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ABSTRACT 

Natural disturbance is predicted to increase in Canadian forests as the climate 

continues to change. This will trigger an increased variability, and therefore uncertainty, 

in the supply of ecosystem services from forests. I used social-ecological systems 

theory to develop a forest management approach that recognizes and incorporates 

spatial and temporal dynamics. Social-ecological approaches integrate the role of 

people in ecosystems. This approach focuses on the maintenance of social and 

ecological resilience to change as the main management objective. I developed a 

structured framework that examines a resource system's social and ecological 

dynamics and the supply of provisioning and regulatory ecosystem services. Systems 

modelling was used to capture the overall behaviour of forest resources in the 

Cranbrook timber supply area and as a foundation for developing scenarios that 

identified a range of future ecosystem conditions. I then used spatio-temporal simulation 

models to capture a range of future environmental and social conditions, including 

climate change. Natural disturbance was implemented to reflect historic variability. The 

supply of ecosystem services, under all scenarios, oscillated through time driven by the 

interaction of natural disturbance and forest management, making a constant supply 

unattainable. A sustainable timber supply is possible if harvest levels are lower than 

those currently prevailing; suitable habitat for grizzly bears can be sustained at high or 

low levels depending on road densities and access rules. A social-ecological approach 

is well suited to understanding drivers of change, sources of uncertainty, and in 

managing the supply of ecosystem services from dynamic ecosystems. 
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CHAPTER 1 

General Introduction 



Background 

The intent of forest management in British Columbia (BC) is to plan for a consistent 

supply of timber while providing for other ecosystem services (Province of BC 2007). 

The current mountain pine beetle (Dendroctonus ponderosae; MPB) outbreak and the 

anticipated changes in climate (IPCC 2007) undermine the ability of resource 

professionals and policy makers to maintain expected levels of services using current 

forest management approaches (Carpenter 2003, Foike et al. 2004, Walker and Meyers 

2004, Adger et al. 2005, MA 2005, Hobbs et al. 2006, Williamson et al. 2009). This 

anticipated shortfall provides the impetus to develop a new approach that integrates 

landscape dynamics and ecological resilience into forest management. 

Landscape dynamics, the maintenance of ecological values, and timber production all 

have social and ecological components. Thus, we require a new approach for forest 

planning that captures those two, sometimes competing elements. Social-ecological 

systems theory can provide the foundation for such an approach. A social-ecological 

system is characterized by resilience, adaptability and transformability (Walker et al. 

2004). When managing such a system the goal becomes not only to provide a 

sustainable supply of ecosystem services, but also to explicitly account for the social 

and ecological dynamics that may beset them. 

Social-ecological systems theory views resource management as the integration of 

natural and human dynamics and the capacity of the system to respond to change while 

maintaining its defining functions and structures (Holling 1973, Gunderson and Holling 

2002, Drever et al. 2006). In this context, resilience represents the ability of ecosystems 
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to maintain their defining features and processes following natural and human 

disturbance. Adaptability is the capacity of the ecosystems, species and human actors 

in the system to adjust to both ecological and social change. Transformability is the 

ability of the system to transform from its current configuration to a different 

configuration. The transformation is triggered when the resilience and adaptability to 

disturbance is overcome and a new system emerges, organized around a different set 

of defining structures, functions and controls (Walker et al. 2004). 

In this chapter, I introduce the foundational ideas for developing a social-ecological 

systems approach to forest resource planning. This includes an overview of complex 

systems theory, and the related concepts of resilience and adaptive cycles. Following 

an overview of the conventional resource management paradigm I provide an 

introduction to an alternative social-ecological systems-based approach. I end the 

chapter with a description of the thesis goal and objectives. 

Complex Systems Theory 

Until the early 20th century, science viewed the universe as a machine, governed by the 

basic laws of determinism, with man as a separate entity on the outside. The theories of 

relativity and quantum mechanics were seen as corrections to classical theory. People 

moved from being impartial observers, to being part of the description of nature 

(Prigogine 1986). At the same time, the second law of thermodynamics was being 

reconciled with the disorder of entropy. There were questions of how creative processes 

were to be reconciled at higher orders of organization, such as biological evolution. The 

second law was valid for a closed system; however, it became evident that there was an 
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"entropy flow" in open non-equilibrium systems, where there was interaction with the 

environment (Capra 1996). The entropy of internal systems decreases, as energy is 

consumed from an external environment and the entropy of the external environment 

increases with the conversion of energy. Over time, this results in the destruction of pre­

existing order, as sub-systems move towards equilibrium. This awareness led to a new 

model: one based on the world being complex; that emphasized the duality of 

destruction and creativity inherent in natural, "open" systems (Prigogine 1986). 

This open systems view was buttressed by contemporary experiments in chemistry and 

physics. They concluded that when physical or chemical systems are far from 

thermodynamic equilibrium, unexpected structures and patterns emerge. Prigogine 

(1986) termed these as "dissipative structures": when simple chemical reactions acquire 

complex, "emergent" behaviour. These observations prompted future studies of 

complex systems to integrate a system's history, its elements, relations, evolution, and 

overall behaviour. 

Complex systems theory has its roots in physics, ecology and Gestalt psychology and a 

common theme is the duality of reductionism and holism (Capra 1996). Complex 

systems are typically defined as systems the behaviour of which is not fully explained by 

an understanding of their parts (Gallagher and Appenzeller 1999). Deconstructing a 

system and analysing its constituents destroys the organized relations between the 

parts. Typically, a complex system's parts are coupled in a non-linear way. They are 

characterized by feedback loops; they are open, with their boundaries difficult to 

determine; they have a history, where past system states influence future states; they 
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may be nested, with higher levels of organization made up of constituent sub-levels; 

and they have emergent properties. Analysis and synthesis describe a system at 

different scales. Analysis assumes that a system is a bounded unit that can be 

described, whereas, synthesis views not the parts, but their interactions and context 

(Ritchey1996). 

Richardson et al. (2001) state that one of the shortcomings of systems theory is that it 

tries to be a theory of everything. The result is that it becomes unbounded and open 

ended, making it difficult to conduct analysis and to operationalize. Solutions and 

methodologies to describe complex systems are themselves emergent. They are 

dependent on the frames of reference of the actors involved, and the context of the 

problem being investigated. What is developed is not easily transportable to other, even 

similar, systems (Richardson et al. 2001). 

Complex systems can be better understood through analogy. Hypotheses can be 

formulated about the fundamental principles that a system must satisfy in order to 

perform. It is not a description of its components, but a description of its actions. The 

interactions of a spruce budworm (Choristoneura fumiferana) cycle and moose (Alces 

alces) browsing provide an example of a complex system. A spruce (Picea sp.) forest 

may be defoliated by spruce budworm, killing the trees. As the forest begins to recover, 

trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) tend to 

dominate the forest, representing a different ecological state. Moose selectively browse 

the deciduous trees, suppress their growth and regeneration and thereby facilitate the 

re-establishment of conifers; this leads to a mature spruce forest again (Ludwig et al. 
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1978). The spruce and the birch-aspen forest are two alternative ecological regimes. 

The forest oscillates between each regime based on the actions and adaptability of 

spruce budworm and moose. In contrast to conventional analysis - that focuses on only 

one component of a system - complex systems theory provides a perspective to 

describe and analyse the dynamics of a system. 

A social-ecological system is a type of complex system with defining structures and 

functions: it is made up of ecological, social and economic domains. Viewing the 

ecological processes and human activities - responsible for future forest condition and 

ecosystem services - as a linked social and ecological system, provides insights into 

their complex dynamics. This approach assists in understanding the consequences of 

actions and sources of uncertainty (Carpenter et al. 2001, Peterson et al. 2003a). A 

complex system can be characterized by a set of state variables that reflect the status 

of its elements, or structures of interest, and its processes, or functions (Walker et al. 

2004). A complex system has the following properties (after Snowden and Boone 2007, 

and Campbell et al. 2009): 

parts (e.g., trees, animals) and processes (e.g., growth, succession, 

disturbance, species dispersion), that interact with one another and their 

environment over multiple scales of time and space; 

feedbacks that can be amplifying (positive), or dampening (negative); 

non-linearity, where minor changes can produce disproportionally large 

unpredictable changes; 

memory, where past system states influence the current and future 

configurations of the system (e.g., propagules); and 
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a pattern of the global system, that emerges solely from the numerous 

interactions among lower level components, without being guided by an 

external higher level source. 

A description of a social-ecological system not only includes the components and 

dynamics within domains, but also their interactions, feedbacks, memory and states. It 

is best portrayed by assessing the attributes of resilience, adaptability and 

transformability (Walker et al. 2004). 

Resilience 

Ecological resilience theory emerged from complex systems theory in the early 1970s 

(Holling 1973). The concept of resilience incorporated aspects of complex systems 

theory including, a systems view of ecosystems, an understanding of the relationships, 

as well as the parts of ecosystems, nested levels of organization, and feedbacks 

between processes and scales through space and time. In the ecological literature the 

concept of resilience has multiple meanings (Drever 2006, Brand and Jax 2007). 

However, within the context of social-ecological systems theory, it is considered to be 

the ability of a system to maintain its defining structures, functions, identity and 

processes (Carpenter et al. 2001). As an example, forest-dependent wildlife have 

evolved to exist in a landscape with specific structural and functional characteristics, 

and are maintained by natural ecosystem dynamics (Bunnell 1995, Wong et al. 2003). 

The system's resilience would be dependent on the maintenance of those ecosystem 

dynamics, and the resulting pattern and age of vegetation. In a human exploited forest, 

the resilience of the system includes the capacity of the forested ecosystems to 

maintain their defining structures and processes, despite the additional disturbances 
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prescribed by forest management. Resilience has three defining properties: (1) the 

amount of change a system can go through and still retain the same controls, structure 

and function, (2) the capacity of the system to self-organize around new controls, and 

(3) the degree to which the system can learn and adapt (Carpenter et al. 2001). 

In contrast to ecological resilience (Holling 1973, Carpenter et al. 2005), an engineer's 

view of resilience is characterized as being the capacity of a system to return to its 

equilibrium state after a perturbation (Peterson 1998), such as a rubber band returning 

to its original form after being stretched. This interpretation of resilience is focused on 

the state of the system. Alternatively, ecological resilience focuses on the processes of 

change and the maintenance of relationships, incorporating natural fluctuations in 

ecological expression. Ecosystems can exhibit engineered resilience, being resistant to 

change, as well as the flexibility to change typified by ecological resilience. Ecosystems 

may exhibit a particular state or 'ecological regime' as characterized by a consistent set 

of traits (Lewontin 1969); however, there is always some level of variation across space 

and time. From a complex systems perspective, a system that tends towards a stable 

configuration is characterized as having an "attractor", and this part of the state space 

behaves as a "basin of attraction". The system could be continually in motion within its 

basin of attraction driven by, for example, stand level ecosystem dynamics. These 

ecological and engineering views of resilience reflect differences in world views. An 

engineer's resilience is a more classic scientific view and would see the world and its 

natural systems in equilibrium, and any departure would be undesirable and temporary 

and controllable. An ecological resilience perspective would recognize the relationships, 

dynamics and fluctuations of a system as being part of its overall behaviour. 
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Ecosystems do not remain in one particular state through time, but through succession, 

disturbance, and a variety of dynamic landscape processes potentially assume different 

states. This concept of "multiple stable states" is central to resilience theory with 

ecosystems potentially transitioning between several basins of attraction (Gunderson 

2000, Scheffer et al. 2001, Beisner et al. 2003, Walker et al. 2004). Resilience 

considers the amount of disturbance or perturbation that a system can withstand before 

changing between these alternative stable states (Carpenter et al. 2001). For example, 

a wildlife system could be characterized by a dominant ungulate, and the extent, pattern 

and structure of old forest. A combination of those conditions would describe the 

system's state at a particular time. Specific human or ecological processes may 

maintain a system in a particular state or configuration. For example, a system 

dominated by woodland caribou (Rangifer tarandus caribou) may be converted to an 

alternative moose state, by either wildfire, timber extraction or road construction, and 

then may be maintained by industrial forestry activities for a period of time. Alternately, 

the system could convert back to a caribou dominated state. 

Adaptive Cycle 

A key component of social-ecological systems theory is the concept of the adaptive 

cycle (Figure 1-1; Gunderson and Holling 2002). Systems are driven by forces of growth 

and reproduction, for example, an increase in forest biomass as trees grow. Similarly, 

systems are propelled by novelty such as wildfires that disturb forests and facilitate the 

growth of different tree species. An adaptive cycle suggests that systems do not 

necessarily tend towards equilibrium, but instead cycle dynamically. Gunderson and 

Holling (2002) state that systems go through four stages: growth and exploitation (r), 
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conservation (K), release or collapse (a), and renewal and reorganization (Q). The first 

two stages of growth and conservation are slow and are termed the front loop, and it is 

during these first stages where efficiency is maximized. The second two stages, or back 

loop, are typically much quicker, as the system reorganizes and provides the foundation 

Figure 1-1. Stylized drawing showing four phases of the adaptive cycle: exploitation or 
growth, conservation, release, and reorganization (r, K, a, Q). The arrows between the 
phases represent time; longer arrows represent the shorter periods during the 
conservation, release, and exploitation phases. The short arrows represent the longer 
period between the exploitation and conservation phases. Novelty entering the system 
is represented by the break in the loop in the reorganization phase. The loop can exit 
during reorganization, if the system undergoes a regime shift. (Gunderson and Holling 
2002). 

for system novelty to enter the cycle. The adaptive cycle reflects the apparent long-term 

stability of a system, as well as the periodic catastrophic upheavals that occur. The 

constant renewal and reorganization of a system is a reflection of its resilience through 
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its capacity to adapt, change, and yet maintain processes that lead to its renewal 

(Gunderson and Holling 2002). 

The disturbance ecology of the boreal forest provides an example of the four stages of 

an adaptive cycle. Forest growth and succession reflect the front loop of the adaptive 

cycle, where biomass accumulates. Here, the system is highly resilient initially and is 

capable of absorbing a range of disturbances, both at the stand and landscape scale, 

without becoming fundamentally altered. However, as the forest matures and becomes 

more highly connected, there is an increase in biomass; it becomes more vulnerable to 

being drastically altered by landscape disturbance, although the forest may be able to 

rebound from stand-scale disturbance (Drever et al. 2006). Under the back loop - or 

release and reorganization phase - external forces, such as defoliating insects or 

wildfire, overwhelm the organization of the forest. This leads to a loss of mature canopy 

cover, and as the forest reorganizes novelty enters the system with different vegetation 

and wildlife occupying the landscape (Drever et al. 2006). 

Conventional Approach to Forest Management 

Modern forest management aims to provide a relatively constant supply of ecosystem 

services, as they produce economic benefit, ecosystem health and human well being. 

Such ecosystem services include: provisioning (timber, non-timber products, wildlife and 

a clean supply of drinking water), cultural and regulatory services (biological 

conservation and hydrological balance) (MA 2005). However, conventional approaches 

to forest management are challenged with the task of maintaining historic levels of 

service (MA 2005, Puettmann et al. 2009). A major contributing factor to this challenge 
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is the assumption of environmental and economic certainty that underlies current 

practices. Little flexibility is provided in management plans to accommodate unforeseen 

events, be they catastrophic natural disturbance, or the results of incomplete knowledge 

of how forestry activities may impact ecosystems (Hunter 1990, Holling and Meffe 1996, 

Utzig and MacDonald 2000, Robinson 2004). 

Forest practices have led to a homogenization of forest composition, pattern and 

structure, compared with historical conditions that were shaped by natural ecological 

processes (McRae et al. 2001). Further, harvesting has become more common than fire 

in many Canadian forests (CCFM 2010). The reduction of natural ecosystem processes, 

such as fire and regeneration, has led to an increased susceptibility to catastrophic 

disturbance, and has contributed to a declining capacity of forests to provide a 

consistent supply of ecosystem services (Bergeron et al. 2002, Kuuluvainen 2002, 

Dreveretal. 2006). 

Social-Ecological Systems Approach to Management 

Resource management based in social-ecological systems theory has emerged as an 

alternative that addresses the challenges faced by the conventional approach in dealing 

with social and ecological dynamics (Gunderson and Holling 2002, Walker et al. 2004). 

Developing different ways of managing resources is becoming urgent, particularly as 

global systems become stressed by factors such as climate change and the disruption 

of natural ecological systems due to human activities (MA 2005). A social-ecological 

approach integrates people with nature (Berkes and Folke 1998). This approach 

recognizes the values ascribed by society to the forested environment, and the physical 
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and biological properties of the system that provide those values. Within a social-

ecological approach, the focus is on recognising and maintaining forest composition, 

pattern and structure, as well as ecosystem processes. 

There are similarities between a social-ecological approach to forest management and 

one that uses historic natural disturbance to guide forest management. Both 

approaches aim to maintain or restore historic composition, pattern and structural 

diversity of forests (Attiwill 1994, Bunnell 1995, Bergeron and Harvey 1997, Angelstam 

1998, Seymour et al. 2002, Drever et al. 2006, Klenk et al. 2009). However, a social-

ecological approach is also concerned with the resilience and adaptability of a system to 

disturbance. Ecosystem processes and their dynamics determine the temporal 

availability, and overall capacity of the system to supply ecosystem services. Further, a 

social-ecological approach considers the interplay between local and regional scales 

that create social and ecological heterogeneity. This recognition of social and biological 

diversity, across space and time, promotes the long-term persistence of ecosystem 

services across landscapes (Peterson 2002, Walker et al. 2002, Drever et al. 2006, RA 

2007a). 

The concepts of resilience and adaptive cycles are used in the social-ecological 

systems approach to interpret the sustainability of ecosystem services. Through this 

approach, services can be better aligned with dynamic ecosystem processes, and still 

be maintained across large areas and through time. A social-ecological system links the 

social and ecological dimensions of ecosystem services. In this context, the resilience of 

the social-ecological system becomes the capacity of forested ecosystems to maintain 
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their defining structures and processes, despite forest harvesting activities. The 

resilience of a social-ecological system is also related to the ability of people to adapt to 

new ecological conditions and still maintain their livelihoods. In a social-ecological 

approach there is more attention to flexibility, both biologically, through the 

encouragement of diversity to better enable forest renewal and reorganization after 

disturbance, and socially, so that expectations of what level of services should be 

available are more aligned with the local ecosystem dynamics. Together, these reflect 

the adaptability of the social-ecological system. Transformation of the system is 

embodied in the understanding of longer-term ecosystem dynamics, accepting that what 

was present in the past is not necessarily going to be in the future, such as forests 

converting to grasslands under climate change. 

Implementing a Social-Ecological Approach to Forest Management 

A social-ecological perspective has been applied to the management of other resource 

systems, including a lake system in Wisconsin, U.S.A. (Peterson et al. 2003b), 

rangeland in Australia (Walker et al. 2002), and forests in Florida, U.S.A. (Peterson 

2002). In these examples of "resilience management", there is a focus on describing 

ecosystems, their dynamics at relevant scales, their dependent social systems, and how 

human action and natural resource use interact. Scenario modelling (Peterson et al. 

2003a) is used to explore a range of plausible futures to assist in understanding the 

relationships between the system's components and the implications of a particular 

management action, or inaction, relative to social-ecological outcomes. Through this 

process, the adaptability of the social-ecological system emerges as the people 

involved in a social-ecological assessment identify the vulnerabilities of the system to 
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various human or natural surprises and prescribe interventions to encourage system 

states more favourable to the continued supply of ecosystem services. 

Thesis Objectives 

The goal of my thesis research is to develop and apply methods for evaluating social-

ecological systems. I will focus on the supply of ecosystem services from dynamic 

forested resource systems and address the following objectives: 

1) Develop a framework for describing dynamic forested resource systems as 

social-ecological systems. The framework will include a description of a 

system's resilience to natural and human disturbance events, and its 

adaptability to ecological and social change. 

2) Define a set of scenarios that describe a range of possible future social and 

ecological conditions for a resource system that will serve as a case study. 

3) Implement a set of simulation experiments to model the social and ecological 

processes of a resource system. 

4) Quantify and compare the ecosystem services resulting from each defined 

scenario. 

The Cranbrook timber supply area in southeastern BC will be used as the land base for 

demonstrating the framework and scenario analysis. Across that area, timber supply 

and coarse- and fine-filter biodiversity will be assessed. The response variable for 

timber supply will be the volume of wood available for harvest through time, and 

growing stock. I will use the area of old forest by ecosystem grouping and the area of 

natal habitat for grizzly bear (Ursus arctos) as an index of coarse- and fine-filter 

biodiversity, respectively. 
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Organization of Thesis 

The thesis is organized into four chapters. This chapter introduced the objectives of the 

thesis, and provides an overview of the foundational concepts and theoretical context 

for developing a social-ecological systems framework to describe forest management. 

Chapter two addresses the first and second thesis objectives, where I develop a 

framework and accompanying scenarios for describing forest ecosystems and 

management as a social-ecological system. In the third chapter I pursue the third and 

fourth objectives, through an analysis and assessment of a set of scenarios that 

embody the main forces and uncertainties of ecological and social change in the 

Cranbrook study area. In the final chapter I synthesize the findings of the research and 

discuss the utility of the approach for evaluating a social-ecological system, its 

resilience to natural and human disturbance, and the uncertainty associated with the 

supply of ecosystem services. 
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CHAPTER 2 

Scenario composition: considering natural resource management as a social-

ecological system 



Introduction 

There has been a recent increase in extreme natural disturbance events: flooding in 

Pakistan (Khan et al. 2010); bleaching of coral reefs in Australia (Hoegh-Guldberg 

1999); and insect outbreaks in western Canada (Eng et al. 2005, 2006, Safranyik and 

Wilson 2006). These disturbance events threaten agriculture, marine and forest 

resources, as well as put human lives and infrastructure at risk (Carpenter 2003, Walker 

and Meyers 2004, Adger et al. 2005, Folke et al. 2004, MA 2005, Hobbs et al. 2006, 

Williamson et al. 2009). Large-scale disturbance events are expected to increase as the 

climate continues to change (Emanuel 2005, Hoegh-Guldberg et al. 2007, IPCC 2007, 

Williamson et al. 2009). Conventional management paradigms are unprepared to deal 

with the impacts of large-scale catastrophes relative to the provisioning of ecosystem 

services (Folke et al. 2004). Even before the onset of recent extensive natural 

disturbance events, there were questions regarding the ecological sustainability of 

conventional approaches to management (MA 2005), particularly how suitable they 

were to managing dynamic ecosystems (Gunderson and Holling 2002, Drever et al. 

2006, Lindenmayer et al. 2008, Puettmann et al. 2009). 

Conventional approaches to resource management implement strategies intended to 

maximize the return of specific commodities, while striving to minimize impacts on non-

commodity ecosystem services (Holling and Meffe 1996, Scheffer et al. 2001, Ludwig et 

al. 2005). There is an assumption of certainty underlying current resource management. 

The premise is that any future disturbance to a resource is controllable, and ecosystems 

can be manipulated to maintain a consistent supply of commodities (Holling and Meffe 
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1996). Based on this assumption, management practices tend to homogenize the 

spatial arrangement of ecosystems and their dynamics to maximize the extraction of 

resources. In pursuit of production efficiencies, this course of action ends in the decline 

of functional, compositional and structural diversity, compromising the capacity of 

ecosystems to recover from perturbation (Chapin et al. 1996, Pastor et al. 1998, Folke 

etal.2004). 

Resource management plans typically forecast a single sequence of events and do not 

evaluate a range of possible futures (Holling and Meffe 1996, Peterson et al. 2003). As 

they are driven by economic and social pressure to provide as much immediate benefit 

as possible, these plans discount the future and the disruptions caused by natural 

disturbance (Holling and Meffe 1996). Resource management regimes have also 

become socially entrenched, and are supported by institutional bodies and regulations 

that are largely maladaptive (Gunderson 1999, Westley 2002). 

Social-ecological systems theory provides a foundation to develop an alternative 

approach to manage resources. A social-ecological systems perspective, based in 

systems theory (Forrester 1961, Gallagher and Appenzeller 1999, Meadows 2008), 

views natural resources within a larger social and ecological context; it describes people 

and the environment as a linked "resource system" (Walker et al. 2004, RA 2007). 

Social-ecological resource planning accepts and anticipates future natural disturbance. 

In an effort to ensure a long-term supply of ecosystem services, interventions are 

prescribed that increase system resilience and adaptability (Walker et al. 2002, 

Peterson et al. 2003, Walker et al. 2004). Therefore, a social-ecological framework is 
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well suited to manage for an unpredictable future (Gunderson and Holling 2002, Walker 

et al. 2002, Berkes et al. 2003, Walker et al. 2004, Folke et al. 2004, RA 2007). 

Scenario planning has emerged as an effective technique to operationalize social-

ecological systems theory (Peterson et al. 2003, MA 2005, Carpenter et al. 2006). Using 

this technique, a range of scenarios is composed that consider the breadth of possible 

social and ecological change. Any single scenario is not a prediction; however, it 

illustrates how specific events may influence the future. Scenario planning exercises are 

appropriate when developing management strategies for dynamic ecosystems with 

uncertain future trajectories (Gunderson and Holling 2002, Peterson et al. 2003, Walker 

et al. 2002, Carpenter et. al. 2006, Campbell et al. 2009). 

There are two main objectives of this chapter. The first is to develop a framework for 

describing dynamic forested resource systems as social-ecological systems. The 

approach is generic and applicable to a range of resource management contexts; 

however, for brevity this paper will focus on the ecology and management of boreal and 

montane forests. The second objective is to define a set of scenarios that describe a 

range of possible future social and ecological conditions of a resource system that will 

serve as a case study. 

The chapter is divided into four sections. The first section outlines the rationale for 

developing a social-ecological framework for describing resource systems. The second 

part provides background on social-ecological system theory and its application to the 

management of forests. The third section introduces the social-ecological framework for 

describing resource systems. Based on the social-ecological framework, the methods 
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for defining a set of scenarios that capture a range of social and ecological drivers of 

change are also presented. The fourth part of the chapter discusses a forest 

management unit in southeastern BC that is undergoing an extreme MPB outbreak 

event, as an example of the social-ecological approach. I conclude with a discussion of 

the utility of the social-ecological framework and the scenario planning approach. 

1. Forest Dynamics and Management 

1.1 Dynamics 

The capacity of a forest to withstand a large-scale disturbance event and effectively 

recover to its pre-disturbance state is strengthened by the functional redundancy and 

response diversity of its ecosystems (Peterson et al. 1998, Bergeron et al. 2002, Diaz et 

al. 2003, Elmqvist et al. 2003, Drever et al. 2006). Ecosystems have a range of species 

that fill the same role, such as burrowers and nitrogen fixers (Brown and Heske 1990, 

Marcot et al. 2002). The loss of any one species is not considered to have an 

overwhelming impact on the ecosystem due to functional redundancy (Folke et al. 

2004). For example, in the Columbia Basin of BC, where agriculture has replaced native 

grasslands, American badgers (Taxidea taxus), burrowing owls (Athene cunicularia) 

and two species of ground squirrels (Urocitellus columbianus, U. Washington/) have 

been extirpated and the ecological role of burrowers has been replaced by different 

species of gophers (Geomyidae), mice (Mus musculus) and voles (Microtus californicus, 

M. canicaudus) (Marcot et al. 2002). However, even though species may fill the same 

functional role, they undoubtedly respond to environmental change differently. The 

interaction of these various responses across scales provides redundancy thereby 

increasing the probability for functional roles persisting post-disturbance or as a 
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landscape's climate shifts. This variability is termed response diversity (Elmqvist et al. 

2003, Campbell et al. 2009). Further, management that encourages landscape 

complexity - multi-scale composition, pattern and structural diversity - can help buffer 

ecosystems against the spread of disturbance (Turner et al. 1998, Puettmann et al. 

2009). 

In most conifer forests, a large portion of ecological complexity is the product of the 

forest's natural disturbance regime -- the rate, extent, severity of disturbance, and the 

post-disturbance biological legacies (Pickett and White 1985, Puettmann et al. 2009). 

For any particular disturbance regime, these characteristics are variable, leading to the 

diversity and spatial arrangement of habitats seen across a landscape (Burton et al. 

2003, Turner et al. 2003). The main natural disturbance agents of the boreal forest are 

fire, insects and windstorms (Suffling and Perera 2004), but other events, such as tree 

diseases, are being increasingly recognized as important drivers of landscape 

composition and heterogeneity (Bergeron 1998). Natural disturbance regimes vary from 

frequent small-scale low-intensity, to infrequent large-scale high-intensity events that 

release and reallocate ecosystem resources, resulting in dramatic changes in 

landscape composition and structure (Shiel and Burslem 2003, Lavigne and Gunnell 

2006). 

The mechanisms that influence various disturbance agents differ. For example, a 

landscape's fire regime is a function of weather conditions, ignition agents, fuel 

availability, and fire suppression (Schoennagel et al. 2004). Fire, driven by weather, 

transforms vegetation and forest community structure. Shifts in weather will influence 
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post-disturbance vegetation establishment, thereby altering community structure (Paine 

et al. 1998, Jasinski and Payette 2005, Mclntire et al. 2005, Johnstone and Chapin 

2006). On the other hand, the mountain pine beetle (Dendroctonus ponderosae; MPB), 

currently impacting large areas of the North American cordillera (Eng et al. 2005, 2006, 

Safranyik and Wilson 2006), has a disturbance regime that is a function of the 

availability of host trees, primarily mature lodgepole pine (Pinus contorta), and of 

weather conditions; mild winters facilitate brood survival (Taylor and Carroll 2004). 

There is geographic variation in the frequency and extent of disturbance across the 

forested regions of Canada. For example, the Montane Cordillera ecozone, the 

mountainous area of western North America, is highly variable, with a fire cycle ranging 

from 30 to 300 years or more (Wong et al. 2003). East of the Montane Cordillera, the 

disturbance rate varies from 50 to 100 years in the west, to 100 to 300 years in Ontario 

and Quebec (Bergeron et al. 2001). In eastern Labrador the fire return interval is much 

longer, at 500 years (Foster 1983). 

In addition to being variable in space, there is extensive temporal variability in the 

disturbance regimes of the boreal forest (Johnson et al. 1998, Bergeron et al. 2001, 

Daniels et al. 2007, Krawchuck et al. 2009, Meyn et al. 2009). The concept of the "range 

of natural variability" (RONV) has been promoted as a tool to more fully characterize 

disturbance regimes (Cissel et al. 1999, Landres et al. 1999, Haeussler and Kneeshaw 

2003). By using the RONV, the focus shifts toward understanding the full dynamics of 

the system, not simply the central tendency of some attribute (Haeussler and Kneeshaw 

2003). However, there remain two core challenges to this approach when applied to 
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forested systems. First, there is no consensus on the time period for describing regional 

stability of disturbance regimes in unlogged forests. Prior to European contact, a 

traditional system of land use practices established by indigenous peoples probably 

played a significant role in determining landscape condition (Suffling and Perera 2004). 

This system was supplanted by an industrial system, where the influence of humans 

more dramatically altered the natural disturbance regime (Suffling and Perera 2004). 

The second challenge is that RONV does not account for disturbance events that are 

subject to cyclical forces that modify the characteristics of a regime (Hunter 1988, Weir 

et al. 2000). For example, fire frequency in western North America is influenced by the 

Pacific Decadal Oscillation (PDO) and El Nino/La Nina ocean temperature oscillations. 

This causes the regional disturbance regime to temporally vary in frequency, extent and 

severity, and at times trigger large regional fires (Turner et al. 1998, Daniels et al. 2007, 

Morgan et al. 2008). This flux throughout the Holocene has led some researchers to 

conclude that, for any landscape in the boreal forest, there is no single characteristic 

disturbance regime (Bergeron etal . 1998). 

Large episodic natural disturbance events play a critical role in forest complexity. 

Through the resetting of successional cycles, these events contribute to the spatial and 

compositional diversity of forests (Turner et al. 1998). Further, they can provide a 

resource pulse (Holt 2008) that can, for a period of time, increase the abundance of 

certain vegetation communities or wildlife food sources. For example, grizzly bear 

(Ursus arctos) populations in southeastern BC increased with an expanded availability 

of huckleberries (Vaccinium spp.): the product of large historic wildfires (McLellan and 

Hovey 1995). 
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Climate change is already altering disturbance regimes, and it is anticipated to have an 

even greater influence on the future dynamics of the boreal and Cordilleran forest 

(Hobbs et al. 2006, Williamson et al. 2009). Current influences include large outbreaks 

of MPB (Taylor and Carroll 2004, Eng et al. 2005, 2006, Safranyik and Wilson 2006) 

and rapid increases of Dothistroma needle blight (Mycosphaerella pini) (Woods et al. 

2006). A number of studies have demonstrated that climate change will influence the 

frequency and extent of wildfire, with increases of up to 100% in expected annual area 

burned (Wotton and Flannigan 1993, Stocks et al. 1998, Flannigan et al. 2005, Li et al. 

2000, Nitschke and Innes 2008, Krawchuk et al. 2009). These studies conclude that the 

chance of fire will increase, due to climate change-driven increases in fire season length 

and fire weather severity. They also suggest that fires will be more volatile and difficult 

to control, as they shift from a mean behavioural regime of surface fires with torching to 

one more frequently characterized by crown fires. Further, due to the longer fire season 

and drier conditions in some forests, these larger more frequent and severe fires will 

undermine the capacity of forest managers to conserve biodiversity, protect the habitat 

of species at risk, and ensure a sustainable supply of timber for harvest. Understanding 

how fire season length and drought incidence will be affected by climate change gives 

insights into how fire regimes may shift spatially. 

1.2 Management 

A fully regulated or so-called "normal" forest has been the underlying objective for 

traditional forest management, where forests are managed to be homogenous stands 

with a uniform age class structure (Puettmann et al. 2009). Managed forests are 

assumed to be at equilibrium: where extreme perturbation is uncommon and 
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undesirable; where risk and uncertainty, related to disturbance events, is minimal 

(Gunderson 2000). This premise of a perfectly engineered and controlled forest 

continues to influence modern forestry practices, although biodiversity, habitat, and 

areas with aesthetic and recreation value are included as constraints to timber 

harvesting (Perry 1998, Bourgeois 2008, Puettmann et al. 2009). 

Under conventional forest management, natural disturbance regimes are altered, 

primarily through the suppression of fires, in an effort to increase the supply of mature 

trees for harvest and to meet conservation objectives. So prevalent is this approach, 

that the area disturbed by harvesting has exceeded that of fire in some jurisdictions 

(Figure 2-1: CCFM 2010). As well, under forest management there is a shift in the 

frequency of disturbance, from a 50 - 500 year return interval for fire, to a 40 -100 year 

return interval for timber harvesting (McRae et al. 2001). By minimizing natural 

ecosystem processes, such as fire and regeneration, there has been an increased 

susceptibility to catastrophic disturbance (Bergeron et al. 2002, Kuuluvainen 2002, 

Drever et al. 2006). For example, land use changes and direct fire exclusion increases 

fuels, and decreases the gap in structure between tree crown and forest floor, and as a 

result, increases the risk of high-severity fires in mixed-severity landscapes (Arno et al. 

2000). Large infrequent events are a dominant component of the disturbance regime 

(Stocks et al. 2002), and are important generators of diversity (Burton et al. 2008). 

However, Ryan (2000) suggests that though fires may have become less frequent, they 

are now more severe, due to the accumulation of dead fuel and increased density of the 

understory, overwhelming the capacity of the forest to recover. Further, in the absence 

of fire, large areas of forest have become older and more susceptible to insect attacks, 
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such as, the current MPB attack in BC (Taylor and Carrol 2004, Eng et al. 2005, 2006, 

Safranyik and Wilson 2006). 

Disturbance 
Harvesting 

- - - Fire 

— I 1 f : i 1 1 

1975 1980 19S5 1990 1995 2000 2005 

Year 

Figure 2-1. Area disturbed by fire and harvesting in British Columbia between 1975 and 
2008 (CCFM 2010). 

The spatial extent, frequency, temporal variability and legacies of disturbance all shift 

when forests are extensively managed. The result is a homogenization of the structure, 

pattern and composition of forests (Pastor et al. 1998, Buddie et al. 2006, Bergeron 

2001, McRae et al. 2001, Kuuluvainen 2002, Lindenmayer and McCarthy 2002). 

Wildfires in the boreal forest create a range of patch sizes, varying from many small, to 
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a few very large openings. Further, there are multiple pathways that a forest could take 

when recovering from a disturbance, which contributes to forest complexity (Turner et 

al. 1998, Lecomte et al. 2006). In contrast, forest management typically harvests 

uniformly sized areas, does not produce the periodic extensive openings that remain 

after large fires, tends to replant with monocultures, and leaves a smaller range of 

species and far less biomass on the site relative to post-fire legacies (Angelstam 1998, 

Elmqvist et al. 2003, Drever et al. 2006, Puettmann et al. 2009). Overall, this spatial and 

temporal homogenization has been implicated in the loss of forest function, response 

diversity, productivity and the abundance of some wildlife species (Peterson et al. 1998, 

Elmqvist et al. 2003, Drever et al. 2006, Campbell et al. 2009). 

Emulating natural disturbance, where past natural disturbance is used as a template for 

forest management, has been suggested as one solution to address the spatial 

homogenization of forests (Hunter 1993, Attiwill 1994, Bunnell 1995, Bergeron and 

Harvey 1997, Angelstam 1998, Seymour etal . 2002, Drever etal. 2006). Under a 

natural disturbance based approach to management, the frequency, size, shapes and 

residual structure of natural disturbance events are mimicked to maintain the structure 

and patterns on the landscape that are consistent with historic RONV (Hunter 1993, 

Attiwill 1994, Kneeshaw et al. 2000, McRae et al. 2001, Bergeron et al. 2002, Haeussler 

and Kneeshaw 2003, Drever et al. 2006). 

There are, however, several issues that compromise the implementation of natural 

disturbance based forestry management. For example, it is difficult to emulate large 

complex processes, such as natural disturbances (James and Norton 2002), where fire 
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frequency and size are extremely variable within a landscape (Gill and McCarthy 1998). 

As well, there is little agreement on what would constitute a historical disturbance 

regime (Suffling and Perera 2004). Interpreting past disturbance is confounded by 

recent disturbance erasing evidence of former events (Morgan 1994). Further, 

emulating large fires may be difficult to accept by society. Overall, a natural disturbance 

based approach would result in a loss of timber supply (Binkley 1997). In response to 

these criticisms, the "triad" approach to forest management has been proposed (Hunter 

1990, Seymour and Hunter 1992, Messier and Kneeshaw 1999). Essentially, it zones 

the forest into areas of intensive forestry, ecological reserves, and areas designated for 

multiple use; the matrix of the triad is managed according to natural disturbance based 

principles (Lindenmyer et al. 2006). However, with neither of these approaches 

extensively tested, there remain questions as to their efficacy to produce the complexity 

generated by natural processes (Buddie et al. 2006). 

Along with the normal forest method, there are two long-term temporal issues that 

natural disturbance based and triad approaches do not address effectively. The first is 

the shifts in landscape processes historically observed and anticipated with climate 

change that undermine the ability for managers to infer future disturbance regimes 

(Hunter 1988, Bergeron et al. 1998, Emanuel 2005, Williamson et al. 2009). In many 

forest management regimes, the periodicity of disturbance has been truncated by using 

a single reconstruction of disturbance history as the basis for estimating timber losses 

from natural disturbance. It is common for potential losses to the forest, due to fire, 

insects or pathogens, to be based on the last 50 years of forest inventory records 

(BCMFR 2007). Limiting forest management to recent time periods ignores longer term 
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dynamics driven by processes such as ocean-atmospheric oscillations, even though the 

signature of the PDO is evident in dendrochronological records of tree ring scars 

caused by fire and insect outbreaks (Bergeron et al. 1999, Weir et al. 2000, Daniels et 

al. 2007, Morgan et al. 2008). Using recent time periods serves the assumption that the 

recent past is the most suitable predictor of the future. In response to the limitations of 

using a short time frame for assigning management rate and extent of harvest, there 

has been greater effort to reconstruct longer term disturbance regime dynamics 

(Daniels et al. 2007). Despite these efforts, forest management plans predominantly 

prescribe a relatively consistent range of fire size and frequency to inform rates of cut 

and size of harvesting units. Assuming that an area's disturbance history can be 

described with a single prescription is consistent with the expectation that a managed 

forest should be homogenous and is at equilibrium, despite the research to the contrary. 

At the stand scale, the equilibrium assumption made by forest managers is evident in 

estimates of timber yield. The volume of timber that is harvested in the short term is 

dependent on the long-term availability of trees for future harvest. However, it is 

assumed that replanted trees are to grow in a predictable manner, with only as much 

mortality or disturbance-based losses as prescribed by the recent disturbance history 

(Puettmann et al. 2009). As a result, forest management can end up prescribing rates of 

harvest that are based on only one temporal disturbance and growth pattern from recent 

history, instead of incorporating the temporal dynamics and variability that are evident in 

the dendrochronological record. 
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The second temporal issue that undermines the normal and natural disturbance based 

planning approaches is the incidence and impact of large infrequent disturbances. 

Current management, in whatever form, focuses on one prescriptive future as the basis 

for rate, extent and pattern of harvesting. Typically, there is no flexibility to integrate 

large episodic events driven by climate oscillations that are an important component of 

forest diversity (Hunter et al. 1988, Turner et al. 1998). Further, if systems with large 

frequent disturbances, such as fire, are also subject to forest harvesting, there is the 

danger that they will be subjected to compounded perturbations, with the rate of 

disturbance being faster than the rate of recovery (Paine et al. 1998). Salvage activities 

can also compromise medium- and long-term timber supply, and thus the sustainability 

goals of forest management plans (Spittlehouse and Stewart 2003, Coates et al. 2006, 

Lindenmayer et al. 2008). 

In addition to ecological variability leading to uncertainty in the future supply of 

ecosystem services, there is shifting public interest in what the forest should and can 

provide. Historically, timber for harvest was adequate; now there are social expectations 

of forests for recreation, wildlife and old forest preservation (CCFM 2003) that 

undermine long-term expectations regarding how much of the forest can be dedicated 

to timber extraction. Meeting social interests requires innovative compromises to ensure 

a continued unfettered access to forest for harvest (Price et al. 2009, Canadian Boreal 

Forest Agreement 2010). Further, there is growing interest in non-timber products, and 

in preserving forests as carbon stores, a climate change mitigation strategy (Millar et al. 

2007). 
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1.3 Management Systems 

Optimal models of resource use, applied by forest managers to support decision 

making, depend on certainty and consistency of the future supply of a resource (Holling 

and Meffe 1996, Scheffer et al. 2000, Ludwig et al. 2005, Morgan et al. 2007). Under an 

optimal approach, the real system is represented by a predictive model; however, if the 

system behaviour deviates too much from the model representation, the predictions fail 

(Walker et al. 2002). Operationally, management related activities are designed and 

implemented around the optimal solution, and an expectation is established of a 

consistent timber flow to support a labour force and processing facility. Ecological 

systems have become dominated by an engineering paradigm, and managed as a 

system with narrow operating objectives, such as annual allowable cut. The optimal 

strategy of forest management may be effective for highly managed or controlled 

systems, where external sources of variability can be controlled; however, this approach 

has been found to be flawed, due to the challenge of trying to control poorly understood 

complex dynamic systems (Holling and Meffe 1996, Scheffer et al. 2000, Ludwig et al. 

2005). 

To administer ecological systems there has been a tendency towards a "command and 

control" style of management. This consolidation of power and capacity into fewer more 

centralized organizations erodes the flexibility of local managers to adapt to location-

specific and novel conditions (Holling and Meffe 1996, Bodin and Norberg 2005). With 

more hierarchical management systems it is a challenge for managers to modify their 

activities in response to unique socio-economic circumstances and extreme events. 

Large infrequent disturbances stress agencies responsible for forest management and 
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can lead to errors that have impacts on forest function (Westley 2002, Foster and Orwig 

2006, Lindenmayer and Noss 2006). Change in management style only seems to occur 

when a resource manager is faced with an ecosystem crisis (Gunderson 1999, Westley 

2002). In response, adaptive management, a strategy to experiment, gain knowledge 

and then develop appropriate strategies in response (Walters 1986), is promoted as a 

method for improving the flexibility and effectiveness of forest management. 

Analysis of large-scale disturbances, such as the Mount St. Helens volcanic eruption of 

1980 (Franklin and MacMahon 2000) and the Yellowstone National Park forest fires of 

1988 (Turner et al. 2003), provides insights that can help managers prepare for future 

large-scale events. Many researchers now are advocating for a revolution in resource 

management that moves away from a centralized, reactionary paradigm to a more 

adaptive, autonomous, and proactive approach (Holling 1986, Gunderson and Holling 

2002, Turner et al. 2003, Walker et al. 2004). This type of management is more 

compatible with dynamic ecosystems and promotes communication within organizations 

allowing for a more efficient response to change. 

2. Resource Management as a Social-Ecological System 

Ecosystem dynamics are recognized as a central component of management under a 

social-ecological perspective. Strategies are developed that incorporate the system's 

variability and uncertainty, and provide a range of options on managing for the future 

(Carpenter et. al. 2001, Gunderson and Holling 2002, Walker et al. 2004, RA 2007, 

Campbell et al. 2009). The approach recognizes the connection between people and 

their interest in ecosystem services, and the dynamic and complex environment that 
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provides them. Social-ecological systems are characterized by their resilience, 

adaptability and transformability (Walker et al. 2004). 

2.1 Resilience 

Resilience has three defining properties: (1) the amount of change a system can go 

through and still retain the same controls, structure and function; (2) the capacity of the 

system to self-organize around new controls; and (3) the degree to which the system 

can learn and adapt (Carpenter et al. 2001). The resilience of a managed forest is the 

capacity of ecosystems to maintain their defining structures and processes, despite the 

additional disturbances prescribed by forest management, and to recover to a previous 

condition if disturbed (Carpenter et al. 2001). Managing for resilience involves 

understanding how disturbance forces interact with the forest, and managing the 

condition of the forest so that it can better withstand change and continue to provide 

ecosystem services. 

A resilient forest is not necessarily one that is stagnant in one particular state, but in a 

cycle of disturbance, renewal and growth. The metaphor of "adaptive cycles" is used to 

describe the phases of such a cycling system: growth, conservation, release and 

reorganization (Figure 1-1; Gunderson and Holling 2002). Consider a forested 

landscape as it cycles through the four phases. As a forest becomes established there 

is a rapid proliferation in the number of seedlings and an accumulation of biomass - the 

growth phase. Once at stand maturity, the system is maintained until the accumulated 

biomass, or capital locked up in old trees, and the system's carrying capacity is reached 

- the conservation stage. A disturbance event, such as a fire, causes the system to free 

38 



up the stored capital in the system -- the release phase. From this state of chaos early 

successional species compete for dominance - the reorganization phase. The 

resilience of the system to disruption is strongest during the reorganization or growth 

phase, where the system is more capable of recovery to its previous condition. The 

system is least flexible and most vulnerable during the conservation phase. It takes a 

significantly longer time to regenerate forest during this phase, therefore, the resilience 

of the system is weakest (Gunderson and Holling 2002). 

The adaptive cycle can be considered at multiple scales: forest stand to landscape, to 

the regional scale consisting of multiple landscapes (Holling 1992, Gunderson and 

Holling 2002). The hierarchical model of ecosystem dynamics is termed a panarchy. 

Fast disturbance processes at smaller scales generate spatial diversity in ecological 

structure that provide a degree of buffering against an extreme future disturbance event; 

for example, the variability in stand response to insect and disease, limiting their spread 

at larger landscape or regional scales (Gunderson and Holling 2002). Larger scale 

slower processes create a cross-scale feedback. These conserve or destroy biological 

legacies such as seed banks or species migration, that determine how ecosystems 

reorganize after disturbance (Campbell et al. 2009). As a result, resilience of a forest is 

grounded in ecological processes that are localized and fast, as well as in processes 

that are slow and occur at larger scales (Carpenter and Levitt 1991, Levin 1992, 

Gunderson and Holling 2002). 

Managing for resilience entails a number of activities, which could include (after 

Campbell et al. 2009): 
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• introducing fire to ecosystems where it has been excluded to re-establish natural 

processes; 

• managing for a diversity of stand ages and compositions to reduce exposure to 

future disease and insect outbreaks (Woods et al. 2005, Campbell et al. 2008); 

• varying the size and shape of forest cut blocks and leave areas to buffer against 

windthrow disturbance (Kimmins 2004); 

• varying the mix of species when replanting to limit homogenous stands that could 

be vulnerable to future disturbance; and 

• planting genotypes that are more resistant to pests, disease or are more suitable 

for an emerging climate (Millar et al. 2007, O'Neil et al. 2008). 

In summary, maintaining resilience is achieved by prescribing management strategies 

that either support the system in a desired condition, or reduce the resilience of a 

system that is in an undesirable configuration, in an effort to encourage a state that 

provides a preferred suite of ecological services (Walker et al. 2004, Bennet et al. 2005, 

Carpenter et al. 2005, Cumming et al. 2005, RA 2007). 

2.2 Adaptability 

The adaptability of social-ecological systems is dependant on how well the system 

responds in both the social and ecological domain. An example of the latter is the 

capacity of the system to adapt to the change in forest composition as a response to a 

disturbance event, such as spruce recruitment and release following pine mortality from 

MPB (Coates et al. 2006). From a social perspective, adaptive capacity could refer to 
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the ability of the forest industry to adjust its milling capacity to process a far greater 

proportion of beetle-killed timber (Byrne et al. 2006). 

Anticipating uncertainty and adapting to change is an integral part of managing a social-

ecological system (Gunderson and Holling 2002). Social adaptability is related to the 

flexibility of local management and the business networks, as well as the social assets 

such as education and skills of the workforce and availability of technology (Holling and 

Meffe 1996, Carpenter et al. 2001, Bodin and Norberg 2005, McAfee et al. 2010). 

Communities may change how they use forest products - for example, switching from 

solid timber products to those intended to serve as bio-fuel (BCMFR 2007) - or design 

flexible zoning strategies for industry and conservation (Rayfield et al. 2008). Further, it 

includes increasing the dialogue with interest groups to debate the appropriate level of 

risk to take towards resource extraction, and how these resources should be managed. 

Through interest group collaboration, adaptability can be enhanced by conducting pre-

disturbance planning that identifies procedures and strategies in order to be prepared 

for a large-scale disturbance event (Lindenmayer et al. 2008). Other adaptation 

planning measures might include: increasing the representation of ecosystems in areas 

reserved from harvest; identifying and conserving areas that could be refugia from the 

effects of climate change (Rose and Burton 2009); or protecting biologically important 

landscape features (Pojar 2010). 

2.3 Transformability 

Resilience and adaptability are features of the same regime, whereas transformability is 

the process of a different regime becoming established. Specifically, transformability is 
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the ability of a system to organize around a new set of defining structures, functions and 

controls (Walker et al. 2004). In the social domain, transformability is the capacity of the 

people, within a social-ecological system, to create a new system when the current 

system becomes unworkable (Walker et al. 2004). In an ecological system, 

transformability occurs when the reinforcing processes that maintain a system are 

overcome by slowly changing system dynamics, or by an acute disturbance. The 

system shifts and an alternative regime emerges (Gunderson 2000, Scheffer et al. 

2001, Beisner et al. 2003, Walker et al. 2004). For example, an established landscape 

may alternate between an open forest and grassland, where established grasslands are 

maintained by the reinforcing processes of fire and herbivory (Starfield et al. 1993, 

Cumming et al. 1997). Alternatively, the open forest state may persist because shading 

limits grasses, which in turn limit the spread of fire (Walker 1989, Dublin et al. 1990). 

During transformation the social and ecological domains interact. Commercial forestry, 

natural disturbance and the expansion of human settlement could alter the configuration 

and composition of the landscape by changing the use of the land, through conversion 

or degradation of ecosystems and habitat (MA 2005). These changes may be benign 

initially, but when a critical threshold is reached their cumulative impact may cause the 

system to reorganize into a different configuration; a landscape switches from being 

dominated by natural processes, to one maintained by extensive human management 

(Scheffer et al. 2001). A landscape may still be forested, but the pattern and structure of 

the forest has changed through silvicultural practices (Puettmann et al. 2009). The limit 

of a system's alternative states can be determined based on the historic fluctuation of its 

state variables, driven, for example, by the rates and extent of an area's disturbance 
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regime. It is also necessary to consider the influence of past human activity on the 

landscape, such as the historic extent of grazing or settlement patterns. 

Finally, transformation concepts are particularly relevant to forest management and can 

be incorporated into management plans. For example, in an area with a rapidly 

changing climate, accounting for transformation could mean relocating species or 

developing strategies that facilitate species migration such as north-south corridors 

(Millar et al. 2007, Pojar 2010). 

2.4 Summary of Conventional vs. Social-Ecological Approaches to Forest Management 

The central limitations of conventional approaches to forest management are the loss of 

complexity necessary to buffer forests against large-scale disturbance, and the lack of 

adaptation in dealing with shifting disturbance regimes. Through land conversion, fire 

suppression and forest harvesting, humans have altered disturbance regimes. The 

result is a decrease in the natural diversity, which has led to a spatial and temporal 

homogenization of forest pattern, composition and structure. Although large infrequent 

events play a role in a forest's disturbance regime, with the forest losing diversity there 

is the possibility that disturbance becomes more common and extreme (Bergeron et al. 

2002, Kluuvuainen et al. 2002, Drever et al. 2006). 

Optimization strategies lead to a loss of resilience due to the focus on one commodity 

and the blanket application of the same management regime across the landscape 

(Bodin and Norgerg 2005). The system becomes brittle, with no capacity to absorb 

unknowns because of the lack of variation and options (Gunderson 2000). A resilience 

based approach to forest management, one that considers adaptability and 
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transformability, addresses these shortcomings by implementing alternative stand and 

landscape stewardship practices. These practices are designed to enhance the 

functional redundancy and response diversity of ecosystem processes, vegetation 

communities and wildlife, as a means of buffering against large-scale episodic 

disturbance, and to aid in post-disturbance recovery and reorganization (Campbell et al. 

2009). Rather than using forecasting to decide on an optimal management strategy, a 

resilience based management approach would focus on the resilience of desirable 

system attributes, and use scenario planning techniques to consider a wide range of 

possible futures (Bennett et al. 2005). 

Due to the complexity of natural processes, it would be impossible to perfectly emulate 

a natural disturbance regime; however, a social-ecological approach could implement a 

regime that would be adaptable to future regime shifts (Lindenmayer et al. 2008). By 

putting more emphasis on infrequent large-scale disturbance events, those potential 

system states at the boundary of possibility, the strategy anticipates the inevitable 

surprises and is more flexible in dealing with uncertainty. Table 2-1 summarizes the 

differences between conventional and a social-ecological approach to forest 

management. 

An additional criticism of current management is the social dependency that develops, 

with management regimes and objectives becoming entrenched and centralized, 

limiting flexibility to deal with ecological change (Holling and Meffe 1996). Planning 

tends to focus on maximizing the supply of commodity services and optimizes for one 

preferred future, instead of managing for system diversity to increase ecological 
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Table 2-1. Comparison of conventional and social-ecologically based approaches to 
forest management. 

Resilience 

Adaptability 

Transformability 

Goal 

Structure 

Pattern 

Composition 

Ecological process 

Goal 

Key features 

Redundancy 

Connectivity 

Disturbance 

Goal 

Planning for change 

Extreme events 

Relocation 

Conventional 

Long range sustainable yield 

Uniform age structure, 
harvest at culmination age 

Uniform blocks with some 
variation consistent with 
single historic snapshot 

Replant monoculture 

Fire suppression 

Optimal harvest 

Limited conservation priority 

Single ecological 
representation, low uniform 
post-harvest retention 

Limited 

Impacts averaged and 
assumed on an annual basis 

Managed landscape for no 
change 
Assume stable future, plan 
for single resource 

Assume consistent supply, if 
extreme event occurs then 
redo plans 
Tree seed planting zones 
shifted when necessary 

Social-Ecological 
Increasing functional and 
response diversity 
Age structure consistent with 
disturbance regime, variable 
harvest rotation age 

Variable, consistent with 
dendrochronological record, 
anticipate climate change 
influences 
Variable within and across 
areas replanted 
Targeted fire suppression, 
increase in prescribed 
burning 
Bet-hedging: anticipate future 
unknowns 
High conservation priority 

Multiple ecological 
representation, variable levels 
of retention 

Multiple connections across 
scales 
Focus on variation and 
anticipate periodic large-scale 
salvage 
Manage transition among 
states 
Linked human-ecological 
system and cumulative 
effects of human activities, 
plan for multiple possible 
futures 
Protocols for response to 
periodic large-scale events 

Facilitated migration of range 
of plants and animals when 
required 
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response to large-scale change. Given the inevitability of extreme disturbance, planning 

for landscape dynamics is an important adaptation strategy for ensuring a future supply 

of ecosystem services. Social-ecologically based planning would manage for dynamics, 

including an array of possible post-disturbance successional pathways. 

Under a social-ecologically based management approach, post-harvest retention of 

trees would be variable and stands would be harvested at a range of ages, thereby 

varying rotation length across the forest (Bergeron et al. 1999, Burton et al. 1999, 

Seymour and Hunter 1999). These strategies would be aimed at maximizing diversity 

and ecological complexity across scales. Resilience of the forest to catastrophic 

disturbance is encouraged by managing for the suite of adaptive cycle phases. 

3. Asocial-ecological systems approach to resource management 

A general framework is required to implement the social-ecologically based 

management approach. The framework presented describes the components and 

relationships of a social-ecological system, issues of concern, and the social and 

ecological drivers of change (Cumming et al. 2005, Bennett et al. 2005, RA 2007). A set 

of possible futures, based on social and ecological variability and uncertainty, are then 

constructed to capture the behaviour of the social-ecological system and the 

mechanisms of change (Peterson et al. 2003). 

The social-ecological approach to resource management is broken down into three 

main steps. The first step identifies the issue of concern, describes the current state of 

the system, its history and cross-scale interactions. The second step captures the 

overall behaviour of the system, including fast and slow drivers of change. Also noted in 
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the second step are the critical thresholds between different system states, including the 

mechanisms that could lead the system to switch to either a different social-ecological 

state or into a different phase of its adaptive cycle. Scenario composition is the final 

step. Scenarios of possible future system configuration are used as a planning 

technique to capture information as part of a pre-disturbance strategy for dealing with 

extreme events. 

3.1 Current Condition 

The first step in developing the framework is to identify the issue of concern and the 

current conditions. The description includes the social-ecological system's ecosystems, 

ecological processes, dominant economic activities, the community vision of land use 

(i.e., plans) and governing institutions (RA2007). Social-ecological systems can be the 

accumulation of numerous interactions among lower level processes. The resulting 

expression of the system emerges as a product of these interactions, and although its 

overall behaviour can be described, this description does not reveal the lower-level 

source phenomena. Further, many social-ecological systems are open to external 

influences, many of which are unknown. To effectively describe a social-ecological 

system, a sufficient level of detail must be applied to limit the parts, processes and 

scales that are under consideration. By defining the specific question being assessed 

and the spatio-temporal bounds of the system, a workable approach can be realized. 

For example, there may be adequate habitat for wildlife or area available for timber 

extraction presently, but there must be a sufficient supply through time given possible 

fluctuations. The time signature of these dynamics defines the temporal bounds of the 

focal system. 
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System interactions cross scales and form part of a description of current social 

conditions or forest composition and structure. For example, the age and species 

composition of a forest are a product of stand-level processes such as growth, 

succession and tree mortality. A forest is also influenced by larger-scale processes 

such as drought cycles or regional forest policy dictating allowable annual cuts. 

Socially, the human actors in a system can be split by scale into those that are primarily 

internal to the area, the local communities, and those that are primarily external, 

including corporate shareholders or government decision makers. 

Social-ecological systems change through time. Documenting historic social, economic 

or ecological events helps to build understanding of the mechanisms that led to the 

current expression of the system and its variability. Finally, in the early stages of the 

project, it is important to initiate collaboration: early involvement of interest groups and 

decision makers increases the adoption of results from the assessment (Peterson et al. 

2003, Fabricius et al. 2007, Berghofer et al. 2008). 

3.2 Future conditions 

When identifying future conditions, planning teams must recognize the overall behaviour 

of the system as well as the system's disturbance regime based on its past dynamics 

and how those dynamics could shift in the future. The goal is to gain an understanding 

of the controlling forces that have shaped the system and how they may interact, 

change and be influenced by other social and ecological events in the future. This 

requires a list of the main social and ecological drivers of the system and a description 
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of the different ways in which they could interact in the future. Developing this list 

requires that one recognize and document the forces of change and cycles of change. 

Forces of Change 

The forces, or drivers, that act on the system can be categorized by the speed with 

which they act, their origin and whether or not they are the product of ecological 

processes or from human action. By analysing a system's historic behaviour, eliciting 

expert opinion or published accounts of similar systems, the forces that have been 

responsible for past change can be recorded (Nakicenovic and Swart 2000, MA 2005, 

IPCC 2007). The forces can be interpreted as stressing the system, either by moving it 

away from some idealized condition, or creating the conditions for a discrete event that 

will result in a loss of system integrity. The forces can have positive or negative 

(destabilizing or stabilizing) feedbacks. A phenomenon that involves a positive feedback 

is a nuclear chain reaction: once initiated it becomes self-reinforcing. A negative 

feedback dampens the oscillations of a system, such as lynx predation moderating the 

size of a snowshoe hare population. 

Social-ecological systems typically have slow and fast drivers that shape the system 

through time (Carpenter and Levitt 1991, Levin 1991, Holling 1992). Slow drivers can be 

predictable, like the ecological drivers of soil development, or forest growth and 

succession. Alternatively, slow drivers like climate change may result in a great deal of 

uncertainty overtime. Slow social drivers include population growth, land conversion, 

settlement expansion, or a developing road network. Fast drivers are usually a shock or 

disturbance event and the outcome is predictable, but often dramatic; examples of fast 
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ecological drivers include a fire or insect outbreak. Fast social drivers may be flooding 

from the construction of a dam, or forest harvesting. Listing drivers, their social or 

ecological basis and whether they are fast or slow, is the first step in understanding an 

area's forces of change. 

Resource management interventions also have the potential to act as slow drivers 

leading to unanticipated events, such as historic fire suppression contributing to fuel 

loading and an increase in wild fire severity (Arno et al. 2000). Other social drivers may 

be a change in technology that shifts which species of tree can be harvested, or a slow 

improvement in education or the composition of the local economy leading to a different 

set of social choices about how to manage the environment. The slow and fast system 

drivers do not act independently, but interact. For example, spruce budworm 

(Choristoneura fumiferana) populations are controlled by predators and the density of 

balsam fir (Abies balsamea). As the size and density of the trees increases, - a slow 

driver - the ability of birds to control budworms declines, and an outbreak (a fast driver) 

can be triggered (Holling 1973, Ludwig et al. 1978, Holling 1988). 

Finally, when considering forces, it is important to acknowledge that there are 

interactions with phenomena outside of the focal system. Here, external forces act on 

the system, changing the behaviour of specific drivers. An example of such a 

phenomenon is the PDO-driven drought cycle, leading to large regional fires destroying 

open forest and resulting in expanded grasslands (Morgan et al. 2008). 
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Cycles of Change 

The concepts of alternative states and adaptive cycles are useful for understanding and 

organizing the drivers, feedbacks, and cross-scale interactions of the system and 

provide insights into the position of the system within these cycles of change. Through 

an interpretation of slow controlling variables, the location of the social-ecological 

system relative to its current state or adaptive cycle can be deduced. The system could, 

for example, be close to a threshold that could signal an imminent shift. The position of 

the system would inform management to either implement strategies to encourage or 

discourage change, or that a transformation to a new phase or state is required. The 

slow variables that are directing the system towards a threshold provide a surrogate of 

system resilience (Carpenter et al. 2005). As an example, a threshold in a forest may be 

the extent of old pine that is susceptible to MPB, which may signal further outbreaks, 

and prompt management to focus on harvesting old susceptible pine in an effort to 

temper future outbreaks and the resulting loss of timber (Taylor and Carroll 2004). 

Alternatively, a system may not be cycling. It may have once cycled, but is now being 

held in a particular configuration through human management. 

A description of the phases of the systems above and below the focal system helps 

identify the possibility of cross-scale interaction. For example, a forest composed of 

predominantly old pine stands may be susceptible to an epidemic landscape-scale 

outbreak when local stand-level MPB outbreaks start to spread, coalescing to a larger-

scale event. Managing forests so that not all stands are at the same stage of the 

adaptive cycle enhances resilience to larger-scale events (Gunderson and Holling 

2002). 
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3.3 Scenario composition 

When planning for a supply of ecosystem services, any characterization of the future is 

subject to uncertainties in the behaviour of the actors and the unknowns of the system 

dynamics (Peterson et al. 2003, Cumming et al. 2005). To address this issue, scenario 

planning has emerged as a technique to examine the uncertainties and resilience of 

resource systems (Peterson et al. 2003, MA 2005, Carpenter et al. 2006, Mahmoud et 

al. 2009). Scenario planning was originally developed for strategic planning and war 

games after the Second World War (Kahn and Wiener 1967). It is now used extensively 

for business decision making, assessing the impacts of climate change, and as the 

basis for environmental risk assessment (Ogilvy and Schwartz 2004, IPCC 2000, EEA 

2009). 

The application of scenarios for the investigation of social-ecological systems integrates 

across environmental, economic and social dimensions, where a scenario describes a 

possible situation as "a structured account of a possible future" (Peterson et al. 2003). 

Predictions and forecasts are used in optimal decision making, so some benefit is 

maximized according to an expected probability distribution. However, because of the 

complex make up, dynamics and the extent of uncertainty associated with ecosystems, 

approaches attempting to optimize resource supply are considered inappropriate 

(Peterson et al. 2003, MA 2005). Further, ecological predictions that include the role of 

humans become confounded by people changing their behaviour when presented with 

new information (Morgan et al. 2007). 
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Scenarios are grounded in the past and based on a logical progression of events. The 

anticipated strength and direction of future social and ecological forces, including the 

consideration of uncertainty, serve as the basis for delineating a range of scenarios for 

consideration. A set of scenarios is structured specifically to: lend insight into system 

drivers; to explore uncertainties of the system behaviour; and to identify the 

repercussions of current resource management decisions and knowledge gaps. 

Scenarios are not designed to support one specific future, but instead assist in the 

development of management policies, that will increase the chance of achieving a 

socially desirable future condition (Peterson et al. 2003). 

The social-ecological system's current and future forces and cycles of change provide 

the basis for constructing the scenarios. Because the future is uncertain, an infinite 

number of scenarios could be constructed (Carpenter et al. 2006). However, having a 

limited number of scenarios has the advantage of being easy to understand and 

communicate (Peterson et al. 2003, Ogilvy and Schwartz 2004, MA 2005). 

Some system trends may show up in all of the scenarios, while others may be specific 

to one particular scenario. A "systems perspective" is used to deepen the scenario 

description by identifying interacting forces and trends that form a consistent pattern of 

events. A narrative for each scenario provides a story line with a beginning, middle and 

end, and can be populated with illustrative characters to personalize the plots (Olgivy 

and Schwartz 2004). For convenience, scenarios are given descriptive names, have a 

unique identity that is the result of a particular pattern of events, and reflect specific 

ecological forces and human management decisions. 
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4. Social-ecological system description and scenario composition example 

I present an example of the general framework designed to implement a social-

ecological approach to resource management. The case study illustrates the broader 

social-ecological concepts and how they can be practically applied, including the 

components and relationships of the social-ecological system, fast and slow drivers of 

change, and feedbacks. The example concludes with the composition of a set of future 

scenarios, based on the study area's social and ecological variability and uncertainty, 

designed to reflect the behaviour of the social-ecological system and the mechanisms of 

change. 

The study area is located in southeastern BC, and encompasses 1.24 million hectares 

within the Cranbrook Timber Supply Area (TSA) (Figure 2-2). The area has been 

experiencing an unprecedented MPB outbreak (Safranyik and Wilson 2006) and 

provides a good example of a social-ecological system in transition from a historic 

configuration to some future arrangement. There are concerns about the continued 

supply of ecosystem services, primarily old forest ecosystems (coarse-filter 

biodiversity), timber for harvest and grizzly bear natal areas (fine-filter biodiversity). Old 

forest is being lost to MPB outbreaks, impacting the area's supply of timber and old-

growth forests. 
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Figure 2-2. Location of the Cranbrook Timber Supply Area (TSA) in southeastern BC, 
Canada (Robinson 2004). 

4.1 Current Conditions 

The Cranbrook TSA is dominated by the Rocky Mountain Trench, with steep mountains 

on either side. The area is ecologically varied, but the forest is dominated by lodgepole 

pine; it also has a regionally significant grizzly bear population (Robinson 2004). Over 

the last century the disturbance regime across the Cranbrook TSA has shifted from fire 

to being dominated by forest harvesting. This transition has been partially supported by 

an effective fire suppression program (Daniels et al. 2007). An extensive road network 

has developed in the area to support forest harvesting. The economy is dominated by 

the public sector, tourism, mining, agriculture and forestry. Timber harvesting is 

extensive with an annual cut of 941,000 cubic meters (Robinson 2004). Beginning in 

1976, a MPB outbreak emerged in the eastern part of the TSA. This outbreak peaked in 
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1980 and subsided by 1984. An area of approximately 150,000 hectares was affected 

(Young 1988). MPB became epidemic again in the late 1990s and continues today. 

Direction for forest management in the Cranbrook study area is provided by a set of 

government and forest company management plans. These set out the various rules 

and regulations that are followed to meet a range of industrial, recreation and 

conservation interests. The economic focus is on timber for harvest. The social interest 

is roads and their implication for back country access and, by association, grizzly 

bear/human conflict. Ecologically, forest structure, pattern and composition are the main 

concern. The key relationships are between landscape dynamics (MPB and fire), forest 

management (fire suppression, roads and harvesting), wildlife habitat and old forest. 

There has been an increase in timber harvesting and salvage activity in response to the 

MPB, and the number of roads and amount of traffic has increased. Consequently, this 

has led to an increase in negative grizzly bear encounters with humans (Nielson et al. 

2004). As bear mortality is positively correlated with human encounters (Herrero 1985, 

Mattson 1990, Nielsen et al. 2004), wildlife managers have advocated that a beneficial 

strategy for grizzly bear conservation is to have large areas that are "secure" from 

human encounters (Interagency Grizzly Bear Committee 1998). These security zones 

are defined as areas that have adequate habitat with a minimum of human use. Their 

minimum size is considered to be the amount of area necessary to meet daily average 

foraging requirements of a female adult bear (Gibeau et al. 2001). 
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4.2 Future Conditions 

The future conditions of the Cranbrook study area are shaped by the drivers of change, 

the speed with which they act, and their feedbacks. To understand how the system may 

change in the future, I identified the social and ecological forces acting on the region. As 

well, I used the concepts of the adaptive cycle and the potential for state transitions as a 

basis to place the forces of change in a larger system dynamics context. 

Forces of Change 

The Cranbrook TSA has shifted from a historic regime dominated by fire to one 

controlled by forest management activities and an increase in MPB activity. However, 

future MPB outbreaks will likely be limited by a declining availability of old pine. Fire, 

however, could become more prominent on the landscape with climate change. This will 

further reduce the amount of old pine, and thus lower the risk of future MPB outbreaks. 

In an effort to maintain the historic flow of timber, forest managers could respond to 

these disturbance events aggressively through vigorous salvage operations and 

massive investment in stand tending to encourage re-establishment of impacted stands 

(Millar et al. 2007). Alternatively, the role of forestry may be eclipsed by other values 

that are more conservation oriented. A more passive approach to forest management 

could lead to increases in old pine and risk of further MPB outbreaks. 

The slow ecological drivers of interest in the Cranbrook study area are forest growth 

(particularly aging pine) and a slowly changing climate, which increases likelihood of 

drought, warmer winters, and area burned by wild fire. Fast ecological drivers include 

MPB outbreaks and fire. Human drivers of the system include forest management 
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activities: rate of harvest and salvage policies (as slow drivers), and road construction, a 

fast driver. 

There are a number of drivers that have positive or negative feedbacks in the 

Cranbrook. For example, MPB is a negative feedback: as MPB kills old pine the 

chances for further attack become diminished. Forest harvesting is a positive feedback: 

once harvesting activity becomes established, processing facilities and employees 

develop an expectation of a continued supply of timber. Similarly, there would be inertia 

to any change in fire suppression policy because of the risk to the standing crop of trees 

and infrastructure. Human visitation is also amplifying: once an area is developed there 

is incentive to use the roads for stand tending, salvage, recreation, etc. Now that the 

low-elevation areas of the Cranbrook TSA are populated, a positive feedback reinforces 

the increased need for land that supports recreation, tourism, grazing and agriculture. 

Hence, future change may include the harvest of non-timber forest products, eco-

tourism, and increased value of standing trees for carbon storage. Table 2-2 lists the 

main forces for the Cranbrook study area, outlining the key system drivers and stressors 

that are relevant to timber supply, and to coarse- and fine-filter biodiversity. 
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Table 2-2. Key ecological and social drivers and stressors in the Cranbrook study area 
that can direct alternative social-ecological states of the system. 

? J rDrivffp;g j|f* 

Forest growth 
and succession 

Timber 
harvesting 

Fire suppression 

Roads 

Fire 

MPB outbreak 

MPB sanitation 
harvesting 

Salvage 
harvesting 

Maintenance of 
landscape scale 
biodiversity 

Landscape 
access 

Climate 
variability 

Climate change 

Speed 

Slow 

Fast 

Slow 

Fast 

Fast 

Fast 

Slow 

Fast 

Slow 

Slow 

Slow 

Slow 

PepdbacJf 

Positive 

Positive 

Positive 

Positive 

Positive 

Negative 

Negative 

Negative 

Positive if 
enhanced, 
Negative if 
relaxed 

Positive 

Oscillates 

Positive 

lftV!*>y<* * -Description * 

Continuous forest growth and succession 

Forest harvesting rate and extent set by forest 
managers 

Dampening of areal extent of fire 

Road building and use associated with industrial and 
recreational activity 

Landscape-scale fire that affects long-term landscape 
composition and structure 

Current 25-year outbreak killing of mature pine and 
longer term MPB dynamics 

Focusing harvest on pine stands susceptible to MPB 

Level of aggression of salvage harvesting 

Enhancing or relaxing of landscape scale biodiversity 
objectives, such as increasing or decreasing harvest 
rotation length or additional non-harvest areas 

Limiting access to parts of the landscape to protect 
wildlife from negative human encounters 

Climate-driven oscillations in disturbance frequency 
and extent 

Shifts in rate and extent of disturbance 
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Cycles of Change 

The adaptive cycle assumes that a system will continually renew itself and re-express 

past cycle phases. However, it is possible that the Cranbrook study area could 

transform, through a large shock or by slowly changing system drivers, into a new state 

that is maintained by a different set of drivers. Some transition has been observed 

ecologically over the past century when large fires triggered an expansion of grassland. 

This new grassland state is maintained by reinforcing processes. Despite large fires 

being more recently suppressed, grasslands have persisted through fire and cattle 

grazing (Lefebvre 1995, Daniels et al. 2007). Under climate change it is possible that 

more of the Cranbrook TSA could convert to grassland as its climate becomes less 

favourable to forest (Hamman and Wang 2005). 

Fire suppression has been effective over the past 50 years and has altered the 

Cranbrook TSA's landscape dynamics. Salvage logging and MPB sanitation harvesting 

have been the focus of harvesting activities over large areas in the Cranbrook study 

area (Tembec 2005) Continuing these practices into the future will likely dampen the 

impact of MPB. The Rocky Mountain Trench has become more human dominated, with 

settlements, roads, golf courses, etc. This highly managed area is now in a different 

state that is maintained by intensive human management. 

I summarized the dynamic behaviour of the Cranbrook TSA in a systems model (Figure 

2-3). This model provides a visual summary of the interactions between the system 

elements and the forces that may influence different states of the forest. The system 

model shows two characteristic states: on the left is the fire-dominated state, defined by 
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a negative exponential forest age structure, the expected age structure of natural 

forests (Van Wagner 1978), and on the right is the more MPB- and management-

dominated state with an age structure that tends towards a uniform distribution (Figure 

2-3) (Fall et al. 2004, Puettmann et al. 2009). Forest management mediates between 

these two conditions. As shown in the diagram, both fire and MPB decrease forest age, 

and forest management increases pine susceptible to MPB through fire suppression. 

Salvage harvesting links MPB and fire to forest management. The large positive and 

negative signs indicate feedback loops, whereas the small signs show the smaller scale 

relationships of the system. Roads are included due to their importance to grizzly bears. 

The system model identifies the key drivers, defines alternative states of the system, 

and helps to develop contrasting scenarios. Further, the model helps guide the 

development of more detailed simulation models, by focusing on the important elements 

of the system, feedbacks and drivers of change. 
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Figure 2-3. Cranbrook study area systems model showing two alternative states of the 
system. On the left is a natural stand age structure (negative exponential) generated by 
historic landscape dynamics. The right tends to a normalized age structure (uniform age 
structure) that results from forest management. Forest management mediates the 
relationship between these two opposing states. The large + and - symbols indicate 
positive and negative feedbacks of the various states, and the smaller signs indicate if 
the process in the arrow is increasing or decreasing: - implies uncontrolled fire is due to 
an increase in fire suppression/control efforts, while + denotes the burning of young 
stands converting random aged stands to young stands, creating a more negative 
exponential age structure. MPB converts older stands to young stands but also 
generates a more regulated age structure. 

4.3 Scenario composition 

The Cranbrook study area's ecosystem services are threatened by the current MPB 

outbreak and future large-scale natural disturbance events. The main social and 

ecological forces are identified for scenarios, with each placed on a separate axis 

resulting in a 2 by 2 matrix. Four scenarios are generated and they are represented as 

quadrants in the matrix (Figure 2-4). The scenarios capture the different possible 

trajectories the Cranbrook TSA could take based on the system's historical and current 

conditions, the fast and slow drivers of the system, and the positive and negative 

feedbacks. The four resulting scenarios are qualitatively different and internally 
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consistent. The combination of social and ecological forces creates the rationale for and 

characterizes each scenario. 

moderate disturbance 
similar to current rates 

Forestry First 

Aggressive , Management 

Climate Crusade 

m 
o 
o 
o 

o 

Forest Commons 

Approach Passive 

o 
55" 

u Climate Pilgrimage 
o 
ffl 

severe disturbance 
worst case climate change 

Figure 2-4. Cranbrook case study scenario matrix. The main social driver is 
management approach ranging from aggressive to passive. The ecological axis is 
defined by disturbance rates similar to current rates and severe climate change driven 
disturbance. The four quadrants define the scenarios: Forestry First - aggressive 
harvest with moderate disturbance; Climate Crusade -- aggressive harvest with severe 
disturbance; Forest Commons — passive forest management with moderate 
disturbance; and Climate Pilgrimage - passive forest management with extreme 
disturbance. 

Due to the uncertainty associated with how disturbance regimes may shift under climate 

change, the effect of climate on disturbance processes was identified as the main 

ecological axis. The ecological axis ranged from disturbance rates similar to those 

currently observed up to worst case increases in disturbance resulting from climate 

change. Socially, forest management was determined to have the largest impact on 
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how the system may change. As a result, the social axis was summarized as "approach 

to forest management" and ranges from aggressive management to a more passive 

approach to management. 

Under the aggressive approach, forest products are put ahead of other services and 

environmental objectives, such as preserving old forest, and access constraints do not 

constrain harvesting activities. Further, the aggressive management assumes that 

future forest condition can be controlled and any disturbance can be managed through 

aggressive salvage and sanitation harvest. In contrast, passive harvest attempts to 

restore ecological processes by limiting access to humans, constraining the total area of 

forest management and not suppressing fires - more of a "letting nature take its course" 

strategy. 

Using Social-Ecological Resilience to Improve Resource Management 

Humans have always used ecosystems to meet their needs. Natural dynamics can only 

be subjugated so much before there is a backlash: either a slow loss of environmental 

integrity, or an extreme disturbance event that changes the system to a form that no 

longer provides the same level of ecosystem service (Scheffer et al. 2001, Gunderson 

and Holling 2002, Carpenter 2003, Foike et al. 2004, Walker and Meyer 2004, MA 2005, 

Drever et al. 2006). Finding the right balance between exploiting and maintaining 

natural processes is a challenge society must face, especially with the uncertainty 

introduced by a relatively rapidly changing climate. 

Current management approaches were developed during a time when forests were 

predominantly in the growth and conservation phases of the adaptive cycle. With recent 
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extensive disturbance events, such as MPB, the forests of BC are in a release and 

reorganization phase (Burton 2010). The challenge is to shift management practices 

from managing for a stable accumulation of biomass to one that more prominently 

considers landscape disturbance and ecosystem reorganization. 

The methods and ideas I present are not intended as a complete solution, but only as a 

contribution to a new management and planning paradigm that better describes 

dynamic social-ecological systems. Through these descriptions and system exploration 

tools, management strategies can be drafted that are more cognizant of resilience and 

ecological adaptation to system dynamics. Through the application of these processes, 

social adaptive capacity can be fostered to help people respond and manage social and 

ecological change. 

None of the four scenarios I developed constitute a prediction of future conditions in the 

Cranbrook study area. Instead, the future could be a combination of elements from 

each, or the system could oscillate between the different system boundaries described 

by the various quadrants. I believe that these scenarios bound what might occur in the 

future and help to inform the future implications of current decisions on ecosystem 

services; for the Cranbrook TSA this would include timber available for harvest, coarse-

filter biodiversity and grizzly bear habitat. 

For the Cranbrook study area, resilience to future MPB events is enhanced through 

forest management activities, in which the older pine is harvested or salvaged and 

future stands are harvested at a younger, less susceptible age. MPB risk would 

continue in parts of the landscape that are reserved from harvest, but could be partially 
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mitigated through prescribed burning to increase structural complexity. This strategy 

would need to be weighed against the loss of some old forest, but could be conducted 

such that there remains adequate representation across different ecosystem types. Risk 

of severe fire would remain, and even increase, with climate change perhaps triggering 

a transformation in some parts of the landscape to grassland. However, an option of 

harvesting disturbed forests for biomass, and expansion of rangelands could also be 

considered. Adaptation for the Cranbrook TSA could be enhanced through pre-

disturbance planning and the implementation of adaptive management. Managing 

access would be an important component of adaptation to ensure a viable number of 

grizzly bear natal areas remain. 

Approaches to managing for resilience have been promoted for a number of resource 

systems. Walker et al. (2002) suggested an alternative social-ecological approach to the 

management of Australian rangelands that used the maintenance of grassland 

resilience as a central principle. In the Northern Highlands Lake District of Wisconsin, 

Peterson et al. (2003) applied an ecological assessment framework, based on the 

Millennium Ecosystem Assessment (MA 2005), to determine the coupled social and 

ecological elements. The assessment framework was used to develop alternative 

management scenarios that were modelled and evaluated. In South Africa's Kruger 

National Park an approach based on monitoring "thresholds of potential concern" was 

used as an adaptive management strategy. When an environmental indicator was 

reached, action was taken to ameliorate the cause or to adjust the indicator to a more 

realistic level (Parr and Anderson 2006). In these projects, resilience was not directly 

measured, but inferred through an identification of the system's state or its identify -
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namely the key components of the system, their relationships and their persistence in 

space and time (Cumming et al. 2005). 

In general, strategies to enhance resilience may entail foregoing extensive 

interventions, so that the system can go through a process of renewal in order to 

achieve a more stable long-term state, particularly when the investment required to 

maintain a system in a desired state becomes overwhelming (Millar et al. 2007). This 

may demand managing a varied portfolio of resource systems across adaptive cycle 

phases; while some are predominantly producing commodities, others are less 

commodity oriented providing other services, such as wildlife habitat. Finally, some 

systems may be in renewal and left to re-organize with the expectation that at some 

future time they will provide higher levels of ecosystem services to communities. This 

proposed approach would be similar to triad land zoning, but would operate at a scale 

specific to the natural disturbance processes and modify zone boundaries depending on 

how future events unfold. 

The scenario approach described here is similar to other projects interested in exploring 

the resilience of social-ecological systems (Peterson et al. 2003, MA 2005, Carpenter et 

al. 2006). This approach to scenario planning is designed to inform policies that 

enhance social-ecological resilience, while other scenario techniques have altogether 

different purposes, such as identifying the most cost-effective or efficient conservation 

endpoint (Lindborg et al. 2009, Koh and Ghazoul 2010). Many different scenario 

projects use an axis approach to identify the major forces and uncertainties (EEA 2009). 

However, it is novel to separate the social and ecological forces onto two different axes 
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to reflect the social-ecological system. In general, a criticism of the axis approach is that 

separating and reducing the main forces into two dimensions limits the utility of the 

approach to deal with surprise (EEA 2009), where introducing wild cards - high-impact 

ecological or social surprises - into the scenarios helps to broaden the discussion of 

unanticipated change that could occur (Mahmoud et al. 2009). This criticism is not 

relevant in the resilience context, where the scenarios are specifically focused on 

bounding system dynamics and sources of ecological surprise. Resilience-based 

scenario approaches are most useful when they explore the logical outcomes of the 

policy and disturbance assumptions surrounding resource systems and the provisioning 

of ecosystem services (Carpenter et al. 2006). 

The inclusion of both qualitative and quantitative approaches for examining the future 

supply and uncertainty of ecosystem services has been shown to be a balanced 

approach to planning for the future (MA 2005). What I have presented here provides a 

first step in developing structured methods for designing a more detailed quantitative 

analysis of system forces and uncertainties. Quantitative analysis allows for a deeper 

investigation of system dynamics and resilience to large-scale events. A quantitative 

implementation of the scenarios would entail a full description of the assumptions 

underpinning each scenario. Simulation models would then be constructed to capture 

the major forces of the system: for example, forest growth, timber harvesting, roads, fire 

and MPB for the case study presented. 

Several challenges exist in applying a social-ecological systems approach to resource 

management. Many of the system elements are poorly understood and lack a sufficient 
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level of detail to fully describe. Further, there may be unknown relationships and drivers. 

The Cranbrook study area has only been observed in detail over the past 60 years, and 

there may be many dynamics that have not been recorded or expressed either directly 

or in the paleoecological record. A social-ecological approach shares some of the same 

logistical challenges facing the implementation of adaptive management. Under both 

approaches there would be resource manager and interest group discomfort with the 

level of future uncertainty that must be considered. As well, the application of 

entrenched "best practices" used in conventional management is inappropriate for 

dynamic systems. The financial and time commitment required for long-term research 

and monitoring of ecosystems would be difficult for jurisdictions to accept (Simberloff 

1998, Stankey et al. 2003, Lindenmayer et al. 2008). 

I presented a rationale for developing a social-ecological framework to describe the 

dynamics of complex resource ecosystems, one that captures the social and ecological 

drivers of change. Realizing this approach in practice would require a paradigm shift 

within management institutions that acknowledges the vital importance of considering a 

range of possible futures. The primary objective of management would be to redefine 

practice directives to ensure a resilient ecosystem is established, before considering the 

level of ecosystem services that it can provide. 
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CHAPTER 3 

Scenario Analysis: Landscape Dynamics, Resilience and the Supply of Ecosystem 
Services 



Introduction 

Balancing the maintenance of biodiversity and the supply of timber for harvest has led 

to a considerable debate over how to manage forests (Cote and Bouthillier 2000, CCFM 

2003, Gerardo et al. 2005, Papaik et al. 2008). The trade-off between biodiversity and 

timber becomes more pronounced when forests are disturbed by natural causes such 

as fire or insect outbreaks (Rodriguez et al. 2006). Forest managers are challenged with 

making decisions that balance social and economic expectations for ecosystem 

services (such as timber and wildlife habitat) with a forest's capacity to adapt and 

respond to future disturbance. Resilience theory is promoted as a foundation for 

developing forest management strategies that better suit dynamic ecosystems. The 

resilience of a forest is its capacity to reorganize and recover from natural and human 

disturbance without shifting into an alternative state that is controlled by a different set 

of processes (Drever et al. 2006, Campbell et al. 2009, Puettmann et al. 2009). 

A forest's resilience to future disturbance is a product of its structural and compositional 

diversity, which in turn has been shaped by historic dynamics such as fire (Peterson 

2002), insects (Ludwig et al. 1978, Taylor and Carroll 2004) and wildlife (Dublin et al. 

1990, Danell et al. 2003). The concepts of ecological resilience and biodiversity are 

highly related. Biodiversity is defined here as the diversity of genes, species, and 

ecosystems across landscapes (Loreau et al. 2002). Biodiversity is an essential feature 

of resilience, as the capacity for a landscape to recover, reorganize and adapt to 

change is dependent on the diversity of species and ecological communities (B0hn and 

Amundsen 2004). To be resilient, an ecosystem needs to not only maintain natural 

levels of biodiversity, but also it must maintain its defining ecological processes, despite 
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environmental dynamics. The resilience of a system, such as a forest, can be overcome 

by slow drivers of social and ecological change or by a sudden catastrophic shock. A 

new system then emerges, the state of which is reinforced by a different set of 

processes (Carpenter et al. 2003). This new system may be socially desirable. For 

example, converting a tract of forest to agriculture can provide more food than was 

previously available. Through the efforts of management, the agricultural system is 

maintained. However, there can be temporal trade-offs when resource benefits in the 

short term undermine the long-term sustainability of the system (Walker et al. 2004, 

Rodriguez et al. 2006) 

The directive for forest managers is to maintain a consistent supply of timber for 

harvest. Understanding the interplay of natural forest dynamics and forest management 

activities is important in determining what resources the forest system can reliably 

produce, now and in the future. A threshold may exist between the forest's current 

configuration and some alternative state. There may be questions as to the alternative 

state's social desirability or ecological stability that may trigger changes in current 

management practices. From a trade-off perspective, an alternative state may supply 

more of a specific service and less of another, or it may provide resources in the short 

term, but be compromised in supplying them in the longer term. Further, the system 

may be slowly losing resilience to disturbance events, which could compromise the 

future supply of ecosystem services. The temporal resource trade-off becomes more 

pertinent under the expectation that forest dynamics will be even more volatile as the 

climate changes (IPCC 2007, Montenegro et al. 2007, Weaver et al. 2007, Williamson 

et al. 2009, Pojar 2010). Indeed, it is strongly advised that forest management 
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strategies begin to integrate the ecological effects of climate change into policy and 

practice (Bodin and Wiman 2007, Campbell et al. 2009). 

Along with managing for forest dynamics and climate change, managers must 

incorporate ever evolving social expectations of what ecosystem services forests should 

provide (CCFM 2003, MA 2005). Not only must forests provide for timber and 

biodiversity, but also recreation opportunities, hydrological balance and carbon storage 

(MA 2005). As well, there is considerable discussion about what constitutes a 

sustainable approach to forest management (Holling and Meffe 1996).For instance, 

some people are willing to tolerate an approach to forest management that downplays 

future catastrophic disturbance, assuming any future event can be controlled (Farrell et 

al. 2000). Alternately, other people are more risk averse and assume future ecological 

disruptions are inevitable and uncontrollable (Holling and Meffe 1996). 

To explore the complex relationship between natural forest dynamics, timber harvesting 

and the supply of ecosystem services, it is necessary to consider the interplay of both 

natural (fire and insect outbreaks) and human managed processes (timber harvesting 

and fire suppression). Scenario planning provides a technique to support this 

exploration (Peterson et al. 2003, Cumming et al. 2005, and MA 2005). Scenarios can 

be constructed so that they capture a range of social and ecological conditions. The 

scenarios can then be analysed through spatial and temporal simulation models to 

understand different assumptions about future ecological and management dynamics 

and aid in the development of appropriate management approaches (Gadow 2000). 

Scenario planning techniques assist in shifting management from a focus on a single 

specific future to a focus on a range of possible futures. An analysis of a set of 
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scenarios aids in the identification of alternative system states, and the social and 

ecological mechanisms of change. System relationships and feedbacks become 

apparent in scenario analysis and provide a rationale for further research and 

development. Overall, scenarios support the development of forest management 

policies that help build resilience to future disturbance and improve the capacity for 

post-disturbance ecological and social reorganization. 

In this chapter, I implement a landscape simulation model to analyse the supply of 

ecosystem services and the resilience of a forested ecosystem to disturbance, across a 

range of social and ecological conditions. I use a set of scenarios to assess how a 

forest system can change based on different resource management assumptions and 

actions, and how these in turn interplay with forest dynamics. Through the scenario 

simulation, I provide a framework to interpret the variability and uncertainty associated 

with the supply of ecosystem services and system resilience. 

I develop scenarios for the Cranbrook TSA in southeastern BC, an area with a forest-

dependent economy and a significant grizzly bear population (Ursus arctos; Proctor et 

al. 2002). Landscape dynamics have been extensive in this area, including large historic 

fires and a more recent epidemic forest insect outbreak (Daniels et al. 2007). The forest 

industry has been challenged with minimizing the impact of natural disturbance on the 

timber resource. 

The scenario analysis of the Cranbrook study area assesses, through the evaluation of 

indicators, how the system's controlling processes change, and how resilient the forest 

is to future disturbance. I evaluate provisioning and regulatory ecosystem services for 
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each scenario. I use timber supply as an indicator of the provisioning service. 

Regulatory ecosystem services are represented by a set of indicators that evaluate fine-

and coarse-filter biodiversity, which include shifts in controlling ecological processes. 

The indicators used to interpret each scenario reflect the concepts of resilience, 

biodiversity, natural forest dynamics, social expectations and climate change. 

Methods 

Study Area 

The study area is located in southeastern British Columbia (BC) and is currently 

experiencing an unprecedented mountain pine beetle (Dendroctonus ponderosae; 

MPB) epidemic that is compromising the supply of ecosystem services (Taylor and 

Carrol 2004, Eng et al. 2005, 2006, Safranyik and Wilson 2006). The challenge for the 

Cranbrook study area is to manage the forest for the supply of ecosystem services that 

fluctuate through time due to variations in ecological and social processes. The primary 

social processes acting on the forested land base are timber harvesting, road 

development and fire suppression. These social processes interact with climate change 

and influence the ecological processes of fire and MPB outbreaks. 

The Cranbrook TSA is in the BC Ministry of Forests Rocky Mountain Forest District and 

encompasses approximately 1.48 million hectares of crown and private land (Figure 2-

2) of which 69% is forested. The area is split into two forest management units: a 

provincially managed timber supply area making up 90% of the forested area and a non 

crown privately managed forest (PMF). 
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The Cranbrook study area is bounded by the Rocky Mountains in the east, the Purcell 

Mountains in the west, the Skookumchuck Valley to the north and the Canada-U.S. 

border to the south. The area is dominated by the Rocky Mountain Trench, which 

cradles the Kootenay River. The west side of the trench has low foothills that rise up to 

the Purcell Mountains, whereas the east side ends abruptly at the Rocky Mountains, 

which are rugged with glaciers and steep-sided valleys. 

The study area is comprised of 8 ecosystems, classified as zones under the 

biogeoclimatic ecosystem classification (BEC) system (Meidingerand Pojar 1991). The 

Bunchgrass (BG) and Ponderosa Pine (PP) zones occur in the valley bottoms, which 

are dry and hot with extensive grass cover; the climax overstory tree species is 

ponderosa pine (Pinus ponderosa). The Interior Douglas-Fir (IDF) zone occurs at higher 

elevations, from 800 to 1200 meters; Douglas-fir (Pseudotsuga menziesii) dominates. 

Between 1200 and 1600 metres lodgepole pine (Pinus contorta) takes over in the 

Interior Cedar-Hemlock (ICH) and Montane Spruce (MS) zones, above which 

Engelmann spruce (Picea englemannii) and subalpine fir (Abies lasiocarpa) occur up to 

2000 metres in the Englemann Spruce-Subalpine Fir (ESSF) zone. Above 2000 metres 

is the Alpine Tundra (AT) zone, characterized by stunted trees or krummholz, rock, ice 

and grassy meadows. The study area has high concentrations of ungulates such as elk 

(Cervus canadensis), mule deer (Odocoileus hemionus), whitetail deer (O. virginianus), 

moose (Alces alces), Rocky Mountain bighorn sheep (Ovis canadensis), mountain goat 

(Oreamnos americanus), as well as, black bear (Ursus americanus), grizzly bear, 

cougar (Puma concolor) and lynx (Lynx canadensis) (Robinson 2004). The Cranbrook 

grizzly bear population has been extensively studied over the past 25 years. Studies 
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include grizzly bear habitat use (McLellan and Hovey 2001), genetic isolation of sub-

populations (Proctor et al. 2002), and grizzly bear response to various aspects of forest 

management (Apps et al. 2004). 

Historically, the Cranbrook study area was dominated by fire. However, over the past 70 

years wildfire has been suppressed and the lower elevations have been extensively 

modified by people and livestock. There are 47,000 people living in the study area, 

mainly in the three cities of Cranbrook, Kimberley and Fernie. The economy is 

dominated by the public sector, tourism, mining, agriculture and forestry. Timber 

harvesting is extensive with 941,000 cubic meters currently allocated to be cut annually 

in the TSA (Robinson 2004). Beginning in 1976, a MPB outbreak emerged in the 

eastern part of the Cranbrook TSA. This outbreak peaked in 1980 and subsided by 

1984. An area of approximately 150,000 hectares was affected (Young 1988). An 

epidemic initiated in the late 1990s continues today. 

Direction for forest management in the Cranbrook study area is provided by the BC 

Forest and Range Practices Act, the Kootenay Boundary Higher Level Plan Order, the 

Kootenay Land Use Plan Implementation Strategy, and the eastern portion is directed 

by the Southern Rocky Mountain Management Plan. The various rules and regulations 

provided by these plans are reflected in the Cranbrook Timber Supply Area Timber 

Supply Review #3 (TSR III) Analysis Report and Tembec's PMF plan, which describes 

the specific management strategies to achieve the planning objectives (Tembec 2005, 

Robinson 2004). 
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Scenario Analysis 

Assessment overview and modelling description 

I used the Spatially Explicit Landscape Event Simulator (SELES; Fall and Fall 2001) to 

develop simulation models for the Cranbrook study area. This software is a flexible, 

transparent tool for building, processing and verifying grid-based, spatio-temporal 

models. I parameterized each simulation model to reflect each scenario's basic 

management and ecological assumptions. 

Input data 

The majority of data were provided by the BC government and originally used for the 

government's 2004 Timber Supply Review process (Robinson 2004). These were 

supplemented with more recent government data outlining current land use planning 

decisions, including spatial information describing motorized and non-motorized access, 

old growth management areas and conservation areas. Additional data on current road 

use, high-value conservation forests and site-level ecosystem mapping were provided 

by a local division of the Tembec forest company. The model had a spatial grain of 1 

hectare, which provided an adequate level of detail to assess timber supply, wildlife 

habitat and ecological representation of old forest. Spatial entities below this resolution 

such as stream buffers and roads were modelled as a percentage of a cell. The 

dynamic sub-models interacted on a decadal time step. I used a Monte Carlo simulation 

to capture the stochasticity of the natural disturbance and harvesting regimes, 

generating 10 data sets over a 500-year period for each scenario. 
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Key state variables 

A set of key state variables was used to control model behaviour and to estimate the 

status of ecosystem services, which included indicators of system dynamics and 

resilience. Some of the state variables were dynamic and updated by the process sub­

models: tree age and species were modified by the fire, MPB, and timber harvesting 

sub-models. Volumes of timber were calculated by using lookup tables that listed the 

amount of volume for different forest/age/productivity state variable combinations 

(Robinson 2004). Timber volume was used to guide the model when determining the 

amounts and areas to harvest. To parameterize the fire model, a lookup table was used 

to calculate fire return intervals for each broad ecosystem group (see fire sub-model 

description below for more detail). Several map layers were used as state variables to 

partition the landscape into zones designating where timber harvesting could occur, 

conservation areas, and other land designations that excluded timber harvesting. As 

well, watershed boundaries were used, in some instances, to limit access by restricting 

the number of watersheds that could host industrial activity. 

State variables, or their derivatives, were used to generate indicators of the supply of 

ecosystem services. In addition to controlling model behaviour, timber volume was a 

model output. Status of forest age and ecosystem group was used for the coarse filter 

analysis (see coarse-filter biodiversity in Scenario Analysis section below for more 

detail). Road and road type (primary, secondary and tertiary) were used to direct 

harvest location and calculate the availability of grizzly bear habitat. This variable was 

updated throughout each simulation as a product of harvesting. The age and species 

state variables were used to calculate areas of forest susceptible to MPB. 
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Sub-model descriptions 

Fire 

Stand-replacing fire was modelled with disturbance rates and patch sizes parameterized 

according to their natural disturbance regime, termed here as natural disturbance type 

(NDT; Province of BC 1995). The Canadian Forest Service compiled a historic data set, 

which recorded date, ignition sources and area burned between 1919 and 2000 (S.W. 

Taylor pers. comm.). These data were analysed to calculate disturbance rates and 

patch sizes for each NDT in the Cranbrook TSA (Appendix A). Some fires straddled 

NDTs. In these cases, the historic fires were allocated to NDTs based on the largest 

NDT/fire overlap. The fire parameters specify the overall disturbance cycle (e.g., 350 

years) to apply within a NDT zone, as well as the number and size of patches disturbed. 

In each 10-year period, a patch is chosen randomly within each NDT zone for ignition. 

For each of these burn events, patches continue to be selected until the target for area 

burned is reached for that period. The burn spreads randomly from the start point, 

setting stand age within each burned patch to zero, and recording a portion of the 

standing volume as salvageable timber. Where fires cross an NDT boundary, the area 

burned is assigned to the NDT where the fire originated. 

I identified two types of fire years, low and high, that alternate every 20 years (Appendix 

A) according to oscillations of the ocean-atmosphere Pacific Decadal Oscillation (PDO). 

The high/low cycle is derived from the warm/cool PDO cycle and 5-year lag in drought 

response to the shift to a PDO warm phase (Morgan et al. 2008a). Using the historic fire 

data, I calculated mean area burned and fire size parameters for high and low years for 
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each NDT. These data suggest that small stand replacing disturbances were more 

common, but large infrequent disturbances were more likely during warm PDO phases. 

I modelled the effects of climate change on the fire regime using Hamman and Wang's 

(2006) climate envelopes (A. Hamman pers. comm.). As the simulation progresses, 

those areas within an NDT where the climate envelope has shifted are assigned a 

modified rate of disturbance, the other areas stay constant. The model also captures the 

effects of climate change through a scaling factor applied to the area burned across all 

NDT zones. The overall increase equals 100%, which doubles the area burned under 

climate change compared to historic rates. The envelope shift only covers a portion of 

the 100% increase. To make up this shortfall the scale factor is applied, such that over 

the landscape there is an overall 100% increase. The increase in area burned is based 

on fire and climate change studies done in an adjacent area (Nitschke and Innes 2008) 

and elsewhere in western Canada (Flannigan et al. 2005). 

Mountain Pine Beetle 

Parameters for the MPB model were based on historic MPB mean outbreak size and 

patch size (S. W. Taylor pers. comm.). The annual outbreak and outbreak patch size 

followed a negative exponential frequency distribution; however, the shape of the 

distribution reflected a few large episodic events and smaller more typical events 

(Appendix B). An occurrence of MPB was dependent on the availability of host (mature 

pine) trees and favourable climate and dispersal conditions. Two types of MPB 

incidence were modelled, endemic and epidemic. Endemic outbreaks occur regularly at 

low levels, whereas epidemic outbreaks are substantially larger in their areal impact. To 

capture this effect, the data were split at the 90th percentile, following a similar 
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methodology used by Morgan et al. (2008a) for differentiating large regional fires. 

Epidemic outbreaks were assigned the mean from the data above the 90th percentile, 

while the endemic were calculated from the remainder of the data (Appendix B). 

The model uses an index of susceptibility to guide when and where an outbreak may 

occur. The susceptibility of an individual forest stand was estimated based on the 

percentage of pine, the age, the latitude and longitude, and climatic suitability (Shore 

and Safranyik 1992). The index is an indicator of the expected level of damage if a 

stand were to be attacked (Shore and Safranyik 1992). Based on the historic MPB data, 

small endemic outbreaks started only after the area of susceptible pine exceeded 

50,000 hectares across the study area and became common after 100,000 hectares. 

Epidemic outbreaks were initiated when the area of susceptible pine exceeded 100,000 

hectares and became common after 140,000 hectares. The model uses the amount of 

susceptible pine to determine a threshold of epidemic and endemic MPB outbreaks. 

The expression for calculating the amount of susceptible pine (SP) is: 

SP = £(S x A) 

where 

S is the susceptibility index (0 to 1.0) 

A is the mapped area of a susceptibility index 

The model first selects a probability from a cumulative density function, such that if the 

amount of pine is above a threshold it may not trigger an outbreak (to reflect the non-

determinism of outbreak initiations); alternatively, an outbreak can occur even for 
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relatively low levels of susceptible pine. However, as the size of the susceptible area 

increases, so does the probability of an outbreak, such that if there are successive 

years with no outbreak the level of susceptibility increases. Once an outbreak is 

triggered, the model selects the area affected from a negative exponential distribution 

with a mean from the historic endemic or epidemic occurrence. Following an outbreak, 

100% of the cell is disturbed and set to age zero, and standing volume is flagged as 

timber available for salvage. 

The model does not consider the density of MPB or proximity of infested trees (Shore 

and Safranyik, 1992). The model is intended to capture the outcome of the MPB, not the 

detailed process of a population build-up and dispersal. However, the negative 

exponential distribution of area infected by MPB does reflect the dynamics of the beetle 

population. As well, the model conducts a neighbourhood analysis identifying areas with 

high concentrations of susceptible pine. These areas are assigned a higher probability 

of outbreak. 

The impact of climate change on MPB is represented by the susceptibility index's 

climate suitability layer. The model uses a default layer reflecting current climate 

conditions. Under climate change this layer is modified based on shifts in climate 

suitable to MPB (A. L. Carroll pers. com.). Estimates of future climate were estimated 

from global circulation models (Carroll et al. 2006). 

Forest Management 

The forest management sub-model was implemented using the Spatial Timber Supply 

Model (STSM; Fall 2002). STSM captures the same management regime, assumptions 
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and data as used for the base case Cranbrook Timber Supply analysis completed for 

TSR III (BC Ministry of Forests 1997; Robinson 2004). The model was parameterized to 

harvest eligible stands according to a scenario-specific forest management policy. The 

model harvests the Timber Harvesting Land Base (THLB), which is the area of the 

landscape that is accessible, productive for forestry operations and not excluded from 

harvest due to other interests (e.g., conservation objectives such as riparian protection, 

wildlife tree patches, parks, environmentally sensitive areas and steep terrain, etc.). 

Each stand has age, species composition and site productivity information that informs 

volume yield curves. The harvest rate (m3/year) is set as a central component of the 

management policy and dictates how much of the THLB is harvested annually. 

However, the actual area harvested depends on volume/age distribution in eligible 

stands. 

The model allows for the prioritisation of specific stands for harvest or avoidance. This 

includes stands for salvage, those that are highly susceptible to MPB, or ones to be 

avoided such as areas adjacent to conservation zones. The harvest model has a 

salvage component that recovers a portion of the disturbed timber based on disturbance 

history and shelf life - the length of time timber volume remains merchantable following 

disturbance. The salvage of forest stands killed by MPB is based on the estimates of 

shelf life provided by the Provincial MPB modelling project (Eng et al. 2006). 

Considering that other types of tree mortality influence these stands, including 

windthrow, root rot, other bark beetles, an additional volume reduction is used to 

capture these "non-recoverable losses" (NRL) from the THLB (Table 3-1). 
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Table 3-1. Volume of timber (m3/year) in the timber harvesting land base assumed lost 
to disturbance agents that were not explicitly modelled as mortality from mountain pine 
beetle and fire for the Timber Supply Area (TSA) and the private managed forest (PMF) 
in the Cranbrook study area. 

_. . . . . TSA PMF 
Disturbance Agent ( m 3 / Y e g r ) ( m 3 / Y e a r ) 

Douglas-fir bark beetle 

Balsam bark beetle 

Blowdown / snowpress (mature stands) 

Non-catastrophic in-block blowdown/snowpress 

Non-catastrophic blowdown/snowpress (cutblock edges) 

Non-catastrophic blowdown/snowpress (right of way edges) 

Oil, gas, and mineral exploration 

Coal mine spoil failures 

Red-belt damage 

Total 26,266 5,175 

The harvesting model also generates roads. As logging progresses, one of the priorities 

for identifying the next stand to harvest is distance to an existing road. When a stand is 

harvested, the first hectare is considered a landing and a straight-line spur road 

connects it to the nearest logging road. The resulting road network evolves according to 

these simple rules (Table 3-2). 

251 

337 

11,748 

4,048 

3,863 

5,569 

50 

50 

350 

49 

66 

2,315 

798 

761 

1,097 

10 

10 

69 
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Table 3-2. Major phases, steps, and rules for the harvest sub-model. The harvest 
model follows a structured process when determining blocks to harvest. There are four 
phases to this process: stand eligibility, stand preference, harvest effects, and block 
spreading. Within each phase there is a set of sequential steps with specific rules 
identifying eligible patches for harvest. 

Phase Step Rule 
1 limit harvesting disturbance to eligible land 

2 

3 

Stand 4 
Eligibility 

5 

6 

7 

8 
Stand 

Preference 9 

and 
Selection 10 

11 

in the timber harvesting landbase 

eligible zones (age class structure allows harvesting; status 
updated with each disturbance) 
areas within 2 km of an existing road 

stands older than minimum harvest age 

stands without adjacency constraints if applied (i.e., stands 
not next to recently harvested stands) 
stands within the current priority (e.g., salvage) or partition 
definition 
assign priority of new harvesting to each map cell based on 
stand age 
priority or partition focus 

select new cell location (first map cell to harvest) based on 
eligibility and priority 
build a road from the cell to the nearest road cell 

12 
Harvest 
Effects 13 

14 

15 
Block 

Spreading 16 

harvest the cell and set stand age to zero 

update tracking variables (e.g., annual volume harvested and 
serai distribution for applicable zones) 
reduce the area of THLB in the cell to account for new access 
roads and for within-block development 

spread to eligible neighbours 

spread until harvest and/or block size target met 

Fire suppression is assumed to be effective for the study area from 1945 to present 

(Daniels et al. 2007). The area burned may not have been as extensive in the first half 
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of the century as in the second had there been effective fire suppression. For the model 

I assumed that fire suppression would reduce area burned by 50% (DeWilde and 

Chapin 2006). The reduction in area burned was not allocated evenly across years. 

Instead, I assumed that for some years there would be no success in suppressing fires 

due to other events like funding availability for suppression, accessibility of fires for fire 

fighting or severe weather. Further, I assumed that fire suppression would be more 

effective during the negative PDO phase, when there is less overall fire on the land 

base and therefore a higher likelihood that fires could be suppressed. Specifically, the 

model was parameterized so that fire suppression was totally ineffective for 25% of the 

time in either positive or negative PDO phases. The other 75% of the time was allocated 

according to PDO phase with suppression more effective during the cool phase than the 

warm phase, resulting in an overall effect of a 50% reduction in area burned following 

fire suppression. 

Model implementation, verification and validation 

The disturbance and forest management models were verified using experimental tests 

and sensitivity analysis. Models were initially tested independently then combined to 

ensure that there were no illogical interactions between sub-models. Model validation, in 

this context, is defined as the model being appropriate for the intended application 

(Rykiel 1996). Empirical data suitable for model verification are not available for the 

timeframes modelled in this project. Further, the specific conditions inherent in this 

study area cannot be found outside of the system (Levin 1992). As a result, this project 

relied on conceptual and logical validation (Rykiel 1996) such that scenarios are 

considered hypotheses and model outputs are a product of these hypotheses (Fall et al. 

101 



2004). Results of the scenario analyses are intended to demonstrate the linkage 

between initial landscape and management condition and the interaction with 

management rules and ecological processes. The future state of the forest projected by 

the models is not a prediction of future forest condition, but instead is a consequence of 

the social-ecological assumptions as implemented for a specific scenario (Fall et al. 

2004). 

For the fire model, I used 10,000 year simulation periods to calculate return intervals for 

each NDT. These intervals were then compared to expected values (Appendix A). For 

some simulations, fires did not burn to their expected extent due to geographic barriers 

such as mountains and lakes. An adjustment factor was included to ensure that the 

model results matched the expected return intervals for each NDT. The MPB model was 

evaluated and adjusted so that over the simulation period similar levels of susceptible 

pine would emerge through the interaction of fire, MPB and fire suppression. The total 

area impacted by MPB from the beginning of fire suppression in 1945 to 2025 (the end 

of the current outbreak) was 245,016 hectares or 306,315 hectares per 100 years 

(Appendix B). This is consistent with the provincial scale MPB model that projects the 

current outbreak to 2025 (Eng et al. 2006). In addition, the MPB model was run with fire 

but without fire suppression, and the model generated an amount of susceptible pine 

consistent with expected return intervals (Taylor and Carroll 2004). The pine 

susceptibility index identified 186,573 hectares as susceptible to MPB for the study 

area, with 122,381 hectares in the TSA. TSR III (Robinson 2004) reported 119,040 

hectares of susceptible forest stands, a 3% difference. 
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In general, the approach to model evaluation was adequate for the intended purposes 

of this study. Logical validation depends on adequate input information. This includes 

having a fair representation of initial conditions and model processes, as well as 

suitable model parameters (Fall et al. 2004). 

Scenario Description 

The landscape models were parameterised in accordance with a set of management 

and disturbance scenarios that capture the social and ecological forces of change that 

have the largest potential impact and present the greatest level of uncertainty for forest 

dynamics and ecosystem services across the study area. The scenarios were based on 

a social gradient that ranges from aggressive to passive management, and an 

ecological gradient that ranges from natural disturbance consistent with historic rates to 

extreme disturbance driven by climate change. The full range of drivers and 

uncertainties were narrowed to a 2 by 2 matrix with a social and ecological axis 

resulting in a set of 4 scenarios. The scenarios were labelled: Forestry First, Forestry 

Commons, Climate Crusade, and Climate Pilgrimage. I defined two additional 

scenarios: Status Quo provided a relative comparison to current management 

conditions and assumptions, while No Management projected the current landscape 

condition that did not include harvesting, fire suppression or climate change. Each 

scenario was designed to be plausible and internally consistent capturing key issues 

and uncertainties. 

Forestry First 

The "Forestry First" scenario has an aggressive approach to forest management and 

assumes that future natural disturbance will be similar to historic rates. The scenario is 
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interventionist, where the rate of timber harvest is maximized at all costs. This system is 

managed under an assumption of being able to control future landscape conditions 

through management interventions, including fire suppression. Natural disturbance 

resulting from insect outbreaks is assumed to be manageable through aggressive 

salvage and sanitation harvesting (harvesting trees thought to be susceptible to 

disturbance). In response to disturbance, forest professionals take the position that a 

minimum of timber should be lost to disturbance and conservation constraints can be 

weakened, including biodiversity and landscape access objectives. 

Forest Commons 

The second scenario, "Forest Commons", focuses on implementation of strict 

conservation targets based on the historic rates and extent of natural disturbance. 

Forest professionals take a passive approach to management, minimize access to the 

forest, don't employ fire suppression and provide a smaller area for green tree harvest 

(live trees). However, this scenario recognizes a salvage only zone that can be 

harvested in response to large natural disturbance events. The goal of the Forestry 

Commons scenario is to reconstruct the age structure of the forest, including patch size 

of old forest, so that the forest is more consistent with pre-European settlement 

landscape dynamics. This scenario is designed re-affirm the system's historic 

configuration and processes, including large carnivore relationships. 

Climate Crusade 

Under the third scenario, "Climate Crusade", extreme climate change is present and 

accompanied by extensive natural disturbance and ecological shifts. This scenario is 

characterized by disturbance rates and extents far greater than today's, including an 
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expansion of grasslands and the woodlands into the alpine. Under this scenario, the 

climate envelopes shift according to changes in temperature and precipitation 

forecasted in downscaled general circulation models (GCM; Hamann and Wang 2006). 

Massive intervention characterizes this scenario including large-scale salvage. As well, 

provisioning services become the focus "at all costs". This objective is facilitated by 

relaxing environmental objectives such as allowing harvesting in riparian areas and 

protected areas. 

Climate Pilgrimage 

Similar to the Climate Crusade scenario, "Climate Pilgrimage" also recognizes extreme 

climate change. Extensive access restrictions are in place to minimize human impact on 

changing ecosystems. The theme of this scenario is to embrace and work with 

ecological change. The human population across the study area declines due to a 

reduction in industrial and recreation activities caused by a significant proportion of the 

land being off-limits to any human use. In this scenario, forest professionals attempt to 

adapt to a changing ecological regime, including a shift away from traditional forestry to 

one that is focused on salvaging trees impacted by natural disturbance. Furthermore, 

the management of the forest for carbon storage is an explicit objective. 

Indicators 

I constructed indicators to track provisioning and regulatory ecosystem services under 

the different scenarios. The indicators I chose to evaluate the Cranbrook TSA's 

ecosystem services are structured to lend insights into the complex social-ecological 

dynamics of the scenarios and their social-ecological resilience. The long-term supply of 

timber for harvest represents provisioning services. Regulatory ecosystem services are 
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embodied by fine- and coarse-filter biodiversity, which includes an assessment of 

controlling processes. 

The presence of fine-filter biodiversity, representing critical habitat for key species 

(Hunter 1991), is indicated by the extent of potential grizzly bear natal areas. Most 

organisms and plant communities in forested ecosystems are evolutionarily adapted to 

the disturbance regime where they occur and have the capacity to recover after a 

natural disturbance event (Bergeron et al. 1999, Turner et al. 2003). Coarse-filter 

biodiversity (Hunter 1990) represents a broad spectrum of habitats for species, which 

depends on maintaining natural ecological processes and the resulting forest structure 

equivalent to what would occur due to natural landscape dynamics (Hunter 1990). A set 

of indicators is used to assess coarse-filter biodiversity, which includes the distribution 

of forest ages across the forest, the amount of old forest relative to what would be 

expected under historical conditions, the dominant disturbance process, and the amount 

of pine susceptible to MPB. Maintaining ecological processes and structural diversity 

promotes resilience to disturbance (Bergeron et al. 2002, Kuuluvainen 2002, Drever et 

al. 2006, Puettmann et al. 2009). 

Scenario Implementation 

The four scenarios have either an aggressive (Forest First and Climate Crusade) or 

passive (Forest Commons and Climate Pilgrimage) approach to forest management. 

The scenarios use different management strategies to achieve their objectives, 

including different harvest levels, modifications to the overall size (area) of the THLB, 

application of conservation targets, salvage rules and harvest priorities (Table 3-3). I 
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present each management strategy with a description of the basic differences between 

the aggressive and passive approaches. 

Table 3-3. Long term harvest request, Timber Harvesting Land Base and the forest 
management rules applied to each management scenario in the Cranbrook study area. 
The harvest request for Forestry Commons and Climate Pilgrimage is intentionally low 
with the majority of timber assumed to be from salvage. 

Scenario 

Harvest Rule 
Long Term Harvest 
Request (m3/ha/year) 
Timber Harvesting 
Land Base(ha) 

Fire Suppression 

Unlimited Salvage 

Salvage Only Zone 

Access Constraints 

Landscape 
Biodiversity 

Climate Change 

No Mngmnt Status Quo 

0 

0 

No 

N/A 

N/A 

N/A 

N/A 

No 

941,637 

477,040 

Yes 

No 

No 

No 

Mixed 
Emphasis 

No 

Forestry 
First 

997,513 

552,853 

Yes 

Yes 

No 

No 

Low 
Emphasis 

No 

Forestry 
Commons 

81,765 

400,867 

No 

Yes 

Yes 

Yes 

Mixed 
Emphasis 

No 

Climate 
Crusade 

997,513 

552,853 

Yes 

Yes 

No 

No 

Low 
Emphasis 

Yes 

Climate 
Pilgrimage 

81,765 

400,867 

No 

Yes 

Yes 

Yes 

Mixed 
Emphasis 

Yes 

Setting Harvest Level 

To set a long-range sustainable yield for timber supply, for any given set of 

management constraints, the landscape model was run iteratively to test the effect of 

different annual cut rates. The iterations were structured such that they eventually 

converged on the maximum rate (expressed as a proportion of the current harvest level) 

that satisfies the long-range yield criteria of a stable amount of growing stock. As well, 

the harvest level declines to a level that can be consistently harvested and this decline 

was structured to be as consistent as possible with Ministry of Forests and Range 
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policies (e.g., declines between decades of not more than 10%). The harvest level for 

the aggressive scenario is the same as the status quo. Unlike the status quo, however, 

the aggressive scenarios will cut above the harvest request when there is a salvage 

opportunity. The model will then revert back to the original harvest level, whereas 

harvest policy in BC would dictate establishing a lower harvest level reflecting the loss 

of timber from a disturbance event. The aggressive regime will always try to maximize 

harvest and minimize lost opportunity despite the implications for long-term 

sustainability. The scenario is subject to inertia and reacts to harvest opportunistically. 

The harvest level for the passive scenarios differs from the aggressive ones by 

considering possible future disturbance and by having a smaller land base available for 

harvest. The harvest level is set initially to that of the status quo, but on a smaller THLB 

with a conventional salvage rule. The harvest level drops immediately to converge on a 

much reduced long-term level. This level of harvest is a minimum that a local timber 

processing facility can expect. Following large-scale disturbance, an unlimited salvage 

rule is invoked causing the harvest level to temporarily increase and expand into a 

salvage-only zone. The exact timing of this increase is unknown since it is an adaptive 

response to the disturbance event. On average, however, the overall harvest level is a 

combination of the minimum base level and the average amount of salvage that results 

from harvesting uplift in some, but not all, periods. 

THLB 

For the aggressive scenarios, I designated an area adjacent to the status quo THLB 

that could be harvested to make up volume shortfalls. This area was created by 

identifying portions of the study area originally netted out of the THLB due to ecological 
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reasons, including environmentally sensitive areas prone to avalanche, high water 

values and regeneration issues, Old Growth Management Areas (OGMAs), riparian 

ecosystems, wildlife tree patches, parks, and unstable terrain. These additions add 

75,813 hectares to the THLB, a 16% increase. 

In contrast, the passive scenario recognizes additional area in the THLB as ecologically 

sensitive: patches that are adjacent to ecologically sensitive forest, as identified in the 

status quo THLB. Harvest only occurs in these newly designated sensitive areas if 

timber cannot be found elsewhere. Further, the passive scenario excludes areas 

considered to be of high conservation value (Stuart-Smith and Wells 2006) from green 

tree harvest, but allows entry for salvage. In total, the passive scenario has a green tree 

THLB that is 89,629 hectares smaller, a 19% decrease from the status quo (Table 3-3). 

Conservation Rules 

Under the Timber Supply Review, landscape level biodiversity is managed through 

retention guidelines for the amount of old and mature forest by landscape 

unit/biogeoclimatic subzone-variant combination. Each of the landscape units is 

assigned either a high, medium or low biodiversity emphasis option as set originally in 

the Province's biodiversity guidebook (Province of BC, 1995), then later in the Non-

Spatial Old Growth Order (Province of BC, 2004), and adopted into local and regional 

land use plans (Kootenay-Boundary Higher Level Plan and Southern Rocky Mountain 

Sustainable Resource Management Plan). The aggressive scenarios set all landscape 

units to low biodiversity emphasis, thereby allowing for more harvest and less retention 

of old and mature forest. The passive scenarios use the same emphasis options as the 

status quo (Table 3-3). 
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As an additional conservation objective, the passive scenarios limit harvest according to 

operating areas. Watersheds are used as operating areas and only a certain number 

are allowed to be open at any one time. I assume that by limiting the spatial extent of 

harvest, more of the landscape will be free of frequent human use and be available as 

female grizzly bear natal areas. Large watersheds can represent a significant proportion 

of the THLB available for harvest and increase short-term harvest, but as a result 

decrease longer-term harvest after they are deactivated. To compensate for this area 

effect, large watersheds were divided into smaller units. Also, an additional constraint 

was added that limits the amount of THLB that can be activated within a time step. This 

results in the end of harvesting either when a maximum number of watersheds has 

been accessed, or the maximum area of the THLB has been allocated. The constraint is 

only applied to green tree harvest and does not affect salvage harvest. 

Salvage Harvesting 

The salvage sub-model calculates salvage potential based on tree shelf life and volume. 

Shelf life estimates are a function of the BEC zone, such that decay rates are high in 

wet ESSF, medium in dry ESSF and ICH, and slow in PP and IDF (Eng et al. 2006). 

Once the cumulative decay estimate surpasses 30% of original volume, the stand is no 

longer merchantable. The passive scenario uses the High Conservation Value Forests 

as a salvage-only zone that cannot be harvested in the absence of disturbance. 

Some scenarios use an unlimited salvage mode that permits harvest above the normal 

level in response to disturbance. The aggressive scenarios have a slight uplift due to 

the unlimited salvage in the early time periods as they expand into a larger THLB, but in 

later time periods the scenarios are already harvesting all available timber. The passive 
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scenarios can, in response to disturbance events, temporarily increase their harvest 

level and access the salvage-only zone (Table 3-3). 

Scenario Assessment 

The scenarios were compared using a post-simulation analysis of key response 

variables that track the state of each scenario and the status of the provisioning and 

regulatory ecosystem services. The 10 replicates for each scenario differ due to the 

stochastic implementation of fire and long term MPB, as well as management response 

to changing landscape conditions. The indicator variables are recorded for each 

scenario across the 10 replicates. Maps show forest stand composition, stand age, fire 

and logging disturbance, forest class (in terms of THLB, non-THLB, and Protected Area 

status), and road type (highways, secondary roads, etc.) for each decade of the 

simulation. The model produces a set of text files for each run that summarize volume 

and area harvested, road length, growing stock, various breakdowns of stand age, 

amount and type of forest disturbed, etc. These measures and indicators were further 

refined and analysed using the R language and statistical software package (R 

Development Core Team 2010). 

Timber Supply - Provisioning Service 

The landscape model output a set of timber supply indicators for post-simulation 

analysis. Each scenario had a specific harvest request for each 10-year period of the 

simulation. Due to the stochastic implementation of the disturbance model, the harvest 

request was not met in some periods for some simulations. Natural disturbance can 

erode the amount of timber available for future harvest. However, for those scenarios 

with unlimited salvage it was possible to exceed the harvest request during periods of 
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extensive fire or MPB outbreak. The percentage of the requested harvest met was 

calculated for each period of each scenario. For each scenario, the mean and standard 

deviation of timber volume, area of land harvested, growing stock, and the salvage 

proportion of the volume harvested were calculated. The amount of volume deducted 

for NRLs were done proportional to the amount of THLB in a given scenario. 

Fine-filter Biodiversity - Regulatory Service 

Grizzly bear natal security areas were used as a fine-filter conservation indicator. 

Grizzly bears face an increase in mortality when they encounter humans (Herrero 1985, 

Mattson 1990). Thus, large areas that are "secure" from human use are beneficial for 

grizzly bear conservation (Interagency Grizzly Bear Committee 1998). Security areas 

are defined as areas that have adequate habitat with a minimum of human use. Their 

minimum size, 900 ha per female grizzly bear, is considered to be the amount of area to 

meet daily average foraging requirements (Gibeau et al. 2001). The integrity of the 

security area is sensitive to the extent and spatial arrangement of developments 

including settlements, recreation areas and busy roads. A post-simulation grizzly bear 

security area model used land cover type (forest, grassland, water, urban, mining, non-

vegetated from provincial Baseline Thematic Mapping; Yazdani et al. 1992), elevation, 

and roads (based on current roads and roads modelled within the harvesting sub­

model) to determine the number and size of potentially secure areas. 

Roads were the dynamic information used in the analysis of natal security areas. All 

areas within 500 meters of a "high use" road did not contribute to security areas. 

Permanent roads were always high use and include paved roads and unpaved roads 

that connect towns or villages. Logging roads were dynamic and it was assumed that 
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harvesting traffic will end up on one of the permanent roads en route to a mill. The 

model dynamically created road segments by linking harvest areas to the nearest 

existing road segment, which eventually flow onto a permanent road. The model 

estimated the number of visits on the logging roads based on harvesting activity. Activity 

resulting from five or more harvested hectares a month results in a road being 

designated high use while less than five hectares of harvesting results in a low use 

classification. 

The natal security model first identified non-suitable habitat based on land cover 

(subalpine/avalanche, forest and grass) and an elevation threshold of 2500 m. The 

model then identified high-use roads and excludes areas within 500 metres of those 

roads. Patches less than 900 hectares were then excluded and the remaining patches 

were considered secure natal security habitat for grizzly bear. The mean and standard 

deviation of the total area of security patches and the number of security patches was 

calculated across the 10 replicates for each scenario. 

Coarse-Filter Biodiversity - Regulatory Service 

Coarse-filter biodiversity was represented by the distribution of forest age, amount of old 

forest, the dominant disturbance process, and the amount of pine susceptible to MPB. 

Forest age structure is a product of historic disturbance, fire suppression and timber 

harvesting. Shifts in age structure indicate a change in the underlying drivers of the 

system, from one controlled by natural processes to one heavily influenced by people. A 

more uniform forest distribution is a product of intensive forest management (Puettmann 

et al. 2009), whereas a negative exponential distribution is more commonly associated 

with forests subject to less human management (Van Wagner 1978). Through time, 
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harvesting should result in the majority of the forest becoming younger than the 

minimum harvest age (predominately 100 years in the Cranbrook). For each scenario, I 

calculated the amount of area in 10-year age classes for year 250 of the simulation. I 

used the Kolmogorov-Smirnov test (R Development Core Team 2010) to compare the 

age distribution of the forest to that generated under the No Management scenario. 

Old forest habitats are the most rare and therefore considered most at risk on 

disturbance-prone landscapes (Spies et al. 2006). For each scenario, I modeled the 

area of old forest in each ecosystem group (age >150 or >250 years, depending on the 

ecosystem) and compared it to the amount of old expected according to the historic 

disturbance regime. Ecosystem groups (Appendix C) were based on the work of Wells 

et al. (2004) and were a refinement of the provincial ecological classification system 

(Meidinger and Pojar 1991). Each scenario's maps of stand age, forest cover type and 

forest management zones (protected areas, THLB, and non-THLB) were intersected 

with the ecosystem map and output tables generated for post-simulation analysis. The 

table listed the ecosystem group, the age at which it was expected to be old, total area 

of old forest, and a percent threshold for amount of expected old based on the 

ecosystem's disturbance history. 

A shift in dominant disturbance agent would indicate that the system is being controlled 

by a different set of processes and therefore could be considered to have changed 

state. The shift may be subtle with certain processes playing a larger role than 

previously. However, when shifts in disturbance agents are considered with other 

indicators, an interpretation can be made as to whether the system is functionally 

different. This indicator tracks the area disturbed by fire, MPB, total harvest and salvage 

114 



harvest for each period of the simulation. The last coarse-filter indicator is the amount of 

pine susceptible to MPB, an indication of the risk that the forest may be sensitive to an 

outbreak. For each scenario, the mean and standard deviation of the area susceptible 

to MPB were calculated. 

Expected Trends and Outcomes for Response Variables 

The state of the provisioning and regulatory services that I identified reflects social-

ecological resilience of the Cranbrook system. Considering the variation in social and 

ecological drivers among scenarios (Table 3-3), I predict specific trends and outcomes 

for each response variable. An even supply of timber and a stable growing stock implies 

consistency in the supply of the provisioning service. I would expect this with the Status 

Quo and Forestry First scenarios, whereas provisioning services for the Climate 

Crusade scenario will likely decline due to climate change. The Forestry Commons and 

Climate Pilgrimage scenarios should maintain a low level of timber supply, but respond 

to harvest opportunity and, on average, harvest above this level, with Forestry 

Commons more than Climate Pilgrimage. I would expect growing stock to be stable 

under the Status Quo and Forestry First scenarios, increase under the Forestry 

Commons and Climate Pilgrimage scenarios, and decline under the Climate Crusade 

scenario. 

Grizzly bear natal habitat reflects the amount of the study area that is not dominated by 

humans. I expect the amount of natal habitat to be greater under the Forestry Commons 

and Climate Pilgrimage scenarios. A negative exponential forest age structure, and an 

amount of old forest similar to historic levels, would indicate maintenance of ecosystem 

processes and the resilience of the landscape. I would expect this outcome with the 
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Forestry Commons and Climate Pilgrimage scenarios. Resilience will also correlate with 

less timber susceptible to MPB. I would expect this outcome for the Status Quo, 

Forestry First, Climate Crusade and Climate Pilgrimage scenarios. 

Results 

Harvest Indicators - Provisioning Service 

The percent harvest achieved (Figure 3-1) shows that the Status Quo harvest request 

was met for over half of the 10-year time periods (29 of 50 periods). The Status Quo 

harvested on average 93% of the expected area; however, it only harvested 72% of its 

targeted volume. The volume shortfall was due to the difference in frequency and extent 

of disturbance between the TSR Ill's NRL approach and the spatially explicit dynamic 

disturbance models implemented for the scenario analysis. The NRL approach for 

setting harvest requests reduces volume by an annual uniform amount per period based 

on recent disturbance data, whereas the scenario analysis used the stochastic spatial 

MPB and fire model parameterized with longer-term historic data. 

Due to the larger THLB, unlimited salvage feature and ability to violate conservation 

objectives when there are harvest shortfalls, the Forestry First scenario moderately 

exceeded its area harvest request for 36 periods (105% of area requested harvested on 

average). Despite the more aggressive harvesting approach used in Forestry First, like 

the Status Quo scenario, less volume was harvested than targeted (83%). The 

response to salvage opportunities was most pronounced in the Forestry Commons 

scenario where harvested area exceeded the request for 42 periods. Overall, the 

salvage-only zone and unlimited salvage features of the Forestry Commons scenario 
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Figure 3-1. Cranbrook study area mean per cent of harvest targets achieved by year for 
500 years. Simulations were repeated for 5 scenarios (Status Quo, Forestry First, 
Climate Crusade, Forestry Commons, and Climate Pilgrimage) representing a range of 
management approaches and disturbance rates. 

allowed harvest of 240% of the area targeted and 232% of the volume. Following 

climate change, the harvest under the Climate Crusade scenario did not meet the total 

area (83%) or volume (58%) of requested timber, whereas under the Climate Pilgrimage 

scenario, harvest is 176% of the area and 140% of the volume requested. 
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The timber volume harvested is variable for all scenarios (Figure 3-2). The Status Quo, 

Forestry First and Climate Crusade scenarios all begin with the current cut level. The 

Status Quo roughly follows the prescribed harvest profile, but falls below due to the 

stochastic implementation of fire and MPB. The harvest request for the Forestry First 

and Climate Crusade scenarios are the same as the Status Quo, however they both 

increase volume harvested in response to salvage opportunity and the larger THLB, 

after which the Forestry First (x = 834,699 m3, sd = 203,060) cycles somewhat above 

the Status Quo (x =733,079, sd = 134,392) and the Climate Crusade below (x = 

585,914, sd = 259,192). The Forestry Commons (x = 384,999, sd = 263,264) and 

Climate Pilgrimage (x =232,403, sd=249,622) have a lower harvest request and the 

volume harvested increases due to salvage and then oscillates with future disturbance 

for the remainder of the simulation. These results presented are an average across 10 

replicates of each scenario, which dampens the variability characteristic to an individual 

run. Under climate change, the Climate Pilgrimage scenario harvests only 60% of the 

Forestry Commons scenario and the Climate Crusade harvests 70% of the Forestry 

First scenario on average. The proportion of salvage (Figure 3-3) shows that the 

Forestry First has marginally more salvage than the Status Quo scenario on average 

(8% vs. 11%) and that under climate change the Climate Crusade salvages a greater 

proportion (16%). Compared to the other scenarios, both the Forestry Commons and 

Climate Pilgrimage employ a substantially greater proportion of salvage as part of the 

total volume harvested (60% and 70%). 

118 



o o o o -o 
LO 

o o o o o o 

o o o o o 

Scenario 

Status Quo 
Forestry First 
Climate Crusade 
Forestry Commons 
Climate Pilgrimage 

\t w N/ ix / v' \j X// \ ' 

2000 2100 2200 2300 2400 2500 

Year 

Figure 3-2. Cranbrook study area mean volume harvested over 10 replicates for 500 
years of simulation. Simulations were repeated for 5 scenarios (Status Quo, Forestry 
First, Forest Commons, Climate Crusade and Climate Pilgrimage) representing a range 
of management approaches and disturbance rates. 
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Figure 3-3. Cranbrook study area per cent salvage harvested over 10 replicates for 500 
years of simulation. Simulations were repeated for 5 scenarios (Status Quo, Forestry 
First, Forest Commons, Climate Crusade and Climate Pilgrimage) representing a range 
of management approaches and disturbance rates. 

Although still fluctuating, the Status Quo scenario has the most stable growing stock of 

the 5 scenarios (x = 37,990,786, sd = 5,516,112; Figure 3-4). Oscillations in the 

amount of growing stock are due to either harvesting above sustainable levels, for the 

Status Quo and Forestry First (x = 46,972,342, sd = 7,748,092) scenarios, or higher 

levels of disturbance in combination with harvesting for Forestry Commons (x = 

58,001,329, sd = 10,361,347), Climate Crusade (x = 35,611,988, sd = 9,816,722) and 
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Climate Pilgrimage (x = 34,204,790, sd = 12,570,810). The Forestry First scenario has 

a higher growing stock than the Status Quo due to its larger THLB. Despite a smaller 

THLB, the Forestry Commons's growing stock is higher due to less green tree harvest 

and influence of the salvage-only zone. The two climate change scenarios both have 

lower growing stock than the Status Quo due to the increased incidence of disturbance 

killing trees that would have otherwise contributed to the growing stock. Once the 

oscillations begin, by over-harvesting or by natural disturbance, they persist leading to a 

"boom and bust" effect. The standard deviations of the growing stock of each scenario 

illustrate the variability across the 10 replicates. The large positive and negative 

iterations of growing stock are cancelled by averaging across the replicates in 

generating the mean. To highlight the variability in growing stock a single run is 

presented (Figure 3-5). The single run is the replicate with a mean growing stock 

closest to the overall mean across all replicates. 
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Figure 3-4. Cranbrook study area growing stock over 10 replicates for 500 years of 
simulation. Simulations were repeated for 5 scenarios (Status Quo, Forestry First, 
Forest Commons, Climate Crusade and Climate Pilgrimage) representing a range of 
management approaches and disturbance rates. 
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Figure 3-5. Cranbrook study area growing stock for one replicate for 500 years of 
simulation. A separate replicate (approximating the mean of all 10 runs) is presented for 
each of 5 scenarios (Status Quo, Forestry First, Forest Commons, Climate Crusade and 
Climate Pilgrimage) representing a range of management approaches and disturbance 
rates. 

Fine-filter biodiversity - Regulatory Service 

Prior to extensive harvesting the total area for female grizzly bears secure from human 

activity comprised over 80% of the study area and has declined through the 20th 

century (Figure 3-6). Both the Forestry Commons and Climate Pilgrimage scenarios 

have rules limiting access for forestry activities; these rules in conjunction with a lower 
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harvest provide for substantially more secure areas (911,369 ha and 933,350 ha 

respectively) than the Status Quo, Forestry First or Climate Crusade scenarios (740,736 

ha, 726,692 ha, and 772,777 ha). The Climate Crusade scenario has 6% more security 

area than the Forestry First scenario due to the increase in salvage harvesting, which 

tends to concentrate harvesting. The number of areas for female grizzly bears secure 

from humans shows a similar trend (Figure 3-7). 
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Figure 3-6. Total area of security patches over 10 replicates for the Status Quo, 
Forestry First, Forest Commons, Climate Crusade and Climate Pilgrimage scenarios 
over 500 years of simulation in the Cranbrook study area. As a comparison historic data 
for 1949 and 1973 are included. 
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Figure 3-7. Mean number of patches secure from human access over 10 replicates for 
Status Quo, Forestry First, Forest Commons, Climate Crusade and Climate Pilgrimage 
scenarios over 500 years of simulation in the Cranbrook study area. As a comparison 
historic data for 1949 and 1973 are included. 

Coarse-Filter Biodiversity - Regulatory Service 

The Forestry Commons scenario most closely resembles the distribution of age classes 

of the No Management scenario, indicating that it is closest to natural landscape 

conditions. The 100 to 250 year age group of forest is most common in the No 

Management, Forestry Commons and Status Quo scenarios (21%, 19% and 17% of the 
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total area, respectively; Figure 3-8) as compared to the Forestry First, Climate Crusade 

and Climate Pilgrimage scenarios (where it is projected to occupy only 14%, 13%, and 

11 % of the area, respectively). The Status Quo scenario had the most forest in the 250+ 

age class (15%) due to fire suppression. Despite having a low biodiversity emphasis, 

fire suppression also benefited the Forestry First scenario (14% of area in 250+ age 

class). The others are below the Status Quo and Forestry First scenarios (No 

Management 10%, Forestry Commons 10%, Climate Crusade 7% and Climate 

Pilgrimage 3%), with Climate Crusade fairing better under climate change due to fire 

suppression. The age distribution of the forest modelled in all scenarios follows a 

negative exponential distribution due to the actions of simulated fire and MPB. The 

Kolmogorov-Smirnov test found that the distribution of age class data generated for 

each scenario did not differ significantly when compared to the No Management 

scenario. 

Although there are a total of 32 ecosystem groups in the study area, on average the No 

Management scenario only generates enough old forest for 35% of the units to be 

above their representative amount (Figure 3-9). The Status Quo scenario does the best 

with respect to mature forest representation (43%) due to fire suppression and a modest 

harvesting regime. The Forestry Commons (32%) scenario performs marginally better 

than the Forestry First (30%) scenario and is closest to the no management scenario, 

but without fire suppression it is far below the Status Quo scenario. Both climate change 

scenarios perform poorly, especially the Climate Pilgrimage scenario that only achieves 

8%, whereas the Climate Crusade is at 19%. The variability in the occurrence of old 

forest is much higher in the absence of fire suppression for the No Management 
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Figure 3-8. Mean percentage of hectares of forest in three different age groups (stand 
age < 100 years, > 100 to < 250, >250) over 10 replicates by each scenario at 
simulation year 250 over the study area (No Management, Status Quo, Forestry First, 
Climate Crusade, Forest Commons, Climate Pilgrimage). 

(sd=5.7) and the Forestry Commons (sd=5.1). The variability is less for the Forestry 

First (sd=2.6), Climate Crusade (sd=3.4), and the Climate Pilgrimage (sd=3.5) 
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scenarios. Fire suppression changes forest structure through the maintenance of old 

forest. 
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Figure 3-9. Mean number of ecosystem units (Appendix C) over their respective "old" 
threshold - amount of old expected under historic disturbance regime - in the 
Cranbrook study area. Results calculated over 10 replicates for No Management, Status 
Quo, Forestry First, Forest Commons, Climate Crusade, and Climate Pilgrimage 
scenarios for 500 years of simulation. 

Under the No Management scenario, as expected, fire and MPB greatly influence the 

amount of area disturbed (Figure 3-10; 79% and 2 1 % of all disturbance). Even with 

harvesting, but no fire suppression, the Forestry Commons scenario is also dominated 
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by fire (65%). MPB is dampened in the Forestry Commons scenario presumably by 

forest harvesting and increased fire (13%). Although fire is still prevalent, harvesting 

represents an increased proportion of area disturbed for the Status Quo (fire 43%, 

harvest 41%) and Forestry First (fire 43%, harvest 43%) scenarios representing a lesser 

role of fire as a controlling process compared to the No Management regime. While 

MPB is initially high it does drop (under the Status Quo to 12%, Forestry First 9%), but 

large events do periodically occur. Fire rises for both the climate change scenarios, as 

expected, but without fire suppression it is most extensive in the Climate Pilgrimage 

scenario (Climate Pilgrimage 87%, Climate Crusade 68%). Under these two scenarios 

the incidence of MPB drops due to the increased frequency and extent of fire (Climate 

Pilgrimage 2%, Climate Crusade 3%). 

Fire suppression has a large impact on a number of components of the system, 

including a greater area of old forest and a modest increase in MPB activity. The area of 

susceptible pine (Figure 3-11) rises from historic levels starting in 1973 then peaks and 

declines under all scenarios. The level of susceptible pine is highest and the most 

variable under the No Management and Forestry Commons scenarios (x = 115,447 ha, 

sd = 30,218 and x = 113,068 ha, sd = 23,820), in contrast to the Status Quo and 

Forestry First scenarios (x = 105,654 ha, sd = 16,856 and x = 100,960 ha, sd = 16,058). 

Under the No Management scenario there is no harvesting to decrease the area of old 

pine and it is modestly higher than historic levels. The variability of susceptible pine is 

highest for the No Management scenario (sd=23,820). The amount of susceptible pine 

drops under climate change, due to the presence of harvesting and a higher incidence 
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of fire for the Climate Pilgrimage and Climate Crusade scenarios (x =72,251 ha, 

sd=27,591 and x =80,935 ha, sd=19,188). 
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Figure 3-11. Mean percentage of susceptible pine by age-class over 10 replicates for 
No Management, Status Quo, Forestry First, Forest Commons, Climate Crusade and 
Climate Pilgrimage scenarios over 500 years of simulation. 
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Discussion 

Using scenarios to explore how a forest may change under a range of social and 

ecological conditions provides insights into the interaction of management choices and 

ecological processes (Peterson et al. 2003). Some simulation outcomes were expected 

on the basis of assumptions about system behaviour. Examples include the amount of 

forest burned, timber targeted to harvest, and the triggering of MPB events with 

increasing amounts of susceptible pine. Other interactions were unexpected, emerging 

through the analysis. These included the interaction of salvage with disturbance, the 

role of a 'salvage-only' zone in augmenting harvest levels, the implications of 

aggressive harvesting for managing regulatory and provisioning services, and the 

greater amounts of old forest that occurred under some scenarios. Also unexpected 

was the increased amplitude of all indicators without fire suppression and in the 

presence of climate change. A steady growing stock is a key objective of current 

management; however, under all scenarios growing stock oscillated. This demonstrates 

the contradiction of trying to manage a dynamic system as if it was stable. With periodic 

extensive disturbance it is inevitable that growing stock will rise and fall and 

management should be structured to accommodate this dynamic. 

Only the passive scenarios explicitly incorporated disturbance into timber supply 

planning. These scenarios were able to exceed their base harvest request by 

responding to salvage opportunities and managing timber supply dynamically rather 

than uniformly. The Status Quo and aggressive approaches to forest management, 

operating under an assumption that future disturbance would be manageable, failed to 

meet their intended harvest goals, this despite the benefit to the aggressive scenario of 
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a larger THLB and relaxation of conservation objectives. Further, the Status Quo and 

aggressive approaches did not provide an expected consistent timber supply, because 

of the interaction of disturbance, salvage and over harvesting generating an oscillating 

growing stock. 

The Status Quo scenario performed relatively well for both timber supply and old forest 

representation. Given the reduction in services under Climate Crusade and Climate 

Pilgrimage it is likely that the Status Quo scenario would suffer a similar drop in the 

future with climate change. With the exception of old forest representation, the Forestry 

First scenario only performed marginally poorer than the Status Quo for the indicators 

assessed. 

The regulatory ecosystem services, grizzly bear natal habitat, the distribution of forest 

ages, amount of old forest, the dominant disturbance process, and the amount of pine 

susceptible to MPB, give a broad representation of the state of the resource system. By 

tracking regulatory services, resource professionals can identify the threshold at which 

the forest will shift to a different ecosystem state. For example, an increase in 

susceptible pine strongly indicates a loss of resilience to MPB. Shifts in forest age 

structure and dominant disturbance agent indicate that there has, at least at one scale, 

been a change in regime given that the controlling processes have shifted from fire to 

forest management. Recently, as throughout much of interior BC, there has been a 

decline in resilience to MPB across the Cranbrook study area. Fire suppression has led 

to an older cohort of pine than would not have been expected under the historic 

disturbance regime (Taylor and Carroll 2004). However, this is likely to be dampened in 

the future by either an increase in fire or further conversion of the forest to 
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management. This interpretation agrees with other findings (Taylor and Carroll 2004) 

that indicate that the recent increase in susceptible pine may be temporary and as the 

pine is harvested and the stand age is kept below 100 year, the likelihood of future MPB 

outbreaks will decrease. It would appear that the current MPB event is a product of a 

state transition from an unmanaged to a managed forest and large historical fires. 

When systems change states there is a possibility of a period of chaos as new 

controlling processes become established (Walker and Meyers 2004, Scheffer et al. 

2009). Boundary chaos clouds the identification of a definitive threshold between 

alternative states. Transition chaos will become more of a concern as ecosystems re­

organize due to climate change. More research will be required to detect early warning 

signals of potential regime shifts in forested ecosystems (Scheffer et al. 2009). 

Based on the scenarios I assessed, fire suppression contributed to an increase in old 

timber for harvest and in old forest for conservation. There are mixed advantages to fire 

suppression: for example, with more old forest there is more habitat for old forest 

dependent species, however this could be at the detriment of early serai species 

(Bunnell 1995). Skewing forest age structures, away from what would have occurred 

under natural processes, could undermine the capacity of the broader ecological 

community to respond to disturbance events (Drever et al. 2006). 

Fire suppression has been effective in the past (Daniels et al. 2007) and it is reasonable 

to assume that it would be in the future. However, based on modelling studies, climate 

change is anticipated to increase annual area burned by 100%. Given the past success 

rate of suppression (an approximately 50% reduction in annual area burned; DeWilde 
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and Chapin 2006), the future forest will be more dynamic and perhaps comparable to 

current boreal landscapes that do not have significant fire suppression. As a result, 

future landscapes will need to be managed under an expectation of greater amounts of 

fire disturbance. This will inevitably lead to spikes in timber availability as salvage 

opportunities emerge. There are, however, substantive ecological and management 

issues associated with fire suppression. Fire suppression, for example, can reduce 

structural complexity (Bergeron et al. 2002, Kuuluvainen 2002, Drever et al. 2006, 

Puettmann et al. 2009). The simplification of forest structure can reduce resilience to a 

range of disturbance types; for example a build-up of fuels can trigger extremely large 

fire events (Arno et al. 2000) and the lack of regeneration of some fire-dependent forest 

species (Zackrisson 1977). Implementing measures to support diverse forest structures 

and minimize fuel loads, such as the use of prescribed burning, would help address 

some of fire suppression's limitations (Lindenmayer et al. 2008). 

Homogenizing temporal dynamics is intended to provide a consistent supply of 

ecosystem services. The scenarios with fire suppression have more mature and old 

forest. This shift in age structure can lead to a loss of resilience and trigger a large-scale 

event, such as the recent MPB outbreak in BC. Dampening temporal dynamics may be 

the ultimate trade off between maximizing timber production and the encouragement of 

a more natural age structure necessary for maintaining resilience to large-scale 

disturbance events. By using strategies such as leaving sections of the landscape 

unmanaged or using a salvage only zone, timber can be harvested in a way that is more 

cognizant of landscape processes. Furthermore, a dynamic approach to managing 

timber supply can provide better protection of other values, such as grizzly bear habitat. 
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Managing for resilience entails maintaining biodiversity and allowing for spatial and 

temporal ecological dynamics. 

The scenarios I developed reflect different perceptions of risk associated with future 

events. The passive scenarios are more risk averse, with a smaller land base and an 

adaptive response to perturbation. The more aggressive approach assumes a stable, 

predictable future with an increase in harvest as a response to disturbance. This harvest 

response leads to near-term shortfalls in timber supply and biodiversity, and has 

implications for forest structure, composition and pattern. This dynamic behaviour 

becomes more pronounced under the climate change scenarios due to the increased 

rate and extent of disturbance. Economically, there may be less risk in the short term to 

maximize harvest, due to economic discounting (Chapin and Whiteman 1998), however 

this approach leads to a trade-off of short-term economic benefit with longer-term 

economic and ecological risk. This trade-off would best be addressed through public 

debate on the short- vs. long-term risk and sustainability of ecosystem services. 

Managing for resilience includes strategies to promote structural, compositional and 

pattern diversity, along with approaches to support ecosystem dynamics and adaptation 

to extreme events (MA 2005, Drever et al.2006, Millar et al. 2007, Campbell et al. 

2009). Table 3-4 contrasts the four scenarios with respect to diversity (table headings 

Biodiversity, Structure, Pattern, and Composition), how each approaches dynamics 

(Managing Dynamic, Disturbance Assumption, Ecological Process, and Extreme 

Events) and promotes adaptation to extreme events (Planning for Change, Key 

Conservation Features, Redundancy, and Connectivity). Each scenario is summarized 

according to these broad categories (Diversity, Dynamics and Adaptation). The passive 
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Table 3-4. Summary of four scenarios and how they provide resilience to disturbance, manage dynamics and promote 
adaptation to landscape events (- strategy not met, - strategy moderately not met, + strategy moderately met, •*-+ strategy 
met). A resilience summary is given in the last row. 

Strategy 
Management 
Objective 

Biodiversity 

Result 

Structure 

Pattern 

Composit ion 

Forestry First 
Maximum sustainable 
yield. More old forest 
due to fire Suppression 

Apply low biodiversity 

Old forest 
representation 

Tree species 
diversity 

Forestry Commons 

Increasing functional and 
response diversity -
limited success due to 
increase its fire, but similar 
to FF 

Apply mix of low, medium 

Climate Crusade 

Minimize loss of timber to 
disturbance. Loss of old 
forest due to increased 
fire 

Climate Pilgrimage 

increasing functional and 
response diversity - poor 
success due to increase 
in fire 

landscape objectives over and high biodiversity 
landscape objectives landscape 

More uniform age 
structure, harvest at wiln disturbance regime 
cumulation age. negative 
exponential over all 

Apply low Biodiversity Apply mix of low, medium 
landscape objectives over and high biodiversity 
landscape landscape objectives 

Age structure consistent Negative exponential age Age structure consistent 
structure due to increased with disturbance regime 
incidence of fire 

Negative 
exponential -
age structure 

Harvesting -
2Q-6Q ha ' 
blocks. 
Fare -1,000 ha 
M P B - 4 h a 

Variable sized 
disturbance 
patches 

Harvesting dominates. 
smaller openings 

Fire dominated 
openings 

larger Harvesting dominated, 
but with more fire - more 
larger openings man FF, 
but less tnan FC and CP 

Fire dominated - larger 
openings, more than FC 

Monoculture - most 
disturbance narvest, 
replant 

lner> 
Mixed - most disturbance 
fire, natural regeneration. 
some repiant 
+ 

Monoculture/Mix-
disluroance mix of 
harvest and fire 

Mixed - extensive fire, 
natural regeneration. 
some replant 



Strategy Result 
Managing 
Dynamic 

Loss to 
disturbance 

Disturbance 
Assumption 

Disturbance 
anticipation 

Ecological 
Process 

Fire 
suppression 
success 

Extreme 
Events 

Plan for 

Forestry First 
Maximize narvest, 
minimize loss to 
disturbance 

Impacts averaged and 
assurnec on an annual 
basis 

Extensive fire suppress!: 

•^-f~ 

Assume consistent 
supply, if extreme event 
occurs triers redo 
management plans. 

Forestry Commons 
Bet-hedging - anticipate 
future unknowns 

Focus on variation and 
anticipate periodic large 
scale salvage 

No fire suppression, fire 
consistent with historic 

protocols for response to 
periodic large scale 
events 

extremes 

Climate Crusade 
Maximize narvest, 
minimize loss to 
disturbance 

Impacts averaged and 
assumed on an annual 
basis 

Assume consistent 
supply, if extreme event 
occurs tnen redo plans. 

Climate Pilgrimage 
Bet-hedging - anticipate 
future unknowns 

Focus on variation and 
anticipate periodic large 
scale salvage 

protocols for response to 
periodic large scale 
events 

Extensive fire No fire suppression, 
suppression, less success extensive fire 
than FF 



Strategy Result Forestry First 
Planning for No anticipation, increase 
Change harvest in response to 

disturbance 

Forestry Commons 
Salvage only zone. When 
disturbance increase 
harvest into zone. 

Climate Crusade 
No anticipation, increase 
harvest in response to 
disluroance 

Climate Pilgrimage 
Salvage only zone. When 
disturbance Increase 
harvest into zone. 

Anticipating 
disturbance 

Key 
Conservation 
Features 

Conservation 
Redundancy 

Replication in 
conservation 

Areas secure 
from humans 

Violate conservation Maintain nigh 
constraints to meet lumber conservation areas 
targets 

Single ecological 
representation and some 
areas can be narvested 

in non harvesting land 
base only, increase c 
industrial activity 

More area excluded from 
harvest and use of no 
harvest buffers around 
conservation areas 

Multiple connections at 
multiple scales, access 
constraints. Limited 
industrial activity 

Violate conservation Maintain high 
constraints to meet timber conservation areas, 
targets salvage only zone 

harvested more heavily 
with increased 
disturbance 

Single ecological 
representation and some 
areas can be harvested 

In non harvesting land 
base only, increased 
industrial activity, but 
concentrated due to CC 
salvage 

More area excluded from 
harvest and use of no 
harvest buffers around 
conservation areas 

Multiple connections at 
multiple scales, access 
constraints. Limited 
industrial activity and 
concentrated 

T t 

Resilience Summary 
Diversity 
Dynamics 
Adaptation 

-l-r -r + 



scenarios have the most resilience management features because they anticipate and 

manage dynamics. The aggressive scenarios are limited in managing for resilience due 

to their focus on maximum sustained yield rather than promoting flexibility to deal with 

future events. 

The difficulty of managing for any large unexpected disturbance is a product of our lack 

of understanding about system boundaries and how to develop sustainable practices 

that work in a local context. Also, identifying the position of the system relative to an 

alternative state is key to better managing for large-scale disturbance events. This 

requires research, biophysical monitoring, regular assessments, education and 

balancing social expectations with the capacity of systems to provide services, and the 

regularity of their supply as shown in this project. 

A forest management planning approach that focuses on resilience and incorporates 

protocols of response to disturbance, like no salvage in key conservation areas and 

shifting areas for industrial use or habitat conservation, would be more appropriate for 

dynamic systems such as those anticipated with a changing climate (Rayfield et al. 

2008). Maintaining a network of connected conservation areas would provide more 

flexibility in the event that parts of the landscape become heavily disturbed (Eng 1998). 

Extreme events would be tempered by ensuring complexity, and enhancing response 

diversity, to promote post-disturbance re-organization. This approach should 

intentionally promote management flexibility, and the acceptance of future disturbance 

events and the associated salvage opportunities that would accompany a fluctuating 

availability of timber (Chapin and Whiteman 1998, Lindenmayer et al. 2008). 
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Several improvements in the simulation model would provide deeper insights and a 

more detailed assessment of stand- and landscape-scale ecological dynamics. The 

model I developed used only one set of post-disturbance successional pathways for 

each stand type. A broader range of pathways, linked to the extent and type of 

successive disturbances would provide a better representation of stand-scale processes 

(Frelich and Reich 1998). As well, insights would be gained into how different stand 

responses influence resilience. The model lacked clear feedback mechanisms between 

management approaches such as fire suppression and harvesting pattern and how this 

interaction might influence resilience. The modelling of climate oscillation was on a 

regular interval; further analysis of historic trends may have provided insights into the 

variability of ocean-atmospheric phenomena which could have been incorporated into 

the model. The fire model could be improved by introducing some process-based 

features such as an increase in fire initiation and volatility with an index of fuel loads 

linked to a stand's disturbance history. 

The scenarios provide context for informing forest management and how current 

approaches should be structured to plan for inevitable dynamics. Managing for 

resilience is not about implementing some new forest management prescription, but 

rather about building a flexible approach to managing resources, such that uncertain 

events can be tempered and are incorporated into forest management planning. Shifting 

to managing for resilience requires social shifts as well. People's expectations and 

assumptions to how and when forests can supply services would need to be re-thought 

to adapt to managing for a dynamic resource. 
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Disturbance events are a required component of healthy forests and therefore are 

necessary to ensure the continuation of ecosystem services (Puettmann et al. 2009). 

Disturbance cannot be avoided; the unknown is when, where and how much 

disturbance will occur. Scenarios help to explore the extent, frequency and impacts of 

future disturbances and the interaction with different approaches to the management of 

ecosystem services such as the role of fire suppression and the implementation of a 

salvage-only zone. Looking at a range of scenarios, as opposed to one preferred future, 

provides greater insights into current management and opportunities for adapting to the 

future, especially when trying to balance biodiversity and timber supply, while dealing 

with social and ecological uncertainty. 
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The capacity for ecosystems to consistently supply ecosystem services has become 

undermined by ecological degradation and an increased incidence of natural 

disturbance events (Carpenter 2003, Walker and Meyers 2004, Adger et al. 2005, Foike 

et al. 2004, MA 2005, Hobbs et al. 2006, Williamson et al. 2009). The frequency and 

areal extent of disturbance is expected to increase as the climate continues to change 

(Emanuel 2005, IPCC 2007). Expectations of the reduction in ecosystem services are 

based on historic occurrences of natural disturbance events. Current approaches to 

resource management are not well suited to deal with predicted increases in 

disturbance (Spittlehouse and Stewart 2003, Lindenmayer et al. 2008, Williamson et al. 

2009). My research goal was to apply and extend methods for evaluating social-

ecological systems as a way of addressing the limitations of conventional resource 

management approaches. 

Spatial and temporal dynamics play a vital role in generating the structural and 

compositional complexity in ecosystems that enables natural systems to adjust to 

shifting climate and natural disturbance (Scheffer 2001, Gunderson and Holling 2002, 

Drever et al. 2006, Puettmann et al. 2008, Campbell et al. 2009). Social-ecological 

systems theory emerges as a theoretical basis for developing resource management 

approaches that recognise and incorporate spatial and temporal dynamics. Further, 

social-ecological approaches integrate the needs of people relative to ecosystem 

services and the dynamic environment that provides them (Gunderson and Holling 

2002, Walker et al. 2004, Walker 2005, RA 2007). 
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Social-ecological theory focuses on a system's resilience, adaptability and 

transformation (Walker et al. 2004). Resilience is the capacity of a system, such as a 

forested ecosystem and its management, to persist after disturbance and still maintain 

its defining characteristics and processes (Holling 1973, Carpenter et al. 2001). The 

adaptability of a social-ecological system is tightly connected to resilience. Where 

resilience relates to the capacity of the system to persist, adaptability links to the social 

and ecological mechanisms of that persistence. Social adaptive capacity embodies 

institutional flexibility, technical innovation, and social networks, all of which increase 

people's capacity to respond to change (RA 2007a, 2007b). Ecological adaptive 

capacity correlates to response diversity, an important feature of ecological complexity 

(Campbell et al. 2009, Puettmann et al. 2009). 

When the social or ecological capacity of the system is overcome, or when the current 

configuration is shown to be no longer appropriate, transformation occurs. 

Transformative change is now necessary to adapt to climate change. New resource 

management approaches are required to address the social expectation of resource 

extraction and to sustain ecological capacity for future generations (Pojar 2010). 

In Chapter 2, I used a structured framework to examine an alternative approach to 

resource management. By assessing resilience, adaptability and possible 

transformation, the framework evaluates a resource system's historic, current and 

possible future configurations, and provides insights into an ecosystem's adaptive 

capacity. Using this framework, communities and resource managers can conduct 
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social-ecological assessments allowing them to anticipate transformation and take the 

steps necessary to mitigate the negative consequences. 

Understanding future social and ecological dynamics is critical to planning for a supply 

of ecosystem services. Typically, a conventional resource management plan assumes 

one future, then builds resource allocation models to determine levels of harvest. 

Sensitivity analyses are conducted to understand the implications of variation in input 

assumptions (Province of BC 2007). When extreme disturbance events occur, the 

current resource models incorporate the losses and a long-term sustained yield is re­

established (Province of BC 2007). However, the assumption of a stable future is not re­

evaluated. The problem of not representing the full extent of system dynamics is 

apparent as forests are becoming more heavily influenced by a changing climate 

(Williamson etal . 2009, Pojar2010). 

Using a structured approach to build a range of scenarios depicting a representation of 

the future is a robust technique for understanding the social and ecological drivers of 

change (Peterson et al. 2003, MA 2005). Scenarios help us to understand the dynamics 

and uncertainty associated with the interaction and evolution of parts of a system. The 

methodology for composing structured scenarios, shown in Chapter 2, divides the range 

of possible futures by their social and ecological components. Each scenario was 

structurally unique. The rate and extent of natural disturbances were featured on the 

ecological axis. The rate of disturbance was either similar to historic, or more extreme, 

driven by changes in climate. Socially, the scenarios ranged from a passive to an 

aggressive approach to forest management. The passive approach attempted to 
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recreate historic landscape dynamics, whereas the aggressive was parameterized to 

maximize timber harvesting at the detriment of other values. There are an infinite 

number of possible futures; however, by entertaining four options across a gradient of 

possibilities, insights are gained into the emergent properties of dynamic resource 

systems. The construction of scenarios helps to identify the amount of ecosystem 

services that can be expected given the fluctuations in resource supply. 

Qualitative scenarios allow resource professionals to compile information on a resource 

system and to engage interest groups in developing a common understanding of what 

has historically occurred, and how it influences the present. When attempting to peer 

into the future, we generate questions that help us understand uncertainty: to what 

extent may events play out; and how are they buffered or encouraged through the 

interaction of social and ecological processes? By quantifying the scenarios, and 

conducting simulation experiments, as presented in Chapter 3, some of these questions 

are addressed. The process of generating models forces us to understand the state of 

our knowledge relative to the behaviour and interactions of ecological and social 

processes (Starfield 1997). Model predictions provide some insights into the future; 

however, the scenario process guards against interpreting specific outcomes and 

instead forces us to look at differences in outcomes relative to the suite of scenarios 

that are identified. 

The Cranbrook management unit in southeastern BC was used as a case study to 

demonstrate the scenario analysis methodology. A set of simulation models was 

constructed, using the SELES (Fall and Fall 2001) spatio-temporal modelling tool, that 
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captured landscape dynamics and forest management. A number of the assumptions 

within the scenarios were confirmed. For example, harvesting aggressively 

compromises fine- and coarse-filter biodiversity, and forgoing fire suppression and 

reducing the timber harvesting land base severely restricts annual timber supply. Other 

properties of the system were not originally anticipated, particularly the interplay of 

system dynamics and the supply of ecosystem services. Aggressive forest management 

has difficulty maintaining a consistent supply of timber when landscape dynamics 

change. The oscillation in timber availability was unintended and emerged because of 

the strategy to constantly maximize the amount of timber harvested used in the 

aggressive approach. Socially, this would be very disruptive, as expectations would be 

built for a certain level of harvest only to be compromised by sudden declines in 

availability of timber. The more passive set of scenarios relied on a smaller land base 

for harvest and used an opportunistic salvage zone. Under this class of scenarios, 

social expectations could be built around a lower level of consistent economic activity. 

However, an assumption of the passive approach is that disturbance occurs periodically 

and that harvesting increases temporarily in response. 

The aggressive and passive approaches to resource management reflect fundamental 

differences in philosophy. The aggressive approach is attempting to control nature to 

provide services at an annual scale that meets human need for consistency and 

certainty (Chapin and Whiteman 1998). By anticipating disturbance and adapting, the 

passive approach is more inclined to work with natural dynamics. This approach 

accepts oscillation in the availability of ecosystem services as part of the nature of the 

system. In the end, the passive approach is able to preserve values besides timber, yet 
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still harvest a substantial amount of timber by working with, rather than against, natural 

dynamics. Ultimately, and despite our goal of stability, natural disturbance and resource 

extraction results in the oscillation of ecosystem services such as timber supply. 

Resource professionals have a choice: to incorporate the inevitability of future dynamics 

into planning and management, or not. For the Cranbrook study area a combination of 

management strategies from each scenario would yield the most robust approach to 

managing for social-ecological resilience. For example, monitoring the supply of 

ecosystem services and implementing strategies to dampen their oscillation (fire 

suppression) or to take advantage of resource pulses (salvage) would be the most 

social-ecologically appropriate. 

Resilience is a broadly applied concept that is focussed on encouraging complexity and 

adaptive capacity in social-ecological systems (MA 2005, RA 2007a, Puettmann et al. 

2009). For forested systems at the stand level, this means advocating for management 

practices that: prioritize stand diversity; maintain biological legacies; promote 

heterogeneity across a forest; encourage diverse species mixes for replanting; and 

harvest stands at different culmination ages. Similarly, at the landscape scale, a 

resilience approach entails diversifying harvest unit size and spatial arrangement, 

varying cutting strategies and implementing prescribed burning as a different approach 

to fire suppression, in order to maintain ecological processes (Campbell et al. 2009). 

Temporally, resilience is about working with the disturbance dynamics of the system. 

This requires a social shift to accept uncertainty and recognize that a larger component 

of harvesting will be opportunistic. As well, taking advantage of salvage opportunities 
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may entail constraining human activity. For example, an extensive road network would 

be required to salvage disturbed forest, which may require strict access control to 

manage for other values, such as grizzly bear (Ursus arctos) natal areas. Following the 

principles of resilience theory, managing a "portfolio" of forests is the most appropriate 

strategy. When a forest is disturbed some parts should be salvaged, some left alone, 

while undisturbed areas are harvested at a far lower rate. With climate change expected 

to increase the area burned across western North America by 100%, resilience 

approaches are key to ensuring a future supply of ecosystem services (Wotton and 

Flannigan 1993, Stocks et al. 1998, Li et al. 0 Flannigan et al. 2005, Nitschke and Innes 

2008, Krawchuk et al. 2009). Although the supply of services may not be steady or 

stable, a resilience approach that uses scenario modelling to manage for a range of 

possible futures will enhance the chances for functional ecosystems and as a result 

human well being. 
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Appendix A. Summary of Fire History Analysis for Implementing Fire Modelling in the 
Cranbrook Study Area. 

I used historical fire data provided by the Canadian Forest Service to model to model 

future fires across the Cranbrook study area. The data included date of ignition, ignition 

sources and area burned for 682 fires recorded or inferred between 1919 and 2000 

(Taylor pers. comm.). Over that time period 778,695 ha of forest burned. For the fire 

model these data were analysed to calculate disturbance rates and patch sizes for each 

NDT in the Cranbrook TSA. 

The fire data had a skewed distribution (Figure 1). When only the smaller area 

disturbances were considered, below the 95th percentile (fires < 4,554 ha in size; 

methodology after Morgan et al. 2008), a total area of 260,396 ha (658 fires) was 

disturbed by fire. The 34 large fires, above the 95th percentile (Figure 1), accounted for 

518,334 ha of area burned. The majority of the large fires occurred prior to 1940 (33 of 

34), before large-scale fire suppression occurred across the study area. However, some 

researchers have reported a correlation between the warm phase of the Pacific Decadal 

Oscillation (PDO) and large regional fires (Daniels et al. 2007, Morgan et al. 2008). To 

investigate the role of the PDO in the Cranbrook, I partitioned the fire data into warm (45 

years; 1925-1946, 1977-1998) and cool (37 years; 1919-1924, 1947-1976, 1999-2000) 

PDO phases (University of Washington 2010). Both large and small fires were highly 

correlated with the warm phase of the PDO, with 27 of the 34 large fires and 413 of the 

658 small fires occurring in those years. This result supports the hypothesis that large 

fires in the Cranbrook were correlated with the PDO warm phase. 
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Figure A-1 . Plot of fire frequency by size and year for the Cranbrook study area. Black 
line indicates 95th percentile of fire size, fires above line are greater than 4554 ha. 

In order to increase the resolution of the fire model the fire data were partitioned 

spatially according to their natural disturbance regime, termed here as natural 

disturbance type (NDT; Province of BC 1995). Some fires straddled NDTs. In these 

cases, the historic fires were allocated to NDTs based on the largest NDT/fire overlap. 

The fire return interval (Van Wagner 1987) - the number of years to burn an area equal 

to the size of the forest - was an input parameter of the fire model and calculated for 
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each NDT and PDO phase combination (Table A-1). The return interval (Rl) was 

calculated as: 

Rl = NumYears x TotalArea/AreaBurn 

where 

NumYears is the number of years for which data were collected 

TotalArea is the total area of the forest 

AreaBurn is the total area burned over the years for which data were collected 

Table A-1. The forested area, area burned and fire return intervals for the three main 
natural disturbance units in the Cranbrook study area. 

Forested area 

Total area burned over 82 years 

Area burned warm phase (45 years) 

Return Interval - warm phase 

Area burned cool phase years (37 years) 

Return Interval - cool phase 

Natural Disturbance Unit 

2 
104,896 

34,383 

27,063 

174 

7,320 

530 

3 
770,958 

471,448 

460,646 

75 

135,555 

210 

4 
161,755 

143,044 

109,974 

66 

143,044 

42 

By further summarizing the historic data I generated an additional set of fire parameters 

were assessed for each NDT/PDO phase. The PDO cool phase fire parameters are 

shown in table A-2 and the warm phase in table A-3. 
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Table A-2. Fire modelling parameters for PDO cool years for the Cranbrook study area. 

2 

3 

4 

NDT Year with 
Fire out of 
possible 37 

8 

28 

24 

Number of 
Fires when 

fires 

1.63 

4.75 

4.46 

Mean Fire 
size when 

fires 

563 

1,019 

309 

Mean Area 
Burned when 

fires 

7,320 

135,555 

33,070 

Table A-3. Fire modelling parameters for PDO warm years for the Cranbrook study 

area. 
NDT 

2 

3 

4 

Year with 
Fire out of 
possible 45 

15 

28 

35 

Number of 
Fires when 

fires 

2.27 

8.14 

5.09 

Mean Fire 
size when 

fires 

796 

2,020 

563 

Mean Area 
Burned when 

fires 

27,063 

460,974 

109,974 
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Appendix B. Summary of Historic and Downscaled Provincial Mountain Pine Beetle 
Data for Implementing Outbreak Modelling in the Cranbrook Study Area. 

I used historic Mountain Pine Beetle (MPB) data provided by the Canadian Forest 

Service to model future outbreaks in the Cranbrook study area. The data included 

annual number of MPB outbreaks, their severity and their areal extent from 1935 to 

1996 (S. W. Taylor pers. comm.). Each outbreak was classified according to severity: 1 

(1 to 10% of stands attacked), 2 (11 to 30% attacked) and 3 (over 30% attacked). The 

modelling for this project is focused at the landscape scale and only explicitly considers 

stand initiating disturbance. I assumed that only severe attack (severity code = 3) would 

produce a significant level of stand mortality and that lesser values would produce stand 

complexity. As a result, calculations of the historic number and size of MPB events were 

based on outbreaks with a severity code of 3. 

The historic MPB data were analysed for the number of patches, patch size and overall 

areal extent of outbreaks. For the Cranbrook timber supply area there were 67 years 

with data, of those 22 had MPB outbreaks. The number of MPB outbreak patches per 

year varied between 1 and 1,392, with an average of 472 (sd=432). The frequency 

distribution of outbreaks followed a negative exponential distribution. The size of the 

outbreak patches varied between 0.001 hectares and 1,946 hectares, with a mean size 

of 4 hectares (sd = 33). The distribution of outbreak patch sizes also followed a 

negative exponential distribution. The total annual area of MPB outbreak varied from 9 

hectares to a maximum of 14,269 hectares (x =1,819, sd=3739; Figure B-1). 
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Figure B-1. Frequency histogram of area of historic Mountain Pine Beetle outbreaks for 
the Cranbrook study area. 

I used data generated from a provincial MPB project (Walton et al. 2007) to model 

future outbreaks. Data from this project were downscaled to the Cranbrook Timber 

Supply Area. The provincial MPB forecast covers 27 years from 1999 to 2025 and 

reported a minimum outbreak size of 460 ha for the Cranbrook Timber Supply Area, a 
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maximum size of 35,262 ha and a mean size of 8,201 ha. In combination, the historic 

data and the provincial modelled data generated a mean outbreak size of 5,276 ha; I 

used this value to represent the size of future outbreaks. 

MPB outbreaks have occurred every 28-53 years in central BC (Alfaro et al., 2004, 

Taylor et al. 2006). In the Cranbrook study area or TSA MPB outbreaks were absent in 

the historic data prior to 1969, though present to the north in the Invermere Timber 

Supply Area dating back to 1930. As well, forest reports dating back to the early 

twentieth century recorded MPB outbreaks in the Elk (Hodgins 1931) and Flathead 

(Andrews 1930) valleys. 

I used historic data to calculate the return interval for MPB across the Cranbrook study 

area. From 1945 till the end of current outbreak in 2025 an area of 245,015.8 ha is 

projected to be impacted by MPB resulting in an area of 306,314.8 ha impacted per 100 

years. The area of pine is 374,903 ha resulting in a return time of 122 years under MPB 

alone. 

The overall annual outbreak and outbreak patch size were found to follow a negative 

exponential distribution, however the shape of the distribution reflected a few large 

episodic events and smaller more typical events (Figure B-1). An MPB outbreak 

requires not only the availability of mature pine, but also favourable climate and 

dispersal conditions. When these factors converge a large-scale event is possible that is 

an order of magnitude larger than more typical outbreaks, such as the current MPB 

outbreak. To capture this effect the data were split at the 90th percentile, following a 

similar methodology used by Morgan et al. (2008) for differentiating large regional fires. 
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Table B-1 shows the mean outbreak size from the two groups. Epidemic outbreaks 

were assigned the mean from the data in the 90th percentile, while the size of endemic 

outbreaks was calculated from the remainder of the data. 

Table B-1. Summary statistics for Mountain Pine Beetle outbreaks in the Cranbrook 
study area calculated from the historic and a combination of historic projected outbreak 
data. 

Years Mean Mean Patch Mean 
outbreak size Size Number of 

Patches per 
Outbreak 

Historic Data 

Historic + BCMPB 

Endemic outbreak 

Epidemic outbreak 

22 

42 

37 

5 

1819 

5276 

2878 

4 

NA 

NA 

27630 NA 

472 

NA 

NA 

NA 

Based on the historic data, small endemic outbreaks initiated in the Cranbrook study 

area only after the amount of susceptible pine rose above 50,000 hectares and became 

common after 90,000 hectares. Epidemic outbreaks initiated when 90,000 hectares of 

susceptible pine were available and became common after 140,000 hectares (Figure B-

2). 
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Figure B-2. Plot of historic and modelled susceptible pine from 1949 to 2025 (dashed 
line) and historic and downscaled provincial projection of area of MPB outbreak for the 
Cranbrook study area. 
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Appendix C. East Kooteny (EK) ecosystem groups, including Biogeoclimatic Zone, 
Variant/Site Series and group name (Wells et al. 2004). 
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