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ABSTRACT

Climate change is expected to increase annual arctic temperatures by up 

to 5 °C and winter arctic temperatures as much as 7 °C within the next century. 

High Arctic coastal lowlands, such as at Alexandra Fiord, Ellesmere Island, have 

greater productivity and species diversity than the surrounding desert-like 

plateaus. Warming due to polyethylene open-topped chambers (OTCs) has been 

shown to increase plant productivity and cause community shifts compared to 

adjacent control plots. Changes in the soil environment have also been noted 

and will affect microbial activity and community composition. Long term elevated 

temperatures may result in changes to the community structure of these 

organisms. By studying terminal restriction fragment length polymorphisms (T- 

RFLPs) of genes associated with nitrogen cycling, we can examine variations in 

the nitrogen cycling microbial community.

The objective of this study was to detect shifts in denitrifying and nitrogen 

fixing soil microbial communities by measuring changes in functional gene 

frequency, abundance and/or genotypic richness of nosZ and nifH respectively. 

The study area encompassed five high arctic sites that differed by dominant plant 

community, soil parent material and/or moisture regime and that had been 

subjected to a thirteen year warming experiment. Four OTCs plus four adjacent 

control plots were sampled at each of these locations in order to investigate 

differences in these gene communities due to site, depth, and treatment.

Samples were recovered from the top and bottom 5 cm of soil cores; these 

ranged from 13 cm to 44 cm deep. DNA extractions from soil samples were

ii
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tested with two different primer pairs. Functional genes targeted included those 

that code for nitrous oxide reductase (nos) and nitrogenase (nif). Differences in 

frequency and relative abundance of terminal restriction fragments (TRFs) were 

assessed graphically by Non-metric Multidimensional Scaling (NMS) and tested 

statistically with permutational multivariate ANOVA (PERMANOVA). Genotypic 

richness was examined by testing the difference in number of TRFs with nested 

and one-way ANOVA.

Functional gene frequency and relative abundance was shown to differ 

overall by site in NMS ordinations of both denitrifying and nitrogen fixing 

communities. PERMANOVA tests also suggested a significant difference in the 

relative abundance of denitrifying TRFs, and both the frequency and relative 

abundance of nitrogen-fixing TRFs by depth over all sites. Differences in 

genotype richness were detected between sites, at different depths, and due to 

treatment for both communities. In general, denitrifying and nitrogen fixing 

community richness decreased with soil depth and with OTC treatment.

iii
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Chapter 1. Literature Review

1.1 Climate change and arctic systems

Climate change is expected to disproportionately affect arctic and antarctic 

latitudes (Hassol 2004, Maxwell etal. 1992). Positive feedbacks due to changes 

to polar weather patterns and ecosystems will further affect global climate. 

Current climate change models assume a doubling of atmospheric carbon 

dioxide (CO2) concentration in less than fifty years. This prediction is based upon 

rates of CO2 increase measured recently; the concentration rose steadily after 

the last ice age, but has risen dramatically from the 19th century to present day. It 

is the accumulation of radiative gases such as CO2 in the atmosphere that 

reinforces the greenhouse effect. Radiative gases have the capacity to absorb 

outgoing thermal energy and re-radiate it back toward the earth’s surface. This 

blanket of gases is what makes our planet habitable, but it is at the root of excess 

global warming. The effects are dramatic: within 100 years, annual arctic 

temperature may be 3-5 °C higher, with winter temperatures as much as 4-7 °C 

higher over land than they are currently (Hassol 2004, Maxwell et at. 1992).

There are other gases implicated in climate change, and although they are 

present in much smaller concentrations, their thermal capacity on a per molecule 

basis, and their persistence in the atmosphere is far greater (Maxwell et al.

1992). Nitrous oxide (N2O), a product of nitrogen transformation cycles, such as 

denitrification and nitrification, is one of these.

- 1 -
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Though many climate change models may agree that certain variables are crucial 

inputs, the outcomes predicted are not always the same and in fact are often 

contradictory (Maxwell et at. 1992). The exact changes, their feedbacks, and their 

implications are highly debatable. Most researchers agree that overall annual 

global precipitation will increase, and, like temperature, will be greater at the 

poles. Higher winter temperatures and rainfall in the arctic will decrease residual 

spring snow cover and promote permafrost thawing (Hassol 2004).

Contradictions arise regarding net soil moisture; some suggest an increase due 

to melting of the permafrost layer and earlier snowmelt, while others hint at a 

decrease due to better drainage and increased evaporative losses (Hassol 2004, 

Kane et al. 1992, Maxwell et al. 1992). A combination of these two predictions 

may be possible with wet, coastal areas getting wetter, and dry, inland areas 

getting drier (Maxwell etal. 1992).

Increased surface temperature resulting in heat transfer to the soil via conduction 

has also been assumed (Kane et al. 1992). The greatest warming is predicted to 

occur in the winter, but the soil at -15 cm should still remain approximately 3°C 

warmer than usual throughout the summer (Kane et al. 1992). Recent studies 

have shown that air temperature can be raised to predicted levels by 

experimental warming with greenhouses without a proportional increase in soil 

temperature (Jonasson et al. 1993, Robinson 2002). This challenges the 

assumption of a deeper active layer and more nutrient cycling with warming.

- 2 -
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1.2 Arctic research sites

Some coastal lowlands in the high arctic have greater productivity and species 

diversity due to different temperature and moisture regimes than the surrounding 

desert-like plateaus (Freedman etal. 1994). These unique ecosystems provide 

excellent study sites for the predicted changes due to global warming because of 

seasonal extremes in solar energy and precipitation, and because these areas 

are expected to experience the greatest transitions (Freedman et al. 1994, 

Maxwell et al. 1992). Alexandra Fiord is a High Arctic research site established 

by the International Tundra Experiment (ITEX) (Figure 1). See Arft et al. (1999), 

Rustad et al. (2001) and Walker et al. (2006) for comprehensive summaries of 

climate change experiments at this and other subarctic and alpine sites.

Polyethylene open-topped chambers (OTCs) have been installed across various 

gradients at the Alexandra Fiord site, and many studies have taken place over 

the last decade. Warming due to these OTCs, which generate a small 

greenhouse effect, has been shown to increase plant productivity and create 

community shifts compared to adjacent control plots on wet, moist, and dry 

lowland, and on granitic and dolomitic upland sites (Freedman et al. 1994, Rolph 

2003).

-3  -
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Figure 1: The High Arctic site at Alexandra Fiord (6) is one of a number of arctic, 
subarctic and alpine ITEX study sites (modified from Arft et al. 1999).

1.3 Soil N cycling and plants

The soils of a polar oasis can differ dramatically from those of the surrounding 

polar desert (Muc etal. 1994). Even slight increases in both temperature and 

precipitation can lead to deeper active layers, higher rates of chemical 

transformations and ultimately, more nutrient availability and plant productivity. 

The primarily granitic-derived soils of the Alexandra Fiord lowland, although less 

developed than those of temperate regions, have more organic matter, higher 

soil moisture levels and increased cation exchange capacity (CEC) than upland

- 4 -
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samples. Despite this, all lowland sites and both the granitic and dolomitic upland 

sites are still considered nutrient (especially nitrogen) limited (Muc et al. 1994).

Nitrogen gas (N2) comprises 78% of our atmosphere, and its fixation by microbes 

is the major source of new nitrogen (N) in soils (Paul and Clark 1996). Other 

inputs of N such as fertilization and atmospheric deposition are not relevant in 

remote arctic regions (Paul and Clark 1996). It is possible that future arctic 

environments will be less nitrogen limited due to a predicted increase in nitrogen 

fixation (Chapin and Bledsoe 1992). The potential increase is attributed to 

favourable enzymatic activity at higher temperatures, and to elevated levels of 

carbon dioxide and moisture that will benefit the aquatic and photosynthetic 

nitrogen fixers (diazotrophs) (Chapin and Bledsoe 1992).

Nutrient cycling in this arctic environment could be enhanced with the additional 

warming predicted by climate change models (Berendse and Jonasson 1992). 

This increase in soil fertility and nitrogen availability will affect plant-soil dynamics 

and predominant soil nutrient cycles such as net mineralization versus net 

immobilization (Berendse and Jonasson 1992). Mineralization is simply the 

degradation of organic forms of elements such as nitrogen to their mineral forms; 

ammonium (NH4+) is then immobilized for microbial growth as required, and the 

excess may accumulate in the soil (Paul and Clark 1996). Arctic plants are 

already adapted to low temperatures, so the predicted increased productivity will 

be limited by nutrient availability which is in turn mediated by soil response to

-5 -
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warming (Chapin III et al. 1992). It is likely that changes in soil characteristics, 

especially moisture, will drive the changes in other biogeochemical cycles 

(Chapin III etal. 1992).

In general, net soil mineralization is low or even negative during the arctic 

growing season with any excess nutrients sequestered in microbial biomass 

(Jonasson et al. 1999, Nadelhoffer et al. 1992). Microbes compete strongly for 

nutrients throughout the growing season, but as their populations decline in the 

winter, it is possible that nutrients are released and available to plants (Jonasson 

et al. 1999). These plants are adapted to low nutrient levels and therefore any 

significant changes in availability can lead to changes in plant productivity and 

species composition. Although increased net N mineralization with warming has 

been predicted (Nadelhoffer et al. 1992), recent studies have not confirmed that it 

will be affected by short term increases in soil temperature of a few degrees 

Celsius (Jonasson et al. 1999, Schmidt et al. 1999). The variability in net 

mineralization between soils from different plant communities is often more than 

any differences observed due to temperature treatments (Schmidt et al. 1999).

Although in past studies increases in soil temperatures of 1-1.5°C at 5-7 cm deep 

were accomplished with OTCs, greater net N mineralization was only observed at 

a one high altitude site in the winter; no changes in microbial immobilization were 

noted for any treatments. The techniques used in this study suggest that 

microbes are very strong competitors for soil nutrients in all seasons, and that an

- 6 -
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increase in mineralization with their population decline at the end of a growing 

season cannot be considered a general rule (Schmidt et al. 1999). Longer term 

warming experiments have revealed increases in microbial immobilization due to 

changes in soil properties that are attributed to sustained elevated temperatures 

(Rolph 2003). Shorter term changes in N cycling and availability have modified 

the plant community composition over time and the feedbacks are now notable 

as changes in litter quality and plant productivity (Rolph 2003).

1.4 Soil N cycling and microbes

Changes in soil moisture status (associated with global warming) will impact 

microbial processes such as decomposition in all arctic ecosystems; the resulting 

combination of moisture and temperature will dictate organic matter (OM) 

turnover rates, and ultimately N H / availability via mineralization (Paul and Clark 

1996, Nadelhoffer et al. 1992). The predicted and measured changes in the soil 

environment with increased temperature are not limited to nutrient mineralization 

and subsequent availability to plants; microbial activity and community 

composition are affected (Nadelhoffer et al. 1992).

Depending upon moisture, nutrient availability, and timing, the process of 

nitrogen fixation is shared across a range of soil organisms (Paul and Clark 

1996). There exist both symbiotic and free-living diazotrophs that can reduce N2 

to ammonia (NH3) in almost all habitats. The reaction is inhibited by oxygen and

-7 -
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by the presence of nitrate (N03 ). Nitrogen fixation is mediated by a number of 

genes including those that code for the nitrogenase enzyme, which exists in a 

complex with two Fe-S proteins, nifH is the structural gene for dinitrogenase 

reductase, while additional nif genes function as transcriptional regulators, code 

for cofactors, or are involved in electron transport. Production of the nitrogenase 

enzyme is inhibited by the presence of its product, NH3. Overall, nitrogen fixation 

is not favoured in the presence of available N. An increase in mineralization with 

warming could stall this process in the arctic. Once the NH3 is transformed to 

NH4+, it is available for microbial growth and plant uptake, becomes adsorbed to 

minerals and organic matter in the soil, or is lost due to leaching or as a volatile 

gas. Additionally, NH4+ is used as an energy source by nitrifying bacteria (Paul 

and Clark 1996).

Nitrification is detectable in arctic soils, and there are different degrees of nitrate 

use by each plant community (Paul and Clark 1996, Nadelhoffer et al. 1992). It is 

a temperature sensitive process that likely occurs only in the growing season and 

that could be greatly affected by potential soil warming (Paul and Clark, 1996). 

Direct increases in nitrification due to higher temperatures may be in addition to 

the increases attributed to a higher availability of substrate if warming also 

promotes mineralization (Nadelhoffer et al. 1992). Nadelhoffer et al. (1992) 

predicted that arctic ecosystems with an intermediate moisture regime will see 

the greatest increases in nitrification with warming; the drier systems lack the

- 8 -
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deep OM layer required for large changes in the soil environment, and biological 

processes at the wetter sites are limited by anaerobic conditions.

The nitrification pathway from ammonium (NH4+) to nitrate (N03‘) is mediated by 

specific microbes; NO3' is preferred by plants, but is easily lost due to high 

solubility in water (Paul and Clark 1996, Prescott et al. 1999). This process is 

accomplished in two stages primarily by chemoautotrophic aerobes that oxidize 

NH4+ to hydroxylamine or that oxidize nitrite (NO2) to NO3'. These low energy- 

yielding reactions are mediated by the enzymes ammonium monooxygenase, 

hydroxylamine oxidoreductase, and nitrite dehydrogenase (Paul and Clark 1996). 

The ammonium oxidizers (Nitroso- spp.) are members of the beta or gamma 

proteobacteria while the nitrite oxidizers (Nitro- spp.) occupy the alpha 

proteobacterial group (Prescott et al. 1999). Nitrification is sensitive to pH and 

does not occur below pH 4.5 in agricultural soils; forest soils that harbor 

heterotrophic nitrifiers can support nitrification even in slightly acidic conditions. 

This process requires an aerobic, mesic environment and is slow below 5°C 

(Paul and Clark 1996).

Nitrate can be reduced by other members of the Proteobacteria (Rhizobium, 

Alcaligenes, Pseudomonas) and Archaea (Haloarcula) (Prescott etal. 1999), and 

lost as environmentally detrimental gaseous byproducts of denitrification (Paul 

and Clark 1996). Denitrification is anaerobic respiration that uses oxidized 

inorganic forms of nitrogen as electron acceptors (Paul and Clark 1996, Prescott
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et al. 1999). Steps in this pathway are mediated by the enzymes nitrate 

reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase; 

the final product is nitrogen gas (N2) (Paul and Clark 1996). This process is 

inhibited in an oxygenated and/or acidic environment and has been observed in 

some diazotrophs but is temporally separated from nitrogen fixation because the 

enzyme nitrogenase is repressed by N03\  Denitrification has also been observed 

in some heterotrophic nitrifiers; the process is spatially separated but can occur 

at the same time as nitrification. If carbon supply is limited, incomplete reduction 

of NO3' can occur with a resulting accumulation of the nitrogen oxide gases. 

Denitrification potential decreases linearly with soil temperatures below 15°C (to 

a minimum at 5°C), and is optimal in oxygen limited soils with pH 6 - 8  (not 

detected below pH 4) (Paul and Clark 1996).

Nitrification and denitrification may be closely associated, especially at 

aerobic/anaerobic interfaces where the nitrification product, NO3' is readily 

available for reduction (Nicolaisen et al. 2004). Gaseous losses of nitrogen have 

been attributed to these coupled cycles, but Nicolaisen etal. (2004) suggest that 

plant roots are strong competitors for available nitrogen, so that in their presence 

loss to the atmosphere is minimized.
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1.5 Microbial communities

Nitrogen fixers are represented across most prokaryotic groups, and include 

organotrophic and phototrophic, aerobic and anaerobic microorganisms that 

possess the enzyme nitrogenase (Paul and Clark 1996, Zehr et al. 2003). The 

free-living aerobes such as Azotobacter and Beijerinckia can be found on the 

surface of roots and in the adjacent soil. Their high rates of respiration are one 

strategy to protect the nitrogenase enzyme from oxygen. The microaerophiles 

{Azospirillum, Bacillus) and anaerobes (Clostridium, Desulfovibrio) already 

occupy the anoxic environment required by this enzyme. There are also a 

significant proportion of diazotrophic cyanobacteria (Nostoc, Anabaena) above 

and below the soil surface that contribute greatly to nitrogen fixation in the arctic 

(Chapin and Bledsoe 1992, Liengen 1999, Paul and Clark 1996). Other aquatic 

species include the nitrogen fixing green and purple sulfur bacteria. Symbiotic 

actinomycetes such as Frankia fix nitrogen in association with the arctic plant 

Dryas (Paul and Clark 1996).

Based upon modes of nutrition, aerobic nitrifiers should be found at and just 

below the soil surface, where litter and humus are mineralized providing net 

available N H / (Paul and Clark 1996). It follows that the heterotrophic denitrifiers 

would be found at a depth where anaerobic conditions prevail, and where there is 

a carbon source, for example, below the rhizosphere (Paul and Clark 1996). 

Nicolaisen et al. (2004) confirm that abundance and activity of nitrifiers follows a
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distribution based upon the presence of 0 2 and NH4+ in the soil. By separating 

their samples into surface, bulk, or rhizosphere zones, they noted highest 

numbers and nitrification potential in the surface soil (2-3 cm deep) with lowest 

numbers and nitrification potential in the bulk soil (5-6 cm deep). The authors 

note that by overlooking the differences between these soil depths, the surface 

may not be appropriately recognized as an important nitrification site. In addition, 

molecular techniques can detect nitrifiers in deeper samples although they may 

simply be in a dormant state due to unfavourable anoxic conditions. Despite 

these findings, differences in nitrifier community structure were not apparent 

across the three zones; in fact, diversity was low overall when compared to other 

soil environments (Nicolaisen et al. 2004). Avrahami and colleagues (2002), also 

show that increased NH4+ availability promotes an increase in nitrous oxide 

production, especially via nitrification, without a corresponding community shift in 

the nitrifier community. However, when the denitrifier population was examined 

with Terminal Restriction Fragment Length Polymorphisms (T-RFLP) of the nirK 

gene, changes in diversity were detected that appeared to mirror changes in 

nitrous oxide (N20) contribution by the different microbial communities (Avrahami 

et al. 2 0 0 2 ).

Further studies by the same group showed a shift in the ammonia oxidizer 

community with temperature manipulations in the lab (Avrahami and Conrad

2003). Their previous measurements of increased nitrifier activity levels with 

fertilizer additions could not be attributed to a community shift; there may instead
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have been a physiological adaptation of the existing community. Avrahami and 

Conrad (2003) once again measured nitrification activity in fertilized treatments 

with different soil temperatures, moisture levels, and pH; the lowest activity was 

noted in the coolest soils. Using the gene target amok, the researchers showed 

that acidic soils had a higher diversity of ammonium oxidizers, and that both 

acidic and alkaline soils experienced a change in community structure with 

temperature manipulations. Most importantly, the researchers concluded that 

temperature was selecting for different ammonium oxidizing communities, and 

that long term temperature changes will result in changes to the community 

structure of these organisms in the natural soil environment (Avrahami and 

Conrad 2003).

1.6 Genetic diversity versus physiological function

The link between changes in microbial community structure, measured by 

changes in gene diversity, and corresponding changes in the processes 

mediated by these communities has not been satisfactorily established. 

Community shifts that do not affect microbial activity have been documented 

(Avrahami and Conrad 2003, Deslippe 2004) and changes in physiological 

function have been noted without affecting diversity at the genetic level (Gomez 

et al. 2004, Nicolaisen et al. 2004, Rich and Myrold 2004). It has been suggested 

that biotic and abiotic environmental factors can structure the genetic 

composition of a system, but that gene selection is not the only driver of microbial
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diversity (Zehr et al. 2003). Zehr et al. (2003) explain that a habitat not limited by 

nitrogen availability should not select for the functional genes required for 

nitrogen fixation. In such a habitat, the diversity of these genes should diminish, 

but the opposite has been documented, suggesting that function and diversity are 

not related in this system. Alternately, Rich et al. (2003) found a significant 

relationship between denitrifier community composition and denitrification activity 

on the basis of vegetation type. The proportional abundance of at least two 

dominant terminal restriction fragments clearly differed in a forested area of low 

denitrification versus a meadow with high activity (Rich etal. 2003). Further 

studies by the same group confirmed unique nosZ TRF communities at each of 

three distinct sites, but denitrifying activity measurements did not vary with 

microbial community structure (Rich and Myrold 2004). PCR plus denaturing 

gradient gel electrophoresis (DGGE) also failed to detect denitrifier community 

shifts corresponding to increasing N2O, but the same genetic marker revealed 

changes in diversity associated with the rise in N2O when gene expression was 

measured by real time PCR (RT-PCR) (Sharma et al. 2006). Although changes in 

the distribution of functional gene markers may not yet reliably predict changes in 

physiological function, techniques that measure the presence and/or relative 

abundance of functional genes are ideal for assessing microbial community 

structure (Tiedje et al. 1999, Zehr et al. 2003).
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1.7 Molecular techniques

Terminal Restriction Fragment Length Polymorphism (T-RFLP) is a molecular 

technique that allows researchers to examine the diversity of the microbial genes 

associated with important soil processes (Tiedje et al. 1999). The procedure uses 

polymerase chain reaction (PCR) amplification with fluorescently labeled primers 

and subsequent restriction digests of the PCR product to generate terminal 

restriction fragments (TRFs) that are representative of unique taxonomic units. 

The presence and relative abundance of these fragments are interpreted by an 

automated sequencer, and their patterns can be used to describe differences in 

gene distribution and richness (Dunbar et al. 2000, Tiedje et al. 1999). This 

assessment of microbial community structure can be used to compare the 

differences in potential gene function based upon larger scale environmental 

change especially where species diversity is low or moderate (Engebretson and 

Moyer 2003). The technique is rapid and repeatable, but may overestimate 

similarity and thus underestimate diversity when compared to cloning and 

sequencing methods (Dunbar et al. 2000). It is highly dependent on the choice of 

restriction enzyme; accurate measures of diversity require that all unique 

restriction sites are identified (Dunbar et al. 2000, Engebretson and Moyer 2003).
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Chapter 2. Detection of shifts in microbial functional gene (nosZ and nifH) 
distribution due to long term warming of a high arctic soil.

2.1 Introduction

Climate change is expected to disproportionately affect arctic and antarctic 

latitudes (Hassol 2004, Maxwell etal. 1992). Positive feedbacks due to changes 

to polar weather patterns and ecosystems will further affect global climate. 

Current climate change models assume a doubling of atmospheric carbon 

dioxide (CO2) concentration in less than fifty years. The effects are dramatic: 

within 100 years, annual arctic temperature may be 3-5 °C higher, with winter 

temperatures as much as 4-7 °C higher over land than they are currently (Hassol 

2004, Maxwell et al. 1992). Most researchers agree that overall annual global 

precipitation will increase, and, like temperature, will be greater at the poles. 

Contradictions arise regarding net soil moisture; some suggest an increase due 

to melting of the permafrost layer and earlier snowmelt, while others hint at a 

decrease due to better drainage and increased evaporative losses (Hassol 2004, 

Kane etal. 1992, Maxwell et al. 1992). Increased surface temperature resulting in 

heat transfer to the soil via conduction has also been assumed (Kane et al.

1992).

There are coastal lowlands in the high arctic with greater productivity and species 

diversity due to different temperature and moisture regimes than the surrounding 

desert-like plateaus (Freedman etal. 1994). These unique ecosystems provide 

excellent study sites for the predicted changes due to global warming because of
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seasonal extremes in solar energy and precipitation, and because these areas 

are expected to experience the greatest transitions (Freedman et al. 1994, 

Maxwell et al. 1992). The research site at Alexandra Fiord is on the northern side 

of Johan Peninsula, on the eastern coast of Ellesmere Island, Nunavut 

(Freedman et al. 1994). The study area encompasses a lowland outwash plain, 

bordered by ocean to the north and glacier to the south, and by the cliffs of an 

upland plateau, up to 750 m higher on the east and west. Polyethylene open- 

topped chambers (OTCs) have been established across various gradients at this 

site, and many studies have taken place over the last decade. Warming due to 

these small greenhouses has been shown to increase plant productivity and 

create community shifts compared to adjacent control plots on wet, moist, and 

dry lowland, and on granitic and dolomitic upland sites (Freedman etal. 1994, 

Rolph 2003, Walker et al. 2006).

All lowland sites and both the granitic and dolomitic upland sites are considered 

nutrient (especially nitrogen) limited, but even slight increases in both 

temperature and precipitation can lead to deeper active layers, higher rates of 

chemical transformations and ultimately, more nutrient availability (Berendse and 

Jonasson 1992, Muc et al. 1994). Changes in soil moisture status will impact 

microbial processes such as decomposition in dry, moist, and wet arctic 

ecosystems; the resulting combination of moisture and temperature will dictate 

organic matter turnover rates, and ultimately ammonium (NH4+) availability via 

mineralization (Paul and Clark 1996, Nadelhoffer et al. 1992). It is possible that
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future arctic environments will be less nitrogen limited due to a predicted rise in 

nitrogen fixation with increased enzyme activity and levels of carbon dioxide 

(Chapin and Bledsoe 1992) but in general, nitrogen fixation is not favoured in the 

presence of available nitrogen (N) therefore an increase in mineralization with 

warming could stall this process in the arctic (Paul and Clark 1996).

Direct increases in nitrification due to higher temperatures may be in addition to 

the increases attributed to a higher availability of substrate if warming does 

indeed promote mineralization (Nadelhoffer et al. 1992). Nitrification and 

denitrification may be closely associated, especially at aerobic/anaerobic 

interfaces where the nitrification product, nitrate (NO3') is readily available for 

reduction (Nicolaisen et al. 2004). If soil warming is favourable for nitrification, it 

may also stimulate denitrification and subsequent nitrous oxide (N20) production 

(Paul and Clark 1996). We know that experimental nutrient amendments 

increase the rates of N20  production, but it still has not been confirmed if this is 

correlated with the genetic structure of denitrifier communities (Rich and Myrold

2004). Additionally, a habitat with excess nitrogen should not select for the 

functional genes required for nitrogen fixation (Zehr et al. 2003) but the diversity 

of the nitrogen fixing community has not been shown to diminish in such cases 

(Piceno and Lovell 2000a).
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The objective of this study was to investigate changes in the frequency, relative 

abundance and richness of the functional genes nosZ and n/7H as markers for 

denitrification and nitrogen fixation respectively. We were looking for shifts in the 

denitrifying and nitrogen fixing soil microbial communities from sites with different 

dominant plant communities, on different parent material and across different 

moisture regimes after a thirteen year warming experiment in the High Arctic. Our 

null hypothesis was that long term warming treatments would not alter microbial 

community structure.
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2.2. Methods

2.2.1. Site description

The research site at Alexandra Fiord is on the northern side of Johan Peninsula, 

on the East coast of Ellesmere Island, Nunavut (78°53’ N, 75°55’ W) (Freedman 

et al. 1994). The study area encompasses a lowland outwash plain, bordered by 

ocean to the north and glacier to the south, and by the cliffs of an upland plateau, 

up to 750 m higher on the east and west.

The topography of the area leads to warmer temperatures and greater 

accumulations of water in the lowland plain than the surrounding landscape; this 

qualifies the lowland as a true polar oasis (Freedman et al. 1994). There is a 

relatively large amount of organic matter in the young soils, and diverse 

vegetation including cushion plants and dwarf shrubs. In summer, the dark soil 

surface results in a low albedo which contributes to higher air and soil 

temperatures at this site than those measured at the next closest weather 

stations in Eureka and Resolute (Labine 1994).

The regoliths of the upland area are drier overall than the lower site, but support 

some of the same plant species on both granitic and dolomitic parent rock 

(Freedman et al. 1994). During the growing season this area experiences below 

zero air temperatures and less absorbed solar radiation than the coastal lowland 

(Labine 1994).
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Five distinct sites are investigated in this study (Figure 2). They differ primarily by 

dominant plant community, and each corresponds to a particular soil moisture 

gradient and/or soil parent material (Muc et al. 1989).

All soils at the three lowland sites are derived from granitic material. The Sedge 

Meadow site (SM) is characterized as the wettest (hydric) with a thick organic 

layer over mineral soil and a pH range of 6.6 in surface soils to 5.9 in deeper 

layers. It is dominated by Sedge, Cushion Plant, and Dwarf Shrub species that 

include Carex stans, Polygonum viviparum and Vaccinium uliginosum plus 

hummocks of Salix arctica and Dryas integrifolia. The Cassiope Heath site (CH) 

has an average of 3-5 cm of organic soil over coarse mineral soil with a pH range 

of 4.9 -  5.4; the site is described as hydric-mesic. Cushion Plant and Dwarf 

Shrub species at this location include Cassiope tetragona, which dominates, plus 

S. arctica, D. integrifolia, and Saxifraga oppositifolia. The driest (mesic-xeric) 

lowland site is Riverside Willow (RW). Sandy mineral soils here range in pH from 

5.2 to 4.6, and support the greatest plant diversity of all sites. Deciduous dwarf 

shrubs and graminoid species are present, primarily Salix arctica and including 

Festuca brachyphylla.

The Upland Granite (UG) and Upland Dolomite (UD) study sites are distinguished 

by the origin of their mineral soils and this is reflected in their soil pH. UG has an 

acidic pH range of 4.9 -  5.5, while the alkaline UD has an average pH of 7.9.

Both sites are xeric, though UD is somewhat drier, and are dominated by the
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deciduous dwarf and semi-evergreen shrubs S. arctica and Dryas integrifolia 

(Klady 2006, personal correspondence, Muc et al. 1989). Site data collected in 

previous experiments at this study area are summarized in Table 1.
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Figure 2: Layout of the Alexandra Fiord Study area showing the three lowland 
sites (Sedge Meadow, Cassiope Heath, and Riverside Willow) and the two 
upland sites (Upland Granite and Upland Dolomite). Contour intervals are 100 m 
(modified from Sterenberg and Stone 1994).
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Site T reatment pHa s w c b Air temp (°C)C Soil temp (°C)c
SM Control 6.3 86.3 8.35 6.40

OTC 91.3 9.81 7.05
CH Control 5.2 37.6 8.61 9.16

OTC 40.0 8.90 9.36
RW Control 4.9 39.6 8.48 9.19

OTC 39.0 9.55 9.66
UG Control 5.2 0.120 n/a n/a

OTC 0.125
UD Control 7.9 0.083 n/a n/a

OTC 0.070
a pH average over upper and lower soil samples (Klady, persona correspondence) 
b approximate volum etric SW C (%) (lowland) and gravim etric SWC (g H20/g soil) (upland) 
averaged over growing season (data compiled from  Rolph 2003)
c air temperature at +10 cm and soil temperature at -10 cm (SM) or -2 cm (CH and RW) averaged 
over growing season (Rolph 2003)

Table 1: Individual site data collected during other warming experiments at 
Alexandra Fiord include soil pH, soil water content (SWC) and both air and soil 
temperatures.

2.2.2. Experimental design

Open Topped Chambers (OTCs)

All lowland treatments plots had 1.8m2 hexagonal transparent fiberglass 

chambers with 0.5m high inclined sides in place where limited non-destructive 

sampling had occurred since their installation in 1992 (Rolph 2003). OTCs were 

installed at the upland site the following year, but these sites were faced with an 

increased exposure to wind and some of the treatment plots were missing a 

warming chamber, while others had been replaced with a smaller version of the 

original OTC in 2002 (Klady, personal correspondence June 2006). These 

structures remained in place throughout the year and did not cause a significant
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difference in SWC when this factor was measured in 2001 (Rolph 2003). Based 

upon data averaged over the 2001 growing season, OTCs at the lowland sites 

increased air temperatures by 0.3 to 1.5°C and soil temperatures up to 0.7°C at - 

10 cm (Table 1).

Control plots

For all lowland sites, adjacent control plots were 25 paces from their associated 

OTC in a direction perpendicular to the overall site layout in order to preserve the 

original random location of each treatment plot. For both upland sites, the same 

method was used, but was limited to 10 paces due to size constraints of the area.

Randomization

Random sampling was accomplished with a random numbers table plus a 50 cm 

X 50 cm quadrat. The quadrat was always placed as close to the center of each 

OTC as was practical, or was dropped at 25 or 10 paces from the OTC for every 

control plot. The quadrat was divided into 5 cm X 5 cm squares that easily 

accommodated the soil corer, and the numbers table was used to choose rows 

and columns for sampling.

Soil sampling

Four OTC pairs (one OTC plus one adjacent control plot) were sampled at each 

of the five sites: three on the lowland (Sedge Meadow, Cassiope Heath and 

Riverside Willow) and two on the upland (Granitic and Dolomitic). Sampling
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occurred once at each site over a period of peak plant growth (Rolph 2003) from 

July 18 to 27, 2004. Six 2 cm diameter soil cores were taken from each OTC and 

from each of the corresponding control plots. A 45 cm long soil corer was used, 

and samples were recovered from the top 5 cm (upper) and the bottom 5 cm 

(lower) layers based upon the depth of the core. This corer adequately 

represented all sites as the active layer never extended beyond its reach. Upper 

samples were always taken from the top 0-5 cm of the soil core, while the 

average depths of lower samples were as follows: Sedge Meadow 39-44 cm, 

Cassiope Heath 38-43 cm, Riverside Willow 34-39 cm, Upland Granite30-35 cm, 

and Upland Dolomite 8-13 cm. Cores that were not at least 10cm deep were 

rejected so that a separation could always be made between the top and bottom 

5 cms. Approximately 1 g of soil was taken from each of the six replicates at the 

two different depths. This yielded 12 x 1 g soil samples from each OTC plus 12 x 

1 g soil samples from each control plot. The twenty-four samples from each OTC 

pair, for four pairs at each of five treatment sites, resulted in 480 x 1 g samples 

frozen for transport back to UNBC for DNA extraction.

2.2.3. Preservation and transport

The 1 g samples remained frozen on site in an underground ‘permafrost 

refrigerator’ in 2 mL microcentrifuge tubes and in sealed airtight bags until 

transport to UNBC. Every attempt was made to keep the samples frozen at -20°C 

during transport and upon return to UNBC until ready for DNA extraction.
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2.2.4. Field measurements

Air and soil temperature, soil water content (SWC), and soil chemical analysis 

were to be provided by Dr. GHR Henry (Alexandra Fiord HEX Research Site 

Supervisor, UBC Department of Geography) upon return to UBC in the fall of 

2004. Additional soil cores were collected for this purpose from representative 

plots across all sites during the 2004 growing season. This information was to 

include (at least) air and soil temperature at +10, -2 and -10 cm from data 

collected by thermocouples and data loggers at each site, along with SWC, pH, 

and C:N. Data from the 2004 growing season is currently being compiled and is 

not yet available as of June 2006 (Klady, personal correspondence June 2006).

Data from throughout the 2001 growing season was collected as follows (Rolph 

2003):

Soil and air temperature at the Sedge Meadow site were measured at -10cm and 

+10cm, respectively. Hobo® Pro Temperature loggers (H8, Onset Computer 

Corp. MA, USA) with thermistors connected to Pocket Data Loggers (XR220, 

Pace Scientific, NC, USA) were employed for this purpose. Thermocouples 

connected to data loggers (CR-10, Campbell Scientific Inc., UT, USA) were used 

to collect soil and air temperature data at -10 cm, -2 cm, and +10 cm at both the 

Cassiope Heath and Riverside Willow sites. Volumetric SWC was measured with 

Hydrosense™ probes (Campbell Scientific Inc., UT, USA) at lowland sites while 

gravimetric SWC was assessed by soil cores from upland sites. Measurements 

were made four times throughout the season at both control and OTCs with the

- 2 6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



exception of the upland sites; in this case OTCs were sampled only once at the 

end of the season.

2.2.5. DNA extraction and PCR

DNA extractions were performed with the MoBio UltraClean™ Soil DNA Isolation 

Kit (MoBio Laboratories, Inc., CA, USA) according to the “Alternative Protocol for 

maximum yields”. Spectrophotometric analysis of extractions revealed final DNA 

concentrations of 50-150 ng/pl.

Each extraction was amplified with two different primer pairs. Functional genes 

targeted included those that code for the denitrification enzyme nitrous oxide 

reductase (nosZ), and for the nitrogen fixing enzyme nitrogenase (n/ftH). 

Degenerate primer pairs were designed, tested and optimized for the genes nosZ 

(Throback et al. 2004), and nifH (Deslippe 2004).

The half-nested nosZ amplification utilized the primers nosZ-F (5’-CG(C/T) TGT 

TC(A/C) TCG ACA GCC AG-3’) (Kloos et al. 2001 [In Throback et al. 2004]) and 

nosZ1622R (5-CGC (G/A)A(C/G) GGC AA(G/C) AAG GT(G/C) CG-3’) (Throback 

et al. 2004) for the primary amplification. The secondary reverse primer 

Nos1773R (5’-AAC GA(A/C/G) CAG (T/C)TG ATC GA(T/C) AT-3’) (Throback et 

al. 2004) was labeled with Light Sabre Blue (D4) dye (Synthegen, LLC). Each 

30pl PCR reaction contained 3 pL 1:10 dilutions of genomic DNA, 1X PCR 

Buffer, 0.2 mM dNTPs, 2.0 mM MgCI2, 0.04 pM of each primer, and 0.75 U
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Platinum Taq DNA Polymerase (Invitrogen). The secondary PCR mix differed 

only in MgCh concentration (2.125 mM). Thermocycler conditions were the same 

for both reactions: a 2 minute denaturation step at 94°C was followed by 35 

cycles of denaturing, annealing and extension at 94°C for 30 seconds, 55°C for 1 

minute, and 72°C for 1 minute respectively. The final extension required 10 

minutes at 72°C.

The half-nested n/flH protocol used Nh21 F (5’-GCIWTITAYGGNAARGGNGG-3’) 

and WidNhR (5’-GCRTAIABNGCCATCATYTC-3’) for the primary PCR reaction 

(Widmer et al. 1999) and Nh428R (5’-CCRCCRCANACMACGTC-3’) for the 

second amplification (Deslippe 2004)(sequences follow standard IUPAC notation 

for mixed bases). The reverse primer Nh428R was labeled with Synthegen Light 

Sabre Green (D3) dye. Each 31.2 pi PCR reaction contained 4.5 pL 1:10 

dilutions of genomic DNA, 1X PCR Buffer, 0.2 mM dNTPs, 2.0 mM MgCb, 0.04 

pM of each primer, and 0.75 U Platinum Taq DNA Polymerase (Invitrogen). 

Thermocycler conditions were the same for both reactions: a 1 minute 

denaturation step at 94°C was followed by 35 cycles of denaturing, annealing 

and extension at 94°C for 45 seconds, 53°C for 45 seconds, and 72°C for 1 

minute 30 seconds respectively. The final extension required 10 minutes at 72°C.

PCR product success and quality was assessed by 1 % agarose gel 

electrophoresis and visualized by staining with ethidium bromide. Bands of 

expected size (approximately 250bp for nosZ and approximately 400bp for n/7H)

- 2 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



were cleaned via ethanol precipitation and then resuspended in pH 8.0 Tris- 

EDTA Buffer.

2.2.6. T-RFLP

Restriction enzymes used included Hha\ for nosZ product and Mbo\ for nifH plus 

corresponding REACT 2 buffer for both endonucleases (Invitrogen). Enzymes 

were selected based upon number of restriction sites targeted (and therefore 

fragments generated); a series of endonucleases were tested on replicate 

samples and those that identified the greatest amount of variation were chosen. 

For each reaction, 6 pL of PCR product was digested with 2.5 U enzyme and 1X 

buffer. Digests were incubated at 37°C for at least 5 hours and the reactions 

were terminated at 65°C for 10 minutes. Digested fragments were desalted by 

ethanol precipitation and resuspended in formamide. Fragments were prepared 

for analysis as suggested by the manufacturer for the Beckman-Coulter CEQ™ 

8000 Fragment Analysis System (Beckman-Coulter Inc.) for 40pl non-multiplexed 

samples, although resuspended fragments were not diluted 1:10 prior to loading. 

For each reaction, 2.5 pL of dye-labeled, digested, desalted product was 

combined with 37.0 pL of Sample Loading Solution (SLS) and 0.5 pL of 400 bp 

size standard.

Fragments were binned and analyzed in the AFLP program of the CEQ™ 8000 

Sequencer (Beckman-Coulter Inc.). Analysis parameters were as per the 400 

size standard cubic model with minimum relative peak height set at 1% and a bin
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width of 3 bp. At least four of six field replicate samples from each of two soil 

depths were analyzed individually for all four treatment and all four control plots 

from all five sites. Gene community profiles were constructed using only peak 

heights generated by the sequencer that passed analysis. These peaks 

represented distinct terminal restriction fragments (TRFs) which in turn 

corresponded to unique genotypes. Samples that failed due to contamination 

during fragment analysis or undetected size standard were deleted so that they 

were not counted with zero-activity samples.

TRF frequency was determined for each sample by averaging the binary data for 

all successful field replicates. For example, if a TRF was present in 3 of 6 sample 

replicates, its frequency was designated 0.50 for that sample. This made it 

possible to compare samples with only 4 successful field replicates after PCR to 

those with 5 or 6. In order to establish the relative abundance of TRFs, the 

fluorescent signal strength of each peak was relativized to total peak area for 

each successful field replicate. Once the relative abundance of TRFs was 

determined for each sample rep, the average was calculated to determine the 

relative abundance of TRFs for that sample.

2.2.7. Statistical analysis

Community composition was investigated graphically with Nonmetric 

Multidimensional Scaling (NMS) calculated on the basis of a Sorensen distance

- 3 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



measure. All ordinations were run with PC-ORD 4.0 software (McCune and 

Mefford 1999) using random starting coordinates. A stepwise reduction in 

dimensionality was used to minimize stress and 40 runs with real data were 

accomplished in autopilot mode. Stress is defined as excellent below 5, good 

below 10, and fair above ten; caution is advised when interpreting ordinations 

with values approaching 20 (McCune and Grace 2002).

Any differences observed in frequency and/or abundance of TRFs were tested 

statistically with nested permutational multivariate ANOVA (PERMANOVA) in 

order to examine the effects of Site, Treatment, and Depth (Anderson 2005). A 

large number of unique permutable units allowed us to establish significance 

using permutation P-values versus Monte Carlo P-values.

Genotypic richness was assessed by comparing differences in the number of 

TRFs at each site, depth and treatment (Dunbar et al. 2000). Each TRF 

represents a unique genotype so that an increase or decrease in these numbers 

reflects an increase or decrease in genotype richness (Tiedje et al. 1999). 

Nested ANOVA (Statistica 6.0) was used to detect overall significant differences 

between sites and due to depth or treatment at all sites. Once this was 

determined, one-way ANOVA was then used to test statistical significance 

between sites pairwise, and to investigate differences due to depth or treatment 

unique to each site. For all statistical tests, a significance level of p < 0.05 was 

accepted.
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2.3. Results

2.3.1 Gene frequency and relative abundance

Site effect

TRF frequency and relative abundance was shown to differ overall by site in 

NMS ordinations of both nosZ and nifH functional genes. Additionally, 

PERMANOVA suggested significant overall support for an effect of the factor 

“Site” upon examining the frequency data of both functional genes (p=0.0001). 

PERMANOVA analysis also confirmed a site effect for the relative abundance 

data of both nosZ (p=0.0001) and n/YH (p=0.0012).

More specifically, PERMANOVA showed significant differences in nosZ TRF 

frequency between the Sedge Meadow and all other sites: SM and CH 

(p=0.0269), SM and RW (p=0.0276), SM and UG (p=0.0274), and SM and UD 

(p=0.0307). Additionally, dissimilarities were detected between CH and both 

upland sites (UG p=0.0287 and UD p=0.0281) plus RW and both upland sites 

(UG p=0.0305 and UD p=0.0301). Interestingly, the upland sites also differed 

from each other (p=0.0285). These differences are illustrated in Figure 3a. An 

NMS graph (Figure 4) shows nosZ frequency data grouping clearly by Site. It 

illustrates the unique nature of SM, and the similarities between CH and RW. The 

recommended three dimensional solution required 400 iterations and resulted in 

a good final stress of 9.07458 and a final instability of 0.00411. Together Axes 1 

and 3 explain 72.4% of the variance, while Axis 2 adds 23.1% (cumulative 

r2=0.954).
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Specific differences in n/'fH TRF frequency were detected by PERMANOVA 

between SM and CH (p=0.0265), SM and UD (p=0.0281), CH and RW 

(p=0.0281), CH and UD (p=0.0285), RW and UG (p=0.0279) and finally RW and 

UD (p=0.0289). These dissimilarities are illustrated more clearly in Figure 3b. 

Figure 5 shows n/flH frequency data grouping generally by Site for RW and UD, 

with weak differentiation of the other three sites. This illustrates the unique nature 

of UD, but that the other sites are not enormously different from each other. The 

recommended two dimensional NMS solution required 400 iterations and 

resulted in a fair final stress of 13.543 and a final instability of 0.00401. Together 

these two axes explain 92.2% of the variance but the image should be 

interpreted cautiously due to high stress and instability values.

Figures 6 and 7 show only the top 20 most frequent TRFs over all sites, and how 

they are distributed. The former shows differences in nosZ TRF distribution 

between all fives sites, while the latter reflects the same for n/flH.

Figure 3: Arrows indicate significant differences in the frequency of nosZ (a) and 
n/YH (b) TRFs between sites.
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Figure 4: NMS plot of nosZ TRF frequency by Site p=0.0196. Sites are: Sedge 
Meadow (SM), Cassiope Heath (CH), Riverside Willow (RW), Upland Granite 
(UG), and Upland Dolomite (UD).
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Figure 5: NMS plot of nifH TRF frequency by Site p=0.0196. Sites are: Sedge 
Meadow (SM), Cassiope Heath (CH), Riverside Willow (RW), Upland Granite 
(U G ), and Upland Dolomite (UD).
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Terminal Restriction Fragment

Figure 6: Distribution of the top 20 most frequent nosZ TRFs over all Sites. Sites 
are: Sedge Meadow (SM), Cassiope Heath (CH), Riverside Willow (RW), Upland 
Granite (UG), and Upland Dolomite (UD).

Sedge Meadow was defined by the presence of a few dominant TRFs; only 6 

nosZ TRFs showed a frequency greater than 0.50 (Figure 6). These are present 

in two main clusters: 196/198/200 and 249/251/252. This site is structured by 

TRF 198 (0.943), TRF 196 (0.749), TRF 251 (0.724), TRF 252 (0.611), TRF 249 

(0.568), and TRF 200 (0.565). A greater number of distinct TRFs were present at 

Cassiope Heath and Riverside Willow and many were shared between both sites. 

The most frequent CH TRFs are 251 (0.889) 183 (0.866), 200 (0.802), 203 

(0.801), and 198 (0.795). These are similar to those at RW: 251 (0.948), 193 

(0.780), 183 and 198 (both 0.734), and 249 (0.715). TRF 251 dominated both 

upland sites as well (UG, 0.669 and UD, 0.889) but all other UG TRFs were far 

less frequent: 249 (0.481), 123 (0.455), 198 (0.310), and 223 (0.306). UD also 

contained TRFs 123 (0.700), 196 (0.651), 198 and 223 (both 0.643).
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Terminal Restriction Fragment

Figure 7: Distribution of the top 20 most frequent nifH TRFs over all Sites. Sites 
are: Sedge Meadow (SM), Cassiope Heath (CH), Riverside Willow (RW), Upland 
Granite (UG), and Upland Dolomite (UD).

Subtle changes in the distribution of the most frequently present individual nifH 

TRFs explained some of the differences between sites (Figure 7). nifH TRFs with 

the greatest freq at the SM were 83 (0.874), 192 (0.846), 141 (0.840), 92 (0.838), 

and 122/222 (both 0.806) (Figure 7). At the CH, TRF83 (0.888) was also the 

most frequent, but then TRF distribution differs: 102 (0.698), 141 (0.670), 122 

(0.658), and 162 (0.627). RW TRFs present with the highest frequency are 222 

(0.895), 83 (0.893), 182 (0.881), 162 (0.874), 141 (0.858). Most frequent at UG is 

TRF 83 (0.884), followed by 92 (0.838), 192 (0.767), 141 (0.721), and 162 

(0.701). The UD site is different from most with a very uniform frequency of 

common TRFs: 282 (0.935), 122, 182 and 322 (all 0.931), and 222 (0.928).
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Figure 9 shows nosZ relative abundance data separating loosely by site and 

includes an overlay of the most abundant nosZ TRFs. This view of a three 

dimensional NMS solution explains 76.7% of the variance; axis 3 explains an 

additional 16.7% (cumulative r2=0.934). Final stress was fair (10.46472) and final 

instability was 0.00001 after 108 iterations. Pairwise PERMANOVA comparisons 

confirm dissimilarity between the Sedge Meadow site and all others: SM and CH 

(p=0.0274), SM and RW (p=0.0304), SM and UG (p=0.0291), and SM and UD 

(p=0.0267). There were significant differences when the two additional lowland 

sites were compared individually to the upland sites and when the upland sites 

were compared to each other: CH and UG (p=0.0309) or UD (p=0.0255), RW 

and UG (p=0.0278) or UD (p=0.0301), and finally UG and UD (p=0.0310). These 

relationships are compared in Figure 8. Differences in the distribution of the top 

20 most abundant nosZ TRFs over all five sites are shown in Figure 10.

Figure 8: Arrows indicate significant differences in the relative abundance of 
nosZ TRFs between sites.
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Figure 9: NMS plot of nosZ TRF relative abundance by Site showing distribution 
of the 20 most abundant TRFs p=0.0196. Sites are: Sedge Meadow (SM), 
Cassiope Heath (CH), Riverside Willow (RW), Upland Granite (UG), and Upland 
Dolomite (UD). Crosses mark TRF location and numbers reflect fragment length 
in base pairs (bp).
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Figure 10: Distribution of the top 20 most abundant nosZ TRFs over all Sites

The Sedge Meadow is clearly dominated by TRF 198 (45.4%) while TRF 251 

only makes up 14.4% of the gene community followed by TRF 252 (9.0%), TRF 

249 (8.1%), and TRF 196 (7.8%) (Figure 10). TRF 251 is the most abundant at 

CH (35.1%), RW (37.7%) and UD (28.0%). The next most abundant at CH is 

TRF 249 (15.8%) followed by TRF198 at 10.5%, TRF 123 (7.4%), and TRF 200 

(7.2%). TRFs 249 (17.8%), 198 (17.3%), 123 (7.7%), and 200 (7.0%) complete 

the RW community. The remainder of the UD site is completed by TRFs 198 

(11.5%), 196 (11.1%), 252 (9.4%), and 249 (8.0%). At the UG site, TRF 123 is 

slightly more abundant than TRF 251 (28.6% vs. 26.8%). Other TRFs with 

substantial abundance are 249 (12.2%), 223 (6.1%), and 103 (6.0%).
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Figure 12 is an NMS graph showing nifH relative abundance data separating 

clearly by site; it includes an overlay of the most abundant nifH TRFs across all 

sites. This view of a three dimensional solution explains 51.4% of the variance; 

axis 3 explains an additional 26.1% (cumulative ^=0.775). Final stress was fair 

(14.91999) and final instability was 0.00001 after 86 iterations. Pairwise 

PERMANOVA comparisons confirmed dissimilarity between the Sedge Meadow 

site and all others: SM and CH (p=0.0314), SM and RW (p=0.0273), SM and UG 

(p=0.0292), and SM and UD (p=0.0283). In addition, there were significant 

differences between CH and RW (p=0.0298), CH and UD (p=0.0293), RW and 

UG (p=0.0313), and finally RW and UD (p=0.0280). These dissimilarities are 

illustrated more clearly in Figure 11. Figure 13 shows the top 20 most abundant 

nifH TRFs over all five sites, and how they were distributed.

SM

CH UD

RW UG

Figure 11: Arrows indicate significant differences in the relative abundance of 
nifH TRFs between sites.
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Figure 12: NMS plot of n/7H TRF relative abundance by Site showing distribution 
of the 20 most abundant TRFs p=0.0196. Sites are: Sedge Meadow (SM), 
Cassiope Heath (CH), Riverside Willow (RW), Upland Granite (UG), and Upland 
Dolomite (UD). Crosses mark TRF location and numbers reflect fragment length 
in base pairs (bp).
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Figure 13: Distribution of the top 20 most abundant nifH TRFs over all sites

The relative abundance of individual nifH TRFs shows that each site had a 

unique distribution of genotypes (Figure 13). The SM site was composed of a 

number of different genotypes in low abundance: TRFs 92 (10.6%), 222 (8.4%), 

299 (5.4%), 192 (4.7%) and 83 (4.2%). CH was structured instead by TRF 83 

(16.2%), in addition to TRF 80 (10.7%), TRF 299 (5.4%), TRF 78 (3.6%), and 

TRF 260 (2.7%). The most abundant TRFs at RW were 278 (14.4%), 80 (9.4%), 

280 (7.6%), 83 (5.2%), and 384 (3.7%). The upland sites shared the most 

abundant TRF, although in very different proportions to the rest of the genotype 

community. UG was represented by TRFs 384 (17.4%), 83 (12.1%), 299 (9.7%), 

257 (8.1%), and 296 (5.3%), while at UD TRF 384 accounted for almost half of 

the total genotype abundance (49.6%). Only a few other TRFs were represented 

at UD, but in low abundance: 260 (3.4%), 83 (3.3%), 292 (2.6%), and 382 (2.5%).
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Depth effect

PERMANOVA tests did not support an overall effect of the factor Depth for nosZ 

frequency data, but did suggest a significant difference in the relative abundance 

of nosZ TRFs by depth over all sites (p=0.001).

Figure 14 shows nosZ frequency data for the Upland Dolomite site only and 

highlights the dissimilarity between upper and lower samples. This two 

dimensional NMS solution shows how the top 20 most frequent nosZ TRFs were 

distributed by depth (cumulative r2=0.937). A good final stress of 7.70589 and 

final instability of 0.00001 added confidence to this ordination which required 66 

iterations. PERMANOVA supported the separation of both the control samples 

(p=0.0301) and the OTC samples (p=0.0285) by depth.

Figure 15 shows the top 20 most frequent nosZ TRFs for the Upland Dolomite 

site only, and how they were distributed between depths. This NMS graph 

combines both Control and OTC samples. TRFs with the greatest presence in 

upper samples were 198 (0.979), 196 (0.954), 251 (0.936), 200 (0.835), and 249 

(0.792), while lower samples contained TRFs 251 (0.840), 123 (0.777), 223 

(0.704), 84 (0.590), and 103 (0.565)
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Figure 14: NMS plot of nosZ TRF frequency by Depth for the Upland Dolomite 
site showing the top 20 most frequent TRFs (p=0.0196). Depths are upper (U) or 
lower (L), and all numbered samples are labeled control (C) or OTC (O). Crosses 
mark TRF location, and bold number reflects fragment length in base pairs (bp).
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Figure 15: Distribution of the top 20 most frequent nosZ TRFs from Control and 
OTC samples of the Upland Dolomite Site
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Pairwise PERMANOVA comparisons of nosZ relative abundance data confirmed 

dissimilarity between upper and lower samples at Sedge Meadow OTCs 

(p=0.0304). Figure 16 is the NMS ordination of Sedge Meadow samples only, 

highlighting those from OTCs, with Axis 1 (1^=0.133) and Axis 2 (r2=0.827) 

explaining 96.0% of the variance. This two dimensional NMS solution shows how 

the top 20 most abundant nosZ TRFs were distributed at two depths; it required 

76 iterations and resulted in a good final stress of 6.99352 and final instability of 

0.00001. Figure 17 shows the distribution of the top 20 most abundant nosZ 

TRFs in OTC samples from the Sedge Meadow site. Upper samples are 

composed of TRFs 198 (23.7%), 251 (19.7%), 196 (11.1%), 200 (9.7%), and 249 

(9.4%); TRF 198 dominates lower depths (81.7%) with further contribution by 

TRF 252 (6.7%), TRF 196 (5.0%), TRF 251 (2.1%) and TRF 200 (1.9%).
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Figure 16: NMS plot of nosZ TRF relative abundance by Depth for the Sedge 
Meadow site showing the top 20 most abundant TRFs (p=0.0196). Depths are 
upper (U) or lower (L), and all numbered sam ples are labeled either control (C) or 
OTC (O) (OTC icons are larger in order to highlight the statistical significance of 
their separation). Crosses mark TRF location and numbers (bold) reflect 
fragment length in base pairs (bp).
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Figure 17: Distribution of the top 20 most abundant nosZ TRFs from OTC 
samples of the Sedge Meadow Site.

Pairwise PERMANOVA tests of nosZ relative abundance data also suggested 

specific differences between upper and lower samples at the Upland Dolomite 

control plots (p=0.0301) site. Figure 18 is a two dimensional NMS solution 

highlighting control samples, and showing how the top 20 most abundant nosZ 

TRFs were distributed at two depths. This solution required 52 iterations and 

resulted in a good final stress of 9.49054 and final instability of 0.00001. Axes 1 

(r2=0.210) and 2 (r2=0.691) together explain 90.1% of the variance. Figure 19 

shows the distribution of the top 20 most abundant nosZ TRFs for control 

samples from the Upland Dolomite Site. Upper samples were co-dominated by 

TRFs 196 (18.0%), 251 (17.8%), 198 (14.1%), 249 (13.7%), and 252 (7.2%), 

while lower samples were dominated by TRF 251 (39.2%), with TRF 252 

(12.1%), TRF 123 (11.5%), TRF 103 (8.2%), and TRF 249 (6.3%) also present.
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Figure 18: NMS plot of nosZ TRF relative abundance by Depth for the Upland 
Dolomite site showing the top 20 most abundant TR Fs (p=0.0196). Depths are  
upper (U) or lower (L) and all numbered samples are labeled either control (C) or 
OTC (O) (control icons are larger in order to highlight the statistical significance 
of their separation). Crosses mark TRF location and numbers (bold) reflect 
fragment length in base pairs (bp).
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Figure 19: Distribution of the top 20 most abundant nosZ TRFs from Control 
samples of the Upland Dolomite Site

PERMANOVA tests suggested a significant difference in the frequency and 

relative abundance of nifH TRFs by depth over all sites (p=0.0001). Figure 20 is 

a two dimensional NMS ordination of Sedge Meadow nifH frequency data 

showing both control and OTC samples separating by depth and including the 

top 20 most frequent nifH TRFs at this site (cumulative 1^=0.938). This solution 

required 45 iterations and resulted in a final stress of 9.23682 and final instability 

of 0.00001; it reflects pairwise PERMANOVA tests showing that both control 

samples (p=0.0308) and OTC samples (p=0.0252) separate according to depth. 

Figure 21 shows the distribution of the top 20 most frequent nifH TRFs from both 

the Control and OTC samples of the Sedge Meadow Site. The upper samples 

had a slightly different distribution but most often included TRFs 92 (0.913), 141 

and 192 (both 0.906), 182 (0.844), and 83 (0.819). Lower samples contained 

TRFs 83 (0.929), 222 (0.894), 122 (0.831), 192 (0.785), and 141 (0.773).
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Figure 20: NMS plot of nifH TRF frequency by Depth for the Sedge Meadow site 
showing the distribution of the top 20 most frequent TRFs (p=0.0196). Depths are 
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in base pairs (bp).

a  Upper 

B Lower

Terminal Restriction Fragment

Figure 21: Distribution of the top 20 most frequent nifH TRFs from Control and 
OTC samples of the Sedge Meadow Site
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Figure 22 is a two dimensional NMS ordination of Upland Granite nifH frequency 

data showing control samples separating by depth and including the top 20 most 

frequent nifH TRFs at this site (cumulative r2=0.932). This solution required 72 

iterations and resulted in a good final stress of 8.31342 and final instability of 

0.00001. PERMANOVA supported the separation of control samples by depth 

(p=0.0319). Figure 23 represents the top 20 most frequent nifH TRFs from the 

Upland Granite Site; only the control samples are shown in this graph. The upper 

samples were represented by TRFs 384 (0.846), 83 (0.788), 257 (0.713), 80 

(0.692), and 92 (0.642), while lower samples contained a high frequency of TRF 

299 and TRF 83 (both 1.0), plus TRF 80 (0.917), TRF 92 (0.833), and TRF 192 

(0.750).
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Figure 22: NMS plot of n/7H TRF frequency by Depth for the Upland Granite site 
showing the top 20 most frequent TRFs (p=0.0196). Depths are upper (U) or 
lower (L) and numbered samples are labeled control (C) or OTC (O) (control 
icons are larger in order to highlight the statistical significance of their 
separation). Crosses mark TRF location and numbers (bold) reflect fragment 
length in base pairs (bp).
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Figure 23: Distribution of the top 20 most frequent nifH TRFs from Control 
samples of the Upland Granite Site

Pairwise PERMANOVA tests of nifH relative abundance data confirmed 

dissimilarity between upper and lower samples at Sedge Meadow control plots 

(p=0.0314) and Sedge Meadow OTCs (p=0.0273). Figure 24 is the NMS 

ordination of Sedge Meadow samples only with Axis 1 (1^=0.218) and Axis 2 

(r2=0.618) explaining 83.6% of the variance. This two dimensional solution shows 

control and OTC samples plus the top 20 most abundant n/7H TRFs at this site; it 

required 59 iterations and resulted in a final stress of 12.19391 and final 

instability of 0.00000. Figure 25 shows the distribution of the top 20 most 

abundant nifH TRFs from both the Control and OTC samples of the Sedge 

Meadow Site. Upper samples were structured by TRFs 92 (13.3%), 299 (7.0%), 

296 (6.6%), 292 (5.6%), and 80 (4.6%), while lower samples were dominated by 

TRFs 222 (15.1%), 92 (8.0%), 192 (6.3%), 83 (5.8%), and 162 (4.6%).
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Figure 24: NMS plot of nifti TRF relative abundance by Depth for the Sedge 
Meadow site showing the distribution of the top 20 most abundant TRFs 
(p=0 .0196). Depths are upper (U ) or lower (L) and all numbered samples are  
labeled control (C) or OTC (O). Crosses mark TRF location and numbers (bold) 
reflect fragment length in base pairs (bp).
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Figure 25: Distribution of the top 20 most abundant nifH TRFs from Control and 
OTC samples of the Sedge Meadow Site.

Pairwise PERMANOVA tests also suggested specific differences between control 

plot samples at both the Upland Granite (p=0.0293) and Upland Dolomite 

(p=0.0280) sites. Figure 26 is the NMS ordination of the UG site identifying 

control samples and the top 20 most abundant nifH TRFs at this site. This two 

dimensional solution required 103 iterations and resulted in a final stress of 

13.70635 and final instability of 0.00000. Axes 1 (1^=0.335) and 2 (r2=0.520) plus 

Axes 2 together explain 85.4% of the variance. A reliable NMS image of the UD 

site was not generated, possibly due to the limited (and sometimes absent) lower 

samples. Figure 27 represents the top 20 most abundant nifH TRFs from the 

Upland Granite Site; only the control samples are shown in this graph. The most 

abundant TRF in upper samples, not present in lower, was TRF 384 (36.9%), 

followed by TRF 257 (17.1%), TRF 83 (9.8%), TRF 382 (5.7%), and TRF 254 

(4.3%). Lower samples were represented by TRFs 299 (28.6%), 83 (27.2%), 

260(7.1%), 92 (6.1%), and 192 (5.6%).
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Figure 26: NMS plot of n/YH TRF relative abundance by Depth for the Upland 
Granite site showing the top 20 most abundant TRFs (p=0.0392). Depths are 
upper (U) or lower (L) and all numbered samples are labeled Control (C) or OTC 
(O) (control icons are larger in order to highlight the statistical significance of their 
separation). Crosses mark TRF location and numbers (bold) reflect fragment 
length in base pairs (bp).
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Figure 27: Distribution of the top 20 most abundant nifH TRFs from Control 
samples of the Upland Granite Site

Treatment effect

NMS ordinations did not reveal any separation of samples due to treatment effect 

at any site for either nosZ or nifH frequency or relative abundance data. Similarly, 

significance was not detected by any PERMANOVA tests for the factor treatment 

overall or at individual sites.

Figure 28 is a three dimensional NMS plot of nosZ samples from all sites 

showing that relative abundance data did not separate by treatment. Axis 1 and 3 

(shown) explain 75.8% of the variance while axis 2 contributes 17.6%

(cumulative r2=0.934). This ordination required 126 iterations and resulted in a 

good final stress of 10.46479 and final instability of 0.00001.
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Figure 28: NMS plot of nosZ TRF relative abundance for all sites showing that 
samples do not separate by treatment (p=0.0196). Treatments are control (C) or 
OTC (O), and crosses mark the top 20 TRFs over all sites. Numbers reflect 
fragment length in base pairs (bp).

Figure 29 is a three dimensional NMS plot of nifH samples from all sites showing 

that relative abundance data did not separate by treatment. Axis 2 and 3 (shown) 

explain 46.8% of the variance while axis 1 contributes 29.7% (cumulative 

r2=0.775). This ordination required 126 iterations and resulted in a fair final stress 

of 14.92058 and final instability of 0.00001.
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Figure 29: NMS plot of nifH TRF relative abundance for all sites showing that 
samples do not separate by treatment (p=0.0196). Treatments are control (C ) or 
O T C  (O), and crosses mark the top 20 TR Fs over all sites. Numbers reflect 
fragment length in base pairs (bp).
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2.3.2 Genotype richness

nosZ

Significant differences in the number of nosZ genotypes were detected overall 

between sites by ANOVA tests (Figure 30). Pairwise analysis showed that the 

Sedge Meadow (6.2 TRFs) had significantly fewer genotypes than the Cassiope 

Heath (18.8, p<0.001), Riverside Willow (16.5, p<0.001), and Upland Dolomite 

(14.5, p<0.001) sites. The Upland Granite site had similarly low genotype 

richness (5.8 TRFs). CH and RW had a similar number of unique genotypes; the 

CH site had significantly more genotypes than both the UG (p<0.001) and the UD 

(p<0.001) sites while RW differed significantly from UG (p<0.001). Additionally, 

the Upland sites differed greatly from each other with the UD displaying a far 

greater number of genotypes (p<0.001).

Nested ANOVA, in addition to showing overall site differences, described 

significant overall depth (Table 2) and treatment (Table 3) effects.

Table 2: Nested ANOVA showing overall significant differences in number of 
nosZ TRFs between sites (p<0.000001) and between depths across all sites
(p=0.018)

SS DF MS F P
Intercept 56942.58 1 [56942.58 1365.430 ooooooo

Site 10197.61 4 2549.40 61.132 0.000000

Depth(Site) 575.80 5 115.16 2.761 0.018286

Error CMCO
COCOLO 369 41.70 I
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Table 3: Nested ANOVA showing overall significant differences in number of 
nosZ TRFs between sites (p<0.000001) and between treatment across all sites 
(p=0.039)

SS DF MS F P
f Intercept 56248.43 1 56248.43 1341.981 0.000000

Site 10423.34 |4 2605.84 62.170 0.000000
Treat(Site) 497.78 5 99.56 2.375 0.038587

Error 15466.45 369 41.91

o> 12

Fig 30: Mean number of nosZ genotypes (TRFs) at each site (p<0.001, 
confidence interval = 0.95).
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Significant differences were detected overall in the number of nosZ genotypes 

between upper and lower samples (Figure 31). With the exception of the UG site, 

there was greater genotype richness in surface soils. One-way ANOVA 

confirmed differences in genotype number at SM (7.3 vs. 5.2, p=0.0078) and UD 

(16.8 vs. 12.4, p=0.0019).

3 10

UD UPPer
151 Lower

Fig 31: The mean number of nosZ genotypes (TRFs) differed over all sites by 
depth (p=0.018, Cl=0.95). Significant differences at individual sites are marked 
with an asterisk (p<0.01).
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Significant differences were detected in the number of nosZ genotypes between 
control and OTC plots (Figure 32). In general, there were fewer genotypes in 
OTC treatment samples. One-way ANOVA confirmed differences in genotype 
number at SM (7.1 vs. 5.2, p=0.018), UG (6.7 vs. 4.7, p=0.016) and UD (16.1 vs. 
12.9, p=0.023).

c/>
CD
Q .

O
c
CD05

CDn
ED
C
C
CD
CD

UD ~<5~ Control 
3 1  OTC

Fig 32: The mean number of nosZ genotypes (TRFs) differed by treatment over 
all sites (p=0.039, Cl=0.95). Significant differences at individual sites are marked 
with an asterisk (p<0.05).

nifH

Significant differences in the number of nifH genotypes were detected overall 

between sites with ANOVA tests (Figure 33). Pairwise investigation showed that

-64-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



richness was much lower at the CH site (15.2) versus SM (21.6, p=0.0001), RW 

(23.1, p<0.0001), and UD (21.4, p=0.0001), while the UG site displayed 

intermediate richness relative to the others (18.0). Mean number of genotypes at 

both upland sites were significantly lower than those at the RW (vs. UG, 

p=0.0001 and vs. UD, p=0.0068).

Nested ANOVA, in addition to showing overall site differences, described 

significant overall depth (Table 4) and treatment (Table 5) effects.

Table 4: Nested ANOVA showing overall significant differences in number of nifH 
TRFs between sites (p<0.000001) and between depths across all sites
(p=0.000001)

ss DF MS F P
| Intercept 73795.51 1 73795.51 1152.939 0.000000
f  Site 2928.94 4 732.23 11.440 0.000000
Depth(Site) [2444.07 5 488.81 7.637 0.000001

Error 18881.89 295 oC
D

Table 5: Nested ANOVA showing overall significant differences in number of n/7H 
TRFs between sites (p<0.000001) and between treatment across all sites
(p<0.000001)
f SS [ DF MS F P
Intercept 111240.5 1 111240.5 [1755.050 0.000000

Site 2640.1 ]4 [660.0 (10.413 0.000000
Treat(Site) (2627.9 |5 525.6 [8.292 0.000000
I Error 18698.0 295 63.5 [
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Sfl 22

Fig 33: Mean number of nifH genotypes (TRFs) at all sites (p<0.001, confidence 
interval = 0.95).

Significant differences were detected in the number of nifH genotypes between 

upper and lower samples (Figure 34). Unexpectedly, there were more genotypes 

in lower soil samples at the CH and at both Upland sites. There was significantly 

greater genotype richness in surface soils at SM (27.3 vs. 16.3, p<0.001) and 

RW (25.1 vs.21.5, p=0.012).
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Fig 34: The mean number of nifH genotypes differed by depth over all sites 
(p<0.000001, Cl=0.95). Significant differences at individual sites are marked with 
an asterisk (p<0.05).

Significant differences were detected in the number of nifH genotypes between 

control and OTC plots (Figure 35). With the exception of the UG site, there were 

fewer genotypes in OTC treatment samples. One-way ANOVA confirmed 

differences in genotype number at SM (25.4 vs. 17.4, p=0.0029), RW (25.3 vs. 

20.7, p=0.0012) and UG (14 vs. 23.6, p=0.0006).
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Fig 35: The mean number of nifH genotypes differed by treatment over all sites 
(p<0.000001,0=0.95). Significant differences at individual sites are marked with 
an asterisk (p<0.005).
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2.4. Discussion

2.4.1. Methodological considerations

We are assuming that each terminal restriction fragment (TRF) reflects a different 

bacterial genotype so that an increase or decrease in the frequency, abundance 

or overall number of these TRFs is a valid measure of genotypic frequency, 

abundance and/or richness (Tiedje et al. 1999). We also assume that uncut gene 

fragments TRF252 (nosZ) and TRF384 (nifH) mean that no restriction site exists 

in these genotypes. It is possible that more than one genotype corresponds to 

one restriction fragment, including the uncut fragment, so that genotypic diversity 

based upon the number of TRFs could be underestimated (Dunbar et al. 2000; 

Wolsing and Prieme 2004). However, there is no reason to believe that any 

underestimate would be biased according to site, depth or treatment, so even if 

genotypic diversity were underestimated, comparisons should remain valid.

Soil cores were retrieved from plots that had undergone experimentation for over 

a decade (Freedman et al. 1994). The destructive nature of soil sampling could 

result in disturbance that affects microbial communities. However, Deslippe et al. 

(2005) conducted disturbance experiments at Alexandra Fiord sites and 

confirmed that previous soil excavation had no effect on nitH community 

structure, so we would not expect this to be a factor at our study sites.
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The Sedge Meadow soils had high organic matter content and DNA extractions 

required 1:100 dilution in order to overcome the interference of humics in PCR 

reactions of both functional genes. A humic acid purification step may have 

allowed amplification without dilution, but the process can result in decreased 

product yield (Brodie et al. 2002).The Upland soils were very dry with little 

organic matter and although consistent PCR results were obtained for nosZ, few 

or no nifH amplification products were retrieved from lower samples, even with 

multiple attempts. We assume that this was not a failure in our methods, but that 

the number nifH genes were often below detectable limits or simply not 

consistently present in samples from this depth at UD.

2.4.2. Did the denitrifying and nitrogen-fixing communities respond 
similarly or differently to experimental factors?

The overall differences between sites were similar for both nosZ and nifH, but 

were not as clearly defined for nitrogen fixers, especially when assessed by gene 

frequency. Where nosZ TRF frequency was distinct between sites due to one or 

a few dominant genotypes, nifH TRFs were shared across all sites with small 

changes in the frequency distribution. In contrast, differences in the relative 

abundance of shared nifH TRFs were more apparent between sites. Subtle 

changes in the frequency and abundance of nifH TRFs between sites were 

consistent with findings of uniform gene distribution and identical sequences  

despite large geographic distance found by other researchers (Poly et al. 2001, 

Rosch et al. 2002). Alternately, enormous variation in nosZ TRF distribution at 

distances of centimeters, meters and especially kilometers has been found in
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marine studies suggesting that denitrifier genotypes are unique at each location 

(Scala and Kerkhof 2000). For both genes, the SM site stood apart from the other 

four, but nosZ genotype richness was very low where nifH richness was high. 

There were no significant differences between CH and RW (nosZ) or UG and UD 

(nifH). nosZ genotype richness was high at both CH and RW, but nifH richness 

was low at CH. Alternately, nifH genotype richness was intermediate at both UG 

and UD, but nosZ richness was very low at UG.

nosZ genotypic richness at each site seemed to affect the number of genotypes 

at other levels. For example, sites with low or moderate nosZ richness (SM, UG, 

and UD) showed significant or unexpected changes in the number of TRFs at two 

depths and between treatments. These homogeneous sites have unique 

ecological characteristics that only a few, dominant nosZ genotypes can exploit 

(anaerobic at SM, acidic at UG, and dry at UD). As a result of this, the community 

changed enormously over vertical microsites and with warming. Sites with high 

nosZ richness (CH, RW) showed little or no significant change at other levels.

This suggests that sites with high nosZ richness and uniform vertical gene 

distribution are less likely to experience a change in community structure due to 

disturbance. This could be due to the fact that the denitrifier communities at CH 

and RW, due to the heterogeneous nature of these sites, already contain 

members that are able to exploit all reasonable niches on the lowland, including 

those that have changed due to OTC treatments.
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nifH genotype richness at each site seemed to have some influence on number 

of genotypes at two depths or due to treatment, although the effects were not 

consistent with those described for nosZ. For example, sites with low or 

moderate nifH richness (CH and UG) showed either no significant changes or 

showed differences in richness that were not predicted. Sites with a high number 

of nifH genotypes (SM and RW) showed significant changes due to depth or 

treatment. This suggests that the majority of these genotypes were rare and able 

to exploit only a narrow environmental niche.

Both nosZ and nifH genotypes were affected overall by depth, particularly at the 

SM site where each community experienced a significant decline in genotype 

richness in lower samples. At SM, the frequency of nifH genotypes clearly shifted 

among common TRFs; changes in the most abundant nifH TRFs show that one 

distinct genotype structured upper or lower samples. The frequency of nosZ 

TRFs was not significantly affected at SM, but the relative abundance of TRFs 

also shifted dramatically to one dominant genotype in lower samples. There was 

a significant decrease in nosZ genotype richness in lower samples at the UD site, 

but this could not be confirmed for nifH as limited PCR amplification of lower 

samples caused enormous variation in the nifH data. Where there was a shift in 

the distribution of both frequent and abundant nosZ genotypes between upper 

and lower samples at the UD site, there was, in addition to a shift, a loss of nifH 

genotypes from lower samples at the UG site. Interestingly, there was a 

corresponding gain in the mean number of nifH genotypes in lower samples at
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this site, plus a loss of genotype richness in lower samples from the RW site that 

was not detected in NMS ordinations.

The presence or absence of an alternative denitrification marker (nirS) has been 

used to investigate changes in community structure in ocean sediment cores 

based upon the transition to an anaerobic environment as depth increased 

(Braker et al. 2001). Only a slight decrease in denitrifier diversity was detected in 

deeper samples even though a strong redox gradient was present suggesting 

that the microbial community was not vertically structured. Enzyme analysis and 

gene probing of forest soils does suggest that denitrifier abundance decreases 

with depth even though the deepest samples (-25 cm) had very low levels of 

oxygen and should have selected for denitrifiers (Mergel et al. 2001, Rosch et al. 

2002). The SM soil cores were uniformly anaerobic throughout, so any 

differences detected could have been due to the change from organic to mineral 

soils and the subsequent changes in soil chemistry and nutrient availability. The 

UD soils were uniformly mineral, but a shallow rhizosphere suggests a lack of 

nutrient availability beyond 8 cm from the surface.

Studies of N-poor acid forest soils have indicated a distinct difference in nifH 

RFLP patterns between litter layers and soil samples (Widmer et al. 1999), and a 

decrease in pattern complexity from shallow to deep soil samples (Shaffer et al. 

2000). In some cases genes appeared to be more abundant in litter versus soil, 

although the gene marker was shared by both samples, in others the genotype
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was simply not present in the soil sample. Gene probing of forest soils did 

suggest that nifH was more abundant in the top 5cm than in deeper samples 

(Mergel etal. 2001, Rosch etal. 2002).

There was a significant overall difference in both nosZ and nifH genotype 

richness between control plots and OTCs. In general, nosZ genotype richness 

decreased with warming treatments at all sites, but the change was only 

significant at SM, UG, and UD. The mean number of nifH TRFs also decreased 

significantly with treatment at SM and RW, and was lower, though not 

significantly, at CH and UD. We did not expect to see the significant increase in 

genotype richness with treatment at UG.

If the soils of Alexandra Fiord are N limited (Muc etal., 1994), and OTCs 

effectively raise soil temperatures enough to promote organic matter 

decomposition and net N mineralization (Berendse and Jonasson 1992, Paul and 

Clark 1996, Nadelhoffer etal. 1992), the increase in nutrient availability would 

affect denitrifier and diazotroph communities differently based upon their 

physiological requirements. Direct increases in both denitrification and nitrogen 

fixation are possible due to higher enzymatic activity at increased temperatures 

(Chapin and Bledsoe 1992, Paul and Clark 1996). Additionally, anaerobic 

denitrifiers and aquatic nitrogen fixers should flourish in the wetter environment 

that is predicted but not accomplished with OTCs. Photosynthetic diazotrophs, 

such as the cyanobacteria that dominate arctic systems (Chapin and Bledsoe
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1992, Liengen 1999, Paul and Clark 1996), should also benefit from increases in 

C 0 2 production associated with OM turnover (Chapin and Bledsoe 1992).

It is possible that the same conditions that promote microbial growth in these 

changed systems may also inhibit the processes mediated by them. For 

example, net N mineralization is predicted, but N-fixation is inhibited by the 

presence of available N (Paul and Clark 1996). It is possible that the N-fixation 

process and diazotroph community structure are unrelated (Piceno and Lovell 

2000a), but in theory an N rich habitat should result in low nifH diversity (Zehr et 

al. 2003). Alternately, N H / is required by nitrifying bacteria that oxidize it to NO3 

, the substrate for denitrification (Paul and Clark 1996, Nadelhoffer et al. 1992). 

Any potential increases in this process will be moderated by the success of 

aerobic nitrifier communities in an environment predicted to be wetter 

(Nadelhoffer et al. 1992). If excess NO3' is the result, then anaerobic soil 

conditions greater than 5 °C, with a pH range of 6 - 8  should be ideal for 

denitrification to occur (Paul and Clark 1996). Additionally, changes in the 

proportional abundance of dominant TRFs have been detected between different 

levels of denitrification activity in two different vegetation types (Rich et al. 2003), 

although this finding was not repeatable (Rich and Myrold 2004).

Recent studies have not confirmed that net N mineralization will be affected by 

short term increases in soil temperature of a few degrees Celsius (Jonasson et 

al. 1999, Schmidt etal. 1999). Rolph (2003) could not show that an increase in
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mineralization had occurred due to long term OTC treatment at the Alexandra 

Fiord site although data from the 2001 growing season indicate that soil 

temperatures were raised by less than one degree Celsius.

2.4.3. What experimental factors most influenced community structure?

Site and depth were more important than treatment in structuring both denitrifying 

and nitrogen-fixing microbial communities; of the first two factors, site was more 

important than depth.

Site

The sites vary in both biotic and abiotic properties, which results in homogeneous 

or heterogeneous environments with a range of substrate availability. These 

dissimilarities combine to create the unique nature of SM, the commonalities 

between CH and RW, and the divergent nature of the upland sites from those on 

the lowland and from each other. As discussed, the community structure of each 

functional gene responded differently to these changes reflecting the 

requirements of either denitrifier or nitrogen fixer groups.

The SM site is unique within the study area due to the hydric and often flooded 

conditions. The dominant sedge vegetation created a distinctive nosZ community 

in terms of gene frequency, abundance, and richness. Low nosZ genotype 

numbers at this site may be a function of homogeneous conditions that do not 

necessitate a diverse denitrifier community to exploit them (Callaghan et al.,
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2004). Alternately, high C:N plus anaerobic conditions may not favour nitrification 

and thus limit the substrates required for denitrification (Nadelhoffer et al. 1992). 

nifH genotypic richness was high at the SM site where diverse, aquatic 

cyanobacteria may be dominant (Callaghan et al. 2004, Chapin and Bledsoe 

1992, Zehr et al. 1998) and where there was sufficient C plus N-limitations due to 

a large amount of poorly decomposed plant material (Klady, personal 

correspondence June 2006). It is not uncommon to find diverse nifH communities 

in anaerobic environments (Ueda et al. 1995, Zehr etal. 1998).

CH and RW shared many nosZ genotypes in common, and grouped together 

when gene frequency and abundance were examined. Though the RW has the 

highest plant diversity of all sites in the study area, nosZ richness was similar 

between CH and RW; comparable soil moisture regimes, common plant species, 

and similarly low soil pH could contribute to these parallels. It is possible that 

greater variation in the soil environment at these sites has required a greater 

variety of nosZ in order to exploit all opportunities for denitrification. The 

observations of Brodie et al. (2002) based upon bacterial communities in 

disturbed grassland, and Stres et al. (2004) based upon denitrifiers in forest soils 

were not mirrored at CH or RW as denitrifier richness was relatively high despite 

a mixed plant community and acidic soils. Low nifH genotype richness at CH 

could not be explained by soil moisture, organic matter content, or pH as the site 

has intermediate values of these factors between all three on the lowland. The 

hydric SM soils have an average pH of 6.25 while the mesic-xeric soils of RW
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have an average pH of 4.9; CH is hydric-mesic with an average pH of 5.15. The 

RW site had the greatest number of nifH TRFs due possibly to the influence of 

high plant diversity. Variable soil conditions due to plant feedbacks at this site 

may also have promoted the development of a diverse nifH community.

The Upland sites are remarkably different from those on the lowland due to the 

dry nature of their soils and relatively sparse vegetation. They share a few plant 

species in common, but differ greatly in soil pH; the granitic site averages pH 5.2 

and the dolomitic site is much more alkaline at pH 7.9. The acidic nature of the 

UG soils could have contributed to the lack of nosZ genotype richness when 

compared to the adjacent UD site, although low pH did not structure nosZ 

communities on the lowland. These observations suggest abiotic properties of 

the dry soil environment may have had more influence on the structure of upland 

nosZ communities. Soil pH may also explain lower nifH richness at UG when 

compared to adjacent UD as the plant communities, mineral soils, and moisture 

regimes are similar at these sites.

Past experiments have used frequency and abundance of the TRFs from other 

denitrification gene markers to explore diversity across spatial scales (Braker et 

al. 2000, 2001). They confirmed that denitrifier gene communities were unique to 

the environment from which they were sampled, with only a few genes shared 

between locations. Similarly, nifH TRFs that were found to be dominant at one
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site were often less frequent, or less abundant, or not present at all at adjacent 

sites with different plant and soil characteristics (Shaffer etal. 2000).

Meadow soils with lower C:N and higher pH than adjacent forest plots have 

demonstrated distinct nosZ communities (Rich et al. 2003). Few TRFs were 

shared between the meadow and forest sites which differed in predominant 

vegetation as well as N availability. An increase in nosZ diversity in disturbed, 

amended soils was also related to higher pH than adjacent native plots (Stres et 

al. 2004). Brodie et al. (2002) found that the number of bacterial TRFs increased 

as the grassland community became more uniform and as both pH and N, P, and 

K increased. Other groups have noted that bacterial community diversity 

decreases when the environment is more homogeneous (Callaghan et al., 2004). 

Higher pH and available N seem to be more consistent factors associated with 

high microbe diversity than site vegetation. Moreover, it appears that denitrifier 

communities are structured by not only the amount of N available, but also 

whether it is in organic or mineral form (Wolsing and Prieme 2004).

Acidic forest soils showed less abundance and diversity of denitrification genes 

than adjacent marsh soils with high organic matter content (Prieme et al. 2002). 

This contradicts the finding of low genotypic richness of nosZ in the thick organic 

and alkaline soils of the Sedge Meadow site, where the anaerobic conditions 

should be an advantage for denitrifiers. That this site stood out from all others in
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terms of frequency and abundance of TRFs is consistent with literature that 

suggests nosZ is habitat specific (Rich et al. 2003, Rich and Myrold 2004, Rosch 

et al. 2002, Stres et al. 2004), but the adjacent lowland sites are drier and more 

acidic, yet show greater nosZ richness. On the lowland, it appears that pH and 

organic matter content are not strong drivers of high nosZ richness, but it is 

important to note that large seasonal shifts have been detected in denitrifying 

gene communities (Wolsing and Prieme 2004) and that this study examined 

samples taken only once during the summer growing season.

nifH gene communities are also known to vary over large and small spatial scales 

(Poly et al. 2001, Rosch et al. 2002) but the factors that control this variation are 

complex. Community structure is related to soil management and soil texture that 

influences inorganic N availability (Poly et al. 2001). nifH communities are habitat 

specific (Shaffer et al. 2000, Zehr et al. 1998) and most similar when their site 

characteristics are the same but neither plant cover nor soil chemistry could 

completely explain this (Poly et al. 2001).

Depth

Depth of the sample (i.e. upper versus lower section of the soil core) was also an 

important factor differentiating nosZ  and nifH communities. Although both genes 

were affected, this separation was not detected at all sites, nor was it consistently 

found at treatment and OTC plots simultaneously.
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nosZ relative abundance data showed dissimilarity between upper and lower 

samples at Sedge Meadow OTCs only. One SM nosZ TRF was most abundant 

at both depths but its relative contribution was much greater in lower samples. 

nosZ data for the Upland Dolomite site showed that the distribution of most 

frequent TRFs changed between depths at both control plots and OTCs but the 

most abundant nosZ TRFs were different only at control plots. Overall, upper 

samples appeared to have a more uniform distribution of nosZ TRFs, while lower 

samples were dominated by one (TRF 251).

nifH frequency and relative abundance also varied between depths at the SM 

site; differences were detected at both control plots and OTCs. Each depth was 

dominated by one particularly abundant genotype and had a unique distribution 

of less abundant TRFs. Upland Granite nifH frequency and relative abundance 

differed at control plots only; overall, the most frequent or abundant TRFs in 

upper samples were not represented at all in the lower soils.

In general, there was greater genotype richness in surface soils. Significant 

differences were detected in the number of nosZ genotypes between upper and 

lower samples at SM and UD and in the number of nifH genotypes between 

upper and lower samples at SM and RW.

The SM site had a large range in terms of depth between upper and lower soil 

samples (0-5 cm deep and 39-44 cm deep, respectively) but this did not differ
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greatly from other lowland sites. More importantly the soil core itself was not as 

uniform as those from CH and RW; the upper section was wet organic peat, while 

the lower part of the core had a greater proportion of mineral soil. Differences in 

the relative abundance and genotypic richness of nosZ TRFs between upper and 

lower samples reflected the distinct habitats at either end of the SM soil core. UD 

cores, in contrast, were very shallow and uniform; the lower samples were only 8- 

13 cm from the surface. It is interesting that differences were found even though 

soil samples were in relatively close proximity. This site was the driest in the 

study area and it is possible that there was little interaction between surface and 

subsurface soil layers.

Differences in nifH gene frequency and abundance between upper and lower 

samples at the SM, plus differences in genotype richness at SM and RW may be 

partly explained by the vertical distance between sample locations as explained 

for nosZ. Additionally, a greater proportion of cyanobacteria would be expected in 

surface samples due to their phototrophic mode of nutrition (Paul and Clark 

1996). The UG site had slightly more moisture than the adjacent dolomitic site, 

and the depth of soil cores averaged 30-35 cm. The distance between upper and 

lower samples in a relatively dry soil with a shallow root zone may have 

contributed to the differences in gene frequency and relative abundance 

detected. A unique community of organotrophic N fixers would be found adjacent 

to plant roots versus the soil beyond the influence of plant inputs (Paul and Clark 

1996).
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Treatment

The main objective of this study was to detect shifts in denitrifying and nitrogen 

fixing microbial communities after long term warming of arctic soils. Soil warming 

is a factor that can structure microbial communities. Increases in soil moisture 

and organic matter availability due to warmer temperatures in arctic systems may 

lead to higher rates of decomposition and nutrient cycling (Berendse and 

Jonasson 1992, Paul and Clark 1996, Nadelhoffer et al. 1992). It is important to 

note that increases in arctic air temperatures predicted by climate models and 

accomplished with warming experiments do not necessarily translate into 

proportional increases in soil temperatures (Jonasson 1993, Robinson 2002). At 

times, only the surface soils are affected by direct heating unless the site is very 

wet, and shading due to increased plant growth can prevent warming of the soil 

(Rolph 2003). This means that although enzymatic processes in soils may 

sometimes increase due directly to higher temperatures, and biogeochemical 

cycling may be stimulated by increases in substrate availability, there are indirect 

changes caused by warming that also contribute to changes in the soil 

environment.

Warming can cause shifts in plant, fungal and protozoan communities that further 

impact microbial communities. Favourable conditions that increase the 

abundance and activity of soil protozoa can result in increased grazing of soil 

microbes, directly affecting their number and distribution (Ruess et al. 1999). The
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biomass of both saprotrophic and mycorrhizal fungi is positively affected by 

moderate increases in temperature and moisture, and changes in the community 

composition and function of fungal decomposers has been noted (Robinson 

2002). Experiments have indicated that increases in fertilization and/or 

temperature can lead to greater plant productivity (Arft et al. 1999, Muc et al. 

1994, Shaver et al. 2001) but loss of diversity (Chapin III et al. 1995). Passive 

warming experiments that raise air temperatures by 1 to 3°C resulted in 

decreased plant diversity and species evenness at a number of HEX sites 

(Walker et al. 2006). Complex feedbacks to the soil environment due to shifts in 

plant and fungal community structure depend on changes in carbon allocation 

(Piceno and Lovell 2000b), species composition and litter quality (Shaver et al. 

2001), and nutrient use efficiency (Berendse and Jonasson 1992), driven by long 

term changes in N mineralization and availability (Chapin III et al. 1995, Rolph 

2003, Schmidt et al. 2002). Changes in N mineralization and availability were 

investigated after ten years of warming at the Alexandra site (Rolph 2003). Net N 

mineralization was not affected by warming treatments, but inorganic N 

availability was higher in OTCs throughout the growing season except at the 

upland dolomitic site and NH4+ increased with warming at the heath and willow 

sites (Rolph 2003).

Contrary to expectations, warming had the least effect of all factors on denitrifier 

and nitrogen fixer community structure. There was no separation of samples due 

to treatment detected at any site for either nosZ or nifH frequency or relative
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abundance data. It is possible that NMS ordinations and PERMANOVA tests 

were not sensitive to changes in the frequency and/or abundance of rare 

genotypes. When genotypic richness was explored by comparing the number of 

TRFs between control plots and OTCs, a treatment effect was evident. Overall, it 

appears that rare species were lost and dominant species prevailed when 

disturbed by OTC treatments.

In general, there were fewer genotypes in treatment samples except for n/YH 

TRFs at the UG site. The large, significant increase in the number of genotypes 

at UG OTCs is surprising since Rolph (2003) detected higher inorganic N at this 

upland site with warming suggesting that a diverse diazotroph community is not 

required. Alternately, the loss of genotype richness was significant for both genes 

at SM where Rolph (2003) found the greatest response to warming when 

nitrogen transformations were compared between control plots and OTCs. 

Specifically, both is la n d  N immobilization increased at SM OTCs supplying 

more substrate for denitrification and suggesting an increase in microbial growth 

(Paul and Clark, 2006). It is possible that although warming at the SM created 

ideal denitrification conditions, only a few genotypes (from an already limited 

number) could exploit the altered environment. The nitrogen fixing community, 

although initially genotype rich at this site, experienced a large decrease in the 

number of genotypes suggesting an abundance of rare genotypes that are 

sensitive to disturbance. Significant TRF losses due to OTC disturbance were
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also detected by changes in the number of nosZ genotypes at UG, and UD, and 

in the number of nifH genotypes at RW.

Long term disturbance of forest soils due to clearcutting leads to distinctly 

different nifH communities with new dominant TRFs and losses of previously 

dominant genotypes; additionally, these communities exhibit atypical seasonal 

variation (Shaffer et al. 2000). Based upon previous work, the authors suggested 

that a loss in diversity of nifH genotypes reduces the capacity for nitrogen fixation 

in disturbed systems. Deslippe (2004) also noted that nifH communities disturbed 

by warming experiments are more seasonally variable; we presume then, that 

although these communities are very adaptable, they are also less stable. 

Disturbance of marsh soils by long term fertilization leads to changes in nifH 

community composition and absence of genotypes due possibly to the loss of 

competitive advantage over other N-limited microbes (Piceno and Lovell 2000a). 

This artificial change in nutrient availability mirrors the changes predicted by long 

term soil warming and may explain why we observed a loss of genotype richness 

with OTC treatments.

Deslippe et al. (2005) suggested that ni1H communities were structured by 

warming late in the growing season, and NMS ordinations showed differences 

between control plots and OTCs at lowland sites. Although samples for this 

investigation were collected at approximately the same time of year (July 18-27) 

at adjacent plots in the same study area, we did not detect a similar shift in nifH
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gene frequency using the same statistical methods. This suggests that there may 

be seasonal shifts in these communities that are detectable with multiple 

sampling times over the growing period, but that the changes do not persist from 

year to year. In this case, short term changes due to dynamic soil processes 

such as N transformations may be more of a factor than long term community 

shifts due to persistent changes in soil chemistry from altered plant inputs 

(Shaver, 2000). This has not been found experimentally for nifH] the seasonal 

community structure appears to be very stable despite repeated sampling over 

weeks to months (Poly et al. 2001, Shaffer et al. 2000, Widmer et al. 1999), even 

with increased nitrogen (Piceno and Lovell 2000a) or reduced carbon availability 

(Piceno and Lovell, 2000b).

In contrast, enormous seasonal variation has been detected in nosZ gene 

markers from ocean sediment samples measured over the course of one year 

(Scala and Kerkhof 2000) and studies of soil thawing effects on denitrifying 

communities have demonstrated that short term community shifts can also be 

detected by measuring gene expression with microbial RNA (Sharma et al.

2006). Sharma and colleagues (2006) found that the diversity of an alternate 

denitrification gene marker (nirS) appeared to increase as thawing progressed 

and microbial activity was stimulated; although nosZ DNA was also present, no 

nosZ transcripts were detected as N2O accumulated. It has been suggested that 

seasonal and/or geographic temperature variation can structure nitrifier 

communities either directly or by affecting N availability (Avrahami et al. 2003,
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Avrahami and Conrad 2003). It would seem that the successful detection of 

seasonal variation in nitrogen cycling gene community structure (due directly or 

indirectly to temperature manipulations) depends on the timing and frequency of 

sampling, plus the molecular technique and gene marker employed.

Net N mineralization is greater in wet sedge-dominated tundras than in other 

arctic ecosystems and has been shown to increase with warming, subsequently 

doubling the inorganic N pool and resulting in an excess of mineral N but this 

increase appeared to benefit the plant community more than it did the microbes 

(Schmidt et al. 2002). This explains why even though the microbial community 

experienced a strong disturbance effect at SM, gene richness was not affected 

positively by the increased nutrient availability associated with OTC treatments. 

Other subarctic studies have shown no significant increases in net N 

mineralization with experimental soil warming of 1-2°C (Jonasson et al. 1993) 

and only moderate average increases with soil temperature changes of 0.3-5.1°C 

(Rustad et al. 2001). Arctic mineralization rates could more than double if soil 

temperatures reach or exceed 10°C especially where tundra soils have high 

organic matter quality (Nadelhoffer et al. 1991). Interestingly, no significant 

changes in gene richness were detected at CH where average soil temperatures 

measured in 2001 at Alexandra Fiord (Rolph 2003) were increased by only 0.2°C 

with OTC treatment. TRF loss was noted only for n/7H at RW where the same 

data shows an average increase of 0.5°C and genotype richness decreased for 

both genes at SM where the greatest temperature increase was recorded
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(0.7°C). Hollister et al. (2006) also found that OTC effect was variable at different 

tundra sites, and differed greatly from day to day and from year to year. Average 

soil temperatures at -10 cm in July ranged slightly from 0.3°C to 0.6°C at dry 

heath sites, and enormously from -0.8°C to 0.7°C at wet sedge sites.

Increases in net mineralization and the subsequent availability of NH4 are highly 

dependent upon rates of microbial immobilization (Jonasson etal. 1993, Rustad 

et al. 2001), and will affect soil nitrogen cycles such as nitrification, denitrification, 

and nitrogen fixation. Nitrogen fixation should be inhibited by the presence of its 

products NH4+ and NO3' (Paul and Clark 1996), but rates were not affected by 

the presence of nitrate in field samples of high arctic cyanobacteria (Liengen 

1999). It is known that nitrification and denitrification are stimulated by the 

availability of these substrates (Nadelhoffer etal. 1992, Nicolaisen etal. 2004), 

and that the amount of NH4-N can be far greater than NO3-N during the growing 

season in arctic soils (Schmidt et al. 2002). Although enzymatic processes are 

accelerated in general by increases in temperature, it is possible that a warmer 

soil environment will become more favourable for denitrification but select against 

nitrogen fixers (Paul and Clark 1996).
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2.4.4. What measures of community structure are most affected by 
environmental factors?

We measured diversity in three ways: genotype richness, genotype frequency 

and genotype relative abundance. Although genotype richness was the coarsest 

measure, it was the most sensitive to rare genotypes, and the only one that was 

able to distinguish a treatment effect.

Relative abundance measures are confounded by the presence of rare species 

because they create noise in the data, and frequency measures are biased 

towards evenly dispersed sample units (McCune and Mefford 1999, McCune and 

Grace 2002). We propose that NMS ordinations and PERMANOVA tests did not 

detect changes in rare genotypes or clustered individuals because, in these 

analyses, the data are equally weighted and more strongly influenced by 

dominant TRFs (McCune and Grace 2002, Anderson 2005). By measuring the 

differences in absolute number of TRFs (richness) we saw how the contribution 

of all genotypes was affected by site, depth, and treatment (Dunbar et al. 2000).

Genotype richness is strongly affected by the environmental factors that make 

each site unique. The mean number of nosZ TRFs ranged from only 5.8 at the 

Upland Granite site to 18.8 at the Cassiope Heath site while the mean number of 

nifH TRFs also varied between sites, from 15.2 at Cassiope Heath to 23.1 at 

Riverside Willow. Depth also affected both nosZ and nifH richness. Significantly
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fewer genotypes were found in lower samples at SM (both genes), UD (nosZ), 

and RW (n/'flH). A significant warming effect on gene richness was detected at 

three of five sites for both microbial communities. The number of nosZ genotypes 

decreased with treatment at SM, UG, and UD while n/'fH richness declined at SM 

and RW, but increased at UG.

Genotype frequency was not as sensitive as relative abundance to differences 

between sites, but it did give us more information than genotype richness about 

the presence or absence of individual TRFs. For example, although the number 

of different genotypes may have been low in each sample from one site (resulting 

in low mean number of genotypes for that site), the frequency data showed us 

that when pooled, many more TRFs were actually represented. Because the 

most frequent TRFs (ie. the top 20) were often at least present across all sites, 

the differences between sites is due to small changes in the frequency 

distribution of common genotypes. The relative abundance data shows more 

clearly how each site is structured by one or a few dominant TRFs. The dominant 

TRF(s) plus a unique distribution of other genotypes in very low abundance 

create(s) a distinct community at each site.

Genotype richness, frequency and relative abundance were all sensitive to 

sample depth, but not at all sites, and not to the same degree. There was a 

significant decrease in the number of genotypes with increasing depth at two of
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five sites for each gene. Interestingly, a loss of approximately two nosZ 

genotypes at SM was not detected as a change in frequency, while a loss of 

approximately four nosZ genotypes at UD was documented in frequency 

ordinations. All of the top 20 most frequent UD nosZ TRFs were represented in 

upper and lower samples, but their distribution was altered. A significant loss of 

n/'flH genotype richness was detected at SM and RW, but the change was fewer 

than four TRFs at the latter site and was not reflected in the frequency data. 

Instead, the frequency distribution of the top 20 SM and UG n/'flH TRFs was 

shown to have shifted between upper and lower samples. Overall, n/'flH TRF 

frequency was uniform across upper samples and variable in lower samples; at 

the UG site, some dominant TRFs were no longer present with increased depth.

Depth affected nosZ relative abundance data at both the SM and UD site. Unlike 

the frequency data, the distribution of TRFs did not simply shift among the top 20 

Upper samples were initially more uniform, but there remained only one or a few 

dominant TRFs in the deeper samples while the rest were lost. The relative 

abundance of n/'flH TRFs was structured by depth at both the SM and UG sites.

At SM, none of the top 20 TRFs were lost, but two very different genotypes were 

dominant in upper versus lower samples. Two different pairs of TRFs dominated 

either upper or lower samples from UD.
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Chapter 3. Summary

3.1. Conclusions

The objective of this study was to detect shifts in denitrifying and nitrogen fixing 

soil microbial communities by measuring changes in functional gene frequency, 

abundance and/or genotypic richness using the genetic markers nosZ and n/'flH 

respectively. The study area encompassed five high arctic sites that differed by 

dominant plant community, parent material and/or soil moisture and that had 

been subjected to a long term warming experiment. We investigated differences 

in these gene communities due to site, depth, and treatment (warming).

The denitrifying and nitrogen-fixing communities respond both similarly 

and differently to experimental factors

The overall differences between sites were similar for both nosZ and n/'flH, but 

were not as clearly defined for nitrogen fixers. nosZ communities were more 

distinct between sites due to one or a few dominant genotypes while n/'flH TRFs 

were shared across all sites with subtle changes in their distribution. For both 

genes the SM site was unique, but nosZ genotype richness was very low where 

n/'flH richness was high. Both communities experienced a significant decline in 

genotype richness in lower samples and due to warming treatments at this site. 

Sites with low or moderate nosZ richness showed significant or unexpected 

changes in the number of TRFs at two depths and between treatments; 

alternately, sites with a high number of n/'flH genotypes showed significant 

changes due to depth or treatment.
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Site most influenced community structure

The community structure of nosZ and nifH functional genes responded differently 

to the biotic and abiotic properties of each site reflecting the requirements of 

either denitrifier or nitrogen fixer groups respectively. This was most apparent at 

the SM site where homogeneous anaerobic conditions created distinct TRF 

communities. Denitrifier diversity may have been limited by the absence of a 

favourable nitrifier environment and subsequent lack of substrate for 

denitrification. Diverse diazotrophic cyanobacteria appear to have benefited from 

the aquatic, N-poor habitat.

The unique nature of the nosZ communities at each site confirmed that the 

distribution of this gene is habitat specific (Rich et al., 2003; Rich and Myrold, 

2004; Rosch etal., 2002; Scala and Kerkhof, 2000; Stres etal., 2004). Overall, 

nosZ richness was lowest where ecological conditions were most extreme and 

relatively high where conditions were moderate.

That each site shared common genotypes in varying proportions confirms that 

dominant nifH TRFs at one site may be absent, less frequent or less abundant at 

an adjacent site when predominant vegetation and soil properties differ (Poly et 

al., 2001; Rosch et al., 2002; Shaffer et al., 2000). Alexandra sites with the 

greatest nifH richness were those with highly selective conditions.
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Genotype richness was sensitive to all environmental factors

Genotype richness was affected by the environmental factors that made each 

site and depth unique. For both functional genes, the number of TRFs differed 

between sites and decreased overall in lower samples. When genotypic richness 

was explored by comparing the number of TRFs between control plots and 

OTCs, it appeared that rare species were lost and dominant species prevailed 

when disturbed by warming treatments.

3.2. Microbial community structure vs. physiological function

Callaghan et al. (2004) suggest that arctic environmental conditions restrict the 

metabolic potential of very diverse arctic microbial communities; enzymatic 

activity would easily approach that of boreal forests with forecasted increases in 

temperature. Unfortunately, the link between rates of microbially mediated 

processes and changes in microbial community structure (measured in terms of 

genetic diversity) are not well established. Changes in physiological function 

have been noted without affecting diversity at the genetic level (Gomez et al. 

2004, Nicolaisen et al. 2004), and community shifts that do not affect microbial 

activity have been documented (Avrahami and Conrad 2003, Deslippe 2004). It 

has been suggested that biotic and abiotic environmental factors can structure 

the genetic composition of a system, but that gene selection is not the only driver 

of microbial diversity (Zehr et al. 2003).

-95 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3. Future research

This study would have benefited from a number of additional and parallel 

experiments that should be incorporated into future research. Plate counts to 

determine number of culturable bacteria, substrate-induced respiration for total 

microbial biomass and Biolog assessment of community profiles would be useful 

additions if only to help characterize the arctic microbial community. Physiological 

activity could be measured with enzyme analyses or other assays for total 

microbial activity (ie. denitrifying enzyme assay (DEA) for denitrification potential, 

gas chromatography (GC) for N2O release, and acetylene reduction assay (ARA) 

for rate of N fixation). Phylogenetic information via culturing, cloning and 

sequencing would also be a fundamental addition to the study, and real-time 

PCR for gene expression would be an ideal tool if the objective is to truly link 

genetic diversity with physiological function.

Soil chemical analyses from the 2004 sampling season (pH, C:N, OM, NH4, NO3, 

P, K) will be invaluable additions as overlays to NMS ordinations in order to more 

thoroughly compare sites and elucidate factors that drive the differences that we 

detected.

We have learned that both nosZ and nifH communities are strongly structured by 

the environmental conditions of the site from which they are sampled. Although it 

is not clear exactly what biotic or abiotic factors drive these patterns, it is 

worthwhile examining study sites that are very similar to one another if the
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objective is to measure only the effects of warming treatments. The magnitude of 

OTC disturbance is unique to each habitat and significant temperature changes 

below the soil surface must be confirmed. Additionally the method of 

measurement in important to determine relevant changed to microbial 

communities. For example, a change in the relative abundance of a particular 

genotype may indicate a community shift but not necessarily a change in the 

physiological process it is associated with. Alternately, mean loss of genotypes, 

although a coarse measure, may give more information about the resilience of a 

community to disturbance and the potential for microbial activity.
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