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Abstract
We examined streams within clearcuts 1-3 years and 5-7 years post-harvest, and within 

mature forest (control), to determine the effects of clearcut logging on headwater streams 

in the interior of British Columbia. We measured fine particulate organic matter (FPOM) 

concentration during high discharge, dissolved organic carbon (DOC) concentration and 

DOC composition using spectral ultraviolet absorbance (SUVA) during high and low 

discharge seasons, and invertebrate drift densities during high discharge. During high 

discharge, FPOM increased in response to 1-3 year old clearcuts and recovered 5-7 years 

post harvest, whereas DOC and SUVA did not differ among treatments. During low 

discharge, DOC did not differ among treatments but SUVA responded positively to new 

clearcuts indicating an increased proportion of allochthonous DOC. Between seasons, 

DOC declined in all treatment groups and SUVA increased except in old clearcuts. 

Invertebrate drift density increased in response to both clearcut groups, and significant 

responses occurred in seventeen of 52 biotic metrics. Aquatic, terrestrial,

Ephemeroptera, Diptera, collector-gatherer and scraper densities responded positively to 

clearcuts, whereas percent shredders and taxa richness density responded negatively. 

Densities of common taxa were positively related to FPOM in two cases and did not 

depend on DOC or harvest history. Our results indicated that invertebrate drift and 

organic matter exported from small streams were altered 1-7 years post-harvest, and that 

different responses occurred between the post harvest periods for both abiotic and biotic 

datasets. With respect to fisheries management, short-term gains in the quantity of 

resources that sustain the trophic base occurred. The shift in composition o f these 

resources indicates that stability of this export from headwater streams is uncertain.
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Prologue
The focus of this study was to determine if streamside clearcut logging affected 

organic matter and invertebrate drift exported from non-fish bearing, subalpine streams in 

the interior o f British Columbia. Among freshwaters, forested headwater streams have 

the closest link between terrestrial and aquatic ecosystems, the highest degree of canopy 

closure, relatively low primary production, and cool water temperatures (Vannote et al. 

1980). Small streams have an important element of large woody debris that allows 

retention of suspended particles and that mediates discharge (Murphy and Meehan 1991). 

The result of these characteristics is that headwater streams export unique resources that 

subsidize downstream reaches (Vannote et al. 1980; Wipfli and Gregovich 2002).

Decline of allochthonous inputs, increased primary productivity, increased water 

temperatures and decreased large woody debris occur in the initial years following 

clearcut logging adjacent to small streams (Brown and Krygier 1970; Webster et al. 1983; 

Bilby and Bisson 1992; Macdonald et al. 2003a). Consequently, forestry activities alter 

the characteristics that influence small streams’ subsidy to larger streams, yet non-fish 

bearing streams have the least amount of protection in terms of a no-harvest riparian 

buffer (Young 2000; Cummins and Wilzbach 2005).

Detritus forms the base of small stream food webs (Fig. 1) and is categorized 

based on particle size and solubility as coarse particulate organic matter (CPOM >lmm), 

fine particulate organic matter (FPOM 0.45 pm -  1 mm), and dissolved organic matter 

(DOM <0.45 pm). DOM comprises the largest pool of organic carbon in freshwaters, an 

estimated 45-50 % organic carbon by mass (Allan 1995). We used dissolved organic 

carbon (DOC) as a measurement of DOM and use the terms interchangeably, as is 

common in the literature. Allochthonous sources of organic matter are leachate of leaf

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



litter, groundwater, surface flow, and subsurface flow, while autochthonous sources 

include extracellular release from primary producers, and metabolic by-products of 

organisms (Lock 1990; Allan 1995). Heterotrophic consumers such as bacteria and fungi 

are an important means of energy transfer in the food web through their use of DOM.

The microbial loop is a pathway whereby energy is essentially recycled among bacteria 

and successively larger heterotrophs that both consume and exude DOM (Allan 1995).

Predators
invertebrates,

fish

Plant Inputs 
leaf litter, 

organic debris

Primary Producers 
bryophytes, algae, 

cyanobacteria

Other inputs 
rain, upstream, 

overland, subsurface

C>l
i>Invertebrate Consumers

herbivores, 
detritivores

Detritus 
CPOM, FPOM, DOM

Decomposers/ 
Heterotrophs Microbial 
bacteria, fungi, .Loop 

protozoa \
Figure 1. Small stream ecosystem showing energy flow, denoted by arrows. Detritus comprises 
coarse, fine particulate, and dissolved organic matter (CPOM, FPOM, DOM); rounded boxes 
show generalized groups of biota (from Allan 1995).

Invertebrates in small streams subsist on detritus directly, or on consumers of 

detritus. It is useful to categorize macroinvertebrates into functional feeding groups as 

shredders, collector-gatherers, collector-filterers, scrapers, and predators (Merritt and 

Cummins 1996). Shredders consume leaf litter and play an important role in breaking 

down CPOM to FPOM and DOM, after fungi and bacteria decomposers initially colonize 

the material. Decomposers supply shredders with nutrient value that may surpass that of 

their substrate (Cummins 1974). Collector-gatherers and collector-filterers directly 

consume FPOM and DOM, while scrapers consume biofilm, that is a gel matrix of algae,
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bacteria, fungi, and detritus that forms on substrates (Giller and Malmqvist 1998). 

Predators, including groups of macroinvertebrates and fish, consume all o f the former 

groups of consumers.

Reduction of terrestrial litter inputs (Wallace et al. 1997) and reductions in forest 

cover (England and Rosemond 2004) can affect headwater stream biota by reducing 

energy transfer through bottom up forces in the food web. In addition to the amount of 

litter inputs, the quality of organic matter affects energy transfer in the food web by 

influencing microbial activity (Stelzer et al. 2003) and macroinvertebrates (Hawkins et al. 

1982), and predators may rely on a specific composition of invertebrate drift (Bilby and 

Bisson 1992). The type of organic matter and invertebrates available to predators affects 

trophic energy transfer because autochthonous derived organic matter and the biota that 

consume it generally have a higher nutritional quality than allochthonous matter due to 

lower carbon: nitrogen ratios in the former (Murphy and Meehan 1991).

Under the legislation of the Forest Practices Code of British Columbia Act, 

implemented in 1995, proximity of logging adjacent to streams was determined by stream 

categories such as interior versus coastal streams, and stream classifications based 

primarily on fish presence and bank-full width (Province of B.C. 1995). In 2004, the 

province implemented the Forest and Range Practices Act, and regulations governing 

forest harvesting are currently in transition from the Forest Practices Code to the new 

legislation. The essence of this transition is a shift from basing decisions on broad 

categories of streams to placing responsibility on forestry professionals to ensure that 

specific criteria are met as a result of their planning and operations. The goal of this

3
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research is to provide scientific knowledge in a forest type that currently lacks research, 

and thereby provide tools to strengthen decision-making for resource managers.

Although it is known that clearcut logging can reduce overall organic matter 

inputs and change their composition (Bilby and Bisson 1992), and alter invertebrate drift 

(Culp and Davies 1983), the majority of research to date has focussed on interior and 

coastal fish bearing streams. We identified a knowledge gap for the Englemann spruce 

subalpine fir (ESSF) biogeoclimatic zone. The ESSF covers 12 % of British Columbia 

and is the highest elevation forested zone in the southern and central interior of the 

province (DeLong and Meidinger 2003). Published research in this forest type include 

clearcut logging effects on hydrology in Colorado (Troendle and King 1985), hydrology 

research in British Columbia (Winkler et al. 2005), and effects of harvesting on benthic 

invertebrates in British Columbia (Heise 2001). We chose to examine a dataset in this 

forest type that also lacks research: the combination of invertebrate drift and organic 

matter. These variables directly contribute to trophic resources exported from headwater 

streams. In addition to assessing quantities of these elements, we assessed composition 

of the drift community, and quality of DOC by measuring the spectral ultraviolet 

absorbance (SUVA) as an estimate of the proportion of allochthonous DOC. Chapter 1 

addresses the abiotic variables, FPOM and DOC, and Chapter 2 examines effects of 

clearcut logging on invertebrate drift. By examining these variables in headwater 

streams, this research will expand knowledge for a forest type that is ecologically and 

economically important, but has previously been little studied.

4
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Chapter 1: Effects of clearcutting on fine particulate organic 
matter (FPOM) and dissolved organic carbon (DOC) within 
headwater streams in British Columbia.

Abstract
Fine particulate organic matter (FPOM) and dissolved organic carbon (DOC) 

form the majority of organic matter transported in headwater streams. We examined 

effects of clearcutting on FPOM (mg I / 1) and DOC, and effects of clearcutting on 

seasonal shifts in DOC. We measured DOC concentration, and estimated its composition 

by spectral UV absorbance (SUVA). We selected streams within Englemann spruce -  

subalpine fir (ESSF) forests in British Columbia in three harvest history treatment 

groups: “new” 1-3 years post harvest, “old” 5-7 years post harvest, and control streams 

within mature forests. At each stream, we compared differences between paired sites for 

FPOM and DOC, and seasonal change relative to high flow for DOC. During high flow, 

FPOM increased in response to new clearcuts, and recovered 5-7 years post-harvest.

DOC concentration and SUVA showed similar trends but were not significant. During 

low flow, SUVA responded positively to new clearcuts indicating increased 

allochthonous produced DOC. Seasonally, DOC concentration declined in every 

treatment and SUVA increased in new clearcuts and controls, but declined in old 

clearcuts. We suggest that increased photoreactive DOC combined with reduced 

microbial activity lead to a seasonal increase in the labile pool of DOC in old clearcuts.

In new clearcuts, photoreactivity combined with elevated nutrient availability lead to a 

seasonal reduction in labile DOC. These results indicate increased FPOM, and elevated 

DOC occurred in new clearcuts that recovered in 5 years post harvest. Responses in 

DOC composition were only evident 5-7 years post-harvest during the low flow sampling 

period.

5
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Introduction
Due to the “fish-centric” nature of riparian forest management, small streams that 

are non-fish bearing often have the least protection in terms of a no harvest riparian 

buffer (Young 2000; Cummins and Wilzbach 2005). However, fish such as salmonids 

are seasonally food limited and may receive an important subsidy of organic matter from 

headwater reaches, especially when considering their cumulative export (Wipfli and 

Gregovich 2002). It is important to consider cumulative impact because small streams 

exist in the highest numbers among the continuum of freshwaters and have the closest 

link between terrestrial and aquatic ecosystems (Vannote et al. 1980). Headwater streams 

are generally detrital based food webs that rely on a net import of allochthonous organic 

matter derived from the terrestrial ecosystem. A high degree of canopy closure results in 

relatively low primary production and cool water temperatures. Small streams also have 

an important element of large woody debris that allows retention of suspended particles 

and mediates discharge (Toews and Moore 1982). The result of the combination of these 

elements is that headwater streams export a unique component of organic matter to 

subsidize downstream trophic webs.

Streamside timber harvest has varied effects on small stream ecosystems. The 

main effects include increased nutrients (Gregory et al. 1987), increased primary 

production (Webster et al. 1983), increased stream temperatures (Brown and Krygier 

1970; Macdonald et al. 2003a), and declines of allochthonous inputs (Bilby and Bisson 

1992). These responses are predominant in the first decade post harvest and extend until 

successional vegetation becomes established. In the longer term, reduced recruitment of 

large woody debris alters stream morphology, leading to declines of woody debris dams,

6
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decreased streambed stability and decreased channel complexity (Gregory et al. 1987). 

Annual water yields and peak flows generally increase following harvest and can persist 

for up to three decades post harvest in interior subalpine forests of Colorado (Troendle 

and King 1985). In combination with changes in stream morphology, increased water 

yields can lead to increased transport of organic matter in the initial years following 

harvest, and for decades post harvest (Webster et al. 1983; Troendle and King 1985). 

Small streams in northern interior forests may respond differently to disturbance (Moore 

and Wondzell 2005). Yet, among research conducted in the Pacific Northwest Region, 

which includes the entire province of British Columbia, little research has investigated 

effects of forestry in the interior o f the province. Macdonald et al. (2003a, 2003b) 

reported increased temperature and suspended sediment in headwater streams of the sub- 

boreal spruce biogeoclimatic zone and Winkler et al. (2005) reported hydrologic effects 

of logging in the montane spruce zone in the southern interior of BC. The Englemann 

spruce subalpine fir (ESSF) biogeoclimatic zone covers 12 % of the province and is the 

highest elevation forested zone in the southern and central interior of British Columbia 

(DeLong and Meidinger 2003). Englemann spruce (Picea englemanni) is one of the most 

important commercial species in the interior due to its wood characteristics, and excellent 

source of pulp (Parish et al. 1996). Despite its ecological and economic importance, 

research on small streams and their response to forest harvesting is lacking for this forest 

type.

Removal of riparian vegetation can affect stream ecosystems through organic 

matter by bottom up processes in the food web. Biota among all trophic levels either 

directly or indirectly rely on energy input from detritus. Headwater streams quickly
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process the largest size category of detritus, coarse particulate organic matter (CPOM), 

into the smaller particle categories by mechanical action and biotic functions 

(Winterboum and Townsend 1991). Fine particulate organic matter (FPOM) is defined 

as 0.45 um -  1 mm particle diameter, and dissolved organic matter (DOM) is the 

category smaller than 0.45 pm (Wotton 1990). Invertebrates and microorganisms 

directly consume FPOM that is a by-product o f fungi conditioning and invertebrate 

consumption of coarse particles (Suberkropp 1998). Consumers and predators indirectly 

take up FPOM while consuming primary producers and prey. The combination of FPOM 

and DOM comprises the majority of organic matter transport in headwater streams, with 

DOM representing more than 70 % of annual energy flux in streams (Winterboum and 

Townsend 1991). DOM comprises the largest pool of organic carbon in freshwaters, and 

is an estimated 45-50 % organic carbon by mass (Allan 1995). We used dissolved 

organic carbon (DOC) as a measurement of DOM and use the terms interchangeably, as 

is common in the literature. DOM is taken up by bacteria, zooplankton and protozoans, 

and is recycled by these biota through the microbial loop that is thought to form a large 

part of aquatic food webs (Allan 1995). Fish and macroinvertebrates indirectly consume 

DOM while preying on biota, and DOM may form a substantial part of their diet. For 

example, DOM was shown to provide thirty percent o f the diet of Limnephilidae 

caddisfly larvae, a family whose members are generally detritivores (Wotton 1990). 

Components of DOM play an additional role in the biotic community by attenuating 

ultraviolet radiation (UVR) that can have harmful effects on fish and invertebrates 

(Bothwell et al. 1994; Brooks et al. 2005).

8
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DOM substances fall into two general categories: large, complex compounds 

including humic acids that are refractory and not easily digested, and compounds with 

low molecular weight such as carbohydrates and free amino acids that are easily 

assimilated by biota (Wotton 1990). Refractory compounds are generally derived from 

allochthonous sources o f DOM that enter streams from rainfall, run-off, groundwater, and 

detritus. Low molecular weight compounds tend to be autochthonous, produced by 

extracellular release from algae, and metabolic waste from stream biota (Allan 1995). In 

addition to influencing bioavailability of compounds, source of DOM influences the 

reactivity of compounds when exposed to light, and ability of DOM to attenuate UVR. 

Allochthonous produced DOM compounds that are large and refractory react on exposure 

to light to produce low molecular weight, labile compounds, whereas autochthonous 

DOM tends to be non-photoreactive (Tranvik and Bertilsson 2001). High molecular 

weight compounds attenuate UVR to a greater degree than low molecular weight 

components of DOM (Thomas 1997). Thus, allochthonous produced DOM provides a 

lower quality food resource, tends to be more photoreactive, and provides greater 

attenuation of UVR than autochthonous produced DOM.

DOM comprises the largest carbon pool in stream food webs, and concentration 

of dissolved organic carbon (DOC) is used as a measure of DOM (Thomas 1997). 

Absorbance is measured at various wavelengths in the UV spectrum (280-400 nm) to 

indicate composition of DOC, and UVR exposure through the water column (Moore 

1989; Bothwell 2000; Weishaar et al. 2003; Cory et al. 2004). Spectral UV absorbance 

(SUVA) is defined as UV absorbance measured in m '1 divided by DOC concentration 

measured in mg L"1, and indicates amount of aromatic carbon (Weishaar et al. 2003).

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Aromatic carbons, defined as compounds that contain a benzene ring, are photo- and 

chemically-reactive, and are primarily associated with humic substances (Thomas 1997). 

Allochthonous DOC generally contains higher concentrations of UV absorbing 

compounds, and more aromatic carbons than autochthonous DOC (Tranvik and 

Bertilsson 2001). Therefore, SUVA can be used to estimate the relative content of 

allochthonous versus autochthonous DOC. Measuring SUVA at 350 nm indicates both 

source of DOC and UV exposure in the mid-range of the UVR spectrum.

In terms of organic matter, removal of riparian vegetation may affect stream biota 

by altering transfer o f energy in the food web, or by altering the UVR attenuating effects 

of DOC. In a stream survey of dissolved organic matter concentrations including 600 

streams in British Columbia, ESSF watersheds had among the lowest values, ranging 

from 1 to 3 mg/L (Bothwell 2000). In northern subalpine forests, DOC levels reach 

minima during low flow (Burney 1990), and at this time stream biota are most 

susceptible to the effects of UV radiation (Kelly and Bothwell 2002). Removal of 

riparian vegetation may affect energy transfer by altering the source of DOC, or by 

allowing increased photolytic reactions through increased solar radiation. These two 

effects influence each other as photolytic reactions require DOC primarily made up of 

allochthonous produced substances.

Our goal was to investigate responses of organic matter to clearcutting within a 

decade post harvest and to determine if seasonal differences occurred, and if seasonal 

shifts in organic matter transport responded to clearcutting. We selected the time frame 

for several reasons. First, the Province of British Columbia implemented the Forest 

Practices Code in 1995, and in order to compare streams managed under the same
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umbrella of legislation and regulations, we selected streams harvested after 1995.

Second, we selected a range of years with varying reports o f response and recovery for 

hydrologic and organic matter transport in headwater streams. Third, we investigated a 

relatively narrow range of years within each clearcut group to minimize variability within 

treatments. Therefore, we compared undisturbed “control” streams in mature ESSF 

forests to streams in “new clearcuts” harvested up to three years prior to sampling, and 

streams in “old clearcuts” harvested up to seven years prior to sampling. We posed three 

questions with respect to our comparisons among “control”, “old clearcuts” and “new 

clearcuts”. First, we evaluated responses of FPOM and DOC to clearcutting during high 

seasonal discharge. Second, we investigated the seasonal variation in DOC concentration 

and composition, and third we determined if clearcutting altered seasonal variation in 

DOC concentration and composition.

Methods 

Study Location
We conducted a comparative survey using paired sites located on each selected 

stream within the ESSF biogeoclimatic zone in the southern interior of British Columbia. 

Our requirements for selected watersheds within this forest type were that each stream be 

small, non-fish bearing and that “new” and “old” treatment streams be within clearcuts 

ranging from one to ten years post harvest. Similar streams within undisturbed forest 

served as control streams. We also chose to examine two subzones within the ESSF 

biogeoclimatic zone. O f five candidate study areas identified in conjunction with tenure 

holders in the region, field reconnaissance determined that two of these areas, Bone 

Creek and Damfino Creek, met the criteria.
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In 2004, we sampled twenty-two streams within the Bone Creek and Damfino 

Creek study areas (Fig. 2). Ten of the streams were within the Bone Creek study area, 

located approximately 255 km northeast of Kamloops and situated in the ESSF wet cold 

subzone Thompson Plateau variant (ESSF wc2; Lloyd et al. 1990). The ESSF wc2 is 

characterized by 361 mm mean precipitation during the growing season, 782 cm mean 

annual snowfall, and 1.1 0 C mean annual temperature. Bone Creek is a tributary of the 

North Thompson River. A waterfall located 150 metres upstream from the mouth of 

Bone Creek prevents fish passage, leaving the remainder of the watershed absent of fish 

(FRBC 2001).

The remaining 12 streams were located in the Damfino Creek study area.

Damfino Creek is located approximately 260 km southeast of Kamloops within the ESSF 

dry cold subzone, Okanagan Highlands variant (ESSF del; Lloyd et al. 1990). The ESSF 

del is characterized by 261 mm precipitation during the growing season, 635 cm mean 

annual snowfall and 2.0 0 C mean annual temperature (Lloyd et al. 1990). Streams in this 

study area were within two watersheds, Damfino Creek and Two John Creek, which are 

separated by approximately ten kilometres. Damfino Creek flows into the Kettle River, 

and Two John Creek flows into the West Kettle River; both rivers are tributaries of the 

Columbia River. A waterfall located 561 m from the mouth of Damfino Creek prevents 

fish passage to the upstream reaches, and barriers restrict fish migration in the upper 

reaches of Two John Creek where sample streams were located (FRBC 2000).

All streams selected in this study fall under the S6 stream classification (Province 

o f BC 1995), which includes non-fish bearing streams no greater than 3 m bank-full 

width. Cutblocks selected in this study ranged in size from 20 to 95 ha and contained up
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to 24 identified S6 streams within one block. Best management practices prescribed 

retention of the most windfirm 5 % of codominant conifers within 20 m of the channels 

of two streams for every 40 ha of harvest area, and full retention o f non-merchantable 

vegetation within 5 m (Province o f BC 1995). All treatment streams were nearly to 

completely void of conifers in their riparian zones, and where conifers remained they 

were early serai and sparse. A portion of streams in each treatment had non- 

merchantable vegetation left in the riparian zone that comprised deciduous species such 

as alder (Alnus tenufolia) and rhododendron (Rhododendron albiflorum). The primary 

logging method used within Damfino study area streams was conventional grapple 

skidding, while high lead yarding was common in Bone Creek study area due to steeper 

topography.

Although this study was not designed to quantify or evaluate the effects of slash, 

organic matter left in or adjacent to streams is considered an important influence on 

stream responses to clearcut logging. Our observations were that slash presence was 

variable among clearcut streams ranging from very little slash present immediately 

adjacent to the channel, to high amounts of slash that covered the stream channel. Figure 

3 shows examples of slash presence representative of the intermediate amount of slash, 

not completely covering the stream but present in the riparian zone and the channel. The 

specific influence of slash was not tested in this study as the objective was to evaluate 

effects of the end result from clearcut harvesting, regardless of site specific differences in 

logging operations.
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Figure 3. Two examples o f slash in proximity to streams in this study compared to two control 
streams; all photographs were taken in 2004. Top left photograph is stream 215 logged in 2003, 
and top right photograph is stream 206 logged in 1998; both streams are within Damfino Creek 
study area. Bottom left photograph is control stream 013 at Bone Creek study area, and bottom 
right photograph is control stream 203 at Damfino Creek study area.
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Experimental Design
Selected streams fell into one of three treatment categories: “control” streams

within undisturbed mature forest, “new” streams within clearcuts 1-3 years post harvest, 

and “old” streams within clearcuts 5-7 years post harvest. The minimum distance that a 

stream flowed through its associated cutblock was 300 metres at Bone Creek and 250 

metres at Damfino Creek. Therefore, this minimum distance separated the downstream 

site from the upstream forest edge, and an additional 50 metres separated the forest edge 

from the upstream site (Fig. 4). The same distances separated control stream paired sites 

located at elevations and physical characteristics representative of treatment streams. 

Streams served as replicate sampling units to avoid issues of pseudoreplication (Hurlbert 

1984). We considered differences between paired sites of control streams as the 

reference level, and compared the reference level to differences between paired sites of 

clearcut treatments. This is similar to a before-after control-impact design, and is 

effective to detect responses to disturbance (Underwood 1994).

We addressed potentially confounding variables by judicious site selection and 

timing of sampling. We maintained a consistent slope distance between paired sites in 

order to reduce variability associated with effects that may occur as a function of reach 

length. We excluded streams if  they had insufficient flow, if they flowed through a 

known disturbance upstream from the selected clearcut, and if they contained a riparian 

buffer of timber. To avoid the additional influence of roads, we excluded streams crossed 

by active or decommissioned roads larger than skid trails within or above the paired sites. 

We selected reference streams with a range of physical characteristics representing those 

of treatment streams.
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Experimental Design
Paired sites:
Reference stream, top 
Treatment stream, bottom

Legend

Upstream site

Downstream site

Cutblock

*V
Stream

Forest vegetation

Figure 4. Schematic diagram showing experimental design.

Timing o f sampling influences organic matter export rates due to seasonal and 

diel periodicity, and discharge pulses. Sampling dates corresponded with high and low 

periods according to Water Survey of Canada archived data for the study areas (Fig. 5). 

We commenced sampling at the same time each day, with downstream sites in the 

morning followed by upstream sites in the afternoon. We did not sample within 24 hours 

of heavy rainfall. Treatments were sampled alternately within each sampling period, as 

opposed to sampling all control streams then all clearcut streams, to avoid bias from 

seasonal fluctuation through our sampling timeframe.

From June 18 - July 23, 2004 we sampled paired sites on 12 streams at Damfino 

Creek, and from August 12 - 29 we sampled paired sites on 10 streams at Bone Creek.
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We sampled an additional four unpaired sites consisting of two “old” and two “control” 

treatments at Bone Creek because paired sites were not available that met our criteria. 

During the low flow period, we did not sample any upstream sites in the Bone Creek 

study area due to time constraints, and data collection was not possible at stream 002 due 

to access restriction from a landslide. At Damfino Creek, we did not conduct low flow 

sampling at the upstream site of stream 210 that was entirely dry.

Each stream was assigned an identification number in chronological order of 

sampling with the leading digit representing the study area. All physical attributes were 

measured during the high flow period (Table 1). Water temperature data were 

successfully collected at 18 sites for periods ranging from one to seven days surrounding 

the sample date of each stream. Water temperature data were collected for reference of 

physical stream characteristics and were not entered into analysis, whereas the remaining 

physical data were used in analysis.
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Table 1. Physical characteristics and sampling dates o f study streams sampled in 2004 within the Bone Creek and
Damfino Creek study areas.

Stream 
I D a

Treat
ment

Year
logged

Canopy
closure
(% )b

Discharge Bank-full 
(L sec'1) width 

(m)

Stream
gradient

(%)

Aspect Elevation 
medianc 

(m)

Water Temp.d 
Min Max 
CO C C )

Date sampled 
High Low 
Flow Flow

Bone Creek
005 Control - 25 5.46 0.47 35 W 1184 9.8 14.8 14-Aug 4-Oct
012 Control - 78 12.38 2.72 34 E 1131 8.9 12.3 24-Aug 4-Oct
013 Control - 94 2.39 2.13 32 SE 1297 5.7 7.6 19-Aug 4-Oct
025 Control - 52 4.28 0.61 32 NE 1671 7.9 9.9 27-Aug 5-Oct
021 New 2003 0 1.31 0.85 41 S 1536 9.9 11.8 13-Aug 4-Oct
023 New 2003 0 0.59 0.68 31 S 1845 6.1 12.3 13-Aug 4-Oct
002 New 2002 42 0.63 0.94 57 E 1453 n.d. n.d. 25-Aug n.d.
027 New 2001 59 3.42 1.03 65 SW 1543 0° bo 9.2 29-Aug 4-Oct
010 Old 1999 0 0.43 2.50 58 N 1262 9.5 11.6 12-Aug 4-Oct
011 Old 1998 0 1.66 1.00 33 NE 1171 9.2 11.8 26-Aug 4-Oct

Damfino Creek
203 Control - 77 4.16 1.63 4 SW 1566 4.6 12.0 26-Jun 31-Aug
208 Control - 5 4.29 0.71 18 s 1592 8.4 8.6 9-Jul 31-Aug
209 Control - 73 4.11 1.56 23 NW 1820 6.5 16.0 11-Jul 31-Aug
213 Control - 84 1.17 1.04 12 NE 1682 n.d. n.d. 21-Jul 31-Aug
201 New 2003 63 19.04 0.86 7 SE 1547 5.5 12.0 18-Jun 30-Aug
205 New 2003 17 3.77 1.02 14 N 1660 7.3 11.2 29-Jun 31-Aug
207 New 2003 55 5.63 0.76 14 SE 1730 6.1 19.9 10-Jul 31-Aug
215 New 2003 57 1.47 1.62 16 NE 1652 n.d. n.d. 23-Jul 31-Aug
206 Old 1998 92 1.41 1.01 9 E 1873 6.4 16.7 30-Jun 31-Aug
210 Old 1998 18 0.18 1.30 24 N 1825 7.4 10.0 13-Jul 31-Aug
211 Old 1998 39 0.92 0.76 27 W 1830 6.2 8.5 14-Jul 31-Aug
202 Old 1997 45 2.69 0.86 8 w 1695 n.d. n.d. 25-Jun 31-Aug

Note: Attributes measured during high flow sampling period with multiple measurements at each site. Stream average values are presented with the exception o f canopy closure, 
which are given for downstream sites for comparison of logged versus old growth, (n.d. = no data).

■ All streams are unnamed; therefore, each stream was assigned a number with the leading digit indicating study area 
B Canopy closure represents percentage o f  cover measured by densiometer 1 m above ground at downstream sites 

c Represents the median elevation between downstream and upstream paired sites 
d Water temperaure logged hourly over at least 24 hours during high flow sampling date o f each stream

20



Data Collection
We recorded physical characteristics at each site during high flow sampling

including canopy closure, discharge, bank-full width, stream gradient, aspect, and 

elevation. At two locations for each site we used a densitometer held 1 metre above 

ground, facing four directions to determine canopy closure (Lemmon 1956). We 

measured discharge by recording the time to fill a large container o f known volume at 

least six times throughout sampling and obtaining the average (Gore 1996). We 

measured bank-full width at three locations, and gradient and aspect at each site using a 

clinometer and compass. We obtained elevation and UTM coordinates with GPS at each 

site location, and verified elevation using topographical maps. Temperature loggers were 

placed in streams at each site surrounding the high flow sampling period and recorded 

hourly water temperature over at least 24 hours.

We collected fine particulate organic matter (FPOM) samples during the high 

discharge period only, and dissolved organic matter (DOM) samples during two seasons. 

At each downstream and upstream site we triple rinsed three 11 L carboys using stream 

water, and filled each carboy using a sieve to remove particles greater than 1 mm in 

diameter. Using vacuum filter apparatus with hand pumps, we filtered the water using 

pre-ashed, pre-weighed glass fibre filters of nominal pore size 0.7 pm (Whatman GFF) in 

triplicate. From each carboy, we filtered four litres o f water or an amount sufficient to 

leave a visible layer, and retained each filter in a pre-ashed tinfoil envelope within a 

sealed plastic bag. At the end of each day, we froze the samples and kept them frozen 

until analysis. In the laboratory, we processed the filters and used gravimetric analysis as
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described in Wallace and Grubaugh (1996) to determine ash-free dry mass (mg L '1) of 

FPOM.

We retained the remaining filtrate of each sample in 60 mL amber glass bottles 

and kept samples refrigerated for subsequent DOC analysis. We used a total carbon 

analyzer (Model V SCH, Shimadzu Corporation; Kyoto, Japan), using the non-purgible 

organic carbon method, to obtain DOC concentrations in parts per million or mg L’1. We 

measured the absorbance of each sample at 350 nm (25° C) using a Cary 50 

spectrophotometer (Varian Incorporated; Palo Alto, California, USA). The spectral 

ultraviolet absorbance (SUVA350) of each sample was calculated using absorbance 

divided by DOC concentration (Weishaar et al. 2003).

Data Analysis
We used discriminant analysis to test for natural patterns among streams using 

mean discharge, bank-full width, stream gradient, aspect and elevation of each stream as 

independent variables. If  physical characteristics did not predict group membership 

among treatments, then we assumed that responses of organic matter were due to logging 

or season rather than natural variability among subject streams. The physical stream 

variables were log transformed in order to achieve equal population covariances, to 

reduce the influence of outliers, and to meet the assumption of multivariate normality 

required for discriminant analysis (Tabachnick and Fidell 1989).

For each response variable, FPOM concentration, DOC concentration, and 

SUVA350, we used site means to determine effect as the difference between paired sites 

relative to the upstream reference site (Equation 1). A negative effect indicated the 

variable decreased after flowing through the clearcut or between paired sites, whereas a
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positive effect indicated the variable increased. Control stream effects served as the base 

condition to compare against treatment stream effects.

d s - u s
E ffec t =

us
x 1 0 0  Equation 1

Where ds = downstream site average, us = upstream site average.

All data were checked for normality and homoscedasticity. FPOM effect required 

a Logio(x+1) transformation to meet the assumption of normality; the remaining variables 

did not require transformations. Data are presented untransformed for ease of 

interpretation.

To assess the appropriateness of pooling data from the two study areas, we used a 

two-way ANOVA with treatment and watershed as fixed factors. If  there was not a 

significant interaction between watershed and treatment (p>0.05), then analysis 

proceeded using pooled data and single factor ANOVA was used to detect differences 

among treatments for the remaining variables with a priori contrasts. The contrasts were 

chosen to detect differences between the following groups: i) control and old clearcuts, ii) 

control and new clearcut streams, and iii) old and new clearcut streams.

We first assessed seasonal differences in DOC concentration and SUVA350 using 

a paired t-test. This approach evaluated seasonal differences by comparing two 

measurements taken at identical sites. We used all upstream and downstream sites that 

had measurements for both seasons (n=36). Additional sample size was possible for this 

analysis because the unpaired downstream sites were included in the paired t-test but not 

in downstream-upstream effect (Equation 1) analysis.

The effect between sampling periods gave differences between paired site 

measurements repeated during high and low flow, relative to high flow values (Equation
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2). In this second approach, we used a subset of the paired t-test data due to Bone Creek 

sites lacking upstream low flow data. The purpose of this approach was to detect if 

seasonal response depended on treatment for DOC concentration and SUVA35 0 . We used 

a two-way ANOVA with study area and treatment as fixed factors. If study area did not 

contribute to the general linear model, we then used a one way ANOVA with treatment 

as the factor and a priori contrasts as specified above to determine if season effect 

depended on treatment.

L F - H F
E ffec t -

H F
xlOO Equation 2

Where HF = high flow site average, LF = low flow site average.

Results

Stream Physical Characteristics
Discriminant analysis found that discharge, bank-full width, stream gradient, 

aspect and elevation did not predict group membership to the three treatment types 

(Wilks’ f  = 0.45, p=0.19). This supported our assumption that effects found to differ 

among treatment type are due to logging or season rather than natural variability, with 

respect to the physical attributes measured (Fig. 6a). Average canopy closure at 

downstream sites of control streams was 61 %, and was reduced to 32 % and 37 % on 

average at old and new clearcut sites respectively (Fig. 6b). A priori contrasts did not 

detect any differences between treatment groups (p>0.05). ANOVA also did not detect a 

difference in canopy closure among treatment streams (F2,i9=l .9, p=0.18). Canopy 

closure values varied highly within treatments and overlapped between control and 

clearcut streams. This was due to numerous clearcut streams being highly shaded with 

dense early successional vegetation, and several control streams having an understory
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comprising herbaceous species that were less dense than that of early successional 

vegetation.

Pooling Study Areas
Table 2 summarizes DOC concentration, SUVA350, and FPOM concentrations by

treatment and study area for upstream and downstream sites. The two way ANOVA 

analyses showed that study area (Bone Creek or Damfino Creek) did not significantly 

contribute to the model used to discern treatment responses in FPOM, DOC and SUVA350 

effects (p=0.16, 0.10, 0.85), nor were there significant interactions between treatment and 

study area for the three variables (p=0.15, 0.22, 0.50). Therefore, we pooled data from 

both study areas and compared mean effect among treatments including all 2 2  streams.

Treatment Response
During the high flow period, FPOM differed among treatments (F2 ,i9=3 .6 ,

p=0.048). FPOM responded positively to new clearcuts compared to control streams 

(p=0.032) and old clearcut streams (p=0.036, Fig.7). Contrasts and ANOVA did not 

detect differences in DOC (F2 ,i9= 1 .7 , p=0.20) or SUVA350 (F2,i8=0.69, p=0.52) among 

treatments (Fig. 7). Data were missing for one control sample for SUVA350 

measurements. Effects for streams 002 and 023, both within new clearcuts, were extreme 

at 381 % and 196 % respectively. Excluding these outliers changed the mean of the new 

treatment from 75.7 % (SEM = 49.8 %) to 4.75 % (6.21 %) and the result of the ANOVA 

test to F2,17=0 .008, p=0.992. One of these streams, 023, was also an outlier for FPOM 

effect; however, exclusion of this stream did not alter the significances for FPOM.

During the low flow period, DOC did not differ among treatments (Fig. 8, 

ANOVA: F2,io=0.52, p=0.61; contrasts: p>0.05). SUVA350 differed among treatments
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(F2 ,io= 5 .9 , p=0.027), with increased values between new clearcut sites (p=0.009) and 

pooled clearcut sites (p=0.022) compared with controls (Fig. 8).

Seasonal Response
There were seasonal differences for DOC concentration (t3g= 4.2, p<0.001) and

SUVA350 (t36=-2.6, p=0.012). In Figure 9 it is clear that DOC declined in each treatment 

within both study areas in the low flow compared to high flow season. SUVA350 seasonal 

differences followed similar trends in each study area, with seasonal decline in old 

clearcut streams only (Fig. 9). Mean DOC concentration decreased by 19 % from high to 

low flow, and mean SUVA3so increased by 19 % at low flow (Fig. 10).

Treatment x Seasonal Response
Season effect did not vary among treatments for DOC (Fig. 11, ANOVA:

F2,2o=0.98, p=0.40; contrasts: p>0.05). Although ANOVA did not detect differences in 

SUVA35o among treatments (F2,2o=3.4, p=0.057), a priori contrasts showed that SUVA35o 

seasonal effect in old clearcuts differed from both control streams (p=0.029) and new 

clearcut streams (Fig. 11, p=0.041).
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Figure 6 . (a) Two discriminant functions describe stream abiotic characteristics and do not 
predict group membership to the three treatments (Wilks’ A.=0.45, p=0.19). (b) Mean crown 
closure at downstream sites does not differ among treatments (p=0.12); error bars represent SEM. 
Control n=8 , old clearcuts n=6 , new clearcuts n=8 .
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Table 2. Mean DOC concentration (mg/L), specific U V  absorbance (SUVA350, L m ' 1 mg'1) and 
FPOM concentration (mg/L) by treatment and study area summarized for downstream and 
upstream sites among treatments. Standard errors o f  the mean are given in parentheses._______

Bone Creek Damfino Creek
Control Old New Control Old New

Downstream Sites
DOC: High flow 3.09 (0.77) 4.92 (0.72)a 5 .0 9 (1 .1 1 ) 5 .28 (0.33) 5.30 (0.50) 5.53 (0.51)
DOC: Low flow 2.12 (0.72) 4.77 (0 .11)a 3 .53 (0.68)b 5.09 (0.44) 5.11 (0.41) 4 .49 (0.36)
SUVA: High flow 0.69 (0.09) 0.90 (0.01 )a 1.08 (0.11) 0.87 (0.08) 1.01 (0.68) 0.88 (0.11)
SUVA: Low flow 0.99 (0.05) 0 .85 (0.02)a 1.42 (0.11 )b 0.91 (0.05) 0.92 (0.12) 1.03 (0.96)
FPOM: High flow 1.24 (0.58) 1.75 (0.75)a 2 .70 (0.69) 0.33 (0.11) 0.32 (0.06) 0.41 (0.12)

Upstream Sites
DOC: High flow 2.89 (0.46) 3.81 (0.24)a 3 .7 4 (1 .6 0 ) 5 .1 0 (0 .34 ) 5.96 (0.40) 5.30 (0.53)
DOC: Low flow - - - 4 .58 (0.32) 5.24 (0.66)b 4.37 (0.13)
SUVA: High flow 0.81 (0.13) 1.08 (0.07)a 0.96 (0.18) 0.93 (0.10) 0 .9 4 (0 .1 4 ) 0.84 (0.10)
SUVA: Low flow - - - 1.14(0 .16) 0.94 (0.14)b 0.87 (0.07)
FPOM: High flow 0.90 (0.11) 3.50 (1.51 )a 0 .7 4 (0 .2 1 ) 0.69 (0.36) 0.36 (0.10) 0.31 O O

Note: There a re  four s tre a m s  in each  category  excep t w here  noted b y a n=2; b n=3.

350
300

C?250 -| 
0s *

~ 2 0 0  -

a  150 -
2]100  -

50 -
0

-50

(a) FPOM Concentration - -

_L 1 _i_

Control Old New

125 - 

100 -  

^ 7 5 -
o '
'-■'50 H 
o
, £ 2 5 -  

Hi 0
-25 - 
-50 -

(b) DOC Concentration

A
T

Control Old New

125

100
^ 7 5

r s o
0  25 
UJ 0

-25

-50 J

(c) Specific A bsorbance

A A / J
__________ I ____

Control Old New

Figure 7. Columns show mean effect for (a) FPOM, (b) DOC and (c) specific absorbance 
(SUVA350) among treatments during high flow; error bars denote SEM. Positive effect indicates 
an increased value, whereas negative effect indicates a decrease from upstream to downstream 
sites. Treatment means with common letter do not differ significantly (p>0.05). (Control n=8 , 
Old n=6 , New n=8 ).
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Figure 8 . Mean effect for (a) DOC concentration and (b) specific absorbance (SUVA35 0) among 
treatments during low flow season; error bars denote SEM. Positive effect indicates an increased 
value, whereas negative effect indicates a decrease from upstream to downstream sites.
Treatment means with common letters do not differ significantly (p>0.05).
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Figure 9. Mean seasonal differences at downstream (impacted) sites for DOC concentration at (a) 
Bone Creek, (b) Damfino Creek; and for specific absorbance, SUVA350 at (c) Bone Creek and (d) 
Damfino Creek. Error bars denote SEM. DOC decreased during low flow in every treatment 
indicated by negative values, whereas SUVA350 tended to increase from high to low flow. Bone 
Creek: Control n=4, Old n=2, New n=3. Damfino Creek: Control n=4, Old n=4, New n=4.
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Figure 10. (a) Mean DOC concentration and (b) mean specific absorbance (SUVA3 5 0) during 
high flow and low flow sampling. Error bars represent SEM. Treatment means with a common 
letter do not differ significantly (p>0.05). (DOC n=39; SUVA350 n=37).
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Figure 11. Mean seasonal effect among treatments for (a) DOC concentration and (b) specific 
absorbance (SUVA350); error bars denote SEM. DOC concentration decreased from high to low 
flow indicated by negative effect values. SUVA3 5 0  increased in control and new, and decreased 
in the old clearcut treatment. Control n=8 , Old n=6 , New n=7.

Discussion

Treatment Response
FPOM concentration increased in streams flowing through new clearcuts

compared with control and old clearcut streams. This is in agreement with results from 

previous work. In North Carolina, disturbed streams contained higher particulate organic 

matter (POM) initially following clearcut logging, and recovered within four years 

(Webster et al. 1983). Macdonald et al. (2003a) found increased levels of suspended
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sediments following harvesting activities in the sub-boreal spruce zone in central BC that 

recovered to pre-harvest conditions within three years following harvest. Our results 

were also consistent with data collected a year previous to this study in Bone Creek 

(Greenhalgh and Heise 2004). Our findings indicate that FPOM in the water column 

increases 1-3 years post harvest in response to removal of riparian vegetation, but returns 

to reference levels in the period 5-7 years following harvest.

DOC concentrations we observed fall in the lower range of comparable headwater 

streams reported in the literature. Reported values include a peak flow average of 7.0 

mg/L (Colorado, Hood et al. 2005), a range of 5.3-17.6 mg/L (Colorado/Montana, Brooks 

et al. 1999) and 3.2-7.2 mg/L (Quebec, Eckhardt and Moore 1990). In the current study, 

DOC high flow treatment means fell between 2.89-5.96 mg/L, and low flow means were 

2.12-5.24 mg/L. Biota within streams containing DOC in this range are most vulnerable 

to UV exposure through either increased UVR or decreased DOM (Kelly and Clare 2001; 

Kelly et al. 2003). Subalpine aquatic food webs may be particularly susceptible to global 

or regional increased UVR because light penetration increases with elevation due to 

atmospheric thinning, reduced topographic shading and longer daylength (Williamson et 

al. 1996). The results of this study support a prior survey (Bothwell 2000) that small 

streams in the ESSF contain DOC at threshold concentrations in terms of detriment to 

biota if UVR increased, or if DOM input decreased.

Although differences were not significant during high flow, DOC concentration 

tended to increase within streams flowing through new clearcuts (Fig. 7b). SUVA350 

showed a similar non-significant trend during high flow. Although low flow DOC 

concentration effects did not differ among treatments, SUVA350 effect differed indicating
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elevated allochthonous input in response to new clearcuts. Our findings that DOC 

concentration did not respond, or only slightly responded to disturbance are comparable 

to other findings from headwater streams. Kreutzweiser et al. (2004) found no change in 

DOC concentrations, and increased DOC export that recovered two years post harvest in 

selective harvesting after up to 89 % removal of basal area. Moore and Jackson (1989) 

found 1-4 year old cutblocks had little effect on DOC export. Our SUVA350 results 

concur with the response reported by Hood et al. (2006) that as DOC concentrations 

increased during high run-off, SUVA254 increased 35 % in clearcut watersheds, and only 

10 % in reference watersheds. An investigation of two headwater streams in Arkansas 

found higher refractory pools of DOC in an agriculturally impacted stream compared to 

an undisturbed stream (Ziegler and Brisco 2004). Burney (1990) proposed two pathways 

that cause increased DOC concentrations during rising water; flush of the accumulation 

of microbes and organic matter under snow pack, and run-off from mineral soil-derived 

refractory compounds. The first pathway dominates snow-fed streams and the amount of 

labile DOC derived is positively related to amount of heterotrophic activity during winter 

(Brooks et al. 1999). We suggest that elevated organic matter adjacent to new clearcuts 

influenced the DOC flush during run-off by supplying increased allochthonous 

compounds compared with control streams.

Seasonal Response
The allochthonous influence on DOC during high flow in new clearcuts was also

found during low flow, but this terrestrial signal was greater during low flow. DOC 

concentrations decreased between high and low flow while the portion of refractory 

compounds (SUVA350) increased. Seasonal reductions in DOC concentration agree with
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many previous studies in headwater streams and are attributed to highest discharge 

periods providing maximum inputs of DOC (Tate and Meyer 1983; Moore 1989; Brooks 

et al. 1999; Kiffney et al. 2000; Hood et al. 2003). During high discharge periods, DOC 

is derived primarily from terrestrial sources leading to high refractory composition unless 

mediated by heterotrophic activity under snow pack. Previous work on seasonal shifts in 

DOM composition found differing results depending on dominating sources of DOM. 

Hood et al. (2005) attributed a seasonal increase in SUVA values to a spring flush of 

labile DOC from accumulated microbial activity under snow pack in Colorado forested 

subalpine streams. In Arkansas, Brisco and Ziegler (2004) found the opposite seasonal 

trend in an undisturbed headwater stream that they attributed to increased algal growth 

during summer and photochemical breakdown of allochthonous DOC. In the current 

study, we suggest that a high degree of labile DOC input flushed during spring lead to a 

relative reduction in labile DOC during low flow sampling after depletion of the source. 

Autochthonous production was limited in our control streams due to high shade and so 

the importance of this pathway and photochemical reactions were limited. Old and new 

clearcut streams appeared to function differently from each other and from control 

streams throughout the season. New clearcuts tended to show a positive response in 

SUVA350 during both sampling periods. Old clearcut streams were the only treatment 

where DOC seasonally shifted to a more labile pool indicated by decreased SUVA350 

effect between high and low flow. Next, we will discuss reasons for this differing 

response among treatments.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Treatment x Seasonal Response
Increased light and nutrient availability are two known responses to clearcut

logging in the initial years following harvest. We suggest these factors acted together 

resulting in an opposite seasonal shift in old clearcuts, and alternate functioning within 

new clearcuts. Humic derived DOC exposed to light generally enhances the labile pool 

of DOC through photolysis (Tranvik and Bertilsson 2001; Brisco and Ziegler 2004). 

Increased heterotrophic activity follows photolysis by providing bioavailable DOC unless 

a further limiting factor exists. An initial nutrient flush followed by nutrient limitation is 

associated with removal of riparian vegetation (Gregory et al. 1987). An investigation of 

ESSF wc forest soils in close proximity to our study locations revealed that forest soil 

nitrogen concentrations more than doubled in the first year following clearcut logging, 

and then declined 4-5 years post harvest to less than reference conditions (Feller 1997; 

Hannam and Prescott 2003). In old clearcut streams, exposure to light during the summer 

may have broken down photoreactive compounds and lead to increased labile 

compounds. However, in combination with decreased nutrient availability, the labile 

pool of DOC likely accumulated throughout the summer due to reduced consumption by 

heterotrophic microbes compared with control streams.

Increased nutrient availability within new clearcuts provided a different scenario 

that lead to a decreased portion of refractory DOC. Ziegler and Brisco (2004) showed 

that elevated nutrients in a disturbed headwater stream supported more microbes and 

resulted in a larger pool of refractory DOC than a comparable forested stream. The 

authors reasoned that two processes lead to this result: microbial degradation of terrestrial 

organic matter released humic substances (generally aromatic carbons), and elevated 

microbial uptake o f labile DOC increased the portion of refractory compounds. In the
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present study, the refractory portion of DOC was elevated in new clearcuts in both 

seasons sampled, but particularly during low flow. DOC concentration tended to 

decrease seasonally more in new clearcuts than in control and old clearcut streams (Fig.

1 la). Seasonal effects in new clearcuts differed from old clearcuts but not from control 

streams (Fig. 1 lb). Thus, we suggest that increased nutrients in new clearcuts, likely 

acting synergistically with photolytic production of labile DOC compounds, supported 

increased microbial activity throughout the summer. Although we did not examine 

microbial biomass, we suggest that microbial uptake of the labile pool would lead to the 

seasonal increase in the refractory pool of DOC compounds in new clearcuts. Heavily 

shaded control streams lacked the further addition of labile DOC through photolysis, but 

also lacked the additional consumption of labile DOC through elevated microbial 

biomass. Thus, the net effect of new clearcuts on aromaticity of DOC appeared similar to 

control streams.

Although canopy closure was similar between clearcut groups, and vegetation had 

not yet established significantly in either group, our results showed different temporal 

responses to forest harvesting. Generally, three main silviculture activities were 

completed following winter logging in our locations. In the initial year following logging 

we found that slash remained on most sites. Debris was generally burned and site 

preparation such as mounding occurred to expose mineral soil for tree planting the next 

summer. These silviculture activities take place within the time frame of our new 

clearcut treatment, and can take place immediately adjacent to S5 and S6 streams, which 

do not require a riparian reserve or machine free zone. Organic debris generally causes 

negative effects such as increased suspended sediment, although it is noted to mediate
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temperature increases associated with logging (Jackson et al. 2001). We suggest that in 

new clearcuts organic debris caused elevated levels of FPOM and DOC and supplied 

photoreactive DOC compounds that in turn produced labile DOC when exposed to light. 

Organic debris would also supply increased nutrient availability to allow elevated 

biomass o f stream heterotrophic biota that in turn depleted the supply of labile DOC (Fig. 

12). This response may trigger a bottom up response in the stream food web if 

consumers of the heterotrophs are limited either by nutrient availability or by their prey.

O rganic
Debris

Refractory DOC 
C om pounds

Increased 1
Nutrients 1

Labile DOC

M acroinvertebrates

Increased
/  H eterotrophs

Figure 12. Schematic diagram showing the flow o f energy from allochthonous sources and light 
to heterotrophs and macroinvertebrates.

An alternative or additional explanation to the changes in DOC is a 

photochemical pathway reported for autochthonous compounds. Algal derived 

compounds can condense on exposure to light thereby reducing the labile pool of DOC 

(Tranvik and Bertlisson 2001; Brisco and Ziegler 2004). This would also explain 

seasonal increased SUVA350 in new clearcut streams if a smaller but important portion of 

DOC was derived from algae. We did not measure the influence of stream temperature, a 

factor shown to positively affect microbial production in headwater streams (Peters et al. 

1987). In order to confirm or refute these pathways, a more complete dataset would be 

required such as measurements of nutrient levels, UVR penetration, and microbial
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activity in clearcut streams. Analytical methods such as stable isotope analysis and 

fluorescence index analysis would assist in a further examination of the relative 

influences of algal, deciduous or coniferous vegetation on DOC.

Experimental Approach
There were several assumptions made in the design of this experiment.

Hydrologic data for the headwater streams in this study do not exist and our discharge 

measurements were point data collected during high flow sampling only. Discharge is an 

important parameter that influences total export of organic matter in response to clearcut 

harvesting. In North Carolina, increased particulate organic matter (POM) standing crop 

occurred in small streams 16 and 30 years after clearcut harvesting (Silsbee and Larson 

1983; Stone and Wallace 1998). Several authors have suggested that recovery from 

disturbance in northern streams may take longer than for temperate streams at lower 

latitude due to hydrology (Moore and Wondzell 2005), and differences in temperature 

regime (Macdonald et al. 2003b). In similar forest types to our study, increased 

discharge persists for at least 15 years in the montane spruce in the southern interior of 

BC (Winkler et al. 2005) and 30 years in the ESSF in Colorado (Troendle and King 

1985). This response may cause increased annual export of organic matter even if 

concentrations do not differ among treatments. However, even intensive sampling of 

organic matter concentrations combined with hydrologic data underestimates export due 

to under representation of storms where most of POM transport occurs (Cuffney and 

Wallace 1988; Webster et al. 1990). Continuous hydrologic data in our treatments 

streams would have enabled the determination of minimum annual export rates.
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We assumed a high degree of natural variability existed among our streams, 

making it difficult to use the reference stream approach. To address this issue we used 

mean differences between paired sites on control streams as a reference for the base 

condition. These differences were not always equal to zero, most notably there was a 

slight increase in DOC concentration within control streams from upstream to 

downstream during low flow, accompanied by a shift to more labile carbon composition 

of DOC. During high flow smaller differences in the same directions (+/-) occurred 

within control streams. It is expected that DOC concentrations increase longitudinally 

from the headwaters downstream, with cumulative inputs from detritus, and through 

contact with the upper soil horizon. Another factor during high flow sampling is diel 

fluctuations in DOC. We sampled downstream sites between 8 am and noon, and 

upstream sites between noon and 4 pm, to maintain consistency across treatments. These 

are two considerations that may account for differences in organic matter between paired 

sites on reference streams. Sampling bias was constant among treatments because we 

compared differences between two sites per stream, with similar physical attributes 

among all streams.

Summary
We found that FPOM transport increased initially in response to clearcutting, but 

recovered with 5 years. DOM transport did not change in response to clearcutting, but 

seasonally dependent composition of DOM was altered in clearcuts, and did not recover 

to pre harvest conditions within 7 years post harvest. Our results indicate that pathways 

of DOC utilization were altered in clearcuts. This was only evident during the low flow 

sampling period. The responses seen in this study were not necessarily detrimental to
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stream biota, but could lead to a shift in community composition among trophic levels. 

The research has applicability to the ESSF forest, which has lacked investigation in the 

interior of the Pacific Northwest Region to date. It is a first step to quantify levels of 

organic matter transported in small streams, and to identify responses to forestry 

disturbance up to eight years post harvest. Future research should investigate whether 

responses occur in the longer term. Further investigation is warranted to determine if the 

responses we found translate to changes in annual export of organic matter and if stream 

biota respond to the alterations we reported.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2: Effects of clearcutting on invertebrate drift within 
headwater streams in British Columbia, during two periods 
post harvest.

Abstract
Invertebrate drift exported from headwater streams subsidizes downstream food webs and 

alterations to invertebrate drift can affect fish production. We investigated effects of 

clearcut logging on density and composition of drift in headwater streams within 

Englemann spruce -  subalpine fir (ESSF) forests in British Columbia in three treatment 

groups: “new” 1-3 years post harvest, “old” 5-7 years post harvest, and reference streams 

(non harvested). We compared mean differences between paired sites on streams for 52 

biotic metrics. We used logistic regression and multiple linear regressions for common 

taxa to determine if disturbance predicted their presence/absence, and if fine particulate 

organic matter (FPOM) and dissolved organic carbon (DOC) predicted their densities. 

Seventeen of the 52 biotic metrics differed among treatments. Total invertebrate 

densities (abundance and biomass) increased due to clearcutting, but showed no signs of 

recovery as new and old clearcuts differed significantly from reference streams. Both 

aquatic and terrestrial invertebrate drift increased in steams flowing through clearcuts. 

Taxa within the orders Ephemeroptera and Diptera drove the increased drift. Scrapers 

increased in old clearcuts, whereas collector-gatherers contributed to response in both 

clearcut groups. Percent shredders responded negatively to both clearcut groups, and 

taxa richness weighted for abundance in each sample responded negatively to new 

clearcuts. Site location (upstream of or within clearcut) did not predict presence/absence 

of common families and genera, but FPOM concentration was positively related to 

density o f family Chloroperlidae and the genus Ameletus. Our results indicate that
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clearcut logging increased quantity and altered composition of invertebrate drift up to 7 

years post harvest. We suggest that the response was primarily due to increased densities 

of the invertebrate benthic standing stock in clearcut streams. Changes in composition 

were likely due to increased benthic production that favoured multivoltine taxa, taxa that 

directly or indirectly benefited from increased primary production, and taxa that tend to 

drift. Implications for fisheries management are that short-term gains may occur, but 

long term stability in resources exported from headwater streams are uncertain.
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Introduction
Due to the “fish-centric” nature of riparian forest management, small streams that 

are non-fish bearing are often the least protected in terms of a no harvest riparian buffer 

(Young 2000; Cummins and Wilzbach 2005). Fish such as salmonids, however, are 

seasonally food limited and may receive an important subsidy of organic matter from 

headwater reaches, especially when considering cumulative export (Wipfli and 

Gregovich 2002). It is important to consider cumulative impact because small streams 

exist in the highest numbers among the continuum of freshwaters and have the closest 

link between terrestrial and aquatic ecosystems (Vannote et al. 1980). Headwater streams 

are generally detrital based food webs that rely on a net import of allochthonous organic 

matter derived from the terrestrial ecosystem. A high degree of canopy closure results in 

relatively low primary production and cool water temperatures. Small streams have an 

important element of large woody debris that allows retention of suspended particles and 

also mediates discharge. The result of these characteristics is that headwater streams 

export a unique component of organic matter, including invertebrate drift, to subsidize 

downstream trophic webs.

Invertebrates enter the drift passively due to disturbance that causes habitat 

deterioration, for example increased suspended particles (Culp and Davies 1983), and 

actively for reasons that include predator avoidance, response to resource depletion, or as 

part of their life cycle (Brittain and Eikeland 1988). Water temperatures are closely 

linked to life cycle cues and can affect invertebrate drift through altering emergence 

times (Vannote and Sweeney 1980). Drift is density dependent, reported by Waters 

(1965) to be the subset of the benthos that exceeds its carrying capacity. Thus, increased
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invertebrate production would lead to increased drift rates. Reduced habitat quality can 

stimulate invertebrates to enter the drift both actively (Kohler 1984) and passively (Culp 

and Davies 1983). Resource depletion likely stimulates increased drift and can cause 

short-term spikes in drift rates (Siler et al. 2001). Drift is positively correlated with, and 

has shown the same trends as, benthic assemblages in response to disturbance (Waters 

1965; Siler et al. 2001). However, in response to food depletion or altered habitat 

quality, drift rates may increase and cause a decline in benthic densities (Brittain and 

Eikeland 1988).

Research on the effects of streamside clearcutting on invertebrate drift is lacking 

in comparison to the effects on invertebrate benthic densities. Yet, drift may be more 

closely related to fish production than benthos because a wide range of fish species 

subsist primarily on invertebrate drift (Hynes 1970). Although a small percentage of the 

benthic community (<1 %) is suspended in the drift at one time, daily drift rates over an 

area are much greater than the benthic standing crop of that area (Giller and Malmqvist 

1998). Wipfli and Gregovich (2002) reported that export of drift and detritus can support 

100-2000 young-of-the-year salmonids per kilometre o f a fish bearing reach that receives 

water from headwater streams. In addition to the quantity of invertebrates drifting, the 

type of invertebrates in the drift may also influence fish resources. Terrestrial 

invertebrates that drop in from adjacent vegetation are known to be an important resource 

to drift feeding fish due primarily to their larger size, and make up 40-70 % of salmonid 

diet in summer months (Nakano et al. 1999; Kawaguchi and Nakano 2001). However, 

most animals require the low carbon:nitrogen ratio that autochthonous sources and 

certain species of deciduous riparian vegetation provide (Murphy and Meehan 1991).
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Therefore, a shift from dominant allochthonous to autochthonous production may provide 

a higher quality food source for invertebrates and fish, if  biota were facultative in their 

food sources. If logging affects the density or composition of invertebrates in the drift of 

headwater reaches, the response can carry through to affect fish production (Bilby and 

Bisson 1992; Hetrick et al. 1998). Since drift is a subset of the benthic community, 

effects of clearcut logging on benthic invertebrates are useful as comparisons to the 

effects on drift; however, the mechanism of the effect and characteristics of drift require 

consideration.

The main effects of streamside forest harvesting on small streams include 

decreased shade leading to elevated water temperatures (Brown and Krygier 1970) and 

increased primary productivity (Webster et al. 1983). In the initial years following 

logging, nutrient concentrations increase (Gregory et al. 1987) and allochthonous inputs 

decline (Bilby and Bisson 1992). Longer-term effects include increased water yields 

(Troendle and King 1985; Chamberlin et al. 1991), increased suspended particles 

(Macdonald et al. 2003a), and altered stream morphology due to a decline in large woody 

debris recruitment (Hicks et al. 1991). Increased light and increased autochthonous 

resources generally lead to increased benthic macroinvertebrate densities following 

clearcutting. For example, invertebrate densities increased three to five years following 

clearcutting in hardwood forests (Noel et al. 1986; Silsbee and Larson 1983; Stone and 

Wallace 1998). Studies in the Pacific Northwest reported increased benthic invertebrate 

densities in clearcuts within five years post harvest (Newbold et al. 1980; Fuchs et al. 

2003; Kiffney et al. 2003; Hernandez et al. 2005). Conversely, Culp and Davies (1983)
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found decreased benthic invertebrate densities, and increased drift rates in a coastal 

system within three years post harvest.

While macroinvertebrate assemblages generally increase following clearcutting, 

changes to community composition are more difficult to interpret. One method of 

tracking community changes is by categorizing organisms based on their food source and 

method of obtaining it. Taxa are categorized among five functional feeding groups: 

predators, collector-gatherers, collector-filterers, scrapers and shredders (Merritt and 

Cummins 1996). Two of these groups, scrapers and shredders, rely on the two main 

energy resources directly affected by forest harvest; light and organic matter. In 

headwater streams scrapers subsist primarily on aufwuchs, made up primarily of algae, 

and are influenced by increased light, and shredders consume leaf litter (Merritt and 

Cummins 1996). Collector-gatherers and collector-filterers subside on fine particles that 

are products of detritus, algae, and metabolic wastes. Therefore, collectors are affected 

by a shift in food base that may occur through increased primary production in the short

term, and increased detrital processing rates due to composition of early successional 

vegetation. Predators subsist on all non-predator groups and, therefore, the same factors 

that influence the remaining functional feeding groups indirectly affect predators 

(Hawkins et al. 1982). When invertebrate densities increased in response to clearcutting, 

scraper and collector-gatherer densities drove the response in the first 2-5 years post 

harvest (Webster et al. 1983; Gurtz and Wallace 1984; Hernandez et al. 2005), and 

shredder densities drove increased invertebrate densities in the longer term, 16 years 

(Stone and Wallace 1998) and 35-45 years post harvest (Hernandez et al. 2005). The
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factors controlling the time frame in which scrapers decline and shredders begin to 

increase remains unclear.

Biotic metrics are also useful measures to track changes in composition and 

diversity. For example, densities of groups such as orders, families and functional 

feeding groups, taxa richness, indices of taxa heterogeneity and evenness, and 

consideration of organisms’ reported tolerances to disturbance can be useful biotic 

metrics. Benthic bioassessment protocols commonly use many of these biotic metrics to 

assess stream health by comparing similarities between disturbed streams and reference 

conditions (Barbour et al. 1999). Alternatively, a multimetric approach evaluates a set of 

biotic metrics measured in streams along a gradient of disturbance to assess stream health 

relative to the degree of disturbance (Karr and Chu 1999). Biotic metrics are not 

commonly used to describe invertebrate drift as drift does not represent the entire 

macroinvertebrate community and, therefore, cannot directly represent stream health. 

However, we used biotic metrics to detect relative differences in drift densities and 

composition.

Among investigations of the effects of forestry in the Pacific Northwest Region, 

most research to date has focussed on southern and coastal areas. Some exceptions 

include findings in sub-boreal spruce forests in north central British Columbia. Fuchs et 

al. (2003) reported increased benthic densities, and Macdonald et al. (2003a, 2003b) 

reported increased temperature and suspended sediment in headwater streams. In 

montane spruce forest in the southern interior of B.C., Winkler et al. (2005) reported 

hydrologic effects of logging. In Englemann spruce subalpine fir (ESSF) forests, Heise 

(2001) reported altered benthic invertebrate functional feeding group representation and
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decreased diversity up to five years post harvest in some but not all study streams. The 

ESSF biogeoclimatic zone covers 12 % of the province and is the highest elevation 

forested zone in the southern and central interior o f British Columbia (DeLong and 

Meidinger 2003). Englemann spruce (.Picea englemanni) is one of the most important 

commercial species in the interior due to its wood characteristics, and excellent source of 

pulp (Parish et al. 1996). Small streams and their responses to clearcut logging in ESSF 

forests have been studied very modestly considering their ecological and economic 

importance.

Our goal was to investigate invertebrate drift to determine if clearcut logging 

adjacent to headwater streams altered the export of prey to downstream fish bearing 

reaches. We also tested the hypothesis that, after any initial responses, invertebrate drift 

would recover within the first decade post harvest. We selected this time frame for 

several reasons. First, the Province of British Columbia implemented the Forest Practices 

Code in 1995 and in order to compare streams managed under the same umbrella of 

regulations, we selected streams harvested after 1995. Second, we selected a range of 

years with varying reports o f response and recovery in headwater streams. Increased 

nutrients coupled with increased light cause elevated primary and secondary production 

within the first several years following harvest (Murphy and Meehan 1991), but it 

becomes unclear if  recovery of the invertebrate community may occur in subsequent 

years within the first decade following harvest. Third, we investigated a relatively 

narrow range of years within each clearcut group to minimize variability within 

treatments. Therefore, we compared undisturbed (“control”) streams in old growth ESSF 

forest to streams in “new clearcuts” 1-3 years post harvest, and streams in “old clearcuts”
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5-7 years post harvest. We posed three questions with respect to our comparisons among 

“control”, “old clearcuts” and “new clearcuts”. First, we evaluated response of overall 

invertebrate drift to clearcutting during high seasonal discharge. Second, we investigated 

responses of the drift composition by utilizing a range of biotic metrics at varying 

taxonomic levels, and presence/absence of common families and genera. Third, we 

investigated whether fine particulate organic matter (FPOM) and dissolved organic 

carbon (DOC) levels were associated with drift rates o f the common taxa that we 

identified.

Methods 

Study Location
We conducted a comparative survey using paired sites located on each selected 

stream within the ESSF biogeoclimatic zone in the southern interior of British Columbia. 

Our requirements for selected watersheds within this forest type were that each stream be 

small, non-fish bearing and within clearcuts ranging from one to ten years post harvest 

for the treatment streams. Similar streams within undisturbed forest served as control 

streams. We also chose to examine two subzones within the ESSF biogeoclimatic zone. 

Of five candidate study areas identified in conjunction with tenure holders in the region, 

field reconnaissance determined that two of these areas, Bone Creek and Damfino Creek, 

met the criteria.

In 2004, we sampled twenty-two streams within Bone Creek and Damfino Creek 

(Fig. 13). Ten of the streams were within the Bone Creek study area, located 

approximately 255 km northeast of Kamloops and situated in the ESSF wet cold subzone 

Thompson Plateau variant (ESSF wc2; Lloyd et al. 1990). The ESSF wc2 is
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characterized by 361 mm mean precipitation during the growing season, 782 cm mean 

annual snowfall, and 1.1 °C mean annual temperature. Bone Creek is a tributary of the 

North Thompson River, which supports numerous salmonid species. A waterfall is 

located 150 metres upstream from the mouth of Bone Creek that prevents fish passage, 

leaving the remainder o f the watershed absent of fish (FRBC 2001).

The remaining twelve streams were within the Damfino Creek study area located 

approximately 260 km southeast of Kamloops within the ESSF dry cold subzone, 

Okanagan Highlands variant (ESSF del; Lloyd et al. 1990). The ESSF del is 

characterized by 261 mm growing season precipitation; 635 cm mean annual snowfall 

and 2.0 0 C mean annual temperature (Lloyd et al. 1990). Sites in this study area were 

sampled within two watersheds: Damfino Creek and Two John Creek. Two John Creek 

is located ten kilometres south of Damfino Creek within the same biogeoclimatic zone 

and variant. A waterfall located 561 m from the mouth of Damfino Creek prevents fish 

passage to the upstream reaches, and barriers restrict fish migration in the upper reaches 

of Two John Creek where sample streams were located (FRBC 2000). Damfino Creek 

flows into the Kettle River, and Two John Creek flows into the West Kettle River, which 

then flows into the Kettle River. The Kettle River is a tributary of the Columbia River 

and supports numerous salmonid species.

All streams selected in this study fall under the S6 stream classification, which 

includes non fish bearing streams no greater than 3 m bank-full width under British 

Columbia’s Forest and Range Practices Act. Cutblocks selected in this study ranged in 

size from 20 to 95 ha and contained up to 24 identified S6 streams within one block.

Best management practices prescribed retention of the most windfirm 5 % of codominant
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conifers within 20 m of the channels of two streams for every 40 ha of harvest area, and 

full retention of non-merchantable vegetation within 5 m (Province of BC 1995). All 

treatment streams were nearly to completely void of conifers in their riparian zones, and 

where conifers remained they were early serai and sparse. A portion of streams in each 

treatment had non-merchantable vegetation left in the riparian zone that comprised 

deciduous species such as alder (Alnus tenufolia) and rhododendron (.Rhododendron 

albiflorum). The primary logging method used within the Damfino study area streams 

was conventional grapple skidding, while high lead yarding was common in the Bone 

Creek study area due to steeper topography.

Although this study was not designed to quantify or evaluate the effects o f slash, 

organic matter left in or adjacent to streams is considered an important influence on 

stream responses to clearcut logging. Our observations were that slash presence was 

variable among clearcut streams ranging from very little slash present immediately 

adjacent to the channel, to high amounts of slash that covered the stream channel. The 

specific influence of slash was not tested in this study, as the objective was to evaluate 

effects of the end result from clearcut harvesting, regardless of site-specific differences in 

logging operations.
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Figure 13. Locations o f Bone Creek and Damfino Creek study areas within the southern interior 
of British Columbia.

Experimental Design
The selected streams fell into one of three treatment categories: “control” streams, 

“new“ clearcuts (1-3 years post harvest), and “old” clearcuts (5-7 years post harvest).

The minimum distance that a stream flowed through its associated cutblock was 300 

metres at Bone Creek and 250 metres at Damfino Creek. Therefore, this minimum 

distance separated the downstream site from the upstream forest edge, and an additional
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50 metres separated the forest edge from the upstream site (Fig. 14). The same distances 

separated control stream paired sites located at elevations and physical characteristics 

representative of treatment streams. Streams served as replicate sampling units to avoid 

issues of pseudoreplication (Hurlbert 1984).

Experimental Design
Paired sites:

R eference stream , top 

T reatm ent stream , bottom

Legend

Upstream site

Downstream site

Cutblock

Stream

Forest vegetation

Figure 14. Schematic diagram illustrating the experimental design.

We addressed potentially confounding variables by judicious site selection and 

timing of sampling. We maintained a consistent slope distance between paired sites in 

order to reduce variability associated with effects that may occur as a function of reach 

length. We excluded streams if they had insufficient flow to use appropriate drift 

sampling methods (described below), if they flowed through a known disturbance 

upstream from the selected clearcut, and if they contained a riparian reserve zone, defined 

as an undisturbed area o f timber adjacent to the stream. To avoid the additional influence
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of roads, we excluded streams if they contained active or decommissioned roads larger 

than skid trails within the paired sites. We selected reference streams with a range of 

physical characteristics comparable to treatment streams.

Timing of sampling influences drift rates due to seasonal and diel periodicity, and 

discharge pulses. Due to the influence of hydrology on drift, we did not sample during or 

following heavy rainfall. We commenced sampling at the same time each day with 

downstream sites in the morning followed by upstream sites in the afternoon. We began 

sampling at the period of high flows and, therefore, maximum drift in order to maximize 

sampling efficiency. The onset of maximum flows at Bone Creek begins later than 

Damfino Creek due to its glacial source and higher latitude. Therefore, we began 

sampling at Bone Creek following completion of sampling at Damfino Creek. To avoid 

bias from seasonal fluctuations, we alternated the sampling among treatments at each 

study area, as opposed to sampling all control streams then all clearcut streams.

Data Collection
We recorded physical characteristics at each site including canopy closure,

discharge, bank-full channel width, stream gradient, aspect and elevation (Table 3). At 

two locations for each site we used a densiometer held 1 m above ground facing four 

directions and averaged the readings to determine canopy closure (Lemmon 1956). We 

measured discharge by recording the time to fill a large container of known volume at 

least three times and obtaining the average (Gore 1996). Bank-full channel widths were 

measured at three locations and averaged; gradient and aspect were measured using a 

clinometer and compass. Elevation and UTM coordinates were taken by GPS at each site 

location and elevations were verified using topographical maps. Temperature loggers
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were placed in streams at each site and temperature was recorded hourly over at least 

twenty-four hours. We collected dissolved organic carbon (DOC) and fine particulate 

organic matter (FPOM) samples preceding invertebrate drift sampling at each site, and at 

an additional sampling period during low flow. Methodologies for these variables and 

spectral ultraviolet absorbance (SUVA350) are described in Chapter 1.

We sampled invertebrate drift in triplicate at each site using a drift net with 

collecting bucket and standard mesh size of 254 pm. Samples were stored in 70 % 

ethanol in Whirl-Pak® bags and later sorted and identified in the lab under 10-8 Ox 

magnifications. Total body lengths of organisms were measured using an ocular 

micrometer and biomass was calculated using length-weight regressions from the 

literature (Smock 1980; Sample et al. 1993; Burgherr and Meyer 1997; Benke et al. 

1999), or average dry mass per individual for taxa not represented in the literature (see 

Appendix 1). For these organisms, a sample of 20-30 individuals taken from numerous 

samples was dried at 60 °C for at least 24 hours, and average dry weight per individual 

was calculated as an estimation of biomass. All organisms were identified to family 

except the following taxonomic groups that were not further identified: Collembola, 

Isopoda, Branchiopoda, Cladocera, Copepoda, Ostracoda, Nematoda, Nematomorpha, 

Platyhelminthes, Oligochaeta. The orders Ephemeroptera, Plecoptera, Trichoptera 

(E,P,T; mayflies, stoneflies and caddisflies, respectively) were further identified to genus 

using Merritt and Cummins (1996), Stewart and Stark (2002), and Wiggins (1996).

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright ow
ner. 

Further reproduction 
prohibited 

w
ithout perm

ission.

Table 3. Physical characteristics and sampling dates o f study streams sampled in 2004 within the Bone Creek and
Damfino Creek study areas.

Stream
ID 3

Treat
ment

Year
logged

Canopy
closure
(% )b

Discharge 
(L sec'1)

Bank-full
width
(m)

Stream
gradient

(%)

Aspect Elevation 
medianc 

(m)

Water Temp.d 
Min Max 
(°C ) (°C)

Date
Sampled
(2004)

Bone Creek 
005 Control 25 5.46 0.47 35 W 1184 9.8 14.8 14-Aug
012 Control - 78 12.38 2.72 34 E 1131 8.9 12.3 24-Aug
013 Control - 94 2.39 2.13 32 SE 1297 5.7 7.6 19-Aug
025 Control - 52 4.28 0.61 32 NE 1671 7.9 9.9 27-Aug
021 New 2003 0 1.31 0.85 41 S 1536 9.9 11.8 13-Aug
023 New 2003 0 0.59 0.68 31 S 1845 6.1 12.3 13-Aug
002 New 2002 42 0.63 0.94 57 E 1453 n.d. n.d. 25-Aug
027 New 2001 59 3.42 1.03 65 SW 1543 OO OO 9.2 29-Aug
010 Old 1999 0 0.43 2.50 58 N 1262 9.5 11.6 12-Aug
011 Old 1998 0 1.66 1.00 33 NE 1171 9.2 11.8 26-Aug

Damfino Creek
203 Control 77 4.16 1.63 4 SW 1566 4.6 12.0 26-Jun
208 Control - 5 4.29 0.71 18 s 1592 8.4 8.6 9-Jul
209 Control - 73 4.11 1.56 23 NW 1820 6.5 16.0 11-Jul
213 Control - 84 1.17 1.04 12 NE 1682 n.d. n.d. 21-Jul
201 New 2003 63 19.04 0.86 7 SE 1547 5.5 12.0 18-Jun
205 New 2003 17 3.77 1.02 14 N 1660 7.3 11.2 29-Jun
207 New 2003 55 5.63 0.76 14 SE 1730 6.1 19.9 10-Jul
215 New 2003 57 1.47 1.62 16 NE 1652 n.d. n.d. 23-Jul
206 Old 1998 92 1.41 1.01 9 E 1873 6.4 16.7 30-Jun
210 Old 1998 18 0.18 1.30 24 N 1825 7.4 10.0 13-Jul
211 Old 1998 39 0.92 0.76 27 W 1830 6.2 8.5 14-Jul
202 Old 1997 45 2.69 0.86 8 W 1695 n.d. n.d. 25-Jun

Note: Attributes measured during high flow sampling period with multiple measurements at each site. Stream average values are presented with the exception of canopy closure, 
which are given for downstream sites for comparison of logged versus old growth.

" All streams are unnamed; therefore, each stream was assigned a number with the leading digit indicating study area 
° Canopy closure represents percentage o f  cover measured by densiometer 1 m above ground at downstream sites

I Represents the median elevation between downstream and upstream paired sites
II Water temperaure logged hourly over at least 24 hours during sampling date o f each stream
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Data Analysis 

B iotic  M e tric s

All organisms were categorized as aquatic or terrestrial and were assigned to the 

functional feeding groups of predators, collector-gatherers, collector-filterers, scrapers 

and shredders based on Merritt and Cummins (1996). Semi-voltine organisms were 

considered long-lived. Using a database prepared for the Pacific Northwest by Robert 

Wisseman and Leksa Fore (SalmonWeb 2001), taxa were assigned a Hilsenhoff tolerance 

value (Hilsenhoff 1982), and designations as intolerant to organic pollution and clinger 

taxa. Clinger taxa not listed in this source were classified according to Merritt and 

Cummins (1996). The Hilsenhoff Biotic Index (HBI) and intolerant designations are 

regionally specific and have not been tested for our study area, but have been used 

previously for bioassessment in the central interior of BC (Bennett and Hewgill 2002; 

Croft 2003). Terrestrial taxa and indistinct taxa were excluded from calculation of HBI. 

Indistinct taxa are defined as those not identified to the lowest levels previously stated 

due to immature or damaged specimens. Indistinct taxa were included in metrics that 

sum total invertebrates and in sums of orders and families depending on their level of 

identification. Diversity metrics included indistinct taxa if they were identified to the 

family level and no other family member was collected at that site. All taxa in Bone 

Creek and Damfino Creek drift samples and their designations are listed in Appendix 1.

We quantified the density of invertebrates by abundance and biomass of 

organisms per volume of water in each replicate for the following groups: total 

invertebrates, aquatic invertebrates, terrestrial invertebrates, Ephemeroptera, Plecoptera, 

Trichoptera, Diptera, sum of EPT, sum of EPT divided by D, and the five functional
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feeding groups (Table 4a). Percentages of invertebrates categorized as aquatic, 

terrestrial, E,P,T,D, clinger, non-insect, long-lived, intolerant, and each functional 

feeding group were calculated as abundance of each group divided by abundance of total 

invertebrates, and the Hilsenhoff Biotic Index (HBI) was calculated for each replicate 

(Table 4b). We used additional biotic metrics defined by Karr and Chu (1999) and Krebs 

(1999) to detect responses in diversity of the drift community (Table 4c). There were 52 

variables in total and we refer to the group as biotic metrics.
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Table 4. Definitions o f the 52 biotic metrics calculated based on the designations for each taxon 
(Appendix 1) identified from drift samples in Bone Creek and Damfino Creek. Biotic metrics are 
organized into three assessment categories: a) Densities, (b) Biotic indicators, and (c) Diversity.

a) Densities The following metrics each represent two variables: abundance divided by 
volume o f water (# organisms m'3), and biomass divided by volume o f water (mg m'3).

Invertebrate density: The average density of total invertebrates collected in the three 
samples at each site.

Aquatic Taxa density: The average density of aquatic taxa collected in the three samples at 
each site.

Terrestrial Taxa: The average density o f terrestrial taxa collected in the three samples at 
each site.

Ephemeroptera density: The average density o f Ephemeroptera (E) collected in the three 
samples at each site.

Piecoptera density: The average density o f Plecoptera (P) collected in the three samples at 
each site.

Trichoptera density: The average density o f Trichoptera (T) collected in the three samples 
at each site.

Diptera density: The average density o f Diptera (D) collected in the three samples at each 
site.

EPT density: The average density o f the sum of all Ephemeroptera, Plecoptera, and 
Trichoptera individuals collected in the three samples at each site. (Resh and Jackson 1993)

EPT/D abundance: The average density o f the sum of all Ephemeroptera, Plecoptera, and 
Trichoptera divided by Diptera individuals collected in the three samples at each site. (Resh 
and Jackson 1993)

Predators: The average density o f predators collected in the three samples at each site.

Collector-gatherers: The average density o f collector-gatherers collected in the three 
samples at each site.

Collector-filterers: The average density o f collector-filterers collected in the three samples 
at each site.

Scrapers: The average density o f scrapers collected in the three samples at each site. 

Shredders: The average density o f shredders collected in the three samples at each site.
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Table 4 (Continued).

b) Biotic indicators.

% Aquatic: The abundance o f aquatic individuals divided by the total number of 
individuals in each sample, averaged among three samples per site.

% Terrestrial: The abundance o f terrestrial individuals divided by the total number of 
individuals in each sample, averaged among three samples per site.

% Ephemeroptera: The abundance o f Ephemeroptera divided by the total number of 
individuals in each sample, averaged among three samples per site. (Karr and Chu 1999)

% Plecoptera: The abundance o f Plecoptera divided by the total number o f individuals in 
each sample, averaged among three samples per site. (Karr and Chu 1999)

% Trichoptera: The abundance o f Trichoptera divided by the total number o f individuals 
in each sample, averaged among three samples per site. (Karr and Chu 1999)

% Diptera: The abundance o f Diptera divided by the total number of individuals in each 
sample, averaged among three samples per site. (Karr and Chu 1999)

% Clingers: The abundance o f clingers divided by the total number o f individuals in each 
sample, averaged among three samples per site. (Karr and Chu 1999)

% Non-insects: The abundance o f non-insect individuals divided by the total number of 
individuals in each sample, averaged among three samples per site. (Karr and Chu 1999)

% Long lived individuals: The abundance o f long-lived individuals divided by the total 
number o f individuals in each sample, averaged among three samples per site. (Karr and 
Chu 1999)

% Intolerant: The abundance o f intolerant individuals divided by the total number of 
individuals in each sample, averaged among three samples per site. (Karr and Chu 1999)

% Predators: The abundance o f predators divided by the total number of individuals in 
each sample, averaged among three samples per site. (Karr and Chu 1999)

% Collector-gatherer: The abundance o f collector-gatherers divided by the total number of 
individuals in each sample, averaged among three samples per site. (Karr and Chu 1999)

% Collector-filterer: The abundance o f collector-filterers divided by the total number of 
individuals in each sample, averaged among three samples per site. (Karr and Chu 1999)

% Scrapers: The abundance o f scrapers divided by the total number o f  individuals in each 
sample, averaged among three samples per site. (Karr and Chu 1999)

% Shredders: The abundance o f shredders divided by the total number o f individuals in 
each sample, averaged among three samples per site. (Karr and Chu 1999)

Hilsenhoff Biotic Index (HBI): The sum o f abundance weighted by assigned tolerance to 
organic pollution value for each taxon, averaged among three samples per site. (Hilsenhoff 
1982).
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Table 4 (Continued).

c) Diversity. Measures o f diversity, evenness and heterogeneity among taxa in drift 
samples.___________
Total taxa richness: The total number o f distinct taxa counted in the three samples at each 
site. Distinct taxa includes individuals identified only to family/order if  there were no 
individuals identified to a lower level for that taxon (Resh and Jackson 1993, Karr and Chu 
1999).

Total taxa diversity density: Cumulative number o f distinct taxa in three samples at each 
site divided by total number individuals counted in the three samples. (Karr and Chu 1999, 
Krebs 1999).

Ephemeroptera taxa diversity density: Cumulative number of distinct Ephemeroptera 
taxa in three samples at each site divided by total number individuals counted in the three 
samples. (Karr and Chu 1999, Krebs 1999).

Plecoptera taxa diversity density: Cumulative number o f distinct Plecoptera taxa in three 
samples at each site divided by total number individuals counted in the three samples. (Karr 
and Chu 1999, Krebs 1999).

Trichoptera taxa diversity density: Cumulative number o f distinct Trichoptera taxa in 
three samples at each site divided by total number individuals counted in the three samples. 
(Karr and Chu 1999, Krebs 1999).

Clinger taxa diversity density: Cumulative number o f distinct clinger taxa in three samples 
at each site divided by total number individuals counted in the three samples. (Karr and Chu 
1999, Krebs 1999).

Reciprocal of Simpson’s index: Describes heterogeneity using cumulative numbers o f taxa 
in three replicates at each site. The index was calculated using Ecological Methodology 
software (Krebs 1999).

based on variance in abundance o f each taxon. This index was calculated using cumulative 
numbers o f taxa in three replicates at each site. (Krebs 1999). The index was calculated 
using Ecological Methodology software (Krebs 1999).

1/D  =  reciprocal o f  S im pson’s index
P, =  Proportion o f  species i in the com m unity

Smith and Wilson’s index of evenness: Describes evenness o f the distribution among taxa

2

arctan- £  loge(«,) -  £ lo g e(«/) /

Evar =  Sm ith and W ilson’s index o f  evenness 
n, =  N um ber o f  individuals in taxon i in  sam ple 
n, =  N um ber o f  individuals in  taxon j  in  sam ple 
s =  N um ber o f  taxa in  entire sam ple.___________
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For each biotic metric, we determined effect as the difference between paired sites 

weighted for the sum of the metric within each stream (Equation 3). Effect ranges from 

- 1 0 0  % to + 1 0 0  %, and the effect formula achieves equal effects whether there is a 

positive or negative difference between sites over the same order of magnitude. For 

example, if  there was a near zero value (0 . 0 0 0 1  individuals m'3) at the upstream site, and 

a value of 0.5 individuals m ' 3 at the downstream site, effect approaches 100 %. In the 

opposite situation, with 0.5 individuals m ' 3 at the upstream site and nearly zero at the 

downstream site, effect approaches -100 %. A positive effect indicates the metric 

increased after flowing through the clearcut, and a negative effect indicates the metric 

decreased after flowing through the clearcut. Control stream effects served as the base 

condition to compare against treatment stream effects.

d s - u s
E ffe c t-- x l0 0  Equation 3

ds + us

Where ds = downstream site metric value and us = upstream site metric value.

All data were checked for normality and homoscedasticity. Where there were 

deviations among the data, transformations such as log (x+1), Ln (x+1), and arcsin 

(sqrt(x)) were applied both to the raw data prior to calculating effects, and to the effect 

variables (Zar 1984). The transformation, however, did not improve deviations from 

normality or homoscedasticity. Therefore, we continued biotic metric effect analysis on 

the basis that ANOVA is robust to minor deviations from these assumptions.

To assess the appropriateness of pooling data from the two study areas, we used a 

two-way ANOVA with treatment and study area as fixed factors. If there were no 

significant results for study area and no interactions between study area and treatment 

(p>0.05), we pooled the data and used single factor ANOVAs to detect differences
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among treatments for the remaining variables with a priori contrasts. Contrasts were 

chosen to detect differences between the following groups: i) control and old clearcuts, 

ii) control and new clearcut streams, and iii) old and new clearcut streams. The method 

of comparing differences between sites spanning a disturbance using control streams as 

the base condition is effective for detection of responses to disturbance (Underwood

1994).

EPT Fa m ilies  a n d  G enera

The effectiveness of the preceding analysis was reliant on summing organisms at

a level that was common between study areas, and standardizing metrics for each stream 

using “effect” . At lower taxonomic groups, it was inappropriate to use the same 

approach for two reasons. Many families and genera were unique to each area making it 

impossible to pool study areas. Additionally, three quarters of the taxa occurred in less 

than 20 % of the replicates. There were many empty cells at the family and genus levels 

and applying the effect formula would result in either zero change for these streams or 

100 % if only one of the pair was zero. Therefore, presence/absence data were more 

appropriate for analysis of treatment responses.

We excluded families and genera that occurred as less than 1 % of total 

invertebrates on average in each study area. We selected all clearcut streams in Bone 

Creek (n=12) and Damfino Creek (n=16) and compared presence/absence data for each 

selected taxon as dependent variables in logistic regressions. Site location was entered as 

the categorical predictor variable with an indicator contrast that compared downstream to 

upstream as the reference condition (SPSS® Version 11.0, SPSS Inc., 2005). The 

minimum number of cases to independent variables recommended is 1 0  and there are no
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assumptions of normality, linearity or homoscedasticity in logistic regression (Hosmer 

and Lemeshow 2000).

In the preceding chapter, we reported that FPOM increased in response to new 

clearcuts, and DOC responded between high and low flow sampling periods in old 

clearcuts. To investigate whether these effects transferred to stream biota, we used 

multiple linear regression analyses to assess the ability of FPOM, DOC and SUVA350 to 

predict abundance o f common taxa. We conducted this analysis on lowest taxonomic 

levels because differing requirements among taxa of higher levels tend to mask specific 

responses to disturbance (Karr and Chu 1999). To reduce number of variables and to 

address correlations between variables, we first subjected DOC, SUVA3 50, and FPOM to 

principal components analysis (PCA) using SPSS® (Version 11.0, SPSS Inc. 2005). 

Suitability o f the data for PCA was assessed with the following results (Tabachnick and 

Fidell 1989). Cases included all sites (n=44) resulting in a ratio of cases to variables of 

14 that exceeded the minimum recommendation of five. Several coefficients greater than 

0.3 occurred in the correlation matrix indicating suitable correlations among variables. 

The Kaiser-Meyer-Oklin value was 0.519, and measures of sampling adequacy exceeded 

0.500 for each variable. Bartlett’s Test of Sphericity was significant (p<0.001). We 

extracted two components with eigenvalues greater than 0.9 based on examination of the 

scree plot. The components individually explained 59.5 % and 31.5 % of the variance for 

a cumulative 91 % of the variance. We used oblimin rotation to improve interpretability 

and the rotated solution indicated a simple structure with DOC and SUVA loading highly 

on the first component, and FPOM highly on the second (Table 5). DOC and SUVA are
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closely related as raw variables, and their linear combination into a component allowed 

their use with FPOM as independent variables in multiple linear regressions.

Table 5. Structure matrix o f the two factor solution for organic matter variables. Oblimin rotation 
with Kaiser normalization was used.

Variable
Component 1 

DOC
Component 2 

FPOM
DOC 0.92
SUVA 0.90
FPOM 0.93
% of Variance explained 59.50% 31.40%
Note: Only loadings above 0.4 are displayed

Results 

Biotic Metrics
We identified 78 distinct taxonomic groups within 11 classes and within 11 orders 

of insects in drift samples from Bone and Damfino Creek study areas (Appendix 1). 

Diptera made up 38 % of invertebrate abundance in drift samples on average, the 

majority of these being Chironomidae larvae (14 %) and Diptera adults (13 %). 

Collembola made up 16 %, Plecoptera 12 %, Arachnida 9 %, Ephemeroptera 7 %, 

Crustacea 5 %, and the remaining orders of insects and phyla of worms made up less than 

5 % of the drift samples.

Mean total invertebrate drift density was 22 individuals m '3 (SEM=3 m"3, n=44), 

and mean biomass was 5.10 mg m'3 (SEM=0.95 mg m '3, n=44) among all sites in both 

study areas. Tables 6 and 7 summarize the means o f biotic metrics among treatments in 

each study area.
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Table 6. Mean biotic metrics (SEM) for downstream sites at Bone and Damfino Creek study areas 
among treatments. Category A biotic metrics are summarized._______________________________

Biotic Metric Control
B one Creek 

Old New
Damfino Creek  

Control Old New
Abundance 3
T otal In v e r te b ra te s 23 (9) 23 (4) 34(12) 10(4 ) 23 (8) 18(4)

A qu. In v e r teb ra te s 15.0(4 .0) 20.1 (3.9) 29.0 (9.5) 5.7 (1.6) 13.4 (3.8) 11.2 (2.7)

T err. In v e r teb ra te s 7.8 (6.1) 3.2 (0.3) 4.4 (2.8) 4.4 (2.5) 9.9 (5.9) 7.1 (2.2)

E p h e m e ro p te ra 2.4 (1.1) 6.7 (1.1) 1.8 (0.8) 0.8 (0.1) 0.8 (0.4) 0.5 (0.2)

P leco p te ra 2.0 (0.7) 1.4 (0.8) 1.6 (0.4) 1.1 (0.3) 1.8 (0.9) 2.8 (1.7)

T richop te ra 0.6 (0.1) 2.3 (1.2) 2.0 (0.6) 0.3 (0.2) 0.3 (0.2) 0.2 (0.1)

D ip tera 6.8 (3.6) 9.4 (1.9) 22.6 (12.2) 4.2 (2.5) 10.3 (3.3) 8.1 (1.8)

E PT 5.0 (1.7) 10.4 (3.1) 5.1 (1.6) 2.1 (0.5) 2.8 (1.0) 3.6 (1.7)

E PT/D  (no un its) 1.1 (0.4) 1.1 (0.01) 0.5 (0.2) 1.4 (0.7) 0.3 (0.1) 0.9 (0.4)

P re d a to rs 3.3 (0.8) 4.0 (0.6) 11.0 (5.5) 2.5 (0.9) 5.1 (1.7) 3 .5 (0.1)

C o llec to r-g a th e re rs 5.9 (1.5) 10.8 (2.0) 12.9 (4.2) 1.4 (0.5) 3.4 (1.6) 2.6 (0.9)

C ollector-filterers 0.9 (0.8) 0.2 (0.2) 0.3 (0.1) 0.9 (0.7) 2.4 (1.7) 1.4 (0.6)

S c ra p e rs 0.3 (0.1) 1.3 (0.4) 0.6 (0.3) 0.07 (0.05) 0.08 (0.08) 0.05 (0.03)

S h re d d e rs 1.9 (0.7) 1.6 (1.0) 1.9 (0.5) 0.3 (0.1) 0.8 (0.6) 2.2 (1.8)

Biomass b
T otal In v e r teb ra te s 1.8 (0.69) 12.5(11.2) 9.8 (5.8) 2.2 (0.8) 11.7 (5.9) 5.9 (1.1)

A qu. In v e r te b ra te s 1.3 (0.5) 1.1 (0.2) 8.9 (6.0) 1.3 (0.5) 6.7 (1.9) 2.8 (1.4)

Terr. In v e r te b ra te s 0.5 (0.2) 11.4(11.0) 0.8 (0.5) 0.9 (0.4) 8.1 (6.3) 3.1 (1.4)

E p h e m e ro p te ra 0.4 (0.2) 0.2 (0.04) 0.4 (0.4) 0.2 (0.1) 0.1 (0.1) 0.3 (0.3) ng nr3

P le c o p te ra 0 .14(0 .04) 0 .10(0 .09) 0 .16(0 .09) 0.10 (0.02) 0.27 (0.17) 1 .19(1 .12)

T richop te ra 0.39 (0.32) 0 .13(0 .03) 7.04 (5.57) 0.36 (0.20) 0.93 (0 .7 5 ) 0.92 (0.52)

D iptera 0 .15(0 .07) 0.47 (0.15) 0.99 (0.49) 0.32 (0.15) 0.94 (0.36) 0.48 (0.21)

E PT 0.96 (0.45) 0.47 (0.09) 7.64 (6.02) 0.62 (0.29) 1.34 (0.71) 2 .12(1 .44)

E PT/D  (no un its) 8.3 (3.6) 1.6 (0.2) 11.6 (5.8) 2.0 (0.9) 1.6 (0.7) 0.4 (0.4)

P re d a to rs 0 .13(0 .06) 0.21 (0.06) 0.61 (0.25) 0.49 (0.23) 1.55 (0.93) 0.23 (0.16)

C o llec to r-g a th e re rs 0.48 (0.19) 0.44 (0.02) 2 .40(1 .73) 0.27 (0.13) 0.59 (0.26) 0.21 (0.13)

C ollector-filterers 0.03 (0.02) 1 (1 ) g g n r3 1.02 (0.83) 0 .17(0 .14) 0.39 (0.31) 0 .16(0 .05)

S c ra p e rs 0.09 (0.06) 0.11 (0.03) 0.30 (0.22) 0.03 (0.02) 0.1 (0.1) 8 (8) gg m"3
S h re d d e rs 0.35 (0.23) 0 .16(0 .15) 4.43 (4.30) 0 .10(0 .04) 0.95 (0.67) 1.6 (1.5)

Note: T h ere  a r e  4  s t r e a m s  in e a c h  tre a tm e n t e x c e p t B o n e  C re e k  old c le a rc u ts , n=2. 

a N u m b er of ind iv iduals m '3; b m g m '3 e x c e p t w h e re  n o ted .
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Table 7. Mean biotic metrics (SEM) in downstream sites at Bone and Damfino Creek study areas 
among treatments. Category B metrics that are inherent from Table 6 are omitted, and all 
category C metrics are summarized. HBI = Hilsenhoff Biotic Index.__________________________

Biotic Metric Control
Bone Creek 

Old New Control
Damfino Creek 

Old New
% clingers 2.42 (0.66) 3.21 (2.13) 5.32 (1.45) 5.24 (4.17) 1.07 (0.85) 0.35 (0.31)

% non-insects 27.13 (9.78) 10.60 (4.25) 13.60 (5.35) 18.33 (3.52) 25.58 (6.48) 14.49 (5.05)

% long-lived 0.25 (0.13) 0.00 (0) 2.21 (1.03) 1.35 (0.64) 1.56 (0.92) 0.79 (0.67)

% intolerant 2.31 (0.85) 5.08 (2.91) 3.07 (1.03) 0.57 (0.35) 0.92 (0.67) 0.24 (0.14)

HBI 4.12 (0.68) 4.81 (0.02) 4.70 (0.18) 2.97 (0.44) 3.53 (0.38) 2.80 (0.80)

T axa richness 25 (3) 17(3) 21 (2) 18(3) 17(3) 17 (2)
T axa div. density 0.10 (0.03) 0.25 (0.03) 0.16 (0.06) 0.24 (0.04) 0.30 (0.08) 0.21 (0.10)

E div. density 0.27 (0.16) 0.09 (0.02) 0.14 (0.09) 0.23 (0.02) 0.41 (0.22) 0.25 (0.25)

P div. density 0.12 (0.04) 0.47 (0.13) 0.43 (0.20) 0.21 (0.03) 0.56 (0.19) 0.28 (0.24)

T div. density 0.46 (0.10) 0.75 (0.25) 0.45 (0.11) 0.93 (0.11) 0.33 (0.24) 0.53 (0.27)

Clinger div. density 0.19 (0.05) 0.53 (0.07) 0.35 (0.11) 0.33 (0.05) 0.63 (0.22) 0.39 (0.21)

H e tero g en e ity a 6.30 (1.46) 4.86 (0.33) 4.91 (1.84) 6.58 (1.49) 5.45 (0.73) 4.92 (1.62)

E v e n n e s s b 0.34 (0.04) 0.52 (0.01) 0.45 (0.07) 0.52 (0.04) 0.61 (0.08) 0.45 (0.11)

Note: There are 4 streams in each treatment except Bone Creek old clearcuts, n=2. 
Div. Density= Diversity Density, units in # taxa per individual. 
a Reciprocal of Simpson's Index;b Smith and Wilson's Index of Evenness.

Biotic Metrics: Effect (%) Compared Among and Between Treatments
There were no significant interactions between treatment and study area (p>0.05),

and study area did not significantly contribute (p>0.05) to the general linear model for a 

subset of the first fourteen biotic metric effect variables. This indicated that study area 

did not influence biotic metric effect variables and it was appropriate to pool data from 

the two study areas for further analysis.

Of the 52 response variables compared among and between treatments using 

single factor ANOVA and a priori contrasts, ANOVA detected significant differences 

among treatments for 11 metrics, and a priori contrasts detected differences between 

treatments in an additional six metrics. Table 8 presents the mean effects (%) among 

treatments for each of these variables, and gives p values for each test (a=0.05). The 17 

biotic metrics showed several different trends, and are presented in Table 8 according to
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having a positive or negative response to both clearcut groups, new clearcuts or old 

clearcuts.

Table 8. Biotic metrics that differed for comparisons among (ANOVA) and between (contrasts) 
treatments o f downstream-upstream effect in Bone and Damfino Creek study areas. Mean effect 
represents the difference between sites as a percentage.
Trend group Mean Effect (SEM) ANOVA Contrasts (p values)

Biotic Metric Control Old New p value Ctrl-New Ctrl-Old Old-New
Positive response to clearcuts

Total Invertebrates (Abd) -34 (9) 15(8) 27 (9) 0.000 0.000 0.002 0.338
Total Inverterbates (Biom) -31 (10) 27 (25) 45(13) 0.005 0.002 0.019 0.419
Aquatic Invertebrates (Abd) -15(7) 28 (9) 33(11) 0.002 0.001 0.004 0.727
Diptera (Abd) -30(11) 21 (15) 43 (13) 0.002 0.001 0.016 0.259
Diptera (Biom) -10(18) 61 (16) 38 (14) 0.019 0.040 0.007 0.349
Collector-gatherer (Abd) -12(9) 67 (8) 41 (12) 0.000 0.001 0.000 0.091
Terrestrial Invertebrates (Biom) -32 (16) 33(22) 19(23) 0.083 0.080 0.041 0.641

Negative response to clearcuts
Shredders (%) 26 (14) -56 (9) -27 (19) 0.015 0.030 0.007 0.291
Total Taxa diversity density -7 (8) -18(8) -31 (8) 0.114 0.040 0.350 0.290

Positive response to old clearcuts
Ephemeroptera (Abd) -22 (9) 67(16) -5 (30) 0.026 0.550 0.009 0.033
Ephemeroptera (Biom) 6(11) 77(11) -25 (35) 0.028 0.310 0.052 0.009
Collector Gatherer (%) 1 (5) 61 (13) 13(11) 0.002 0.388 0.001 0.003
Scraper (Biom) -35 (20) 73 (11) 27 (40) 0.098 0.139 0.045 0.373
Clinger diversity density -15(10) 36 (23) -7(14) 0.088 0.716 0.038 0.074
Collector-gatherer (Biom) -14(14) 69 (11) 24 (22) 0.014 0.123 0.004 0.090

Positive response to new clearcuts
Aquatic inverterbate (Biom) -16(18) 19(23) 43(16) 0.086 0.029 0.210 0.388

Old clearcuts »  New clearcuts
Ephemeroptera (%) 8(14) 60(19) -18(31) 0.104 0.409 0.138 0.037

Note: Level of significance is considered p = 0.05
Abd = abundance, Biom = biomass; Control n=8, Old n=6, New n=8.

We now describe our findings for each set of biotic metrics following the order 

they were introduced in Table 4. When referring to the significance for biotic metric 

comparisons among treatments, we are referring to effect (Equation 3) and not to the raw 

biotic metrics presented previously in Tables 6 and 7. Note that the level of significance 

is set at cx=0.050, and the actual p values are listed in Table 8 for each biotic metric 

(effect) that significantly differs in at least one comparison.
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Invertebrate abundance, invertebrate biomass, and aquatic invertebrate abundance 

significantly differed between controls and each clearcut group (Fig. 15). Aquatic 

invertebrate biomass differed only between control and new clearcuts. Old and new 

clearcut treatment effects did not differ for any of these variables. The magnitude of each 

effect for total invertebrate and aquatic invertebrate densities increased from control, to 

old, to new clearcuts. Terrestrial invertebrate abundance density did not differ 

significantly among or between treatments. Terrestrial biomass density tended to be 

higher in both clearcut groups, and the largest effect occurred in old clearcuts, which 

differed significantly from the control group (Fig. 15).

Ephemeroptera abundance and biomass density effects were both over 60 % in 

old clearcuts compared to nearly or less than 0 in controls and new clearcuts (Fig. 16). 

Ephemeroptera density differed between controls and old clearcuts for abundance 

(p<0.050) and biomass (p=0.052), and differed between old and new clearcuts for both 

measures (p<0.050). Plecoptera and Trichoptera densities did not differ among 

treatments, but Diptera densities (abundance and biomass) differed between controls and 

both clearcut groups. Old and new clearcut effects were very similar, approximately 

50%, compared to control effects of nearly 0. The combined measures of EPT and 

EPT/D did not differ significantly among treatment groups (Fig. 17).

Predator, collector-filterer, and shredder densities did not differ significantly 

among or between treatments (Fig. 18). Collector-gatherer abundance density differed 

significantly between controls and both clearcut groups, whereas biomass density 

differed only between control and old clearcuts (Fig. 18). Neither variable differed 

significantly between clearcut groups. Scraper biomass differed between control and old
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clearcuts, with an effect of approximately 75 % in old clearcuts compared with -40 % in 

the control group, whereas scraper abundance density did not differ.

Percentage of aquatic and terrestrial invertebrates and percentage of the orders 

Plecoptera, Trichoptera, and Diptera did not differ among or between treatments (Fig.

19). Percent Ephemeroptera differed between old and new clearcuts, with the largest 

effect in old clearcuts. Among percentages of functional feeding groups, collector- 

gatherers differed between control and old clearcut groups, and between new and old 

clearcuts (Fig. 20). The greatest effect occurred in old clearcuts (61 %), with controls 

and new clearcuts showing a near 0 effect. Percent shredders differed between control 

and both clearcut groups, and did not differ between clearcut groups (Fig. 20). Contrary 

to all effects described thus far, percent shredders declined in both clearcuts compared to 

the control group. Effects of the remaining biotic indicators, percentage of clingers, non

insects, long-lived taxa and intolerant taxa, and the Hilsenhoff Biotic Index, did not differ 

among or between treatments.

Total taxa diversity density responded negatively to new clearcuts but there was 

not a significant difference between effect in old clearcuts and controls (Fig. 21). Effect 

in old and new clearcuts also did not differ significantly. Clinger diversity density 

responded positively to old clearcuts and did not differ between control and new 

clearcuts, or between clearcut groups (Fig. 21). The remaining effects for diversity, 

heterogeneity, and evenness measures did not differ among or between treatments.
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Figure 15. Densities o f (a) total invertebrates, (b) aquatic invertebrates, and (c) terrestrial 
invertebrates found in control, new and old clearcut drift samples in Bone and Damfino Creek 
study areas. Abundance densities are on the left, biomass densities are on the right. Control 
mean effects are open columns (n=8), old clearcuts are hatched (n=6), new clearcuts are grey 
(n=8), and error bars represent SEM. A positive effect indicates that drift densities increased 
from the upstream to downstream sites. Means that share a letter do not differ significantly 
(p>0.05).
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Figure 16. Densities o f (a) Ephemeroptera, (b) Plecoptera, (c) Trichoptera, and (d) Diptera found 
in control (n=8), old (n=6) and new (n=8) treatment drift samples in 2004. Abundance densities 
are on the left, biomass densities are on the right. A positive effect indicates drift densities 
increased from the upstream to downstream sites. Error bars represent SEM. Means that share a 
letter do not differ significantly (p>0.05).
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Figure 17. Densities o f (a) EPT and (b) EPT/D found in control (n=8), old (n=6) and new (n=8) 
treatment drift samples in Bone and Damfino Creek study areas. Error bars represent SEM. 
Abundance densities are on the left, biomass densities are on the right. A positive effect indicates 
that drift densities increased from the upstream to downstream sites. Means that share a letter do 
not differ significantly (p>0.05).
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Figure 18. Densities o f (a) predators, (b) collector-gatherers, (c) collector-filterers, (d) scrapers, 
and (e) shredders in control (n=8), old (n=6) and new (n=8) drift samples in Bone and Damfino 
Creek. Abundance densities are on the left, biomass densities are on the right. Positive effect 
indicates that drift densities increased from upstream to downstream sites. Means that share a 
letter do not differ significantly (p>0.05). Error bars represent SEM.
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Figure 19. Percentage o f total invertebrates made up o f (a) aquatic invertebrates, (b) terrestrial 
invertebrates, (c) Ephemeroptera, (d) Plecoptera, (e) Trichoptera, and (f) Diptera in control (n=8), 
old (n=6) and new (n=8) treatment drift samples in Bone and Damfino Creek study areas. Error 
bars represent SEM. A positive effect indicates that drift densities increased from the upstream to 
downstream sites. Means that share a letter do not differ significantly (p>0.05).
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Figure 20. Percentage o f groups by abundance, followed by a biotic index in control (n=8), old 
(n=6) and new (n=8) treatment drift samples in 2004. Groups are: (a) predators, (b) collector- 
gatherers, (c) collector-filterers, (d) scrapers, (e) shredders, (f) clingers, (g) non-insects, (h) long- 
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drift densities increased from upstream to downstream sites. Means that share a letter do not 
differ significantly (p>0.05). Error bars represent SEM.
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EPT Families and Genera
Among the orders Ephemeroptera, Plecoptera and Trichoptera, we identified 18

families and 34 genera overall with differing representation between study areas (Table 

9). In Bone Creek Ameletidae, Baetidae, Heptageniidae, Chloroperlidae, Nemouridae, 

Peltoperlidae, Ameletus, Baetis, Cinygmula, Zapada, and Yoraperla occurred as greater 

than 1 % of total invertebrate abundance. In Damfino Creek, Ameletidae,

Chloroperlidae, Nemouridae, Ameletus, Haploperla, Suwallia, and Podmosta occurred as 

greater than 1% of total invertebrate abundance on average (Table 9). Two families, 

Ameletidae and Baetidae, were represented by one genus each (Ameletus and Baetis, 

respectively) and were, therefore, redundant in the analysis due to the family densities 

being identical to the respective genus.

We conducted 13 logistic regressions that all showed site location (upstream of or 

within clearcuts) did not predict presence/absence of common taxa. There were two 

analyses where standard error of the beta coefficient for site location was greater than 2.0, 

indicating problems such as all cases having the same value or complete separation. 

Examination of these taxa, Nemouridae and Zapada in Bone Creek, revealed two 

important points. First, their presence/absence data were identical as Zapada made up 

the majority of the family. Second, presence/absence data showed nearly all cases had 

the same value, as Zapada occurred in all clearcut sites except one new and one old 

downstream site. The remaining 11 logistic regressions were not significant with 

Damfino Creek p values for overall model fit ranging from 0.614 -  1.00, and Bone Creek 

p values ranging from 0.244 -  0.557.
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To meet the assumptions of linear regression, we examined standardized residuals 

to assess outliers, and excluded cases with values between -3.3 and 3.3 (Tabachnick and 

Fidell 1989). This occurred only in regressions that were not significant, and excluding 

outliers did not change their results. We assessed scatterplots of residuals and found the 

assumptions of normality, linearity, and variances evenly distributed along the range of 

the dependent variables were met in all except two regressions. Residuals for 

Nemouridae in Damfino Creek were not normally distributed. We applied logarithmic 

and square root transformations recommended for abundance data (Rosenberg and Resh 

1993), but they did not improve the distributions and therefore we proceeded with 

untransformed variables. Tolerance values approached 1 showing singularity between 

independent variables.

Of the 15 linear regressions using DOC and FPOM (PC A components 1, 2) 

entered together, two models were significant. In Bone Creek, Chloroperlidae abundance 

was significantly related to organic matter that explained 31 % of its variance 

(F2,i7=3.744, p=0.045). Within the model, DOC was not significant but FPOM 

contributed significantly to the model (t=2.634, p=0.017). The model did not improve 

appreciably by removing DOC (adjusted R2=0.31, p=0.012). Organic matter predicted 

abundance of Ameletus in Damfino Creek (F2,2i=3.568, p=0.046), with FPOM 

contributing significantly to the model (t=2.431, p=0.024). The model improved by 

removing DOC, and FPOM explained 25 % of the variance in Ameletus (p=0.014).

There were positive relationships between the independent variable representing FPOM 

concentration, and abundance of Chloroperlidae and Ameletus in Bone Creek and 

Damfino Creek study areas, respectively (Fig. 22).
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Table 9. Representation o f EPT families and genera among treatments in drift samples at Bone 
Creek and Damfino Creek study areas. Dots indicate presence of genera listed under each family.

BONE CREEK Damfino Creek
mean % Control Old New mean % Control Old New 
o f  drift PS US PS US PS US o f  drift PS US PS US PS US

E Ameletidae 1.8 1.6
Ameletus 1.8 • • • • • 1.6

Baetidae 2.6 0.1
Baetis 2.6 • • • • • 0.1 •

Ephemerellidae 0.3 0.03
Attenella 0.05 • 0
Drunella 0.02 • 0.03 •

Heptageniidae 1 1 0.2
Cinygmula 1.0 • • • • • 0.02 •
Epeorus (Iron) 0.2 • • • • 0
Epeorus (Ironopsis) 0.1 • • • 0
Rhithrogena 0.01 • 0

P Chloroperlidae 1.0 3.5
Haploperla 0.2 • • • • 1.5
Suwallia 0.4 • • • • • 1.3 • •  • •  •
Sweltsa 0.1 • • • • 0

Leuctridae 0.5 0
Despaxia 0.5 0

Nemouridae 3.9 9.4
Podmosta 0.03 • 9.3
Zapada 3.2 0.04 • •

Peltoperlidae 1.9 0.1
Yoraperla 1.0 0.01 •
Soliperla 0.03 • 0

Perlodidae 02 0.8
Setvena 0.2 • • 0

Taenioptergydae 0.01 • 0
T Apataniidae 0.3 0.1

Allomyia 0.1 • • 0.1 •
Moselyana 0.2 • • • • 0

Brachycentridae 0.1 0
Micrasema 0.1 • • 0

Glossosomatidae 0.8 0
Glossosoma 0.7 0

Hydropsychidae 0.5 0
Parapsyche 0.1 • 0

Limnephilidae 07 0.5
Chyranda 0 0.1 • •
Cryptochia 0 0.2 • •
Desmona 0.2 0.03 • • •
Eocosmoecus 0.03 • 0
Homophylax 0.1 • 0
Onocosmoecus 0 0.01 •
Psychoglypha 0.2 • • 0.1 •
Spagnophylax 0 0.01 •

Philopotamidae 0.3 0.03
Wormaldia 0.3 • • 0.03 • •

Rhyacophilidae 0.5 0.1
Himalopysche 0.01 • 0
Rhyacophila 0.4 0.1 •  • •  •

Uenoidae 0.2 0
Neothremma 0.2 • • • 0

Note: Mean % ot drift calculated using abundances a t each  site within study a reas , treatm ents, and locations. uS=upstream , 
DS=downstream site location. T here  a re  4 stream s in each  category except Bone C reek old clearcuts w here n=2. Indistinct 
specim ens included in family num bers, adults (terrestrial) were excluded.
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Figure 22. FPOM as PCA Component 2 was significantly related to (a) Chloroperlidae density at 
Bone Creek and (b) Ameletus density at Damfino Creek study area.

Discussion 

Biotic Metrics
Mean drift of invertebrates in this study was 10-34 individuals m'3 and is in the 

mid-range of densities reported for other small streams throughout the world (0.02-143 

individual m'3, see Giller and Malmqvist 1998). In North America, our drift rates were 

comparable to an average 29 individuals m"3 found by Siler et al. (2001) in hardwood 

forested streams, and to 1-22 invertebrates m'3 reported by Wipfli and Gregovich (2002) 

in Alaska. Assuming discharge and drift were constant through 24 hours, our streams 

exported 652-3813 mg of invertebrates stream-1 day 1 on average among treatment 

groups, compared to that reported in Alaska of 163 mg stream _1 day _1 (Wipfli and 

Gregovich 2002). We only measured drift rates during the day in a season when drift 

was expected to be high coinciding with high discharge, whereas the other researchers 

sampled drift throughout the day and year. Although drift diel patterns are reduced in 

non-fish bearing streams, a pattern of increasing drift in late afternoon and evening is still 

expected (Smock 1996). Therefore, our densities represent minimum estimates of 

invertebrate drift during a high drift seasonal period. However, if  invertebrate drift rates
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that we reported were representative for the summer period, these headwater streams 

have the potential to subsidize downstream food webs considerably in the season when 

fish are generally food limited.

Total invertebrate drift responded positively to clearcuts within 1-3 years post 

harvest and did not recover within seven years post harvest. Our finding that overall drift 

increased is similar to the benthic invertebrate density responses to clearcut logging for 

the same time frame (Newbold et al. 1980; Webster et al. 1983; Noel et al. 1986; Stone 

and Wallace 1998; Hernandez et al. 2005). Increased drift corresponds directly with the 

findings of Wilzbach et al. (1986) who reported increased drift densities in clearcuts 

seven years post harvest in third order streams in Oregon. Our findings of the 

composition changes, discussed later, support that elevated primary production lead to 

increased macroinvertebrate production and increased drift during the seven year post 

harvest period that we examined in this study. In addition, the disturbed habitat likely 

favoured production of short-lived multivoltine taxa that further contributed to increased 

macroinvertebrate production (Gregory et al. 1987). An additional factor in our study is 

that alder (Alnus sp.) was a common deciduous species that was either left intact, or 

quickly regenerated adjacent to streams in both clearcut types. This affects invertebrate 

production in two ways. Alder has a faster processing rate than coniferous species or 

other deciduous species and can therefore supply more quality food to the stream food 

web (Cummins et al. 1989). Secondly, increased drift densities are associated with alder 

in the riparian zone. Wipfli and Musselwhite (2004) found that amount of red alder in 

the riparian zone was positively related to aquatic taxa in the drift, and Allan et al. (2003) 

reported that more terrestrial invertebrates tended to drop from red alder than hemlock 

and spruce vegetation. Both aquatic and terrestrial invertebrates drove increased drift in
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clearcuts, and the percentage of both groups was not altered in response to clearcut 

treatments.

Terrestrial invertebrates are generally larger than aquatic invertebrates (Allan

1995), and this could explain why we detected a response in biomass o f terrestrial 

invertebrates without detecting a response in abundance. Edwards and Huryn (1995) also 

found that although biomass of terrestrial invertebrates in the drift differed in response to 

land use, abundance of terrestrials did not. Drift feeding fish select terrestrial 

invertebrates due to their larger size and their differential availability compared to aquatic 

invertebrates on a seasonal and diel basis (Nakano et al. 1999). Terrestrial invertebrates 

comprise an important part of adult salmonid diets (Bridcut 2000; Kawaguchi and 

Nakano 2001; Allan et al. 2003); however, Bilby and Bisson (1992) attributed increased 

autochthonous inputs to increased production of juvenile coho salmon in headwater 

streams seven years following clearcutting. Wilzbach et al. (1986) found a strong 

correlation between trout growth and drift densities and reported short-term relative 

growth rates of trout in clearcut streams greatly exceeded that of reference streams. In 

the period up to seven years post harvest in the present study, clearcuts appeared to cause 

more aquatic invertebrates and larger terrestrial invertebrates to drift, both of which could 

lead to increased fish production.

Diptera abundance responded positively to both clearcut treatments, but 

maximum effect occurred in new clearcuts. Diptera biomass density showed the highest 

effect in old clearcuts. This effect is parallel to that of terrestrial invertebrates and the 

order Diptera was highly influenced by adults in the drift. While abundance of Diptera 

responded positively 1-3 years post harvest, a positive response of Ephemeroptera was 

delayed until 5-7 years following clearcutting. Both abundance and biomass of
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Ephemeroptera had maximum effects in old clearcuts. These two groups of insects are 

reported to respond positively to disturbance in benthos, in part because they comprise 

short-lived taxa that are able to exploit disturbance (Wallace and Gurtz 1986, Gregory et 

al. 1987). For example, Noel et al. (1986) found that Ephemeroptera and Diptera drove 

2-4 fold increases of benthic invertebrate density within three years post harvest. Three 

multivoltine taxa drove increased densities found by Newbold et al. (1980) 1-5 years 

following harvest in Northern Californian headwater streams. A shredder stonefly, 

Nemoura, showed the highest increased density and drove the elevated total benthic 

invertebrate density in combination with increases to Chironomidae (Diptera) and a 

collector-gatherer mayfly, Baetis. Because these taxa are able to colonize rapidly, they 

are able to increase densities rapidly and are therefore favoured in a disturbed habitat. 

Although the authors noted the shift to multivoltine taxa, they primarily attributed 

increased densities to a shift in food base resulting from increased light, nutrients and 

temperature following logging. These results correspond with Wallace and Gurtz (1986) 

who reported that initial increases and subsequent declines of Baetis density coincided 

with changes in primary production.

Percent shredders responded negatively to clearcuts while two other functional 

feeding groups, collector-gatherers and scrapers, responded positively to clearcuts. The 

response of shredders was negative in the first 1-3 years, and no recovery was found 

seven years post harvest. This finding agrees with Gurtz and Wallace (1984), who found 

declines in benthic shredder abundance five years post harvest. In the longer term, Stone 

and Wallace (1998) and Hernandez et al. (2005) found that shredder densities drove a 

positive response in overall invertebrate benthic densities in clearcuts compared to 

reference streams 16 and 35-45 years post harvest, respectively. In the present study,
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increased non-shredder densities are partly responsible for the decrease in percent 

shredders, and overall shredder densities were not significantly altered in either clearcut 

treatment. The post harvest increase of shredders reported in benthic invertebrate 

research did not occur within seven years post harvest in the present study.

In several studies where invertebrate benthic densities increased in response to 

clearcutting, scraper and collector gatherer densities drove the response in the first 2-5 

years post harvest (Webster et al. 1983, Gurtz and Wallace 1984, Hernandez et al. 2005). 

Each study attributed the response of these trophic groups to elevated primary production 

due to increased light, temperature and nutrients in clearcut streams. Our finding that the 

scraper effect only differed significantly from controls in clearcut streams 5-7 years and 

not 1-3 years post harvest is contrary to the findings of Gurtz and Wallace (1984), who 

found that scraper benthic densities declined five years post harvest. A possible 

explanation is that increased drift of scrapers resulted from degradation of their habitat in 

the old clearcut treatment. Siler et al. (2001) found that percent o f benthos in the drift 

increased for detritivores in a habitat where detritus was removed; however, overall drift 

densities were higher in the reference conditions regardless o f percent of benthos in the 

drift. In the present study, there was the tendency for scraper densities to increase in both 

clearcut groups, with effects of 73 % in old clearcuts and 27 % in new clearcuts, 

compared with -35 % in control streams. Scrapers made up the smallest percentage of 

the drift among functional feeding groups. Therefore, our ability to detect differences 

among treatments may have depreciated due to a number of zero counts among sites for 

this variable.

Collector-gatherer was the only functional feeding group that significantly 

differed in abundance, biomass, and percent of invertebrates measures calculated within
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the drift samples. For each variable, maximum effect occurred in old clearcuts. This 

trend differed from total invertebrate, aquatic invertebrate, and Diptera abundance, but 

was parallel to Ephemeroptera abundance. The majority of Ephemeroptera taxa 

identified in our drift samples were collector-gatherers (6 of 11), including two common 

genera, Ameletus and Baetis, and the remainder were scrapers. Unlike Ephemeroptera 

abundance, response of collector-gatherers was significant for both clearcut groups. This 

illustrates that by examining the functional feeding groups we detected a more specific 

response than was possible using an order level biotic metric. We found that fine 

particulate organic matter increased in new clearcuts but recovered in old clearcuts, and 

this would specifically affect collector-gatherers. An additional consideration is that 

trophic groups have differing propensities to enter the drift. Collector-gatherers tend to 

be swimmers and sprawlers that more actively drift, whereas scrapers tend to be clingers 

and passively enter the drift (Merritt and Cummins 1996). Among the taxa we collected, 

collector-gatherers and collector-filterers had the least number of clinger taxa in their 

groups. Therefore, a change in the benthic density of collector-gatherers may be more 

readily detected in the drift than other groups.

Clinger diversity weighted for number of clingers in a sample significantly 

responded to old clearcuts. The standard errors in this variable were extremely high. In 

13 of 44 sites clinger taxa did not occur and percent of clingers was low, ranging from 

0.35 -  5.25 % among treatments (Table 7). It appears that our ability to detect 

differences in clinger diversity density may be limited due to their low occurrence and 

number of zero counts in the data. Benthic clinger diversity is predicted to decline with 

increased levels of disturbance (Karr and Chu 1999). Our result that diversity of clingers
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increased in old clearcuts complements our findings that total taxa diversity density 

recovered in that treatment.

The density of taxa diversity showed a negative response to new clearcuts (Fig. 

21b). Decreased taxa richness occurred in benthic bioassessment with increasing degree 

o f disturbance (Fore et al. 1996; Karr and Chu 1999), and due to effects of clearcut 

logging (Quinn et al. 2004). Collier (1995) found that taxa richness was positively 

correlated with shade but not with proportion of native forest cover in the riparian zone. 

This corresponds with our finding assuming that shade increased in old clearcuts with 

regrowth of early successional vegetation. Conversely, Hernandez et al. (2005) did not 

find differences in taxa richness between five year old clearcuts and control streams. In 

the present study, taxa richness without weighting for number of organisms sampled did 

not differ among treatments (Fig 21). Gotelli and Colwell (2001) emphasize several 

notes of caution in using diversity density, and suggest careful consideration to determine 

the variable that best determines sampling intensity, for example time, number of 

organisms, or volume of water in the case of drift samples. Despite our efforts to achieve 

consistent sampling intensity by adjusting length o f sampling time according to discharge 

of the streams, volume of the drift sample differed by up to an order of magnitude higher 

among the samples collected from the study sites. There was a wide range in numbers of 

organisms collected in samples, and the larger volume samples did not necessarily have 

the highest number of organisms. Examination o f these data guided us to use number of 

organisms in each sample as the determination o f sampling intensity, because the number 

of taxa identified tends to increase with number o f individuals in a sample (Krebs 1999). 

Our results showing decreased taxa diversity density indicates decreased stream health
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initially following clearcutting, and recovery with respect to this metric 5-7 years post 

harvest (Karr and Chu 1999).

The importance of considering taxa richness within each order, Ephemeroptera, 

Plecoptera, and Trichoptera was emphasized by Karr and Chu (1999) because taxa in 

these groups respond differently to disturbance, thus combining them masks their more 

specific responses. We did not detect significant responses for diversity density in each 

of these orders (Fig. 21). Ephemeroptera, Plecoptera, and clinger diversity density effects 

showed a trend of positive response in old clearcuts. Trichoptera diversity density 

showed a similar trend to taxa diversity density, with most significant negative effects in 

new clearcuts, and intermediate values in old clearcuts. Our ability to detect differences 

in these biotic metrics may have been hampered by the patchy distribution of EPT among 

drift samples. Plecoptera occurred as 12 % of the drift, Ephemeroptera as 7 %, and 

Trichoptera as 4 % of the drift on average among all sites. Even by pooling replicate 

samples at each site, 10 of 44 sites did not contain Ephemeroptera, three did not contain 

Plecoptera, and nine did not contain Trichoptera. This would cause numerous zero 

counts through the data set, and would decrease the likelihood of detecting a difference 

among treatments. Even though we did not detect significant differences, the results of 

two differing trends among the orders supports our previous arguments that differing 

responses to clearcut logging occurred in 1-3 year old versus 5-7 year old clearcuts.

Other measures of the community composition such as the indices of 

heterogeneity and evenness did not respond to clearcut treatments and mean effects 

showed similar values among treatments (Fig. 21 g,h). A related index, Shannon 

diversity, was greater in benthos of clearcut streams 35-45 years post harvest, but similar 

to reference streams five years post harvest (Hernandez et al. 2005). Newbold et al.
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(1980) found that Shannon diversity decreased in stream 1-5 years following logging.

We chose the reciprocal of Simpson’s index rather than Shannon diversity to describe 

heterogeneity in order to weight common species more than rare species in our analysis 

(Krebs 1999). Reciprocal of Simpsons (1/D) varies from 1 to the number of species in a 

sample and is interpreted as the number of equally common species in a community.

Like 1/D, Shannon diversity (H’) increases with increasing number of species in the 

community. Unlike benthic samples, drift samples do not represent the entire community 

of invertebrates and it appears the responses to logging do not alter the heterogeneity or 

evenness of the community within the drift.

EPT Families and Genera
Site location did not predict presence/absence of families and genera among

clearcut sites. Examining the presence/absence of EPT taxa between site locations 

among treatments (Table 9) revealed no clear patterns with the possible exception of 

Trichoptera taxa in Bone Creek. More Trichoptera taxa were identified in downstream 

than upstream samples of both old (ds=5, us=3) and new (ds=8, us=4) clearcuts compared 

to five taxa identified in downstream sites and six taxa in upstream sites of control 

streams. However, in control streams different taxa were present depending on site 

location in all three orders, but especially in Trichoptera of both study areas. This 

variation may be dependent on differences between site location such as elevation, or 

time of day that site locations were sampled, or may be due to natural variability among 

sites. In any case, high variability reduced our ability to detect differences in 

presence/absence of taxa dependent on clearcutting.

Abundance of Chloroperlidae at Bone Creek, and Ameletus at Damfino Creek 

were positively related to FPOM concentration. We found that FPOM concentrations
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responded positively to new clearcuts. Considering that abundances of some common 

taxa were dependent on FPOM concentrations, this may in part explain the highest effect 

of invertebrate drift in new clearcuts. Ameletus are collector-gatherers and are linked to 

FPOM as a primary food source. One explanation for the relationship not occurring in 

Bone Creek is that FPOM concentrations were generally higher in that study area 

whereas in Damfino Creek FPOM concentrations may have been in the range that would 

be more limiting as a resource. Both genera of Chloroperlidae that occurred in drift 

samples were predators. Murphy and Hall (1981) reported that predator benthic density 

increased in response to clearcuts five and more years post harvest, and attributed the 

effect to increased prey through elevated primary production. Hawkins et al. (1982) 

reported a significant correlation between benthic densities o f predators and collector- 

gatherers in riffles. Another possible explanation is that drift density of Chloroperlidae, 

which are clingers, was related to FPOM concentration physically causing invertebrates 

to drift. This phenomenon was reported by Culp and Davies (1983), where negative 

pressure created by increased suspended particles caused invertebrates to enter the drift.

Experimental Approach
There were limitations to the present study. This is exemplified by several

metrics that had distinct negative or positive values in control streams. Before-After 

Control-Impact (BACI) design and comparative surveys also have their limitations in 

aquatic research due to high natural variability among individual streams. In this design 

we used paired sites on streams upstream and within disturbance, but also established a 

base condition using paired sites on undisturbed streams. We recognize that differences 

between paired sites may occur independent of disturbance due to factors that may 

depend on elevation such as amount of light, water temperatures, and amount of canopy
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closure. In addition, drift has diel patterns that, although subtle, still prevail in non-fish 

bearing streams (Smock 1996). We chose to consistently sample downstream sites in the 

morning and upstream sites in the afternoon. The effect of terrestrial and aquatic 

invertebrate contributions to the drift reflect this timing of our sampling given known diel 

differences in these variables. In all treatments, percent aquatics in downstream sites 

exceeded upstream sites, and percent terrestrials in upstream sites exceeded that of 

downstream sites. Drift of aquatic invertebrates tends to peak just before dawn and 

decrease throughout the day, opposite to the diel drift patterns of terrestrial taxa (Nakano 

et al. 1999). In control streams, the percentage of scrapers in the drift was higher at 

upstream than downstream sites, while the remaining functional feeding group 

percentages were either higher at downstream sites or were similar between sites. This 

may be the result of more light reaching streams at higher altitudes due to less canopy 

closure on approaching the alpine. This may also lead to increased productivity at 

upstream sites that accounts for the observed higher densities of invertebrates at upstream 

versus downstream sites of control streams (Fig. 15).

Implications and Summary
Logging can increase the trophic resources for drift-feeding fish such as

salmonids if they are food limited (Bilby and Bisson 1992; Hetrick et al. 1998). There 

are several ways that invertebrate responses to logging adjacent to headwater streams 

may achieve this. Increased light, temperature and nutrients following clearcut logging 

stimulates increased benthic invertebrate production. The taxa that drive increased 

benthic densities following clearcutting are those that tend to drift (Newbold et al. 1980; 

Noel et al. 1986). Although allochthonous resources may be reduced, lignin-based leaf 

litter from coniferous trees have a higher ratio of C:N and require further breakdown by

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



microbes to provide the same food quality to macroinvertebrates as autochthonous 

resources supply immediately (Murphy and Meehan 1991). This shift may transfer up 

the food web positively because at least one salmonid species, coho salmon, appears to 

consume primarily autochthonous food sources (Bilby and Bisson 1992). The drift 

densities we reported indicate that headwater streams in ESSF forests in British Columbia 

export significant amounts of invertebrate drift to downstream fish habitat.

Drift more accurately estimates prey availability than benthos and is positively 

correlated with fish production (Wilzbach et al. 1986). Our results indicated that clearcut 

logging up to seven years post harvest caused increased macroinvertebrate drift densities. 

By not altering the contribution of aquatic versus terrestrial invertebrates, clearcut 

logging did not adversely alter the composition of the drift with respect to fish 

production. Our results showed that other changes in community composition occurred. 

Some alterations were detected 1-3 years post harvest, while others onset 5-7 years 

following harvest. A number of alterations persisted through the 5-7 year post harvest 

period. We have used a number of biotic metrics to assess relative differences in 

invertebrate drift and numerous metrics enabled detection of differences among 

treatments. We caution against considering the metrics independently but do make 

inferences based on the group of responses that we detected. It is apparent from these 

responses that composition of the invertebrate community was altered up to seven years 

post harvest. Although short-term gains in number and biomass of invertebrates drifting 

in headwater streams are apparent from these data, clearcut logging altered the 

composition of invertebrate drift that persisted at least seven years post harvest. Both 

responses are concerns for fisheries management, and the longer-term effects of clearcut 

logging on export from headwater streams requires further consideration.
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Epilogue
There are several linkages between the responses we found in FPOM and DOC, 

and those of invertebrate drift. Total invertebrate drift responded positively to both post

harvest periods but was greatest in new clearcuts, partly following the response of FPOM 

that increased in new clearcuts. Collector-gatherers directly consume FPOM and this 

functional feeding group made up the majority of invertebrates in drift samples. In 

addition to this connection, collector-gatherer taxa were shown to derive at least 20 %, 

and up to 100 % of their carbon from bacteria (Hall and Meyer 1998). Bacteria are 

known to respond rapidly to changes in DOC (Kreuztweiser and Capell 2003), in 

particular labile DOC of low molecular weight that is generally autochthonous (Allan 

1995). Although the number of collector-gatherers responded positively to both “new” 

and “old” clearcut groups, positive responses in biomass and percent only occurred in old 

clearcuts. The latent positive responses of this group to old clearcuts may be in part, 

indirectly related to altered DOC composition.

The only other group to show a significant positive response was the scraper 

functional feeding group in response to old clearcuts; this suggests that scrapers 

responded to increased primary productivity that occurred in old clearcuts. Scraper 

densities and primary production responses normally occur in the initial years post 

harvest, rather than the delayed response that we observed. Our DOC results correspond 

with this finding. We inferred that increased autochthonous production in old clearcuts 

through the summer season caused the observed seasonal decline of SUVA in old 

clearcuts. The response in scraper densities indicated increased autochthonous 

production during the high flow season.
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Results from the two approaches also showed different responses. Responses in 

organic matter were dominant in the 1-3 year post harvest period, whereas biotic metric 

responses occurred in both periods with a greater number of responses in the 5-7 year 

period. Removal of riparian vegetation primarily affects the macroinvertebrate 

community through increased light and alterations to detrital inputs. Although the 

quantity of organic matter may be greater in undisturbed streams, an increased proportion 

of higher quality autochthonous resources allows an increase in energy availability in 

small streams after canopy removal (Bilby and Bisson 1992). This shift may be delayed 

while fast processing streamside debris breaks down in the initial years providing a pulse 

of organic matter of lower nutritional quality. This boosts production overall, but the 

later onset o f increased autochthonous production, inferred from the scraper response in 

old clearcuts, indicates onset of increased higher quality resource production was 

delayed.

Headwater stream ecosystems are a source for many downstream energy 

resources. Not only are the amounts of detritus and invertebrate drift important (Wipfli 

and Gregovich 2002), the source of these resources is of consequence because of its 

influence on nutritional quality and food web stability. Forested headwater streams may 

have more food web stability than larger reaches due to the dominance of allochthonous 

inputs or donor control (Woodward and Hildrew 2002), and the high number of weak 

trophic linkages (McCann et al. 1998). Therefore, although a shift from allochthonous to 

autochthonous resources induced by clearcut logging can result in increased production 

initially, trophic stability in small streams may be compromised.

This examination of the effects of changes in abiotic and biotic variables from 

clearcutting adjacent to headwater streams in ESSF forests is one of the only studies to
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use these two approaches simultaneously in the interior of BC. The research provides 

baseline data that could be used for continued monitoring of small stream for fisheries or 

water quality management. The data contribute to a large body of research on effects of 

forest harvest on small streams and expand the knowledge base. In particular, this work 

expands knowledge for a forest type that is commercially and ecologically important but 

has previously been little studied. Additionally, we have examined numerous biotic 

metrics to compare drift samples, and highlighted drawbacks and different sensitivities in 

some of these indicators through our data. This contributes to a body of knowledge on 

use of biotic indicators for water quality monitoring. Each of these contributions 

strengthens decision making by either providing scientific knowledge on which to base 

decisions, or by developing scientific tools for monitoring stream health.
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Appendix
Table A l. List of taxa and their designations as aquatic (A), terrestrial (T), clinger (CLG=Y); in functional feeding groups predator (PR), 
collector-gatherer (CG), collector-filterer (CF), scraper (SC), shredder (SH); their Hilsenhoff biotic index value (HBI); and their status as 
tolerant (TOL=T), and long-lived (Long-lived=Y). Biomass formulas estimate dry mass (DM) in mg using body length (L) measurements

Phylum Class Order Family Genus Aqu.
Terr. CLG PR CG CF s c SH HBI TOL Long-

lived Biomass formula Ref. Note

Arthopoda Entoqnatha Collembola n.s. T 100 n.d. n.d. n.d. DM=exp(-3.628)*power(L,2.494) A
Arthopoda Arachnida A raneae Pisauridae Dolomedes A 100 n.d. n.d. Y DM=exp(-3.106)*(power(L,2.929)) B
Arthopoda Arachnida Acarina n.s. "eqq-shape" A 100 5 DM=exp(3.682)*(power(L,2.761 ))/1000 B 4
Arthopoda Arachnida Acarina n.s. “elongate” A 100 5 DM=exp(3.682)*(power(L,2.761))/1000 B 4
Arthopoda Arachnida Acarina n.s. “brown/hard” T 100 5 DM=exp(3.682)*(power(L,2.761 ))/1000 B 4
Arthopoda Arachnida Acarina n.s. "round” A 100 5 DM=exp(3.682)*(power(L,2.761 ))/1000 B 4
Arthopoda Arachnida Acarina Styqothrombidiidae “elonqate/soft” A 100 5 DM=exp{3.682)*(power(L,2.761 ))/1000 B 4
Arthopoda Arachnida A raneae n.s. T 100 n.d. n.d. n.d. DM=exp(-3.106)*(power(L,2.929)) B
Arthopoda insecta Coleoptera Amphizoidae, ad A Y 100 1 Y DM=exp(-3.460)*(power(L,2.790) B
Arthopoda Insecta Coleoptera Carabidae T Y 100 n.d. n.d. n.d. DM=0.0077*power(L,2.910) B
Arthopoda Insecta Coleoptera Chrysomelidae, ad T 100 n.d. n.d. n.d. DM=exp(-2.427)*power(L,2.171) A
Arthopoda Insecta C oleoptera Chrysomelidae T Y 100 n.d. n.d. n.d. DM=.0392*(power(L,3.111)) D
Arthopoda Insecta Coleoptera Curculionidae, ad T Y 100 5 DM=exp(-3.460)*(power(L,2.790) B
Arthopoda Insecta C oleoptera Dytiscidae, ad A 100 5 T Y DM=.0618*power(L,2.502) C
Arthopoda Insecta Coleoptera Dytiscidae A 100 5 T Y DM=.0077*(power(L,2.910) D
Arthopoda Insecta Coleoptera Elmidae, ad A Y 100 4 Y DM=exp(-3.460)*(power(L,2.790) B
Arthopoda Insecta Coleoptera Histeridae, ad T n.d. n.d. n.d. DM=exp(-3.460)*(power(L,2.790) B
Arthopoda Insecta Coleoptera Hydraenidae T Y 100 n.d. n.d. n.d. DM=0.0077*power(L,2.910) D
Arthopoda Insecta C oleoptera Hydrophilidae, ad A 50 50 5 Y DM=exp(-3.460)*(power(L,2.790) B
Arthopoda Insecta Coleoptera Hydrophilidae A 100 5 Y DM=.0077*(power(L,2.910) D
Arthopoda Insecta Coleoptera Staphylinidae, ad T Y 100 n.d. n.d. n.d. DM=exp(-3.460)*(power(L,2.790) B
Arthopoda Insecta Coleoptera Staphylinidae T Y 100 n.d. n.d. n.d. DM=0.0077*power(L,2.910) B 1
Arthopoda Insecta Coleoptera n.s., ad T n.d. n.d. n.d. DM=exp(-3.460)*(power(L,2.790) B
Arthopoda Insecta Coleoptera n.s. T n.d. n.d. n.d. DM=0.0077*power(L,2.910) D
Arthopoda Insecta Diptera n.s., ad T n.d. n.d. n.d. DM=exp(-3.293)*power(L,2.366) B
Arthopoda Insecta Diptera Athericidae A 100 2 T DM=.0040*power(L,2.586) D
Arthopoda Insecta Diptera C eratopoqonidae A 100 6 DM=.0025*power(L,2.469) D
Arthopoda Insecta Diptera Chironomidae A 50 50 6 DM=.0018*power(L,2.617) D
Arthopoda Insecta Diptera Culicidae A 50 50 8 T DM=.0025*power(L,2.692) D
Arthopoda Insecta Diptera Dixidae A 100 2 DM=.0025*power(L,2.692) D
Arthopoda Insecta Diptera Empididae A 100 6 DM=.0054*power(L,2.546) D
Arthopoda Insecta Diptera n.s. n.d. n.d. n.d. DM=.0025*power(L,2.692) D
Arthopoda Insecta Diptera Psychodidae A 100 10 DM=.0025*power(L,2.692) D
Arthopoda Insecta Diptera n.s., pu A 50 50 6 DM=.0025*power(L,2.692) D 5
Arthopoda Insecta Diptera Sciomyzidae A 100 n.d. n.d. n.d. DM=.0025*power(L,2.692) D
Arthopoda Insecta Diptera Simuliidae A Y 100 6 DM=.002*power(L,3.011) D
Arthopoda Insecta Diptera Stratiomyidae A 100 8 T DM=.0025*power(L,2.692) D
Arthopoda Insecta Diptera Syrphidae A 100 10 T DM=.0025*power(L,2.692) D
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Phylum Class Order Family Genus Aqu.
Terr. CLG PR CG CF s c SH HBI TOL Long-

lived Biom ass formula Ref. Note

Arthopoda Insecta Diptera T haum aleidae A Y 100 11 I DM=.0025*power(L,2.692) D
Arthopoda Insecta Diptera Tipulidae A 50 50 3 DM=.0029*power(L,2.681) D
Arthopoda Insecta Ephem eropter n.s., ad T n.d. n.d. n.d. DM=exp(-3.628)*power(L,2.494) A
Arthopoda Insecta Ephem eropter Ameletidae Ameletus A 100 0 DM=0.0077*power(L,2.588) D
Arthopoda Insecta Ephem eropter B aetidae Baetis A 100 5 DM=0.0033*power(L,3.196) C
Arthopoda Insecta Ephem eropter B aetidae n.s. A 100 4 DM=0.0053*power(L,2.875) D
Arthopoda Insecta Ephem eropter Ephem erellidae Attenella A Y 100 2 DM=0.0103*power(L,2.676) D
Arthopoda Insecta Ephem eropter Ephem erellidae Drunella A Y 100 0 DM=0.0019*power(L,3.46) D
Arthopoda Insecta Ephem eropter Ephem erellidae n.s. A Y 100 1 DM=0.0103*power(L,2.676) D
Arthopoda Insecta Ephem eropter H eptaqeniidae Cinyqmula A Y 100 4 DM=0.0108*power(L,2.754) D
Arthopoda Insecta Ephem eropter H eptaqeniidae Epeorus (Iron) A Y 100 0 DM=0.0056*power(L,2.926) D
Arthopoda Insecta Ephem eropter H eptaqeniidae Epeorus (Ironopsis) A Y 100 0 DM=0.0056*power(L,2.926) D
Arthopoda Insecta Ephem eropter Heptaqeniidae n.s. A Y 100 4 DM=0.0108*power(L,2.754) D
Arthopoda Insecta Ephem eropter Heptageniidae Rhithrogena A Y 100 0 DM=0.0108*power(L,2.754) D
Arthopoda Insecta Ephem eropter ns.s A 11 DM=0.0071 *power(L,2.832) D
Arthopoda Insecta Hemiptera n.s. A 100 8 DM=exp(-3.308)*power(L,2.696) B
Arthopoda Insecta H em iptera Aphidae T 100 n.d. n.d. n.d. DM=exp(-3.308)*power(L,2.696) B
Arthopoda Insecta Hemiptera H eteroptera (suborder) T 100 n.d. n.d. n.d. DM=exp(-2-998)*power(L,2.270) B
Arthopoda Insecta H ym enoptera n.s., ad T 100 n.d. n.d. n.d. DM=exp(-3.871 )*power(L,2.407) B 4
Arthopoda Insecta Lepidoptera n.s., ad T 100 5 DM =power(exp,-5.036)*power(L,3.122) A
Arthopoda Insecta Lepidoptera n.s. T 100 5 DM =power(exp,-5.909)*p°wer(L,2.959) A
Arthopoda Insecta O donata A nisoptera (suborder) A 100 11 Y DM=0.0078*power(L,2.792) D
Arthopoda Insecta O donata Zygoptera (suborder) A 100 8 DM=0.0078*power(L,2.792) D
Arthopoda Insecta Plecoptera n.s., ad o ther T n.d. n.d. n.d. DM =power(exp,-4.357)*power(L,2.539) A
Arthopoda Insecta P lecoptera Chloroperlidae, ad T n.d. n.d. n.d. DMg>ower(exp,-4.357)*power(L,2.539) A
Arthopoda Insecta P lecoptera Chloroperlidae Haploperla A Y 100 0 DM=.0065*power(L,2.724) D 2
Arthopoda Insecta P lecoptera Chloroperlidae n.s. A Y 100 1 DM=.0065*power(L,2.724) D 2
Arthopoda tnsecta Plecoptera Chloroperlidae Suwallia A Y 100 0 DM=.0065*power(L,2.724) D 2
Arthopoda Insecta Plecoptera Chloroperlidae Sweltsa A Y 100 1 DM=.0065*power(L,2.724) D 2
Arthopoda Insecta Plecoptera n.s. A 11 DM=0.0094*power(L,2.754) D
Arthopoda Insecta P lecoptera Leuctridae Despaxia A 100 0 I DM=.0028*power(L,2.719) D 3
Arthopoda Insecta P lecoptera Nem ouridae n.s., ad T n.d. n.d. n.d. DM=power(exp,-4.357)*power(L,2.539) A
Arthopoda Insecta P lecoptera Nem ouridae n.s. A 100 2 DM=.0056*power(L,2.762) D 3
Arthopoda Insecta P lecoptera N em ouridae Podmosta A 100 2 DM=.0056*power(L,2.762) D 3
Arthopoda Insecta Plecoptera N em ouridae Zapada A 100 2 DM=.0056‘ power(L,2.762) D 3
Arthopoda Insecta Plecoptera Peltoperlidae n.s. A Y 100 1 I DM=0.0170*power(L,2.737) D
Arthopoda Insecta Plecoptera Peltoperlidae Soliperia A Y 100 1 I Y DM=0.0170*power(L,2.737) D
Arthopoda Insecta P lecoptera Peltoperlidae Yoraperla A Y 100 1 I DM=0.0170*power(L,2.737) D
Arthopoda Insecta P lecoptera n.s., sh redder A Y 100 11 DM=0.0094*power(L,2.754) D
Arthopoda Insecta Plecoptera Perlodidae n.s. A Y 100 2 DM=0.0196*power(L,2.742) D
Arthopoda Insecta Plecoptera Perlodidae Setvena A Y 100 2 I DM=0.0196*power(L,2.742) D
Arthopoda Insecta Plecoptera Taeniopterygidae n.s. A 2 DM=0.0094*power(L,2.754) D
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Phylum Class Order Family G enus Aqu.
Terr. CLG PR CG CF S clsH HBI TOL Long-

lived Biom ass formula Ref. Note

Arthopoda Insecta T hysanoptera n.s., ad T n.d. n.d. n.d. DM=exp(-3.628)*power(L,2.494) A
Arthopoda Insecta T hysanoptera n.s. T n.d. n.d. n.d. DM=exp(-3.628)*power(L,2.494) A
Arthopoda Insecta Trichoptera A pataniidae Allomyia A Y 50 50 1 I DM=0.0056*power(L,2.839) D
Arthopoda Insecta T richoptera A pataniidae Moselyana A 100 1 I DM=0.0056*power(L,2.839) D
Arthopoda Insecta Trichoptera B rachycentridae Micrasema A Y 50 50 1 DM=0.0083*power(L,2.818) D
Arthopoda Insecta Trichoptera G lossosom atidae Glossosoma A Y 100 1 DM=0.0082*power(L,2.958) D
Arthopoda Insecta Trichoptera G lossosom atidae n.s. A Y 100 0 DM=0.0082*power(L,2.958) D
Arthopoda Insecta T richoptera H ydropsychidae n.s. A Y 100 4 DM=0.0046*power(L,2.926) D
Arthopoda Insecta T richoptera H ydropsychidae Parapsyche A Y 100 4 DM=0.0046*power(L,2.926) D
Arthopoda Insecta T richoptera Limnephilidae Chyranda A 100 1 I DM=0.004*power(L,2.933) D
Arthopoda Insecta T richoptera Limnephilidae Cryptochia A 50 50 0 I Y DM=0.004*power(L,2.933) D
Arthopoda Insecta Trichoptera Limnephilidae Desmona A 100 1 I Y DM=0.004*power(L,2.933) D
Arthopoda Insecta Trichoptera Limnephilidae Eocosmoecus A 100 0 I Y DM=0.004*power(L,2.933) D
Arthopoda Insecta T richoptera Limnephilidae Homophylax A Y 100 0 I Y DM=0.004*power(L,2.933) D
Arthopoda Insecta Trichoptera Limnephilidae n.s. A 4 DM=0.004*power(L,2.933) D
Arthopoda Insecta Trichoptera Limnephilidae Onocosmoecus A 100 1 DM=0.004*power(L,2.933) D
Arthopoda Insecta Trichoptera Limnephilidae Pyschogtypha A Y 50 50 0 DM=0.004*power(L,2.933) D
Arthopoda Insecta Trichoptera Limnephilidae Spagnophylax A 100 4 DM=0.004*power(L,2.933) D
Arthopoda Insecta T richoptera Philopotam idae Wormaldia A Y 100 3 DM =0.005*power(L,2.511) D
Arthopoda Insecta Trichoptera n.s., pu A n.d. n.d. n.d. DM=0.0056*power(L,2.839) D
Arthopoda Insecta Trichoptera R hyacophilidae Himalopysche A Y 100 0 I DM=0.0099*power(L,2.480) D 6
Arthopoda Insecta Trichoptera Rhyacophilidae n.s. A Y 100 0 DM=0.0099*power(L,2.480) D 6
Arthopoda Insecta Trichoptera Rhyacophilidae Rhyacophila A Y 100 0 DM=0.0099*power(L,2.480) D 6
Arthopoda Insecta T richoptera U enoidae n.s. A Y 50 50 0 DM=0.0056*power(L,2.839) D
Arthopoda Insecta Trichoptera Uenoidae Neothremma A Y 50 50 0 I DM=0.0056*power(L,2.839) D
Arthopoda Insecta Trichoptera n.s. A n.d. n.d. n.d. DM=0.0056*power(L,2.839) D
Arthopoda Insecta n.s. n .s., terrestrial T n.d. n.d. n.d. DM=exp(-3.628)*power(L,2.494) A
Mollusca G astropoda A 100 7 afdm=.0203*power(L,2.521) D
Nem atoda A 5 DM=0.2679 E
N em atom orpha A 11 DM=0.2679 E
Annelida Clitellata A 100 8 DM=0.025 E 6
Platyhelm inthes Turbellaria A 100 4 DM=0.0082*power(L,2.168) D

Subphylum: Crustacea
Arthropoda Branchiopoda A 100 8 DM= 0.03300 E
Arthropoda Maxillopoda C opepoda  (S ubclass) A 100 8 DM= 0.03300 E
Arthropoda O stracoda 1 A 100 8 DM=0.02644 E

R eferences
A. Sam ple e t al. 1993, B. R ogers e t al. 1977; C. Sm ock 1980; D. Benke e t  al. 1999; E. m ean  DM of a t  le a s t 10 individuals taken  from drift sam p les  by C.A. M ackay in 2004. 
Notes
1. U sed designations for S taphylinidae adult.
2. Generally clingers, Merritt & Cum m ins (1996).
3. Sprawlers/clingers, Merritt and  Cum m ins (1996).
4. T hese  taxa a re  parasites and  a re  included a s  predators.
5. Diptera pupae designations a re  b ased  on Chironom idae, a s  majority o f pupae  w ere su sp ec ted  but unconfirm ed Chironom idae.
6. T hese  taxa a re  univoltine/semivoltine (Merritt and  Cum m ins 1996) and  a re  therefore  not considered  long-lived.

109


