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ABSTRACT 

Wetland swales, corridors of willows and alders adjacent to streams and seepage 

areas, may play a role as refugia for lichen biodiversity because they likely escape stand 

replacement disturbance such as fire more often than adjacent upland forest, especially in 

moist to drier sub-boreal and boreal landscapes, and are also not disturbed by forest 

harvesting. Macrolichen communities in 75 alder-dominated wetland swales along an east 

(wet) to west (dry) gradient in the Sub-Boreal Spruce biogeoclimatic zone of central interior 

British Columbia were examined. Spatial analysis of wetland swales indicated an average 

size of 20.5 m wide by 854 m long (following patch contours). A total of 43 macrolichen 

species (and six other macrolichen genera) were found in the alder dominated sites, with a 

maximum of 30 taxa present in the richest site. The macrolichen diversity of alder swales 

included the old-growth associated lichens Lobaria scrobiculata, L. retigera, Nephroma 

isidiosum, and Sticta limbata. Canonical Correspondence Analysis identified mean annual 

temperature and abundance of large stems (dbh > 10 cm) as significant explanatory variables 

for chlorolichens and mean annual precipitation and age of adjacent conifer forest as 

significant explanatory variables for the majority of the cyanolichens. Regional precipitation 

gradients explained the exclusion of many lichen species from both the most westerly and 

most easterly swales, with drier summer conditions and heavy winter snowpack, respectively, 

being major limiting factors. Within sites, lichens preferentially occupied large leaning 

stems, which provided greater precipitation interception and long-lived substrates for many 

old-growth associated lichen species. Physiological analyses of six common cyanolichens 

indicated low contributions of cyanolichens to the nitrogen budgets of alder swales. 

However, adaptations and niches of each of these cyanolichens were revealed. Nephroma 
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parile was the best adapted to the widest range of conditions, followed by Lobaria 

pulmonaria. Pseudocyphellaria anomala was adapted to warm, bright locations. Lobaria 

hallii, L. scrobiculata, and Sticta fuliginosa appeared to be well adapted to spring and 

autumn conditions, thereby maximizing the length of their growing seasons. We conclude 

that alder swales provide major refugia for old-growth dependent lichens and may represent 

valuable dispersal corridors between remnant old-growth coniferous forests in B.C.'s Sub-

Boreal Spruce landscapes. 
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Chapter One. Introduction. 

Most studies on lichens and old-growth forests in British Columbia have focused on 

coniferous forest stands. In mountain environments this has led to the examination of areas 

such as wet toe-slope positions, where topography and groundwater flow reduce the 

incidence of stand-destroying fires. These old-growth regions support rich epiphyte 

communities that include rare species not found in other portions of the landscape. In 

contrast, forested landscapes in B.C.'s interior plateau are dominated by younger, often even-

aged, coniferous forests, reflecting their past history of disturbance by forest harvesting, fires, 

and insect damage. 

Plateau landscapes in B.C.'s interior, however, also include areas where the 

frequency of disturbance appears to be much lower. In particular, willow and alder swales 

along small first-order streams and in wet seepage areas may represent stable plant 

communities. In more mountainous regions, such as the very wet subzone of the Sub-Boreal 

Spruce biogeoclimatic zone, alder swales occupy entire slopes and carry runoff during parts 

of the year when ephemeral streams overflow their banks. Fires often skip over the wet 

depressions in which riparian alder swales are found and they are rarely targeted for forest 

harvesting, though they are sometimes disturbed by mechanical or herbicide treatments of 

adjacent coniferous stands. These riparian swales follow the branching network of streams 

extending across the Sub-Boreal Spruce landscape, resulting in the presence of hardwood-

dominated swales across a range of environmental conditions. 

Many researchers have found riparian areas to support rich epiphytic lichen 

communities, including many species that are otherwise restricted to old-growth coniferous 
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forests. Furthermore, hardwoods, both in riparian regions and upland forested gaps, have 

been found to support rich epiphyte communities, and so the term "hotspots" of lichen 

diversity has been applied to these regions. Because epiphytic lichen diversity of the interior 

of British Columbia has been predominantly investigated in conifer forests, and because 

research from the Pacific Northwest indicates that riparian hardwoods support rich epiphyte 

communities, research is needed into the ability of alder swales to support epiphytic lichen 

communities. Central B.C. provides an excellent location for this research because it extends 

across three subzones of the Sub-Boreal Spruce (SBS) biogeoclimatic zone, differing mainly 

in precipitation, thereby allowing for an examination of how the communities change along 

this climatic gradient and what, if any, impact that has upon lichen diversity in alder swales. 

The goal of the study was to assess the lichenological importance of alder dominated 

deciduous wetland swales and their ability to function as refugia for macrolichen diversity 

along a longitudinal precipitation gradient in SBS forests of the Prince George Forest 

District. Specifically, the objectives, which will be addressed in separate chapters, were: 

1) to examine the covarying responses of lichen communities to 

interactions between substrate characteristics (physical and 

chemical) and regional climatic gradients. 

2) to investigate how the individual species that make up the 

changing composition of epiphytic lichen communities on riparian 

alders in alder swales respond to climatic, bark, and site 

characteristics. 
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3) to examine the physiological responses (rates of acetylene 

reduction, photosynthesis, and respiration) of common cyanolichens 

as well as to determine their relative rates of acetylene reduction as 

related to their contributions to the nitrogen budget of the SBS 

biogeoclimatic zone. 

Chapter Two describes the climate of each of the three SBS subzones and the 

sampling methods used to investigate the macrolichen diversity of randomly selected riparian 

alder swales along the precipitation gradient. Chapter Three describes the influence of site 

and climatic characteristics on macrolichen diversity in each of the three subzones. Chapter 

Four investigates the response of the macrolichen species to site and stem characteristics. 

Chapter Five describes the physiology of six common cyanolichen species and relates these 

data to the ecology of these lichens. Chapter Six provides a summary of the thesis. 
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Chapter Two. Site Description and General Methods. 

The study sites were located between 53.9° N and 54.5° N and 121.5° W and 123° W. 

This region falls within three biogeoclimatic units of the Sub-Boreal Spruce (SBS) 

biogeoclimatic zone (Figure 2.1). From east to west, wettest to driest respectively, these units 

are the very wet and cool subzone (SBSvk), the Willow variant of the wet and cool subzone 

(SBSwkl, hereafter referred to as SBSwk), and the Mossvale variant of the moist and cool 

subzone (SBSmkl, hereafter referred to as SBSmk). Subzone boundaries used followed the 

boundaries published by B.C. Ministry of Forests and Range (Victoria, B.C) 

(ftp://ftp.gov.bc.ca/HRE/external/Ipublish/becmaps; accessed 6 May 2008). 

Average annual precipitation in the SBSmk, SBSwk, and SBSvk are 724 mm, 931 

mm, and 1 247 mm respectively (DeLong et al. 1993; DeLong 2003). Mean annual 

temperature in these three subzones is 1.5 °C in SBSmk (DeLong et al. 1993) and 2.6 °C in 

both the SBSwk and SBSvk (DeLong 2003). 

All the sampled alder swales were in wet depressions along streams and so the 

vascular vegetation of the sites varied little between subzones. Mountain alder (Alnus incana 

ssp. tenuifolia(Nutt.) Breitung) was the predominant species of alder observed in the sites. 

Green alder (Alnus crispa ssp. crispa (Aiton) Turrill) was present in four of the sites in the 

SBSvk and in one site in the SBSmk. Differences existed primarily in the abundance of each 

taxon. Willows (Salix spp.), devil's club (Oplopanax horridus (Sm.) Miq.), and red-osier 

dogwood (Cornus sericea L.) were also present in some sites. The main herbs observed 

included lady fern (Athyrium filix-femina Roth), spiny wood fern (Dryopteris expansa (C. 

Presl) Fraser-Jenk. & Jermy), oak fern (Gymnocarpium dryopteris (L.) Newman), skunk 
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cabbage (Lysichiton americanus Hulten & H. St.John), and horsetails (Equisetum spp). 

Mosses such as Mnium spp, Dicranum spp, and Pleurozium schreberi (Brid.) Mitt, were 

present in some of the sampled sites. Mountain alders ranged in height from two meters to 

five metres. The height of the trees in the adjacent, mature forest was upwards of 15 meters. 

Within each biogeoclimatic subzone, 25 points of latitude and longitude coordinates 

were generated randomly. The nearest first or second order stream with adjacent alder swale 

was subsequently sampled. Eligible sites were further restricted to those within 1 km of road 

access points. Taken together these three sets of 25 sites constitute our longitudinal gradient 

across the Sub-Boreal Spruce zone in this region (Figure 2.1). At each site, a 1G0 meter long 

lichen sampling transect was subsequently established parallel to each stream following 

elevation contours. Each transect was established halfway between the stream bank and the 

edge of the alder swale, typically between three and five meters from the stream edge. 

Transects were placed a minimum of 50 m from the nearest road. At 10 meter intervals along 

each transect, the nearest mountain alder stem in each of the following six categories was 

sampled: 1) live stems with diameter at breast height (dbh) less than 10 cm; 2) dead stems 

with dbh less than 10 cm; 3) live stems with dbh between 10 and 15 cm; 4) dead stems with 

dbh between 10 and 15 cm; 5) live stems with dbh greater than 15 cm; 6) dead stems with 

dbh greater than 15 cm. Alder stems in each of the six categories were not present in all the 

sites sampled. This resulted in between 10 and 47 stems being sampled in each site. 

The sampled region on each stem began 0.5 meters above the ground and extended 

for two metres along the stem. Within this region all macrolichens were identified to species 

with the exception of Bryoria, Usnea, Physcia, Cladonia, Xanthoria, and Melanelia, which 

were recorded at the genus level. Each macrolichen species (or genus) present was assigned 
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an abundance rating between 0 and 5 (0: absent, 1: <3 thalli present, 2: > 3 to <6 thalli 

present, 3: <20% cover, 4: <50% cover, 5: >50% cover) (Goward and Arsenault 1997). 

Macrolichen taxonomy follows Goward et al. (1994) and Goward (1999) with the exception 

of the genera Tuckermannopsis and Kaerenfeltia, which are recognized here as distinct from 

Cetraria. Presence/absence binary data was also collected for the species (and genera) on the 

entire stem of each sampled stem. 

For each stem sampled, dbh, average angle of lean, and average direction of lean 

were measured. The percent bark cover, percent total crust lichen cover, and percent total 

macrolichen cover were estimated visually to the nearest 10 percent on the top and bottom 

sides of each stem sampled. The two estimated values were averaged to give the percent 

cover of bark, crust lichens, and macrolichen cover on each stem sampled. Crust lichens were 

not identified. Within each site, the average height of thalli of Parmelia sulcata and 

Hypogymnia physodes, greater than 2 cm in diameter, above the ground was recorded to give 

the average depth of the winter snowpack (Sonesson et al. 1994). 

At each 10 meter point along the lichen sampling transect canopy cover was 

measured with a spherical densiometer (Model A, Forest Densiometers, Bartlesville OK), 

and averaged for each alder swale. At each 10 meter point, the number of buried organic 

horizons in the top 20 cm of the soil profile were counted, to estimate the frequency of 

flooding in each site. In each site, the five largest living alder stems were cored to determine 

their ages. The three largest conifers adjacent to the swale were cored to estimate conifer 

stand age. The average width of each sampled stream was also recorded. 

Elevation-corrected ClimateBC data (Version 3.2, University of British Columbia, 

Vancouver), using modeled mean data from 1971 to 2000 (Wang et al. 2006), were obtained 
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for each of the sampled sites. 
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Figure 2.1. Map of the study region in British Columbia showing the locations of the sites in 
each biogeoclimatic subzone. Subzone boundaries follow those published by B.C. Ministry 
of Forests and Range (ftp://ftp.gov.bc.ca/HRE/external/Ipublish/becmaps; accessed 6 May 
2008). 
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Chapter Three. The role of alder swales in maintaining macrolichen diversity in sub-
boreal forests of B.C. 

Introduction 

The central-interior of British Columbia is dominated by coniferous forests. 

Historically, these forests consisted of a complex mosaic of different-aged stands, reflecting 

past disturbance processes, such as fires and insect outbreaks. For canopy lichens, this 

disturbance history poses major constraints to dispersal and colonization within regional 

landscapes. Radies and Coxson (2004), for instance, found that many canopy lichen species 

that were present in old-growth stands were absent from adjacent 120- to 140-year-old 

stands. 

Wetland swales, typically alder and willow communities associated with the wet 

banks of streams and moist depressions, in contrast, may represent a more stable or persistent 

ecological element within regional landscapes. Alder swales may be more resistant to fire as 

they are found in topographic positions that are depressed and generally wetter than the 

surrounding landscape. Bergeron (1991) indicated that disturbance due to fire is dependent 

upon local conditions and topographic placement, often resulting in riparian areas being less 

affected by fire than adjacent forests. This observation has also been noted by Suffling et al. 

(1982) and Denneler et al. (1999). The linear nature of alder swales may also be important 

within regional landscapes. Alder swales may provide corridors between what would 

otherwise be isolated patches of habitat (Opdam et al. 1995; Burel 1996) thereby allowing for 

the rapid dispersal of many species (DeFerrari and Naiman 1994; Forman 1995). 

Hardwood and shrub patches can persevere for long periods of time in regional 

landscapes (Egler 1950; Pound and Egler 1953; Bramble and Byrnes 1972; Nierig et al. 
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1986). Lertzman et al. (1994) suggested that they may represent stable patches within what 

are otherwise heterogeneous, conifer dominated landscapes. These persistent hardwood 

patches enhance site fertility through the decomposition of their leaves and enhance crown 

development in adjacent conifers by providing gaps in the canopy of coniferous forests 

(Wardman and Schmidt 1998; Tasche and Schmidt 2001). 

Rich cyanolichen communities have been previously found on hardwoods, in both 

riparian zones (McCune et al. 2002; Peterson and McCune 2003) and upland regions 

(Neitlich and McCune 1997). Peterson and McCune (2003) hypothesized that deciduous 

hardwoods are able to act as hotspots for epiphytic lichen diversity. This may result from 

greater interception of water and light during winter months while providing a sheltered, 

high-humidity environment protected from higher light intensities during summer months 

(Peterson and McCune 2003). Alder swales may have particularly significant ecological 

value for canopy lichens due to the importance of alder as a substrate for epiphytic lichen 

communities because Goward and Arsenault (2000a) found that alder had the greatest 

diversity of cyanolichens among 10 hardwood genera investigated. 

We examined canopy lichens in alder dominated riparian swales in the Sub-Boreal 

Spruce (SBS) biogeoclimatic zone in central interior British Columbia. The study area spans 

a 200 km long climatic gradient, from upslope alder swales in a wet climatic region in the 

eastern part of the region (adjacent to the Rocky Mountains), to alder swales in a drier 

climatic region in the west (in the central-interior plateau). The placement of study plots 

along this gradient allowed us to examine the covariate responses of lichen communities to 

interactions between substrate characteristics (physical and chemical) and regional climatic 

gradients in alder swales. 
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Methods 

Landscape Metrics 

The distribution and abundance of alder swales were examined in two areas along the 

regional climate gradient, using Arc View software (ESRI, Redlands, USA) to query 

Terrestrial Ecosystem Mapping databases for the Aleza Lake Research Forest (ALRF) 

(ALRF Society 2008) and Tree Farm License 30 (TFL 30) (BC Ministry of Forests 2002) 

(see Figure 1 for location) for occurrence of alder-lady fern seepage site complexes which 

provide a proxy for alder swales in this region (DeLong 2003). The ALRF is found in the 

SBSwk, while TFL 30 includes portions of both the SBSwk and SBSvk. No part of the 

SBSmk was included in the GIS analyses. Among the summary statistics calculated from 

map queries were mean swale area, mean shortest swale axis length, mean longest swale axis 

length, and total linear distance of swale features. The longest axis length was the longest 

straight line distance through the site. Linear distance was the length of the site following all 

of its contours. 

Bark pH 

Bark samples for the pH analysis were collected from six randomly selected sites in 

each subzone. Within these sites, bark was collected from the same stems as the lichen 

assessments were conducted on and was collected from the portion of the upper surface of 

the stems that contained the fewest epiphytes at a distance of 1.3 meters, ± 5 cm, along the 

stem. This removed any influence of modification of the bark chemistry by the epiphytes 

(Lang et al. 1976). Further cleaning was done in the lab. Pieces of bark 1 cm2 were placed in 
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10 mL of 25mM KC1 overnight (Farmer et al. 1990) and the pH measured with a glass 

electrode. 

Analyses 

The number of species within a community, a diversity (Whittaker 1972), was 

calculated based on individual stems and transects, a diversity was scaled by diameter, by 

dividing by dbh, to account for larger stems having more species simply due to their larger 

area. The number of species within a larger region, y diversity (Whittaker 1972), was 

calculated for each subzone and across all sites sampled in the SBS biogeoclimatic zone. 

Intercommunity diversity was calculated pair wise using pt (Wilson & Schmida 1984) 

between the sites in each subzone. The correlation between each of these pairwise p\ matrices 

and the pairwise matrices formed from the collected site data was investigated through 

Mantel tests with the strength of the relation between the distance matrices evaluated with 

Pearson correlation coefficients (Mantel 1967). Unique pairwise distance matrices based on 

the site data were calculated for each site variable by taking the absolute value of the 

difference between the values of the site variable in the two sites (McCune & Allen 1985). 

Diversity indices were calculated in R (R Development Core Team 2006). The Mantel tests 

were performed in PC-Ord v. 5 (McCune & Mefford 1999) using a randomization test with 9 

999 permutations. Examining diversity at several levels can lead to a greater understanding 

of the patterns of diversity and the forces that affect it (Loreau 2000). 
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Results 

Based on data generated from ClimateBC the SBSmk sites had the lowest mean 

annual temperature and lowest mean July temperature of the three subzones while the SBSvk 

sites had the highest mean January temperature (Table 3.2). Average snowfall did not differ 

between the sites of the SBSmk and SBSwk and was greatest in the SBSvk (Table 3.2). Mean 

annual precipitation increased from an average of 755 mm in the SBSmk sites to 819 mm in 

the SBSwk sites to 953 mm in the SBSvk sites. The average elevation was greatest in the 

sites of the SBSvk a result of alder swales being located on slopes as well as valley bottoms 

as compared to the other subzones where sites were all from sites on plateaus. 

The GIS queries showed that the portion of the SBSwk queried had greater densities 

(i.e. number of discrete patches) of alder-lady fern sites than did the SBSvk portion. The 

mean area (Welch's t-test; d.f. = 2; p=0.03) and mean width of the seepage sites were 

greatest in the SBSvk portion of TFL 30 (Table 3.1). Alder-lady fern seepage sites in the 

SBSwk had the greatest average length. 

The values for bark pH in the SBSmk sites ranged from 4.59 to 5.94 with an average 

and standard deviation of 5.48 ± 0.29. In the SBSwk sites, bark pH ranged between 4.15 and 

6.18 with an average and standard deviation of 5.37 ±0.31. In SBSvk sites, bark pH ranged 

between 4.9 and 6.4 with an average and standard deviation of 5.4 ± 0.23. The values of pH 

were not correlated with stem diameter, angle of lean, direction of lean, percent lichen cover, 

percent moss cover, or estimated mean annual precipitation in the site and none of the 

differences between subzones were significant. The sites of the SBSwk had the greatest 

number of buried organic horizons at 7.9 per site while the sites of the SBSmk and SBSvk 

had an average of 6.2 buried organic horizons per site. At least one buried organic horizon 
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was present in 61 of the 75 sites. The average height of the snowpack lichen line, as 

estimated from Parmelia sulcata and Hypogymnia physodes, was 1.6 meters in the SBSmk 

sites, 1.4 meters in the SBSwk sites, and 2.2 meters in the SBSvk sites. In the SBSvk sites, 

this was significantly higher than in the other two subzones (Wilcoxoh rank sum test, 

p<0.01). 

Overall, there were 43 species and six additional genera of lichens observed in the 75 

sites sampled. There were 37 taxa observed in the SBSmk, 43 in the SBSwk, and 40 in the 

SBSvk. Stem level alpha diversity was not found to significantly vary with diameter class in 

any of the three subzones. However, larger stems generally tended to support richer lichen 

communities and stems smaller than 10 cm dbh generally supported communities of 

consistently low diversity, in all three subzones (Figure 3.2 A-C). Live and dead alder stems 

did not significantly differ in either the number of species present or the composition of the 

communities present. 

The SBSwk sites had significantly more species per site than the sites in either of the 

other two subzones (p<0.01). The SBSmk sites had the lowest variation in the number of 

species and had the lowest maximum number of species in a site (Figure 3.2 D). The SBSwk 

sites had the highest average number of species in a site, the highest maximum number of 

species in a site, and the highest minimum number of species in a site. The SBSvk sites had 

the lowest average number of species in a site and the lowest minimum number of species in 

a site (Figure 3.2 D). 

A consistent linear relation between diameter and age in alders was found (r2 = 0.86 

based on an n of 440; age = 2.7*diameter). The SBSwk sites had the largest stems (student's 

t-test; d.f. = 48; p<0.01), with an average sampled stem dbh of 8.3 cm corresponding to an 
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age of 23 years. Sites in the SBSwk had the greatest densities of stems over 10 cm dbh 

(student's t-test; d.f. = 48; p<0.025). Sites in the SBSvk had the greatest average density of 

stems smaller than 10 cm dbh (Table 3.4; student's t-test; d.f. = 48; p<0.05). The maximum 

alder age in the SBSmk, SBSwk, and SBSvk were 71, 64, and 53 years, respectively. 

At the site level, the number of buried organic horizons, distance between sites and 

mean annual precipitation were each significantly correlated with pt between sites of the 

SBSwk (Table 3.3). For the SBSvk sites the abundance of stems with dbh greater than 10 cm, 

distance between sites, and mean July temperature were significantly correlated with p\ 

(Table 3.3). 
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Figure 3.1. Illustration of the distribution of alder-lady fern seepage sites (alder swales) 
within the wet, cool (wkl) and very wet, cool (vk) Sub-Boreal Spruce (SBS) subzone 
portions of Tree Farm License 30 (TFL 30), British Columbia. 
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Figure 3.2. Boxplots representing a diversity in each subzone. A-C: stem level a diversity 
scaled by diameter in all sites (A: stems less than 10 cm dbh; B: stems between 10 and 15 cm 
dbh; C: stems larger than 15 cm dbh), D: a diversity with in each site.' The dashed lines 
indicate the average diversity. The box shows the 25, 50, and 75 percentiles with the 
whiskers indicating the 10 and 90 percentiles; * indicates observations plotting beyond the 
whiskers. Diameter scaling was accomplished by dividing a diversity by stem diameter. 
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Discussion 

In boreal and montane environments, alder swales represent islands of deciduous tree 

cover within landscapes that are otherwise dominated by coniferous trees. The landscape 

metrics indicated that the size and shape of the alder-lady fern seepage sites vary 

considerably both within and between the queried portions of the SBSwk and SBSvk. 

Seepage site dimensions were found to vary a great deal from site to site. These seepage sites 

often exist as discontinuous patches along many streams and occupy entire slopes at higher 

elevations. The GIS analyses included many of these latter seepage slopes, in the SBSvk, 

where the whole slope carries water though ephemeral streams may still be present. These 

sites led to the higher standard deviation of the shortest axis in the alder-lady fern sites of the 

SBSvk. We found that patch density of alder-lady fern seepage sites was greater in the 

SBSwk than in the SBSvk and that smaller areas of alder-lady fern sites were present in the 

SBSwk as compared to the SBSvk. Our GIS results also indicated that the alder-lady fern 

sites of the SBSvk were shorter, on average, than the sites of the SBSwk, suggesting that 

although the patches of the SBSvk were more discontinuous, more patches were found in the 

SBSwk. The frequency of flood events may contribute to the higher density of alder-lady 

fern sites in the SBSwk than in the wetter SBSvk. Flood events can cause higher mortality in 

developing alder seedlings in newly colonized sites, reducing the frequency with which alder 

swales are established. Similar suggestions have been made regarding hardwood 

establishment in other riparian systems (Wilson 1970; Stromberg et al. 1991). At a larger 

scale, Meddens et al. (2008) spatially analyzed landscape patches across North America, 

using roads, timber harvested areas, agricultural land, and urbanization to define edges of 
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forested patches. They found greater density of forested patches in the landscape and lower 

patch area in drier regions as compared to wetter regions. 

Patch density may also play an important role in facilitating connectivity between 

dispersed alder swales in regional landscapes. We would expect lichen propagule dispersal to 

occur much more easily and quickly between adjacent patches (Sillett et al. 2000). This 

hypothesis was confirmed by our observation that alder swales located in closer proximity to 

one another (in both SBSwk and SBSvk) supported more similar lichen communities than 

did sites farther removed from one another. This suggests that clusters of alder swales in the 

landscape act as metapopulations for arboreal lichens. This ability of alder swales to support 

lichen metapopulations is particularly significant in the SBSvk where mountainous 

topography can result in a high degree of isolation between alder swales. 

The rich epiphytic communities supported by deciduous patches within conifer 

dominated landscapes may result from differences between coniferous and deciduous trees. 

Some properties of hardwoods, such as branch arrangement and bark chemistry, differ from 

conifers, while other properties, such as bark thickness, change as hardwood stems age. 

Hardwoods, in general, produce branches which curve upwards, drawing rainwater to the 

bole, while conifers have drooping branches which lead water towards the ends of the 

branches (Barkman 1969). On hardwoods this can result in high canopy humidity during 

summer months when the trees are foliated (Geiger 1965), a feature that is beneficial to the 

development of diverse lichen communities in alder swales. These properties of hardwoods 

may further enhance the quality of habitat of riparian alder swales for old-growth associated 

cyanolichens such as Lobaria scrobiculata and Nephroma parile, which were present in all 

three SBS subzones. 
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Another major difference between hardwood and coniferous substrates is that of bark 

pH. Conifer bark is generally acidic with pH values less than 5.0 (Gauslaa 1985; Kuusinen 

1996a) and as low as 2.0 (Grodzinska 1977; Gustafsson and Eriksson 1995). Conversely, 

hardwood bark has higher pH in the range of 4.0 to 6.5 (Grodzinska 1977; Boudreault et al. 

2008). Boudreault et al. (2008) found that pH was negatively correlated with species richness 

of mosses and lichens and positively correlated with bark roughness but not correlated with 

diameter. Similarly, our bark pH values showed no significant differences between diameter 

size classes. Although they fell within the range of values expected for hardwood bark, they 

were higher than previous measurements of bark pH in A. incana (Grodzinska 1977). 

Overall, bark pH was weakly (and negatively) correlated with mean annual precipitation, 

possibly reflecting the greater dilution of bark exudates of alder swales growing in high 

precipitation subzones. 

Soil chemistry can also play a major role in influencing bark chemistry, with cation 

composition of the bark often similar to that of the underlying soils (Gauslaa and Holien 

1998; Campbell and Fredeen 2007). By growing along streams, alders may have access to 

additional nutrients transported from upstream areas, especially during flood events. The 

number of buried organic horizons, related to flooding cycles, within the sampled alder 

swales may indicate how geomorphically active sites were and may also contribute to lichen 

diversity by regularly adding fine textured horizons. Campbell and Fredeen (2007) found 

higher abundances of cyanolichens on trees growing in fine textured soils. They attributed 

this difference to the higher clay content, higher cation exchange capacity, and higher 

concentrations of cations in the fine textured soils. We found greater diversity in sites of the 

SBSwk that were more geomorphically active, though coarse textured horizons were 
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frequently observed. This greater diversity may result from greater mean annual 

precipitation, which also was positively correlated with diversity in swales of the SRSwk and 

which could lead to greater frequencies of floods. 

Forest age and the presence of old remnant trees within a stand are known to have a 

major influence on epiphytic communities. Old-growth forests are often able to support 

greater diversity than are young even-aged stands (Berryman and McCune 2006), both as a 

result of their intercepting more propagules of slow dispersing species over time (Sillett et al. 

2000) and from the more favorable conditions that old-growth forests may provide for 

establishment and growth (Tibell 1992; McCune et al. 2000). Lichen diversity in our alder 

swales was positively correlated with the age of adjacent coniferous forest stands, especially 

in the SBSmk alder swales. This is not surprising, given that most points within alder swales 

would be within dispersal range of lichen propagules from surrounding forest. However, the 

continued presence of a core suite of old-growth associate lichens across most swales, 

including those adjacent to our youngest sampled coniferous forests (37 years old) suggest 

that the topographic position and microclimate of most swales, typically in wet depressions 

or small drainages, may confer some protection from edge effects induced by changes in the 

composition of surrounding stands. In our swales of the SBSmk, where the youngest 

coniferous forests, adjacent to the sampled alder swales, were found, as determined through 

tree cores, forest age was most strongly, and positively, correlated with diversity. 

Within alder swales, we speculate that large stems act in a manner similar to that of 

old remnant trees in supporting epiphyte diversity. These stems provide a greater range of 

microclimatic conditions than are otherwise available in the sites (Hazell and Gustafsson 

1999; Sillett and Goslin 1999). Generally larger alder stems in our swales supported richer 
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communities of canopy macrolichens and, in the SBSwk and SBSvk, macrolichen diversity 

was positively correlated with the abundance of alder stems larger than 10 cm dbh. The 

species that tended to grow on larger than average alder stems included the cyanolichens 

Lobaria retigera and Collema subulatum as well as the chlorolichens Hypogymnia 

austeroides, Ramalina thrausta, and Parmelia hygrophila. 

The development of large alder stems reflects both constraints on germination and 

site growing conditions (Tallantire 1974). McVean (1953, 1955) found that germinating alder 

seeds had reduced life expectancy in locations with frequent spring frosts when compared to 

locations with no spring frosts. This observation is significant for our alder swales where 

topography favors cold-air ponding along small depressions and valleys where they are 

located. We would also expect that our higher elevation SBSvk alder swales would 

experience frequent spring frost events. This is supported by our observation that alder stems 

in higher elevation sites of the SBSvk were younger than those in the lower elevation sites, 

notwithstanding the generally older age of the surrounding coniferous forest. 

Furthermore, increasing winter precipitation, in the form of snow, may also shorten 

the life of individual stems and prevent the growth of large stems. Zhu et al. (2006) observed 

that Betula tended to bend and uproot more frequently under snow than other species as a 

result of having a flexible stem, like alder. Stem breakage was also a major type of snow 

damage in Betula (Zhu et al. 2006). The amount of snow and the depth of the winter 

snowpack in the alder swales of the SBSvk may have led to the alder stems in many .of the 

sampled sites having a tendency to be flattened and either break, grow horizontally, or be 

uprooted as they age. Peltola et al. (1997) found that moderate winds can break trees with a 

heavy snow accumulation. 
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Individual alder stems in the region we studied did not reach ages greater than 50 

years, regardless of climate. However, through vegetative reproduction, alder swales may 

persist in the landscape for long periods of time. Kullman (1992) observed that grey alder 

stems came largely from pre-existing root systems and frequently suckers were produced at a 

distance of up to 15 meters from the parent stem. Kullman concluded that these stems 

originated from root systems that were much older than the oldest living stem. Tallantire 

(1974) made similar observations on the perseverance of alder root systems, noting that some 

will continue regenerating shoots for upwards of 200 years. Personal observations indicated 

that vegetative reproduction of alders is common in alder swales. 

Although the availability of light and moisture are considered to be primary limiting 

factors for lichen growth (Kershaw 1985; Kenkel and Bradfield 1986), the nature and 

duration of snow cover in alder swales may be an important covariate factor. Prolonged 

periods of snow cover in alder swales reduce already limited light availability while 

prolonging the duration of thallus hydration. Prolonged periods of hydration under snow 

cover were implicated by Gannutz (1970) and Kappen et al. (1995) as an important factor in 

the carbon balance of lichens. Coxson and Stevenson (2007) suggested that canopy lichen 

growth rates are minimal during winter months due to winter snow cover and light 

conditions. In the SBSvk, where winter snowpacks are typically greatest, several species 

showed much lower abundance and frequency, including species of Hypogymnia, 

Platismatia, Parmelia, and Tuckermannopsis. This suggests that these species may be 

intolerant of submersion under snowpack, given that these species were otherwise common 

on all diameters in the drier subzones. Snow cover on lower stems within alder swales, 

especially in the SBSvk, can persist for over five months each year, exceeding thresholds that 
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Sonesson et al. (1994) hypothesized would kill many lichen species. We would hypothesize 

that during periods of low annual snowfall, more lichens will become established on lower 

portions of stems while during periods of high annual snowfall widespread dieback may 

occur, thereby reducing macrolichen diversity and cover. 

Similar observations to ours of the height of the snowpack line were made by 

Sonesson et al. (1994) who noted that Parmelia olivacea Howe, P. sulcata, and H. physodes 

(L.) Nyl. tended to be found above the snow and the lowest occurrence of these species on 

trees was positively correlated with snow depth. Both mechanical damage and an inability to 

compensate for respiratory carbon loss under snowpack have been suggested as possible 

explanations for the vertical distributions of these species (Sonesson 1989). Our finding of a 

lack of significant differences in the height of the snowpack line between the sites in the 

SBSmk and SBSwk is not surprising given the similar average snowfall in these sites. The 

SBSvk sites received, on average, more snowfall than did the other sites and this likely 

resulted in the significantly higher average height of the lowest occurring thalli of Parmelia 

sulcata and Hypogymnia physodes. 

Though precipitation as snow can be a negative factor for many lichens, summer 

precipitation remains an important positive predictor for lichen growth rates (Coxson and 

Stevenson 2007). Giordani (2006) observed that species richness of lichens was positively 

correlated with increasing summer precipitation while McCune and Antos (1982), Jovan and 

McCune (2004), and Radies (2008) observed that epiphytic lichens increased in diversity as 

site humidity and precipitation increased. From our correlations between pt diversity and 

mean annual precipitation, we found that diversity showed a strong positive correlation with 

precipitation in the SBSwk. We were surprised that precipitation was not a strong positive 
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correlate for lichen diversity in all three subzones, however we would speculate that 

temperature and snowcover may be overriding influences, especially in the SBSvk. 

Temperature has often been identified as an important variable in influencing lichen 

diversity (Pirintsos et al. 1993; McCune et al. 1997; Glavich et al. 2005; Giordani 2006). 

Jovan and McCune (2004) found the greatest cyanolichen diversity in warmer, wetter sites, 

with maximum nitrophile diversity in warmer, drier sites. However, along our climate 

gradient, temperature and precipitation are negatively correlated. Sites with warmer 

temperatures tended to be drier, while cooler sites were generally wetter. Goward (1994) 

found that lichen diversity in north-central British Columbia decreased with increasing 

elevation, suggesting a dominant role for temperature as a controlling variable. Berryman and 

McCune (2006) and Radies (2008) have also identified elevation as a significant factor in 

determining epiphyte diversity, due to the preferential colonization of low elevation forests 

(Peck and McCune 1997; Peterson and McCune 2001) due to the accumulation of soil 

moisture resulting in higher humidity environments (Radies 2008). However, humidity was 

not a limiting factor in our riparian alder sites. These opposing trends in temperature and 

precipitation along our longitudinal climate transect reduce lichen diversity at both ends of 

our gradient, in our coolest (eastern) sites, and in our driest (western) sites. As a result, alder 

swales in the SBSwk, having intermediate climatic conditions, showed the greatest absolute 

lichen diversity. The interaction between temperature and precipitation is also pronounced 

within each subzone. In both the SBSmk and SBSvk, where the greatest variation in 

topography exists and therefore the greatest variation in precipitation as snow, greater 

diversity was found in warmer, drier sites, i.e. lower elevations where less snow is received. 
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In the SBSwk with the least variation in topography, no interaction between temperature and 

precipitation was found and greater diversity was found in wetter portions of the landscape. 

Wetland swales have been previously overlooked for their conservation importance 

(DeLong and Sanborn 2000). However, our analysis from sites placed along a longitudinal 

climate gradient in SBS forests of central-interior B.C. suggests that alder swales play a 

major role in the support of regional lichen assemblages. Given the rapid conversion of 

surrounding coniferous forests to early serai stages, both from forest harvesting and more 

recently from the outbreak of the mountain pine beetle (Aukema et al. 2006), lichen 

biodiversity contained within alder swales represents a significant conservation biology 

resource that merits specific recognition in landscape management objectives. 
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Chapter Four. The importance of alder swales as lichen refugia within Sub-Boreal 

Spruce forests in British Columbia's central interior plateau. 

Introduction 

Riparian forest swales are often characterized as biodiversity hotspots (Naiman et al. 

1993; Bratton et al. 1994; Rykken et al. 2007), which provide important dispersal corridors 

for many organisms (DeFerrari and Naiman 1994). In boreal and sub-boreal forests, riparian 

swales and adjacent wetlands can provide significant refugia from disturbance events such as 

forest fires, which can skip over or have reduced severity in wet microsites (Bergeron 1991). 

In central-interior British Columbia, small first and second order streams typically support 

narrow riparian forest swales of green alder and mountain alder. Although individual alder 

stems in these patches may not be very long-lived, senescing alder stems often produce new 

shoots that maintain the continuity of individual alders (Bramble and Byrnes 1983; Meilleur 

et al. 1994). In these ways alder communities can persist for decades (Egler 1950; Pound and 

Egler 1953; Bramble and Byrnes 1972) or longer (Nierig et al. 1986). 

This raises the question as to whether or not alder riparian forest swales in central-

interior British Columbia function as refugia for old-growth associated canopy lichens. 

Previous studies have demonstrated that old-growth coniferous forest stands in these 

landscapes can support rich canopy lichen communities (Campbell and Fredeen 2004; Radies 

and Coxson 2004). Little is known about the development of canopy lichen communities 

within riparian forest swales in these landscapes. However, previous studies in the 

northwestern United States have shown that hardwoods can support diverse epiphyte 
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communities (Neitlich and McCune 1997; Peterson and McCune 2003), particularly in areas 

adjacent to streams and rivers (McCune et al. 2002). 

This question about the ability of riparian forest swales to support old-growth 

associated canopy lichens is particularly important given the conservation biology status of 

British Columbia's sub-boreal spruce forests. The Sub-Boreal Spruce (SBS) biogeoclimatic 

zone is a major forested ecosystem in British Columbia, occurring from north 52° to 57° 

latitude, and from west 122° to 128° longitude (Meidinger and Pojar 1991). Although the 

wetter climatic portions of this landscape were historically dominated by old-growth 

coniferous forests, this area has been heavily impacted by both human-caused (logging) and 

natural disturbance (mountain pine beetle and fire) events in recent years. This has raised 

serious concerns about the conservation biology of old-growth forest associated lichens 

(Goward and Arsenault 2000a). 

We have addressed this question by investigating the composition and abundance of 

macrolichen communities on riparian alders within SBS swales in central-interior British 

Columbia. We were particularly interested in the response of lichen communities to regional 

climate gradients, from SBSvk sites in the east, to warmer and drier SBSmk sites in the west. 

We have also investigated covariate changes in the nature and type of substrates available for 

lichen colonization within alder swales along this climate gradient and related changes in 

canopy structure and/or openness. We would hypothesize that riparian alder dominated 

swales in the SBS biogeoclimatic zone may serve as refugia for old-growth forest associated 

canopy macrolichens. If this is the case, these swales may provide valuable connectivity 

between remnant old-growth coniferous forest stands in surrounding SBS landscapes. They 

33 



may also provide an important source population for recolonization of lichens in adjacent 

second-growth forest stands. 

Methods 

The average abundance of each macrolichen tax on in each site was calculated and 

these values were used in canonical correspondence analysis (CCA), in the program. 

CANOCO v. 4.5 (ter Braak & Smilauer 2002). The ordination axes in CCA are constrained 

to be linear combinations of the environmental variables thereby allowing for the species 

distributions to be directly related to the environment (ter Braak 1986). The environmental 

vectors extend in the direction indicating its correlation with each axis. Species that plot 

closer to the head of each environmental vector are indicative of greater abundances in sites 

that have higher than average characteristics of that vector. Species plotted near the origin 

were, on average, found in sites that were average for all the vectors in the plot. Both intersite 

and interspecies plots were created using these average abundances. Interspecies differences 

within each of the three subzones were also investigated using the abundance of each 

macrolichen taxon on each stem. Biplot scaling and downweighting of rare species were used 

in all canonical correspondence analyses. Variables were included in the plot if they were 

significant at p<0.05 as determined through forward selection with Bonferonni adjustments. 

This ensured that only those variables which likely were related to the species distributions 

were used in the CCA (Mundfrom et al. 2006). The total set of variables used in the site level 

analyses were stream width, slope perpendicular to stream, average age of oldest adjacent 

conifers, average canopy cover, number of buried organic horizons, abundance of stems with 

dbh > 10 cm, stem density, mean annual precipitation, and mean annual temperature. The 
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total set of variables used in the stem level analyses were stem diameter, angle of lean, 

direction of lean, percent bark cover, and percent moss cover. 

The ability of the species within each subzone to act as indicators of that subzone was 

investigated with indicator species analysis (Dufrene and Legendre 1997) and Monte Carlo 

tests of significance in PC-ORD version 5.01 (McCune and Mefford 1999). The indicator 

value of each species in each subzone was calculated as the product of 100, mean abundance 

of the species in the subzone, and the relative frequency of occurrence of the species in the 

subzone. Indicator values can range from 0 when there is no indication to 100 when the 

species is present in all the plots of a single group and absent from all other plots. Trie 

maximum indicator value from the three subzones of each species was interpreted as the 

indicator value of that species. The significance of this indicator value was then tested with 

10 000 permutations of Monte Carlo tests. A significance level of 0.05 was used to identify 

species indicative of each of the subzones. 

Results 

The average temperature in sampled alder swales was lowest in the SBSmk, at the 

western end of our longitudinal transect (Table 4.1). A marked east to west precipitation 

gradient was calculated, with the easternmost sites having both greatest annual precipitation 

and greatest winter snowfall accumulation. 

Average alder canopy cover ranged from 87% in the SBSmk, to 82% in the SBSwk, 

and 85% in the SBSvk. These differences were not statistically significant. Overall, canopy 

cover estimates ranged from 37 to 96%. The average age of the oldest alders in each site 
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were fairly consistent across the three subzones, 33 years in the SBSwk, 32 years in the 

SBSmk, and 29 years in the SBSvk. 

Alder swales in the SBSmk were associated with lower mean annual precipitation and 

lower mean annual temperatures than were the sites of the other two subzones (Figure 4.1). 

Alder swales in the SBSwk were associated with a greater abundance of large stems, 

compared to sites in the SBSvk (Figure 4.1). 

Nine species of lichen forming fungi were found in only one subzone with an 

additional nine species not observed in one of the three subzones. One species, 

Tuckermannopsis platyphylla (Tuck.) Hale, was found only in the SBSvk. Five species, 

Collema subflaccidum Degel., Hypogymnia bitteri Lynge) Ahti, Leptogium burnetiae C. W. 

Dodge, Lobaria retigera (Bory) Trevisan, and Peltigera collina (Ach.) Schrader, were found 

only in the SBSwk. Three species, Collema furfuraceum (Arnold) Du Rietz, Kaerenfeltia 

merrillii (Du Rietz) Thell and Goward, and Nodobryoria oregana (Tuck.) Common and 

Brodo, were unique to the sites of the SBSmk. The species that were not observed in the 

SBSmk were Nephroma helveticum Ach., Pseudocyphellaria anomala Brodo and Ahti, 

Hyopgymnia austeroides (L.) Nyl., and Sticta limbata (Sm.) Ach.. Ramalina obtusata 

(Arnold) Bitter and Xanthoria spp. were not observed in the sites of the SBSwk. 

Tuckermannopsis orbata (Nyl.) M. J. Lai and Hypogymnia metaphysodes (Asahina) Rass. 

were not observed in the SBSvk sites (Table 4.2). Indicator species analysis suggested the 

presence of three indicator species for the SBSmk, nine for the SBSwk, and one for the 

SBSvk (Table 4.3). 

The ordination based on the average abundances of each of the macrolichen taxa in 

the sites indicated that the significant environmental vectors identified through forward 
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selection were mean annual temperature, mean annual precipitation, age of adjacent conifer 

forest, and the abundance of stems with dbh greater than 10 cm in a site (Figures 4.2, 4.3). 

These four vectors explain 84% of the variation in the weighted averages of species with 

respect to the environmental data. The first two eigenvalues were 0.08 and 0.052. The age of 

the conifer forest (r2=0.49) and mean annual precipitation (r2=0.66) were both correlated with 

the first canonical axis. The abundance of stems larger than 10 cm dbh (r2=0.43) and mean 

annual temperature (r2=0.85) were correlated with the second canonical axis. 

All the observed cyanolichens, with the exception of four species, were associated 

with increased mean annual precipitation as a major environment trend (Figure 4.2). These 

four exceptions were Collema sublflaccidum, Leptogium burnetiae, Lobaria retigera (Bory) 

Trevisan, and Collema furfuraceum. There was also a general trend of increasing diversity 

with increasing abundances of large alder stems, especially for rare species including 

Hypogymnia metaphysodes, Hypogymnia austeroides, Collema subflaccidum, and Ramalina 

obtusata (Figure 4.2). 

The ordinations within individual subzones, based on the stem level abundances of 

the macrolichen taxa, identified stem diameter, percent moss cover, and angle of lean as the 

most significant variables for determining species abundances on individual stems (Figure 

4.3). The cyanolichens responded most strongly to stem diameter and percent moss cover in 

all three subzones (Figure 4.3). 

In the ordination based on the sampled stems of the SBSmk, the first two eigenvalues 

were 0.049 and 0.023 with the three variables explaining 67% of the species environment 

variation (Figure 4.3A). In the ordination based on the sampled stems of the SBSwk, the first 

two eigenvalues were 0.077 and 0.024 with the three environmental vectors explaining 74% 
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of the species-environment variation (Figure 4.3B). In the ordination based on the sampled 

stems of the SBSvk, the first two eigenvalues were 0.081 and 0.046 with the three 

environmental vectors explaining 75% of the species-environment variation (Figure 4.3C). 
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Table 4.1. Average climate data for alder swales, by subzone of Sub-Boreal Spruce (SBS), 
based on modeled mean data from 1971 to 2000 obtained from Climate B.C. v 3.2. 

Temperature (°C) 
Mean Annual Mean Annual 

Mean Mean Mean Precipitation Snowfall 
SBS subzone Annual January July (mm) (mm) 

Moist (mkl) 2.7 -10.7 14.1 734 287 
Wet(wkl) 3.3 -10.9 12.4 791 292 
Very-wet (vk) 3.3 -9/7 1A9 918 340 
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Table 4.2. Species list with abbreviation (Abbr.), functional groups (Func.) and percent 
occurrence in the plots of each Sub-Boreal Spruce (SBS) subzone. The functional groups 
are alectorioid (A), cyanolichen (C) and matrix (foliose macrolichens with a green-algal 
biont) lichen (M). n=25 in each subzone. 

% Occurrence 
by SBS Subzone 

Species 
Alectoria sarmentosa (Ach.) Ach. 
Bryoria spp. Brodo & D. Hawklsw. 
Cladonia spp. P. Browne 
Collema furfuraceum (Arnold) Du Rietz 
Collema subflaccidum Degel. 
Hypogymnia austeroides (Nyl.) Rasanen 
Hypogymnia bitteri (Lynge) Ahti 
Hypogymnia enteromorpha (Ach.) Nyl. 
Hypogymnia metaphysodes (Asahina) Rass. 
Hypogymnia occidentalis L. Pike 
Hypogymnia physodes (L.) Nyl. 
Hypogymnia rugosa (G. Merr.) L. Pike 
Hypogymnia tubulosa (Schaerer) Hav. 
Hypogymnia vittata (Ach.) Parrique 
Kaerenfeltia merrillii (Du Rietz) Thell & 
Goward 
Leptogium burnetiae C. W. Dodge 
Leptogium saturninum (Dickson) Nyl. 
Lobaria halii (Tuck.) Zahlbr. 
Lobaria pulmonaria (L.) Hoffm. 
Lobaria retigera (Bory) Trevisan 
Lobaria scrobiculata (Scop.) DC. 
Melanelia spp. Essl. 
Nephroma bellum (Sprengel) Tuck. 
Nephroma helveticum Ach. 
Nephroma isidiosum (Nyl.) Gyelnik 
Nephroma parile (Ach.) Ach. 
Nephroma resupinatum (L.) Ach. 
Nodobryoria oregana (Tuck.) Common & 
Brodo 
Parmelia hygrophila Goward & Ahti 
Parmelia sulcata Taylor 

Abbr. 
alec sar 
bryo spp 
clad spp 
coll fur 
coll sub 
hypo aus 
hypo bit 
hypo ent 
hypo met 
hypo occ 
hypo phy 
hyorug 
hypo tub 
hypo vit 

kaer mer 
lepr bur 
lept sat 
loba hal 
loba pul 
loba ret 
loba scr 
mela spp 
neph bel 
neph hel 
neph isi 
neph par 
neph res 

nodo ore 
parm hyg 
parm sul 

Func. 
A 
A 
M 
C 
C 
M 
M 
M 
M 
M 
M 
M 
M 
M 

M 
C 
C 

c 
c 
c 
c 
M 
C 
C 
C 
C 
C 

A 
M 
M 

Moist 
(mkl) 
96 
100 
4 
4 
0 
0 
0 
56 
8-
56 
92 
20 
80 
40 

4 
0 
8 
0 
24 
0 
12 
92 
16 

o-
12 
20 
16 

12 
44 
100 

Wet 
(wkl) 
100 
96 
32 
0 
4 
12 
4 
52 
20 
48 
96 
20 
72 
32 

0 
4 
36 
52 
72 
8 
56 
96 
44 
40 
44 
76 
56 

0 
68 
100 

Very-
wet 
(vk) 
100 
96 
16 
0 
0 
4 
0 
28 
4 
12 
64 
8 
40 
20 

0 
0 
12 
28 
52 
0 
48 
64 
16 
16 
16 
80 
36 

0 
40 
88 
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Table 4.2 continued. 
Parmeliopsis ambigua (Wulfen) Nyl. parm amb M 100 68 
Parmeliopsis hypteropta (Ach.) Arnold parm hyp M 72 36 
Peltigera collina (Ach.) Schrader pelt col C 0 12 
Physcia spp. (Schreber) Michaux phys spp M 48 56 
Platismatia glauca (L.) Culb. & C. Culb. plat gla M 80 84 
Platismatia norwegica (Lynge) Culb. & C. 
Culb. plat nor M 8 48 
Pseudocyphellaria anomala Brodo & Ahti pseu ano C O 52 
Ramalina dilacerata (Hoffm.) Hoffm. rama dil M 84 80 
Ramalina farinaceae (L.) Ach. rama far M 4. 8 
Ramalina obtusata (Arnold) Bitter rama obt M 4 0 
Ramalina thrausta (Ach.) Nyl. rama thr A 4 8 
Sticta fuliginosa (Hoffm.) Ach. stic ful C O 32 
Sticta limbata (Sm.) Ach. stic lim C O 4 
Tuckermannopsis chlorophyla (Willd.) 
Hale tuckchl M 84 88 
Tuckermannopsis orbata (Nyl.) M. J. Lai tuck orb M 24 4 
Tuckermannopsis platyphyla (Tuck.) Hale 
Syn tuckpla M O 0 
Usnea spp. Dill, ex Adans. usne spp A 92 96 
Vulpicida pinastri (Scop.) Mattsson & M. J. 
Lai vulppin M 92 60 
Xanthoria spp. (Fr.) Th. Fr. xant spp M 12 0 _ 

64 
56 
0 
32 
48 

20 
36 
28 
4 
4 
12 
12 
4 

72 
0 

8 
84 

76 
4 
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Table 4.3 Indicator species, and their indicator values (in bold), of epiphytic lichens in each 
subzone of the Sub-Boreal Spruce (SBS) biogeoclimatic zone. P-values are from 
Monte Carlo tests. 

species 

Parmeliopsis ambigua 
Tuckermannopsis orbata 

Vulpicida pinastri 
Leptogium saturninum 

Lobaria hallii 
Lobaria pulmonaria 

Nephroma resupinatum 
Parmelia hygrophila 
Platismatia glauca 

Platismatia norvegica 
Sticta fuliginosa 

Tuckermannopsis chlorophylla 
Nephroma parile 

Moist 
(SBSmk) 

62 
23 
41 
0 
0 
2 
2 
8 

21 
1 
0 
30 
1 

Wet 
(SBSwk) 

11 
0 
13 
32 
40 
41 
28 
38 
45 
35 
28 
41 
33 

Very-wet 
(SBSvk) 

15 
0 
26 
1 
7 
19 
14 
11 
10 
4 • 
2 
12 
43 

P 

0.0001 
0.0022 
0.0421 
0.0047 
0.0004 
0.0044 
0.0408 
0.0145 
0.0058 
0.0011 
0.0061 
0.0199 
0.0029 
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Fig 
ure 4.1. Canonical correspondence analysis of the relationship between alder swales in each 
of the three subzones of the Sub-Boreal Spruce biogeoclimatic zone, and environmental 
variables, based on abundance data of macrolichen species in each swale. The inset shows 
the environmental vectors where the direction of the arrows indicates the correlation with the 
first two canonical axes and the length of the arrows represents the strength of the 
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Figure 4.3. Canonical correspondence analysis of the relationships between each of the lichen 
taxa and the stem characteristics in each of three subzones of the Sub-Boreal Spruce (SBS) 
biogeoclimatic zone. A: moist (SBSmk), B: wet (SBSwk), C: very-wet (SBSvk). 
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Discussion 

An overlooked part of the conservation biology story of central-interior British 

Columbia is the role that riparian alder forest swales may play in conserving lichen 

biodiversity. Alder swales constitute only a small proportion of regional landscapes, less than 

1% in our 122,000 ha study area. However, their significance may extend far beyond their 

actual area, given that they occur as linear corridors adjacent to streams across the landscape, 

thus providing a high degree of connectivity in regional landscapes. Further the same 

disturbance processes that have drastically reduced the amount of old-growth coniferous 

forests in SBS landscapes may operate with far less frequency in wet alder swales, both due 

to their topographic position in wet depressions typically skipped over by fires (Bergeron 

1991), and their general lack of timber-harvesting values. Although some alder dominated 

sites on wet seepage slopes in the very-wet climate subzone have been treated by herbicide or 

mechanical treatments as a deliberate policy to reforest greater land cover (C. DeLong 

personal communication, 2008), fortunately, this practice has been decreasing due to changes 

in policy and the high cost of conducting these conversions. 

Against this backdrop, our finding that many of the lichens growing within our alder 

swales have been described previously as old-growth associated lichens assumes 

considerable interest. If we look, for instance, at the list of old growth-dependent canopy 

lichens developed by Campbell and Fredeen (2004), we see that the chlorolichens 

Hypogymnia vittata (Ach.) Parrique and Platismatia norvegica (Lynge) Culb. are common in 

alder swales in all of the three sampled subzones. The comparison is even more dramatic 

when we consider old-growth cyanolichens listed by Campbell and Fredeen, with Lobaria 

pulmonaria (L.) Hoffm., L. hallii (Tuck.) Zahlbr., L. scrobiculata (Scop.) DC, Nephroma 

helveticum Ach., N. isidiosum (Nyl.) Gyelnik, N. parile (Ach.) Ach., Pseudocyphellaria 
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anomala Brodo and Ahti, and Sticta fuliginosa (Hoffm.) Ach. all present in our SBSwk and 

SBSvk alder swales. This would suggest that alder swales represent important refugia for old 

growth-dependent lichens in SBS landscapes. McCune et al. (2002) similarly found that 

deciduous forests growing adjacent to montane streams in western Oregon were an important 

refugium for canopy cyanolichens, although their study indicated that rare species were more 

common along large streams rather than along smaller upland streams. 

Clearly one of the factors that promotes lichen diversity in alder swales must be their 

persistence over time, which allows for the gradual accumulation of old-growth forest 

species. The widespread presence of Ramalina dilacerata (Hoffm.) Hoffm. in our alder 

swales is instructive in this regard. Its presence has previously been associated with fire-free 

refugia that have long site continuity (Karstrom 1992). Although individual alder stems do 

not appear to achieve great longevity, their continuing ability to send up new sprouts has the 

potential to provide substrate for lichen colonization in alder swales over very long time 

periods, similar to that demonstrated by Ruchty et al. (2001) for persistent patches of the 

shrub Acer circinatum Pursh in Oregon. Both Snail et al. (2005) and Kuusinen (1994a, 

1994b) showed the importance of deciduous stand elements for retention of epiphytic lichens 

in Scandinavian boreal forests. However, Snail et al.'s modeling of host availability assumed 

a dispersed availablility of willows in a landscape where all components were equally 

susceptible to fire, unlike the apparent situation of our alder swales, which may function as 

refugia through multiple disturbance events. 

When considering the accumulation of old-forest associated lichens in alder swales, 

we must look at both the suitability of available habitat and dispersal limitations from source 

populations (Ockinger et al. 2005). Sillett et al. (2000) hypothesized that dispersal limitations 

were a primary constraint on the accumulation of rare cyanolichens in old-growth forests of 
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the U.S. Pacific Northwest. Similar limitations may exist in our riparian forest swales, where 

old-growth associated cyanolichens such as Lobaria retigera and Sticta limbata, which may 

be representative of bipartite cyanolichens, were often absent from seemingly suitable 

habitat. 

A common constraint on the establishment and survival of canopy epiphytes is 

nutrient availability and the pH of stemflow precipitation (Hauck et al. 2002). The position of 

alder swales in groundwater receiving topographic position should enhance nutrient 

availability for canopy epiphytes, especially when compared to surrounding coniferous 

forests. Goward and Spribille (2005) noted the importance of wet nutrient-receiving sites in 

supporting the diversity of calicioid lichens and foliose cyanolichens in B.C.'s inland 

mountain ranges. However, the profusion of cyanolichens on both deciduous (Goward and 

Arsenault 2000a) and coniferous substrates in the SBSwk and SBSvk (Goward and Arsenault 

2000c; Goward and Spribille 2005), suggests that substrate pH may not be a limiting factor in 

this region. 

Other important environmental variables that influence lichen communities in alder 

swales are regional temperature and precipitation gradients. These have previously been 

identified as major variables in landscape-level studies examining the distribution and 

abundance of epiphytic lichen communities (McCune et al. 1997; Jovan and McCune 2004; 

Giodani 2006; Gauslaa et al. 2007). Climate B.C. model results predicted greatest 

precipitation at the easternmost end of our longitudinal transect, in the SBSvk, declining in 

the alder swales of more western (SBSmk) transect locations. 

Our indicator species of the SBSmk, Parmeliopsis ambigua, Tuckermannopsis 

orbata, and Vulpicida pinastri, are commonly found in open pine and spruce forests of 

British Columbia (Goward et al. 1994). Kaernefeltia merrillii, a rare species that we observed 
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only in the SBSmk, also tends to colonize sites in drier locations (Goward et al. 1994). 

Collemafurfuraceum, rare in the alder swales sampled, was found only in the warmest of the 

SBSmk alder swales reflecting the general preference of many cyanolichens for warmer wet 

sites (Goward et al. 1994). Therefore, it would be hypothesized that C. furfuraceum would be 

able to colonize alder swales of the SBSwk which were generally warmer and wetter. 

Four of the indicator species of the SBSwk, Lobaria hallii, L. pulmonaria, 

Platismatia norvegica, and Sticta fuliginosa, were listed among oceanic macrolichens of 

cedar-hemlock forests in B.C.'s interior by Goward and Spribille (2005) and Radies (2008). 

They hypothesized that summer drought was the predominant limiting factor for the growth 

of these species in inland regions, supporting the stronger association with the wetter SBSwk. 

Although the SBSvk is wetter, other factors, including the heavier winter snowpack, may 

limit the occurrence of these oceanic species in the SBSvk. Of the species unique to the 

SBSwk, Collema subflaccidum, Leptogium burnetiae, and Peltigera collina are rare species, 

though may be representative of bipartite cyanolichens in that they are typically observed in 

sheltered humid forests (Goward et al. 1994). Along with Lobaria retigera, an old-growth 

associated species (Goward et al. 1994; Goward and Spribille 2005), we tended to observe 

these four cyanolichens in warmer than average sites that had higher than average 

abundances of large alder stems. These aspects of their distribution coincide with 

characteristics of the alder swales in the SBSwk. Hypogymnia bitteri, another rare species in 

our data set and in the study region as a whole (Goward et al. 1994), was found only in the 

SBSwk alder swales, generally in sites with a rich epiphyte flora and a high density of alders 

greater than 10 cm dbh. 

The age of surrounding coniferous forests was identified by CANOCO as an 

additional major variable predicting the abundance of canopy lichens in alder swales. 
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Certainly, we would expect that alder swales immediately adjacent to old-growth coniferous 

forests would show higher lichen diversity. Alder swales were typically quite narrow, only 

15-20 m across at their widest point, well within the dispersal range of lichen soredia from 

adjacent old forests (Armstrong 1990, 1994). However, the vector of age of conifer forests in 

surrounding landscapes was strongly correlated with the vector of mean annual precipitation 

along our east to west longitudinal transects, with fire return intervals ranging from ca. 100 

years in SBSmk regions, to over 900 years in SBSvk sites (DeLong 1998), making it difficult 

to separate the potential influence of these two factors. The strongest correlations between 

these two variables were present among the sites of the SBSmk, the subzone where subzone 

variation in precipitation levels would be expected to most greatly impact both the frequency 

of stand-destroying fires and the suitability of the habitat for cyanolichens. 

One factor that we have not examined is the short-term impacts of the removal of 

adjacent coniferous forests on lichens of riparian forests. As alder swales were generally 

located in topographic depressions with abundant standing water and/or surface seepage 

areas, we would expect that they would be somewhat buffered from changes in fetch 

characteristics of surrounding upland forests. Further, these conditions of greater light 

availability (compared to surrounding closed canopy coniferous forests) and enhanced 

humidity in alder swales should favor retention of old forest lichens, as they do in canopy-

gaps over seepage areas in adjacent cedar-hemlock forests (Coxson and Stevenson 2007) or 

in spruce swamp-forests in Finland (Kuusinen 1996b). Radies (2008) also noted that stands 

with a more open canopy structure generally indicated sites better suited to the establishment 

of many old-growth associated macrolichens. 

Looking at east-west climate gradients in the SBS biogeoclimatic zone, we would 

expect that arboreal lichens with green algal bionts would be more tolerant of drought (Hajek 
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et al. 2001) and better able to sustain physiological activity in dry conditions, due to their 

ability to rehydrate under conditions of high atmospheric humidity (Lange et al. 2004). In 

contrast, the requirement of cyanolichens for liquid water to sustain rehydration may impose 

narrower habitat requirements for many species (Antoine 2004). Additionally, carbon 

assimilation and nitrogen fixation in many foliose cyanolichens are particularly limiting at 

low temperatures (Sundberg et al. 1996). Taken together, these contrasting trends in 

temperature and precipitation may play a critical role in structuring lichen communities of 

alder swales. Green-algal lichen species such as Parmelia sulcata Taylor, Hypogymnia 

physodes (L.) Nyl., and Platismatia glauca (L.) Culb. and C. Culb. were widely distributed 

across all of our alder swales, while fewer foliose cyanolichens were found in the SBSmk 

alder swales. Some lichens may also have been absent from the SBSvk sites due to 

temperature limitations. Lobaria retigera, for instance, tended to be more strongly influenced 

by temperature than precipitation. The large stems that Collema subflaccidwn and Leptogium 

burnetiae tended to colonize more frequently may have moderated temperature extremes 

(Hengst and Dawson 1993) in the warmer SBSmk and SBSwk sites. 

Regional gradients in temperature and precipitation availability are, of course, 

modified by site specific substrate factors. The most notable of these'in our alder swales 

were the influence of stem diameter and stem lean. In all three subzones, leaning large 

diameter stems (which tend to be moss covered) were a major predictor of lichen abundance 

and diversity. These stems tend to intercept more precipitation, thereby providing wetter 

microsites for lichen colonization. They typically have greater moss growth on their upper 

stem surfaces, providing a substrate with much greater water holding capacity. This was seen 

in our CANOCO vectors, which showed percent moss cover and stem diameter as two of the 

most important variables predicting lichen species distribution on alder stems. 
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These characteristics may be of particular importance to cyanolichens such as 

Lobaria retigera and Collema subflaccdium and chlorolichens such as Ramalina farinacea 

and Hypogymnia austeroides, which preferentially colonized alder stems with dbh larger than 

8 cm. In the SBSmk and SBSwk, the majority of the cyanolichens tended to plot along the 

percent moss cover vector, however in the SBSvk, only species of Nephroma species plotted 

along this vector with other cyanolichens tending to be found only on large alder stems. The 

identification of N. parile, the most abundant species of Nephroma in the alder swales, as an 

indicator species of the SBSvk further supports the association of Nephroma species with 

wetter sites. The only other taxa that failed to plot along the stem diameter vector were 

Cladonia spp and Vulpicida pinastri. Cladonia is a terrestrial lichen genus and V. pinastri, 

while being epiphytic, tends to establish in habitats with more terrestrial characteristics such 

as the lower portions of trees and shrubs (Goward et al. 1994). 

Although increases in precipitation can be a positive indicator for lichen abundance, 

seasonal distribution of precipitation must also be considered. Submersion beneath winter 

snowpack has previously been shown to have a deleterious influence in a range of different 

ecosystems. Prolonged burial by snowpack can lead to much higher respiratory carbon loss 

(Kappen and Breuer 1991), which over time can greatly increase lichen mortality rates 

(Benedict 1990). For this reason, slow-growing species may be more tolerant of subnivean 

environments than fast growing species. Marsh and Timoney (2005) further note that 

prolonged periods of saturation under snowpack can increase mortality rates of lichens even 

after the saturation stress is removed. One group of sensitive lichens in our riparian swales 

may be green-algal biont lichens such as Hypogymnia physodes, Tuckermannopsis 

chlorophylla, Parmelia sulcata, Platismatia norwegica, and Platismatia glauca. These 

lichens were widespread in the alder swales of the SBSmk and SBSwk, however they were 
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restricted to large diameter stems in the SBSvk swales. These large diameter stems are far 

less likely to bend under the weight of winter snow pack, and thus may be a more viable 

substrate for canopy lichens in SBSvk alder swales. When we consider all climatic variables, 

the SBSwk, with its intermediate level of precipitation, lower snowpack (than the SBSvk), 

and the warmest climate, would appear to provide the best climate for the development of 

arboreal lichen communities in the alder swales. The SBSwk supported both the greatest 

species richness and the most rare and old-growth associated species. 

Historically, the wetter Sub-Boreal Spruce landscapes (i.e. the SBSwk and SBSvk) in 

central-interior British Columbia were dominated by old-growth forests. Natural range of 

variability estimates for percent of forested area older than 140 years is 43-61% for the 

SBSwk and 84-89% for the SBSvk (DeLong 2007). These landscapes, however, have seen a 

dramatic transformation over the last 50 years. Logging and fire have reduced the proportion 

of old-growth coniferous forest cover in the SBSwk to less than 30%, and to less than 70% in 

the SBSvk (unpublished data, Prince George Timber Supply Area - Landscapes Objectives 

Working Group, B.C. Ministry of Agriculture and Lands, March 2005). By regulation these 

can be further reduced to 26% for the SBSwk and 50% for the SBSvk. In addition, lodgepole 

pine-dominated forests, which are common in the SBSwk, have been impacted by mountain 

pine beetle and may no longer be suitable for many arboreal lichens. Thus, wet alder patches 

may be important refugia for old growth-dependent canopy lichens and an important source 

of propagules for recolonization of surrounding second-growth forests, thereby validating the 

current policy of not converting alder swales to forest. 
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Chapter Five. Physiology of six common cyanolichens in alder swales of central-interior 

British Columbia. 

Introduction 

Lichens are important to the cycling of nutrients in forests (Knops et al. 1996). By 

intercepting precipitation they change the chemistry of that precipitation reaching the ground 

(Knops et al. 1996). In arctic regions, cyanolichens contribute a significant amount of fixed 

nitrogen to the environment (Alexander & Schnell 1973). In forested regions, cyanolichens 

are generally more abundant in old-growth forests than in young forests (Goward 1994; 

Sillett and McCune 1998) and may fix as much as 5 kg N/ha/year in some coastal forests 

(Franklin et al. 1981). Hardwoods often support rich cyanolichen communities (Goward and 

Arsenault 2000a), in some cases richer than those found in old-growth forests (Peterson and 

McCune 2003) and may therefore be important in the cycling of nitrogen in many 

landscapes. In central British Columbia, hardwoods, such as alders and willows, are 

commonly found along first order streams. Riparian alders are able to support rich lichen 

communities that include rare and old-growth associated cyanolichens (see Chapter 4). 

Therefore these sites have a potential role in the cycling of nitrogen in these landscapes. The 

objectives were 1) to examine the physiological responses (rates of acetylene reduction, 

photosynthesis, and respiration) of common cyanolichens, collected from the same 

community, to a temperature gradient, and 2) to determine their relative contributions to the 

nitrogen budget of the sub-boreal spruce biogeoclimatic zone. 
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Methods 

Biomass estimates of six cyanolichen species were made on the sampled stems within 

each of the 75 sites in the biogeoclimatic subzone. These six species were Lobaria 

pulmonaria, Lobaria hallii, Lobaria scrobiculata, Sticta fuliginosa, Nephroma parile, and 

Pseudocyphellaria anomala. These six species were the most abundant cyanolichens in the 

sites sampled and so were selected for physiological analyses. A circular reference thallus 

size of 4.5 cm diameter was used to approximate biomass in the field for a two meter interval 

along the stems starting 50 cm above ground level. The number of reference-sized clumps of 

each species on each sampled tree was estimated visually. For analysis, thalli that were 

approximately 4.5 cm in diameter were collected as thalli of this size were optimal for fitting 

into the incubation dishes. The dry weights of these same thalli were used in all further 

calculations. The average dry mass of a clump of S. fuliginosa was 0.48 g, of L. hallii 0.49 g, 

of L. scrobiculata 0.54 g, of L. pulmonaria 0.34 g, of P. anomala 0.43 g, and of N. parile 

0.84 g. 

The density of each of the six categories of stem vigor and diameter were estimated 

through the nearest individual method (Cottam et al. 1953) with distances from the transect 

to the nearest stems being taken every 10 m along the transect line. The dry weights of thalli 

that were collected for physiological analysis were used to determine the average mass of the 

reference clump for each of the six species (n=50 for each species). The average biomass of 

each cyanolichen species was found for each category of stem diameters and was multiplied 

by the density stems in that category. Biomass of each species in each site was expressed on 

a per hectare basis. This estimate was then doubled to account for unsampled portions of the 

stems, based on the observation that unsampled portions of the alder stems had comparable 

biomasses of the six cyanolichens studied. Small stems, under four meters in height, 
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generally did not support these six cyanolichens. To relate the amount of acetylene reduced 

to amount of nitrogen fixed per unit time by each species we used the theoretical ratio of 3 

C2H4 : 1 N2 (Hardy et al. 1973). Annual estimates of the amount of nitrogen fixed assumed a 

150 day growing season with fixation occurring for half of that period at a mean temperature 

of 14 °C. This likely represents an overestimate of the annual amount of nitrogen fixed. 

Thalli were collected on 17 October from riparian alders located at 54.10°N, 

122.06°W and on 26 November 2008 from riparian alders located at 53.92°N, 121.75°W. 

Following collection, thalli were hydrated with deionized water and exposed to a 48 hour 

pretreatment period of 12 hours light at 15 °C and 200 umol/m2/s light intensity and 12 hours 

dark at 5 °C. Thalli were held at optimal water content during the incubations. Ten replicates 

of each species, from the first collection, were used for measurement of photosynthesis, 

respiration, and acetylene reduction assay (ARA) rates. Thalli of S. fuliginosa, L. 

pulmonaria, and P. anomala, collected from the second site in late November 2008 provided 

an additional 10 replicates of these species to verify the temperature response of ARA with 

an independent set of thalli. 

For all physiology measurements, thalli of approximately 2 g dry weight were 

incubated at 200 umol/m2/s at 7, 14, 21, and 28 °C in 100 mL glass chambers with the base 

covered with a flat glass plate sealed with vacuum grease. For ARA, 10 cm3 acetylene were 

injected prior to the three hour incubation. To measure respiration rates, the thalli were 

incubated between 2 and 10 minutes, with shorter durations at higher temperatures in the 

dark. For the ARA, the amount of ethylene converted from acetylene was quantified through 

gas chromatography using a Wennick SRI 8610A Gas Chromatograph (Wennick Scientific 

Corp, Ottawa, Canada) and associated software (Peak Simple 3.29, SRI Instruments, 

Torrance, USA). Rates of photosynthesis and respiration, as measured by changes in carbon 
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dioxide concentration, were measured using Li-Cor CO2 Analyser Model LI-6251 (Li-Cor, 

Lincoln, USA). Following the incubations, all thalli were still saturated. Destructive 

sampling of the thalli was used to prevent any carry-over effects from the acetylene between 

incubations at each temperature. 

Results & Discussion 

In the SBSmk, only L. pulmonaria and L. scrobiculata were present (Table 5.1). All 

six species were present in both the SBSwk and SBSvks. Nephroma parile and L. 

pulmonaria made up the greatest mass in the SBSwk while in the SBSvk, N. parile was the 

dominant cyanolichen (Table 5.1). Nephroma parile fixed the greatest amount of nitrogen, 

among the species sampled, in the SBSwk and SBSvk. Average and maximum amounts of 

fixed nitrogen from these dominant cyanolichens are very low (Table 5.2), as compared to 

previous estimates of nitrogen fixation by cyanolichens, between 3 and 5 kg/ha/year, from 

old growth forests (Franklin et al. 1981). Denison (1973) estimated that 11.2 kg/ha/year of 

nitrogen may be fixed by L. oregana on Douglas fir trees. These estimates are much higher 

than we observed due to the greater biomass of the cyanolichens in those forests than in our 

study sites. 

Though the lichen contribution to the nitrogen budget of alder swales is minimal, 

alders themselves contain cyanobacteria in root nodules and the nitrogen contributions from 

these root nodules represent a far more significant input of nitrogen to the ecosystem. 

Nitrogen fixation has been previously determined to be 43 kg N2/ha/year in a 30 year old 

stand of Alnus incana (Johnsrud 1978) and as high as 320 kg N2/ha/year in 20 year old stands 

of Alnus rubra (Newton et al. 1968). 
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Photosynthesis rates followed the same trend for all six species with the rates 

increasing up to 21 °C and decreasing at higher temperatures (Figure 5.1). This pattern is 

typical of many lichens (Adams 1971; Lange et al. 1998). Respiration rates also followed the 

same trend for all six species with higher rates occurring at higher temperatures (Figure 5.2). 

This trend has been previously found for many lichens (Adams 1971; Lange et al. 1998). 

ARA indicated that the six species responded in different ways to the various 

temperature conditions. Sticta fuliginosa, Lobaria hallii, and Lobaria scrobiculata had 

maximum rates of reduction at 7 °C. Lobaria pulmonaria had maximum rates at 21 °C. 

Pseudocyphellaria anomala had maximum rates of reduction at 28 °C. Nephroma parile had 

similar rates across all temperatures (Figure 5.3). The second set of ARA, based on thalli 

collected in late November 2008, indicated the same trends that were observed in the first set, 

though, in the second set of ARA analysis, the mean rates of fixation were lower in S. 

fuliginosa across the temperature gradient and were lower in P. anomala at the cool end of 

the temperature gradient and higher at the warm end of the gradient (Figure 5.4). Similar 

rates in L. pulmonaria were observed across the temperature gradient in the first and the 

second sets of ARA (Figure 5.4). 
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Figure 5.1. Effect of temperature on the photosynthetic rate of thalli of six cyanolichen 
species collected in mid October 2008. Error bars show standard error, n=10. 
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Figure 5.2. Effect of temperature on the respiration rate of thalli of six cyanolichen species 
collected in mid October 2008. Error bars show standard error, n=10. 
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Figure 5.3. Rate of acetylene reduction in six cyanolichen species across a temperature 
gradient based on thalli collected in mid October 2008. Error bars show standard error, n=10. 
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Figure 5.4. Rate of acetylene reduction in cyanolichen species across a temperature gradient, 
based on a second, independent collection made at the end of November 2008. Error bars 
show standard error, n=10. 
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The ecology and distribution of these cyanolichens is informative in explaining these 

various trends. Nephroma parile was present in the majority of the alder swales in the 

SBSwk and SBSvks (Chapter 4). We hypothesized that by frequently being present in these 

subzones and tending to colonize portions of stems within the winter snowpack, N. parile 

likely possesses unique adaptations to thrive in very wet, high elevation swales. The 

consistent rate of reduction in N. parile, across the temperatures analyzed, suggests that this 

species is well adapted to survive in habitats across the landscape so long as precipitation is 

not a limiting factor. Its distribution across the sampled landscape further supports this 

statement because it was one of the four cyanolichens to be found in all three subzones, was 

the second most frequently encountered cyanolichen in the sites of the SBSmk, after Lobaria 

pulmonaria, and was the most frequently encountered cyanolichen in the sites of the SBSwk 

and SBSvk (Chapter 4). 

Little change was observed in rates of ARA between 7 and 15 °C, indicating a 

constant response to average temperatures, in S. fuliginosa, L. hallii, and L. scrobiculata. The 

average July temperature in all the swales was less than approximately 15 °C (Chapter 4). 

These three species were found to colonize large stems in the SBSwk that had high percent 

covers of moss (Chapter 4). These species were absent from the majority of the sites in the 

SBSvk due to higher snow levels and lower abundances of large stems and from the SBSmk 

due to inadequate levels of precipitation (Chapter 4). By minimizing the length of time 

covered by snow, maximum use can be made of spring and fall conditions, maximizing the 

growing season for these species since they also photosynthesize and respire at lower 

temperatures. 
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Low temperature optima, below 20 °C, for nitrogen fixation in cyanolichens have 

been previously documented (Kallio et al. 1972; Maikawa & Kershaw 1975) including for S. 

fuliginosa (Maikawa & Kershaw 1975) though procedural errors, including factors such as 

continuous hydration prior to the experiment, unstandardized pretreatment conditions, and 

drying of thalli during the experiment, may have caused some of those results (Kershaw 

1985). To avoid the errors highlighted by Kershaw (1985), our pretreatment conditions 

allowed the thalli to dry out several times prior to the experiment, the same pretreatment was 

used for all the replicates of all the species, and all thalli were maintained at a constant level 

of hydration throughout the incubations. Therefore, our low temperature optima likely are not 

artifacts. 

Our results, however, are not without precedents as low temperature optima for 

nitrogenase activity have been observed in experiments not susceptible to these criticisms 

(Rodgers 1978; Lennihan et al. 1994). These low optimal temperatures for fixation have been 

suggested to occur in cool climates (Rodgers 1978; Lennihan et al. 1994). Seasonal 

acclimation may also be an important factor leading to the different temperature optima of 

ARA in these species, as has previously been found in rates of nitrogen fixation in Peltigera 

rufescens (Hitch and Stewart 1973) and in free-living Nostoc (Lennihan et al. 1994). Lobaria 

pulmonaria experienced the lowest rates of acetylene reduction because it is a tripartite 

association with cyanobacteria present only within cephalodia. 

Pseudocyphellaria anomala tended to be found in the wettest sites that would support 

cyanolichens and on large, leaning stems (Chapter 4). Leaning stems would be expected to 

intercept more light as a result of less shading of the stems by their own canopies. This 

greater exposure to light would result in more rapid drying of thalli, resulting in the presence 

of P. anomala in only the wettest of the sites capable of supporting cyanolichens. This rapid 
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drying would necessitate high rates of photosynthesis (Figure 5.1) and nitrogen fixation 

(Figure 5.3) while the thalli were still saturated. Although this species tends to colonize large 

stems, more of the stems supporting P. anomala would be covered by snow due to their 

greater lean. To compensate for this greater period of time submerged beneath the snowpack, 

this species exhibited the lowest rates of respiration among the six cyanolichens studied 

(Figure 5.2), thereby minimizing respiratory loss of carbon during the winter. Both ARA and 

photosynthesis measurements indicated that P. anomala positively responds to temperature, 

while minimizing respiration rates. 

Lobaria pulmonaria exhibited the lowest rates of photosynthesis and ARA as well as 

very low rates of respiration, across the majority of the temperature gradient. All the thalli 

analyzed appeared healthy with no visible necrosis. Lobaria pulmonaria was quite common 

in all three subzones, though may not be tolerant of submersion beneath the winter snowpack 

as illustrated by its stronger association with large stems in the SBSvk than in either of the 

other subzones (Chapter 4) and is known to colonize forests of all ages (Campbell and 

Fredeen 2004). Optimal temperatures for nitrogen fixation have been previously identified to 

be between 20 and 30 °C for root nodules of many plants (Gibson 1971; Waughman 1977) 

and for free-living cyanobacteria (Fogg 1960; Pattnaik 1966). Many cyanolichens, including 

L. pulmonaria, have also been previously found to exhibit maximum rates of nitrogen 

fixation at temperatures above 20 °C (Hitch and Stewart 1973; Kallio 1973; Kelly and 

Becker 1975; Kallio et al. 1976). 

Because optimal temperatures for the majority of cyanobacteria, in root nodules, free-

living, and lichenized, are above 20 °C, special adaptations are likely required to modify this 

state, as hypothesized for the other five cyanolichens studied. Therefore, L. pulmonaria 
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posesses none of the adaptations of the other five cyanolichens discussed because it is not 

adapted to any particular set of environmental conditions, beyond moist environments. 

To more fully understand the seasonal changes in lichen physiology that may occur, 

these experiments should be repeated with summer collected thalli. This will provide further 

information into whether these species have different acclimation mechanisms and how those 

mechanisms are important to the survival of these species in the same habitat. 
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Chapter Six. Conclusion 

Though wetland alder swale environments are limited in their aerial extent, they 

represent an ecologically important branching network spanning the many climatically 

different regions of the sub-boreal spruce biogeoclimatic zone. Their distribution and 

hypothesized longevity in a landscape otherwise more frequently disturbed by fire and 

harvesting, make them ideal for conserving lichen diversity. Alder swales function as 

important repositories of canopy lichen biodiversity, with 43 species and six additional 

genera of macrolichens present in alder swales, supporting rich arboreal lichen communities 

across the sampled landscape. 

The composition of epiphytic communities changed across the landscape with rare 

species present in only one or two of the subzones. Diversity was greatest in the SBSwk, 20.8 

species per site on average, reflecting the climatic gradient along which the sampled sites 

were established. Canopy macrolichen communities were less diverse in alder swales at both 

extremes of the climatic gradient, with an average alpha diversity of 15.1 species per site. 

Heavy winter snowpack may reduce lichen abundance in the cooler and wetter alder swales 

at the eastern end of our longitudinal transect. At the western end of the longitudinal transect, 

availability of summer precipitation is likely a limiting factor in sites. Alder swales that had 

intermediate climate supported the greatest diversity. 

Canonical Correspondence Analysis identified mean annual temperature, 

precipitation, age of adjacent conifer forest, and abundance of large stems (dbh > 10 cm) as 

significant explanatory environmental variables. Regional precipitation gradients may 

explain the exclusion of many lichen species from both the most westerly and most easterly 

alder swales, with drier summer conditions and heavy winter snowpack respectively being 

major limiting factors in these sites. Lichens preferentially occupied large leaning stems 
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within individual alder swales, especially in the drier subzones. These stems provide greater 

precipitation interception, and with their well developed moss mats, provide long-lived 

substrates for many old-growth lichen species. 

Physiological analyses, combined with the observed distributional pattern 

s, of six common cyanolichens, indicated four strategies for survival. Sticta fuliginosa, 

Lobaria hallii, and Lobaria scrobiculata appeared to be well adapted to spring and autumn 

conditions, thereby maximizing the length of their growing seasons. Pseudocyphellaria 

anomala was found to be adapted to warm, high light conditions. Both Nephroma parile and 

Lobaria pulmonaria were found to be tolerant of a wide range of environments, though N. 

parile was able to tolerate longer periods under the winter snowpack than was L. pulmonaria. 

These physiological adaptations correspond with their observed distributions in the 75 

sampled alder swales. The cyanolichen contribution to the nitrogen budget is orders of 

magnitude less than that likely contributed by the root nodules of alders. 

The abundance of old-growth associated macrolichens supported by alder swales is 

indicative of the ability of alder swales to function as refugia for canopy lichens and to 

function as a source of propagules for the colonization of second-growth forests. In addition, 

alder swales support important ecosystem processes such as nitrogen fixation and contribute 

to the cycling of nutrients in these areas. This supports the recognition of these previously 

neglected linear landscape attributes as old-growth arboreal lichen refugia in the land-use 

management policies of British Columbia. The epiphytic lichen diversity supported along 

non-fish bearing streams indicates that riparian buffers should be in place along all streams. 

In addition, avoiding activities, such as skidding across or along alder swales during the 

winter months, that disturb these riparian habitats should be avoided. Furthermore, as all of 

the alder swales that were sampled were adjacent to mature conifer forest, it would be 
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possible for the composition of the communities to change following the removal of this 

forest. The complete removal of the adjacent forests would result in the creation of windier, 

higher light conditions in the swales. This would result in drier microhabitats, even though 

the moisture that would be taken up by the forest would be redirected to the streams along 

which our alder swales occur. 

Management should occur at both spatial and temporal scales, ensuring that enough 

potential habitat is present within the landscape to allow for natural variation to occur in the 

forests over time as the result of climate change, which predicts that this region will become 

warmer and wetter in the future. Therefore, the ability of the sampled alder swales of the 

SBSmk and SBSwk to function as refugia may be increased, so long as buffers are present 

along the alder swales. However, this is not to say that alder swales may be able to support 

the full complement of the diversity present in the SBS because alder swales do not represent 

the entire range of microhabitats present in the SBS and because the retention of many 

patches of all forest types will ensure that, even following climate change, that sufficient 

habitat is retained for all epiphytes, including rare and dispersal limited species which would 

be the first to vanish following the removal of adequate substrates. Further research is 

necessary in order to fully describe the extent of differences between the lichen communities 

of these riparian habitats and the adjacent conifer forests. 
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