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National Library of Canada Abstract 

Inhibition Of Pre-mRNA Splicing By Small Molecules 
Kamalprit Kaur Chohan 

Master's Thesis: 150 word Abstract 

To overcome the problems of diseases/mutations due to pre-mRNA splicing 

errors, current research is being undertaken to investigate RNA- small molecule 

interactions. In this study RNA- small molecule interactions are investigated through 

screening various small molecules on nuclear yeast actin pre-mRNA in vitro. Ten of 

thirty-two different small molecules tested have been found to completely inhibit the pre-

mRNA splicing mechanism. IC50 values were measured for each of the inhibitory small 

molecules, and neomycin was the strongest inhibitor with an IC50 of 80 uM, while 

cefoperazone was the weakest inhibitor with an IC50 of 6.1 mM. Native gel analysis 

established that each of the ten inhibitors affected spliceosomal complex formation at 

various steps. These inhibitors will be useful tools for characterizing the splicing 

complexes that accumulate and map out the path by which splicing complexes assemble. 

In the long term, these inhibitors may lead to novel therapies for splicing related diseases. 
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CHAPTER 1 

Introduction 

Pre-mRNA splicing is a very complex process which is catalyzed by a large, 

highly dynamic macromolecular machine called the spliceosome. A significant fraction 

of all human genetic diseases, including a number of cancers, are believed to result from 

deviations in the normal pattern of pre-mRNA splicing; yet how and why these 

deviations occur is not well understood. In order to accumulate sufficient quantities of 

spliceosomes for biochemical and structural studies small molecule inhibitors could be 

used to stall the spliceosomes' assembly at distinct intermediates. The term "small 

molecule" incorporates a broad range of different compounds, which weigh less than 

2kDa, ranging from carbohydrates to proteins to nucleic acids. The discoveries of small 

molecules which modulate pre-mRNA splicing would also present a unique opportunity 

for the development of a new class of therapeutic agents, in addition to providing a 

valuable experimental tool for the investigation of spliceosome assembly and function. 

1.1 Pre-mRNA Splicing - An Overview 

DNA carries the genetic information of a cell and consists of thousands of genes. 

Each gene serves as a recipe for how to build a protein molecule. The flow of information 

from the genes determines the protein composition and thereby the functions of the cell. 

In order to make proteins, the corresponding genes are transcribed into the precursor 

messenger RNA (pre-mRNA). The pre-mRNA undergoes various processing steps 

before being transported to the cytoplasm for translation. The first step is removing non-

coding intervening sequences, called introns, followed by joining together the remaining 
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coding sequences, called exons, leaving the final mature mRNA product; the overall 

process is known as 'mRNA splicing' and occurs only in the nucleus of eukaryotic cells. 

The resulting mature mRNA may then exit the nucleus and be translated in the 

cytoplasm. (Lin et ai, 1985; Adams et al, 1996) 

The importance of mRNA splicing has been shown by the fact that the number of 

protein-encoding genes in the human genome, at -25,000, is much smaller than the great 

diversity of the human proteome (at least 100,000 different proteins). The "missing 

diversity" in the DNA is made up by the existence of alternative paths of mRNA-

splicing; that is, the exons to be spliced together are chosen according to the protein 

required. In this way, an unspliced mRNA molecule can be used by the cells to produce a 

variety of spliced mRNA products, and thus a corresponding variety of proteins. This 

"alternative splicing" is an integral part of the overall process of genetic regulation, and it 

influences every aspect of the biology of eukaryotes. (Caceres & Kornblihtt, 2002) 

Defects in the regulation of splicing frequently cause or worsen pathological 

conditions. There is an ever-growing list of diseases attributed to erroneous regulation of 

splicing, including certain types of cancer and neurodegenerative disorders (Nissim-

Rafinia & Kerem, 2002; 2005). The basic features of the structure and function of the 

spliceosome are already known. In contrast, understanding of the regulation of alternative 

splicing is only in its early stages. This is due, among other things, to the fact that the 

selection of exons for splicing is determined by a highly complex interaction between 

many other proteins. (Varani, 2000; Caceres & Kornblihtt, 2002) 
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1.1.1 Yeast as a Model Organism 

In eukaryotes, several yeast, particularly Saccharomyces cerevisiae ("baker's" or 

"budding" yeast), have been widely studied, largely because they are quick and easy to 

grow. The cell cycle in yeast is very similar to the cell cycle in humans, and regulated by 

homologous proteins. In order to understand the complex mechanism of eukaryotic 

splicing, simpler eukaryotic splicing mechanisms in yeast, which do not undergo 

alternative splicing, can be used as a research tool and guide to understand more complex 

splicing in higher eukaryotes. Genes encoding small nuclear ribonucleoproteins (snRNPs) 

and other splicing factors are found to be functionally conserved in both vertebrate and 

insects and are also found in yeasts and slime molds. This indicates that there is some 

evolutionary preservation of splicing components in a broad range of different eukaryotic 

species. Thus, study of the simpler splicing mechanism of yeast cells could be applied to 

the more complex splicing mechanism in human cells and could aid in disease and 

mutation prevention or inhibition. (Wieben et al., 1983; Lindsey & Garcia-Blanco, 1988) 

1.1.2 Mechanism of Pre-mRNA Splicing 

Introns are removed from nuclear mRNA precursors via a two-step 

transesterification reaction. In the first step, the 2'-hydroxyl of an adenosine near the 3' 

end of the intron attacks the 5' splice site, producing the 5' exon and lariat intron-3' exon 

intermediates. In the second step the 3'-hydroxyl of the 5' exon intermediate attacks the 3' 

splice site to give the spliced mRNA and lariat intron products of splicing (Figure 1). 

(Madhani & Guthrie, 1994) 
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Figure 1: General mechanism of lariat formation from splicing of pre- mRNA. 

1.1.3 The Spliceosome 

The machinery that catalyzes the splicing event is called the spliceosome which is 

a complex of five snRNPs and >100 proteins. Each snRNP is composed of a single 

uridine-rich small nuclear RNA (snRNA) and multiple proteins. The RNAs found in 

snRNPs are identified as Ul , U2, U4, U5 and U6 snRNAs, and participate in several 

RNA-RNA and RNA-protein interactions. The spliceosome performs the two primary 

functions of splicing: recognition of the intron/exon boundaries and catalysis of the cut-

and-paste reactions that remove introns and join exons. To date, all introns have a 5' GU 

and a 3' AG identification sequence that the spliceosome recognizes and excises as a 

lariat (Madhani & Guthrie, 1994). 

The snRNAs of the snRNPs play diverse roles in intron recognition and splice site 

definition and may be intimately involved in spliceosomal catalysis. Splicing involves the 

step-wise assembly of the spliceosome onto the pre-mRNA. There are four main 

complexes that are formed denoted spliceosomal complexes E, A, B, and C, respectively. 



Their involvement is as follows: Complex E, the commitment complex, is created when 

Ul joins with the pre-mRNA, attaching at the 5' intron/exon boundary. Complex A is 

created when U2 binds to the complex at the branch point adenosine. Complex B is 

created when the triple complex U5#U4/U6 assembles onto the pre-mRNA. Complex C, 

the active spliceosome, is created when U4 dissociates, allowing U6 to base pair with the 

snRNA in U2. Splicing occurs, resulting in separation at the 5' exon/intron boundary and 

formation of the lariat. The joined exons dissociate from the spliceosome/intron 

complex, leaving the lariat structure behind and the spliceosome dissociates, the snRNPs 

recycle, and the intron lariat structure is broken into monomers (Figure 2) (Ares & 

Weiser, 1995). 

C o m p l e x H I Exonl | 1 Exon2 | 

®sj 

C o m p l e x A | Exonl ( U l ) ( O J ) j E>ton2 | 

®<gxSk| 

Complex B | EM>M "(Ul 

Complex C | E«oni (uJ[X}J 2^'^f e*°"2 | 

2 Transesterlflcation 
Reactions 

Figure 2: The step wise assembly of snRNPs onto the pre-mRNA leading to the 
active spliceosome required for splicing. 
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Spliceosome assembly is highly dynamic, in that complex rearrangement of 

RNA- RNA, RNA- protein, and protein- protein interactions take place within the 

spliceosome. Coinciding with these internal rearrangements, both splice sites are 

recognized multiple times by interactions with different components during the course of 

spliceosome assembly (Burge et al., 1999; Du & Rosbash 2002). The catalytic 

component is likely to be U6 snRNP, which joins the spliceosome as a U4/U6 • U5 tri-

snRNP (Villa ef al, 2002). 

1.1.4 Splicing Related Diseases 

Approximately 15% of the single base pair mutations that cause human genetic 

diseases are thought to be linked to pre-mRNA splicing defects. The human mutations 

database currently contains >3000 entries describing such mutations as cancers caused by 

aberrant splicing (Levanon & Sorek, 2003). Many of these genetic mutations cause 

inappropriate exon skipping, which ultimately cause defects in protein expression 

(Levanon & Sorek, 2003). Other mutations include inclusion or exclusion of more RNA, 

resulting in longer or shorter exons as well as reduced specificity which could lead to 

variation in the splice location, addition of one or more amino acids, or more commonly a 

loss of the reading frame (Levanon & Sorek, 2003). The underlying mechanisms 

responsible for splicing errors in human disease are poorly understood (Faustino & 

Cooper, 2003). 

Given that the vast majority of human genes contain introns, and that most pre-

mRNAs undergo alternative splicing, it is not surprising that disruption of normal 

splicing patterns can cause human disease (Faustino & Cooper, 2003). A splicing error 
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that adds or removes even one nucleotide will disrupt the open reading frame of an 

mRNA; yet exons are correctly spliced from within tens of thousands of intronic 

nucleotides. This remarkable precision is, in part, built into the mechanism of intron 

removal because once the spliceosome is assembled the base-paired snRNAs target 

specific phosphate bonds for cleavage. Mutations in the cis- and/or trans-acting elements 

lead to pre-mRNA splicing defects that cause disease (Faustino & Cooper, 2003). Cis 

acting mutations cause disruption in the final pre-mRNA substrate while trans-acting 

mutations cause disruptions in the spliceosomal machinery (Faustino & Cooper 2003). 

The following section goes over the major types of diseases seen when mutations occur 

within these cis- and trans- acting elements. 

1.1.4.1 Cis - and Trans - Acting Mutations 

Diseases caused by cis-acting mutations disrupt use of alternative splice sites. 

The following are four examples of such diseases: familial isolated growth hormone 

deficiency type II, frasier syndrome, frontotemporal dementia and parkinsonism linked to 

chromosome 17, and Atypical cystic fibrosis. In all cases, mutations in specific genes 

either cause exon skipping or inclusion (Cartegni and Krainer 2002). 

Diseases caused by trans-acting mutations disrupt use of spliceosomal and non-

spliceosomal components. Two such diseases are caused by mutations that affect the 

basal splicing machinery: retinitis pigmentosa caused by a mutation in the 

genes PRP31, HPRP3, and PRPC8 involved in the function of the U4/U6U5 tri-snRNP 

(the spliceosome component required for the transition to a catalytically active state) 

(Zhou et ol., 2002) and spinal muscular atrophy caused by a loss of the survivor of motor 
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neuron gene (SMN1) required for the cytoplasmic assembly of the core snRNPs (Cartegni 

and Krainer 2002). 

Due to the complexity of the spliceosome and the components involved, the issue 

of diseases related to cis- and trans- acting elements is widely under investigation. Novel 

therapeutic strategies directed toward correcting or avoiding splicing mutations are now 

emerging. Approaches include over-expression of proteins that alter splicing of the 

affected exon (Hofmann et al., 2000; Nissim-Rafinia et al, 2000); use of 

oligonucleotides to block use of aberrant splice sites and force use of beneficial splice 

sites (Kalbfuss et al, 2001; Mercatante and Kole 2002); use of compounds that affect 

phosphorylation of splicing factors (Pilch et ah, 2001) or stabilize putative secondary 

structures (Varani et al, 2000); and high-throughput screens to identify small molecules 

that influence splicing efficiencies of target pre-mRNAs (Andreassi et al, 2001) to name 

a few. This thesis is directed toward one of the latter goals; searching for small 

molecules that influence splicing efficiencies of yeast pre-mRNAs in order to discover 

tools to control splicing and study the complex nature of spliceosomal components. Such 

work may lead to the development of therapeutic treatments for genetic diseases. 

1.2 Small Molecule Inhibitors of Ribozymes and Mammalian Splicing 

The essential role of RNA in many biological processes and in the progression of 

disease makes the discovery of small RNA-binding molecules an emerging field of 

interest in drug discovery (Tor et al, 1998; Hertweck et al, 2002; Graveley, 2005). 

Small molecules that bind to RNAs can be used as a tool for studying the biochemical, 

genetic, and structural aspects of the many splicing factors involved in pre-mRNA 

8 



splicing as they have with ribozymes and the ribosome (Hoch et al., 1998; Park et al, 

2000; Bryan & Wong, 2004; Zaman et al, 2003). 

1.2.1 Ribozyme Inhibitors 

It has been demonstrated that several different types of small molecules act as 

inhibitors of various biological, RNA-catalyzed, key processes (Sucheck & Wong, 2000; 

Arya et al, 2001; Bryan et al, 2004; Bakkour et al, 2007), These inhibitors are useful 

for investigating the pre-mRNA splicing mechanism (Hertweck et. al, 2003; Kaida et. 

al, 2007). 

RNA molecules that catalyze biological processes are known as ribozymes. 

Many natural ribozymes catalyze either their own cleavage or the cleavage of other 

RNAs. Some known ribozymes include RNase P, Group I and Group II introns, hairpin 

ribozyme, hammerhead ribozyme, hepatitis delta virus ribozyme, and riboswitches. The 

similarity in the mechanisms of the spliceosome-mediated splicing and these ribozymes, 

especially the self-splicing introns, has led to the hypothesis that the catalytic core of the 

spliceosome also functions as an RNA enzyme (Soo-Cheng & Abelson, 1987; Staley & 

Guthrie, 1998; Nilsen 2003). The following sections detail how different small 

molecules interact with ribozymes and review current studies of small-molecule 

inhibitors of human splicing. 

1.2.1.1 Self-Cleaving Hammerhead and Hairpin Ribozymes 

The hammerhead ribozyme is a small catalytic RNA made up of three base-paired 

stems and a core of highly conserved, non-complementary nucleotides. These structural 

features are essential for catalysis of the sequence-specific cleavage of RNA 

phosphodiester bonds. The hammerhead ribozyme is arguably the best-characterized 

9 



ribozyme; its crystal structure has been solved and its kinetic mechanism of cleavage is 

well established for several different ribozymes. (Pley et ah, 1994) 

Neomycin was found to be a potent inhibitor of the hammerhead ribozyme 

cleavage reaction with a kinetic inhibition of 13.5uM. Two hammerhead ribozymes with 

well-characterized kinetics were used to determine which steps in the reaction 

mechanism were inhibited by neomycin. The studies found that neomycin interacted 

preferentially with the enzyme-substrate complex and that this interaction leads to a 

reduction in the cleavage rate. Although, the site at which neomycin binds the 

hammerhead ribozyme could not be identified a mode of binding was found. A 

comparison of neomycin with other aminoglycosides and inhibitors of hammerhead 

ribozyme cleavage implied that the ammonium ions on neomycin are important for a 

stronger antibiotic-hammerhead interaction. (Stage et ah, 1995) 

In comparison, spermine, a positively charged small molecule altered 

hammerhead ribozyme activity in another manner. The polycation was not found to 

inhibit hammerhead cleavage but rather reduced the metal ion requirement for the 

reaction (Dahm & Uhlenbeck, 1991). Thus, it was clear that not every positively charged 

molecule altered hammerhead cleavage in the same way. It is possible that the different 

behavior among the cationic molecules resides in how the structure of each adapts to the 

folded hammerhead. For example, spermine may be able to bind several phosphates 

along the backbone of either the ribozyme or substrate, and because of its linear and 

flexible nature, may be able to move with changes in hammerhead ribozyme 

conformation. In contrast, neomycin, being a more rigid molecule due to its sugar 

moieties, may only bind a few specifically positioned phosphates in a more structured 
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region of the hammerhead. This rigidity may prevent of the hammerhead from adopting 

its active conformation (Stage et ah, 1995). 

The hairpin ribozyme is also a small catalytic RNA that achieves an active form 

by docking of its two helical domains in an anti-parallel fashion. A study by Earshaw & 

Gait (1998) showed that aminoglycoside antibiotics inhibit cleavage of the hairpin 

ribozyme in the presence of metal ions, with the most effective being 5-epi-sisomicin and 

neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside 

antibiotics at lOmM concentration promote hairpin ribozyme cleavage at a rate of only 

13- to 20-fold lower than the magnesium-dependent reaction. These results showed that 

neomycin B competes with metal ions by ion replacement with the positively charged 

amino groups of the antibiotic. In addition, the polyamine spermine at 10 mM promoted 

efficient hairpin ribozyme cleavage with rates similar to the magnesium-dependent 

reaction. 

1.2.1.2 Self-Splicing Group I and II Intron Ribozymes 

The Group I and Group II introns are self-splicing introns and are able to splice 

the lariat product in the absence of any protein factors. A number of small molecules 

have been found to inhibit the self-splicing of group I and II introns (Bass & Cech, 1986; 

Yarns, 1988; von Ahsen & Schroeder, 1991; von Ahsen etal, 1991; 1992; Rogers & 

Davies, 1994; Wank et ah, 1994). Inhibitors fall into two classes, those that compete with 

the substrate guanosine and those that are non-competitive inhibitors. Competitive 

inhibitors include deoxy- and di-deoxyguanosine (Bass & Cech, 1986), arginine (Yarus, 

1988), streptomycin (von Ahsen & Schroeder, 1991), viomycin (Wank etal., 1994) and 

lysinomicin (Rogers & Davies, 1994). The non-competitive inhibitors are 
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aminoglycoside antibiotics of the neomycin, gentamicin and kanamycin families (von 

Ahsen et al., 1991; 1992). The well-studied aminoglycoside, neomycin, has been shown 

to bind to the internal loop between the stems P4 and P5 and the catalytic core close to 

the G-binding site of the td intron RNA. Splicing inhibition by neomycin was strongly 

dependent on pH and Mg2+ concentration, suggesting electrostatic interactions and 

competition with Mg2+ (Hoch et al, 1993). 

1.2.1.3 The Human Hepatitis Delta Virus and HIV-1 Ribozymes 

Replication of RNA viruses, such as the human immunodeficiency virus (HIV) 

and the human hepatitis delta virus (HDV) is dependent upon multiple specific 

interactions between viral RNAs and viral and cellular proteins. A small molecule that 

interferes specifically with one or more of these RNA-protein interactions could be an 

effective antiviral agent (Zapp et. al. 1992; Mei & Czarnik, 1995). Zapp et. al. (1992) 

showed that certain aminoglycoside antibiotics, in particular neomycin B and tobramycin, 

can block binding of the HIV Rev protein to its viral RNA recognition element (RRE). 

Inhibition appears to be highly selective, resulting from competitive binding of the drug 

to a small viral RNA region within the Rev-binding site. These results demonstrate that 

neomycin B and tobramycin can specifically antagonize Rev function in vitro and in vivo 

and can inhibit production of HIV. Further work by Zapp et. al. (1996) showed that the 

bulge region of the RRE core element is critical for neomycin B binding as well as Rev 

binding (Zapp et al., 1996). 

Small molecule inhibitors called aromatic heterocyclic compounds in particular a 

tetra-cationic diphenylfuran (TCD), can block binding of Rev to its high-affinity viral 

RNA binding site. Inhibition appears to be selective and results from competitive binding 
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of the drug to a discrete region within the Rev binding site. Interestingly, the molecular 

basis for the TCD-RNA interaction, as well as the mode of RNA binding differs from 

previously described aminoglycoside Rev inhibitors. Analysis of a variety of aromatic 

heterocyclic compounds and their derivatives reveals stereo-specific features required for 

the inhibition. For example, the alkylamine substituents, which possess some degree of 

rotational freedom, may be required within the aromatic heterocycle structure to achieve 

the molecular conformations that block Rev binding. The inhibitory activity of a given 

cationic aromatic heterocycle may be directly related to its ability to form hydrogen-bond 

interactions with the RNA. (Zapp et. al. 1997) 

HDV is a single-stranded RNA virus. A study conducted by Rogers et al. (1996) 

showed that several classes of antibiotics inhibit the self-cleavage reaction of the HDV 

ribozyme. Of approximately 200 compounds examined, only a small number are active 

as inhibitors of HDV. Antibiotics of the aminoglycoside, peptide and tetracycline classes 

all inhibit HDV cleavage at micromolar concentrations. For each antibiotic inhibitor, an 

antibiotic with a very similar structure, did not inhibit HDV self-cleavage, or inhibited it 

very poorly. Several antibiotics from other structural classes were tested and found not to 

inhibit HDV self-cleavage. However, Rogers et al. (1996), found that neomycin directly 

displaces divalent metal ions essential for catalysis in HDV. 

1.2.1 A tRNA Processing RNase P Ribozymes 

RNase P is an essential endoribonuclease involved in the processing of tRNA 

precursors in prokaryotes as well as in eukaryotes. In bacteria, RNase P consists of an 

RNA subunit and a small basic protein. It has been shown that the catalytic activity of 

this ribonucleoprotein complex is associated with its RNA subunit (Guerrier-Takada et 
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al., 1983). Mikkelsen et al, (1999) showed that cleavage by RNase P RNA, in the 

absence as well as in the presence of the RNase P protein, is inhibited by kanamycin, 

paromomycin and neomycin. Neomycin was found to be the strongest inhibitor with a Ki 

value of 35 uM. In addition, neomycin interfered with the binding of divalent metal ions 

to the RNA, similar to its mechanism in the hammerhead cleavage model. Taken 

together, these findings suggest that aminoglycosides compete with Mg2+ ions for 

functionally important divalent metal ion binding sites. 

1.2.1.5 Riboswitches 

Although they are not catalytic RNA, riboswitches are another example of how 

small molecule interactions could be used as key regulators of RNA-based mechanisms. 

Riboswitches are genetic control elements that regulate gene expression in a small 

molecule-dependent way (Davies et al, 1993). Recent studies using specific RNA 

aptamers to design small molecule- dependent synthetic riboswitches have opened new 

perspectives in the field of translational control. Hanson et al. (2005) identified a 

tetracycline-binding aptamer capable of controlling translation in Saccharomyces 

cerevisiae by interfering with the formation of the 80S ribosome and preventing it from 

binding to the cap structure. Weigand et al, (2008) also identified several artificial small 

molecule-binding riboswitches that respond to the aminoglycoside neomycin. They 

propose a model composed of a binding pocket of an internal loop as the primary docking 

site fixing neomycin in a sandwich-like manner. Such binding pockets, characterized by 

multiple contacts between ligand and RNA, are described for both natural and engineered 

riboswitches. 
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These studies have paved the way for the use of small molecules as tools for 

studying the structural aspects of many ribozymes. These studies also show how small 

molecules can be used as regulators of different catalytic RNA sequences thus providing 

insight of how small molecules can be used for studying pre-mRNA splicing and its 

associated factors. The next section will review studies of small molecules specifically 

targeting the human splicing system. 

1.2.2 Mammalian Splicing Inhibitors 

Studies of the dynamic processes involved in mammalian splicing have lead to the 

discovery of various types of small molecule inhibitors and effectors. The following 

examples are of different types of small molecule inhibitors which are found for one 

specific type of mechanism. 

1.2.2.1 Peptide Kinase Inhibitors 

Small molecule peptides were developed as inhibitors of the interaction between 

spliceosomal proteins CDC5L and PLRG1 (found in yeast and humans) to determine if 

they were necessary for the splicing mechanism (Ajuh & Lamond, 2003). The peptides 

were derived from highly conserved sequences in the interaction domains of both 

proteins, and were used in in vitro splicing experiments as competitors to the cognate 

sequences in the endogenous proteins. 

Mermoud et al. (1994) showed that the human protein phosphatase 1 (PP1) 

prevents pre-spliceosome E complex formation and stable binding of U2 and U4/U6»U5 

snRNPs to the pre-mRNA. Thus, splicing catalysis, but not spliceosome assembly, is 

blocked by inhibiting protein phosphatases and it appears that pre-mRNA splicing, in 
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common with other biological processes, can be regulated both positively and negatively 

by reversible protein phosphorylation. 

The influenza virus NS1 protein inhibits the nuclear export of mRNAs and Lu et 

al. (1994) demonstrate that the NS1 protein also inhibits pre-mRNA splicing both in vivo 

and in vitro where the pre-mRNA forms spliceosomes, but subsequent catalytic steps in 

splicing are inhibited. The NS 1 protein is associated with U6 snRNA in influenza virus-

infected cells as well as in splicing extracts from uninfected cells, it is likely that the NS1 

protein also inhibits pre-mRNA splicing in infected cells. Surprisingly, the splicing of 

the viral nsl mRNA, the very mRNA that encodes the NS1 protein, was resistant to 

inhibition by the NS 1 protein. 

Hu et al. (2003) showed that CDK11 complexes promote pre-mRNA splicing in 

vivo and in vitro. For instance, CDKll p H 0 complexes were reported to influence 

transcription as well as interact with the general pre-mRNA-splicing factor RNPS1. 

Using a two-hybrid interactive screen, the splicing phosphor-protein 9G8 was identified 

as a partner for CDKll p U 0 . They discovered that immunodepletion of CDKll p l l° 

reduced splicing and re-addition restored splicing. 

1.2.2.2 Synthetic Branched Nucleic Acid Inhibitors 

To learn more about the events surrounding branchpoint recognition after the first 

transesterification step I is complete Carriero & Damha (2003) prepared a series of 

branched compounds (bRNA and bDNA), and studied the effects of such molecules on 

the efficiency of mammalian pre-mRNA splicing in vitro. They discovered that binding 

and sequestering of a branch recognition factor by the branched nucleic acids is an early 

event, which occurs prior to the first chemical step of splicing. In addition, branch 
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recognition is dependent upon the sequences directly adjacent to the branchpoint 

nucleotides. 

1.2.2.3 Antibiotic Inhibitors 

Hertweck et al, (2002) investigated the effects of several antibiotics on in vitro 

splicing of human eukaryotic nuclear pre-mRNA. Of the eight antibiotics studied, 

erythromycin, Cl-tetracycline and streptomycin were identified as splicing inhibitors in 

nuclear HeLa cell extract. Cl-tetracycline and the aminoglycoside streptomycin were 

found to have an indirect effect on splicing by non-specific binding to the pre-mRNA, 

suggesting that the inhibition was the result of disturbance of the correct folding of the 

pre-mRNA into the splicing-compatible tertiary structure by the charged groups of these 

antibiotics. The macrolide, erythromycin, the strongest inhibitor, had only a slight effect 

on formation of the pre-splicing complexes A and B, but almost completely inhibited 

formation of the splicing-active C complex by binding to nuclear extract component(s). 

This results in direct inhibition of the second step of pre-mRNA splicing. This was the 

first report on specific inhibition of nuclear splicing by antibiotics. 

The most recent discovery of a small molecule inhibitor of human pre-mRNA 

splicing was by Kaida et al. (2007). Kaida et al. (2007) determined that the methylated 

derivative of the natural product FR901464, Spliceostatin A inhibited human pre-mRNA 

splicing by binding to a sub-complex of the U2 snRNP called SF3b. SF3b was isolated 

and characterized by tagging Spliceostatin A with an affinity protein (Kaida et al., 2007). 
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Strategies using small molecule to study human pre-mRNA splicing can now be 

used for testing additional small molecule inhibitors in the more tractable yeast splicing 

system. 

1.3 Potential Inhibitory Splicing Candidates 

The ability of small molecules to control expression of specific genes could 

facilitate studies in many areas of biology and medicine. The objective of this thesis is to 

find inhibitors of the yeast pre-mRNA splicing system. Finding the right small molecule 

candidates for targeting RNA structure and mechanistic studies has become a goal for 

many researchers (Noller, 1991; Wallis et ah, 1995; Wang & Rando, 1995; Wang & Tor, 

1998; Tor et al, 1998; Sucheck & Wong, 2000; Vicens & Westhof, 2001; Tor, 2003; 

Zaman et al, 2003). The following categories for small molecules: old and new 

antibiotics, environmental toxicants and kinase inhibitors are effective candidates for 

targeting splicing factors in the yeast system and findings will lead into developing tools 

for studying complex spliceosomal related mechanisms. 

1.3.1 Antibiotics 

An antibiotic is a chemotherapeutic agent that inhibits or abolishes the growth of 

micro-organisms, such as bacteria, fungi, or protozoa (Davies et al, 2003). Many 

antibiotics are relatively small molecules with a molecular weight less than 2kDa because 

large molecule antibiotics have relative difficulty crossing membranes and traveling 

systemically throughout the body (Davies et al, 2003). Many antibiotics that are toxic to 

bacteria are non-toxic to human cells (Davies et al, 2003). In contrast, the basic 

biochemistries of the fungal cell and the mammalian cell are much more similar (Davies 
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et al, 2003). This restricts the development and use of therapeutic compounds that attack 

a fungal cell, while not harming mammalian cells. Similar problems exist in antibiotic 

treatments of viral diseases. Human viral metabolic biochemistry is very similar to 

human biochemistry, and the possible targets of antiviral compounds are restricted to 

very few components unique to a mammalian virus. Targeting RNA is a challenging new 

approach that is complementary to traditional drug discovery focusing on proteins. One 

clear benefit of targeting RNA is the potential for the slower development of drug 

resistance against small molecules. RNA functional domains are more highly conserved 

and perhaps more accessible than the shapes of enzyme active sites. Thus, it is expected 

that pathogens will find it difficult to mutate their RNA and develop resistance. (Noller, 

1991; Davies et al, 2003; Zaman, 2003) 

In order to find more antibiotics such as aminoglycosides that effectively target 

RNA sequences, antibiotics of different classes should also be tested. As described in 

section 1.2.3 a few small molecule antibiotics have been shown to inhibit the nuclear 

splicing mechanism of P-globin pre-mRNA whereas other antibiotics from the same 

class, showed no effect even though they contained similar functional groups as their 

inhibitory counterparts (Hertweck et al, 2000). This suggests that inhibition is not 

entirely specific to compounds found within the same group and no absolute conclusions 

should be made on an entire class/group based on data obtained from a single compound. 

The most popular antibiotic leads would be the aminoglycosides, however, there are 

several different classes of antibiotics yet to be tested, which could be both cost efficient 

and medically effective. 
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1.3.1.1 Aminoglycosides 

Several drugs targeting the ribosomal RNA (rRNA) of bacteria have been in 

clinical use for over half a century (Moazed & Noller, 1987; Recht et ah, 1999). One of 

these drug classes, the aminoglycoside antibiotics (Figure 3), also target human rRNA, 

and have been developed as therapeutics for genetic disorders (Wang & Rando. 1995; 

Wallis et ah, 1995; Wang & Tor, 1998; Arya et ah, 2001). 

Kanamycin 

NHj 

H°Y^y0H 

M H!N\r'-^
x-r-

oH H° 

HjN HO 

Neomycin 

\ ^ ^ \ H2N-

NH2 H2N o ' 

\ HO \ / 

/ \ / ^ 
HO / \ 0 7 0H 

HO NH2 

Streptomycin 

HjN 

? H > — N H 2 
H2N^ / // 

V = ^ X ^ - V ^N OH 
/ 7 ^ x ^ ^ H0

X / 
H.N / / > \ 

^ - - V / H
3C / \ 

/ 1 N. 
HO / / ~~ 

° . ' ^ \ ^ — 0 

H3C OH 

0 ^ ^ 

Figure 3: Structures of three aminoglycosides: kanamycin, neomycin, and 
streptomycin. 

The way aminoglycosides bind to ribosomal RNA differs only moderately 

between prokaryotic 16S and human 18S rRNA (Arya et ah, 2001). Nevertheless, 

aminoglycoside antibiotics only kill bacterial cells. This selective cytotoxicity has been 

explained by sequence differences and by the occurrence in prokaryotes of transporter 

proteins that actively take up and concentrated aminoglycosides in the cytoplasm. 

Cellular uptake mechanisms for aminoglycosides also exist in eukaryotic cells. In the 

human body, for example, aminoglycosides specifically accumulate in renal tubular 

epithelial cells and in hair cells of the inner ear, where undesired side-effects are 

observed. Thus, the expression and activity of cellular uptake mechanisms is an 

important factor determining the positive and negative biological effects of 
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aminoglycosides, in addition to the binding to rRNA. (Vicens & Westhof, 2001; Bryan et 

al, 2004) 

A model to explain translational misreading by aminoglycosides has been 

proposed based on the crystal structure of the 30S ribosomal subunit in complex with a 

neomycin analogue (Vicens & Westhof, 2001). Critical in this model are two universally 

conserved adenine residues. In the process of decoding of the mRNA, adenine residues 

are facing out from the A-site to interact with the codon-anticodon duplex formed 

between aminoacyl-tRNA and mRNA. Aminoglycoside binding alters the structure of the 

rRNA so that the two bases are facing out already. This conformational change induced 

by neomycin analogue reduces the energy required for binding of both cognate (correct) 

and non-cognate (incorrect) transfer RNAs resulting in an increased error rate of the 

ribosome. Thus, the ribosome is as important for aminoglycoside action. 

Aminoglycosides have played a large role in deciphering the mechanistic and 

structural aspects of the ribosome by targeting specific sites of the rRNA (Tor et al, 

1998; Recht et al. 1999; Patel & Suri, 2000; Vicens & Westhof, 2001). Aminoglycosides 

would thus be good candidates for targeting specific splicing factors and/or the pre-

mRNA (Varni et al, 2000). 

1.3.2 Oxospiro-Compounds from the Manumycin Family 

Aminoglycosides are not the only good leads for targeting splicing factors. Other 

excellent candidates for targeting pre-mRNA sequences would be small molecules that 

resemble the aromatic heterocyclic compounds discovered by Zapp et al. (1997), such as 

the oxospiro-compounds newly derived from the manumycin family (Figure 6) (Plourde 

& Fisher, 2002; Plourde et al, 2007). 
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All manumycins come from micro-organisms isolated from soil samples collected 

worldwide. The micro-organisms are taxonomically characterized as actinomycetes 

(genus: Streptomycetes), gram positive, mycelical, and sporulating bacteria. The 

oxospiro-derivatives are another class of small molecules that have many interesting 

biological properties in vitro and in vivo which include antibiotic, antifungal, 

antiparasitic, anticoccidial, trypanocidal, and insecticidal activities. (Sattler et al, 1998) 

Current studies are being undertaken to determine more specific biological 

relevance of these oxospiro-compounds. Fourteen different types of oxospiro-

compounds were made available to be tested in this study. They can be divided into two 

groups: the precursors and the derivatives. The oxospiro-precursors consist of a core 

benzene ring with a long alkyl-acid group attachment. The oxospiro-derivatives are 

made from the oxidative spiroannulation of the precursors, resulting in a spirolactone 

group attachment to the conjugated ring (Figure 6) (Plourde et al, 1999; Plourde & 

Fisher, 2002). In addition not all fourteen compounds are in their optically pure form but 

exist as a mixture of both enantiomers. Enantiomers have identical chemical and physical 

properties except they behave differently in chiral environments where both enantiomers 

of a compound are not always biologically active (McMurry, 2000). Single enantiomeric 

purity increases the number of biologically active molecules in a system (McMurry, 

2000). 

1.3.3 Environmental Toxicants 

A toxicant is a chemical compound that is environmentally hazardous due to their 

constant stability in the environment (Schuur et al., 1998; Castoldi et ah, 2001). Many 

toxicants are carcinogenic but their mode of action remains unclear (Schuur et ah, 1998; 
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Castoldi et al, 2001). The pre-mRNA splicing system can be utilized to gain more 

insight into inhibition specificity of lethal small molecules and whether they target RNA. 

Two potential well known environmental toxicants are polychlorinated biphenyls 

(PCBs) and methyl mercury. PCBs are persistent organic pollutants and have entered the 

environment through both use and disposal. The extent to which PCBs are toxic remains 

controversial. PCB derivatives have been found to inhibit important biological enzymes 

such as sulfotransferase isozyme in both human and rat cells (Schuur et al, 1998). PCBs 

would probably be good candidates for targeting RNA sequences because of their many 

highly electronegative chlorine groups, which likely interfere with RNA-protein 

interactions (Hertweck et al. 2003). 

Methyl mercury is a bioaccumulative environmental neurotoxin and is able to 

irreversibly inhibit pyruvate dehydrogenase (PDH) in mammalian cells ultimately leading 

to death (Castoldi et al, 2001). The probable mode of action by methyl mercury would 

be through its positive ionic charge since it is an organometallic cation where it might 

displace any catalytic magnesium ions or it may even interact with the negatively charged 

backbone of the RNA, such as aminoglycosides (Sucheck & Wong, 2000; Arya et al, 

2001; Bryan et al, 2004; Bakkour et al, 2007). 

1.3.4 Kinase Inhibitors 

A kinase is a type of enzyme that transfers phosphate groups from high-energy 

donor molecules, such as ATP, to specific target molecules (protein or small molecule); 

the process is termed phosphorylation. Presence of kinases was tested by kinase peptide 

inhibitors in the human pre-mRNA splicing system (section 1.2.2). The role of kinases in 

yeast pre-mRNA splicing, however, remains fairly unclear because ATP is also required 
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by DExD/H box proteins (ATPase helicases) (Das & Reid, 1999; Dagher & Fu, 2001; 

Tazi et al., 2005). ATPases hydrolyze ATP at each step of spliceosomal complex 

assembly, which is thought to show regulation by the ATPases for progression of 

assembly and splicing (Brow 2002; Silverman et al., 2003; Tazi et al, 2005). 

Broad range kinase inhibitors could be used to narrow down what type of kinase 

groups might be present in the system e.g. cyclin-dependent, Ca2+/calmodulin-

dependent, protein C kinases etc. 

1.4 Concluding Remarks and Research Objective 

In summary, up until now, pharmaceutical industries and research labs have 

focused on the discovery of compounds that target the protein products of genes and 

RNA has remained largely unexplored. Small molecules can be used as tools to study the 

biochemical, genetic, and structural aspects RNA sequences such as they have been used 

to study the different ribozymes and the ribosome. In addition, many small molecules 

found to target specific RNA sequences have also become important in the development 

of therapeutics for genetic disorders (Noller 1999; Varni et al., 2000; Tor 2003). 

RNA is an excellent target because it can fold into complex three-dimensional 

structures which are responsible for the diverse functions of RNA molecules within cells. 

In this respect, RNA resembles more resembles a protein than DNA, which is less 

flexible and has a less diverse tertiary structure. The unique shapes in various target 

RNAs create potential binding sites for small molecules. Targeting at the RNA level is 

an economical approach to address non-drugable proteins and targets that have failed to 
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give any sort of leads, as it can build on biological knowledge gathered over years (Arya 

et al, 2001). 

The objective of this study is to investigate the inhibitory effect of small 

molecules on in vitro splicing of a eukaryotic pre-mRNA, actin of yeast, using the above-

mentioned candidates. Yeast actin, expressed by the essential gene ACT1 in 

Saccharomyces cerevisiae, contains only one intron sequence and is an excellent model 

for study because it can be easily manipulated. In addition, the actin sequence is highly 

conserved among eukaryotes (section 1.1.1). 

Two major assays test for interaction specificity: one with the pre-mRNA, via 

testing different transcripts; and two with the spliceosomal complexes, via using native 

gel systems. A study using the yeast pre-mRNA as the target for screening small 

molecules has no prior precedent; therefore, in order to compare the different small 

molecules for their effectiveness as inhibitors their concentrations required for 50% 

splicing inhibition (IC50 values) will be determined (methods section). 
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CHAPTER 2 

Identification of Small Molecules that Inhibit Yeast Pre-mRNA Splicing 
and Accumulate Spliceosomal Complexes in vitro 

Cellular function is dependent upon the correct expression of genomic 

information encoded in DNA into functioning products, usually proteins. Prior to protein 

translation, DNA is transcribed into messenger RNA (mRNA). In eukaryotes, such as 

yeast or humans, translation generally follows an intermediate step, termed pre-mRNA 

splicing (Berget et al, 1977; Adams et al, 1996). In pre-mRNA splicing, non-protein-

coding regions (introns) are removed from the precursor mRNA, resulting in mature 

message, which consists of protein-coding regions (exons) (Berget et al, 1977). 

Splicing is catalyzed by the spliceosome, a multi-component complex consisting 

of five different snRNAs and a large number of spliceosomal and non-spliceosomal 

proteins, which assemble on the pre-mRNA in a stepwise manner before the splicing 

reaction starts (Cheng & Ableson, 1987; Burge et al, 1999; Du & Rosbash 2002). Native 

gel analysis has been employed to detect the formation of four distinct spliceosomal 

complexes, termed H/E, A, B and C, that appear during spliceosomal assembly (Das & 

Reed, 1999). 

Splicing must be carried out with single-nucleotide precision in order to prevent 

catastrophic changes in the message from occurring (Madhani & Guthrie, 1994; Nissim-

Rafinia & Kerem, 2004; 2005). Defects in pre-mRNA splicing are responsible for 

various human disorders including retinitis pigmentosa, spinal muscular atrophy, 

myotonic dystrophy, and neoplasia (Faustino & Cooper, 2003). Recent work has focused 

on small molecules as potential tools for elucidating the role of RNA in a variety of 
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biochemical processes, anticipating their eventual use as therapeutic agents for a wide 

range of diseases (Sucheck & Wong, 2000; Tor, 2003; Zaman, 2003). 

It has been demonstrated that antibiotics can inhibit various RNA-based 

processes. The best-known example is the inhibition of prokaryotic protein synthesis 

(Moazed & Noller, 1987; Recht et al, 1999). For instance, the aminoglycoside 

streptomycin inhibits bacterial translation by interacting with the 30S ribosomal subunit, 

which induces misreading of the genetic code (Schroeder et al, 2000). Other 

aminoglycosides are known to inhibit the catalytic activity of self-splicing group I introns 

(Hoch et al, 1998), self- cleaving hammerhead ribozymes (Stage et al, 1995), hairpin 

ribozymes (Earnshaw & Gait, 1998), the hepatitis delta virus ribozyme (Rogers et al, 

1996), HIV-1 ribozyme (Mei & Czarnik, 1995), and tRNA processing RNase P RNAs 

(Mikkelsen et al, 1999). 

Previous work has demonstrated that antibiotics can inhibit human splicing in 

vitro (Hertweck et al, 2003), while more recent papers have demonstrated that 

spliceostatin A, the methylated derivative of anti-tumor compound FR901464, can inhibit 

human splicing in vitro and in vivo (Kaida et al, 2007) as well as splicing in the fission 

yeast 5. pombe (Lo et al, 2007). Small molecule inhibition of splicing in budding yeast, 

S. cerevisiae, has not yet been demonstrated. Given the powerful genetic and 

biochemical tools available in S. cerevisiae, I sought to determine whether small 

molecules could inhibit splicing in this highly tractable system. I therefore screened a 

library of 32 compounds for in vitro inhibitory activity, and characterized the positive hits 

by measuring their IC50 and the step of splicing assembly at which they inhibit. 
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2.1 Materials and Methods 

2.1.1 Small Molecules 

Table 1 contains a list of all the antibiotics and kinase inhibitors that were purchased 

from Sigma, with the exception of G1-G14 (enantiomeric mixtures, except G12), which 

were provided by Dr. Guy Plourde, UNBC, and the environmental toxicants, which were 

provided by Dr. Laurie Chan, UNBC. 

Each small molecule was tested up to a concentration of 10 mM, except the 

environmental toxicants, which were tested up to 1 mM, the maximum concentration 

seen for cell toxicity (Hoffman et ah, 1996; Olivieri et al., 2000), and the kinase inhibitor 

roscovitine, which was only tested up to 5 mM because of solubility limitations. The 

reported inhibitory concentrations were the lowest concentration tested at which there 

was no detectable in vitro splicing (denoted LC in Table 1). 

2.1.2 Splicing extract preparation and in vitro splicing assays 

Splicing extract preparation 

Whole-cell extract was prepared from protease deficient yeast strain BJ2168 (Jones, 

1991) as described (Ansari & Schwer, 1995) with some modifications: yeast cells were 

grown in YEPD (1% yeast extract, 2% peptone, 2% glucose) at 30 C to late logarithmic 

phase (OD 2-2.5) and harvested by spinning at 3000 rpm for 5 min in a Sorvall JA-

8.1000 rotor. Cell pellets from 2 L of culture were first washed with 50 ml of cold, sterile 

double-distilled water and then with 50 ml of AGK buffer (10 mM HEPES-KOH pH 7.9, 

1.5mM MgCl2, 200 mM KCI, 0.5 mM DTT and 10% glycerol). The cell pellets were then 

suspended in 7.5 ml (per 2 L culture) of AGK buffer. The cell suspension was frozen by 
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drop-wise addition to liquid nitrogen using a syringe with an 18 gauge needle, and stored 

at -80 C. 

Table 1: Candidate inhibitors of in vitro splicing. 
Antibiotic 

Kanamycin 
Neomycin B 
Streptomycin 
Cefoperazone 
Erythromycin 
Tetracycline 
Ampicillin 
Ciprofloxacin 
Bacitracin 
Sulfamethizole 
Chloramphenicol 
G5 
G6 
Gil 
G12 
G14 
G1-G4 
G7 - G10 
G13 

Kinase Inhibitor 
Staurosporine 

Roscovitine 

Environmental Toxins 
PCB mixture A1254 
PCB-#126 
PCB - # 99 
PCB - # 77 
Methyl Mercury Salt 

Class 
Aminoglycoside 
Aminoglycoside 
Aminoglycoside 
Cephalosporin 
Macrolide 
Aminocyclitol 
Penicillin 
Quinolone 
Polypeptide 
Sulfonamide 
Phenicol 
Oxospiro-Compound 
Oxospiro- Compound 
Oxospiro- Compound 
Oxospiro- Compound 
Oxospiro- Compound 
Oxospiro- Compound 
Oxospiro- Compound 
Oxospiro- Compound 

LC 
2.5mM 
250uM 
5mM 
lOmM 

NI 
NI 
NI 
NI 
NI 
NI 
NI 

5mM 
5mM 
5mM 
lmM 
5mM 

NI 
NI 
NI 

Broad Range Protein Kinase 
Inhibitor 
Broad Range Cyclin-dependent 
Kinase Inhibitor 

3mM 

NI** 

Biphenyl 
Biphenyl 
Biphenyl 
Biphenyl 
Transition metal 

NI* 
NI* 
NI* 
NI* 
NI* 

NI non-inhibitor at lOmM; * except toxicants at lmM (the maximum concentration seen 
for cell toxicity (Hoffman et al., 1996; Olivieri et ah, 2000) 
** Roscovitine was only tested up to 5mM because of solubility limitations 
LC is the lowest concentration tested at which there is no detectable nuclear in vitro 
splicing 
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The frozen cell pellets were homogenized to a very fine powder using a mortar 

and pestle. The powder was allowed to thaw slowly at 4 C, was stirred for 30 min, and 

then centrifuged at 18 000 rpm for 30 min in a Sorvall JLA-25.5 rotor. The supernatant 

from this spin was centrifuged at 37 000 rpm for 1 h in a Beckman Ultracentrifuge 70.1Ti 

rotor. After the spin, the pale yellow aqueous phase was carefully removed and dialyzed 

twice against 2 L of buffer D (20 mM HEPES-KOH pH 7.9, 0.2 mM EDTA, 50 mM 

KC1, 0.5 mM DTT and 20% glycerol) for 1.5 h each. 

Template and radioactively labeled pre-mRNA in vitro transcript preparation 

BJPS149 template (truncated ACT1, 590ntds, Staley & Mayas, 2002) was linearized with 

Hindlll and the precursor RNA was synthesized by run-off transcription using T7 RNA 

polymerase (Roche). Templates, YOL047C (163 nucleotides) and UBC4 (290 

nucleotides), for in vitro transcription were amplified by PCR from yeast genomic DNA 

using primers listed in table 2. 

Table 2: Pi 
genomic D 

YOL047C 

UBC4 

•imers used for constructing YOL047C and UBC4 templates from yeast 
NA 

Forward 

Reverse 

Forward 

Reverse 

0SDR339 

OSDR340 

OSDR345 

OSDR346 

5'AATTAATACGACTCACTATAGGGAACATGTCTTCTTC 
TAAACGTATTGCTAAAGAACTAAGTGATCTAGAAAG3' 
5'GATATAGATCATCGCCGACTGGACCGGCTGAACATGA 
AGTAGGTGGATCTC3' 
5'AATTAATACGACTCACTATAGGGTTTGGAAAGACCTA 
GAGTCGTCGCAC3' 
5'AGGAAAAATAGATGCAAATAATCCGAGTTTCCC3' 

Preparation of pre-mRNA transcripts for in vitro splicing assays was synthesized 

in 50uL reactions. A 10 uL reaction containing 1 mM Roche lOx T7 RNA polymerase 

buffer, 0.5 mM NTPs (CTP, UTP, ATP), 1 mM GTP, 50ug/ml template, 0.5 uL of 
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lOOOunits/ml Ribonuclease Inhibitor (RNAsin) (Promega), 2.5 uL of 125 uCi/ml a- P-

labelled GTP, 0.5 uL of 400units/mL T7 RNA polymerase (Roche) was incubated for 1.5 

hours at 37 C, followed by addition of 40 uL lxTE buffer (10 mM Tris, ImM EDTA). 

The 50 uL reactions were purified from unincorporated nucleotides by using a 

G25 spin column. 4 fmol of the precursor were used per 10 uL splicing assay. 

In Vitro Pre-mRNA Splicing Assays 

Standard splicing of the Actin pre-mRNA in BJ2168 nuclear extract was 

performed at room temperature for 30 minutes. Splicing reactions were performed in 

lOuL reactions (Schwer & Guthrie, 1991) using the following standard conditions: 2.5 

mM MgCl2, 0.1 M KP04 (pH 7.0), and 30% PEG 3000, 40% (v/v) BJ2168 extract, 2 mM 

ATP, and luL 4fmol internally 32P-GTP labeled actin pre-mRNA in vitro transcript, and 

1 uL of small molecules at various concentrations. The reactions were stored on ice 

before and after incubation and were stopped by the addition of stop solution (3 M 

NaOAc, 500 mM EDTA, 10% SDS, 10 mg/mL E. co/ztRNA). 

Splicing reactions were extracted with phenol/chloroform/isoamyl alcohol (39: 

59: 2, v/v), and back extracted with chloroform. The aqueous phase was ethanol 

precipitated. Following a wash with 70% ethanol, the pellets were resuspended in 7 M 

urea formamide gel loading dye, and the products separated on denaturing 6% 

polyacrylamide 7 M urea gels at 400 V for 1 hour. The gels were dried under vacuum for 

10-15 minutes at 80 C. Once dry, they were exposed to a Phospholmager screen 

overnight. The resulting autoradiogram was visualized and the bands quantitated with the 

Molecular Dynamics Phosphorlmager and associated software. Splicing efficiency was 
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defined as the percent of final product bands (mRNA and lariat) divided by the sum of all 

five bands (pre-mRNA, lariat-3'exon, 5'exon, excised lariat, and ligated exons). 

2.1.3 Spliceosome Assembly Gels 

Spliceosomal complex assembly was analyzed as described (Reed & Das, 1999). 

Aliquots of splicing reaction containing 32P- labeled transcript were taken at the indicated 

8 time points (0, 1, 2, 5, 10, 15, 20, 25 minutes) and, prior to loading on to the gel, 4.44 

uL of heparin mixture (4 mg/mL heparin, 50% glycerol and trace bromophenol blue for 

visualization) was added to each 10 uL reaction. The samples were run on non-denaturing 

1.5% agarose gels in tris/glycine buffer to separate individual spliceosomal complexes at 

70 V for 3.5 hours. The gels were fixed with 10% acetic acid and 10% methanol for 30 

minutes, and dried under vacuum for 40 minutes at 80 C. The dried gels were exposed to 

a Phosphorlmager screen for visualization overnight. 

2.1.4 IC50 Determination 

Percent splicing of the actin pre-mRNA reporter in the presence of inhibitor was 

determined for a range of inhibitor concentrations up to complete inhibition for each 

small molecule (LC values Table 1) (splicing efficiency was around 60% in the absence 

of inhibitor). 

Percent maximum splicing versus concentration was plotted for each inhibitory 

small molecule and the concentration required to achieve 50% splicing, IC50, was 

estimated from these plots. The maximum splicing efficiency in the absence of inhibitor 
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was normalized to 100% in order to look for the concentration that reduces maximum 

splicing by 50%. 

Each titration assay was performed in triplicates and exhibited less than 5% 

standard error deviations from the average (Table 3). Error bars were calculated for each 

small molecule IC50, using excel's standard error calculation, which is as follows: 

STDEV(values calculated for IC50 from each triplicate), divide by, SQRT 

(COUNT(values calculated for IC50 from each triplicate)) (Table 3). 

Table 3: IC50 

Inhibitory 
Small 
Molecule 
Cefoperazone 
Kanamycin 
Neomycin 

Streptomycin 
Staurosporine 

G5 
G6 
Gil 
G12 
G14 

standard erroi 

ICso 
gel l 
6.40 
0.71 
0.08 
2.10 
1.94 
0.75 
0.66 
1.80 
0.59 
2.61 

IC50 
gel 2 
6.20 
0.90 
0.09 
1.90 
2.00 
0.80 
0.70 
1.70 
0.75 
2.70 

' calculations usin 

ICso 
gel 3 
5.80 
0.65 
0.07 
1.85 
1.89 
0.60 
0.90 
1.80 
0.55 
2.80 

Average 
6.10 
0.75 
0.08 
1.95 
1.94 
0.72 
0.75 
1.77 
0.63 
2.70 

g excel 

Standard 
Deviation 

0.06 
0.13 
0.01 
0.13 
0.06 
0.10 
0.13 
0.06 
0.11 
0.10 

Square 
Root 

1.73 
1.73 
1.73 
1.73 
1.73 
1.73 
1.73 
1.73 
1.73 
1.73 

Standar 
d Error 

0.033 
0.075 
0.005 
0.076 
0.032 
0.060 
0.074 
0.033 
0.061 
0.055 

Estimated IC50 

6.10 ± 0.033 mM 
0.75 ± 0.075 mM 
0.08 + 0.005 mM 
1.95 ± 0.076 mM 
1.94 ± 0.032 mM 
0.72 ± 0.060 mM 
0.75 ± 0.074 mM 
1.77 ± 0.033 mM 
0.63 ± 0.061 mM 
2.70 ± 0.055 mM 

All values are in mM 
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2.2 Results 

2.2.1 Ten Small Molecules Found to Inhibit Nuclear Splicing In Vitro 

To search for molecules that inhibit splicing at specific steps in spliceosome 

assembly, the effects of thirty-two different small molecules on actin pre-mRNA splicing 

in yeast nuclear extract were investigated (Table 1). Twenty-five of the compounds 

tested were antibiotics. In order to study how different structural properties of a 

compound could affect splicing, compounds that represent different classes of antibiotics 

were investigated. The first antibiotics (erythromycin, streptomycin, tetracycline, and 

neomycin) were chosen because of their ability to bind to RNA sequences non-

specifically (Mei & Czarnik, 1995; Mikkelsen et al., 1999; Schroeder et al, 2000; 

Hertweck et al., 2002;). Fourteen of our small molecules were newly synthesized 

oxospiro-compounds from the manumycin family. In addition, a variety of common 

environmental toxins as well as kinase inhibitors were also tested. 

The small molecules were added to in vitro splicing reaction mixtures at a starting 

concentration of 10 mM. Of the thirty-two different compounds tested, ten were found to 

inhibit splicing, as indicated by a large reduction in mature ligated mRNA and excised 

lariat RNA relative to the amount of unspliced pre-mRNA (Figure 4). The rest of the 

twenty-two small molecules showed no significant inhibitory effect on pre-mRNA 

splicing even at 10 mM (Roscovitine was only tested up to 5mM because of solubility 

limitations). 

Of the ten inhibitory molecules, three were the aminoglycosides kanamycin, 

streptomycin and neomycin (Figure 4). From the remaining eight different classes of 

antibiotics tested, it was found that cefoperazone, a third generation cephalosporin, 
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inhibited splicing (Figure 4). Three different types of polychlorinated biphenyls (A1254, 

77, 99 and 126) and methyl-mercury were also tested; however none of these 

environmental toxicants inhibited pre-mRNA splicing (Figure 5). To determine whether 

yeast splicing requires kinase function in vitro, the effect of a broad range inhibitor of 

nuclear protein kinases, staurosporine, as well as a broad range inhibitor of cyclin-

dependent kinases, roscovitine were tested. A 5mM concentration of roscovitine did not 

exhibit any effect on splicing (Figure 5) while staurosporine at 3mM showed complete 

inhibition (Figure 4). 

Small Molecule 

DM50 

intermediate Larlat-Exon2 

Final Lariat Product 

Pre-mRNA (Exon1-Lariat-Exon2)j 

Final Mature mRNA Product {Exonl -Exon2} 

Intermediate Exonl I t gffff.t ^ri&j r 

Lanes 1 2 3 8 9 10 11 12 13 

Figure 4: Splicing inhibition by ten small molecules. Actin pre-mRNA splicing 
reactions analyzed on a 6% denaturing polyacrylamide gel and visualized by 
autoradiography. Locations of pre-mRNA and product mRNA bands are indicated 
at left. Splicing reactions are shown in the absence of inhibitor at 0 minutes (lane 
1) and 30 minutes (lane 2), and with a DMSO control at 30 minutes (lane 3). 
Lanes 4-13 are reactions containing compounds at the concentrations given in 
Table 1. 
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18 = PCBA12541 
19 = PCB126 
20 = PCB99 
2i=PCB77 
22 = Methyl Mercury 

Figure 5: 22 Small molecules did not inhibit actin pre-mRNA splicing in vitro. 
Actin pre-mRNA splicing reactions analyzed on a 6% denaturing polyacrylamide 
gel and visualized by autoradiography. Locations of pre-mRNA and product 
mRNA bands are indicated at left. Non-inhibitory small molecules are listed to 
the right with their respective lane numbers found on the gel. Splicing 
efficiency for each splicing reaction is given at the bottom of the gel. 

Novel oxospiro compounds of the biologically active manumycin family were 

obtained (a generous gift of Guy Plourde; Plourde et al, 2007). To determine whether 

they exert their biological effects in part through inhibition of pre-mRNA splicing, these 

compounds (denoted G1-G14) were tested in the splicing assay. The results showed five 

of the 14 oxospiro-compounds tested (Figure 6) completely inhibit splicing (Figure 4). 

The 5 inhibitory oxospiro-compounds shared a common core structure (Figure 6A) in 

which there is a lactone ring attached to a conjugated ring, suggesting that the groups Rl 

and R2 are not involved in binding to the targets. Although G13 has a similar core 

structure to the inhibitors (Figure 6B), it did not inhibit splicing (Figure 5). It is the only 

oxospiro-compound which contains an extra cyclohexane ring fused to the core. 
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O H 

O H 

G5 
G6 
Gli 
G12 
G14 

Gl 
G2 
G3 
G4 
G7 
G8 
G9 
G10 
G13 

Inhibitory Oxospiro-Deiivatives 

Ra 
-NHCOCH3 

-NHCO(C^5) 
-NHCOCH3 
-NHCO(C<jH5) 
-OCHj 

-NHSOrfC^tyCHj 

No n-l nh i brto ry Oxospi ro-Precurso rs 

Ri 
«U2 

Nft 
NHCQCHj 
NHtXXCsHs) 
NH2 

NO2 
NHOOCHs 
NHCQCdsHj) 

- see structure below 

_ 
-
-

-HHSOsCQftJCHs 
-NHKMCWCHj 
-NHS02(CsH4)CH3 
-NHSQ!(C«H4)CH3 

Figure 6: Oxospiro-compound inhibitors share a common core structure. (A) 
Oxospiro derivative inhibitors and (B) non-inhibiting precursors (Plourde et ah, 
2002; 2007). The identity of the R groups is tabulated on the right. 
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2.2.2 Effectiveness of Inhibitory Small Molecules (IC50 values) 

To compare the potency of the inhibitors, the concentration of inhibitor required for 50% 

inhibition of pre-mRNA splicing relative to a no inhibitor control (the apparent IC50) 

was measured (Figures 7, 8 & 9). Percent splicing of the actin pre-mRNA reporter was 

measured in the presence of each small molecule for a range of concentrations up to the 

LC concentrations listed in Table 1. Figure 7 is an example of Cefoperazone titration gel 

used to determine its IC50. It can clearly be seen from the gel that as the concentration of 

cefoperazone increases the percent splicing decreases (Figure 7). Splicing in the control 

reactions without cefoperazone was approximately 60% of total pre-mRNA (Figure 7: 

lanes 2 and 3) and as the concentration increased to 10 mM (Figure 7: lane 15) splicing 

decreased to undetectable levels. Two to three replicates of the titration assay were 

reproduced for each inhibitor at each concentration, which showed very low, if any, 

standard deviations of the replicated averages (<5%) (Table 3). 

Figure 7: Cefoperazone inhibits pre-mRNA splicing with an apparent IC50 of 
6.1mM. Denaturing polyacrylamide gel analysis of splicing with increasing 
concentrations of Cefoperazone (indicated at top of gel). Locations of pre-mRNA 
and product mRNA bands are indicated at right, and fraction of RNA spliced in 
each lane is indicated below the gel. 
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To determine the IC50, splicing efficiency was plotted as a function of inhibitor 

concentration for each compound tested (Figure 8). Best fit equations were achieved for 

all inhibitors, in which kanamycin, G5 and G6 required a log scale to obtain a better fit 

equation (Figure 8). Cefoperazone and staurosporine were the only two inhibitors with 

non-linear regression (Figure 8). The IC50 values were determined from the midpoint of 

these graphs (Figure 9). As expected from initial experiments used to determine 

inhibitory activity, neomycin had the lowest IC50 of 0.08 mM and cefoperazone the 

highest IC50 of 6.10 mM, while the remainder had IC50 values in the low millimolar range 

(Figure 9). These IC50 values can be used to compare the effectiveness of the small 

molecules as inhibitors. 
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Figure 8 (Continued) 
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Figure 9: IC50 for all splicing inhibitors. Standard deviations are calculated from 
triplicate measurements of inhibition (Table 3). 
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2.2.3 Inhibitors Function at Different Steps of Splicing 

To determine the step of splicing at which each inhibitor acts, spliceosomal complex 

accumulation was determined in the presence of each of the ten small molecules (Figure 

10). The different spliceosomal complexes H, A, B and C were identified in a time course 

splicing assay using native agarose gel separation (Das & Reed, 1999). 

In the absence of inhibitors, four complexes containing pre-mRNA can be 

distinguished on native agarose gels by their different mobilities (Figure 10A). At 0 

minutes, complex H predominates, consisting of numerous heterogeneous nuclear RNP 

(hnRNP) proteins.(Das & Reed 1999; Jurica & Moore 2002). Complex A consists of the 

U2 snRNP bound to the pre-mRNA. Complex B consists of the pre-catalytic assembly in 

which the U4/U6 hybrid and the U5 snRNP have joined the complex,, while complex C 

is the catalytically active stage formed by U4 dissociation and U2 base pairing to U6. The 

identity of the each complex was determined by Das and Reed (1999) through isolation 

of the complexes and Northern analysis of their snRNA composition. 

The inhibitors fall into several classes based on the step at which they appear to 

block spliceosome assembly. Aminoglycosides streptomycin and neomycin, kinase 

inhibitor staurosporine, and oxospiro-compound G12 cause accumulation of complex H 

(Figure 10A). The native gels of G12 contain sharper complex H bands than the more 

smeared bands of neomycin, streptomycin, staurosporine, and the control (-) inhibitor 

lane. Sharp bands may indicate less heterogeneity in the accumulating complexes. In 

contrast, the aminoglycoside kanamycin was the only one that showed an apparent 

accumulation of complex A (Figure 10B). Unlike streptomycin and neomycin, 
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kanamycin also showed more distinct complex A accumulating as time progresses from 

10-25 minutes. 

The oxospiro-compounds G6, Gil , and G14 cause accumulation of the B 

complex (Figure IOC). All three native gels show that as complex B accumulates there is 

also a build-up of the other two complexes H and A. There is also more complex B with 

both Gl 1 and G14 compared to G6. Interestingly, there is more complex A than B for 

G6, and almost equal amounts of complexes A and B for Gil . There is less complex A 

than complex B for G14. This suggests that each compound inhibits splicing assembly in 

a different way. 

Oxospiro-compound G5 and the cephalosporin cefoperazone both caused an 

accumulation of complex C (Figure 10D) and no formation of mature product. 

Accumulation of complex C also results in accumulation of complex B, but not of 

complexes H and A (in contrast to the block at complex B in figure IOC). Additionally, 

in the presence of cefoperazone complex C accumulates more than complex B, whereas 

with G5 complexes B and C accumulate to similar levels (Figure 10D). 

2.2.4 Transcript Specificity of Inhibition 

To determine whether the inhibitors are specific for actin pre-mRNA, or whether 

they exhibit general inhibition of pre-mRNA splicing, the effect of the inhibitors on two 

other transcripts was tested. The results showed that in addition to inhibiting actin pre-

mRNA, these ten small molecules also completely inhibit splicing of two other pre-

mRNA substrates: YOL047C and UBC4 (Figure 11). 
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Figure 10: Splicing inhibitors block spliceosome assembly at distinct steps. 
Time-dependent formation of the four different spliceosomal complexes H, A, B, 
and C. Splicing reactions in the absence of inhibitor were stopped at the indicated 
times and analyzed by mini-native agarose gels (-) = no inhibitor. (A) G12, 
Staurosporine, Streptomycin, and Neomycin respectively show no spliceosomal 
assembly; (B) Kanamycin shows a A complex; (C) G6, Gil , G14 show a B 
complex; and (D) G5 and Cefoperazone show a C complex. Complexes were 
separated on a non-denaturing 1.5% agarose gel run in Tris-glycine buffer. 
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The transcript used for the splicing assay in Figure 11A was partially degraded. 

Nevertheless, it is clear that there is a dramatic reduction of product mRNA in the 

presence of inhibitors compared to the control reaction. Quantitation revealed that 

splicing of all three transcripts was inhibited at 95% at the inhibitor concentrations listed 

in Table 1. These results confirm that the ten small molecules do not require a conserved 

pre-mRNA sequence in order to exert their inhibitory effects, and suggest that these small 

molecules either inhibit splicing by binding RNA non-specifically or via interactions with 

the splicing machinery. 
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f l i t . . . . * .. if 
DMSO + + + + -|_ + 4. Sm,l l«ol«nl. 3 I 3 i i ° « 1 ! ! » <S« 

DMSO + + + + + + + 

fflfffftlit tftlftlffffff 
t* 

.. -,f. .** I «i «* * 

Laws 1 2 3 4 5 6 7 8 9 10 11 12 JS 

Figure 11: Splicing inhibitors are not transcript specific. (A) YOL047C and (B) 
UBC4 transcripts were spliced in the presence of each inhibitor, analyzed on a 6% 
denaturing polyacrylamide gel, and visualized by autoradiography. Locations of 
pre-mRNA and product mRNA bands are indicated at left. Splicing reactions are 
shown in the absence of inhibitor at 0 minutes (lane 1) and 30 minutes (lane 2), 
and with a DMSO control at 30 minutes (lane 3). Lanes 4-13 are reactions 
containing compounds at the concentrations given in Table 1. 
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2.3 Summary and Interpretation of Results 

In a search for small molecules with which to study splicing, the sensitivity of a 

yeast in vitro splicing reaction to inhibition by a variety of chemical compounds has been 

investigated. Ten of the thirty-two small molecules tested were found to inhibit splicing 

of actin pre-mRNA prior to the first transesterification step. The 10 small molecules were 

also found to inhibit splicing of two other pre-mRNA substrates, YOL047c and UBC4, 

demonstrating that the inhibitors are not specific for actin. The IC50 value of all of the 

inhibitors was determined to assess their effectiveness. Of the compounds tested, 

neomycin was found to be the strongest inhibitor with an IC50 of 0.08 mM, while the 

remaining IC50S were in the range of 1-6 mM (Figure 9). 

To learn more about the inhibitory mechanism of each of these compounds, the 

arrested splicing step was determined by native gel analysis. Each inhibitor resulted in 

accumulation of one or more complexes in the yeast spliceosome assembly pathway 

(Figure 10). Four of the ten inhibitors showed a complete block in spliceosome 

assembly, one accumulated spliceosomal complex A, two blocked assembly after 

formation of complex B, and three resulted in accumulation of complex C (Figure 10). 

Of the ten inhibitors, neomycin, kanamycin, and streptomycin are 

aminoglycosides known for their non-specific interactions with RNA. Cefoperazone is a 

third generation cephalosporin chosen to determine whether other classes of antibiotics 

inhibit splicing. Staurosporine is a broad range protein kinase inhibitor chosen to 

determine if yeast splicing is regulated by kinases, which has not been shown 

biochemically, but only suggested from gene expression analysis (Schena et ah, 1996; 

Dagher & Fu, 2001). The remaining five (G5, G6, Gil , G12, G14) are new compounds 
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known as oxospiro-derivatives of the manumycin family, derived from actinomycetes 

bacteria, that have not been characterized previously. 

The high success rate in finding splicing inhibitors (10 of 32 compounds tested) 

may reflect the complexity of the splicing process, which provides over 100 individual 

molecular targets for potential inhibitors, and a much larger number of molecular 

interactions. With the exception of neomycin, however, these inhibitors are weak, so it is 

also possible that they are simply non-specific inhibitors of splicing. A comparison of 

inhibitors to non-inhibitors argues against this interpretation, as similar compounds have 

different effects, both on splicing generally and on the specific assembly step that is 

affected. 

2.3.1 Inhibitory small molecules: structure and mechanism 

The following sections describe the ten inhibitory small molecules and their 

association with various proteins and RNAs, which have been reported by other research 

groups. The last section then describes two models which have been proposed to explain 

the spliceosomal complex accumulation seen in the presence of the small molecules. 

Aminoglycosides 

In order to look for compounds that inhibit yeast pre-mRNA splicing, 

aminoglycoside antibiotics were tested as they are known to inhibit other RNA-based 

processes. Aminoglycosides are multiply charged compounds of high flexibility that have 

been found to bind RNA non-specifically through electrostatic interactions between the 

positively charged nitrogen groups and the negatively charged backbone (Stage et al, 
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1995; Zapp et al, 1996; 1997; Tor et al, 1998;). Another explanation suggests that 

aminoglycosides compete with Mg2+ ions for functionally important divalent metal ion 

binding sites in catalytic RNAs (Hoch et al., 1993; Earshaw & Gait 1998; Rogers et al. 

1996; Mikkelsen et al. 1999). All three aminoglycosides tested - neomycin, kanamycin, 

and streptomycin - inhibited pre-mRNA spicing. This observation, taken together with 

the established mechanisms of aminoglycoside function, suggests that these inhibitors 

interact directly with RNA to block splicing. Whether, however, the hypothesized 

interaction occurs with the pre-mRNA or with the snRNAs that constitute part of the 

splicing machinery was not determined. 

Oxospiro-derivatives 

Of the fourteen oxospiro compounds tested, five inhibited the splicing mechanism. 

Notably, the five inhibitors share a common core structure containing a spirolactone ring. 

The non-inhibitory oxospiro compounds are in the open carboxylate form, with the 

exception of G13, which has a bulky double-ring system on the side that is conserved in 

the inhibitory molecules. The five inhibitory compounds differ only at the two R groups, 

which vary considerably in size, from small linear chains to large benzyl derivatives. 

This strongly suggests that the other, conserved portions of the molecule are responsible 

for interaction with molecular targets. Given the conservation of chemical structure 

among these five inhibitors, it is surprising that they have such different effects on 

spliceosome assembly. Manumycin analogues have been found to inhibit a wide range of 

enzymes in a wide range of organisms, including farnesyltransferase in plants (Pei et al, 

1998) and yeast (IC50 5 -13 uM), and the human polymorphonuclear elastase, (IC50 of 
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4.0 uM) (Tanaka et al, 1996). These studies suggest that manumycin analogues exert 

their inhibitory effects by interacting with specific protein enzymes, therefore 

spliceosomal proteins may be potential targets of the oxospiro-derivatives tested. As 

there are over 100 proteins associated with the spliceosome, it will be important to 

identify which one is targeted by these inhibitors. 

Cephalosporin: Cefoperazone 

The antibiotic cefoperazone is a third generation cephalosporin. It was tested 

because non-aminoglycosides, the aminocyclitol Cl-tetracycline, and the macrolide 

erythromycin, were found to inhibit human pre-mRNA splicing in vitro (Hertweck et al, 

2002). To determine if more classes of antibiotics inhibited splicing in vitro, one 

compound from each of eight different classes of antibiotic was tested. Interestingly, 

however, the two non-aminoglycosides found to inhibit human pre-mRNA splicing did 

not inhibit yeast pre-mRNA splicing in contrast to cefoperazone. This could mean that 

erythromycin and Cl-teteracycline are inhibiting human splicing factors which do not 

exist in the much simpler yeast system. 

Cephalosporins disrupt the synthesis of the peptidoglycan layer of bacterial cell 

walls by competitively inhibiting the transpeptidases involved, making the particularly 

effective against gram-negative bacteria (Greenwood & Whitley 2002). The observation 

that Cefoperazone exerts its inhibitory effects by interacting with specific protein 

enzymes suggests that spliceosomal proteins may be potential targets. 
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Kinase Inhibitors: Staurosporine 

Several studies have suggested a role for kinases in human splicing (Prasad et al, 

1999; Du et al, 2000; Dickinson et al, 2002; Hu et al, 2003). In order to address 

whether kinases also function in yeast splicing, the effect of kinase inhibitors was tested 

in the splicing assay. While the cyclin-dependent kinase inhibitor roscovitine had no 

effect on splicing at any concentrations tested, the broad range protein kinase inhibitor 

staurosporine was found to inhibit actin pre-mRNA splicing with an IC50 of 1.9 raM. 

Staurosporine has been found to inhibit a variety of kinases including PKA, PKG, 

MLCK, PKC, CaMK, tyrosine kinases, and phosphorylase kinase. Inhibition is via 

interaction with the ATP binding site and it induces PKC translocation (Sigma-Aldrich 

product information S3939). 

Observation of splicing inhibition by staurosporine provides tantalizing evidence 

for a possible role for kinases in yeast splicing. Kinases frequently mediate signal 

transduction and consequently regulation of biochemical processes by environmental 

signals. Historically, yeast splicing was not thought to be regulated, but recent papers 

suggest otherwise (Pleiss et al, 2007). Splicing inhibition by staurosporine is therefore 

consistent with the possibility that regulation of yeast splicing is mediated by protein 

kinases. 

Further support for a role for kinases in yeast splicing was provided by studies 

done by Parker et al. (1997), which found four peptide inhibitors of protein kinases PKA 

and PKC that were effective inhibitors of both yeast spliceosomal complex C assembly 

and yeast splicing. The four peptide kinase inhibitors target their kinase with the 

following affinities: GS peptide Ki = 7.5 uM (Pearson et al, 1985), CBD peptide IC50 = 
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24 uM (Payne et al, 1988), CaMK II inhibitor K; = 3.5 uM (Smith et al, 1992) and 

CaMK II substrate K; = 135 uM (Yamagata et al, 1991). In this case, the IC50 measured 

for staurosporine inhibition of yeast splicing is 1-3 orders of magnitude weaker than that 

of peptide inhibitors, and 5-7 orders of magnitude weaker than its inhibition of known 

kinases. This raises questions about whether it is actually inhibiting a kinase. Further 

investigations are required to determine exactly how staurosporine exerts its inhibitory 

effects. 

Toxicants 

Environmental toxicants were also tested to investigate the effects they might have on 

eukaryotic pre-mRNA splicing. Both PCBs and methyl mercury were tested. None of the 

PCBs tested, nor methyl mercury, inhibited splicing at higher concentrations than what is 

thought to enter into mammalian systems from environmental pollutants (Schuur et al, 

1998; Castoldi et al, 2001). This suggests that these environmental toxins do not exert 

their effects via splicing inhibition. 

Potential Usefulness 

The main focus of this work was to identify small molecule inhibitors of splicing that 

could be used for further molecular dissection of the splicing mechanism. For example, 

in humans the recent demonstration of splicing inhibition by spliceostatin A allowed the 

authors to block the splicing reaction at a specific step and to demonstrate the presence of 

the SF3b complex at that step (Kaida et al, 2007). The work presented in this study, 

demonstrates for the first time that oxospiro compounds derived from the manumycin 
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family can act as effective splicing inhibitors. As this is a novel class of splicing 

inhibitor, it is reasonable to hope that the oxospiro compounds will trap spliceosomes at a 

previously uncharacterized step of assembly. Ultrastructural studies, particularly 

crystallography and electron microscopy, stand to benefit greatly from effective 

inhibitors of spliceosome assembly, as sample heterogeneity is probably the greatest 

current challenge to those techniques. The ability to trap specific complexes efficiently 

would therefore lead to major advances in determining the structure of the spliceosome. 

Beyond their potential utility as probes of splicing mechanism, it is hoped that further 

refinements of these inhibitors will lead to useful therapeutic agents. 

2.3.2 A Framework for Understanding Complex Accumulation in Spliceosome 
Assembly 

Active spliceosome complex formation can be observed by native gels in three 

distinct stages: A (early), B (middle) and C (late). Each complex corresponds to different 

snRNPs joining or leaving the pre-mRNA. In this study, the results showed that splicing 

was inhibited prior to the first transesterification step by all ten inhibitors, however each 

small molecule resulted in blocking or stalling of specific spliceosomal complexes (A, B 

and/or C) (Figure 10 and Table 4). 

It might be expected, a priori, that inhibition of a particular step in splicing would 

lead to accumulation of the complex immediately preceding that step. This is not what is 

generally observed, however, as many of the inhibitors tested here led to accumulation of 

two or more complexes. 
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In this section I examine two models to explain this unanticipated result. 

One model is a simple system of linked equilibria, in which the block of one step results 

in accumulation of the previous steps, 

H <s? ^ A < > B < > c 

This is a thermodynamic model, in which the relative free energies of each complex 

along the pathway determines the extent to which each complex accumulates. In this 

model, the ratio of two complexes, say H to A, should not change with the blocked step. 

In other words, whether the block occurs between A and B or between B and C should 

not alter the ratio of H to A, if they are in equilibrium. The observation of very different 

ratios of H to B and B to C ratios with cefoperazone and G5 argue against this model. 

The second model is a system of binding equilibria separated by commitment steps, in 

which the block could be either in the binding step or in the commitment step (asterisk) 

for a particular complex. Many researchers have proposed that the commitment steps 

correspond to ATP hydrolysis carried out by associated ATPase proteins (Tazi et ah, 

2005; Silverman et ah, 2003; Brow, 2002). Some of the candidate ATPases and the steps 

at which they are proposed to function are listed in Table 4. 

Sub2 Prp28 Bn2 Prp 2 ATP 
Axp ^ ATP ^ ATP -^ Prpl9 

H
 A l i r > H* ^ A > A* ^ B > B* ^ C > C 

In this model, inhibition of a binding step would result in accumulation of committed 

complex immediately preceding it (e.g. if binding of triple-snRNP is blocked, the A* 

complex would accumulate). Conversely, inhibition of a commitment step would result 

in accumulation of both species in the preceding equilibrium, in a ratio determined by 

# 
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their relative energies. This model therefore predicts that complex accumulation is 

dictated in part by energetics and in part by kinetics, as well as by the specific inhibitor 

target. 

Table 1: Possible DExD/H box (ATPase) protein targets of splicing inhibitors 

Small 
molecule 
Staurosporine, 
Strepomycin, 
Neomycin, 

G12 

Kanamycin 

G6, Gil , G14 

Cefoperazone, 
G5 

Accumulation 
of 
spliceosomal 
complex 

H 

A,H 

B,A,H 

C, B (small 
amounts of H) 

ATP- dependent 
helicase 
DExD/H box 
proteins 

Sub 2 

Prp28 

Brr2 

Prp2 

NTC (ftp 19) 
(not a DExD/H) 

The function of ATPases prior the splicing 
mechansim 
required by the U2 snRNP for addition to the 
branchpoint site and formation of the 
branchpoint-dependent commitment complex 
(Rutz and Seraphin, 1999) 
required for the activation of the triple snRNP 
U4/U6-U5 (Stevens et al, 2002) 
required for the unwinding of the U4/U6 duplex 
(Lauber et al, 1996; Lin and Rossi, 1996; 
Noble and Guthrie, 1996; Xu et al, 1996; Kim 
and Rossi, 1999; Stevens et al., 2002) 
required after binding of U2 to the pre-mRNA 
and prior to formation of the functional 
spliceosome (Roy et al, 1995) 
associated with the spliceosome after binding of 
U2 to the pre-mRNA and prior to formation of 
the functional spliceosome (Tarn et al, 1993) 

ATPases may provide a system of regulated control for spliceosome assembly on 

to the pre-mRNA. For example, the Brr2 ATPase is proposed to facilitate the transition 

between complex B and complex C, and as a result, provides an opportunity for rejection 

of substrates that do not efficiently proceed to complex C. This modulation of transition 

to the next commitment step, with its opportunity for discard, is likely repeated at 

multiple points in both assembly and post-catalytic phases (Konarska & Query, 2005). 

All 5 of the inhibitory oxospiro-derivatives contain the same core structure, yet 

they all block at different spliceosomal assembly steps. It could be that each oxospiro 
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derivative actually inhibits a specific ATPase, since all the ATPases are also very similar. 

So each oxospiro inhibitor may be specific for a particular ATPase. 

A final possibility is that all of the inhibitors change the kinetics of assembly 

without creating a thermodynamic block. In this case, the effectiveness of the inhibitor 

should correlate with the step at which assembly is blocked, that is that strong inhibitors 

would block early, leading to accumulation of H complex, whereas weaker inhibitors 

would allow more assembly and therefore apparent accumulation of later complexes. 

This is consistent with the observation that the strongest inhibitor, neomycin, causes 

accumulation of complex H, whereas the weakest, cefoperazone, results in accumulation 

of C complex. The range of IC50 values is too small, however, to allow a rigorous test of 

the correlation. If inhibition is simply due to an overall slowing of the reaction, it should 

be possible to detect formation of mature product by allowing the reactions to proceed 

longer. 
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Chapter 3 

General Discussion 

3.1 Future Work 

In order to gain insight into how these ten small molecules exert their inhibitory 

effects and what their targets may be, the techniques of crosslinking and biotinylation 

could be utilized. In addition, since the ten inhibitory small molecules provide a new 

means for stalling and accumulating spliceosomal complexes, they could further be 

isolated for biochemical and structural studies using the techniques of fractionation and 

affinity purification. These avenues of investigation, for finding the targets of the small 

molecules, as well as purifying the spliceosomal complexes, are discussed in this section. 

3.1.1 Determination of Inhibitory Small Molecule Targets Through Crosslinking 
and Biotinylation 

Future studies aimed at identifying the targets of these ten small molecules, 

whether they are pre-mRNA or spliceosomal components, should be a priority. Such 

investigations could be done through photo-crosslinking studies in which the inhibitory 

small molecule is covalently attached to a photoreactive group like nitroguaiacol. 

Photoactivation of the nitroguaiacol leads to covalent bond formation with the inhibitor's 

binding partner, allowing purification and identification of the partner. This would aid in 

determining if the pre-mRNA is the target. Abad & Amils (1990) synthesized such 

photoreactive derivatives of streptomycin while maintaining its mode of action in the 

bacterial ribosome. This method also requires some means of labeling the inhibitor, for 
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example through incorporation of radioisotopes, so that the crosslinked target can be 

detected on protein or RNA gels. 

An alternative is biotinylation of the inhibitor, which involves covalently 

attaching a biotin tag to the small molecule without affecting its function, and using the 

biotin tag for pulling out the complex (pre-mRNA or spliceosomal proteins) it may be 

interacting with. Kaida et al. (2007) performed this experiment by biotinylating 

spliceostatin A and pulling out a sub-complex of the U2 snRNP called SF3b. 

Purification is achieved through affinity chromatography with a column that has avidin (a 

natural binding partner for biotin) bound to it, and detection is possible through avidin-

tagged detectors like the fluorescent dye HABA (2-(4-hydroxyazobenzene), in which 

HABA dye is bound to avidin and yields a characteristic absorbance. When a biotinylated 

inhibitory small molecule is introduced it would displace the dye, resulting in a change in 

absorbance at 500 nm. The absorbance change is directly proportional to the level of 

biotin in the sample. Biotinylation has mostly been reported with antibodies, nucleic 

acids, or proteins, however if a suitable biotin derivative can be made for each of the 

small molecules here the method would be quite useful in a direct pull-down of the target 

compound (Kotake et al, 2007). 

3.1.2 Spliceosomal Complex Isolation and Purification 

In order to study the biochemical and structural aspects of the spliceosome, 

another priority would be to purify each spliceosomal sub-complex and the components 

involved in each assembly step. Other strategies have been devised for accumulating 

specific splicing complexes (Silvia et al, 1990; Jurica & Moore, 2002), however, the 
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conditions are different and in most cases are not as easy and simple as addition of a 

readily available small molecule. The most common methods employed to date for 

isolating spliceosomes combine size fractionation with affinity purification (Konarska & 

Sharp 1986; Jurica et al, 2002). Most common is glycerol gradient fractionation and 

treatment with heparin (a polyanion that disrupts nonspecific or loose protein: nucleic 

acid interactions). Heparin shifts the pre-mRNA peaks from 40S to 15S, 25S, and 35S, 

which likely corresponds to E/H, A, and B/C complexes, respectively (Grabowski & 

Sharp 1986). These much smaller fractions could be isolated from the gradients for 

further biochemical analysis or purification to obtain a more homogeneous sample 

(Lindsey & Garcia-Blanco, 1999). Gel filtration is another size fractionation method for 

purifying large amounts of spliceosomes (Garcia-Blanco et al, 1989). On a Sephacryl S-

500 column, label originating from pre-mRNA in splicing reactions elutes in three main 

peaks. The earliest corresponds to a mixture of A, B, and C complexes, the second to 

E/H complex, and the third to substrate degraded by the many RNases present in nuclear 

extract. 

Affinity purification of splicing complexes is most often mediated by modifying 

the pre-mRNA substrate. One method is to randomly incorporate biotinylated 

nucleotides during in vitro transcription. Spliceosomes assembled on such substrates will 

bind tightly to streptavidin resin under native conditions (Grabowski & Sharp, 1986; 

Gozani et al, 1994; Neubauer et al, 1998). Alternatively, spliceosomes assembled on 

unmodified pre-mRNAs can be captured on streptavidin resin with biotinylated antisense 

oligonucleotides (Ryder et al, 1991). However, elution of biotin/streptavidin conjugates 
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requires denaturation, limiting the applicability in cases where the goal is to analyze the 

function of the purified complexes or 3D structure determination. 

Isolation of splicing complexes for subsequent functional or structural studies 

requires a means for elution under native conditions. Theoretically, RNA aptamers 

selected to bind a stationary ligand would be ideal for this purpose, and many such 

aptamers have been described (Wang & Rando, 1995; Bachler et al, 1999; Patel & Suri, 

2000; Berens et. at., 2001; Srisawat & Engelke, 2001). For instance, the Luhrmann lab 

purified splicing complexes assembled on pre-mRNAs containing the tobramycin 

aptamer (Luhrmann et al, 2004). Reed et al, (2000) describe an affinity purification 

system for purifying mammalian splicing complexes. This method consists of 

incorporating binding sites for the MS2 coat protein into the substrate pre-mRNA and 

using an MS2 coat protein:maltose binding protein (MS2:MBP) fusion as an affinity tag. 

The fusion protein can be eluted from the amylose resin under native conditions with free 

maltose. In yeast, the TAP tag is a similar equivalent to the MS2:MBP tag developed by 

Seraphin and co-workers (Puig et al, 2001) and has been used to purify low-abundance, 

endogenous complexes containing splicing factors. Subsequent studies have employed 

mass spectroscopy to identify a plethora of associated proteins (Jurica & Moore, 2002; 

Ohi et al, 2002; Stevens et al, 2002; Gavin et al, 2006). 

3.2 Concluding Remarks 

The search for small molecules as potent and selective RNA binders comes from 

the desire to control cell function at the RNA level, which depends on how strongly the 

inhibitors interact with their targets. In order to investigate which functional groups on 
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the small molecules are responsible for the inhibitory response, different functional group 

substitutions can be made. Ultimately, functional group substitutions may lead to lower 

IC50 values. Lower IC50 values represent a more potent interaction with the target, 

allowing easier isolation of the small molecule - RNA or protein complexes for 

purification assays. The following section discusses where such functional groups 

substitutions on the small molecules could be possible. 

All five oxospiro-derivative inhibitors of yeast pre-mRNA splicing contained the 

same core structure (Figure 6A) except with different Rl and R2 groups. This means that 

it may be possible to replace these R groups by other substituents without destroying the 

inhibitory mode of action. A family of compounds of this sort could be generated using 

combinatorial chemistry techniques. Combinatorial chemistry is one of the important 

new methodologies developed by researchers in the pharmaceutical industry to reduce the 

time and costs associated with producing effective and competitive new drugs (Newman 

2007). Synthesis of molecules in a combinatorial fashion can quickly lead to large 

numbers of molecules. For example, a molecule with two points of diversity (Rl and R2) 

can generate NRJ x NR2 possible structures, where NRI and NR2 are the number of 

different substituents utilized. For these reasons oxospiro-compounds with the common 

core would be ideal for synthesizing a family of small molecules where the Rl and R2 

groups are varied. 

Specific Rl and R2 groups discriminate between the splicing factors they target. 

For instance, of the five oxospiro-compounds: one showed a complete spliceosomal 

assembly block, three showed a block of complex B, and one showed a block of complex 

C, in which two compounds which have the same Rl groups but different R2 group also 
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showed different effects e.g. G5 and Gil . Since all three steps involve their own set of 

various splicing factors, each compound must be targeting a specific splicing factor in 

order to exert its inhibitory effects. This makes them ideal tools for further studying the 

biochemical and structural aspects of each step during splicing. 

G5 is of particular interest since it was the only oxospiro-compound that blocked 

spliceosomal complex C assembly in native systems. In most cases it has been implied 

that once the assembly of the spliceosome has reached this point it should be activated to 

begin the splicing mechanism. However, since no mature product was observed, in 

contrast to the (-)-inhibitor control, and splicing was completely inhibited, the C complex 

is indeed being stalled for 2 -25 minutes. This means the G5-complex C interaction is 

quite stable and could potentially be purified for further studies. 

The strongest inhibitor of the five oxospiro-derivatives was G12 and it was also 

the only oxospiro-compound present in its enantiomerically pure from. Having 

enantiomeric purity could thus be very important in discovering a more potent inhibitor 

with a lower IC50 value. The lower IC50 values may result because only one enantiomer 

(of the mixture of enantiomers) is biologically active; therefore less of the active 

enantiomer is present in comparison to the- only- enantiomerically pure form. 

For a very long time now the mode of inhibition of various RNA reactions by 

aminoglycosides have been under investigation where one of the widely applied binding 

models is said to be due to 'surface electrostatic complementarity' (Tor 2003). 

Surface electrostatic complementarity arises when the three-dimensional projection of 

positively charged ammonium groups toward the negatively charged RNA surface is 

employed. The high charge density of the aminoglycosides, together with their unique 
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structural features (namely, conformationally fixed six-membered rings that can rotate 

around flexible glycosidic bonds) and the geometrical degeneracy of ammonium groups, 

allow these compounds to favorably model themselves to match the electrostatic 

requirements of the RNA surface (Wang & Tor 1998). So the number and position of the 

ammonium and hydroxyl groups control the effectiveness of the aminoglycosides as 

potent inhibitors for their targets. In this case the IC50 values of the three 

aminoglycosides did increase according to the order of relative strength of inhibitors with 

the most amino groups, neomycin (the strongest inhibitor of yeast pre-mRNA splicing) to 

kanamycin and then streptomycin. 

Cefoperazone, a cephalosporin, disrupts the synthesis of the peptidoglycan layer 

of bacterial cell walls by competitively inhibiting the transpeptidases involved 

(Greenwood & Whitley 2002). Cefoperazone contains a p-lactam nucleus in its 

molecular structure (Figure 12).Other known small molecules with this same core 

structure should also be tested to see if they exhibit the same inhibitory effects on pre-

mRNA splicing. If positive inhibitor results are found then the two Rl and R2 groups on 

the P-lactam nucleus can be modified to obtain different properties and make various 

therapeutic analogs of cefoperazone and develop even more potent inhibitors. 

Figure 12: Cefoperazone (left) and p-lactam core structure (right). 
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Staurosporine is a natural product originally isolated in 1977 from bacterium 

Streptomyces staurosporeus and was the first of over 50 alkaloids to be isolated with this 

type of bis-indole chemical structure (Figure 13). Staurosporine was discovered to have 

biological activities ranging from anti-fungal to anti-hypertensive and led to investigation 

for potential in anti-cancer activity. The ability of staurosporine to stall the first 

spliceosomal complex assembly step may be due to the stronger affinity of staurosporine 

to the ATP-binding site on a particular protein kinase. More specific protein kinase 

inhibitors would have to be tested to narrow down the targets. 

In order to determine if the structure of staurosporine is the cause of inhibition 

then other small molecules with the same bis-indole core structure should also be tested. 

The antibiotic rebeccamycin (Figure 14) has a similar bis-indole core but does not inhibit 

protein kinases, and would be an excellent candidate (Shinoda et ah, 2007). Therefore, if 

rebeccamycin also inhibits yeast pre-mRNA splicing it can be concluded that inhibition 

by staurosporine is not due to inhibition of protein kinases. 

Figure 13: Staurosporine (left) with bis-indole core structure (box) and derivative 
rebeccamycin (right). 
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This study provides the first demonstration that five oxospiro-derivatives, in 

addition to five non-oxospiro compounds, are inhibitors of yeast pre-mRNA splicing and 

result in stalling of the spliceosomal sub-complexes H, A, B, and C. To define the 

molecular and structural entities that mediate small molecule-RNA recognition will 

facilitate the future design of small molecule therapeutics, especially in the case of the 

five oxospiro-compounds in which its different R groups could be replaced by other 

substituents without destroying its inhibitory mode of action. The structure-activity 

profile derived from the initial studies of oxospiro-derivatives and the data found here 

will be useful for the future design of more potent oxospiro-derivative inhibitors. 
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Appendix - Chemical Structures 

Structures of non-inhibitory small molecules of nuclear yeast pre-mRNA splicing 
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