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ABSTRACT

The impacts of simulated climate change (warming and fertilization treatments) on 

diazotroph community structure and activity were investigated at Alexandra Fiord, 

Ellesmere Island, Canada. Open Top Chambers were randomly placed in a dwarf-shrub, 

cushion-plant dominated mesic tundra site inl995. In 2000 and 2001 20N: 2 OP2 O5 : 

2 OK2 O fertilizer was applied at a rate of 5 g m"^year'\ Estimates of nitrogen fixation rates 

were made in the field by Acetylene Reduction Assays (ARA). Higher rates of N-fixation 

were observed 19-35 days post-fertilization but were otherwise unaffected by treatments 

and we hypothesize that microsite variation was a greater determinant of N-fixation rate 

than were the treatments applied. NifH  genes were amplified from bulk soil DNA and 

analyzed by Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis. 

Nonmetric Multidimensional Scaling (NMS) was used to ordinate treatment plots in nifH 

genotype space. NifH  gene communities were more strongly structured by warming 

treatment late in the growing season, suggesting that an annual succession in diazotroph 

community composition occurs. ô^^N analysis of plant and soil material from each 

treatment plot suggests that evergreen dwarf shrubs will depend more heavily on organic- 

N derived from mycorrhizae in warmer climates and that relative importance of 

symbiotic nitrogen fixation to the N-nutrition of D. integrifolia will decline at this site.
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LITERATURE REVIEW

1.1. Soil Microbial Ecology; a historical perspective

Although the term Soil Microbial Ecology is relatively recent designation, the study has 

deep roots in the history of science. By the mid-nineteenth century, the founders of 

modem seience were conducting controlled experiments and making detailed 

observations of microorganisms in their environment, and the discipline originates from 

these early efforts. The rejection of spontaneous generation and the elueidation of 

anaerobic metabolism were achieved by the monumental works of Louis Pasteur (1830- 

1900). Charles Darwin is credited with pioneering quantitative studies on the transportive 

effect of earthworms on surface soil layers (1837, 1881). The widely eredited founder of 

soil microbiology, Sergei Winogradsky, initiated the first studies of nitrification and 

sulfur-oxidation which led to the eoneept of microbial autotrophy. As the studies of 

microbiology, chemistry and biochemistry matured into the twentieth eentury, it beeame 

apparent that these disciplines were intricately connected in soils and the central role of 

soil organisms in nutrient eycling was recognized (Paul and Clarke 1996). The 

elueidation of the nutrient eyeles provided a basic framework from which to interpret the 

processes that determine the distribution of organisms in the environment. Agronomy 

served as the subject of, and practical application for, most of the knowledge gained in 

the field. Consequently many of the basic paradigms of the field were uniquely suited to



agricultural systems (for a more extensive review of the history of soil biology see 

Coleman et al. 1983, Paul and Clarke 1996).

2.1. Ecology and nutrient cycling in natural systems

Much of the groundwork of soil microbial ecology took place in agricultural systems that 

are highly fertile when compared to natural ecosystems (Chapin 1980, Coleman et al. 

1983). In nature, terrestrial biota is often limited by the availability of four key elements 

C, N, P, and S. The biogeochemical cycles of each of these essential elements are 

characterized by two pools in soils, a relatively large pool that is bound in organic forms 

(living and non-living), and a small pool that is present in a highly available (often 

inorganic) state. The flux between pools is mediated by two main biological processes; 

mineralization and immobilization. The balance between these processes often 

determines the potential to accumulate biomass for the organisms in the ecosystem. 

Biological activity that determines the rate of nutrient mineralization and immobilization 

exists in an abiotic environment controlled by three basic parameters, soil texture, soil 

age and regional climate. These abiotic factors strongly influence the interactions of 

organisms and characterize the nutrient cycling in a system.

Nitrogen is the primary limiting nutrient in many natural terrestrial ecosystems (Dugdale 

et al. 1967; Paerl et al. 1987; Dawson 1992). With few exceptions, primary producers are 

not carbon-limited by virtue of their metabolisms. Nitrogen is required in all of the basic



building blocks of life notably; protein, RNA and DNA, and is required in relatively large 

quantities compared to the other limiting nutrients. Atmospheric N 2 is a huge reservoir of 

N that is largely unavailable to organisms. The two soil pools interact with the 

atmospheric reservoir by three biologically mediated processes, nitrification, 

denitrification, and nitrogen fixation. Nitrification is the microbially-mediated process by 

which ammonium is oxidized to nitrate for energy directly, or simultaneously with CO2  

reduction. Denitrification is the opposite process, whereby nitrate is reduced during 

anaerobic respiration (oxidation of CH2 O) to nitrous oxide (N2 O) and dinitrogen, 

returning N to the atmospheric pool. Nitrogen fixation, the only source of new nitrogen in 

terrestrial systems, is the process by which atmospheric N2  is reduced to ammonium.

2.2. Arctic soils are nitrogen limited

Soil ecosystems at high latitudes are characterized by cold and saturated conditions for 

much of the growing season (Chapin and Bledsoe 1992b). These conditions limit 

decomposition and thus, the internal recycling of nitrogen by mineralization and 

nitrification as well as the recruitment of new N by fixation. Depending on the outcome 

of competitive interactions, available N can be rapidly assimilated by plants, retained in 

plant tissue, and returned to the soil as litter fall. Conversely, available N will be 

assimilated into microbial biomass and retained until mineralized once more. Nitrogen 

leaves soil organic matter by leaching, transport by soil water, denitrification and 

ammonia volatilization (Shaver et al. 1992). Most of the nitrogen in tundra ecosystems is



held in soils and supply to plants (via mineralization) is a major bottleneck to plant 

growth (Chapin et al. 1980). Consequently, the productivity of many terrestrial arctic 

plant communities is strongly nitrogen limited (Ulrich and Gesper 1978; Shaver and 

Chapin 1980, 1986).

2.3. Global warming will affect arctic nitrogen budgets

Temperature increase as a result of climate change in the arctic is predicted to be 2-5°C 

over the next century (Houghton et al. 1995, 1996). This is far greater than the global 

mean increase of 1-3.5°C (Boer et al. 1990). Changes in temperature are predicted to 

induce widespread change in all of the earth’s ecosystems. The responses of arctic 

ecosystems to climate change are of particular interest because arctic communities have 

responded disproportionately to past climate transitions, suggesting that future climate 

change will induce widespread alterations of these systems (Warrick et al. 1986).

Warmer temperatures, a result of an amplified ‘greenhouse effect’ due to increasing 

atmospheric CO2  concentrations, may affect arctic nitrogen cycling by a variety of 

mechanisms. Directly, warmer temperatures will increase rates of all enzyme-mediated 

reactions in soils. Secondary effects of warming include the potential alteration of 

hydrological regimes at regional and local scales. In the arctic, warmer temperatures may 

be associated with increased rainfall due to decreased albedo as sea ice melts and an 

increased evaporative load. At local scales, increased evaporation may make dry sites



drier while increased melting of glacial ice may make low lying areas wetter. Increased 

temperature should also result in an increased depth of thaw of permafrost releasing large 

stores of organic nitrogen that will be mineralized to ammonium (Shaver et al. 1992). 

Likewise, increased microbial activity and element turnover, including increased 

nitrification, is expected (Nadlehoffer et al. 1992). As long as sufficient water is 

available, many of these affects may feedback positively, resulting in a more rapid turn

over of the large soil N-pool, and consequently, a relief of the ‘bottleneck effect’ of N- 

mineralization on plant N-nutrition in the short term.

However, since nitrogen fixation is the primary source of new nitrogen in arctic plant 

communities, variation in its input may be a major regulator of ecosystem productivity in 

the long term (Chapin and Blesoe 1992a). Climate warming is expected to increase 

nitrogen fixation rates by a factor of 1.5-2 times current values in the arctic. Increased 

temperature is expected to have the strongest direct effect on all nitrogen fixing 

organisms, while increased moisture is expected to be important for certain key 

photoautotrophic groups (particularly cyanobacteria). Direct effects of increased CO2 

concentrations on the metabolism of photosynthetic nitrogen fixers will also be important 

in securing this increase (Chapin and Blesoe 1992a). If these predictions prove true, the 

warmer arctic climates of the future should be less nitrogen limited than they are today.



3.1. Diazotrophs

Organisms that fix atmospheric nitrogen are collectively called diazotrophs. It is believed 

that nitrogen fixation has been present since the evolution of eukaryotes (Postgate and 

Eady 1988), and all organisms depend either directly or indirectly on diazotrophs as a 

source of nitrogen. Diazotrophic organisms are a comprised of a diverse array of 

prokaryotic phyla from two domains; the eubacteria and the archeabacteria. Members of 

these two groups employ nearly every life history strategy; there are free living and 

colonial photoautotrophs, and free living heterotrophs and chemolithoautotrophs (Paerl 

1998). Many symbioses exist between diazotrophs and other organisms. Diverse groups 

of bacteria, such as the actinomycetes and the proteobacteria (eg. Rhizobium), form 

symbiotic associations with plants, while other diazotrophs are endosymbiotie with 

animals, and may live in the guts of wood-eating termites and pelagic copepods (Zehr et 

al. 1998).

3.2. Diazotrophs in Arctic Soils

It is widely held that the most important diazotrophs in arctic terrestrial ecosystems are 

cyanobacteria. Cyanobacteria are photosynthetic surface dwellers with heterocysts that 

are likely the primary source of newly fixed nitrogen in these systems (Chapin and 

Bledsoe 1992a). Principle genera include Nostoc, Anabaena, Scytonema, Stigonema, 

Hapalosiphon, Tolypothrix, and Fischerella (Alexander 1974; Granhall and Lid-Torsvik



1975). The importance of cyanobacteria that lack hctcrocysts and fix nitrogen primary in 

the dark (Licngen 1999) is still unclear as the presence of hctcrocysts is the only 

morphological attribute that indicates that an organism has the ability to fix nitrogen.

Another group whose contribution to nitrogen fixation in arctic soils is unclear is the free- 

living anaerobic bacteria. This group is often abundant in arctic soils (Stutz 1977) and 

may be locally important at some sites (Granhall and LidTorsik 1975) but low soil 

temperatures and low availability of carbon substrates is thought to limit their 

contribution to the overall nitrogen budget of arctic soils (Jordan et al. 1978).

Dryas integrifolia is common at many high arctic lowland sites and is known to be 

colonized by actinorhizal bacteria (Henry and Svoboda 1986). Symbiotic nitrogen 

fixation in plants is, however, believed to be rare in the high arctic (Stutz 1977). Where 

actinorhizae do exist they likely contribute significantly to the local nitrogen budget. For 

example, at Sarcpa Lake, NWT the highest rates of N-fixation were observed in habitats 

densely colonized by legumes and it was concluded that rhizobial symbioses contributed 

significantly to the N-budget at that site (Karagatzides et al. 1985).

3.3. Limitations to nitrogen fixation in arctic soils

The temperature optimum for nitrogen fixation by arctic diazotrophs has been determined 

by several authors to be near 20°C (Davey 1983, Chapin et al. 1991, Lennihan et al. 1994,



Liengen and Olsen 1997a, Licngen 1999). Consequently nitrogen fixation is considered 

to be temperature limited in cold arctic soils. Soil moisture has also been implicated as a 

strong control on N-fixation (Alexander et al. 1974, Alexander et al. 1978, Chapin et al. 

1991). Soil moisture may limit N-fixation at dry sites and buffer soil temperature in wet 

sites preventing maximum rates. Phosphorus is the primary nutrient limiting N-fixation in 

most natural systems (Vitousek 1999) and phosphorus limitation of N-fixation in arctic 

soils is also well documented (Fritz-Sheridan 1988, Chapin et al. 1991, Liengen 1999). 

Positive correlations between magnesium and calcium concentrations and nitrogen 

fixation rates of high arctic cyanobacteria have been reported (Liengen and Olsen 1997a, 

1997b); however direct limitation of nitrogen fixation by either element has not yet been 

established. Depending on the physiology of the diazotroph in question, light limitation 

or carbon limitation may be a factor. Photoautotrophs, particularly cyanobacteria are 

important in arctic sites and limitation of N-fixation by shading has been reported by 

some authors (Henry and Svoboda 1986, Liengen 1999). Similarly, chemoheterotrophs 

may be carbon limited, and increased concentrations of labile-C compounds, either from 

root exudation, or sucrose amendments have been associated with increased rates of N- 

fixation in the field (Li et al. 1995, Piceno and Lovell 2000a, 2000b).

3.4. Free-living diazotrophs at home: the mycorhizosphere

The concept of the rhizosphere, the portion of the soil that is influenced by the presence 

of a root or its exudates, can be expanded to include those areas inhabited by the plant’s



mycorrhizae. The mycorrhizosphere is inhabited by diverse and dynamic microbial 

populations (Linderman 1988). Benefits that bacteria may derive from fungi include 

habitat. For example, the extra-matrical hyphae of arbuscular fungi exude substances that 

cause mineral and organic fractions of soils to aggregate (Sutton and Sheppard 1976). 

Within these soil aggregates microorganisms flourish (Forster and Nicholson 1981). 

Certain bacteria appear to be favored by fungal exudates (Gilbert and Linderman 1971) 

implying fungal control the development of the bacterial communities in the 

myeorrhizosphere to some extent.

Diazotrophs are present in the mycorrhizophere. Mycorrhizae may provide the high 

levels of phosphorus required by diazotrophs (Bowen 1987, Miller 1987). A nitrogen 

fixing, spore-forming bacteria of the genus Bacillus was found to be active in 

ectomycorrhizal tubercles on Douglas fir (Li et al. 1995). Similarly, some 

ectomycorrhizae are known to secrete mannitol, a carbohydrate utilized by nitrogen- 

fixing organisms (Hassouma and Wareing 1964). These findings suggest that an active 

component of the diazotrophic community may be in association with mycorrhizal fungi 

and that the fungi may be important in the carbohydrate nutrition of mycorrhizosphere 

diazotrophs.

4.1. NifH  can be used to detect diazotrophic communities in nature

Traditional studies of bacteria from soils and the rhizospheres of plants involved 

culturing colonies on selective media (often nitrogen deficient) followed by eell counts.



DNA extraction, and sequencing techniques (Oyalzu-Masuchi and Komagata 1988). 

Culturing techniques are considered to be limited in value when studying natural 

communities of diazotrophs as only a small percentage of prokaryotes in nature can he 

cultured (Wayne et al. 1987). Further, the act of culturing likely alters community 

attributes such as species abundance and community structure from natural levels by 

altering selective conditions (Dunbar et al. 1997). A culture independent approach was 

clearly desirable for the study of natural diazotrophic communities.

All diazotrophs possess the multimeric enzyme complex nitrogenase. Nitrogenase is a 

tetramer composed of two identical Fc4 S4  cluster, and FeMo cluster subunits (Dean and 

Jacobson 1992) that are highly conserved among all diazotrophic groups (Bothe 1982). 

The genes that encode the protein subunits are also well conserved; a character that 

makes them ideal molecular markers (Postgate and Eady 1988).

In diazotrophs, nitrogen is fixed through the action of the enzyme nitrogenase. There are 

twenty genes that encode for the proteins that compose nitrogenase in the diazotroph 

Klebsiella pneumoniae (Dean and Jacobson 1992). The twenty genes (n/f genes) are 

arranged into eight transcriptional units, some of which appear to overlap (Beynon et al. 

1988). All n if gents are well conserved among diazotrophs (Postgate and Eady 1988), a 

quality that makes them useful molecular tools for the construction of degenerate 

oligonucleotide primers. The first degenerate oligonucleotide primers were developed for 

niJH gene sequences of the marine cyanobacterium Trichodesmium thiebautii (Zehr and 

McReynolds 1989). NifR  is the gene that encodes for the iron protein subunit of

10



nitrogenase. Its product forms the homodimer, the basic structure of the enzyme. In 

conjunction with the polymerase chain reaction, these primers proved to be useful tools 

for examining diazotrophs from natural communities. Further support for the application 

of niJH as a molecular tool came from the confirmation that nifH sequence phylogénies 

are largely consistent with the widely accepted 16S rRNA phytogeny for diazotrophic 

microbes (Young 1992).

4.2. Measurements of diazotroph diversity

Genetic diversity in diazotrophs has been assessed by a variety of techniques based on 

PCR amplification with degenerate nifR  primers from natural samples. Many studies 

involve the amplification of nifH. sequences followed by direct sequencing of the genes 

(Kirshtein et al. 1991; Ueda et al. 1995; Borneman and Triplett 1997; Jeong and Myrold 

2000). However, because of the high cost and time associated with DNA sequencing this 

method appears to be best suited to the analysis of single or relatively small populations 

(Dunbar et al. 2000).

When analyzing large populations or when comparing multiple populations of 

diazotrophs, several techniques have been employed. Probably the simplest technique is 

RFLP analysis of PCR products. In this method PCR products are digested with 

restriction enzymes and the resulting fragments are electrophoresed on agarose or 

polyacrylamide gels. A community profile is represented as a banding pattern on the gel

11



and these can be compared among samples. Gene richness (the number of bands) and 

gene evenness (the relative brightness of the bands) have been successfully estimated in 

this way (Widmer et al. 1999; Shaffer et al. 2000; Poly et al. 2001).

RFLP analysis is not without criticism despite its wide use in the analysis of diazotrophic 

communities. The most common criticism of the technique is summarized well by Tiedje 

et al. (1999) in their review of the techniques used in microbial ecology. The authors state 

that because single base pair substitution can alter the restriction site of a DNA fragment, 

resulting in the production of two bands but no functional difference in the gene (because 

of codon degeneracy), RFLP analysis tends to overestimate the genetic diversity of a 

population. Further, populations of only a few organisms can produce banding patterns 

that are so complex that they are not interpretable (Liu et al. 1997). These criticisms led 

Tiedje et al. (1999) to conclude that RFLP analysis is of limited value when used on 

highly diverse soils composed of non-dominant populations of microbes.

Denaturing Gradient Gel Electrophoresis (DGGE) has been successfully used to measure 

the diversity of nifH fragments in Paenibacillus azotofixans strains from soil and 

rhizosphere samples (Rosado et al. 1998). The technique involves the electrophoresis of 

double stranded DNA on gels with increasing concentrations of formamide and urea, and 

is sensitive to single-nucleotide differences. DGGE is considered to be a rapid way to 

assess intraspecific genetic diversity from environmental samples (Rosado et al. 1998).

12



4.3. T-RFLPs in the assessment of microbial diversity

Terminal Restriction Length Polymorphism (T-RFLP) is a technique related to RFLP, in 

that restriction enzymes are used. However, T-RFLP differs from RFLP by the addition 

of a dye label to the 5' end of the oligonucleotide primer. The dye label allows an 

automated DNA fragment analyzer to detect the position of the dye-labelled terminal 

fragment in a polyacrylamide gel. Since only the terminal fragment is visualized, each 

genotype corresponds to one PCR product. In T-RFLP the DNA fragments are 

represented quantitatively as peaks on a computer generated graph. The peak area is then 

integrated to determine the number of terminal DNA fragments it represents. These 

functions allow for estimates of gene diversity through characterization of sequence 

evenness and richness. This process is considered a more sensitive quantitative 

measurement than RFLP (Tiedje et al. 1999).

T-RFLPs have been used in the assessment of nifti gene diversity in the guts of termites 

(Ohkuma et al. 1996, 1999) and the technique holds considerable promise for use in 

natural soil samples. T-RFLP analysis of microbial diversity by 16S rRNA has been used 

extensively in soils and aquatic samples (Liu et al. 1997; Clement et al. 1998; Moesender 

et al. 1999). Further, it was shown that T-RFLP and DGGE (which has been used on soil 

diazotrophs) identified similar relationships among marine cyanobacteria for the 16S of 

rRNA (Moesender et al. 1999). Dunbar et al. (2000) calibrated the T-RFLP method by 

comparing community composition, richness, and evenness of four soil microbial 

communities that had been previously analyzed by 16S rDNA cloning. They

13



demonstrated that T-RFLP is also an excellent method for rapidly comparing microbial 

communities from environmental samples.

5.1. Measurements of nitrogen fixation

Analysis of diazotroph community structure under conditions of simulated climate 

change is helpful for predicting how these communities will respond to environmental 

perturbation. If we wish to understand how altered diazotroph communities will function 

it is necessary to measure diazotroph activity under different treatments. Changes in the 

composition or structure of diazotroph communities have the potential to alter nitrogen 

fixation rates and ultimately N input to plants. These changes may take place on multiple 

timescales; miniscule changes in the activity of diazotrophs may or may not be 

measurable over several hours or days, but if these changes are sustained over the life of 

a long-lived woody plant, their cumulative effect may be dramatic. Thus, field 

measurements of nitrogenase activity are needed at two timescales; one measurement 

should indicate the potential of a given community to fix nitrogen at any point in time, 

while the second should indicate the longer-term trends in the nitrogen fixation rate at a 

site.

14



5.2. ARA

Perhaps the most commonly used technique to measure nitrogenase activity in the field is 

the Acetylene Reduction Assay (ARA) (Paerl 1998). The technique is possible because 

nitrogenase will reduce the triple bond in acetylene (producing ethylene) preferentially 

over dinitrogen. Acetylene and ethylene are easily separated by gas chromatography, and 

because it has been determined that acetylene will be preferentially reduced over nitrogen 

at a set ratio (4:1) (Crawford et al. 2000), estimates of the rate of nitrogen fixation can be 

made (Stewart et al. 1967; Burris 1974; Bergerson 1980). The ARA is considered a rapid, 

inexpensive and extremely sensitive technique (Shearer and Kohl 1986).

5.3. Natural isotopes

is the dominant form of nitrogen found in nature. The addition of a single neutron to 

the nucleus of the nitrogen atom produces the isotope. The isotope is less favored 

by kinetics resulting in only 0.37% of total nitrogen found in this form, while 

represents 99.63% of the total nitrogen pool (Mook and de Vries 1999). The extremely 

stable ratio of in the large atmospheric reservoir of Nz lends itself well as a

reference value. As such the atmospheric value has been designated as 0%c (note that the 

ratio of is expressed as a thousandth). As nitrogen cycles through soil,

vegetation, and microbial biomass, slight fractionations of the isotopes occur. With each 

biological transformation, discrimination against the heavier isotope causes to be less
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abundant in the new pool. This leads to a pattern of and abundance in terrestrial 

ecosystems, where vegetation is depleted in and soil and litter are enriched in 

compared to the atmospheric signature (Nadelhoffer and Fry 1994). Typical values for 

from different nitrogen pools are shown in Figure 1. The symbol represents a 

change in ratio of above or below the atmospheric value.

Figure 1 depicts variation in the values for each nitrogen pool. As nitrogen becomes 

more limiting to plant growth plants will quantitatively extract all nitrogen from the soil, 

resulting in little or no discrimination against the heavier nitrogen isotope (Nadelhoffer 

and Fry 1994). However, if N-competition among soil organisms is great (as is often the 

case in natural systems), considerable partitioning of the N-pool may occur. Patterns in 

the ^^N content of vegetation can provide insights to these interactions. For instance, 

ô^^N content of arctic plants is thought to be indicative of plant-mycorrhizal interactions 

(Robbie et al. 2000) and provides some evidence that different mycorrhizal-types access 

different sources of soil nitrogen (Michelsen et al. 1996). Despite large variation in the N 

concentrations of new, mature and senescent foliage, seasonal fluctuations in the ô^^N 

value were found to be small for most species (one exception was Aspen growing at 

nutrient rich sites) (Kielland et al. 1998). This finding provides some confidence in the 

value of ^^N as an integrator of plant-nitrogen relations (Kielland et al. 1998), at least in 

N-limited high arctic sites, suggesting that ô^^N values may be a useful indicator the 

long-term trends in nitrogen contributions from diazotrophs as well.
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Figure i. A survey of the values of nitrogen containing compounds in nature. The
5 N values are given relative to the isotopic composition of atmospheric N 2 (0%o). (from: 
Mook and de Vries 1999).

6.1. Studies of community response to simulated climate change

In the future, arctic ecosystems are predicted to be less nitrogen limited than they are at 

present (Shaver et al. 1992, Chapin and Bledsoe 1992b). A combination of elevated CO2 , 

increased air and soil temperatures, and increased depth of thaw in the permafrost are 

thought to be the major factors that will increase nitrogen supply, through faster recycling 

of the soil N pool (Chapin and Bledsoe 1992b). To assess the impact of climate change 

on terrestrial arctic ecosystems researchers have employed a variety of tools to simulate
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the physical and chemical effects of climate change. Two such tools arc the warming of 

air and soil (plant microclimate) and the addition of soluble nutrients.

Open Top Chambers (OTCs) are commonly used to simulate warming of soils and air 

(Marion 1997; Arft et al. 1999). OTCs are hexagonal structures with walls of transparent 

polycarbonate or fiberglass that passively warm the enclosed microenvironment (Marion 

et al. 1997). Detailed study of the structures in the field has shown that the mean daily 

near-surface air temperature and soil temperatures increased by 1.2°C to 1.8°C while 

unwanted side-effects such as altered light, moisture, and gas exchange are minimized 

(Marion et al. 1997). Water-soluble commercial fertilizer has been used to increase 

inorganic nutrient supply to tundra communities (Haag 1974; Chapin et al. 1975, 1986; 

Henry et al. 1986). In all of these studies plant growth and/or vigor was the response 

variable of interest.

Some key findings from experiments where tundra plant communities were treated with 

warming include the observation that air warming alone had no effect on plant biomass. 

This result was interpreted to mean that nutrient limitation is a stronger constraint on 

tundra plant biomass than is temperature (Shaver et al. 1992). Subsequently, when soil 

temperature was increased, nutrient availability increased in unfertilized plots and plant 

nutrient uptake and growth followed this trend (Shaver et al. 1992). The authors 

hypothesize that the release of plants from nitrogen limitation, due to increased microbial 

mineralization of nitrogen with warmer soils, accounted for the increase in plant biomass. 

Evidence for this hypothesis was supplied by the application of greenhouses to four
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Swedish tundra soils (Schmidt et al. 2002). Here, warming was found to increase nutrient 

mineralization rates but, the increased nutrient supply was only immobilized into 

microbial biomass when competition with plant roots was excluded (Schmidt et al. 2002).

Increased mineralization rates with warming have been reported by many authors 

(Chapin and Bloom 1976, Chapin et al. 1995, Hartley et al. 1999, Rues s et al. 1999, 

Schmidt et al. 2002). In a study of a heath and a fellfield site in Swedish Lapland, 

warming caused increased densities of bacterial and fungal- feeding nematodes and an 

associated increase in microbial activity, and nutrient mineralization (Ruess et al. 1999). 

Increased rate of mineralization may be a result of increased activity of soil mesofauna. 

Alternatively, another mechanism suggested for this change is that the fraction of the 

microbial population that is favored by higher temperatures may have the ability to 

metabolize a range of substrates unavailable to microbes at lower temperatures (Zogg et 

al. 1997).

Nutrient (NPK) amendments have been shown to change plant species composition in 

arctic tundra communities. Henry et al. (1986) showed that a single addition of 20:20:20 

fertilizer at the beginning of three growing seasons resulted in an increased dominance of 

forbs and graminoids over woody species in a three-year period. Similarly, when N- 

fertilizer was applied at a much higher rate to tussock tundra vegetation it was found that 

acquisition of added N was specific to plant functional groups. N-accumulation was 

greatest in mosses and least pronounced in evergreen shrubs (Chapin et al. 1995). In both 

studies the authors concluded that sustained increases in nutrient availability would
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change the plant-species composition of the tundra communities they studied (Henry et 

al. 1986, Chapin et al. 1995).

In each of the studies examined, the increased nutrient content of soils, whether directly 

applied or achieved by microclimate warming, influenced the vigor and abundance or the 

activity of the organisms in question. These results indicate that climate change may have 

significant effects on the structure and activity of future arctic ecosystems. Simulated 

climate change may have similar impacts on communities of nitrogen fixing organisms, 

and changes in activity or community structure may be observed under experimental 

conditions.
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2. W il l  c l im a t e  c h a n g e  a l t e r  a r c t ic  n it r o g e n  b u d g e t s ? Im p a c t s  o f

WARMING AND FERTILIZATION ON NITROGEN FIXING MICROBIAL COMMUNITIES AT

A l e x a n d r a  F io r d , E l l e s m e r e  I s l a n d , N u n a v u t

INTRODUCTION

Temperature increase at arctic latitudes as a result of climate change is predicted to be 2- 

5°C over the next century (Houghton et al. 1995, 1996) and will be far greater than the 

global mean change (Boer et al. 1990). In the past, climate transitions have led to a 

disproportionate response by arctic communities, suggesting that present day ecosystems 

are especially vulnerable to future climate change (Warrick et al. 1986). Arctic 

ecosystems are considered sensitive indicators of anticipated larger and slower global 

responses to climate change (Shaver et al. 1992).

Low temperature limits decomposition and subsequent N-mineralization in many arctic 

ecosystems and consequently plant production is often N-limited (Ulrich and Gesper 

1978; Shaver and Chapin 1980, 1986, Chapin et al. 1986). In the future, higher rates of 

nutrient mineralization and an increased depth of thaw are likely to relieve N-limitation 

of plants in the short-term (Naddlehoffer et al. 1992, Shaver et al. 1992). Ultimately 

though, arctic plant production is dependent on the input of new N. Nitrogen fixation is 

the primary source of new N to terrestrial arctic ecosystems and variation in its input may 

be a major regulator of ecosystem productivity in the long term (Chapin and Bledsoe 

1992b).
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It has been predicted that warmer temperatures will increase arctic nitrogen fixation rates 

by a factor of 1.5-2 (Chapin and Bledsoe 1992a). Increased temperature is expected to 

induce the strongest direct change in N-fixation rates by increasing all metabolic 

processes in soil microorganisms, although increased moisture may be important for 

certain key photoautotrophic diazotrophs (particularly cyanobacteria). Increases in the 

productivity of photosynthetic nitrogen fixers due to higher atmospheric CO2 

concentrations will also be important in securing this increase (Chapin and Bledsoe 

1992a). If these predictions prove true, future arctic plant communities may enjoy a 

greater N-supply allowing for greater sequestration of atmospheric CO2  in plant biomass 

and a down-regulation of the CO2 induced greenhouse effect. Alternatively, if climate 

warming does not result in higher rates of N-fixation and an increased supply of N, plant 

productivity will be tightly constrained by the mineralization of organic N in soils.

Extensive research effort throughout the circumpolar arctic has been devoted to the study 

terrestrial ecosystems response to climate warming (see Chapin et al. 1995, Arft et al. 

1999). A principal finding of these studies has been that increased nutrient content of 

soils, whether achieved by direct application of nutrients or by microclimate warming, 

influenced the vigor and abundance of plants and ultimately plant community 

composition (Henry et al. 1986, Shaver et al. 1992, Chapin et al. 1995). However, the 

response variable of interest in these studies has often been plant growth and 

reproduction and relatively little is known about the subsurface ecosystem. Specifically, 

it is unknown if, or how, the nitrogen-fixing (diazotroph) community changed in these 

studies. Given the importance of diazotrophs to the long-term productivity of these sites.
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this knowledge would greatly improve our ability to predict the fate of N-limited arctic 

plant communities.

The purpose of this study was to investigate the structure and activity of diazotroph 

communities under conditions of simulated climate change. Our null hypothesis was that 

warming or fertilization would not alter diazotroph communities or N fixation rates. We 

expected that warming would relieve the N-limitation of arctic plants partly through 

increases in nitrogen fixation rates and/or changing the composition of diazotroph 

communities. We also assessed the relative dependence of arctic plants on nitrogenase 

derived N as a function of warming.

METHODS 

Site, soils, experimental design

The study site selected lies in a glacial lowland adjacent to Alexandra Fiord, Ellesmere 

Island, Canada (78° 53' N, 75° 55' W). The dominant landform is an outwash plain and 

the vegetation type is characterized as dwarf-shrub cushion-plant, while the most 

common soil type is characterized as an Orthic Static Cryosol (Muc et al. 1994). Small 

hummocks occur through much of the site and the active layer is approximately 35 cm in 

depth. A fluctuating water table produces mottled mineral soils under a layer of organic 

matter 5-10 cm thick, organic matter is often mixed into mineral soil. A second soil type,
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a Gleysolic Static Cryosol (Muc et al. 1994), occurs locally along the south western 

margin of the site boardering a drainage channel. Here larger diameter organic 

hummocks occur which are surrounded by water channels, eroded to the mineral 

substratum. Table 1 provides physical and chemical data for these two soil types. All data 

in Table 1 is from Muc et al. (1994). Dominant plants at the site consist of perennial 

woody species notably: Salix arctica, Cassiope tetragona and Dryas integrifolia. 

Herbaceous species include Eriophorum angustifolium, Carex stans, and Carex 

membranacea.

Table 1: Physical and chemical data for the two dominant soil forms at the study site. All

Soil Horizon pH Organic Total N Available Soil texture
(depth) matter (g/kg) P Sand Silt Clay

(cm) (%) (ppm) (%) (%) (%)
Orthic LF 5.1 30 0.018 1 71 17 1 2

Static (6 -0 )
Cryosol

Bm 5.3 1.5 0.006 1 2 84 1 15
(0 -8 )

C 5.4 1.7 0.007 2 6 8 16 16
(8-35)

Gleysolic Om 4.9 29 0 . 0 1 1 1 67 18 15
Static (8 - 1 0 )

Cryosol
Cg

(0-50)
5.1 4.0 0 . 0 0 1 1 7 67 17 16

Cz No No No No No No No
(50+) data data data data data data data

* Total N was determined by micro-Kjeldahl method and extractahle P was determined 
by weak acid extraction (see Muc et al. 1994).

In 1995, 16 transparent fibreglass Open Top Chambers (OTCs) approximately 1 m in 

diameter, and 16, 1 m^ control plots were placed at random locations at the tundra site. In 

2000, 8  controls and 8  OTCs were randomly selected for fertilization treatments.
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Fertilization treatments consisted of a single 5 g m'^ addition of 20N: 2 OP2 O5 : 2 OK2 O 

water-soluble fertilizer applied in early June 2000. This was repeated in 2001. Nitrogen 

was present as ammonium nitrate (NH4 NO 3 ). Unfertilized plots were treated with a 

volume of water equal to that used to dissolve the fertilizer. Soil samples were collected 

from 8  OTC and 8  control plots in 2001, remaining plots were sampled in 2002. This 

experiment will be referred to as the “OTC experiment”.

In 2002, a second experiment was established to investigate the temporal effects of 

fertilization on nitrogen fixation and nifR  gene community structure. Three 1 m^ 

fertilization plots and three control plots were established adjacent to the OTC site. The 

fertilization plots were treated with a single 5 g m'^ addition of 20N: 2 OP2 O5 : 2 OK2 O 

water-soluble fertilizer applied on the 28* of June, 2002. This will be referred to as the 

“Temporal fertilization experiment”. The temporal fertilization experiment was sampled 

twice during the summer of 2002, in conjunction with the OTC experiment.

To address potential shifts in diazotroph communities due to repeated sampling, a 

disturbance experiment was also established in 2002. Three replicate plots were 

established for each of four levels of disturbance. On July 15*, 2002 the first 2 treatments 

were left in a pristine state, three 225 cm^ soil plugs were removed from the third 

treatment, while nine 225 cm^ soil plugs were removed from treatment 4 (all soil plugs 

were discarded). Two weeks post-disturbance on the 3U' of July, 2002, three 225 cm^ soil 

samples were removed from treatments 2 (pristine), 3 (3 samples removed), and 4 (9 

samples removed), sealed in air tight bags, and frozen for subsequent DNA analysis.
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Thus, after the first sampling treatment 1 was pristine, treatment 2 had 3 samples 

removed, treatment 3 had 6  samples removed and treatment 4 had 12 samples removed. 

Finally on August 7*, 23 days after the initial disturbance and 7 days after the second 

disturbance (first sampling date), three 225cm^ soil samples were removed from all 

disturbance plots and stored as above. This experiment will be referred to as the 

“Disturbance experiment”.

Acetylene Reduction Assays

Acetylene reduction assays (ARA) were used to estimate nitrogen fixation rates in 

treatment and control plots of the OTC and Temporal Fertilization experiments during the 

summer of 2002. In order to minimize the impacts of repeated samplings, 3 soil samples 

were randomly selected for collection in early summer (June 28 to July 5) and 6  soil 

samples were harvested from treatment plots in peak summer (July 23 to August 3). Two 

hundred and twenty-five cubic centimeter soil samples were weighed and placed on glass 

plates and covered with glass cuvettes fitted with rubber septa and a Vaeugrease'^'’̂  seal. 

Before sealing the cuvette, soil samples were moistened with creek water from a spray 

bottle to prevent desiccation during incubations. Acetylene gas was generated on-site 

from CaCi and water and injected into cuvettes to comprise 1 0 % of the total headspace 

by volume. Prior to the first sampling period, the length of incubation time required to 

detect ethylene in samples was found to be about 30 hours, and ethylene peaks of 

repeatable size were obtained after 35 hours. During the incubations, headspace gas was
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sampled twice, after approximately 45 and 60 hours, by puncturing the rubber septa with 

a two-way needle and removal to a 2 ml VacutainerTM. Twenty-four soil samples in glass 

incubators were assayed per sampling period. Incubators were kept on a wooden table top 

painted white, and surrounded with ice and snow in sealed plastic bags, to minimize the 

thermal energy gained by the incubators. On sunny days the incubators were also covered 

in white shade cloth for the duration of the incubation. Mean incubator temperature was 

8.3°C and ranged from 5°C to 14°C through out the sampling season.

The ratio of acetylene to ethylene in gas samples was measured in the field with a 

portable gas chromatograph (SRI 8610A, Wennick Scientific Corporation) fitted with a 

Porapak column and a flame ionization detector. Hydrogen was used as the carrier gas 

and held at a constant pressure of 25 psi. During each incubation period, point 

measurements of temperature were taken within a control incubator (sealed cuvette with 

soil sample but no acetylene) with a hand-held digital thermometer fitter with copper- 

constantan thermocouples. These were used to correct the volume of acetylene for 

incubator temperature.

Due to a technical problem, no ambient air temperature data were available for Alexandra 

Fiord during the entire sampling period. In order to correct ARA data for temperature 

differences among sampling periods, hourly mean temperatures at the Environment 

Canada weather station at Eureka were used. Eureka is also a sea level site located 

approximately 100 km east of Alexandra Fiord. Excellent correlation (p=00000) was 

found between hourly mean temperatures at Alexandra Fiord and Eureka weather station
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in July and August 2001. ARA data in 2002 was corrected for the mean temperature 

difference among sampling periods using Eureka temperature data. The mean ambient air 

temperature at Eureka during all incubation periods was 5.3°C. ARA rates that were 

determined for incubation periods that deviated from the mean ambient air temperature 

were corrected to this temperature using a Qio = 5.6 (Stutz and Bliss 1975, Henry and 

Svoboda 1986). The conversion factor for acetylene reduction to nitrogen fixation used 

was 4 (Jensen and Cox 1983, Liengen 1999, Crawford et al. 2000). After incubation, all 

soil samples were placed in sealed plastic bags and frozen for further use. Nitrogen 

fixation data were analyzed with a General Linear Model ANOVA that allowed for the 

effects of categorical (OTC and nutrient amendments) and continuous (moisture content, 

soil %N and %C) variables to be analyzed simultaneously. All ANOVAs were performed 

using STATISTIC A version 6.0 (StatSoft Inc. 2002).

DNA extraction and PCR amplification

A 1 g sub-sample was removed from each soil sample collected for ARA analysis and 

allowed to thaw at room temperature in the lab. DNA was extracted and purified from 

these soils using a commercial kit according to the manufacturer’s directions (MoBio 

UltraClean Soil DNA isolation kit). Bulk DNA was kept frozen at -20°C. A half-nested 

polymerase chain reaction (PCR) protocol was used to amplify a 365 bp fragment of the 

nifH gene from a diluted extract. The primary amplification employed the primers Nh21F 

(5’GCTWTYTAYGGNAARGG) and WidNhR (5’ GCRTAIABNGCCATCATYTC, (see
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Widmer et al. 1999)). Both primers were synthesized by Invitrogen. The half-nested 

seeondary amplifieations employed dye-labeled primers (IDT Teehnologies). The 

forward primer, Cy5Nh21F, had the same nucleotide sequence as the Nh21F primer 

above, while the reverse primer, Cy55Nh428R (5' Cy5.5-CCRCCRCANACMACGTC) 

was similar in sequence to one developed by Widmer et al. (1999) with a few 

substitutions to optimize amplification efficiency. PCR cocktails consisted of genomic 

DNA (approximately 100 ng), 0.2 mM dNTPs, 0.4 pM primers, lOX PCR Buffer (Life 

Teehnologies), 2 mM MgCL, and 0.72 U of Platinum Taq DNA polymerase (Life 

Technologies) in a final volume of 30 pi. PCRs were performed with a single 

thermoeycler program consisting of an initial denaturing temperature of 94°C for 2 

minutes and 10 seconds followed by 35 cycles of: denaturing at 94°C for 45 s, annealing 

at 53°C for 45 s, and extension at 72°C for 45 s. A final extension period of 3 minutes at 

72°C completed the program. A PTC-100 Programmable Thermal Controller (MJ 

Research Inc.) was used for all amplifieations.

T-RFLP analysis

Endonuclease digests were performed on 8 pl aliquots of PCR product with the enzymes 

Taql and Hhal (Invitogen). In silico assays were performed on nifR  genes using all of the 

restriction endonucleases available from the manufacturer Invitrogen. The enzymes Taql 

and Hhal were complimentary; Taql has a GC-rieh recognition sequence (G^CG^C), 

while Hhal has an AT-rich recognition sequence (T^CG^A) and both were high frequency
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cutters. Reactions were incubated overnight at temperatures optimal for enzyme function 

(65°C and 37°C respectively). Restriction products were kept frozen at -20°C until 

analyzed. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis was 

used to generate unique ni/H gene community profiles for each soil sample. NifR  

restriction products were denatured at 80°C in formamide and mn on vertical 

polyacrylamide gels for 45 minutes on OpenGene DNA sequencers (Bayer/Visihle 

Genetics). Dye-laheled-oligonucleotide markers of 101, 200, and 351 hase pairs were 

used as internal standards. All resulting T-RFLP profiles were analyzed manually using 

GeneOhjects 3.1 software (Visible Genetics). NifR  genotypes were manually binned by 

fragment size and the frequency of each genotype in soil samples from replicate 

treatment plots was determined.

Nonmetric Multidimensional Scaling (NMS) was chosen to visualize treatment plots in 

genotype-space. NMS (Mather 1976; Kruskal 1964) is an ordination technique that uses 

an iterative approach to position n entities on k dimensions that minimizes the stress of 

the k-dimensional configuration (McCune and Grace 2002). All ordinations were run 

using PC-ORD version 4.0 in the ‘auto-pilot’ mode which used random starting 

configurations and assessed dimensionality by minimizing stress. Sorensen distance was 

selected as the distanee measure for each initial matrix (McCune and Mefford 1999). 

Where necessary, Beals smoothing was applied to nifR  frequency matrices to reduce 

noise and enhance the strongest patterns in the dataset (Beals 1984, McCune 1994).
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Elemental analysis and moisture content

Soil samples used for ARA and DNA extraction were oven dried at 90°C for 24 hours 

and reweighed as a measure of moisture content. A small amount of each sample was 

reserved for elemental analysis. These samples were mechanically ground in a soil 

grinder and analyzed for carbon and nitrogen concentration by elemental analysis using 

an AC 1500 Fisions NC autoanalyzer. Differences in N and C concentrations among 

treatments were analyzed with one way ANOVA performed using STATISTICA version 

6.0 (StatSoft Inc. 2002).

^̂ N analysis of plants and soils

In August of 2002, leaves and stems of Salix arctica, and Dryas integrifolia were 

sampled from each of the 16 treatment and control plots from the OTC experiment. These 

species were selected because while are both long-lived, ectomycorrhizal, woody, shrubs 

that were present in every treatment plot, they differ in that Dryas integrifolia is also 

actinorhizal and may access N derived from the atmosphere. Plant materials were sealed 

in air-tight plastic bags and frozen for transport to the laboratory. Plant samples were 

transferred to paper bags and dried at 90°C for 24 hours, then ground with a mortar and 

pestle. Small amounts of oven-dried and ground soil samples were also allocated for 

isotope analysis. Plant and soil samples were analyzed for '^N with a Finnigan MAT 252 

mass spectrometer. The significance of OTC, nutrient amendment and species on the
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value of plant material was tested by ANOVA using STATISTICA version 6.0 

(StatSoft Inc. 2002).

RESULTS 

Elemental analysis of plants and soils

Elemental analysis of total carbon and nitrogen revealed that the 5 g m'^ additions of 

20N: 2 OP2O5 : 2 OK2 O fertilizer to the OTC experiment in 2000 and 2001 had no 

significant effect on total soil N or C by mid-summer in 2001 or in 2002. Soils had a 

mean nitrogen concentration of 0.014 ± 0.001 g kg'^ and a C: N of 18.4 ± 0.3 (S.E.). In 

2002, the fertilization treatments from the temporal fertilization experiment had the 

highest N-concentration, however these were still not significantly different from those of 

the control plots. Table 2 depicts mean soil N and C concentrations and C: N ratios for 

the OTC and temporal fertilization experiments from the second sampling period. 

Different letters denote significant differences at alpha = 0.05, using a Tukey’s post hoe 

test.
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Table 2: Mean soil N and C concentrations and C: N ratios for OTC and Temporal

Experiment Treatment N g kg^ C g kg^ C:N ratio
OTC OTC and 

fertilization 
(2000, 2001)

0.01065^ 0.2023" 18.83"

OTC OTC 0.01808”’" 0.3603” 18.83"
OTC Fertilization 

(2000, 2001)
0.01167" 0.2085" 18.69"

OTC and 
Temporal 

fertilization

Control 0.01612"’" 0.2668" 16.68”

Temporal
fertilization

Fertilization 
(2002 only)

0.1889”'" 0.2464" 15.61”

* Different letters denote significant differences at alpha = 0.05, as determined with 
Tukey’s Post hoc test

Warming caused no significant change in the N-concentration of soils but resulted in an 

increase the C-concentration of soils treated with OTCs only (Table 2). However, this 

increased C did not correspond to higher C: N ratios in the soil of OTC plots when 

compared to OTC and fertilization plots or fertilization plots (Table 2). The C: N ratios of 

all treatment plots from the OTC experiment (OTC fertilization, OTC, and fertilization 

treatments) were significantly higher than those of the control plots or the temporal 

fertilization plots (Table 2).

Elemental analysis of plant materials in 2002 indicates a strong species bias for nitrogen 

concentration. The non-actinorhizal species (Salix arctica), had significantly higher 

(p<0.0001) nitrogen concentration than did the actinorhizal species (Dryas integrifolia) in 

all treatments. Warming caused a significant decrease (p=0.029) in the nitrogen 

concentration of D. integrifolia (Figure 1), but had no effect on the non-actinorhizal 

species.

41



0.15

O) 0.13 

D)

CO
0.12

g
c<DO
C

8
0.11

z
J  0.10
o

LL

0.09

0.08

Treatments:
0- Control 0.07

1- OTC 0 1 

Species: Dr^as

0 1
□ Mean 

±0.95*SE
Species: Salix

F igure 1: Foliar N content of Salix arctica and Dryas integrifolia from warmed and control plots

S. arctica showed a weak trend (non-significant at alpha=0.05) toward higher plant 

nitrogen concentrations with fertilization (Figure 2), while the N-concentration of D. 

integrifolia was unchanged with fertilization.
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Figure 2: Foliar N content of Satix arctica and Dryas integrifolia with and without 
fertilizer amendments

Acetylene Reduction Assays

No differences in fixation rates were found due to warming or to longer-term 

fertilizations in the OTC experiment. Fixation rates were spatially variable, with 

replicates from some sampling plots showing no activity after 60 hours of incubation. 

The mean rate of N-fixation was found to be 3.5 X 10'^ ± 5.2 X 10"̂  mg N-m'^-hr'^ over 

the summer. Short-term fertilization had no immediate effect on fixation rates but caused 

a significant increase in fixation (p=0.00000) by the second sampling period (19-35 days 

post-fertilization). Mean rates increased to 0.136 ± 3.4 X 10'^ N-m'^-hr'\ with the 

addition of 20N: 2 OP2 O5 : 2 OK2 O fertilizer in 2002 (Figure 3).
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Figure 3: Nitrogen fixation rates for OTC experiinent and temporal fertilization experiment 
for the second sampling period (July 23- August 3), 2002

T-RFLP analysis

NMS plots of sampling units in genotype-space revealed that n//H-gene communities 

were most strongly structured by warming late in the 2002 growing season. Figure 4 

shows soils that received the OTC-treatments grouped in the top, right-hand corner of the 

plot while fertilized and control soils formed a looser group on the bottom, left-hand-side. 

Sixty-five iterations produced a 3-dimensional solution with a final stress of 9.43 and a 

final instability of 0.00009. Axis 1 and 2 shown here, account for 6 and 49% of the total
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variance in the dataset (cumulative r = .54), while the third axis accounted for 18 % 

(total r^= .730). An overlay of nitrogen fixation rates on the same NMS ordination 

(Figure 5) shows that higher rates of N-fixation were not assoeiated with nifU 

communities from any partieular treatment.
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^  1 OTC fertilization 
A 2 OTC 
^  3  Fertilzotion 
A 4 Controi

Axis l(d=.06)

Figure 4: NMS plot of treatment and control plots in niJHgenotype 
space. T-RFLP data collected during the second sampling period (July 23- 
August 3) 2002.
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Figure 5: Overlay of nitrogen fixation rates (N mg hr ‘) on an NMS 
plot of treatments in genotype space, data for second sampling period 
(July 2 3-August 3) 2002.

Earlier in 2002, no strong relationship among diazotroph communities was found to be 

due to warming. A NMS plot of sampling units in genotype-space (Figure 6) from the 

first sampling period (June 28- July 5) revealed no clear separation of nifii communities 

from warmed or control treatments. Axis 1, which accounts for 45% of the variation in 

this 2-dimensional solution, produced after 82 iterations, indicates a weak trend of 

warmed sampling units on the lower half of the axis, while un-warmed plots appear 

toward the upper half. No trend exists along axis 2, which accounts for 37% of the 

variance in the dataset (cumulative r  ̂= .82). These results must be interpreted with 

caution as the final stress and instability of this ordination were both rather high (13.79 

and 0.0001, respectively).
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Figure 6: NMS plot of treatment and control plots in nifH genotype space. 
T-RFLP data collected during the first sampling period (June 28-July 5) 2002.

Fertilization treatments from the temporal fertilization experiment were not associated 

with detectable changes in diazotroph communities in 2002. Short term fertilization 

treatments had nifH gene profiles similar to those from control soils. Figure 7 shows the 

second and third axis (40% and 33% of the variation, respectively) of a 3-dimensional 

solution (cumulative r  ̂= .805) produced after 37 iterations, with a final stress of 8.69 and 

a final instability of 0.00008. Longer-term fertilization plots had diverse nifH 

communities. Two of four long-term-fertilization plots (c l6 and c5) were similar to 

control soils while two plots (c2 and c l2) ranked very low on axis 2 (Figure 7). These 

two sampling plots grouped more closely with soils that received OTC-treatment than 

with control soils when all sampling units were combined (data not shown).
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Figure 7: NMS ordination of fertilized and control plots in nifH genotype space. 
T-RFLP data collected during the second sampling period (July 16-August 3) 2002.

In 2001, warming and fertilization treatments were associated with different patterns of 

nifH-gene community composition. Figure 8 is a plot of a 2-dimensional NMS 

ordination, resulting from 46 iterations. The solution has a final stress of 11.5, and a final 

instability of 0.00006. Axis 1 describes only 8.9% of the variance in the data while axis 2 

accounts for 78.2 (cumulative r^= .871). In order to reach a stable NMS solution it was 

necessary to omit one control plot that acted as a strong outlier. Figure 8 shows warmed 

plots forming only a loose group in the mid-range of axis 2 and the middle and upper 

range on axis 1. Fertilized plots without warming occur very low on axis 2, but 

throughout axis 1. Control plots tend toward the upper portion of axis 2 but are diverse 

and do not form a coherent group. In contrast to the nifH profiles from 2002, the 2001 

control plots are distinct from the soils that received fertilization without warming.
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Figure 8: NMS plot of treatment and control plots in nifH genotype 
space. T-RFLP data collected in 2001.

No acceptable NMS solution was achieved for the ordination nifH genotypes from 

disturbed plots with those from OTC and fertilization plots making it diffieult to assess 

the similarity of diazotroph eommunities from these treatments. However, 

Correspondenee Analysis (CA) of the disturbance treatments alone revealed no clear 

grouping of nifH gene communities according to the level of disturbanee they reeeived 

(Figure 9). Furthermore CA ordination of nifH genotypes from disturbed plots with those 

from OTC and fertilization plots revealed no detectable patterns at all (data not shown).
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Figure 9: Correspondence Analysis generated plot for disturbance experiment

Analysis

analysis of foliage from Salix and Dryas plants in 2002 revealed a significant 

decline in delta values with warming treatments (p=0.01), while fertilization 

treatments did not significantly alter the values. Additionally, Dryas integrifolia was 

found to be more depleted in the heavier isotope than Salix arctica. Figure 10 shows 

values for S. arctica and D. integrifolia from warmed and control plots. Good correlation 

was found between foliar %N and the ô'^N values of these species (adjusted r^=.60) 

(Figure 11).
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Figure 10: Foliar delta values for Dryas integrifolia and Salix arctica with OTC treatment
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Figure 11: Linear relationship for foliar %N and delta values in S. arctica and D. integrifolia
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No differences were found among soil values from all treatments. The mean 

value for soils (+0.15) was close to the atmospheric value, and similar to that of the 

fertilizer applied (+0.40).

DISCUSSION 

Methodological considerations

Elemental analysis of total nitrogen in control plots revealed no change in N 

concentrations of soils due to the fertilization treatments. Control plots had a nitrogen 

concentration of 178.3 ±15.4 g m'^. The amount of N added with the fertilization 

treatment was approximately 1.7 g m'^year"^ (3.4 g in two years) an order of 

magnitude less than the margin of error. Thus, we lacked the ability to detect changes in 

total soil N that were due to our fertilization treatments.

We were unable to detect changes in fixation rates due to treatments in the OTC 

experiment. In this experiment two treatments were applied; warming and fertilization. 

The lack of response of N-fixation to fertilization treatments may be explained by the 

lack of detectable change in soil N with nutrient amendment. Higher rates of fertilizer 

application may have been required to cause changes in N-fixation. Other studies have 

found that high rates of fertilization (partieularly ammonium addition) suppresses N-
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fixation in the field (Krupka 1984, Okoronkwo and Van Hove 1987, Liengen 1999, 

Piceno and Lovell 2000), while lower rates of nutrient amendment tend to increase N- 

fixation in some systems (Bagwell and Lovell 2000, Piceno and Lovell 2000).

The lack of response to warming is of particular interest. Warming is generally expected 

to increase the rate N-fixation in the field due to the direct effect of temperature on 

microbial metabolism (Chapin et al. 1992a). However, some evidence exists to suggest 

that N-fixation by arctic diazotrophs may be subject to acclimation. For example, after 

soil cores from a 5a/â-moss-hummock community were incubated at 15°C for two weeks 

it was found that optimal rates of N-fixation occurred at this temperature (Chapin et al.

1991). Further, it was found that the temperature optimum for N-fixation in field-cores 

from Truelove Lowland approximated maximum surface temperatures measured in the 

study (Chapin et al. 1991). If a complete picture of diazotroph activity in response to 

warming is to be gained from field studies of N-fixation it may be necessary to consider 

the possibility of diazotroph acclimation.

In the present study, incubators were kept at a relatively constant temperature. In contrast, 

temperature data collected inside and outside Open Top Chambers for a two-week period 

prior to the 2002 sampling season revealed one maximum daily temperature of 20.5°C 

within an OTC while the corresponding control plot had a maximum temp of only 14.5°C 

(both measured 15cm above the surface). If it is true that arctic diazotrophs acclimate to 

the maximum daily temperature they are exposed to, we would expect diazotrophs from 

OTC treatments to have higher temperature optima for N-fixation than those from control
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plots. Figure 11 is an idealized temperature response curve (based on data from Liengen

1999) for N-fixation by diazotrophs from warmed and control soils. From Figure 11 it 

becomes clear that the experimental conditions provided temperatures closer to the 

physiological optima of diazotrophs from control plots and we would expect higher 

fixation rates from those samples.

16 -
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5.5TJ
CL

0 2 6 8 10 12 14 16 18 20 22 24 26 284

Temperature (°C) 
-  Tem perature vs ARA Control Soils 

- Tem perature vs ARA OTC soils

Figure 12: Idealized temperature response curves for arctic soil diazotrophs 
acclimated to maximum daily temperatures of 20“C and 24°C
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Acetylene Reduction Assays

As described above, warming had the potential to increase fixation rates (through direct 

effects on diazotroph metabolism) or decrease fixation rates (through acclimation of 

nitrogenase activity to temperature). However, we were unable to detect changes in 

fixation rates due to any treatment in the OTC experiment. Fixation rates measured in this 

study and at many other arctic sites (Table 2) are low when compared to nitrogen fixation 

rates in temperate regions (Lennihan et al. 1994). Moreover, N-fixation rates were 

spatially variable. The spatial variability of arctic N-fixation has been noted by many 

authors (Alexander and Schell 1973, Karagatzides et al. 1985, Henry and Svoboda 1986, 

Chapin et al. 1991), and it has been suggested that N-fixation responds most strongly to 

factors that can vary on a microsite scale (Chapin et al. 1991, Liengen et al. 1999). It is 

possible that the range of microsites that occurred in control plots were inherently as 

variable as the changes that accrued due to the treatments applied.

Microsite differences that have influenced N- fixation in other studies and may apply to 

the present study include (1) microtopography, (2) moisture status, and (3) plant 

community composition. Henry and Svoboda (1988) reported higher rates of N-fixation 

in hollows than in hummocks, where cyanobacteria were more plentiful. They attributed 

this difference to shading of cyanobacteria by dead plant material on hummocks. In 

another study, nitrogen fixation was found to be greater in the depressed centers of 

polygons as compared to the raised rims (Alexander and Schell 1973). Here, the 

difference was attributed to a moisture limitation of fixation on drier polygon rims.
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Additionally, moisture differences between raised or depressed microsites may control 

maximum daily temperatures locally. This may result in diazotrophs from drier- 

microsites that are acclimated to warmer temperatures than water-insulated, depression- 

dwelling diazotrophs. In a study of N-fixation across site types at Sarcpa Lake, highest 

rates were associated with plant communities with high densities of legumes 

(Karagatzides et al. 1985). Although no legumes are found at Alexandra Fiord , spatial 

heterogeneity in the distribution of lichens, D. integrifolia and Nostoc mats in the present 

study may have obscured any differences due to treatments.

Rates of acetylene reduction observed in the OTC experiment were similar to values 

reported for other non-brackish lowlands sites in the Canadian high-arctic (Table 3).

Table 3: Acetylene reduction activity reported for non-brackish, low-land sites in the

Location Site type Acetylene 
Reduced 

(pmol hr'̂ ^

Year of study Reference

Alexandra
Fiord

Wet sedge 
meadow

2.65 (1.3)* 1988 Chapin et al. 
1991

Alexandra
Fiord

Wet sedge 
meadow

6.82 (1.2) 1983 Henry and 
Svoboda 1986

Sarcpa Lake Rocky tundra 7.37 (2.2) 1982 Karagatzides et 
al. 1985

Alexandra
Fiord

Mesic dwarf- 
shrub cushion- 

plant tundra

9.28 (1.4)* 2002 Present study

Truelove
Lowland

iSa/ix-moss
hummocks

14.10(1.8)* 1988 Chapin et al. 
1991

Truelove
Lowland

Herb-moss
hummock

17.39 (6.8)* 1988 Chapin et al. 
1991

* These value have been corrected to 9.6°C (Qio=5.6) to facilitate direct comparison with 
other studies
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In the temporal fertilization experiment a very different trend was observed. During the 

first sampling period (1-7 days post-fertilization) fertilized plots had N-fixation rates near 

those of controls. By the second sampling period (19-35 days post-fertilization) the 

fixation rates in fertilized plots had more than tripled. This indicates that the fertilization 

treatments (1.7 g m'^N) did not provide sufficient nitrogen to suppress fixation at this 

site. In a Spartina salt marsh 16.3 g m'^ additions of N (also as NH4 NO 3 ) were 

insufficient to suppress N-fixation across all treatment plots (Piceno and Lovell 2000). 

Although the amount of N required to suppress fixation may be specific to a site or even 

to a diazotroph community, it is likely that much greater additions of nitrogen were 

required to suppress fixation at Alexandra Fiord.

The significantly greater rates of N-fixation observed during the second sampling period 

suggests that fertilization treatments relieved some limitation to N-fixation in these plots. 

One possibility is that the nutrient amendments relieved P limitation of the diazotroph 

community. Phosphate has a diffusivity in soils that is an order of magnitude lower than 

ammonium and two orders of magnitude lower than nitrate (Paul and Clark 1996). 

Consequently, phosphorus is more strongly retained in soils than nitrogen (Chapin et al. 

1995, Black 1968), and may have been available to soil microorganisms after the added 

N was assimilated into plant biomass. Phosphorus is thought to be a limiting nutrient for 

nitrogen fixation (Gorham et al. 1979) and phosphorus fertilization has been shown to 

cause significant increases in N-fixation in the field (Chapin et al. 1991, Liengen 1999). 

The retention of P by soils after the added N was removed may explain the higher rates of 

N-fixation in fertilized plots several weeks post-fertilization. A second possibility is that

57



nitrogen fixation rates increased in response to increased C-exudation from plant roots. 

When salt-marsh communities were fertilized with NH4 NO 3 N-fixation rates increased 

significantly 2  and 8  weeks post-fertilization; this change was attributed to an increase in 

plant productivity and root exudation in response to fertilization (Piceno and Lovell 

2000). It is also possible that the much greater rate of N-fixation observed in the temporal 

fertilization treatment plots came about through a combination of these two mechanisms.

T-RFLP analysis

Our inability to detect strong patterns in the nifH gene frequency data from disturbance 

plots assured us that nifH community structure was not altered in a predictable fashion by 

sampling during our study. Although altered carbon availability may (in theory) have the 

potential to induce structural change in the diazotroph community, and although plants 

damaged during sampling may have exuded labile carbon into surrounding soil, these do 

not appear to have been major factors that influenced nifH community structure. We 

suggest that changes in the structure of diazotroph populations were induced by the 

intended treatments and not by a sampling artifact.

The NMS ordinations of nifH genotype frequencies from treatment and control plots 

suggest that warming was an important determinant of diazotroph community structure 

(Figure 4). Similarly, compositional changes in microbial communities from a northern 

hardwood forest were reported after incubation at elevated temperatures (Zogg et al.
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1997). In 2002, the study site had been snow-free for less than 2 weeks prior to the first 

sampling period. The similarity of nifH communities from warmed and control plots in 

the first sampling period (June 28-July 2) (Figure 6 ) suggest that an accumulation of 

thermal energy (estimated as degree days) leads to succession in the nifR  community, 

resulting in detectable changes only later in the season. The intermediate influence of 

warming in 2001 (Figure 8 ) is consistent with 2002 results as 2001 samples were taken in 

mid-July between the first and second sampling periods in 2002.

Increased soil temperature may alter diazotroph community structure in several ways. 

Firstly, temperature may have a direct impact on nifU community structure by selecting 

for organisms with higher physiological temperature optima. Change in the lipid 

composition of cellular membranes is believed to be a major strategy for acclimation of 

soil microbes to different temperatures (Paul and Clarke 1996). For example, in 

cyanobateria in pure culture an increase of less than 4°C has been associated with a shift 

in membrane lipid composition from saturated and monounsaturated fatty aeids to 

polyunsaturated fatty acids (Russell and Fukunaga 1990). The synthesis of cell membrane 

components is metabolically expensive, and synthesis of new membrane lipids may place 

sufficient stress on certain members of the diazotroph community in warmed soils to 

affect a change in community composition. A second mechanism by which temperature 

may alter the structure diazotroph communities is through increased mortality from 

grazing by soil fauna. In a study of a heath and a fellfield site in Swedish Lapland, 

warming caused an increase in the density of bacterial and fungal- feeding nematodes 

(Ruess et al. 1999). Increased grazing by soil fauna at higher temperatures may be
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associated with a decline in free-living soil diazotrophs. Another repercussion of 

increased grazing is an accelerated rate of nutrient mineralization. In the same study, 

increased rates of nutrient mineralization were a noted effect of the high rates of grazing 

by nematodes (Ruess et al. 1999). Changes in rates of nutrient mineralization with soil 

warming have been observed in many studies (Chapin and Bloom 1976, Chapin et al. 

1995, Hartley et al. 1999, Ruess et al. 1999, Schmidt et al. 2002). A second mechanism 

suggested for this change was that the fraction of the microbial population that is favored 

by higher temperatures may have the ability to metabolize a range of substrates 

unavailable to microbes at lower temperatures (Zogg et al. 1997).

Despite the significantly higher rates of N-fixation in the short-term fertilization plots in 

the second sampling period of 2 0 0 2 , fertilized nifR  communities were not different from 

those from control plots (Figure 7). This finding is consistent with a fertilization study of 

salt marsh diazotrophs where the authors report detection of every genotype by reverse- 

sample genome probing in each sample, regardless of treatment (Bagwell and Lovell

2000). Similarly, short-term nutrient addition (N and P) caused no detectable change in 

nijH DGGE profiles of Spartina alterniflora rhizoplane diazotrophs, causing the authors 

to conclude that the diazotroph assemblage showed substantial short-term stability to 

environmental change (Piceno and Lovell 2000). However, longer-term fertilizations 

(treatments applied every 2  weeks for 8  weeks) did result in detectable differences in 

DGGE profiles in the same study (Piceno and Lovell 2000).
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It has been hypothesized that the stability of the inorganic nitrogen concentration of soils 

is the primary determinant of nifH gene pool structure (Poly et al. 2001). Although 

diazotroph communities appear to be stable to short term changes in nutrient status 

(Bagwell and Lovell 2000, Piceno and Lovell 2000), longer-term nutrient increases 

appear to bring about compositional change. In the present study, the 5g m^ year' 

'additions of 20N: 2 OP2 O5 : 2 OK2 O fertilizer in 2000 and 2001 generally appear to have 

been within the range of nutrient levels for which diazotroph communities were adapted 

(exceptions will be discussed below). In contrast, OTC treatments resulted in notable 

community change. It is possible that while fertilization treatments were insufficient to 

induce compositional shifts in the diazotroph community, warming with OTCs resulted in 

prolonged alteration of the nutrient regime. This change appears to have been sufficient 

to lead to typical community structures in warmed soils at least late in the growing season 

(late July to early August).

Two details from the NMS ordinations of nifH gene fragments from plots that received 

various fertilization treatments deserve special consideration. Data from 2001 (Figure 8 ) 

shows that fertilized soils grouped low on Axis 2, closer to plots that had received OTC 

treatment than to controls. These plots also had significantly higher %N (p=0.006) and 

%C (p=0.016) than the fertilization treatment plots sampled in 2002. Similarly when the 

long and short-term fertilization treatment were compared (Figure 7), two of four long- 

term-fertilization plots (c l6  and c5) were similar to control soils while two plots (c2 and 

c l2) ranked very low on axis 2. These two sampling plots grouped more closely with 

soils that received OTC-treatment than with control soils when all sampling units were
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combined (data not shown). These findings suggest that the fertilization treatments used 

were heterogeneous in their effects on diazotroph community structure and that a limited 

response to the fertilization treatments may have occurred in some plots. However, our 

data from 2 0 0 2  suggest that if fertilization treatments did alter diazotroph community 

structure within the same year, this alteration was not sustained.

Higher rates of N-fixation were not associated with specific nifii community structures in 

this study (Figure 5). This suggests that the relationship between nijH genotype 

frequency and nitrogenase activity is not simple at this site. Community structure (as 

defined in this study) is a function of both the richness and abundance of n//H genotypes. 

The number of genotypes present in a given system (richness) is generally thought to be a 

function of environmental selection, however, in a recent cross-system comparison it was 

noted that the diversity of nitrogenase genes was not directly related to the degree of N- 

limitation of the system (Zehr et al. 2003). This finding prompted the authors to suggest 

that physical and chemical factors, including the transport of cells between and among 

environments, are also important determinants of gene distributions in natural 

assemblages (Zehr et al. 2003). Once present in a soil, the abundance of a given genotype 

should reflect its ability to compete for limited resources in the ecosystem. However, 

because several diazotrophs are known to carry multiple copies of the nifR  gene (Young

1992) it would perilous to suggest that the fitness of a given diazotroph in an 

environment could be directly implied by the presence or absence of a specific nifti 

genotype. If environmental conditions cause selection against a microorganism, we 

would expect that all of its niftH gene variants would decline at the same rate, but
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problems can arise if diazotrophs with different physiological optima share some but not 

all copies of nifR  genes. Nonetheless, the distribution of N-fixing organisms is non- 

random and can be predicted on the basis of habitat characteristics (Poly et al. 2001, Zehr 

et al. 2003).

Factors that control the presence of genotypes in soils (natural selection, movement of 

cells or DNA) may not be directly related to the expression of nifli genes where they 

occur. In this study, nitrogen fixation rates were spatially variable and may have been 

more strongly controlled by abiotic factors (moisture, temperature, microsite differences 

in C and N availability) than by the potential of the diazotroph community to express 

ni/H genes. In a Spartina salt-marsh, acetylene reduction rates increased in N and N & P 

amended plots 2  weeks post fertilization although no corresponding change in nifii 

community DGGE profiles were observed (Piceno and Lovell 2000). It appears from this 

study and others (Chapin et al. 1991, Liengen et al. 1999), that factors that structure 

diazotroph communities may be different than the factors that control N-fixation. Further, 

it appears that these operate on different timeseales, allowing any given diazotrophie 

community to acclimate to short term environmental perturbation within a limited range.

Elemental analysis of plants and soils

Although we did not have the power necessary to detect changes in soil N due to the 

fertilization treatments applied in this study it is quite possible that none occurred. There
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is increasing evidence to suggest that arctic vegetation competes well with soil microbes 

for added nutrients (Chapin et al. 1995, Schmidt et al. 2002). In this study, some evidence 

suggests that the nitrogen added in nutrient amendment plots was assimilated in plant 

biomass. Salix arctica from fertilized plots had slightly higher nitrogen concentration 

than did plants from unfertilized plots. In another study (Chapin et al. 1995), tussock 

tundra vegetation was found to readily accumulate added nitrogen. After 3 years of 

fertilization, at a rate six-times that used in this study, the total vegetation N-pool 

doubled, acquiring 62% of the added N. Moreover, the response of vegetation was 

specific to functional groups. N-accumulation was greatest in mosses and least 

pronounced in evergreen shrubs. Similarly, Henry et al. (1986) found that fertilization 

increased forb and graminoid growth much more than dwarf shrub growth across 

moisture regimes at Alexandra Fiord. Woody species such as S. arctica are known to 

have relatively slow rates of nutrient uptake (Chapin and Tyron 1982) when compared 

with mosses, forbs, and graminoids. It is possible that much of the 3.4 g m'^ additions of 

N from fertilizer added over a two year period was stored in tissues of plants that were 

not sampled in this study.

The significantly higher C: N ratios of the treatment plots in the OTC experiment suggest 

that OTC and fertilization treatments caused a decline in soil organic matter quality. The 

mechanism for this decline is uncertain, but it likely reflects changes to one or more soil 

proeesses. In the warmed treatments, increased decomposition and subsequent N- 

mineralization may have led to increased N-cycling. This should result in the acquisition 

of more soil N by plants as the number of competitive interactions among plants and soil
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microorganisms increases (Kaye and Hart 1997). Consequently, the remaining soil 

organic matter (alive and dead) would have higher C: N ratios. This hypothesis is 

consistent with the findings of other studies where tundra warming has led to increased N 

acquisition by plants (Chapin et al. 1995, Hartley et al. 1999). In the fertilization 

treatment without warming the explanation for the higher C: N ratios requires an 

additional step. Assimilation of fertilizer into plant biomass and a subsequent increase in 

root exudation of labile C may stimulate a fraction of the microbial community unable to 

mobilize C bound in plant complex organic matter. These microbes (termed copiotrophs 

by Semonov et al. 1999) may be prone to rapid decline as root exudation slows (Semonov 

et al. 1999), and N-mineralized from their biomass may be acquired by plants. This could 

result in the lower soil C: N ratios observed in fertilization treatments. The finding that 

soil C; N ratios decline with fertilization treatment is consistent with results from 

Norwegian spruce forests. In one study, authors report that NH4NO3 fertilization caused a 

decline in microbial biomass N and lower microbial respiration rates (Smolander et al. 

1994). Similarly in a second study, N-fertilization decreased the immobilization of N by 

microbes and increased N-mineralization rates (Priha and Smolander 1995).

The species bias for N-concentration of the two dwarf shrubs may reflect differing life 

history strategies. These two species may co-exist in this N-limited system in part 

because D. integrifolia can tolerate higher C; N ratios and access different N-pools 

(actinorhizal or mycorrhizal symbioses) to meet its N-requirements, while S. arctica is 

the better competitor for inorganic soil N. This is consistent with the observation that S.
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arctica tended to have increased vegetative N-pools with fertilization while D. 

integrifolia did not.

The species specific response to warming also points to differing life-history strategies, 

but results contrast with expectations. Warming was expected to augment N-fixation and 

thus the N-concentration of D. integrifolia. The significant decrease in N-concentration 

with warming suggests a more complex response. One possibility is that warming 

accelerated N-mineralization in soils sufficiently to suppress N-fixation. However, this 

scenario is unlikely given propensity of arctic plants to accumulate available inorganic N. 

The lower foliar N-concentration of D. integrifolia with warming will be addressed in 

more detail below.

The ô^^N value of soils measured in this study were similar to those found at other arctic 

sites (Nadelhoffer et al. 1996, Michelsen et al. 1998) and were unaffected by warming or 

fertilization. Given the similarity of the isotopic signatures of the fertilizer (+0.40) and 

the control soils (+0.15) it is not surprising that fertilization had no effect on the isotopic 

signature of the soils. The unchanged ô^^N signatures of warmed soils suggest that either 

processes that discriminate against the heavy isotope of N were unaffected by 

temperature, or that eaeh altered process was ehanged by the same amount. Soil ô^^N 

values were higher than plants sampled in every treatment plot, and the range of soil ô'^N
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values was smaller than the range of values observed in plants. These findings agree with 

those from other arctic sites (Nadelhoffer et al. 1996, Michelsen et al. 1998, Hobble et al. 

2000).

Plant ô'^N values from Alexandra Fiord were in good agreement with those reported for 

other arctic sites. Salix arctica from control plots was -3.0 % c which is the same value 

reported for this genus growing at Toolik Lake, Alaska (Nadelhoffer et al. 1996) and for 

S. myrsinites from heath tundra in northern Sweden (Michelsen et al. 1998), though 

slightly higher than the value for S. arctica from Greenland (-4 % o) reported in the same 

study. Dryas integrifolia from control plots had a mean ô'^N value of -5.3 % c  which is 

comparable to the -5 %o value reported by Michelsen et al. (1998) for the heath tundra in 

northern Sweden. It is noteworthy that in many study sites where Dryas sp. and Salix sp. 

occur together Dryas is more depleted in ô'^N (the present study, heath tundra in 

Greenland [Michelsen et al. 1998], heath tundra in north Sweden [Michelsen et al.

1996]).

If ô^^N values of plants and soils are to provide insight to the nitrogen nutrition of plants 

at Alexandra Fiord, they must be taken in context with all other evidence. Important 

findings about the nitrogen nutrition of Salix arctica and Dryas integrifolia gathered in 

this study include; (1) in fertilization trials S. arctica accumulates foliar N, while D. 

integrifolia does not; (2) in OTC treatments S. arctica accumulates foliar N, while D. 

integrifolia does not; (3) Salix arctica has greater foliar N-concentration than Dryas 

integrifolia in all treatment and control plots; (4) Salix arctica has less negative foliar
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values than Dryas integrifolia in all treatment and control plots; (5) a linear 

relationship between foliar N concentration and values exists for both species. What 

insight can a synthesis of these observations provide? We will review key findings about 

values and N status of arctic plants and soils and then put forth a hypothesis to 

explain these findings.

Processes in arctic plants and soils that can lead to discrimination against the heavier 

isotope of N include microbially-mediated N-transformations and partitioning of N pools 

among plants (Nadelhoffer et al. 1 996). Fractionation during plant N acquisition is 

generally considered negligible in N-limited arctic systems (Nadelhoffer and Fry 1994). 

Soil N-transformations may lead to differences in the ô'^N status of different N-pools. A 

strong discrimination during the reduction of nitrate to N 2 occurs, with products being - 

14%o to -23%c depleted over substrate NO 3 (Blackmer and Bremner 1 9 7 7 ). Similarly, the 

fractionation that occurs during the oxidation of ammonium to nitrate (nitrification) can 

result in product values being -8%o depleted over reactants in field settings (Feigin 

et al. 1974). If anaerobic conditions result in high rates of denitrification in soils, NO3 

pools may be highly enriched in Conversely, if aerobic conditions dominate and 

nitrification occurs then nitrate pools will be depleted in *^N, while ammonium pools will 

be enriched. As soils are spatially heterogeneous environments, it is possible that all of 

these conditions are met at any point in time. Although the values of ammonia and 

nitrate pools were not measured in this study, others have found that the two pools can 

have very different signatures (Yoneyama 1996 , Nadelhoffer et al. 1996).
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It has been suggested that differences among plant species in values reflect 

differences in the forms of N used (Nadelhoffer et al. 1996, Hogberg 1997). Further, 

forms of N used by plants may be a result of rooting-depth, or mycorrhizal type 

(Nadelhoffer et al. 1996, Michelsen et al. 1998). In arctic soils, ô^^N values generally 

increase with depth, and this has been related to N-pool partitioning among plant 

functional groups (Nadelhoffer et al. 1996). In the present study, both species have 

similar rooting depths and thus rooting depth cannot explain the significant difference in 

^^N concentrations of the two species.

In studies of ô'^N values of vascular plants from arctic sites ^̂ N abundance was found to 

be closely associated with the presence and type of mycorrhizae (Michelsen et al. 1998, 

1996, Hobble et al. 2000). A general pattern emerges in the ô^^N data whereby values are 

greatest (positive or near zero) in non-mycorrhizal and arbuscular mycorrhizal plants, 

lower (negative) in ectomycorrhizal plants and lowest (most negative) in plants with 

cricoid mycorrhizae (Michelsen et al. 1998, 1996, Hobble et al. 2000). A strong 

discrimination against the heavier N isotope is believed to occur on transfer of N from the 

fungus to the host plant leaving the plant depleted in ^^N while the fungus is enriched. 

Field evidence in support of this concept comes from a heath tundra in Greenland where 

common sporocarps of fungi known to form mycorrhizal associations were collected 

(Michelsen et al. 1998). All sporocarps sampled had positive ô'^N values, while 

mycorrhizal plants in the study site where depleted in ô'^N. The most common fungi 

Russula sp., Cortinarius sp. and Lactarius sp. had ô^^N values that ranged from +2%o to 

+4%o (Michelsen et al. 1998).
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Another trend that has been made apparent through investigations of values of 

plants across multiple study sites is that foliar N-concentration is closely correlated to the 

value. The mechanism that has been put forth is that as soil N availability declines, 

foliar N declines, and dependence on mycorrhizae increases. This causes a filtering of N 

through the fungus which results in fungal enrichment and foliar depletion 

(Hobbie et al. 2000). Thus, foliar %N and values may be predictive of the 

mycorrhizal status of plants across landscapes. Further, increased plant dependence on 

ectomycorrhizae or ericoid mycorrhizae in N-limited systems is supported by the 

observation that strongly N-limited systems have mycorrhizal plants with much lower 

ô^^N values (Michelsen et al. 1998, Hobbie et al. 2000).

Now that we have reviewed key findings from isotope studies of the N-nutrition of arctic 

plants, what insight can be gained to the N-dynamics of the two plant species studied 

under conditions of simulated climate change? As we shall see, three main concepts may 

explain all observations about N-nutrition in of Salix arctica and Dryas integrifolia made 

in this study, these are: (1)5. arctica is a better competitor for inorganic N than is D. 

integrifolia', (2) an external limitation to N-fixation triggers a transition from dependence 

on actinorhizae to ectomycorrhizae derived N in D. integrifolia', (3) warming results in 

increased N-limitation, and increased dependence on mycorrhizae in the woody shrubs 

studied, this may result in changing cost-benefit ratios for some mycorrhizal symbioses. 

Let us examine each of these in turn.
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The five observations described above of the N-nutrition of the two plant species studied 

suggest that S. arctica is a better competitor for inorganic N than is D. integrifolia. In the 

fertilization trials S. arctica showed a trend (although not significant at alpha = 0.05) 

toward higher foliar N concentrations with fertilization, while D. integrifolia showed no 

such trend. Given the relatively small additions of N in the fertilization treatments and 

given the propensity of woody shrubs to be out competed for inorganic N by herbaceous 

plants, it is remarkable that such a trend could be detected at all. In a fertilization study of 

a similar ecosystem it was reported that deciduous shrubs (such as Salix sp.) were better 

competitors for applied nutrients than were evergreen shrubs (such as Dryas integrifolia) 

(Chapin et al. 1995). Warming is associated with increased rates of decomposition and 

subsequent nutrient mineralization. In OTC treatments S. arctica accumulated foliar N 

(p=0.02) while D. integrifolia did not, as suggested by the T-RFLP data for nifU 

communities from OTC treated soils, warming may result in more sustained alterations to 

N-cycling than do small and infrequent additions of fertilizer. As with the high rates of 

fertilizer applied in the study by Chapin et al. (1995) S. arctica may acquire more of the 

newly mineralized N than does D. integrifolia. In support of these suggestions are the 

observations that D. integrifolia appears to be more N-limited in this system than is S. 

arctica. Salix arctica had greater foliar N-concentration, and less negative foliar ô^^N 

values than Dryas integrifolia in all treatment and control plots, while both species 

displayed a linear relationship between foliar N concentration and 8 *^N values.

According to the hypothesis put forth by Hobbie et al. (2000) lower foliar N- 

concentration and lower ô^^N values suggest D. integrifolia depends more heavily on N 

derived from its mycorrhizal symbionts than does S. arctica. Another interesting
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observation comes from a survey of the mycorrhizal status of plants from the Alexandra 

Fiord site (Kohn and Stasovski 1 9 90). In this study, both species were classified as 

ectomycorrhizal however, S. arctica was less so; with 84.6%  (2 5 2  of 2 9 8 )  of root tips 

sampled showing fungal colonization, while 96.6%  (311  of 3 2 2 ) of root tips sampled 

were colonized in D. integrifolia. The greater proportion of uncolonized roots in S. 

arctica suggests that this species may acquire some N through direct root uptake. The 

acquisition of soil N, which has a ratio near zero, may explain the more positive

values and greater foliar N concentration observed in this species. Conversely, the 

lower values and lower foliar N concentration of D. integrifolia may reflect its 

almost complete dependence on fungal-derived N, suggesting that it is a relatively poor 

competitor for soil N acquired through direct root uptake.

The finding that D. integrifolia had lower values than S. arctica was somewhat 

surprising in light of the knowledge that Dryas forms actinorhizal associations with the 

diazotroph Frankia and that we observed root nodules on D. integrifolia in the field. 

Despite reports that isotope discrimination during Nz fixation (via nitrogenase) can be up 

to -6%o (Robinson 2 0 0 1 ) , most values reported for actinorhizal plants in field settings are 

much closer to the atmospheric value (0%c). For example, Frankia infected Alnus 

glutinosa, A. incana, and A. cripa have values of -1 .9  %o, -1 .8  % c, and -1 .5  %o 

respectively (Domenarch et al. 1989 , Nadelhoffer et al. 1996) while Shepherdia had a 

value of -0.3%o (Hobbie et al. 2 0 0 0 ) . It follows that if D. integrifolia at this study 

site were heavily dependent on nitrogenase derived N, it would have values closer to 

the atmospheric value. In a study of a successional sequence of a glacial retreat at Glacier
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Bay, Alaska, D. integrifolia occurred in one site which represented the earliest serai stage 

(Hobbie et al. 2 0 0 0 , 1 998). At this oligotrophic site, D. integrifolia had a mean 

value o f -1.14% o, and a foliar N concentration of 1.88% . Both of these values are much 

higher than those reported in this and other studies (Michelsen et al. 1998 , 1 9 9 6 ), and 

were explained as dependence on nitrogenase-fixed-N. It is possible that these 

discrepancies reflect a changing life-history strategy for this long-lived species. In early 

seral-stages Dryas may perform a role similar to that of other pioneer plants with N- 

fixing endosymbionts, depending heavily on actinorhizae and enriching the system with 

N. As the ecosystem ages three factors may contribute to a transition to dependence on 

fungal derived N. First, soils may become increasing inoculated with mycorrhizal fungi 

leading to increased opportunity for colonization. Second, as arctic systems age they tend 

to accumulate organic N, access to this new N-pool is favored by symbiosis with 

mycorrhizal fungi. In later serai stages, Dryas integrifolia may compete with other woody 

dicots for access to a potentially large organic-N pool. Third, the accumulation of a thick 

organic layer as arctic soils age, may limit access of shallow-rooted woody shrubs to 

phosphorus pools (derived from the parent material) held in the mineral soils below. 

Phosphorus has been shown to be a major limiting nutrient to N-fixation (Chapin et al. 

1991 , Vitousek 1999 , Liengen 1 9 9 9 ) and P-limitation is hypothesized to limit N-fixation 

more severely in later serai stages (Walker and Syers 1976 , Gorham et al. 19 7 9 , McGill 

and Cole 1981). It is possible that a declining productivity of actinorhizae as arctic soils 

age precipitates Dryas" s transition from dependence on atmospheric N (N-fixation) to 

dependence on mycorrhizal N. It is also possible that a nutrient deficiency other than 

phosphorus limits N-fixation as arctic sites age. However, since carbon and nitrogen
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cannot be limiting in actinorhizal symbioses by virtue of the physiologies of the partners, 

some external mechanism must act to limit N-fixation in later successional-stage tundra 

sites.

Warming caused a significant decline in the content of both species studied. This 

change was associated with lower foliar-N concentration in D. integrifolia, and slightly 

(but not significantly) lower foliar N concentration in S. arctica. This evidence may 

suggest increased N-limitation of woody-dicots, and increased dependence on 

mycorrhizal-N, under conditions of warming. Several mechanisms may explain this 

observation, these include; ( 1 ) changes in mineralization rates, (2 ) changes in competitive 

interaction among plant species, (3) changes in the cost-benefit ratio for mycorrhizal 

symbioses.

It is well documented that warming arctic tundra soils results in increased rates of 

nutrient mineralization (Chapin and Bloom 1976, Chapin et al. 1995, Hartley et al. 1999, 

Ruess et al. 1999, Schmidt et al. 2002). Higher temperature is associated with increased 

microbial activity and with higher densities of fungal-feeding nematodes in arctic soils 

(Ruess et al. 1999). The fate of this newly mineralized N is of particular interest. In a 9- 

year study at Toolik Lake, Alaska, elevated temperature treatments resulted in an increase 

in exchangeable ammonium in soils, attributed to increased mineralization. Interestingly, 

the authors found no change in total nutrient pools of vegetation after 3 or 9 years. The 

increase in available nutrients was however, associated with species-specific changes in 

plant biomass that ‘cancelled-out’ at the ecosystem level resulting in no net change in
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total plant biomass (Chapin et al. 1995). These findings imply that (1) increased N 

availability was allocated to growth (in some species) rather than altering foliar nutrient 

concentrations; (2 ) increased nutrient availability altered the competitive interactions 

among plant functional groups. Indeed, these findings prompted the authors to predict 

that increased nutrient availability resulting indirectly from warming should increase the 

abundance of deciduous shrubs relative to evergreen shrubs and non-vascular plants 

(Chapin et al. 1995).

The lower values of S. arctica and D. integrifolia from warmed plots are consistent 

with our knowledge that woody shrubs are inferior competitors for newly mineralized N. 

Although N availability increases with temperature, increased plant growth outstrips N 

supply and woody shrubs are out-competed for soil N by more productive species such as 

herbaceous perennials. Warmer temperatures, however, place the same physiological 

demands (higher respiration rates, increased cell elongation, increased apical growth) on 

woody shrubs as other species. Thus, ectomycorrhizal shrubs may be required to meet 

their increased demand for N by becoming increasingly dependent on their mycobionts, 

which results in the more negative values observed in Dryas and Salix in this study.

Mycorrhizae are symbiotic associations between fungi and plants that arise because of 

different physiological limitations of the partners. In many natural systems fungi are 

carbon-limited while plants are nutrient-limited. Mycorrhizal symbioses can range from 

mutualistic (the fitness of both partners is increased) to antagonistic (the fitness of one 

partner increases while the other decreases) (Egger and Hibbett in press) and most are
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thought to exist in a continuum between these two endpoints (Bronstein 1994, Egger and 

Hibbett in press). Environmental perturbation may alter the balance in plant-fungi 

symbioses shifting the physiological optimum in favor of one partner at the expense of 

the other. If warmer conditions alter the cost-benefit ratio for plant-fugal symbiosis very 

little or not at all we would expect to find no difference in the foliar N concentration of 

plants from warmed and control plots, as is the case of S. arctica. If however, warming 

shifts the ecological optimum closer to the physiological optimum of the fungal 

symbionts, we might expect the fungi to be able to acquire the same amount of carbon 

from their host while providing less nitrogen to the plant. Thus, the combination of lower 

and lower foliar N concentration in D. integrifolia with warming may suggest 

changes in the cost-benefit ratio for its mycorrhizal symbioses.

CONCLUSIONS

Climate warming will likely result in higher mineralization rates in mesic-tundra sites at 

Alexandra Fiord. These warmer soils, which will be relatively depleted in organic N, will 

support different diazotrophic communities than those present today. The question of 

how these communities will differ is still unclear. Standard diversity indices (Simpson, 

Shannon, Shannon-evenness) for nifR  genes were generally unaffected by treatments 

with one exception, nifii gene richness was found to be more variable with OTC 

treatment. Diazotroph communities may acclimate to warmer temperatures resulting in 

no net change in nitrogen fixation rates due to warming, but the factors that control N-
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fixation rates are likely to remain variable at the microsite scale. Possible secondary 

effects of warming such as increased moisture content of soils and increased labile-C 

exudation from plants may result in local increases of N-fixation in certain microsites. 

The nifB. community structure data and the ARA data suggest that diazotroph 

communities are adaptable to a range of environmental perturbations and that field sites 

may already be inherently more variable than the changes due to the treatments applied. 

Given the enormous variation in the environments inhabited by diazotrophs today, it 

follows that the capacity to adapt to warmer climates is retained by these organisms.

An interesting finding, which requires further investigation, is that seasonal transitions in 

diazotroph community composition may be more pronounced in a warmer climate. The 

reasons for this are unknown, but may include a limitation of P mineralization by low soil 

organic matter quality earlier in the season (see Nadelhoffer et al. 1991) or earlier 

limitation by some other annually-finite nutrient supply. A second possibility, especially 

for rhizosphere diazotrophs, is that C-limitation accounts for this change. OTC treatments 

cause vascular plants to flower earlier in the growing season (Arft et al. 1999), and 

flowering places high demands on plant C-stores. There is evidence to suggest that plants 

reduce root C-exudation to the rhizosphere during times of the greatest plant need. For 

example, 42 day old wheat allocates 37% of its photosynthate below ground while 98 day 

old wheat, in the midst of producing grain, allocates only 9% (Whipps 1990). If anthesis 

corresponds annually to the onset of C-limitation for rhizosphere diazotrophs, a shift in 

community composition from copiotrophic to oligotrophic bacteria may ensue. It is
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possible that the niJH communities typical of OTC treatments were composed of 

organisms well adapted to nutrient or carbon limitation.

Contrary to our expectations, symbiotic N-fixation did not relieve N-limitation in the 

actinorhizal species studied, and it appears that at later serai stage sites, this will not he 

the case as long as organic N stores are mineralized. Dryas integrifolia may utilize two 

distinct life history strategies depending on the organic matter content of the soil. In 

oligotrophic sites D. integrifolia is heavily dependent on symbiotic N-fixation, causing 

the accumulation of nitrogen at the site, in more eutrophic sites D. integrifolia reduces its 

dependence on its N-fixing endosymbionts and relies heavily on the cycled organic N- 

pool. Warmer temperatures will likely amplify competitive interaction among plant 

functional groups, and less successful species will derive a higher proportion of their N- 

requirements from mycorrhizae if possible. This may he associated with changing cost- 

benefit ratios for some mycorrhizal symbioses. It also appears that the relative 

importance of diazotrophs to the N-nutrition of evergreen dwarf shrubs declines with 

warming. The underlying mechanism for this requires further study but it must be due to 

an external limitation on N-fixation in arctic actinorhizal systems.
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