin 1977). Semivoltine populations may be found in areas of higher 

elevations or cool summer temperatures. Bivoltinism is also possible in some areas (Bentz et 

al. 2001), as low-elevation sugar pine, Pinus lambertiana, of California, may produce two 

generations per year (Furniss and Carolin 1977, Amman et al. 1990). 

The current outbreak of mountain pine beetle within the Canadian provinces of 

British Columbia and Alberta as well as the northwestern United States has overwhelmed an 

unprecedented number of pine hosts. The British Columbia Ministry of Forests has reported 

that the cumulative area of attacked trees within British Columbia alone extends over 16.3 

million hectares, comprising the vast majority of the mature lodgepole pine, Pinus contorta 

Douglas ex Louden, in the province (Westfall and Ebata 2009). Most disconcerting are the 

facts that the beetle has breached the historic Rocky Mountain geoclimatic barrier (Robertson 

et al. 2009, de la Giroday et al. 2010), is capable of reproducing in jack pine, Pinus 

banksiana Lamb. (Furniss and Schenk 1969, Cerezke 1995), and, with increased climatic 

suitability, poses a threat to Canada's boreal forest (Nealis and Peter 2008, Safranyik et al. 

2010). 

The economic impact of outbreaks by mountain pine beetle has fostered extensive 
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research focusing on the epidemic phase of the insect (Amman 1972, Safranyik et al. 1974, 

Berryman 1976, Thomson and Shrimpton 1984, Logan et al. 1998). A great deal is known 

about the biology of mountain pine beetle (Lyon 1958, Lanier and Wood 1968, Furniss and 

Carolin 1977, Safranyik 1988, Bentz et al. 1991, Pureswaran and Borden 2003, Safranyik and 

Carroll 2006, Safranyik et al. 2010) and its host selection behaviour at epidemic levels (Cole 

and Amman 1969, Geiszler et al. 1980, Hynum and Berryman 1980, Moeck et al. 1981, Raffa 

and Berryman 1982, Moeck and Simmons 1991, Pureswaran and Borden 2005). However, 

beetle populations are typically found at very low levels in endemic phases. Endemic 

populations are found in isolated pockets across the landscape and have been defined to 

consist of approximately forty beetles per hectare (Carroll et al. 2006). Consequently, the 

amount of research pertaining to the endemic phase is severely limited, as finding endemic 

beetles often poses a significant challenge (Tkacz and Schmitz 1986, Bartos and Schmitz 

1998, Carroll etal. 2006). 

Drawing on the knowledge of the behaviour of epidemic mountain pine beetle, it 

seems unlikely that endemic level beetles would be capable of successfully attacking 

vigorous hosts since their population densities do not reach the numbers required for mass 

attack (Raffa and Berryman 1983). Endemic populations must, therefore, be restricted to 

weakened and dying host trees that are unable to mount a sustained defensive response 

against colonization. Consequently, we might expect endemic levels of mountain pine beetle 

to behave much like secondary bark beetles. Secondary bark beetles may interact 

competitively with endemic mountain pine beetle and inhibit its reproductive success, or, 
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alternatively, may facilitate the persistence of endemic populations (Carroll et al. 2006). 

A great deal is known about secondary bark beetles, their pheromones, and their 

interactions with other bark beetles and/or predators, particularly species from the Ips genus 

(e.g., Miller and Borden 1985, Miller et al. 1991, Miller and Borden 1992, Seybold et al. 

1995, Poland and Borden 1998, Savoie et al. 1998, Aukema and Raffa 2000, Pureswaran et al. 

2000, Erbilgin et al. 2002, Aukema et al. 2004). Secondary bark beetles may limit the 

reproductive success of mountain pine beetle at epidemic levels through interspecific 

competition (Bergvinson and Borden 1991, Rankin and Borden 1991, Safranyik et al. 1999, 

Boone et al. 2008) or they may partition host resources to limit competition as has been 

proposed in other bark beetle systems (Paine et al. 1981, Wagner et al. 1985, Byers 1989, 

Raffa 1991, Schlyter and Anderbrant 1993, Ayres et al. 2001). In either case, the interactions 

between endemic populations of mountain pine beetle and other bark beetles have not been 

well studied (Carroll et al. 2006, Smith et al. 2009). Thus, I examined the population 

dynamics and spatial interactions of the primary bark beetle mountain pine beetle with a 

number of secondary bark beetles including Pseudips mexicamts (Hopkins), Orlhotomicus 

latidens (LeConte), Hylurgops porosus (LeConte), H. rugipennis (Mannerheim), l.pini, and 

D. murrayanae (Hopkins) in lodgepole pine stands undergoing population eruptions of 

mountain pine beetle from the endemic to the incipient-epidemic phase. 

Ecological interactions can be assessed on a series of spatial and temporal scales, 

depending on the system. In forest systems, ecological interactions may occur at the tree, 

stand, and landscape levels, over a broad spectrum of time scales from days to decades. 
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Coulson (1979) and White and Powell (1997) identified some challenges of studying bark 

beetles, such as defining a framework for studies of population dynamics. This research 

focused primarily on stand-level interactions over the course of several years. 

In my thesis, I primarily used data collected from a study pioneered by Allan Carroll, 

formerly with the Canadian Forest Service of Natural Resources Canada. In this study, 

endemic to incipient-epidemic level phase transitions of populations of mountain pine beetle 

were monitored in seven lodgepole pine stands over the course of five years. In the first data 

chapter (Chapter 2), I examined the temporal interactions between secondary bark beetle 

species and mountain pine beetle. In the second data chapter (Chapter 3), I explored the 

interactions of secondary bark beetles with mountain pine beetle and looked at the growth of 

incipient populations of mountain pine beetle. The third data chapter (Chapter 4), examined 

the spatial relationships between secondary bark beetles and their associations with vigour-

impaired trees during the endemic to incipient-epidemic phase transition of mountain pine 

beetle. General conclusions explore the significance of the results with respect to 

implications for prospective management. The appendices contain a summary of stand 

characteristics and colonization by bark beetles of the bole-infesting assemblage, as well as 

supplementary data for each chapter. The final appendix contains a laboratory bioassay that 

explored whether endemic populations of mountain pine beetle preferentially select trees 

colonized by P. mexicanus. Starved beetles were used as surrogates for endemic insects. 

This thesis was written in a format where each chapter, though interrelated, is meant 

to be a stand-alone entity that will be disseminated to a peer reviewed journal upon 
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successful thesis defense. As such, a small degree of ovlerlap may occur across chapters, 

especially in providing research context, in order to maintain chapter integrity. 
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CHAPTER 2 
Temporal associations between Dendroctonus ponderosae and non-eruptive species of bark 

beetles in stands of lodgepole pine in southern British Columbia 

ABSTRACT 

The majority of our knowledge of the ecology of mountain pine beetle, Dendroctonus 

ponderosae Hopkins, originates from studies of epidemic-level populations. Less is known 

about what factors might trigger population transitions from endemic to incipient-epidemic 

levels. The population dynamics of mountain pine beetle may be influenced by associations 

with trees colonized by secondary bark beetles, particularly when the former is at endemic 

levels and existing in habitat colonized by the latter. Temporal relationships between 

mountain pine beetle and species of secondary bark beetles comprising part of the bole-

infesting bark beetle assemblage were examined over five years in seven lodgepole pine 

stands of southern British Columbia where mountain pine beetle was erupting from endemic 

to epidemic levels. Prior to the transition of populations of mountain pine beetle from 

endemic to incipient-epidemic levels, the number of trees attacked by secondary bark beetles 

increased. Increasing populations of secondaries were positively correlated with each other, 

and with increasing populations of endemic mountain pine beetle in all stands. Identifying 

potential triggers of population phase transitions may enable the minimization of mountain 

pine beetle epidemics in areas of economic, cultural, aesthetic, and/or recreational 

importance. 

Key words: population dynamics; temporal dependence; interspecific competition 
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INTRODUCTION 

Populations of phytophagous insects rise and fall under the influence of endogenous 

and exogenous pressures, and may exhibit points of stable equilibrium, cyclic oscillations, or 

a lack of periodicity (May 1974). Periodic oscillations, for example, are often seen in 

lepidopteran defoliator systems such as gypsy moth, Lymantria dispar (L.) (Williams and 

Liebhold 1995, Johnson et al. 2005), larch budmoth, Zeiraphera diniana (Guenee) 

(Baltensweiler and Fischlin 1988), spruce budworm, Choristoneura fumiferana (Clemens) 

(Blais 1965), and forest tent caterpillar, Malacosoma disstria (HiAbner) (Cooke and Lorenzetti 

2006). Aperiodical population fluctuations are often found in tree-killing bark beetle 

systems, and generally occur in an eruptive manner. Primary examples include southern pine 

beetle, Dendroctonus frontalis (Zimmerman), spruce bark beetle, Ips typographus (L.) 

(0kland and Bj0rnstad 2006), and mountain pine beetle, D. ponderosae Hopkins (Raffa et al. 

2008), a species of particular relevance to this study. 

Mountain pine beetle is an eruptive species of bark beetle with a broad geographic 

range stretching across much of western North America (Safranyik and Carroll 2006). It is 

capable of colonizing nearly every species of native and introduced pine within this range 

(Furniss and Schenk 1969, Smith et al. 1981, Cerezke 1995, Carroll et al. 2004). British 

Columbia is currently experiencing the largest outbreak of mountain pine beetle in recorded 

history (Westfall and Ebata 2009). At outbreak levels, mass attacks coordinated by 

pheromones, in concert with vectored fungi, enable the beetles to overwhelm the defenses of 

healthy, large-diameter trees (Wood 1982a, Raffa and Bcrryman 1983). Mass attacks are 
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promoted by synchronous emergence of adults between late July and early August, achieved 

through temperature-dependent development (Rasmussen 1974, Bentz et al. 1991, Safranyik 

et al. 2010). Outbreaks generally begin to decline with the depletion of mature hosts capable 

of sustaining an epidemic, sometimes in concert with mortality of brood caused by cold 

winter temperatures and larval desiccation (Reid 1963, Cole and Amman 1969, Safranyik et 

al. 1974, Amman 1984, Safranyik and Linton 1998, Regniere and Bentz 2007, Sambaraju et 

al. 2011). As mountain pine beetle populations begin to decline, they may also be 

outcompeted by other species such as I. pint (Say) whose populations build up in the tops of 

hosts killed by mountain pine beetle (Furniss and Carolin 1977, Rankin and Borden 1991). 

Although the decline of outbreaks of mountain pine beetle is fairly well understood, 

there are still questions surrounding the growth of endemic populations. Mountain pine 

beetle populations typically exist for long periods at endemic phases. Researchers have long 

puzzled over what triggers an outbreak and why populations may persist at endemic levels in 

one area, but erupt in another (Logan et al. 1998), or erupt simultaneously over large areas 

(Aukema et al. 2006). Despite best efforts, hazard rating systems frequently fail to predict the 

risk of tree mortality by mountain pine beetle (Bentz 1993, Nelson ct al. 2008). Favourable 

conditions for beetle reproduction include successive warm summers, mild winters, and stress 

events such as drought (Reid 1963, Safranyik et al. 1974). It is believed that when such 

conditions coincide with an adequate number of mature hosts, mountain pine beetle may 

enter the incipient-epidemic phase (Carroll et al. 2006). Because endemic mountain pine 

beetle is likely limited by its inability to colonize healthy hosts (Raffa and Berryman 1983), a 
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theory of facilitation between "secondary" bark beetles and this primary bark beetle is 

beginning to emerge (Carroll et al. 2006). 

"Secondary" species of bark beetles reproduce in the phloem of weakened, dead, and 

dying trees (Wood 1982a). Most species of secondary bark beetles remain at relatively low 

population levels, and contribute to the break-down and turnover of senescent and dead trees 

(Wood 1982a). Secondary species of bark beetles that may share hosts with mountain pine 

beetle in British Columbia include D. murrayanae (Hopkins), Hylurgops porosus (LeConte), 

H. rugipennis (Mannerheim), /. pini (Say), Orthotomicus latideas (LeConte), and Pseudips 

inexicanus (Hopkins). Many of these species are multivoltine, and, although their emergence 

and flight periods vary considerably, generally precede mountain pine beetle's flight in late 

summer (Schenk and Benjamin 1969, Miller and Borden 1985, Safranyik et al. 2000, 

Safranyik et al. 2004, Safranyik and Carroll 2006, Furniss and Kegley 2008, Smith et al. 

2009). 

This study examined the temporal interactions between endemic level mountain pine 

beetle and several species of secondary bark beetles as populations begin to build toward an 

epidemic. The current study explored five years of bark beetle colonization within seven 

lodgepole pine stands in two sites in southern British Columbia immediately prior to a 

population eruption of mountain pine beetle. The population dynamics of endemic mountain 

pine beetle within each stand were examined to identify any temporal associations with 

secondary bark beetle species during the transition from the endemic to the incipient-

epidemic phase. Temporal associations between mountain pine beetle and other bole-
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infesting bark beetles may provide inference regarding the mechanism of this phase transition 

and establish context for further spatial analyses in which these insects persist through time 

by partitioning host resources within and between trees. 

METHODS 

Study Sites 

Two sites were established within southern British Columbia per Carroll et al. (2006). 

In brief, the site selection criteria included a historically suitable climate for mountain pine 

beetle, and a lack of tree-killing activity by the insect within 10 km of the sites. The first site, 

located at Angstad Creek, 25 km south of Merritt, was established in 2002. The second site, 

located on the Aberdeen Plateau, 35 km northeast of Kelowna, was established in 2003. 

At Angstad Creek, three lodgepole pine stands were initially identified for study 

(stands A, B, and C). On the Aberdeen Plateau, two stands were chosen (stands D and E). 

An additional stand at Angstad Creek, and Aberdeen Plateau (stands E and G, respectively), 

were later added to the study to replace those stands in which mountain pine beetle 

populations transitioned from the endemic to the incipient-epidemic phase. 

Stands were chosen to represent optimal mountain pine beetle habitat, i.e., lodgepole 

pine-leading, greater than 80 years old, and moderately dense (800 - 1500 stems/ha) 

(Safranyik and Carroll 2006). Furthermore, only stands with distinct boundaries formed by 

topographical features (e.g., water bodies, roads, clear cuts) or ecological conditions (e.g., 

forest age or species changes) were selected. These criteria were established to minimize the 

potential effects of immigration and emigration associated with immediately adjacent 

20 



habitats, and thereby ensure assessments of local population dynamics. Stands chosen for 

study at each site were at least 1 km apart. 

Following stand selection, variable radius prism plots were established within each 

stand at a density of one plot per hectare to ascertain average stand mensurational 

characteristics using the methods of Avery and Burkhart (2002). Tree diameter was 

measured at breast height (1.3 m). Tree height was determined using a laser hypsometer, and 

tree age was ascertained from cores collected at breast height. 

The states of all trees in each variable radius plot were also assessed for conditions 

that could potentially impair tree vigour. These conditions included mechanical damage to 

the main stem or roots, competitive status (suppressed versus dominant), root or foliar 

infections, and previous non-lethal infestations by herbivorous insects. 

The bole-infesting bark beetle assemblage 

For purposes of spatial and temporal characterization of the bole-infesting bark beetle 

assemblage, a 25 x 50 m reference grid system was generated within each stand. An initial 

census was conducted to establish a baseline of all previous activity by bark beetles. The 

stems of all trees in each stand were carefully assessed for evidence of attack by bark beetles. 

Assessments were restricted to the lower 3 m of the boles where mountain pine beetle is most 

prevalent (Safranyik and Carroll 2006). The presence of boring dust in bark crevices, 

defensive resin exudate, and discoloured foliage was used to ascertain potential infestations. 

Portions of the bark were carefully removed in the vicinity of beetle activity (as evidenced by 

entrance holes and boring dust) and species were identified either directly when individuals 
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were present or indirectly based upon diagnostic gallery patterns (Bright 1976, Wood 1982b). 

When beetles were present, only sufficient bark was removed (<225 cnrVtree, ca. 15 x 15 cm 

patch) to confirm the identity of the attacking species and thereby minimize impacts to their 

broods. 

For attacked trees in which some or all beetles had completed development and 

dispersed, the year of attack was estimated based on the condition of remaining bark and 

phloem, the presence of wood boring beetles and saproxylic insects that follow bark beetle 

attacks, and the condition of foliage remaining on trees (Table 2.1). The accuracy of these 

estimations was later confirmed through comparison to the detailed sampling described 

below. Estimations of the year of attack were considered reliable for trees infested up to a 

maximum of two years in the past. The height, diameter and injury condition of attacked 

trees was determined as described above, and each tree was spatially referenced by recording 

its distance and azimuth to the nearest grid point. 

Following the initial baseline censuses, detailed assessments were conducted to 

quantify variation in the abundance and distribution of the resident bole-infesting bark beetle 

assemblage within and among seasons. All trees in each stand were carefully inspected at 4-

week intervals from early June to early September of each year (2002 - 2005 for Angstad 

Creek, 2003 - 2005 for Aberdeen Plateau). Trees were assessed, marked, spatially 

referenced, and their characteristics and condition recorded as described above. Due to the 

demanding effort required to carefully inspect all trees in each stand at 4-week intervals, the 

detailed assessments were restricted to 2 stands per site each year (initially stands A and B at 
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Angstad, D and E at Aberdeen). Thus, stand C at Angstad Creek was limited to a single 

inspection in mid-September of each year to provide a summary of total bark beetle 

abundance for the season. 

Stands in which mountain pine beetle populations erupted in the course of the 

investigation were omitted from the detailed 4-week assessments in the year following 

eruption (stand B at Angstad, stand E at Aberdeen) and replaced with additional stands at 

each site. New stands (stands F and G at Angstad and Aberdeen, respectively) were chosen, 

established, censused and sampled in the same manner as described above. 

Temporal Analyses 

Graphical inspection revealed that the flight of mountain pine beetle was generally 

later than other bark beetles (Fig. 2.1), so data were first grouped into "early" (June - mid-

July) and "late" (mid-July - September) time periods. Linear mixed effects models were 

used to examine associations between the numbers of trees colonized by each secondary 

species and by mountain pine beetle. The numbers of trees colonized by each species were 

incorporated as fixed effects. The variations between sites and stands within sites were 

incorporated as random effects. To examine whether the number of attacks on pines by 

mountain pine beetle across all stands was associated with secondary bark beetle activity in 

an earlier period, the number of trees attacked by mountain pine beetle was regressed against 

the number of trees colonized by secondaries lagged t-\. When assessing the associations 

solely between secondaries, original time periods and colonizations from all years were used. 

When assessing the associations between secondaries and mountain pine beetle, only the 
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years where mountain pine beetle was believed to be at endemic or early incipient-epidemic 

population levels were used. These levels were defined to be less than five attacked trees per 

hectare. Analyses between species were compared using Akaike's Information Criterion 

(AIC) where the lowest AIC value indicated the best fitting regression model (Akaike 1973). 

Response variables were transformed as necessary to satisfy assumptions of each model 

including normal distribution, homogeneity of variances, and appropriate fit. Assumptions 

of homogenous variance and normal distribution of errors were assessed using residual plots. 

Only equations for the best models for each species are reported. 
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Table 2.1: Criteria used to estimate the number of years since (A) partial, or (B) complete 
attacks by bole-infesting bark beetles on lodgepole pine trees within seven stands at two sites 
in southern British Columbia between 1999 and 2002 (from Carroll et al. 2006). 
Item Evaluated Years since initial bark beetle attack 

A. Partial attack" 

Bark and phloem 

Bark beetles 

Wood borers and 
saproxylic insects'3 

B. Complete attack0 

Bark and phloem 

Bark beetles 

Wood borers and 
saproxylic insects 

Foliaged 

One 

Bark beetle galleries 
with emergence holes 
confined to portion of 
bole circumference 
Current attacks by 
Pseudips mexicanus, 
Orthotomicus latidens 
and/or Ips pini in green 
phloem at margins of 
strip attack 
Current attacks by 
Trypodenclron lineatitm 
within region of partial 
attack 

Remnants of moist 
phloem interspersed 
among bark beetle 
galleries with 
emergence holes 
Current attacks in 
remnant phloem by 
Pseudips mexicanus. 
Ips pini, and/or 
Orthotomicus latidens 
Current attacks by 
Trypodenclron lineatum 

Fading or red foliage, 
100% needle retention 

Two 

No remaining moist 
phloem, no visible 
decay fungi within 
region of partial attack 
Current attacks by 
Hylastes spp. of large 
roots directly beneath 
region of partial attack 

N/A 

No remaining moist 
phloem, no visible 
decay fungi 

Current attacks by 
Hylastes spp. of root 
collar and laree roots 

Current attacks by 
wood-boring beetles 
(Ce ram bye idae, 
Buprestidae) 

Red foliage, 60% 
needle retention 

Three (or more) 

Loose bark, decay fungi 
visible within region of 
partial attack 

Ongoing attacks by 
Hylastes spp. of large 
roots directly beneath 
region of partial attack 

Saproxylic insects 
beneath bark within 
region of partial attack 

Loose bark, decay fungi 
visible 

Ongoing attacks by 
Hylastes spp. of root 
collar and large roots 

Emergence holes by 
wood-boring beetles 
(Cerambycidae, 
Buprestidae), saproxylic 
insects beneath bark 
Red foliage, 20% needle 
retention 

aOne or more years of infestation confined to "strips" of the circumference of the bole, trees remain 
alive. 
'After Grove (2002) 
L Attacks around the entire circumference of the bole, trees dead. 
''Adapted from Wulder et al. (2006) 
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RESULTS 

The populations of mountain pine beetle in five of the seven stands (A, B, C, E, and 

F) underwent a transition from endemic to incipient-epidemic levels, judged by the number of 

trees colonized as a proxy for population density (a fair assumption in operational settings). 

The number of trees attacked by mountain pine beetle increased in these five stands each year 

(for mensurational characteristics see Appendix A, for colonization patterns see Appendix B: 

Tables B.1-B.3, B.5 and B.6). In two of the stands (D and G) the number of trees attacked by 

mountain pine beetle reached a small peak in 2004, but dropped substantially the following 

year (Appendix B: Tables B.4, and B.7). These two stands did not appear to enter the 

incipient-epidemic phase in the years under investigation. 

Pseudips mexicanus colonized the most trees in all of the stands, followed by O. 

latidens, and Hylurgops spp. (Appendix B: Tables B.1-B.7). Colonization on the lower bole 

of trees by /. pini was found in all seven stands, but in much lower numbers than the 

aforementioned species. Trees colonized by D. murrayanae were also found in all stands, 

generally in smaller numbers than boles colonized by /. pini, with the exception of one stand 

(stand D; Appendix B: Table B.4). 

The timing of attack for each bark beetle species was examined by determining the 

average number of trees colonized in each time period, each year, across all stands (Fig. 2.1). 

Dendroctonus murrayanae, Hylurgops spp., O. latidens, and P. mexicanus colonized the most 

trees earlier in the season (Fig. 2.1 A, B, C, and E). The number of trees colonized by O. 

latidens and D. murrayanae in each month declined quite steadily from June peaks (Fig. 2.1 B 
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and E), while a more dramatic decrease could be seen for P. mexicanus and Hylurgops spp. 

(Fig. 2.1 A and C). Although /. pini appeared to attack trees primarily in May or June, a 

second peak in trees infested with /. pini was noted in the August censuses (Fig. 2.ID) 

indicative of colonization occurring between July and August. Trees colonized by mountain 

pine beetle were generally found later in the season, in the months of August and September 

(Fig. 2.1F). 

Temporal interactions between secondary bark beetles 

Populations of many bole-infesting bark beetles appeared to be positively correlated. 

In general, a greater number of trees colonized by any one secondary bark beetle species in a 

given time period was highly correlated with a greater number of trees colonized by other 

secondary species (see Fig. 2.2). For example, the number of trees colonized by P. 

mexicanus was significantly positively correlated with the number of trees colonized by O. 

latidens from the same year and time period (Fig. 2.2A). Likewise, the number of trees 

colonized by D. murrayanae, Hylurgops spp., and /. pini were also positively correlated with 

the abundance of P. mexicanus. However, ATC values were higher for these regression 

models indicating that the number of trees colonized by O. latidens was the best predictor for 

trees colonized by P. mexicanus (AICa umdens = 776.49 < AIC». „mrra),anue = 900.87 < AICW spp = 

918.06 < AIC/ ,„m = 953.60). Similarly, the number of O. latidens attacks, although positively 

correlated with all species (some results not shown), was most significantly positively 

correlated with the number of trees attacked by P. mexicanus in the same year (Fig. 2.2B). 

Colonization by Hylurgops spp., D. murrayanae, and /. pini were also strongly 
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correlated with all secondary species (some results not shown). However their abundance 

was best explained by the number of trees colonized by P. mexicanus (Fig. 2.2C, D, and E). 

Temporal interactions between secondary bark beetles and mountain pine beetle 

The number of trees attacked by mountain pine beetle was correlated with the number 

of trees colonized by all species of secondary bark beetles (Fig. 2.3). As the number of trees 

attacked by secondaries in a season increased, an increase in all types of attack (resisted-

attack, strip-attack, and mass-attack) by mountain pine beetle was also evident (Fig. 2.3). 

The best predictor of the number of trees colonized by mountain pine beetle was the number 

of trees colonized by O. latidens, (AIC = 199.75), followed by Hylurgops spp. (AIC = 

200.46), P. mexicanus (AIC = 200.85), D. murrayanae (AIC= 204.51), and I. pini (AIC-

207.72). The positive trend between the numbers of trees colonized by mountain pine beetle 

and those previously colonized by other bole-infesting bark beetles was only evident when 

populations of mountain pine beetle were at either endemic or early incipient-epidemic 

levels. Once colonization by mountain pine beetle reached later stage incipient-epidemic 

levels, as judged by strip and mass attacks within the stands, their populations were no longer 

correlated with the number of trees colonized by other bark beetles in the bole-infesting 

assemblage (P>0.05 for all cases). 
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Figure 2.1: Mean number of trees colonized by various species of bark beetles per year as a 
function of cruise timing. Data reflect surveys of seven stands of lodgepole pine in southern 
British Columbia between 2000 and 2005. 
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Figure 2.2: Association of the number of trees colonized by one species of bark beetle with 
another for the same year and census period. Data reflect surveys of seven stands of 
lodgepole pine in southern British Columbia between 2000 and 2005. 
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lodgepole pine in southern British Columbia between 2000 and 2005. 
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DISCUSSION 

The increases in populations of species of secondary bark beetles one to two years 

prior to the eruption of populations of mountain pine beetle in four of the five stands where a 

population phase transition took place, in conjunction with the positive temporal correlations 

between the number of trees colonized by secondary bark beetles early in the season and 

montain pine beetle later in each season, suggest two mechanisms by which mountain pine 

beetle may erupt. First, the increase in mountain pine beetle populations may be independent 

of the numbers of trees colonized by secondary bark beetles. The increase may simply reflect 

a delayed response to abiotic stresses that create increasingly favourable conditions for 

reproduction for all insects. Berryman (1976), for example, suggested that a rapid decline in 

stand resistance may trigger outbreaks of mountain pine beetle. Drought is one of many 

stress events that can promote scolytid reproduction by increasing the susceptibility, and 

perhaps nutritional quality, of host trees (Hopping and Mathers 1945, Rudinsky 1962, 

Berryman 1972, Mattson and Haack 1987, Allen and Breshears 1998, Kelsey and Joseph 

2001, Berg et al. 2006. RalTa et al. 2008). The increase in the number of trees colonized by 

secondary bark beetles in this study is believed to be associated with an extended period of 

low spring precipitation (Carroll et al. 2006). However, as in the southern pine beetle system 

(Turchin 1991), there is conflicting evidence for drought as the solitary trigger of outbreaks of 

mountain pine beetle, as populations have erupted in periods of below normal, normal, and 

abundant precipitation (Blackman 1931, Beal 1943). 

Second, the strong temporal relationships between secondary bark beetles and 

32 



mountain pine beetle, particularly the most populous bole-infesting species in this study, O. 

latidens and P. mexicanus, lends support to a theory of facilitation in which a density-

dependent facilitative relationship occurs exclusively at endemic levels of the population. 

Amman and Schmitz (1988), for example, proposed that scattered populations of mountain 

pine beetle must build up before an outbreak occurs. Species such as D. murrayanae, O. 

latidens, P. mexicanus, Hyhirgops spp., and /. pini emerge and establish in hosts prior to 

flight of mountain pine beetle. In turn, endemic populations of mountain pine beetle 

emerging in late July, August, and early September have the opportunity to either seek out or 

reject trees inhabited by these insects. A study by Moeck et al. (1981) suggested mountain 

pine beetle does not reject trees that contain other species, such as D. valens (LeConte), D. 

brevicomis, H. suhcostulatus (Mannerheim), O. latidens, and Pityophthorits serratus 

(Swaine). Small-scale population buildups of species such as P. mexicanus, O. latidens, I. 

pini, Hyhirgops spp., and D. murrayanae may enable the accumulation of endemic mountain 

pine beetle by providing access to otherwise unsuitable hosts (see Smith et al. 2011). Once 

populations of mountain pine beetle gain sufficient numbers to initiate mass attack of a 

healthy host tree (i.e., approximately 300 to 500 beetles per hectare), they may no longer be 

dependent on other bark beetles or weakened hosts, and begin to shift their colonization 

behaviour accordingly (Carroll et al. 2006). 

Strong interspecific competition could preclude facilitative relationships in this 

system, however. For example, secondary species frequently outcompete more aggressive 

primary bark beetles by rapid larval development (Rankin and Borden 1991). In weakened 
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and dying trees, secondary bark beetles are better suited to exploit available resources than 

their primary bark beetle counterparts such as D. ponderosae or D. rufipennis (McCambridge 

and Knight 1972, Poland and Borden 1998). While studies have provided compelling 

evidence to suggest mountain pine beetle at epidemic levels would be better off minimizing 

interspecific competition with secondary bark beetles such as /. pini (Rankin and Borden 

1991, Safranyik et al. 1999), very little has been observed regarding endemic levels of the 

insect. Endemic populations of mountain pine beetle are found in surprisingly low numbers, 

estimated at less than forty beetles per hectare (Carroll et al. 2006). At such low numbers, 

their density in a host would not reach levels reflective of outbreaks tested by Rankin and 

Borden (1991) (i.e., 50 beetles/m2). Furthermore, Safranyik et al. (1999) suggested that high 

levels of/, pini may, in some instances, enhance survival of mountain pine beetle by 

accelerating the death of tissues in the upper part of the host. 

Delayed density-dependent effects of predators and parisitoids, not uncommon in 

defoliating systems (Myers 1988, Roland and Taylor 1997, Rothman and Roland 1998, Roland 

2005, Dwyer ct al. 2004, Cooke and Lorenzetti 2006), that become diluted by increasing 

populations of secondary bark beetles, could also facilitate increasing survivorship of 

endemic populations of mountain pine beetle. Aggregation of the secondary bark beetle, /. 

pini, for example, may dilute the effect of predation by generalist clerids and other bark beetle 

predators (Aukema and Raffa 2004). Amman (1984) found that predation by clerids was 

significantly higher in endemic populations of mountain pine beetle than in epidemic or post-

epidemic populations. While the largest contributors to brood mortality of mountain pine 
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beetle were cold over-wintering temperatures and desiccation, these factors did not differ 

between infestation levels (Amman 1984), possibly placing greater significance on predation 

as a mortality factor governing endemic populations. Although Boone et al. (2008) found 

heterospecifics add to competition and predator load, the densities of infestation in their 

experiments exceed levels found in endemic populations of mountain pine beetle (Carroll et 

al. 2006). 

Although Amman and Schmitz (1988) have outlined several predisposing factors for 

an outbreak by mountain pine beetle, assessing the risk of outbreaks using hazard rating 

systems that include these factors has not met with much success (Katovich and Lavigne 

1985, Bentz et al. 1993, Nelson et al. 2008). Bentz et al. (1993) partially attributed the 

inadequacy of hazard rating systems to a lack of knowledge concerning the endemic phase of 

the insect, and Logan et al. (1998) suggested that spatial inference is necessary. Although 

lacking evidence, for example, Amman and Schmitz (1988) believed there may be a close 

relationship between secondary bark beetles and endemic levels of mountain pine beetle. 

Likewise, Hamel and McGregor (1976) and Gohcen and Cobb (1980) suggested potential 

associations between low level populations of mountain pine beetle and secondary bark 

beetles, and Furniss and Carolin (1977) noted an association between endemic levels of 

mountain pine beetle and D. brevicomis. The annual emergence patterns of secondaries and 

mountain pine beetle in this study indicate that the latter were the last to enter host trees in a 

season and would have had the opportunity to reject trees containing secondary species. The 

next chapter examines spatial interactions between endemic levels of mountain pine beetle 
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and secondary bark beetles. Greater understanding of such interactions could provide new 

management tools, such as the use of beetle monitoring to identify endemic populations of 

mountain pine beetle on the verge of a population phase transition. 
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CHAPTER 3 
Spatial associations of mountain pine beetle, Dendroctonus ponderosae, with secondary bark 

beetles in the endemic to incipient-epidemic phase transition 

ABSTRACT 

The mountain pine beetle, Dendroctonus ponderosae Hopkins, is native to western 

North America and attacks most species of pine in its range. Its population dynamics are 

characterized by four phases: endemic, incipient-epidemic, epidemic, and post-epidemic. 

Beetles typically subsist at endemic levels for many years between outbreaks, reproducing in 

the tissues of weakened or dying trees. Very little attention has been paid to populations at 

endemic stages, because they do not kill large numbers of healthy trees. This study explored 

the stand-level spatial interactions of endemic beetles with other bark beetles frequently 

found in weakened pine hosts. Endemic and incipient-epidemic levels of mountain pine 

beetle were often positively spatially associated with secondary bark beetles such as Pseudips 

mexicanus (Hopkins), Orthotomicus latidens (LeConte), Ips pini (Say), Hylurgops porosus 

(LeConte), and H. rugipennis (Mannerheim). As populations grew, mountain pine beetle 

shifted from attacking injured and previously colonized hosts to more vigorous hosts in a 

clustered pattern. The positive spatial associations may indicate a facilitative relationship 

between endemic mountain pine beetle and other phloem-infesting bark beetles, and provide 

insight into mechanisms potentially facilitating the transition of the organism from the 

endemic to incipient-epidemic phase. 

Key words: phase transition; facilitation; competition; niche partitioning 
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INTRODUCTION 

The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a bark beetle that 

exhibits a broad geographic range extending from the upper limits of Mexico northward to 

northwestern British Columbia, and from the Pacific coast eastward to South Dakota in the 

United States, and eastern Alberta in Canada (Safranyik and Carroll 2006). A generalist, 

mountain pine beetle is capable of colonizing nearly every species of native and introduced 

pine within its range, although lodgepole pine, Pinus contorta (Douglas ex Louden), is 

considered its principal host (Furniss and Schenk 1969, Smith et al. 1981, Cerezke 1995, 

Carroll et al. 2004, Safranyik and Carroll 2006). The population dynamics of this insect 

consists of four phases; endemic, incipient-epidemic, epidemic, and post-epidemic or 

collapse (Safranyik and Carroll 2006). 

Mountain pine beetles are typically found at endemic levels, where populations 

experience significant mortality due to cold winter temperatures and larval desiccation 

(Amman 1984). Favourable conditions for beetle reproduction include successive warm 

summers, mild winters, and stress events such as drought (Reid 1963, Safranyik et al. 1974, 

Thomson and Shrimpton 1983). When such conditions coincide with an adequate number of 

mature hosts, the beetle may enter the incipient-epidemic phase (Carroll et al. 2006). From 

the incipient-epidemic phase, beetle populations may progress to outbreak status, where mass 

attacks coordinated by aggregation pheromones enable the beetles to overwhelm the defenses 

of healthy, large diameter trees (Wood 1982, Raffa and Berryman 1983). Mountain pine 

beetles are aided in overcoming the defenses of host trees by innoculating host tissue with 
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mutualistic phytopathogenic fungi (Francke-Grossman 1967, Berryman 1972) transported in 

specialized cuticular structures called mycangia (Batra 1963, Paine et al. 1997). Fungal 

growth not only disrupts the defensive capacity of host trees, but may also provide nutritional 

benefits for phloem-feeding larvae (Bleiker and Six 2007). 

At outbreak levels, the insects can kill trees over vast regions, exhibiting biome-level 

consequences (Aukema et al. 2006, Raffa et al. 2008, Kurz et al. 2008). Outbreaks typically 

collapse when the beetles exhaust the available large-diameter host resources, and/or cold 

winter temperatures induce sufficient brood mortality to reduce reproduction below the 

replacement numbers required to sustain an epidemic (Reid 1963, Cole and Amman 1969, 

Safranyik et al. 1974, Amman 1984). Mountain pine beetle populations thereby return to an 

endemic level where they will remain, often for decades, until favourable conditions arise 

again. 

Our understanding of epidemic populations of mountain pine beetle is considerable, 

yet little is known about endemic populations or the transition of populations from endemic 

to incipient-epidemic levels. Even quantification of such populations remains challenging. It 

was previously thought, for example, that endemic beetles may be found infesting less than 

one tree in 40.5 hectares of forest (Amman 1984). However, Amman and Schmitz (1988) 

later referred to endemic populations as those comprising less than one mass-attacked tree 

per ten hectares. More recently, Carroll et al. (2006) estimated the number of endemic 

beetles to be less than forty individuals per hectare, and incapable of mass-attacking even a 

single tree. 
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If endemic beetles are unable to overcome the defences of healthy trees (Raffa and 

Berryman 1983), they may rely on the presence of other bark beetles as well as other insects 

and diseases in marginal hosts to facilitate reproduction until the establishment of sufficiently 

viable populations enables them to overcome healthy trees (Carroll et al. 2006). This 

hypothesis is not without anecdotal evidence in the literature. For example, endemic levels of 

mountain pine beetle may utilise a broad spectrum of weakened hosts, and association with 

other bark beetles has been suggested by DeLeon (1934), Hamel and McGregor (1976), and 

Goheen and Cobb (1980). Moreover, previous studies have implied positive associations 

between mountain pine beetle and other host-stressing agents such as the root disease 

Armillaria mellea (Hinds et al. 1984, Lessard et al. 1985, Tkacz and Schmitz 1986), and 

dwarf mistletoe Arceuthobium spp. (McCambridge et al. 1982, Rasmussen 1987) 

In this study I examined the stand-level spatial associations between endemic-level 

mountain pine beetle and other bark beetles including Pseudips mexicanus (Hopkins), 

Orthotomicus latidens (LeConte), Ips pini (Say), Hyiurgops porosus (LeConte), H. 

rugipennis (Mannerheim) and D. murrayanae (Hopkins) over five years in seven lodgepolc 

pine stands near Mcrritt and Kelowna, British Columbia. In five of these stands, mountain 

pine beetle transitioned from endemic to outbreak levels over the course of the study. I tested 

whether mountain pine beetle exhibits spatial dependencies with associated beetles through 

time, which would suggest that a suite of bole-infesting bark beetles may be key contributors 

to the development of incipient-epidemic populations of mountain pine beetle. 
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METHODS 

Refer to Chapter 2, Methods: Study Sites, for source of data. Maps for the locations 

of all trees inhabited by mountain pine beetle and secondary bark beetles were created using 

the 'spatstat' package v. 1.13-3 in R v.2.6.2 (Ihaka and Gentleman 1996, Baddeley and Turner 

2005, R Development Core Team 2008). Colonized trees were categorized by their 

respective year and species. Trees that were colonized by mountain pine beetle were further 

categorized as: resisted attack (where the beetles were pitched out by the tree), strip attack 

(where only a portion or strip of the bole was attacked), and mass attack (where the majority 

of the bole was attacked). Logistic regression was used to test Rasmussen's hypothesis (1974) 

that early emerging mountain pine beetle are more likely to attack trees with prior injury by 

analysing attacked/unattacked trees as a function of injury status. 

Spatial point process models were used to evaluate the spatial relationships between 

trees colonized by mountain pine beetle and those colonized by other bark beetles. The other 

bark beetles were chosen if they exhibited temporal relationships with mountain pine beetle 

(Chapter 2). Analyses were conducted when there were two or more instances of 

colonization by both mountain pine beetle and the secondary species in the stand in that year. 

New techniques in spatial point process modeling are powerful for discerning 

potential relationships between species or other biotic and abiotic factors that may otherwise 

go undetected (Stoyan and Penttinen 2000). Spatial point process models were used to 

examine the influence of previous years of colonization by other bark beetles on the varying 

types of mountain pine beetle attack. Furthermore, point process models also examined the 
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effects of these insects colonizing trees the same year as mountain pine beetle, since they 

flew and were recorded prior to peak mountain pine beetle flight in July and August. Finally, 

the number of trees mass-attacked by mountain pine beetle were examined with respect to 

strip attacks in years t and t-\. 

The response variable for each model, a spatially-explicit estimated density of trees 

colonized by mountain pine beetle (A), was measured as the number of trees bearing attacks 

by mountain pine beetle (either resisted attack, strip attack, mass attack, or a combination) 

per square meter of stand area. Covariates (here, the location of attacks by other bark beetles) 

were converted from point locations to density surfaces prior to fitting. This process 

incorporates a Gaussian kernel density smoother as a representation of the point process 

defined within the boundary of each stand (Cressie 1991, Baddeley and Turner 2000). A 

periodic border correction was tested for a subset of models, but not utilised, as results proved 

robust to methods with a default edge border correction. 

Parameters in these spatial point process regression models were estimated using 

maximum pseudolikclihood methods. Significance of individual variables was judged by 

statistical comparison to a homogenous model, i.e., one estimating only an intercept or a 

constant intensity of resisted, strip, or mass attack by mountain pine beetle across the site, by 

examining the change in deviance relative to a % 2 reference distribution. Where I sought to 

examine additive effects of multiple variables, a comparison of nested models was performed 

by examining the change in deviance relative to a x, 2 reference distribution. Models were 

compared using Akaike's Information Criterion (AIC), and models with the lowest AIC 
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values were judged to fit best (Akaike 1973). 

Spatial analyses to determine the extent of clustering of strip and mass attack by 

mountain pine beetle were performed using Ripley's K functions. Simulation envelopes were 

used to construct a 95% confidence interval (n - 999 simulations). Trees were judged to be 

"clustered" if falling above the upper limits of this interval about the empirical function, but 

spatially "inhibited" if below the interval (Ripley 1981). 

RESULTS 

The populations of mountain pine beetle in five of stands (denoted A, B, C, F and E) 

underwent a transition from endemic to incipient-epidemic levels over the course of the 

study, as the number of trees strip- and mass-attacked by mountain pine beetle increased each 

year in these four stands (Tables 3.1 and 3.2). In stands in which populations of mountain 

pine beetle did not erupt (D and G), the number of trees strip- and mass-attacked by mountain 

pine beetle reached a small peak in 2004 and dropped substantially the following year (Tables 

3.1 and 3.2). The number of trees strip- and mass-attacked by mountain pine beetle in stand 

E increased from 2002 to 2003 (Tables 3.1 and 3.2). Due to the large increase in populations 

between these years (likely due to immigration and not endogenous stand dynamics), this 

stand was dropped from censusing after 2003. 

Many of the trees strip-attacked by mountain pine beetle prior to the population phase 

transition showed evidence of colonization by other species of bark beetle and/or some form 

of injury such as a broken or forked top, a scarred trunk, a thin crown, an infection of dwarf 

mistletoe (Arceuthobium spp.), an attack by mountain pine beetle greater than ten years prior, 
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or some other form of injury (Table 3.1; see Carroll et al. (2006) for a more detailed list of 

injuries). For the stands in which a phase transition from endemic to incipient-epidemic 

levels was occurring (i.e., stands A, B, C, and F), the number of trees strip-attacked by 

mountain pine beetle with injuries and/or secondary colonization began to decline in the final 

year of the study. During the transition from endemic to incipient-epidemic levels, many 

mass-attacked trees were also previously colonized by secondaries and/or possessed some 

form of injury (Table 3.2). Once populations of mountain pine beetle were established at the 

incipient-epidemic level however, the insects rarely mass-attacked trees that had been 

previously colonized by other species of bark beetles. 
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Table 3.1: Number of lodgepole pine trees strip-attacked by mountain pine beetle in seven 
stands in southern British Columbia, 1999-2005. Within the subset of these trees, the 
numbers bearing injuries and/or any one or multiple colonizations of other bark beetles 
(Dendroctonus murrayanae, Hylurgops spp., Ips pini, Orthotomicus latidens, Pseudips 
mexicanus) are listed. 
Stand No. Trees Year 

1999 2000 2001 2002 2003 2004 2005 

A Strip attacks 4 9 17 25 37 32 70 
Injured 4 9 17 22 18 14 9 
Other bark beetles 0 3 10 18 11 10 10 

B Strip attacks 3 11 27 37 52 
Injured 2 8 24 30 36 
Other bark beetles 0 3 16 19 9 

C Strip attacks 
Injured 
Other bark beetles 

2 5 
2 4 
1 4 

5 
5 
3 

4 
3 

21 65 
5 6 
1 1 

D Strip attacks 
Injured 
Other bark beetles 

14 17 
9 7 

10 12 

3 

Strip attacks 
Injured 
Other bark beetles 

13 16 61 
9 13 21 
0 5 5 

Strip attacks 
Injured 
Other bark beetles 

Strip attacks 
Injured 
Other bark beetles 

1 
0 
0 

-

-
-

2 
1 
0 

4 
3 
2 

18 
6 
7 

12 
3 
8 

25 
12 
12 

21 
7 

18 

41 
8 
7 

2 
0 
1 
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Table 3.2: Number of lodgepole pine trees mass-attacked by mountain pine beetle in seven 
stands in southern British Columbia, 1999-2005. Within the subset of these trees, the 
numbers bearing injuries and/or any one or multiple colonizations of other bark beetles 
(Dendroctonus murrayanae, Hylurgops spp., Ips pini, Orthotomicus latidens, Pseudips 
mexicanus) are listed. 
Stand 

A 

B 

C 

D 

E 

F 

G 

No. Trees 

Mass attacks 
Injured 
Other bark beetles 

Mass attacks 
Injured 
Other bark beetles 

Mass attacks 
Injured 
Other bark beetles 

Mass attacks 
Injured 
Other bark beetles 

Mass attacks 
Injured 
Other bark beetles 

Mass attacks 
Injured 
Other bark beetles 

Mass attacks 
Injured 
Other bark beetles 

1999 
0 
0 
0 

1 
1 
0 

_ 

-
-

-

-
-

_ 

-
-

-

-

-

_ 

-
-

2000 
1 
1 
1 

0 
0 
0 

2 
2 
2 

0 
0 
0 

0 
0 
0 

_ 

-

-

0 
0 
0 

2001 
6 
4 
3 

3 
3 
2 

2 
2 
2 

0 
0 
0 

5 
3 
2 

0 
0 
0 

0 
0 
0 

Year 
2002 

6 
5 
4 

38 
25 

8 

2 
1 
1 

5 
4 
3 

36 
18 
9 

5 
3 
2 

0 
1 

2003 
65 
33 
11 

129 
83 
11 

23 
6 
4 

11 
9 
7 

322 
68 

9 

24 
13 
11 

11 
6 
6 

2004 
99 
33 
4 

_ 

-
-

45 
6 
1 

11 
4 
6 

-

-
-

47 
19 
9 

14 
3 
6 

2005 
296 

28 
0 

_ 

-
-

205 
14 
0 

6 
0 
4 

_ 

-
-

191 
44 

1 

4 
1 
2 



Emergence by mountain pine beetle in this study prior to late-July flight periods was 

rare; less than 2% of all trees colonized by mountain pine beetle were attacked between June 

and mid-July. The likelihood that beetles attacked an injured host was higher with beetles 

that flew earlier vs. later (71.4% vs. 34.2%, P(attack injured host) = exp092157x/l+exp092 157x, 

where x = 1 if late and 0 otherwise; Z2576 = -4.57 for estimate of time coefficient; P <0.0001). 

Spatial Analyses 

Mountain pine beetle and other bark beetles in the bole-infesting assemblage were 

found occupying the same, or nearby, host trees in all stands. Significant spatial associations 

between trees bearing strip-attack by mountain pine beetle and secondary bark beetle 

colonization were generally uniform throughout stands undergoing a population eruption and 

are summarized using stand B as a representative case (Table 3.3). Due to the extensive 

nature of this study, the remaining stands have been placed in Appendix C (see Appendix C: 

Tables C.1-C.6). In the two stands where mountain pine beetle did not erupt to epidemic 

population levels, other bark beetles such as P. mexicanus, and O. latidens were often found 

in close proximity with mountain pine beetle, sometimes even sharing the same host tree 

(Appendix C: Tables C.3, C.6). These spatial associations, however, were not as numerous as 

those found in stands undergoing a population phase transition (Appendix C: Tables C.l, C.2, 

C.4, and C.5). 
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Table 3.3: Association of trees colonized by other bark beetles on the locations of trees strip-
attacked by mountain pine beetle from 2000 to 2003 in a lodgepole pine stand of southern 
British Columbia (Stand B). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. For example, the estimated density of strip attack by mountain 
pine beetle in 2001 in locations where all secondaries colonized trees at a rate of 0.0005/m2 

or 5 trees/ha is e x p( 1146 + 38™*o°o°5) = 0.0001 or 1 tree/ha. Significant models are listed in order 
of best fit for each year. 

Insect 

Strip attack 
P. mexicanus 

Strip attack 
All secondaries 
H. spp. 

Strip attack 
All secondaries 
P. mexicanus 
O. latidens 
P. mexicanus 
All secondaries 

Strip attack 
H. spp. 
H. spp. 
P. mexicanus 
I. pini 
All secondaries 
All secondaries 
P. mexicanus 
O. latidens 

Year 

2000 
2000 

2001 
2001 
2001 

2002 
2002 
2002 
2002 
2001 
2001 

2003 
2003 
2002 
2003 
2003 
2003 
2002 
2002 
2003 

Intercept 
Est. 

-10.05 
-11.46 

-9.15 
-11.14 
-10.51 

-8.84 
-10.08 
-9.98 
-9.99 

-10.22 
-10.47 

-8.50 
-11.46 
-10.57 
-11.17 
-10.70 
-10.95 
-10.96 
-10.51 
-9.49 

SE 
0.30 
0.88 

0.19 
1.01 
0.74 

0.16 
0.63 
0.60 
0.61 
0.71 
0.85 

0.14 
0.6 i 
0.42 
0.62 
0.49 
0.57 
0.66 
0.61 
0.34 

Slope 
Est. SE 

31786 16262 

3870 
7177 

1506 
2699 
4530 
5461 
3201 

28745 
17534 
8839 

32277 
3865 
2846 
4585 
6264 

1849 
3568 

696 
1274 
2196 
2605 
1579 

5016 
2869 
1770 
6007 

772 
685 

1251 
1709 

x2 

4.49 

4.40 
4.29 

5.21 
5.15 
4.63 
4.48 
4.11 

44.11 
38.89 
34.13 
32.69 
32.63 
21.63 
17.35 
13.88 

P-value 

0.03 

0.04 
0.04 

0.02 
0.02 
0.03 
0.03 
0.04 

<0.0001 
<0.0001 
<0.000l 
<0.0001 
<0.000l 
<0.0001 
<0.0001 

0.0002 

AIC 

245.11 
242.58 

550.22 
547.73 
547.84 

729.95 
726.62 
726.68 
727.20 
727.34 
727.71 

989.68 
947.38 
952.61 
957.37 
958.80 
958.86 
969.86 
974.14 
977.61 
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In all stands, the locations of trees strip-attacked by mountain pine beetle were 

associated with all trees colonized by other bark beetles considered as a whole. Cohabitation 

or host sharing between endemic levels of mountain pine beetle and all secondary bark 

beetles is exemplified by stand A in 2002 (Fig. 3.1). 

Often, however, the locations of trees strip-attacked by mountain pine beetle could be 

predicted by knowing the locations of trees colonized by only one species of bark beetle, 

rather than the entire complex. For example, the locations of strip-attacked trees were 

associated most frequently with colonization by P. mexicanus (e.g., similar AIC values for 

models with all secondaries vs. P. mexicanus; Table 3.3: 2000, 2002, 2003). However, trees 

strip attacked by mountain pine beetle also appeared to be positively associated with 

colonization by Hylurgops spp., primarily in the earliest years of study (Table 3.3: 2001; 

Appendix C: Tables C.l, C.2, C.4 and C.5), and with the locations of O. latidens (Table 3.3: 

2002 and 2003; Appendix C: Tables C.l, C.2, C.5 and C.6). Fewer significant spatial 

associations between trees colonized by /. pint, and D. murrayanae and those strip-attacked 

by mountain pine beetle were apparent, however. 
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Figure 3.1: Locations of trees strip attacked by mountain pine beetle, and colonizations by 
Dendroctonus murrayanae, Hylurgops spp., Ips pint, Orthotomicus latidens, and Pseudips 
mexicanus in southern British Columbia, stand A, 2002. Colonizations by mountain pine 
beetle and other bark beetles comprise approximately 0.12 and 1.3% of the 19,500 pine trees 
in stand A respectively. 
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Although most associations between mountain pine beetle and other bark beetles were 

positive, strip attacks by mountain pine beetle following the endemic to incipient-epidemic 

transition in stand A were negatively associated with /. pini, P. mexicanus and Hylurgops 

spp. (Appendix C: Table C.l) in the final years of study. In stand E, there was also a weak 

negative association between P. mexicanus and trees that were strip-attacked by mountain 

pine beetle in 2002 (Appendix C: Table C.4). 

Trees that were strip-attacked in one year were frequently mass-attacked by mountain 

pine beetle the following year, as there were significant positive associations between strip-

attacked and mass-attacked trees (Table 3.4). In stands where no population phase transition 

of mountain pine beetle was apparent (stands D and G), there were no significant associations 

between strip attack and mass attack by mountain pine beetle. 

In 2001, when populations of mountain pine beetle were still at endemic or early 

incipient-epidemic levels, trees that exhibited strip attacks, although closely associated with 

other bark beetles, were scattered in a random pattern throughout the stand (empirical line of 

Ripley's K function is within simulation envelope. Fig. 3.3). However, as populations of 

mountain pine beetle began to transition from endemic to incipient-epidemic levels, trees that 

were strip- or mass-attacked began to be found in clusters (visual representation in Fig. 3.2, 

Ripley's K function above simulation envelope in 3.4, and see Appendix C: Figs. C.l-C.4). 

Clustering, of strip- and mass-attacked trees as the outbreak progressed was very pronounced 

in all stands except two (results not shown; stands D and G). 
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Table 3.4: Association of trees strip-attacked by mountain pine beetle on the location of mass 
attacks from 2002 to 2005 in a lodgepole pine stand of southern British Columbia (Stand B). 
The line in bold represents an intercept-only model; i.e., modeling a constant density of 
insects across the stand. Subsequent lines reflect whether the location of each listed insect 
and year provides inference on the location of the insect studied relative to this constant 
density. A positive estimate for a slope reflects positive spatial association, while a negative 
estimate reflects spatial inhibition at a between-tree scale. The response variable for each 
equation is log(A), where A is the estimated density of trees colonized per square meter. 
Significant models are listed in order of best fit for each year. 

Insect 

Mass attack 
Strip attack 
Strip attack 

Mass attack 
Strip attack 
Strip attack 

Mass attack 
Strip attack 
Strip attack 

Mass attack 
Strip attack 
Strip attack 

Year 

2002 
2002 
2001 

2003 
2003 
2002 

2004 
2003 
2004 

2005 
2005 
2004 

Intercept 
Est. 
-8.81 

-11.24 
-10.74 

-7.59 
-8.85 
-9.88 

-6.17 
-6.78 
-6.57 

-4.93 
-6.62 
-5.23 

SE 

0.16 
0.68 
0.63 

0.09 
0.20 
0.36 

0.04 
0.09 
0.07 

0.02 
0.07 
0.04 

Slope 
Est. 

13798 
15449 

4557 
13067 

2418 
8407 

949 
6479 

SE 

3385 
4494 

530 
1801 

266 
1123 

32 
615 

x1 

20.35 
13.55 

71.95 
63.62 

79.08 
52.22 

959.50 
104.5 

P-value 

<0.0001 
0.0002 

<0.0001 
<0.0001 

<0.0001 
<0.0001 

<0.0001 
<0.0001 

AIC 

747.60 
729.12 
735.92 

2217.79 
2147.39 
2155.71 

7620.12 
7541.18 
7568.04 

21915.37 
20953.26 
21808.26 
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Figure 3.2: Location of trees strip attacked by mountain pine beetle in 2002, and mass 
attacked in 2003 in southern British Columbia, stand A. Strip and mass attacks comprise 
approximately 0.12 and 0.33% of the 19,500 lodgepole pine trees in stand A respectively. 
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Figure 3.3: Ripley's K function for trees strip-attacked by mountain pine beetle in 2001 for 
stand A. Observed estimate is shown by the black solid line, the upper and lower limits of the 
95% confidence interval are shown by the green and blue dashes respectively. The theoretical 
estimate for a point process displaying complete spatial randomness is shown by the red 
dashes. The focal distance (r) on the x-axis is represented in metres. 
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Figure 3.4: Ripley's K function for trees strip-attacked by mountain pine beetle in 2004 for 
stand A. Observed estimate is shown by the black solid line, the upper and lower limits of the 
95% confidence interval are shown by the green and blue dashes respectively. The theoretical 
estimate for a point process displaying complete spatial randomness is shown by the smooth 
red dashes. The focal distance (r) on the x-axis is represented in metres. 
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DISCUSSION 

Colonization of hosts by bark beetles, particularly endemic-level mountain pine 

beetle, poses an ecological paradox (Light et al. 1983). At epidemic levels, mountain pine 

beetle reproduce in the tissues of vigorous hosts; however, such hosts are unavailable to the 

insects at endemic levels (Raffa and Berryman 1983). Therefore, endemic mountain pine 

beetle appear to rely on hosts unable to mount defensive responses capable of displacing the 

insects. Such hosts may include trees with root disease (e.g., Armillaria spp.), or dwarf 

mistletoe (e.g., Arceuthobium spp.) (McCambridge et al. 1982, Hinds et al. 1984, Lessard et 

al. 1985, Tkacz and Schmitz 1986, Rasmussen 1987). Although the level of root rot in our 

stands was low, the level of dwarf mistletoe was quite high. Many trees colonized by 

endemic mountain pine beetle possessed some form of injury or disease, with the most 

common being a broken top or dwarf mistletoe. 

Colonizing trees with injury or disease poses a challenge, however. Weakened trees 

are often infested by secondary bark beetles (Amman and Schmitz 1988), such that endemic 

populations of mountain pine beetle and secondary bark beetles frequently inhabit the same 

types of hosts (Bartos and Schmitz 1998). In this study, not only did mountain pine beetle 

and secondary bark beetles inhabit the same types of hosts, but they frequently inhabited 

hosts together (Fig. 3.1). Selecting hosts that offer the best opportunity for survival may 

involve a degree of compromise where the probability of survival in a poorly defended host is 

higher, but the mortality cost due to interspecific competition is potentially higher as well. 

The presence of such a diverse and abundant assemblage of bark beetle species in all 
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stands may be an indicator of relaxed levels of competition, however (Ratchke 1976). 

Competition can be reduced through strategies such as niche partitioning, for example (Byers 

1989, Raffa 1991, Schlyter and Anderbrant 1993, Amezaga and Rodriguez 1998, Ayres et al. 

2001). Amman and Schmitz (1988) suggest that the lower 30 to 60 cm of the bole may be 

freely available to mountain pine beetle when associated with other bole-infesting bark 

beetles. Moreover, Ayres et al. (2001) suggest that high numbers of interspecific associations 

may benefit the rarest species, such as endemic levels of mountain pine beetle in the present 

example. 

This study provides evidence that the effects of competition as a mortality factor may 

be most pronounced as populations of mountain pine beetle transition to epidemic levels 

versus remaining at the endemic level. For example, there were only a few significantly 

positive spatial associations found between mountain pine beetle and /. pini, and the two 

insects colonized different hosts once mountain pine beetle entered the incipient-epidemic 

phase (Appendix C: Table C.l). This is consistent with observations that mountain pine 

beetles at epidemic levels may be outcompcted by /. pini (Bergvinson and Borden 1991, 

Rankin and Borden 1991, Safranyik et al. 1999, Boone et al. 2008). 

In contrast, endemic populations of mountain pine beetle may benefit from close 

associations with bole-infesting heterospecifics. The majority of trees co-colonized by 

mountain pine beetle and other bark beetles contained P. mexicanus, Hylurgops spp., and/or 

O. latidens species. Seasonal phenologies of these bark beetle species (Chapter 2; Schenk 

and Benjamin 1969, Miller and Borden 1985, Safranyik et al. 2004, Furniss and Kcgley 2008, 
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Smith et al. 2009) indicate that mountain pine beetle colonized these trees following 

colonization by heterospecifics. The benefits of colonizing trees with established 

heterospecifics may include increased nutritional quality of the host (Hodges et al. 1968, 

Ayres et al. 2000, Bleiker and Six 2007), favourable moisture regulation due to extensive 

fungal innoculation (Reid 1963, Whitney 1971, Amman 1977), reduced likelihood of 

predation (Abrams et al. 1998, Ayres et al 2001, Aukema and Raffa 2004), and/or decreased 

probability of mortality due to exhaustion of host defenses (Christiansen et al. 1987, Carroll 

et al. 2006). For example, Ips spp. may colonize diseased trees prior to mountain pine beetle, 

further weakening the host and/or altering host physiology, potentially resulting in the 

production of chemicals attractive to Dendroctonus species (Hodges et al. 1968, Goheen and 

Cobb 1980). Moreover, Smith (2008) found that endemic level populations of mountain pine 

beetles reared with P. mexicanus in naturally infested host tissues developed more quickly, 

produced more offspring, and were not significantly different in size, than those reared on 

their own. Carroll et al. (2006) also found that phloem consumption by endemic mountain 

pine beetle was positively influenced by phloem consumption of secondary bark beetle 

species belonging to the bole-infesting assemblage. 

In summary, these results are consistent with a model in which the colonization 

dynamics of mountain pine beetle change as populations increase. Early emerging beetles 

attack hosts with injury or attack from a previous year (Rasmussen 1974), particularly in 

endemic populations where very few conspecifics are present (Reid et al. 1967). 

Colonization of such trees, co-colonized by other bole-infesting bark beetles (Hamel and 
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McGregor 1976, Furniss and Carolin 1977, Goheen and Cobb 1980, Amman and Schmitz 

1988, Carroll et al. 2006, Safranyik and Carroll 2006) may enable the insect to evade a strong 

defensive response by the host. Such associations permit access to hosts, and, if these 

weakened trees are in close spatial proximity, mountain pine beetle may then produce enough 

offspring to strip-attack trees that are injured and/or colonized by other species of bark 

beetles, or even mass-attack healthy neighboring trees (Eckberg et al. 1994, Logan et al. 

1998). Clustering of trees strip-attacked by mountain pine beetle, evident in stands 

undergoing a transition from endemic to incipient-epidemic levels, appeared to precipitate 

mass attacks in neighbouring trees, as trees adjacent to successfully attacked hosts are likely 

to become the foci of aggregation (Geiszler et al. 1980, Raffa and Berryman 1987, Eckberg et 

al. 1994). 

We note, however, that although the switch from trees with secondary colonization or 

injury to healthy hosts is believed to be density-dependent (Carroll et al. 2006), spatial 

analyses suggest that the behavioural shift in host colonization by mountain pine beetle is not 

immediate, as the clustering process begins before epidemic levels have been reached. 

Before mountain pine beetle reached the incipient-epidemic level, many trees harboring other 

species of bark beetles and/or some form of injury were mass attacked. Prolonged endemic 

behaviour may suggest genetic differences between beetles attacking weakened trees and 

those attacking more vigourous hosts, as has been proposed in the spruce beetle D. ntfipennis 

(Kirby) system (Wallin and Raffa 2004). Persistent endemic behaviour may also be the 

product of varying phenotypes within the population whose tolerance for population densities 
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differ (Chitty 1958, Chitty and Phipps 1966). As the numbers of endemic beetles grow, 

beetles phenotypically less tolerant of increasing densities may be prone to dispersal and seek 

an alternative habitat such as healthy trees, leading to epidemic behaviour. 

Spatial analyses within this study, in conjunction with the studies by Carroll et al. 

(2006) and Smith (2008), lend additional support to an emerging theory of facilitation. It is 

unknown how widespread such mechanisms of phase transitions may be in bark beetle 

systems. In the southern pine beetle system, for example, the southern pine beetle D. 

frontalis (Zimmerman) may benefit from associations with the secondaries /. avulsus 

(Eichhoff) and /. calligraphus (Germar) that potentially help overcome tree resistance 

(Wagner et al. 1985, Flamm et al. 1987). 

This theoretical framework of shifting patterns of colonization by mountain pine 

beetle from trees previously colonized by secondaries to fewer and fewer hosts with 

secondaries and/or putative vigour impairing injuries, marked by the formation of clusters of 

strip and mass attacks, suggests points of intervention that could be exploited for beetle 

management. For example, the positive associations apparent between mountain pine beetle 

and secondary bark beetles within weakened host trees suggest one reason why thinning 

operations may be effective in preventing outbreaks (Mitchell et al. 1983, Larsson et al. 1983, 

Raffa and Berryman 1986, Powell et al. 1998, Negron and Popp 2004). However, the benefits 

of thinning are only realized if the risk of migration into the stand is low, as healthy trees may 

still be overcome by large populations of mountain pine beetle migrating into a stand. This 

phenomenon likely occurred in 2003 in stand E, for example. Furthermore, thinning 
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operations must remove material suitable for secondary bark beetle reproduction, as 

population levels of secondaries may increase post-thinning (Kegley et al. 1997, Hindmarch 

and Reid 2001), which may lead to further associations with endemic level mountain pine 

beetle. 
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CHAPTER 4 

Spatial associations of the bark beetles Dendroctonus murrayanae, Hylurgops spp., Ips pini, 

Orthotomicus latidens and Pseudips mexicanus in lodgepole pine stands of 

southern British Columbia 

ABSTRACT 

Non-eruptive bark beetles can be important agents of tree mortality that serve to thin 

aging stands. Thinning of forests of lodgepole pine, Pinus contorta (Douglas ex Louden) is 

of particular interest, because outbreaks of mountain pine beetle, Dendroctonus ponderosae 

Hopkins, may be minimized in such stands. This study examines the spatial associations 

between the non-eruptive bark beetles D. murrayanae (Hopkins), Hylurgops porosus 

(LeConte), H. rugipennis (Mannerheim), Ips pini (Say), Orthotomicus latidens (LeConte), 

and Pseudips mexicanus (Hopkins) in seven lodgepole pine stands in British Columbia from 

2002 to 2005 while D. ponderosae was transitioning from endemic to incipient-epidemic 

population phases. Trees colonized by O. latidens and P. mexicanus were located in close 

proximity in all stands; in fact, these species were frequently colonizing the same host trees. 

Trees colonized by Hylurgops spp. and P. mexicanus displayed similar spatial patterns, but 

not as frequently as the former. The majority of trees colonized by these insects exhibited 

some form of injury. Identifying the nature of interactions between bark beetles within the 

bole-infesting assemblage may further our understanding of the propensity for stands to 

harbour low density populations of mountain pine beetle and ultimately undergo an outbreak. 

Key words: competition; niche partitioning; pine engravers; forest management 
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INTRODUCTION 

Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important disturbance agents 

in forest ecosystems. Eruptive species may undergo intermittent population explosions 

resulting in landscape-level mortality (Raffa et al. 2008). The vast majority of bark beetle 

species, however, do not undergo such dramatic population changes, but instead subsist in 

weakened, dying, and dead trees (Rudinsky 1962, Wood 1982a). Although the number of 

vigour impaired or unthrifty trees containing phloem suitable for reproduction within a stand 

is often limited (Berryman 1973, Anderbrant et al. 1985), increased resource availability due 

to stress events, such as drought, may facilitate rapid growth in these non-eruptive bark beetle 

populations (Hopping and Mathers 1945, Rudinsky 1962, Mattson and Haack 1987, Kelsey 

and Joseph 2001, Berg et al. 2006). These "secondary" bark beetles are vital components of 

forest ecosystems, beneficial to forest succession, and essential to the perpetuation of 

vigorous trees (Lundquist 1995, Jones et al. 1997). 

A diverse number of bark beetles have been identified inhabiting lodgepole pine, 

Finns contorta (Douglas ex Louden), forests within western North America (Bright 1976, 

Safranyik et al. 2004, Carroll et al. 2006). Bark beetle species that may be found in British 

Columbia, Canada, include Dendroctonus murrayanae (Hopkins), Hylurgops porosus 

(LeConte), H. rugipennis (Mannerheim), Ips pint (Say), Orthotomicus latidens (LeContc), 

and Pseudips mexicamis (Hopkins). Each of these insects, like mountain pine beetle, 

Dendroctonus ponderosae Hopkins, during its endemic population phases, is often associated 

with the boles of weakened pine hosts. Collectively, they are termed the bole-infesting bark 
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beetle assemblage (Safranyik and Carroll 2006). 

Thinning is considered to be one of the few effective management options to reduce 

the growth rate and outbreak potential of eruptive species of bark beetles (e.g., see review by 

Fettig et al. 2007). There is a wide body of empirical evidence in support of thinning to 

reduce outbreak extent in the mountain pine beetle system in both stands of lodgepole and 

ponderosa pine, Pinus ponderosa (Douglas ex Lawson) (Sartwell and Stevens 1975, Mitchell 

et al. 1983, Larsson et al. 1983, Raffa and Berryman 1986, McGregor et al. 1987, Negron and 

Popp 2004, Whitehead and Russo 2005). The mechanisms by which thinning reduces bark 

beetle populations are multi-causal, and may include changes in microclimate within a stand 

(Amman et al. 1988, Hindmarch and Reid 2001), as well as increases in host vigour within 

the remaining trees released from competition (Mitchell et al. 1983, Raffa and Berryman 

1986). It thus stands to reason that growing populations of bole-infesting bark beetles may 

influence the development of endemic and incipient-epidemic levels of mountain pine beetle 

not only through within-tree competition for resources, but also through natural stand 

attenuation or thinning. 

In this chapter, I examined the spatiotemporal dynamics of the non-eruptive 

assemblage of bark beetles in the years preceding an outbreak of mountain pine beetle in 

several stands of lodgepole pine in British Columbia, Canada. Many of these species 

reproduce in phloem not utilized by the eruptive species of bark beetles during an outbreak 

(Safranyik et al. 1974, Furniss and Carolin 1977, Wood 1982b), such that subsequent post-

outbreak numbers of these insects may kill small-diameter trees (Furniss and Carolin 1977, 
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Paine et al. 1997, Steed and Wagner 2008). Less is known however, about population 

dynamics of these insects in years preceding a large outbreak of mountain pine beetle. The 

relationship between secondary bark beetles and mountain pine beetle is complex, as activity 

by non-eruptive bark beetles may facilitate populations of endemic mountain pine beetle 

rather than putatively increase stand resistance (Carroll et al. 2006, Smith et al. 2009; Chapter 

3). To gain an understanding of how these insects potentially mediate dynamics of 

outbreaking species, we first need to understand the behaviour within their assemblage. To 

that end, this chapter examined the spatial interactions of the bole-infesting non-eruptive bark 

beetle assemblage prior to the eruption of populations of mountain pine beetle at a within-

stand level. I examined whether the guild shares a comon resource, and, if so, exhibits a 

consistent sequence of activity. I also examined whether there is an association between 

putative vigour-impairing injuries and colonization. Answers to these questions of 

predisposing factors and colonization sequences may shed light on the mechanisms by which 

bark beetles erupt (Aukema et al. 2010, Boone et al. 2010 in press), and, by extenstion, may 

suggest new tactics for their management. 

METHODS 

Seven field sites were established in southern British Columbia and monitored for 

bark beetle activity by exhaustively censusing each tree. Trees colonized by bark beetles 

were then visually evaluated for injury such as a broken or forked top, a scarred trunk, a thin 

crown, an infection of dwarf mistletoe (Arceuthobium spp.), an attack by mountain pine 

beetle greater than ten years prior, or some other form of injury/suppression. For a detailed 
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description, see the Methods section of Chapter 2. Maps of all trees colonized by secondary 

bark beetles were created using the 'spatstat' package v.1.13-3 in R v.2.6.2 (Ihaka and 

Gentleman 1996, Baddeley and Turner 2005, R Development Core Team 2008). 

Colonization of trees by secondary bark beetles was analysed by year and species. For all 

stands, with the exception of stand D, the secondaries included O. latidens, P. mexicanus, I. 

pini, H. porosus, and H. rugipennis. Hylurgops porosus and H. rugipennis are collectively 

termed Hylurgops spp. Ips pini were not analyzed in stand D due to low numbers. 

Dendroctonus murrayanae was analyzed in stands D and G, where sufficient numbers 

existed. Analyses were conducted only when there were at least two trees colonized by each 

species of secondary bark beetle in a given year. 

Spatial point process models were used to evaluate the spatial relationships between 

secondary colonization events within each stand. New techniques in spatial point process 

modeling are quite powerful for discerning potential relationships between species or other 

biotic and abiotic factors that may otherwise go undetected (Stoyan and Penttinen 2000). 

Each spatial point process model incorporated previous years of colonization as well as 

colonization occurring in the same year. The response variable for each model, a density (A), 

was measured as the number of trees bearing colonization of a given species per square meter 

in a given year. For example, a spatially-explicit estimated density of O. latidens colonization 

was measured as the number of trees bearing O. latidens attack per square meter in any given 

year. In a model with O. latidens as a response, covariates could include the locations of 

colonization by O. latidens and all other secondaries in the preceding year, as well as all 
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other secondaries in that same year. All covariates were converted to spatially-explicit 

density surfaces (i.e., the average number of trees colonized in a given area in a given stand) 

prior to fitting using a Gaussian kernel density smoother (Cressie 1991, Baddeley and Turner 

2000). Parameters in these spatial point process regression models were estimated using 

maximum pseudolikelihood methods. The significance of individual variables were judged 

by statistical comparison to a homogenous model, i.e., one estimating only an intercept or a 

constant intensity of secondary bark beetle colonization across the stand, by examining the 

change in deviance relative to a % 2 reference distribution. Models were compared using 

Akaike's Information Criterion (AIC), and models with the lowest AIC values were judged to 

fit best (Akaike 1973). 

RESULTS 

The colonization of lodgpepole pine trees by secondary bark beetles within study 

stands was generally quite low. Between 0.2% (stand C), and 3% (stand D) of the available 

host trees were colonized by secondary bark beetles over the seven year study (see Appendix 

A Table A.I). These estimates were calculated based on the number of secondary bark beetle 

attacks, the size of each stand in hectares, the average density of trees per hectare, and the 

percent of lodgepole pine within each stand. The number of injured trees was much higher, 

however. The mean injury rate of trees across all stands was 48%. Seventy-four percent of 

colonization by secondary bark beetles across all stands occurred in trees possessing at least 

one putative vigour-impairing injury (Table 4.1), such as a broken or forked top, a scarred 

trunk, a thin crown, an infection of dwarf mistletoe {Arceuthobiuin spp.), an attack by 
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mountain pine beetle greater than ten years prior, or some other form of injury or 

suppression. 

Patterns and sequences of colonization between secondary bark beetle species were 

generally consistent among all seven stands. To simplify data presentation, results of 

analyses are presented primarily from stand A (1999-2005). Other than some information on 

D. murrayanae in stand D, which is also reported, analyses of the remaining stands for all 

species are found in Appendix D. 

Pseudips mexicaniis and O. latidens frequently colonized the same host trees in the 

same year (Tables 4.2 and 4.3). A visual representation of this cluster pattern is provided in 

Fig. 4.1, where approximately 0.6% and 0.4% of the trees in the stand were colonized by P. 

mexicaniis and O. latidens, respectively, in 2002 (Fig. 4.1 A). Orthotomicus latidens also 

colonized trees inhabited by P. mexicaniis in previous years, estimated to be approximately 

78 trees throughout the stand in 2002 (Fig. 4.IB). Pseudips mexicaniis also re-attacked trees 

quite frequently (Fig. 4.2). 

The locations of trees colonized by O. latidens in a previous year were a good 

predictor of the presence of O. latidens colonization in a subsequent year, indicative of re-

attack or colonization of neighbouring pine hosts (Table 4.2, and see Appendix D: Tables 

D.3-D.5). However, the best inference on the locations of trees colonized by O. latidens in a 

given year were the locations of trees previously attacked by P. mexicaniis as judged by lower 

AIC values for these models (Table 4.2). 

Pseudips mexicaniis had a tendency to inhabit hosts colonized either previously or 
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concurrently by Hylurgops spp. particularly in the earlier years of study in each stand (Tables 

4.3 and 4.4, Fig. 4.3A, and see Appendix D: Tables D.6-D.18). Trees colonized by 

Hylurgops spp. were near trees colonized by O. latidens in the same year and/or in future 

years (Tables 4.2 and 4.4, Fig 4.3B). However, Hylurgops spp. were generally not found in 

trees that had been colonized by O. latidens previously. Rather, O. latidens appeared to 

colonize hosts already inhabited by Hylurgops. 

Positive associations between trees colonized by /. pini and those colonized by any 

other secondary species under investigation were apparent, and are detailed in Appendix D 

(Tables D.18-D.22). The locations of trees colonized by /. pini were often proximate to those 

colonized by P. mexicanus, such that the two were frequently found utilizing the same host 

trees (Table 4.5, Fig. 4.4). There were, however, solitary instances when the location of/. 

pini colonization was negatively associated with colonization by each of P. mexicanus, O. 

latidens, and Hylurgops spp. (Appendix D: Tables D.10, D.18, D.20). However, spatial 

analyses at the stand-level across years provided little evidence of inhibition between /. pini 

and other secondary bark beetles. 

D. murrayanae colonization was present in low numbers in most stands, and was 

incorporated into spatial analyses in stands D and G only. Spatial analyses indicated that the 

locations of D. murrayanae could not be consistently explained by knowing the locations of 

other species of bark beetles, although D. murrayanae would occasionally colonize trees 

containing P. mexicanus (Appendix D: Table D.9), Hylurgops spp. (Appendix D: Table D.18) 

and /. pini (Appendix D: Table D.22). Once D. murrayanae had colonized a tree, it appeared 
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to re-attack the same tree or neighbouring trees (Table 4.6). 
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Table 4.1: Number of lodgepole pine (Pinus contorta) trees colonized by one or more species 
of secondary bark beetle (Dendroctonus murrayanae, Hylurgops spp., Ips pini, Orthotomicus 
latidens, and/or Pseudips mexicanus) and, within those same trees, the number bearing 
injuries within seven stands in southern British Columbia. 
Stand 

A 

B 

C 

D 

E 

F 

G 

No. Trees 

Secondaries 

Injured 

Secondaries 
Injured 

Secondaries 
Injured 

Secondaries 
Injured 

Secondaries 
Injured 

Secondaries 
Injured 

Secondaries 
Injured 

1999 

9 
9 

_ 

-

-

-

_ 

-

_ 

-

-

-

-

-

2000 
20 
18 

27 
25 

11 
10 

_ 

-

2 
0 

_ 

-

-

-

2001 
157 
155 

123 
116 

43 
40 

_ 

-

25 
23 

_ 

-

1 
1 

Year 
2002 

263 
256 

196 
187 

36 
34 

4 
4 

91 
71 

26 
18 

19 
9 

2003 
193 
138 

136 
107 

13 
8 

14 
9 

235 
168 

59 
38 

137 
75 

2004 
130 
88 

_ 

-

14 
5 

17 
7 

_ 

-

171 
95 

314 

158 

2005 
96 
64 

_ 

-

11 
0 

3 
1 

_ 

-

94 
59 

160 
73 

86 



Table 4.2: Best explanatory models for the location of Orthotomicus latidens colonization 
from 2001 to 2005 in lodgepole pine of stand A in southern British Columbia. The line in 
bold represents an intercept-only model; i.e., modeling a constant density of insects across 
the stand. Subsequent lines reflect whether the location of each listed insect and year 
provides inference on the location of the insect studied relative to this constant density. A 
positive estimate for a slope reflects positive spatial association, while a negative estimate 
reflects spatial inhibition at a between-tree scale. The response variable for each equation is 
log(A), where A is the density estimate of trees colonized by a given species per square meter. 
For example, the estimated density of O. latidens colonization in 2002 in locations where 
Pseudips mexicanus colonized trees at a rate of 0.0005/m2 or 5 trees/ha. is e Xp ( 9 7 1 + 2324x000(b) 

= 0.0002 or 2 trees/ha. For each, year significant models are listed in order of best fit. 

Insect 

O. latidens 
O. latidens 

O. latidens 
P. mexicanus 
H. spp. 
P. mexicanus 
H. spp. 

O. latidens 
P. mexicanus 
P. mexicanus 
H. spp. 

O. latidens 
P. mexicanus 
H. spp. 
H. spp. 

O. latidens 
P. mexicanus 
P. mexicanus 

Year 

2001 
2000 

2002 
2002 
2002 
2001 
2001 

2003 
2003 
2002 
2003 

2004 
2004 
2003 
2004 

2005 
2005 
2004 

Intercept 
Est. 

-9.14 
-9.42 

-7.85 
-9.71 
-8.70 
-9.22 
-8.50 

-8.12 
-9.78 
-9.07 
-8.54 

-8.72 
-10.52 
-9.54 
-9.36 

-8.55 
-10.00 
-9.57 

SE 
0.22 
0.26 

0.11 
0.34 
0.21 
0.32 
0.24 

0.13 
0.53 
0.35 
0.21 

0.18 
0.48 
0.30 
0.28 

0.16 
0.37 
0.39 

Slope 
Est. 

13531 

2324 
4784 
2916 
2548 

3027 
1286 
3357 

3495 
11489 
8346 

4509 
2152 

SE 

3943 

351 
797 
555 
737 

881 
399 

1091 

714 
2440 
2268 

800 
663 

x2 

8.43 

44.45 
29.88 
26.26 
11.57 

13.38 
10.20 
8.09 

23.09 
19.44 
11.14 

23.09 
9.77 

P-value 

0.004 

<0.0001 
<0.0001 
<0.0001 

0.0007 

<0.001 
<0.001 

0.004 

<0.000l 
<0.0001 

0.001 

<0.0001 
0.002 

AIC 

427.85 
421.43 

1347.67 
1305.23 
1319.80 
1323.43 
1338.11 

1060.31 
1048.94 
1052.13 
1054.23 

623.96 
602.87 
606.52 
614.83 

727.51 
699.84 
719.75 
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Table 4.3: Best explanatory models for the location of Pseiidips mexicanus colonization from 
2000 to 2005 in lodgepole pine of stand A in southern British Columbia. The line in bold 
represents the null model for each year; i.e., no explanatory variable (reflected by the absence 
of an estimated slope) thus modeling a constant density of insects across the stand. 
Subsequent lines reflect whether the location of each listed insect and year provides inference 
on the location of the insect studied relative to this constant density. A positive estimate for a 
slope reflects positive spatial association, while a negative estimate reflects spatial inhibition 
at a between-tree scale. The response variable for each equation is log(A), where A is the 
density estimate of trees colonized by a given species per square meter. For each year 
significant models are listed in order of best fit. 

Insect 

P. mexicanus 
H. spp. 

P. mexicanus 
H. spp. 
P. mexicanus 
P. mexicanus 

P. mexicanus 
O. latidens 
H. spp. 
P. mexicanus 
H. spp. 
I. pini 

P. mexicanus 
O. latidens 
H. spp. 

P. mexicanus 
O. latidens 
H. spp. 
H. spp. 
O. latidens 

P. mexicanus 
O. latidens 
P. mexicanus 
H. spp. 

Year 

2000 
2000 

2001 
2001 
2000 
2001 

2002 
2002 
2002 
2001 
2001 
2002 

2003 
2003 
2003 

2004 
2004 
2003 
2004 
2003 

2005 
2005 
2004 
2005 

Intercept 
Est. 

-9.79 
-10.43 

-7.81 
-8.59 
-8.03 
-8.07 

-7.33 
-8.40 
-8.13 
-8.43 
-7.90 
-7.64 

-7.63 
-8.33 
-7.90 

-7.81 
-8.45 
-8.29 
-8.18 
-8.45 

-8.31 
-9.70 
-9.25 
-8.53 

SE 
0.30 
0.44 

0.11 
0.24 
0.14 
0.17 

0.09 
0.20 
0.18 
0.24 
0.18 
0.14 

0.10 
0.25 
0.16 

0.11 
0.19 
0.17 
0.17 
0.27 

0.14 
0.33 
0.34 
0.17 

Slope 
Est. 

12882 

3019 
3180 
3587 

2242 
6736 
2365 
2270 
2418 

2110 
2247 

3027 
7521 
9602 
1915 

5429 
1975 

13711 

SE 

4193 

720 
1087 
1539 

341 
1152 
434 
571 
769 

648 
923 

595 
1662 
2994 

711 

908 
594 

4420 

x2 

7.30 

17.04 
7.06 
5.04 

45.38 
33.13 
28.29 
15.30 
8.93 

10.33 
5.31 

21.25 
18.23 
9.43 
7.06 

34.92 
10.29 
7.82 

P-value 

0.01 

<0.0001 
0.01 
0.02 

<0.0001 
<0.0001 
<0.0001 
<0.0001 

0.003 

0.001 
0.02 

<0.0001 
<0.0001 

0.002 
0.01 

<0.0001 
0.001 
0.01 

AIC 

239.29 
233.99 

1394.67 
1379.65 
1389.62 
1391.64 

2134.93 
2091.58 
2103.83 
2108.67 
2121.66 
2128.03 

1641.69 
1633.38 
1638.40 

1394.67 
1375.43 
1378.45 
1387.26 
1389.63 

896.01 
863.10 
887.73 
890.20 
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Table 4.4: Best explanatory models for the location of Hylurgops spp. colonization from 2001 
to 2004 in lodgepole pine of stand A in southern British Columbia. The line in bold 
represents the null model for each year; i.e., no explanatory variable (reflected by the absence 
of an estimated slope) thus modeling a constant density of insects across the stand. 
Subsequent lines reflect whether the location of each listed insect and year provides inference 
on the location of the insect studied relative to this constant density. A positive estimate for a 
slope reflects positive spatial association, while a negative estimate reflects spatial inhibition 
at a between-tree scale. The response variable for each equation is log(A), where A is the 
density estimate of trees colonized by a given species per square meter. For each year 
significant models are listed in order of best fit. 

Insect 

H. spp. 
0. latidens 
P. mexicanus 
P. mexicanus 

H. spp. 
P. mexicanus 
O. latidens 
H. spp. 
P. mexicanus 
0. latidens 

H. spp. 
P. mexicanus 
0. latidens 
0. latidens 
P. mexicanus 

H. spp. 
0. latidens 
H. spp. 

Year 

2001 
2001 
2001 
2000 

2002 
2002 
2002 
2001 
2001 
2001 

2003 
2002 
2003 
2002 
2003 

2004 
2003 
2003 

Intercept 
Est. 

-8.72 
-10.64 
-10.09 
-9.01 

-9.24 
-11.23 
-10.67 
-10.42 
-10.66 
-9.75 

-9.99 
-13.37 
-12.22 
-11.58 
-12.38 

-10.39 
-12.96 
-11.47 

SE 
0.18 
0.48 
0.49 
0.23 

0.23 
0.70 
0.55 
0.55 
0.64 
0.35 

0.33 
1.25 
1.02 
0.81 
1.52 

0.41 
1.32 
0.74 

Slope 
Est. 

9137 
2923 
4095 

2479 
2873 
6058 
3020 
3582 

3857 
5886 
3142 
4263 

6610 
13870 

SE 

1727 
857 

1567 

710 
819 

2231 
1111 
1461 

1126 
2135 
1186 

2430 

2667 
5534 

x1 

27.57 
11.06 
5.38 

12.46 
11.53 
7.05 
7.03 
4.98 

13.56 
7.84 
6.61 
3.73 

6.52 
5.58 

P-value 

<0.0001 
0.001 
0.02 

0.0004 
0.001 
0.01 
0.01 
0.03 

0.0002 
0.01 
0.01 
0.05 

0.01 
0.02 

AIC 

623.96 
598.39 
614.90 
620.59 

391.10 
380.64 
381.57 
386.05 
386.07 
388.12 

199.76 
188.20 
193.92 
195.15 
198.03 

138.70 
134.19 
135.13 
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Table 4.5: Best explanatory models for the location of Ips pini colonization from 2001 to 
2003 in lodgepole pine of stand A in southern British Columbia. The line in bold represents 
the null model for each year; i.e., no explanatory variable (reflected by the absence of an 
estimated slope) thus modeling a constant density of insects across the stand. Subsequent 
lines reflect whether the location of each listed insect and year provides inference on the 
location of the insect studied relative to this constant density. A positive estimate for a slope 
reflects positive spatial association, while a negative estimate reflects spatial inhibition at a 
between-tree scale. The response variable for each equation is log(A), where A is the density 
estimate of trees colonized by a given species per square meter. For each year significant 
models are listed in order of best fit. 

Insect 

/. pini 
P. mexicanus 

I. pini 
O. latidens 
P. mexicanus 
I. pini 

I. pini 
P. mexicanus 
0. latidens 

Year 

2001 
2001 

2002 
2002 
2002 
2001 

2003 
2003 
2003 

Intercept 
Est. 

-9.70 
-10.99 

-9.14 
-10.55 
-10.31 
-9.60 

-9.54 
-11.65 
-10.78 

SE 

0.29 
0.79 

0.22 
0.52 
0.60 
0.34 

0.27 
1.17 
0.71 

Slope 
Est. 

2763 

2829 
1554 
5964 

3790 
3525 

SE 

1399 

777 
661 

2795 

1890 
1672 

x1 

3.70 

12.39 
5.43 
4.09 

4.75 
4.35 

P-value 

0.05 

0.0004 
0.02 
0.04 

0.03 
0.04 

AIC 

258.77 
257.07 

427.85 
417.46 
424.42 
425.77 

297.25 
294.51 
294.91 
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Table 4.6: Best explanatory models for the location of Dendroctonus murrayanae attack from 
2003 and 2005 in lodgepole pine of stand D in southern British Columbia. The line in bold 
represents the null model for each year; i.e., no explanatory variable (reflected by the absence 
of an estimated slope) thus modeling a constant density of insects across the stand. 
Subsequent lines reflect whether the location of each listed insect and year provides inference 
on the location of the insect studied relative to this constant density. A positive estimate for a 
slope reflects positive spatial association, while a negative estimate reflects spatial inhibition 
at a between-tree scale. The response variable for each equation is log(A), where A is the 
density estimate of trees colonized by a given species per square meter. For each year 
significant models are listed in order of best fit. 

Insect Year Intercept Slope % P-value AIC 
Est. SE Est. SE 

D. murrayanae 2003 -8.69 0.23 370.12 

D. murrayanae 2002 -9.65 0.54 8976 3484 4.56 0.03 367.33 

D. murrayanae 2005 -8.45 0.20 455.78 
D. murrayanae 2004 -9.26 0.46 3232 1479 4.03 0.05 453.46 
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Figure 4.1: Locations of secondary bark beetle colonization in lodgcpole pine of stand A in 
southern British Columbia. A) Trees colonized by Pseudips mexicanus and Orthotomicus 
latidens in 2002 B) Trees colonized by P. mexicanus in 2001 and O. latidens in 2002 
comprise approximately 0.4% of the 19,500 lodgepole pine trees in the stand respectively. 

92 



340m 
o „ a 

„o o "< 

0 0 8 

0 « 
X o o 

x» 

* ° c r,o Uxo° ' J ,,? * x x 

x=P. mexicanus 2001 
o = P. mexicanus 2002 

3 ' 

770m 

Figure 4.2: Locations of trees colonized by Pseudips mexicanus in lodgepole pine of stand A 
in southern British Columbia. Colonizations by P. mexicanus in 2001 and 2002 comprise 
approximately 0.4% and 0.6% of the 19,500 lodgepole pine trees in the stand respectively. 
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Figure 4.3: Locations of secondary bark beetle colonization in lodgepole pine of stand A in 
southern British Columbia. A) Trees colonized by Hylurgops spp. and Pseudips mexicamis in 
2001 comprise approximately 0.2% and 0.4% of the 19,500 logepole pine trees in the stand 
respectively. B) Trees colonized by H. spp. and Orthotomicus latidens in 2002 comprise 
approximately 0.1% and 0.4% of the 19,500 lodgepole pine trees in the stand respectively. 
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Figure 4.4: Location of trees colonized by Pseudips mexicanus and Ips pini in lodgepole pine 
of stand A in southern British Columbia. Colonizations by P. mexicanus and /. pini in 2003 
comprise approximately 0.45% and 0.07% of the 19,500 lodgepole pine trees in the stand 
respectively. 
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DISCUSSION 

This study suggests that colonization dynamics of secondary bark beetles in stands of 

lodgepole pine are not entirely random, but rather follow a stereotypic sequence of events and 

associations. The frequent within or between-tree associations between Hylurgops spp. and 

P. mexicanus, Hylurgops spp. and O. latidens, and /. pini and P. mexicanus from the endemic 

to the incipient-epidemic stages of population development of mountain pine beetle suggests 

that sufficient resource partitioning must occur to minimize interspecific competition and 

promote a robust assemblage of bark beetles (Birch et al. 1980, Byers 1989). 

Temporal partitioning by secondary bark beetles is one effective means of limiting 

interspecific competition (Paine et al. 1981, Amezaga and Rodriguez 1998, Safranyik et al. 

2004). However, temporal analyses (Chapter 2) suggested emergence, flight, and host 

colonization by these species of bark beetles overlap substantially. Hylurgops spp. emerge 

and colonize hosts prior to, or in quick succession with, P. mexicanus. The tendency for O. 

latidens to infest trees already occupied by P. mexicanus or Hylurgops spp. may be at least 

partially explained by its prolonged emergence through the time of study in each year, as well 

as its ubiquitous occurence in tissues in more advanced stages of deterioration (Miller and 

Borden 1985). For example, while O. latidens often reproduced in a host in the same year or 

in the year following colonization by Hylurgops spp. or P. mexicanus, O. latidens galleries do 

not overlap those of P. mexicanus, as colonization by P. mexicanus often occurs below O. 

latidens and /. pini galleries (A. Carroll, pers. comm., Smith et al. 2009). Although P. 

mexicanus may be found at greater heights and into the branches of trees in areas of 
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California (Fox et al. 1990) and Mexico (Schwerdtfeger 1956), attacks in lodgepole pine trees 

within British Columbia generally do not occur above one metre (Smith et al. 2009). 

Hylurgops porosus and H. rugipennis utilize the lower bole of various pine hosts at or below 

the root collar (Wood 1982b). 

Avoidance of occupied hosts is a simple way to reduce interspecific competition. Ips 

pini ordinarily avoids trees inhabited by O. latidens (Poland 1997) or P. mexicanus (Poland 

1997, Savoie 1998). We found, for example, that I. pini colonization was located on the 

westernmost side of stand E, while O. latidens and P. mexicanus inhabited trees on the 

eastern half. However, the new finding of positive spatial associations between I. pini and P. 

mexicanus colonization in our study may be attributed to the extensive number of trees 

surveyed. It is possible that /. pini, with the development of multiple generations within a 

year (Furniss and Carolin 1977), may have attacked hosts after P. mexicanus colonization had 

occurred. Ips pini often predominates phloem resources in the hosts it colonizes. Any 

remaining phloem lower down on the bole near the root collar, however, may be utilized by P. 

mexicanus (E. Teen, pers. comm.). 

The majority of colonization occurred in trees with putative vigour-impairing injuries. 

The declining rate of trees with injuries colonized by non-eruptive bark beetles from 2003 to 

2005 might be explained by mountain pine beetle activity. In this study, growing populations 

of mountain pine beetle shifted from injured and/or weakened trees to uninjured, vigorous 

hosts (Chapter 3; Carroll et al. 2006), and, after completing their life-cycle, left behind a 

source of previously uninjured hosts available for colonization (Safranyik et al. 1974, Furniss 
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and Carolin 1977, Wood 1982b, Paine et al. 1997, Steed and Wagner 2008). For stands D and 

G, where populations of mountain pine beetle did not exit an endemic phase, the large 

number of uninjured trees colonized by non-eruptive species could likely be attributed to P. 

mexicanus and O. latidens attack on small diameter, yet otherwise healthy, trees (Furniss and 

Carolin 1977, Paine et al. 1997). Stand D also contained the oldest trees, with an average age 

of nearly 150 years (Carroll et al. 2006). An infestation of D. murrayanae in uninjured, 

senescent hosts within this stand also likely contributed to a large number of the trees lacking 

injuries that were colonized by non-eruptive species of bark beetles. 

The colonization behaviour of robust assemblages of bark beetles may naturally thin 

stands as weaker trees are killed. Trees not suffering mortality by bark beetles benefit from 

reduced competition for light, water, and nutrients (Oliver and Larson 1996). Lodgepole pine 

stands may outgrow their susceptibilty to localized eruptions of mountain pine beetle if the 

majority of weakened hosts have been naturally thinned by the activity of secondary bark 

beetles. In this study, 74% of trees attacked by secondary bark beetles displayed an injury or 

some form of disease. Thinning activity may extinguish or severely limit reservoirs of 

endemic mountain pine beetle by eliminating their hosts. This could explain why some 

stands upwards of 160 to 170 years of age have never suffered serious depletion from more 

aggressive species of bark beetles (Hopping and Mathers 1945). 

Resource sharing between bark beetles within the bole-infesting assemblage may 

enable or prolong localized eruptions of typically non-eruptive species following an epidemic 

of mountain pine beetle and contribute to the mortality of smaller, but otherwise healthy 
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trees. Future work should focus on the nature of interactions between these species. 

Competition experiments, for example, between varying densities of bark beetles in the 

complete bole-infesting assemblage may lend valuable information concerning the positive 

spatial associations found here. A greater understanding of the extent of resource partitioning 

or competition at a within-tree level may enhance the projection of mortality to small trees 

following outbreaks of mountain pine beetle. Further research is also required to fully 

understand the interactions of non-eruptive species before they may be utilized as natural 

agents useful in stand management. However, the existence of stands in which bark beetles 

have thinned trees to a level such that they are essentially immune to localized eruptions 

suggests that natural approaches to future management have promise. 
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CHAPTER 5 

General Conclusions 

This study was undertaken to examine the temporal and spatial relationships between 

a bole-infesting asemblage of bark beetles, including the mountain pine beetle, Dendroctonus 

ponderosae Hopkins, as the latter was transitioning from the endemic to the incipient-

epidemic phase. The extent of research pertaining to the endemic phase of this organism is 

severely limited, and finding endemic beetles often poses a significant challenge (Tkacz and 

Schmitz 1986, Bartos and Schmitz 1998, Carroll et al. 2006). Only recently were endemic 

populations defined to be approximately forty beetles per hectare (Carroll et al. 2006), thus 

contextualizing much existing research on low populations of mountain pine beetle as more 

relevant to the incipient phase. In the endemic phase mountain pine beetle is believed to 

inhabit weakened, diseased, and suppressed hosts (Blackman 1931, Furniss and Carolin 

1977). Associations between low levels of mountain pine beetle and other bark beetles have 

been noted anecdotally by DeLeon (1934), Ham el and McGregor (1976), Gohecn and Cobb 

(1980), Tkacz and Schmitz (1986), and Amman and Scmitz (1988). 

Temporal relationships between non-eruptive species of bark beetles and mountain 

pine beetle in the first data chapter suggest facilitation between species. The number of trees 

colonized by mountain pine beetle increased in relation to the number of trees colonized by 

other species of bark beetles, trailing populations of other bark beetles by at least a year. 

Spatial analyses from the second data chapter determined that endemic mountain pine beetle 

frequently colonize hosts containing other bark beetle species and/or bearing some sort of 
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injury. The greatest number of positive spatial associations was with Pseudips mexicanus 

(Hopkins), however, mountain pine beetle were found with a variety of bark beetle species 

including Orthotomicus latidens (LeConte), Hylurgops spp., and less frequently Ips pini 

(Wood). The colonization of trees utilised previously by other bole-infesting bark beetles 

(Hamel and McGregor 1976, Furniss and Carolin 1977, Goheen and Cobb 1980, Amman and 

Schmitz 1988, Carroll et al. 2006, Safranyik and Carroll 2006) may enable the insect to evade 

a strong defensive response by the host. As the number of colonizations by mountain pine 

beetle increased towards incipient-epidemic levels, the associations with other bark beetles 

and injured trees became less evident. These results are consistent with a model in which the 

colonization dynamics of mountain pine beetle change as populations increase, such that 

mountain pine beetle subsist in these "nurse trees" until suitable conditions occur to strip- or 

mass-attack healthy hosts. 

Spatial analyses of the colonizations by secondary bark beetles in the final data 

chapter suggest that the bole-infesting community likely partitions host resources effectively 

to reduce interspecific competition. Furthermore, resource sharing between secondary bark 

beetles within the bole-infesting assemblage may enable or prolong localized eruptions 

following an epidemic of mountain pine beetle and contribute to the mortality of smaller, but 

otherwise healthy trees. It is likely that competition between mountain pine beetle and other 

bark beetles such as /. pini increases with the increasing density of mountain pine beetle in 

later population phases (Rankin and Borden 1991). 
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Management Implications 

In summary, the interaction between mountain pine beetle and other bark beetles may 

be an important element to incorporate into future models predicting the risk of outbreaks of 

mountain pine beetle. Futhermore, the populations of other bark beetles may potentially be 

used to monitor for the development of growing populations of mountain pine beetle. 

Pheromone traps could be used to monitor the populations of bark beetles that appear to be 

very closely associated with endemic levels of mountain pine beetle such as P. mexicanus 

and O. latidens, within stands of particular importance. However, potential challenges arise, 

as the pheromone of P. mexicanus needs to be elucidated further (Smith et al. 2009). 

Alternatively, the interaction between mountain pine beetle and other bark beetles 

may be manipulated in such a way as to reduce the ability for stands to harbour endemic 

levels of mountain pine beetle, possibly through thinning operations that reduce the number 

of weakened and injured trees within a stand. However, these operations must take into 

consideration the potential for immigration of populations of mountain pine beetle from 

neighbouring areas, as the insect is capable of aeolian dispersal over vast distances (de la 

Giroday et al. 2010). It is suspected that high levels of immigrating beetles can overwhelm 

local dynamics within a stand, as likely occurred in stand E. 

Future Research 

Future work exploring the density-dependent relationship between secondary bark 

beetles and endemic level mountain pine beetle may shed considerable light on the question 

of facilitation. A further look at the nutritional changes of phloem tissue as well as the 
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moisture content of host trees innoculated by secondary bark beetle fungi may also provide 

significant understanding of facilitative relationships. Future work should also focus on the 

nature of interactions between species of non-eruptive bark beetles. Competition experiments 

between varying densities of secondary bark beetles may lend valuable inference concerning 

their relationships. A greater understanding of the extent of resource partitioning or 

competition at a tree level may enhance the projection of mortality to small trees following 

outbreaks of mountain pine beetle. The existence of stands in which bark beetles have 

thinned trees to a level such that they are essentially immune to localized eruptions suggests 

that incorporating natural processes in approaches to future management has promise. 

Finally, the potential interactions of mountain pine beetle with bark beetle species found in 

the boreal forest may be of interest as the threat of populations spreading into new habitats is 

explored. 
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APPENDICES 

APPENDIX A 

Table A. 1: Mensurational characteristics of seven lodgepole pine stands at two sites in 
southern British Columbia used to assess the dynamics of mountain pine beetle and 
secondary bark beetle populations. 
Site Stand Area Density Lodgepole pine3 Secondary Trees Attacked 

A 

B 

C 

F 

D 

E 

G 

(Ha) 

16.7 

17.6 

9.9 

13.0 

11.9 

17.9 

14.9 

(Stems/Ha) 

1263 

1273 

1554 

1325 

807 

1257 

1424 

(Percent) 

92.5 

94.2 

96.8 

90.4 

80.1 

90.6 

94.2 

Attacks 

922 

490 

129 

393 

945 

434 

669 

(Percent)" 

1.2-4.7 

0.6 - 2.3 

0.2 - 0.9 

0.6 - 2.5 

3.1 - 12.3 

0.5-2.1 

0.8-3.3 

'' Remaining species included Douglas fir {Pseudotsuga menziesii), Ponderosa pine {Pinus 
ponderosa), interior spruce (Picea spp.) and subalpine fir (Abies lasiocarpa) 
b First number represents a conservative estimate, second number a high estimate that does 
not take into account multiple attacks on a single tree. Number represents only trees attacked 
by species other than mountain pine beetle. 

Angstad 

Aberdeen 
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APPENDIX B 

Table B.l: Number of trees colonized by year for species of the bole-infesting bark beetle 
assemblage in a lodgepole pine stand of southern British Columbia (Stand A). 
Species 
Dendroctonus ponderosae 

Ips pini 

Hylurgops spp. 

Orthotomicus latidens 

Pseudips mexicanus 

1999 
5 

4 

0 

1 

4 

2000 
16 

1 

6 

2 

11 

2001 
29 

12 

43 

21 

79 

2002 
37 

21 

27 

76 

128 

2003 
117 

14 

20 

58 

95 

2004 
184 

1 

11 

32 

79 

2005 
383 

3 

4 

38 

47 

Total 
771 

56 

101 

228 

444 

Table B.2: Number of trees colonized by year for species of the bole-infesting bark beetle 
assemblage in a lodgepole pine stand of southern British Columbia (Stand B). 

Species 

Dendroctonus ponderosae 

Ips pini 

Hylurgops spp. 

Orthotomicus latidens 

Pseudips mexicanus 

1999 

5 

0 

0 

0 

0 

2000 

19 

1 

17 

0 

9 

2001 

41 

3 

43 

15 

59 

2002 

85 

11 

23 

58 

96 

2003 

201 

14 

20 

33 

62 

2004 

546 

0 

0 

0 

0 

2005 

2203 

0 

0 

0 

1 

Total 

3100 

29 

103 

106 

227 

Table B.3: Number of trees colonized by year for species of the bole-infesting bark beetle 
assemblage in a lodgepole pine stand of southern British Columbia (Stand C). 

Species 

Dendroctonus ponderosae 

Ips pini 

Hylurgops spp. 

Orthtomicus latidens 

Pseudips mexicanus 

2000 

8 

0 

6 

0 

5 

2001 

10 

1 

12 

3 

24 

2002 

9 

2 

0 

13 

20 

2003 

36 

0 

0 

2 

10 

2004 

86 

0 

0 

4 

10 

2005 

270 

0 

1 

2 

7 

Total 

419 

3 

19 

24 

76 
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Table B.4: Number of trees colonized by year for species of the bole-infesting bark beetle 
assemblage in a lodgepole pine stand of southern British Columbia (Stand D). 
Species 2000 2001 2002 2003 2004 2005 Total 

Dendroctonus ponderosae 

Dendroctonus murrayanae 

Ips pint 

Hylurgops spp. 

Orthomicus latidens 

Pseudips mexicanus 

0 

0 

0 

0 

1 

3 

5 

10 

0 

6 

6 

21 

12 

11 

1 

24 

38 

82 

28 

19 

6 

22 

126 

180 

37 

26 

1 

8 

60 

11 

11 

24 

2 

4 

52 

82 

93 

90 

10 

64 

283 

479 

Table B.5: Number of trees colonized by year for species of the bole-infesting bark beetle 
assemblage in a lodgepole pine stand of southern British Columbia (Stand E). 

Species 

Dendroctonus ponderosae 

Ips pini 

Hylurgops spp. 

Orthotomicus latidens 

Pseudips mexicanus 

2000 

0 

0 

0 

1 

1 

2001 

19 

2 

11 

5 

11 

2002 

59 

3 

32 

26 

36 

2003 

404 

13 

61 

71 

96 

Total 

482 

18 

104 

103 

144 

Table B.6: Number of trees colonized by year for species of the bole-infesting bark beetle 
assemblage in a lodgepole pine stand of southern British Columbia (Stand F). 

Species 2001 2002 2003 2004 2005 Total 

Dendroctonus ponderosae 

Ips pini 

Hylurgops spp. 

Orthotomicus latidens 

Pseudips mexican us 

2 

0 

0 

0 

0 

7 

0 

2 

11 

15 

46 

1 

4 

19 

37 

84 

4 

12 

45 

111 

232 

8 

2 

38 

46 

371 

13 

20 

113 

209 
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Table B.7: Number of trees colonized by year for species of the bole-infesting bark beetle 
assemblage in a lodgepole pine stand of southern British Columbia (Stand G). 
Species 

Dendroctoniis ponderosae 

Dendroctoniis miirrayanae 

Ips pini 

Hylurgops spp. 

Orthomicus latidens 

Pseudips mexicanus 

2000 

0 

0 

0 

1 

0 

1 

2001 

0 

0 

0 

1 

0 

2 

2002 

8 

0 

0 

2 

4 

15 

2003 

27 

2 

1 

14 

53 

75 

2004 

50 

9 

6 

20 

127 

158 

2005 

7 

12 

4 

12 

58 

76 

Total 

92 

23 

11 

50 

242 

327 
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APPENDIX C 

Table C.l: Association of trees colonized by other bark beetles on the locations of trees strip-
attacked by mountain pine beetle from 2001 to 2005 in a lodgepole pine stand of southern 
British Columbia (Stand A). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. Significant models are listed in order of best fit for each year. 

Insect 

Strip attack 
All secondaries 
H. spp. 
O. latidens 

Strip attack 
0. latidens 
I. pini 

Strip attack 
P. mexicanus 
All secondaries 
0. latidens 
H. spp. 

Strip attack 
P. mexicanus 
I. pini 

Strip attack 
P. mexicanus 
P. mexicanus 

Strip attack 
/. pini 
H. spp. 

Year 

2000 
2000 
2000 
2000 

2001 
2000 
2001 

2002 
2002 
2002 
2002 
2002 

2003 
2003 
2003 

2004 
2003 
2004 

2005 
2005 
2004 

Intercept 
Est. 

-9.99 
-10.81 
-10.57 
-10.31 

-9.35 
-9.64 
-8.82 

-8.96 
-10.88 
-10.44 
-9.84 
-9.70 

-8.57 
-9.66 
-8.93 

-8.72 
-7.64 
-9.41 

-7.94 
-7.79 
-7.64 

SE 
0.33 
0.54 
0.48 
0.40 

0.24 
0.29 
0.27 

0.02 
0.61 
0.54 
0.44 
0.41 

0.16 
0.61 
0.25 

0.18 
0.45 
0.41 

0.12 
0.13 
0.17 

Slope 
Est. 

5228 
12121 
14927 

13831 
-2583 

2401 
952 

1885 
6258 

2038 
4340 

-2296 
1508 

-12255 
-5651 

SE 

1906 
4749 
5747 

4344 
3386 

616 
282 
735 

2606 

1038 
1997 

957 
745 

6297 
2593 

x2 

6.47 
5.10 
4.77 

7.22 
0.62 

15.44 
10.99 
6.19 
5.59 

4.16 
4.13 

5.64 
3.83 

5.03 
5.45 

f-value 

0.01 
0.02 
0.03 

0.01 
0.05 

<0.0001 
0.001 
0.01 
0.02 

0.04 
0.04 

0.02 
0.05 

0.02 
0.02 

AIC 

199.76 
195.29 
196.67 
197.00 

353.90 
348.70 
352.03 

500.25 
486.82 
491.26 
496.06 
496.66 

710.39 
708.24 
708.27 

623.96 
620.33 
622.14 

1252.94 
1249.93 
1249.51 
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Table C.2: Association of trees colonized by other bark beetles on the locations of trees strip-
attacked by mountain pine beetle from 2001 to 2005 in a lodgepole pine stand of southern 
British Columbia (Stand C). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. Significant models are listed in order of best fit for each year. 

Insect 

Strip attack 
H. spp. 
H. spp. 

Strip attack 
H. spp. 
All secondaries 
P. mexicanus 

Strip attack 
All secondaries 
P. mexicanus 
P. mexicanus 
All secondaries 
0. latidens 
0. latidens 

Strip attack 
P. mexicanus 
All secondaries 
All secondaries 
P. mexicanus 
0. latidens 

Strip attack 
0. latidens 
All secondaries 
P. mexicanus 
All secondaries 
P. mexicanus 
(). latidens 

Year 

2001 
2001 
2000 

2002 
2001 
2001 
2001 

2003 
2003 
2003 
2002 
2002 
2003 
2002 

2004 
2004 
2004 
2003 
2003 
2004 
2005 
2005 
2005 
2004 
2004 
2005 
2004 

Intercept 
Est. 

-9.77 
-12.85 
-10.80 

-9.77 
-12.19 
-12.20 
-10.74 

-9.18 
-11.18 
-11.12 
-10.34 
-10.52 
-10.23 
-10.55 

-8.33 
-8.76 
-8.69 
-8.75 
-8.73 
-8.55 
-7.20 
-8.02 
-7.76 
-7.71 
-7.66 
-7.65 
-7.54 

SE 
0.45 
1.44 
0.75 

0.45 
1.30 
1.29 
0.75 

0.33 
0.83 
0.82 
0.57 
0.61 
0.58 
0.70 

0.22 
0.30 
0.29 
0.32 
0.32 
0.26 
0.12 
0.20 
0.18 
0.17 
0.17 
0.17 
0.16 

Slope 
Est. 

15059 
12171 

12562 
12562 
2642 

6847 
8022 
2979 
2190 

21915 
7055 

2663 
1632 
2267 
2612 
3722 

16618 
3102 
2974 
1923 
3456 
4953 

SE 

5035 
4595 

4838 
4838 
1171 

1695 
2020 

731 
539 

6201 
2396 

873 
584 

1022 
1218 
1714 

1973 
469 
485 
318 
591 
873 

x2 

10.19 
5.44 

7.37 
7.36 
3.94 

19.38 
18.82 
13.24 
13.22 
11.48 
7.99 

7.59 
6.29 
4.45 
4.15 
3.72 

64.19 
37.31 
30.64 
29.16 
28.30 
24.16 

P-value 

0.001 
0.02 

0.01 
0.01 
0.05 

<0.0001 
<0.0001 

0.0003 
0.0003 
0.001 
0.005 

0.006 
0.01 
0.04 
0.04 
0.05 

<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 

AIC 

109.67 
101.44 
106.19 

109.67 
104.26 
104.26 
107.69 

185.23 
167.78 
168.33 
173.91 
173.94 
175.67 
179.16 

393.95 
388.18 
389.48 
391.32 
391.62 
392.05 

1068.30 
1005.53 
1032.41 
1039.08 
1040.56 
1041.42 
1045.56 
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Table C.3: Association of trees colonized by other bark beetles on the locations of trees strip-
attacked by mountain pine beetle from 2003 and 2005 in a lodgepole pine stand of southern 
British Columbia (Stand D). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. Significant models are listed in order of best fit for each year. 

Insect 

Strip attack 
P. mexicanus 
All secondaries 
O. latidens 

Strip attack 
D. murrayanae 

Year 

2003 
2003 
2003 
2003 

2005 
2005 

Intercept 
Est. 

-8.99 
-12.42 
-12.30 
-12.16 

-10.53 
-14.20 

SE 
0.27 
1.45 
1.45 
1.41 

0.58 
2.23 

Slope 
Est. SE 

1818 693 
933 372 

2459 1002 

13428 6374 

2 

X 

8.61 
7.28 
6.70 

5.19 

P-value 

0.003 
0.01 
0.01 

0.02 

AIC 

281.80 
275.02 
276.34 
276.92 

71.20 
67.97 
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Table C.4: Association of trees colonized by other bark beetles on the locations of trees strip-
attacked by mountain pine beetle from 2002 and 2003 in a lodgepole pine stand of southern 
British Columbia (Stand E). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. Significant models are listed in order of best fit for each year. 

Insect 

Strip attack 
H. spp. 
P. mexicanus 

Strip attack 
H. spp. 
All secondaries 
P. mexicanus 
H. spp. 
/. pini 
0. latidens 
All secondaries 
0. latidens 
I. pini 

Year 

2002 
2002 
2002 

2003 
2002 
2003 
2003 
2003 
2002 
2003 
2002 
2002 
2003 

Intercept 
Est. 

-9.23 
-11.27 
-8.49 

-7.89 
-11.28 
-12.28 
-10.24 
-9.12 
-8.65 
-9.04 
-8.79 
-8.44 
-8.39 

SE 
0.25 
0.77 
0.41 

0.13 
0.70 
0.90 
0.54 
0.37 
0.26 
0.36 
0.33 
0.25 
0.25 

Slope 
Est. 

18801 
-4032 

13677 
2515 
3495 
2728 

32913 
2292 
1324 
2949 
5217 

SE 

5723 
2201 

2521 
470 
714 
703 

8385 
610 
406 
1010 
1929 

x2 

10.95 
4.52 

44.94 
44.05 
25.90 
16.50 
15.24 
14.23 
10.08 
8.01 
7.67 

P-value 

0.001 
0.03 

<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 

0.0001 
0.002 
0.005 
0.006 

AIC 

329.30 
320.37 
326.81 

1086.55 
1043.70 
1044.59 
1062.74 
1072.14 
1073.40 
1074.41 
1078.57 
1080.63 
1080.97 

118 



Table C.5: Association of trees colonized by other bark beetles on the locations of trees strip-
attacked by mountain pine beetle from 2003 to 2005 in a lodgepole pine stand of southern 
British Columbia (Stand F). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. Significant models are listed in order of best fit for each year. 

Insect 

Strip Attack 
H. spp. 

Strip attack 
All secondaries 
P. mexicanus 
P. mexicanus 
0. latidens 
All secondaries 
0. latidens 

Strip attack 
O. latidens 
P. mexicanus 
All secondaries 
P. mexicanus 
I. pini 
All secondaries 

Year 

2002 
2002 

2003 
2003 
2003 
2002 
2003 
2002 
2002 

2005 
2005 
2004 
2005 
2005 
2004 
2004 

Intercept 
Est. 

-11.25 
-14.29 

-9.05 
-11.66 
-11.41 
-10.75 
-10.43 
-10.43 
-9.74 

-8.23 
-9.14 
-9.20 
-8.90 
-8.90 
-8.50 
-9.02 

SE 
0.71 
2.67 

0.24 
0.90 
0.91 
0.64 
0.55 
0.60 
0.44 

0.16 
0.39 
0.46 
0.37 
0.37 
0.21 
0.45 

Slope 
Est. SE 

97282 57658 

4883 
7175 

13064 
8301 
5809 
7845 

3158 
1207 
967 

1992 
9251 

637 

1379 
2270 
3815 
2442 
1960 
3570 

1128 
499 
437 
931 

4116 
321 

x1 

5.26 

16.78 
14.83 
12.87 
11.11 
9.74 
4.67 

8.06 
6.08 
4.87 
4.59 
4.14 
4.08 

P-value 

0.02 

<0.0001 
0.0001 
0.0003 
0.001 
0.002 
0.03 

0.01 
0.01 
0.03 
0.03 
0.04 
0.04 

AIC 

50.99 
47.74 

363.78 
349.11 
351.07 
353.03 
354.78 
356.16 
361.23 

758.55 
752.76 
754.74 
755.95 
756.23 
756.68 
756.74 
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Table C.6: Association of trees colonized by other bark beetles on the locations of trees strip-
attacked by mountain pine beetle from 2003 and 2004 in a lodgepole pine stand of southern 
British Columbia (Stand G). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. Significant models are listed in order of best fit for each year. 

Insect 

Strip attack 
0. latidens 
All secondaries 
P. mexicanus 

Strip attack 
All secondaries 

Year 

2003 
2002 
2002 
2003 

2004 
2004 

Intercept 
Est. 

-9.21 
-10.19 
-10.95 
-11.52 

-8.61 
-10.44 

SE 
0.29 
0.52 
0.79 
1.07 

0.21 
1.00 

Slope 
Est. SE 

17229 5342 
7419 2609 
3138 1252 

654 330 

x2 

9.83 
8.62 
6.70 

4.15 

P-value 

0.002 
0.003 
0.01 

0.04 

AIC 

247.09 
239.30 
240.50 
242.42 

424.67 
422.58 
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Table C.7: Association of trees strip-attacked by mountain pine beetle on the location of mass 
attacks from 2001 to 2005 in a lodgepole pine stand of southern British Columbia (Stand A). 
The line in bold represents an intercept-only model; i.e., modeling a constant density of 
insects across the stand. Subsequent lines reflect whether the location of each listed insect 
and year provides inference on the location of the insect studied relative to this constant 
density. A positive estimate for a slope reflects positive spatial association, while a negative 
estimate reflects spatial inhibition at a between-tree scale. The response variable for each 
equation is log(A), where A is the estimated density of trees colonized per square meter. 
Significant models are listed in order of best fit for each year. 

Insect 

Mass attack 
Strip attack 

Mass attack 
Strip attack 

Mass attack 
Strip attack 
Strip attack 

Mass attack 
Strip attack 
Strip attack 

Year 

2001 
2001 

2003 
2003 

2004 
2004 
2003 

2005 
2005 
2004 

Intercept 
Est. 

-10.39 
-11.36 

-8.01 
-10.31 

-7.59 
-9.84 
-9.35 

-6.49 
-8.05 
-6.81 

SE 
0.41 
0.68 

0.12 
0.36 

0.10 
0.27 
0.27 

0.06 
0.13 
0.09 

Slope 
Est. 

7581 

8880 

7160 
7109 

3221 
1585 

SE 

3065 

1050 

551 
861 

179 
301 

2 

X 

4.69 

70.51 

201.86 
67.75 

280.07 
25.80 

/'-value 

0.03 

<0.0001 

<0.0001 
<0.0001 

<0.0001 
<0.0001 

AIC 

138.70 
136.01 

1173.22 
1104.73 

1702.56 
1502.72 
1636.83 

4438.12 
4160.11 
4414.38 
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Table C.8: Association of trees strip-attacked by mountain pine beetle on the location of mass 
attacks from 2003 to 2005 in a lodgepole pine stand of southern British Columbia (Stand C). 
The line in bold represents an intercept-only model; i.e., modeling a constant density of 
insects across the stand. Subsequent lines reflect whether the location of each listed insect 
and year provides inference on the location of the insect studied relative to this constant 
density. A positive estimate for a slope reflects positive spatial association, while a negative 
estimate reflects spatial inhibition at a between-tree scale. The response variable for each 
equation is log(A), where A is the estimated density of trees colonized per square meter. 
Significant models are listed in order of best fit for each year. 

Insect 

Mass attack 
Strip attack 
Strip attack 

Mass attack 
Strip attack 
Strip attack 

Mass attack 
Strip attack 
Strip attack 

Year 

2003 
2003 
2002 

2004 
2004 
2003 

2005 
2005 
2004 

Intercept 
Est. 
-8.24 
-9.54 
-8.68 

-7.57 
-8.33 
-7.93 

-6.05 
-7.78 
-6.60 

SE 
0.21 
0.39 
0.26 

0.15 
0.25 
0.20 

0.07 
0.16 
0.11 

Slope 
Est. 

5831 
5734 

2417 
2541 

962 
1892 

SE 

832 
1405 

492 
685 

50 
247 

x1 

44.74 
10.41 

20.22 
11.09 

447.28 
50.05 

F-value 

<0.0001 
0.001 

<0.0001 
0.001 

<0.0001 
<0.0001 

AIC 

427.09 
384.15 
418.48 

773.30 
754.68 
763.82 

2894.01 
2446.90 
2844.13 
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Table C.9: Association of trees strip-attacked by mountain pine beetle on the location of mass 
attacks from 20023 and 2003 in a lodgepole pine stand of southern British Columbia (Stand 
E). The line in bold represents an intercept-only model; i.e., modeling a constant density of 
insects across the stand. Subsequent lines reflect whether the location of each listed insect 
and year provides inference on the location of the insect studied relative to this constant 
density. A positive estimate for a slope reflects positive spatial association, while a negative 
estimate reflects spatial inhibition at a between-tree scale. The response variable for each 
equation is log(A), where A is the estimated density of trees colonized per square meter. 
Significant models are listed in order of best fit for each year. 

Insect 

Mass attack 
Strip attack 
Strip attack 

Mass attack 
Strip attack 
Strip attack 

Year 

2002 
2001 
2002 

2003 
2003 
2002 

Intercept 
Est. 
-8.42 
-9.98 
-9.52 

-6.23 
-8.56 
-7.20 

SE 
0.17 
0.52 
0.42 

0.06 
0.23 
0.13 

Slope 
Est. 

14668 
9115 

4765 
8317 

SE 

3962 
2736 

397 
903 

x2 

18.09 
12.41 

208.90 
93.27 

P-value 

<0.0001 
0.0004 

<0.0001 
<0.0001 

AIC 

680.03 
664.00 
669.68 

4655.57 
4449.17 
4564.80 

Table CIO: Association of trees strip-attacked by mountain pine beetle on the location of 
mass attacks from 2004 and 2005 in a lodgepole pine stand of southern British Columbia 
(Stand F). The line in bold represents an intercept-only model; i.e., modeling a constant 
density of insects across the stand. Subsequent lines reflect whether the location of each 
listed insect and year provides inference on the location of the insect studied relative to this 
constant density. A positive estimate for a slope reflects positive spatial association, while a 
negative estimate reflects spatial inhibition at a betwcen-tree scale. The response variable for 
each equation is log(A), where A is the estimated density of trees colonized per square meter. 
Significant models are listed in order of best fit for each year. 

Insect Year Intercept 
Est. SE 

Slope 
Est. SE 

X P- value AIC 

Mass attack 2004 -8.09 0.15 
Strip attack 2004 -9.61 0.46 8337 2179 13.99 

856.43 
0.0002 844.75 

Mass attack 2005 -6.69 0.07 2938.65 
Strip attack 2004 -8.50 0.18 5202 381 189.28 <0.0001 2752.61 



Figure C.l: Ripley's K function for trees strip-attacked by mountain pine beetle in 2002 for 
stand A. Observed estimate is shown by the solid black line, the upper and lower limits of the 
95% confidence interval are shown by the green and blue ragged dashes respectively. The 
theoretical estimate for a point process displaying complete spatial randomness is shown by 
the smooth red dashes. The focal distance (r) on the x-axis is represented in metres. 

124 



8 
n 

LI ppCJ 

IheotetiCLxl 

ohsci" \ sd 

Figure C.2: Ripley's K function for trees strip-attacked by mountain pine beetle in 2003 for 
stand A. Observed estimate is shown by the solid black line, the upper and lower limits of the 
95% confidence interval are shown by the green and blue ragged dashes respectively. The 
theoretical estimate for a point process displaying complete spatial randomness is shown by 
the smooth red dashes. The focal distance (r) on the x-axis is represented in metres. 
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Figure C.3: Ripley's K function for trees mass-attacked by mountain pine beetle in 2003 for 
stand A. Observed estimate is shown by the solid black line, the upper and lower limits of the 
95% confidence interval are shown by the green and blue ragged dashes respectively. The 
theoretical estimate for a point process displaying complete spatial randomness is shown by 
the smooth red dashes. The focal distance (r) on the x-axis is represented in metres. 
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Figure C.4: Ripley's K function for trees mass-attacked by mountain pine beetle in 2004 for 
stand A. Observed estimate is shown by the solid black line, the upper and lower limits of the 
95% confidence interval are shown by the green and blue ragged dashes respectively. The 
theoretical estimate for a point process displaying complete spatial randomness is shown by 
the smooth red dashes. The focal distance (r) on the x-axis is represented in metres. 
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APPENDIX D 

Table D.l: Association of trees colonized by other bark beetles on the locations of trees 
colonized by O. latidens from 2002 and 2003 in a lodgepole pine stand of southern British 
Columbia (Stand B). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

0. latidens 
P. mexicanus 
P. mexicanus 
Ips pini 
H. spp. 
H. spp. 

O. latidens 
P. mexicanus 
H. spp. 
Ips pini 
H. spp. 

Year 

2002 
2001 
2002 
2001 
2002 
2001 

2003 
2003 
2003 
2003 
2002 

Intercept 
Est. 

-8.39 
-11.08 
-10.49 
-8.88 
-9.12 
-9.42 

-8.95 
-11.88 
-11.04 
-10.48 
-9.87 

SE 

0.13 
0.63 
0.59 
0.23 
0.33 
0.23 

0.17 
0.81 
0.65 
0.55 
0.45 

Slope 
Est. 

10217 
4773 

33026 
6987 

33026 

9576 
21130 
23430 

8560 

SE 

2177 
1200 

10742 
2652 

10742 

2309 
5591 
7110 
3488 

2 

X 

23.64 
20.70 

8.65 
6.67 
5.64 

24.34 
17.23 
11.58 
5.78 

P-value 

<0.000l 
<0.000l 

0.003 
0.01 
0.02 

<0.0001 
<0.001 

0.001 
0.02 

AIC 

1090.97 
1069.13 
1072.07 
1084.12 
1086.10 
1087.12 

658.81 
636.35 
643.47 
649.11 
654.91 
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Table D.2:, Association of trees colonized by other bark beetles on the locations of trees 
colonized by O. latidens from 2001 to 2005 in a lodgepole pine stand of southern British 
Columbia (Stand C). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

0. latidens 
P. mexicanus 
H. spp. 

0. latidens 
H. spp. 
P. mexicanus 

0. latidens 
P. mexicanus 

0. latidens 
P. mexicanus 
P. mexicanus 

O. latidens 
P. mexicanus 
P. mexicanus 

Year 

2001 
2001 
2001 

2002 
2001 
2001 

2003 
2003 

2004 
2004 
2003 

2005 
2005 
2004 

Intercept 
Est. 

-10.28 
-12.48 
-12.53 

-8.81 
-10.65 
-9.70 

-10.68 
-12.78 

-9.99 
-12.23 
-11.83 

-10.68 
-12.27 
-12.03 

SE 
0.58 
1.35 
1.63 

0.28 
0.72 
0.46 

0.71 
1.84 

0.50 
1.34 
1.19 

0.71 
1.52 
1.35 

Slope 
Est. 

4491 
11842 

10134 
2485 

8456 

7327 
7767 

7446 
5472 

SE 

1508 
6171 

2892 
744 

4435 

2332 
2984 

3566 
2707 

x2 

8.64 
3.97 

12.78 
8.64 

4.52 

13.33 
7.83 

4.85 
3.93 

F-value 

0.003 
0.05 

0.0003 
0.003 

0.03 

0.0003 
0.005 

0.03 
0.05 

AIC 

69.67 
63.01 
67.67 

257.11 
246.21 
250.35 

48.73 
46.20 

89.92 
78.55 
84.06 

48.73 
45.87 
46.79 
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Table D.3: Association of trees colonized by other bark beetles on the locations of trees 
colonized by O. latidens from 2002 to 2005 in a lodgepole pine stand of southern British 
Columbia (Stand D). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

0. latidens 
H. spp. 
P. mexicanus 
P. mexicanus 

0. latidens 
P. mexicanus 
H. spp. 
P. mexicanus 
H. spp. 

0. latidens 
P. mexicanus 
H. spp. 

O. latidens 
P. mexicanus 
II. spp. 

Year 

2002 
2002 
2002 
2001 

2003 
2003 
2003 
2002 
2002 

2004 
2004 
2004 

2005 
2005 
2004 

Intercept 
Est. 

-7.99 
-9.94 
-9.52 
-8.57 

-6.80 
-8.60 
-7.74 
-7.94 
-7.99 

-7.54 
-9.06 
-7.96 

-7.68 
-8.92 
-8.06 

SE 
0.16 
0.72 
0.63 
0.34 

0.09 
0.39 
0.26 
0.32 
0.38 

0.13 
0.55 
0.21 

0.14 
0.57 
0.25 

Slope 
Est. 

8118 
1847 
2592 

1006 
4144 
1410 
5111 

1383 
9783 

1563 
4630 

SE 

2871 
690 

1190 

197 
996 
365 

1523 

457 
3188 

668 
2293 

x2 

8.52 
7.75 
4.72 

28.54 
17.02 
15.69 
11.25 

10.60 
8.64 

5.65 
4.00 

P-value 

0.004 
0.01 
0.03 

<0.0001 
<0.0001 
<0.0001 
<0.00l 

0.001 
0.003 

0.02 
0.05 

AIC 

685.56 
678.58 
679.35 
682.38 

1966.48 
1938.40 
1949.93 
1951.26 
1955.70 

1026.50 
1017.16 
1019.13 

904.78 
900.50 
902.14 
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Table D.4: Association of trees colonized by other bark beetles on the locations of trees 
colonized by O. latidens from 2001 to 2003 in a lodgepole pine stand of southern British 
Columbia (Stand E). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

0. latidens 
P. mexicanus 
H. spp. 

O. latidens 
H. spp 
P. mexicanus 
0. latidens 
P. mexicanus 
H. spp. 

0. latidens 
P. mexicanus 
0. latidens 
P. mexicanus 
H. spp. 

Year 

2001 
2001 
2001 

2002 
2001 
2002 
2001 
2001 
2002 

2003 
2003 
2002 
2002 
2002 

Intercept 
Est. 

-10.39 
-14.74 
-9.40 

-8.74 
-10.68 
-10.03 
-9.29 
-9.78 
-9.95 

-7.74 
-9.96 
-8.59 
-8.37 
-9.00 

SE 
0.45 
1.66 
0.61 

0.20 
0.58 
0.45 
0.29 
0.43 
0.69 

0.12 
0.49 
0.24 
0.23 
0.42 

Slope 
Est. 

38789 
-87536 

23095 
4337 

13334 
12742 
5334 

3323 
4306 
2398 
5554 

SE 

10121 
60254 

5633 
1085 
3950 
4068 
2707 

657 
915 
643 

1652 

x1 

17.81 
4.02 

16.66 
16.33 
9.28 
8.87 
4.48 

27.42 
20.87 
13.30 
13.15 

P-value 

<0.0001 
0.05 

<0.0001 
<0.0001 

0.002 
0.003 
0.03 

<0.0001 
<0.0001 

0.0003 
0.0003 

AIC 

115.91 
100.11 
113.90 

508.61 
493.99 
494.32 
501.37 
501.78 
506.17 

1242.78 
1217.48 
1224.03 
1231.59 
1231.74 
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Table D.5: Association of trees colonized by other bark beetles on the locations of trees 
colonized by O. latidens from 2002 to 2005 in a lodgepole pine stand of southern British 
Columbia (Stand F). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

O. latidens 
P. mexicanus 

0. latidens 
P. mexicanus 
0. latidens 

O. latidens 
P. mexicanus 
P. mexicanus 
0. latidens 

0. latidens 
P. mexicanus 
Ips pini 
P. mexicanus 
0. latidens 

Year 

2002 
2002 

2003 
2003 
2002 

2004 
2004 
2003 
2003 

2005 
2005 
2005 
2004 
2004 

Intercept 
Est. 
-9.54 

-11.76 

-9.00 
-11.26 
-9.95 

-8.13 
-10.39 
-9.89 
-9.26 

-8.30 
-10.18 
-9.01 
-9.87 
-9.27 

SE 
0.30 
0.93 

0.23 
0.86 
0.46 

0.15 
0.56 
0.48 
0.33 

0.16 
0.50 
0.29 
0.53 
0.40 

Slope 
Est. 

16265 

6910 
10273 

2578 
5571 
7017 

4957 
9602 
1865 
2678 

SE 

5206 

2160 
3480 

549 
1255 
1542 

1072 
2624 

548 
907 

x2 

11.51 

14.89 
8.56 

26.55 
25.75 
19.75 

24.31 
13.27 
12.76 
9.08 

P-value 

0.001 

<0.0001 
0.003 

<0.0001 
<0.0001 
<0.0001 

<0.0001 
0.0003 
0.0003 
0.003 

AIC 

233.92 
224.48 

381.82 
369.06 
375.39 

823.98 
799.73 
800.53 
806.52 

708.97 
686.91 
697.96 
698.46 
702.14 
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Table D.6: Association of trees colonized by other bark beetles on the locations of trees 
colonized by O. latidens from 2002 to 2005 in a lodgepole pine stand of southern British 
Columbia (Stand G). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

O. latidens 
P. mexicanus 

0. latidens 
P. mexicanus 
P. mexicanus 

0. latidens 
P. mexicanus 
P. mexicanus 
O. latidens 

0. latidens 
P. mexicanus 
0. latidens 
H. spp. 

Year 

2002 
2002 

2003 
2003 
2002 

2004 
2004 
2003 
2003 

2005 
2005 
2004 
2004 

Intercept 
Est. 

-10.31 
-12.47 

-7.73 
-9.68 
-8.84 

-6.85 
-8.45 
-7.89 
-7.62 

-7.64 
-9.52 
-9.18 
-8.20 

SE 
0.50 
1.43 

0.14 
0.49 
0.33 

0.09 
0.41 
0.28 
0.24 

0.13 
0.44 
0.61 
0.27 

Slope 
Est. 

12433 

2700 
7184 

1125 
1511 
1544 

2503 
1353 
2899 

SE 

6208 

584 
1654 

270 
366 
413 

496 
498 
1111 

x1 

4.20 

22.34 
18.69 

18.13 
17.05 
14.45 

27.04 
7.78 
6.84 

P-value 

0.04 

<0.0001 
<0.0001 

<0.0001 
<0.0001 

0.0001 

<0.0001 
0.01 
0.01 

AIC 

92.49 
90.30 

927.05 
906.84 
910.49 

1996.65 
1980.85 
1981.93 
1984.53 

1003.86 
978.97 
998.23 
999.71 
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Table D.7: Association of trees colonized by other bark beetles on the locations of trees 
colonized by P. mexicanus from 2001 to 2003 in a lodgepole pine stand of southern British 
Columbia (Stand B). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

P. mexicanus 
I. pini 
H. spp. 

P. mexicanus 
0. latidens 
P. mexicanus 
H. spp. 
I. pini 
I. pini 
H. spp. 

P. mexicanus 
I. pini 
H. spp. 
0. latidens 
H. spp. 
P. mexicanus 

Year 

2001 
2001 
2001 

2002 
2002 
2001 
2002 
2002 
2001 
2001 

2003 
2003 
2003 
2003 
2002 
2002 

Intercept 
Est. 

-8.37 
-8.91 
-9.63 

-7.88 
-10.42 
-10.14 

-8.86 
-9.01 
-8.34 
-8.98 

-8.32 
-9.88 
-9.85 
-9.35 
-9.07 
-9.21 

SE 
0.13 
0.23 
0.49 

0.10 
0.48 
0.47 
0.26 
0.32 
0.18 
0.38 

0.13 
0.40 
0.42 
0.31 
0.32 
0.43 

Slope 
Est. 

35863 
6688 

9434 
8669 
9040 

23104 
30580 

5873 

23801 
16023 
6491 
7127 
2142 

SE 

10566 
2397 

1615 
1661 

2038 
5783 
8429 
1856 

5198 
3799 
1571 
2567 

943 

x2 

10.50 
8.21 

42.88 
28.63 
18.92 
16.78 
12.10 
10.47 

22.42 
20.12 
17.70 
7.39 
5.72 

P-value 

0.001 
0.004 

<0.0001 
<0.0001 
<0.0001 
<0.0001 

0.0005 
0.001 

<0.0001 
<0.000l 
<0.0001 

0.01 
0.02 

AIC 

1107.73 
1099.03 
1101.32 

1707.69 
1666.47 
1680.72 
1690.43 
1692.57 
1697.25 
1698.88 

1157.80 
1137.17 
1139.46 
1150.27 
1152.19 
1153.87 

134 



Table D.8: Association of trees colonized by other bark beetles on the locations of trees 
colonized by P. mexicanus from 2000 to 2005 in a lodgepole pine stand of southern British 
Columbia (Stand C). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

P. mexicanus 
H. spp. 

P. mexicanus 
H. spp. 
O. latidens 
H. spp. 
P. mexicanus 

P. mexicanus 
P. mexicanus 
O. latidens 
H. spp. 
O. latidens 

P. mexicanus 
O. latidens 
P. mexicanus 

P. mexicanus 
O. latidens 
P. mexicanus 
O. latidens 

P. mexicanus 
O. latidens 
P. mexicanus 
O. latidens 

Year 

2000 
2000 

2001 
2001 
2001 
2000 
2002 

2002 
2001 
2002 
2001 
2001 

2003 
2003 
2002 

2004 
2004 
2003 
2003 

2005 
2005 
2004 
2004 

Intercept 
Est. 

-9.77 
-11.55 

-8.20 
-10.42 
-8.80 
-8.99 
-8.76 

-8.38 
-9.66 
-9.99 

-10.29 
-8.88 

-9.07 
-10.08 
-9.92 

-9.07 
-10.00 
-10.68 
-10.12 

-9.43 
-11.52 
-11.24 
-10.39 

SE 
0.45 
0.91 

0.20 
0.57 
0.28 
0.32 
0.28 

0.22 
0.41 
0.49 
0.59 
0.30 

0.32 
0.55 
0.50 

0.32 
0.49 
0.70 
0.55 

0.38 
1.00 
0.86 
0.60 

Slope 
Est. 

17106 

11716 
9934 
10103 
6892 

3188 
7902 

10443 
8895 

21436 
2453 

8842 
7106 

21955 

29383 
6498 
9003 

SE 

4442 

2171 
1908 
2163 
1616 

563 
1562 
2340 
2163 

5885 
720 

1841 
1809 
5885 

7742 
1584 
2202 

x2 

12.47 

31.39 
19.69 
16.86 
12.71 

25.39 
23.56 
20.87 
12.30 

12.11 
8.95 

17.76 
16.72 
12.76 

20.02 
19.11 
13.00 

P-value 

0.0004 

<0.0001 
<0.0001 
<0.0001 

0.0004 

<0.0001 
<0.0001 
<0.0001 

0.0004 

0.001 
0.003 

<0.0001 
<0.0001 

0.0003 

<0.0001 
<0.0001 

0.0003 

AIC 

109.67 
99.16 

443.53 
413.93 
425.63 
428.46 
432.61 

377.24 
353.67 
355.51 
358.19 
366.76 

203.48 
193.28 
196.45 

203.48 
187.64 
187.67 
192.63 

148.03 
129.95 
130.86 
136.97 
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Table D.9: Association of trees colonized by other bark beetles on the locations of trees 
colonized by P. mexicanus from 2001 to 2005 in a lodgepole pine stand of southern British 
Columbia (Stand D). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

P. mexicanus 
P. mexicanus 
O. latidens 

Year 

2001 
2000 
2001 

D. murrayanae 2001 
P. mexicanus 

O. latidens 
H. spp. 
P. mexicanus 
O. latidens 

2002 
2002 
2002 
2001 
2001 

D. murrayanae 2002 

P. mexicanus 
O. latidens 
P. mexicanus 
H. spp. 
H. spp. 
O. latidens 

2003 
2003 
2002 
2003 
2002 
2002 

D. murrayanae 2002 

P. mexicanus 
O. latidens 
P. mexicanus 
H. spp. 
O. latidens 

P. mexicanus 
H. spp. 
O .latidens 
O. latidens 

2004 
2004 
2003 
2004 
2003 

2005 
2004 
2005 
2004 

Intercept 
Est. 

-8.59 
-9.23 
-9.12 
-9.65 
-7.23 
-9.00 
-9.06 
-7.90 
-7.58 
-7.66 

-6.44 
-8.84 
-7.62 
-7.36 
-7.48 
-7.27 
-6.73 

-6.92 
-8.61 
-8.08 
-7.33 
-7.80 

-7.23 
-7.61 
-8.40 
-8.32 

SE 
0.22 
0.34 
0.36 
0.64 
0.11 
0.48 
0.49 
0.24 
0.18 
0.25 

0.07 
0.37 
0.27 
0.22 
0.32 
0.27 
0.16 

0.10 
0.36 
0.38 
0.17 
0.41 

0.11 
0.18 
0.41 
0.41 

Slope 
Est. 

13670 
7797 

10388 

4705 
7709 
2951 
5516 
4344 

1901 
1456 
4056 
4490 
2306 
3006 

2891 
663 

4965 
731 

8968 
2400 
1924 

SE 

3959 
3489 
5406 

1156 
1892 
812 

1846 
2070 

267 
306 
834 

1274 
699 

1393 

553 
200 

1566 
318 

2753 
771 
650 

x2 

10.81 
4.51 
3.86 

19.27 
16.60 
13.21 
8.20 
4.24 

54.53 
23.82 
23.26 
12.38 
11.66 
4.51 

27.02 
11.56 
9.88 
5.40 

9.77 
9.17 
8.62 

P-value 

0.001 
0.03 
0.05 

<0.0001 
<0.0001 

0.0003 
0.004 
0.04 

<0.0001 
<0.0001 
<0.000! 

0.0004 
0.0006 
0.03 

<0.0001 
0.0007 
0.002 
0.02 

0.002 
0.002 
0.003 

AIC 

404.67 
395.60 
401.90 
402.55 

1350.92 
1332.65 
1335.32 
1338.71 
1343.72 
1347.68 

2679.99 
2625.27 
2655.99 
2656.54 
2667.42 
2668.14 
2675.29 

1760.75 
1734.48 
1749.84 
1751.52 
1756.00 

1350.92 
1342.15 
1342.75 
1343.31 
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Table D.10 Association of trees colonized by other bark beetles on the locations of trees 
colonized by P. mexicanus from 2001 to 2003 in a lodgepole pine stand of southern British 
Columbia (Stand E). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect Year Intercept Slope % P-value AIC 
Est. SE Est. SE 

P. mexicanus 2001 -9.60 0.30 235.26 
O. latidens 2001 -10.53 0.49 19498 5459 10.13 0.001 227.15 

mexicanus 
O. latidens 
H. spp. 
/. pini 
P. mexicanus 
I. pini 
O. latidens 

2002 
2002 
2001 
2001 
2001 
2002 
2001 

-8.42 
-9.84 

-10.43 
-8.02 
-9.21 
-8.93 
-8.720 

0.17 
0.39 
0.50 
0.20 
0.36 
0.32 
0.23 

6597 
23889 
-38136 
10091 
23242 

8206 

1305 
4811 

15209 
3551 

10901 
3792 

25.55 
24.57 

7.68 
7.40 
4.45 
4.06 

<0.0001 
<0.0001 

0.01 
0.01 
0.01 
0.01 

680.03 
656.53 
657.51 
674.41 
674.68 
677.63 
678.02 

mexicanus 
O. latidens 
H. spp. 
/. pini 
O. latidens 
P. mexicanus 

2003 
2003 
2002 
2002 
2002 
2002 

-7.44 
-8.37 
-8.56 
-7.97 
-7.92 
-7.75 

0.10 
0.28 
0.35 
0.19 
0.20 
0.18 

1905 
4962 

24266 
2630 
1276 

485 
1386 
6660 

811 
570 

15.35 
14.63 
13.02 
9.88 
4.81 

<0.0001 
0.0001 
0.0003 
0.001 
0.03 

1621.76 
1608.56 
1609.28 
1610.89 
1614.03 
1619.10 
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Table D.ll: Association of trees colonized by other bark beetles on the locations of trees 
colonized by P. mexicanus from 2002 to 2005 in a lodgepole pine stand of southern British 
Columbia (Stand F). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

P. mexicanus 
0. latidens 
H. spp. 

P. mexicanus 
O. latidens 
P. mexicanus 
0. latidens 
H. spp 

P. mexicanus 
P. mexicanus 
0. latidens 
0. latidens 
I. p'mi 
H. spp. 
H. spp. 

P. mexicanus 
0. latidens 
I. pini 
P. mexicanus 
O. latidens 
H. spp. 
/. pini 

Year 

2002 
2002 
2002 

2003 
2003 
2002 
2002 
2002 

2004 
2003 
2004 
2003 
2004 
2003 
2004 

2005 
2005 
2005 
2004 
2004 
2004 
2004 

Intercept 
Est. 

-9.23 
-10.36 
-9.88 

-8.33 
-9.67 
-9.79 
-9.21 
-8.65 

-7.23 
-8.26 
-8.20 
-7.91 
-7.50 
-7.47 
-7.63 

-8.1! 
-9.89 
-8.78 
-9.41 
-8.96 
-8.72 
-8.36 

SE 

0.26 
0.54 
0.42 

0.16 
0.38 
0.43 
0.32 
0.24 

0.09 
0.25 
0.23 
0.19 
0.13 
0.13 
0.20 

0.15 
0.45 
0.26 
0.46 
0.35 
0.33 
0.20 

Slope 
Est. 

11687 
32195 

8115 
11499 
9583 
18186 

3483 
2697 
4521 
8529 
7652 
6768 

5689 
9119 
1568 
2394 
7063 
8375 

SE 

3923 
12923 

1707 
2597 
2481 
8470 

684 
530 

1004 
2378 
2476 
2864 

1165 
2386 

484 
816 

3121 
3921 

x2 

8.83 
5.91 

21.78 
20.93 
14.55 
4.33 

29.25 
26.99 
19.38 
10.56 
8.21 
5.48 

27.10 
14.41 
11.20 
8.86 
4.76 
3.79 

P-value 

0.003 
0.02 

<0.0001 
<0.0001 

0.0001 
0.04 

<0.0001 
<0.0001 
<0.0001 

0.001 
0.004 
0.02 

<0.0001 
0.0001 
0.001 
0.003 
0.03 
0.05 

AIC 

308.95 
302.22 
305.14 

692.34 
672.80 
673.65 
680.03 
690.25 

1829.13 
1802.60 
1804.86 
1812.46 
1821.29 
1823.64 
1826.37 

840.23 
815.43 
828.12 
831.33 
833.67 
837.77 
838.74 
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Table D.12: Association of trees colonized by other bark beetles on the locations of trees 
colonized by P. mexicanus from 2002 to 2005 in a lodgepole pine stand of southern British 
Columbia (Stand G). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

P. mexicanus 
0. latidens 
P. mexicanus 
0. latidens 

Year 

2003 
2003 
2002 
2002 

Intercept 
Est. 

-7.38 
-8.56 
-8.19 
-7.67 

SE 
0.12 
0.33 
0.26 
0.16 

Slope 
Est. SE 

2288 548 
5459 1392 
6654 2303 

x2 

18.39 
15.16 
7.72 

/•-value 

<0.0001 
<0.0001 

0.01 

AIC 

1258.95 
1242.75 
1245.99 
1253.43 

H. spp. 2003 -7.71 0.21 6049 3000 3.88 0.05 1257.26 

P. mexicanus 2004 -6.63 0.08 2414.52 

O. latidens 
P. mexicanus 
O. latidens 
H. spp. 
H. spp. 

P. mexicanus 
O. latidens 
O. latidens 
II. spp. 
/. pini 
H. spp 

2004 
2003 
2003 
2004 
2003 

2005 
2005 
2004 
2004 
2004 
2005 

-8.21 
-7.52 
-7.23 
-6.97 
-6.87 

-7.37 
-8.61 
-8.51 
-7.77 
-7.58 
-7.55 

0.37 
0.25 
0.21 
0.16 
0.14 

0.11 
0.31 
0.51 
0.23 
0.16 
0.15 

1389 
1303 
1218 
1795 
4447 

2214 
1018 
2134 
3545 
1454 

301 
328 
366 
672 

2101 

449 
426 
966 

1608 
623 

22.44 
15.76 
11.35 
7.10 
4.33 

23.71 
5.91 
4.87 
4.64 
4.62 

<0.0001 
<0.0001 

0.0007 
0.01 
0.04 

<0.0001 
0.02 
0.03 
0.03 
0.03 

2394.49 
2401.17 
2405.59 
2409.83 
2412.60 

1273.69 
1252.18 
1269.99 
1271.03 
1271.26 
1271.27 

139 



Table D.13: Association of trees colonized by other bark beetles on the locations of trees 
colonized by Hylurgops spp. from 2001 to 2002 in a lodgepole pine stand of southern British 
Columbia (Stand B). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

H. spp. 
P. mexicanus 
P. mexicanus 

H. spp. 
P. mexicanus 
P. mexicanus 
H. spp. 
/. pini 
O. latidens 
I. pini 

Year 

2001 
2001 
2000 

2002 
2002 
2001 
2001 
2002 
2002 
2001 

Intercept 
Est. 

-8.78 
-10.65 
-9.58 

-9.45 
-12.29 
-12.59 
-11.80 
-11.39 
-11.82 
-10.08 

SE 

0.16 
0.72 
0.40 

0.22 
1.16 
1.12 
0.90 
0.80 
1.03 
0.40 

Slope 
Est. 

7248 
19118 

6268 
11765 
12623 
37953 

8887 
40343 

SE 

2562 
7853 

2296 
3790 
4252 

13522 
3466 

17799 

x1 

8.28 
6.39 

10.66 
10.57 
10.20 
8.76 
8.12 
4.65 

P-value 

0.004 
0.01 

0.001 
0.001 
0.001 
0.003 
0.004 
0.03 

AIC 

765.20 
758.78 
760.67 

420.10 
411.37 
411.46 
411.83 
413.26 
413.91 
417.37 

Table D.14: Association of trees colonized by other bark beetles on the locations of trees 
colonized by Hylurgops spp. from 2000 and 2001 in a lodgepole pine stand of southern 
British Columbia (Stand C). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. Significant models are listed in order of best fit for each year. 

Insect 

H. spp. 
P. mexicanus 

H. spp. 
H. spp. 
P. mexicanus 

Year 

2000 
2000 

2001 
2000 
2001 

Intercept 
Est. 

-9.77 

-10.89 

-8.89 
-9.67 
-9.71 

SE 

0.45 

0.72 

0.29 
0.45 
0.47 

Slope 
Est. 

10712 

9970 
2338 

SE 

2971 

3034 
785 

X 

8.96 

8.29 
6.89 

F-value 

0.003 

0.004 
0.01 

AIC 

109.67 
102.67 

239.40 
233.01 
234.41 
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Table D.15: Association of trees colonized by other bark beetles on the locations of trees 
colonized by Hylurgops spp. from 2001 to 2004 in a lodgepole pine stand of southern British 
Columbia (Stand D). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

H. spp. 
0. latidens 

H. spp. 
0. latidens 

H. spp. 
O. latidens 
0. latidens 
P. mexicanus 

Year 

2001 
2001 

2003 
2003 

2004 
2004 
2003 
2003 

Intercept 
Est. 

-10.25 
-12.95 

-9.07 
-11.48 

-10.25 
-15.30 
-16.09 
-15.30 

SE 
0.50 
1.61 

0.28 
1.38 

0.50 
2.51 
3.20 

-3.29 

Slope 
Est. 

40341 

1913 

7705 
4313 
2594 

SE 

16308 

1002 

3230 
2103 
1511 

x2 

8.60 

3.95 

6.47 
5.08 
4.20 

P-value 

0.003 

0.05 

0.01 
0.02 
0.04 

AIC 

91.96 
85.31 

263.74 
261.63 

91.96 
87.45 
88.83 
89.71 
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Table D.16: Association of trees colonized by other bark beetles on the locations of trees 
colonized by Hylurgops spp. from 2002 to 2003 in a lodgepole pine stand of southern British 
Columbia (Stand E). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

H. spp. 
P. mexicanus 
I. pini 
I. pini 

H. spp. 
I. pini 
I. pini 
P. mexicanus 

Year 

2002 
2001 
2002 
2001 

2003 
2003 
2002 
2003 

Intercept 
Est. 

-8.53 
-9.40 
-9.18 
-9.01 

-7.89 
-9.25 
-8.49 
-8.70 

SE 
0.18 
0.38 
0.35 
0.29 

0.13 
0.34 
0.25 
0.46 

Slope 
Est. 

10892 
28507 
27962 

12233 
26986 

1283 

SE 

3740 
11569 
11710 

2346 
8396 

670 

x2 

1.13 
5.96 
5.56 

34.68 
10.14 
3.69 

P-value 

0.01 
0.02 
0.02 

<0.0001 
0.001 
0.05 

AIC 

612.23 
606.55 
608.32 
608.72 

1086.55 
1053.96 
1078.50 
1084.95 

Table D. 17: Association of trees colonized by other bark beetles on the locations of trees 
colonized by Hylurgops spp. from 2003 and 2004 in a lodgepole pine stand of southern 
British Columbia (Stand F). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. Significant models are listed in order of best fit for each year. 

Insect 

H. spp. 
P. mexicanus 

H. spp. 
1. pini 

Year 

2002 
2002 

2004 
2004 

Intercept 
Est. SE 

-11.25 0.71 
-15.02 2.97 

-9.45 0.29 
-10.07 0.41 

Slope 
Est. SE 

24881 15033 

17087 5873 

X P-value AIC 

4.02 

6.15 

0.04 

0.01 

50.99 
48.98 

252.92 
248.84 
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Table D.18: Association of trees colonized by other bark beetles on the locations of trees 
colonized by Hylurgops spp. from 2004 and 2005 in a lodgepole pine stand of southern 
British Columbia (Stand G). The line in bold represents an intercept-only model; i.e., 
modeling a constant density of insects across the stand. Subsequent lines reflect whether the 
location of each listed insect and year provides inference on the location of the insect studied 
relative to this constant density. A positive estimate for a slope reflects positive spatial 
association, while a negative estimate reflects spatial inhibition at a between-tree scale. The 
response variable for each equation is log(A), where A is the estimated density of trees 
colonized per square meter. Significant models are listed in order of best fit for each year. 

Insect 

H. spp. 
I. pini 
D. murrayanae 
P. mexicanus 
H. spp. 

H. spp. 
P. mexicanus 
H. spp. 
/. pini 
0. latidens 

Year 

2004 
2004 
2003 
2003 
2003 

2005 
2005 
2004 
2005 
2005 

Intercept 
Est. 

-9.06 
-9.83 
-9.54 

-10.93 
-9.96 

-9.39 
-12.89 
-8.35 
-8.71 

-10.90 

SE 
0.27 
0.46 
0.36 
0.94 
0.54 

0.32 
1.28 
0.48 
0.40 
0.88 

Slope 
Est. 

10142 
18892 
2605 

14832 

4281 
-12047 

SE 

3668 
6439 
1136 
6445 

1285 
5938 

-36068 20339 
2612 1246 

x2 

7.65 
6.58 
5.47 
4.87 

12.57 
6.02 
5.25 
4.36 

P-value 

0.01 
0.01 
0.02 
0.03 

0.0004 
0.01 
0.02 
0.04 

AIC 

283.63 
278.02 
279.08 
280.19 
280.79 

209.89 
199.35 
205.90 
206.67 
207.56 
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Table D.19: Association of trees colonized by other bark beetles on the locations of trees 
colonized by /. pini from 2001 and 2003 in a lodgepole pine stand of southern British 
Columbia (Stand B). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect Year Intercept 
Est. SE 

Slope 
Est. SE 

X /•-value AIC 

I. pini 2001 -11.35 0.58 
P. mexicanus 2001 -20.12 4.73 29709 14064 6.91 0.01 

76.10 
71.18 

I. pini 2003 -9.81 0.27 
P. mexicanus 2003 -11.84 1.04 6915 3073 6.30 0.01 

304.65 
300.30 

Table D.20: Association of trees colonized by other bark beetles on the locations of trees 
colonized by /. pini from 2002 and 2003 in a lodgepole pine stand of southern British 
Columbia (Stand E). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models arc listed in order of best fit for each year. 

Insect 

/. pini 
P. mexicanus 

I. pini 
H. spp. 
P. mexicanus 
H. spp. 
O. la tide ns 
I. pini 

Year 

2002 
2001 

2003 
2003 
2002 
2002 
2002 
2002 

Intercept 
Est. 

-10.90 
-13.43 

-9.44 
-14.22 
-8.08 

-12.11 
-8.42 

-10.39 

SE 

0.58 
1.58 

0.28 
1.68 
0.52 
1.34 
0.51 
0.59 

Slope 

Est. 

26225 

8929 
-9035 
11037 
-7790 
40096 

SE 

11556 

2654 
4088 
4895 
4116 

18285 

x2 

4.92 

20.89 
9.95 
7.15 
5.25 
4.81 

/•-value 

0.03 

<0.0001 
0.002 
0.01 
0.02 
0.03 

AIC 

73.41 
70.50 

273.33 
254.46 
265.40 
268.20 
270.10 
270.54 
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Table D.21: Association of trees colonized by other bark beetles on the locations of trees 
colonized by /. pini from 2004 and 2005 in a lodgepole pine stand of southern British 
Columbia (Stand F). The line in bold represents an intercept-only model; i.e., modeling a 
constant density of insects across the stand. Subsequent lines reflect whether the location of 
each listed insect and year provides inference on the location of the insect studied relative to 
this constant density. A positive estimate for a slope reflects positive spatial association, 
while a negative estimate reflects spatial inhibition at a between-tree scale. The response 
variable for each equation is log(A), where A is the estimated density of trees colonized per 
square meter. Significant models are listed in order of best fit for each year. 

Insect 

/. pini 
H. spp. 
H. spp. 

/. pini 
0. latidens 
P. mexicanus 
P. mexicanus 
O. latidens 

Year 

2004 
2003 
2004 

2005 
2005 
2005 
2004 
2004 

Intercept 
Est. 

-10.55 
-12.21 
-13.53 

-9.86 
-13.43 
-13.11 
-13.78 
-12.62 

SE 
0.50 
0.99 
1.35 

0.35 
1.57 
1.46 
1.84 
1.31 

Slope 
Est. 

31800 
26674 

10209 
7859 
4183 
6583 

SE 

9467 
8180 

3636 
2850 
1670 
2491 

x2 

9.69 
9.05 

11.81 
10.71 
9.72 
9.25 

P-value 

0.002 
0.003 

0.001 
0.001 
0.002 
0.002 

AIC 

94.43 
86.77 
87.40 

175.77 
166.01 
167.10 
168.09 
168.57 

Table D.22: Association of trees colonized by other bark beetles on the locations of trees 
colonized by /. pini from 2004 in a lodgepole pine stand of southern British Columbia (Stand 
G). The line in bold represents an intercept-only model; i.e., modeling a constant density of 
insects across the stand. Subsequent lines reflect whether the location of each listed insect 
and year provides inference on the location of the insect studied relative to this constant 
density. A positive estimate for a slope reflects positive spatial association, while a negative 
estimate reflects spatial inhibition at a between-tree scale. The response variable for each 
equation is log(A), where A is the estimated density of trees colonized per square meter. 
Significant models are listed in order of best fit for each year. 

Insect 

/. pini 
H. spp. 
H. spp. 
D. mart nyanae 
P. mexicanus 
D. rutin riyanae 

Year 

2004 
2003 
2004 

•2004 
2003 

•2003 

Intercept 
Est. 

-9.91 
-12.13 
-12.66 
-11.23 
-13.03 
-10.55 

SE 
0.41 
1.13 
1.47 
0.87 
1.68 
0.58 

Slope 
Est. SE 

12281 4369 
11209 4608 
12443 5327 
4098 1867 

22986 9209 

x2 

8.95 
8.18 
5.64 
5.45 
4.68 

P-value 

0.003 
0.004 
0.02 
0.02 
0.03 

AIC 

132.86 
125.93 
126.71 
129.24 
129.43 
130.20 
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APPENDIX E 

R statistical code outlining the use of point process models in this thesis. 

1. Read in data 

StandA<-
read.csv("/home/koopmans/Documents/EndemicMPB/StandA/naboundA.csv" , 
header=T,na.string=".") 

2. Establish Boundary 

b o u n d a r y A < - o w i n ( p o l y = l i s t ( x = c ( - 3 , 770, 770, 605, 605, 500, 500, 315 , 315, 
155, 155, 5 5 , 55 , - 3 ) , y=c (50 , 50, 190, 190, 325, 325, 300, 300, 350, 350, 

390, 390, 315, 315))) # each boundary was different and was derived at plot set up 

3. Subset by year and species 

A99<-standA[standA$Att.Year=="i999", ] # Subset all attacks from 1999 

mpbA9 9<-A9 9[A9 9$Att.spp=="MPB", ] # mountain pine beetle (1999) 
ilatA99<-A99 [A99$Att. spp=="iLAT", ] # Orthotomicus latidens (1999) 
imexA9 9<-A9 9[A9 9$Att.spp=="lMEX", ] # Pseudips mexiccinus (1999) 
ipinA99<-A99[A99$Att.spp=="IPIN",] # Ips pint (1999) 
dmurA99<-A99[A99$Att.spp=="DMUR, ] # D. murrayancie (1999) 
hsppA9 9<-A99[A9 9 $Att.spp=="HPOR"|A9 9 $Att.spp=="HRUG"|A9 9 $Att .spp=="HSPP"] 

#Hylurgop,s species (1999) 

4. Create a point process and density surface 

i latA9 9ppp<-ppp(x=ilatA9 9 [ ! ( i s . n a ( i l a t A 9 9$absX)),"absX"],y=ilatA9 9[! 
( i s . n a ( i l a t A 9 9$absY) ) , "absY" ] ,window-boundaryA) # excludes na values, incorporates 
a density #surface for colonization by O. latidens 

i la tA99d<-densi ty .ppp(i la tA99ppp, eps = l) # density measured in 1 x 1 m spacing 

5. Create a homogenous point process of mountain pine beetle attack 

mpbA9 9ppp<-ppp(x=mpbA99[!( is .na(mpbA9 9$absX)),"absX"],y=mpbA9 9 [ ! 
( is .na(mpbA99$absY) ) , "absY" ] ,window=boundaryA) # this incorporates all types of 

#mountain pine beetle attack, strip attack and mass 
#atlack were subsetted to be measured independently 
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6. Create a model of mountain pine beetle attack in 1999 incorporating the location of trees 
attacked by O. latidens in 1999 

ppmMPBilatA9 9<-ppm(mpbA9 9 p p p , - l + i l a t , c o v a r i a t e s = l i s t ( i l a t = i l a t A 9 9 d ) ) 
7. Determine the coefficient estimate, standard error, and AIC value for the homogenous 
model of mountain pine beetle attack 

coef(mpbA99ppm) 
sqrt(diag(vcov(mpbA99ppm))) 
AIC(mpbA9 9ppm) 

8. Compare the homogenous model and the model incorporating O. latidens attack and 
determine its coefficient estimate, standard error, and AIC value 

anova(mpbA00ppm,ppraMPBilatA00,test="Chisq") 
coef(ppmMPBilatAOO) 
sqrt(diag(vcov(ppmMPBilatAOO))) 
AIC(ppmMPBilatAOO) 
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APPENDIX F 

Study of the effect of Pseudips mexicanus on host selection behaviour of Dendroctonus 

ponderosae in cut bolts using no-choice bioassays in the laboratory 

INTRODUCTION 

Epidemic-level mountain pine beetle Dendroctonus ponderosae (Hopkins) are 

believed to land at random and sample the host to determine its suitability for reproduction 

(Hynum and Berryman 1980, Raffa and Berryman 1982, Pureswaran and Borden 2003). 

Random landing may be a successful method of host searching for mountain pine beetle at 

epidemic levels, as host defenses can be overcome by the attraction of conspecifics through 

aggregation pheromones (Geiszler et al. 1980a, Wood 1982a, Raffa and Berryman 1983). 

However, endemic level mountain pine beetle likely cannot rely on the help of mass attack by 

conspecifics to overcome the defenses of healthy trees, potentially making random landing 

energetically unfavorable. 

Endemic-level mountain pine beetle may rely on secondary bark beetles for the 

establishment of populations capable of mass attacking trees (Carroll et al. 2006; Chapter 3). 

Host trees that also may be suitable for endemic level mountain pine beetle are potentially 

stressed by drought events, windthrow, root disease, and/or fire damage (Geiszler et al. 

1980b, Tkacz and Schmitz 1986). 

The different physiological conditions of hosts utilized by epidemic and endemic 

beetles, in concert with the sheer differences in population numbers, suggest that mountain 
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pine beetle may rely on different host-seeking behaviour at different population densities. 

Mountain pine beetle at epidemic levels have been shown to use host volatiles in a synergistic 

manner with aggregation pheromones to locate potential host trees (Borden et al. 1998). 

Furthermore, volatiles of non-hosts have been shown to disrupt host-seeking behaviour 

(Borden et al. 1998, Huber et al. 2000, Huber and Borden 2003). Therefore, endemic 

mountain pine beetle may also be capable of utilizing volatiles emanating from potential 

hosts to locate trees which are most suitable for reproductive success. 

I propose that at the endemic level, mountain pine beetle orient toward trees which 

have been previously infested with secondary bark beetles, or may be more likely to accept 

hosts that have been partially colonized by another species of bark beetle. In light of recent 

work indicating a close relationship between mountain pine beetle and Pseudips mexicaniis 

(Hopkins) (Carroll et al. 2006), only one known assay has been conducted involving P. 

mexicaniis related volatiles or pheromones as a primary attractant (Smith 2008). Smith found 

little response by mountain pine beetle to pheromones of P. mexicaniis, but endemic 

mountain pine beetle appear to benefit from associations with this insect (Smith 2008). 

In the present study, mountain pine beetle was introduced to lodgepole pine hosts, 

either colonized or uncolonized previously by P. mexicaniis, in a no-choice assay. Some 

mountain pine beetle were starved to simulate endemic conditions, while other mountain pine 

beetle were fed prior to lab assays to simulate epidemic conditions. My hypothesis is that 

females of "endemic" mountain pine beetle will accept bolts previously colonized by P. 

mexicamts more readily than well-fed "epidemic" beetles. These results may lend information 
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on the host acceptance behaviour of endemic level mountain pine beetle. 

METHODS 

Lodgepole pine trees used for host material were harvested from Telkwa, British 

Columbia. Trees lacked recent exposure to epidemic populations of mountain pine beetle and 

were obtained from healthy pine stands free of mountain pine beetle and secondary bark 

beetle attack, as well as any signs of infection. Trees were selected on the basis of similar 

growing conditions, health, vigour, and had a diameter at breast height of between 28 and 33 

cm (dbh). The cut ends of all sections were sealed with hot parafin wax post-harvest to 

prevent desiccation of the phloem tissue. 

Mountain pine beetles used in the host selection trials were obtained from colonized 

lodgepole pine trees harvested near Smithcrs, British Columbia. Trees contained teneral 

mountain pine beetle adults as well as late instar larvae. The colonized pine bolts were 

placed in emergence containers in a controlled environmental held at 22°C. Emerging beetles 

to be used in assays were collected daily and separated based on sex (Lyon 1958). Insects 

were stored at 7-8°C and were supplied with fresh pine phloem and moistened Kimwipes© 

until used in experimentation, at which point beetles simulating "endemic" populations were 

starved for a period of 48 hours prior to testing. "Epidemic" beetles were able to feed up 

until the point of experimentation. 

Healthy, uninfested lodgepole pine logs were cut into ~30cm bolts and waxed on the 

ends to prevent desiccation over the course of experimentation. Treatment bolts were infested 

with P. mexicanus at a density of approximately 8 attacks/m2. Pseudips mexicanus were 
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collected in Lindgren funnel traps baited with a combination of racemic ipsdienol and ipsenol 

bubble cap lures (Savoie et al. 1998; Smith et al. 2009) obtained from Contech Inc., Delta, 

British Columbia. Male P. mexicanus were inserted into holes drilled in the bark and beetles 

were left overnight. Once all males had successfully entered and frass was visible at each 

hole, two female P. mexicanus specimens were introduced to each entrance hole. Bolts were 

kept at 24-25°C for ten days after female P. mexicanus introduction. Bolts were placed in test 

cages approximately ten hours prior to release of test mountain pine beetles at 4pm Pacific 

Standard Time. 

Host selection trials were conducted in the I.K. Barber Enhanced Forestry Labatory at 

the University of Northern British Columbia, Prince George, British Columbia, in a regulated 

environment free from competing volatiles, and inaccessible to external specimens. Mesh 

cages two by two by four feet were used as experimental arenas. The experiment was 

conducted in a 2 x 2 factorial design with endemic and epidemic populations of beetles, and 

treated and control bolts, with treated bolts containing colonization by P. mexicanus. There 

were seven replicates for each treatment, for a total of twenty-eight bolts. Ten starved 

(endemic) or unslarved (epidemic) female mountain pine beetles were introduced to the 

center of each cage, approximately 55 cm from experimental bolts at the end of the enclosure. 

Female mountain pine beetles were left overnight and cages checked thoroughly the 

following morning. Experimental bolts were subsequently placed in sealed containers until 

further examination. Examination of bolts included a summary of beetles in the container, 

any apparent entrance and exit holes on the bark of each bolt, and finally a thorough 

151 



examination of the galleries under the bark of each bolt. 

RESULTS AND DISCUSSION 

No significant differences could be determined between starved or unstarved beetles 

and whether or not they chose to enter a host with the number of replicates conducted in this 

study. However, a trend in the data was noted. Although there appeared to be no difference 

in the number of starved beetles beetween control and treated hosts, unstarved beetles 

appeared to enter hosts with P. mexicanus less often than control hosts (Table E.l). This may 

indicate that starved or endemic level beetle may be less discriminatory in the hosts they 

colonize, compared to well-fed or epidemic beetles. Further replication may yield significant 

results suggesting that beetles with higher lipid content are more likely to avoid or reject 

hosts with secondary colonization in favour of hosts without other species present. 

Table F.l: Number of female mountain pine beetle, found in uninfested (control) or infested 
(P. mexicanus) lodgepoie pine bolts (n=lO insects introduced). Starved mountain pine beetle 
were used to simulate endemic conditions, and unstarved beetles were used to simulate 
epidemic conditions. There were seven replications of each treatment. 
Treatment type Starved D. ponderosae (SE) Unstarved D. ponderosae (SE) 
Control 7.14 (0.34) 6.14(0.86) 
P. mexicanus 6.42 (0.72) 4.42 (0.95) 
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