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Abstract 
Macrophyte-Flow Interactions

Linear-bladed (Vallisneria americana), whorled (Elodea canadensis), and 

dissected (Ceratophyllum demersum) leaf morphologies occur convergently in aquatic 

plants. It is likely that fluid dynamics have had an effect on plant morphology, by acting 

on exchange processes at low flows and drag forces at higher flows. These species were 

examined using flow visualization and digital imagery at five velocities (1 -1 1  cms"') in 

a flume. Results indicated that in terms of fluid retention, Elodea and Vallisneria acted 

like a cylinder, whereas Ceratophyllum acted like a mesh. Transitional flows occurred at 

lower velocities than the cylinder, indicating an increase in local mixing. However, this 

was reversed when the intemodal spacing was increased experimentally for Elodea and 

Ceratophyllum. This reduction in plant-flow interaction would allow these plants to 

remain erect in a relatively low energy environment. These results suggest that the flow 

environment has influenced the plasticity of leaf types and the evolution of macrophyte 

form in general.
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Chapter 1; Introduction to Thesis

The natural flow regime of rivers is dynamic, and influences the population and 

community structure of aquatic organisms, with abiotic processes dominating at higher 

velocities (i.e., flow regime: Poff et al., 1997; Bernez et al., 2004), and biotic processes 

dominating at slower velocities (i.e., grazing and competition: Abrams, 1980; Poff and 

Ward, 1989). Among these organisms, freshwater macrophytes have the ability to 

modify the physiochemical aspects of their microenvironment by slowing water flow, 

which, in turn, leads to the trapping of sediments and increase in organic content, and a 

change in the water chemistry profiles (i.e., due to photosynthesis and nutrient uptake; 

Chambers et al., 1999). Consequently, freshwater macrophytes can be considered 

ecosystem engineers in that they create and alter habitats for other organisms by affecting 

physical resources such as light, sediments, and water flow (Posey et al., 1993; Alper, 

1998; Crooks, 2002; Wright et al., 2004). At the larger scale, macrophytes can alter the 

geomorphology of an area by affecting erosion and sedimentation rates thus affecting the 

geometry of water channels, and the hydrology of an area by affecting the surface flow 

patterns (Gordon, 1998).

As indicated above, macrophytes affect their environment but, the environment 

also affects them. As a result, many aquatic plants are highly plastic morphologically, 

and similar morphological patterns occur in unrelated species. With the exception of 

fenestration (a morphology found in the tropics in a select number of species (i.e., 

Aponogeton; Sculthorpe, 1967), three main morphological patterns occur in freshwater 

macrophytes: linear-bladed (e.g., Vallisneria americana)', simple whorled (e.g., Elodea 

canadensis)', and dissected (e.g., Ceratophyllum demersum). Variations in these patterns



occur when plants of the same species (or even the same plant) exposed to different 

environmental conditions exhibit heterophylly or foliar plasticity. For example, 

submerged leaves tend to be highly dissected, whereas aerial leaves tend to be much 

thicker with smoother margins (Sculthorpe, 1967; Wells and Pigliucci, 2000). 

Additionally, the length of the intemodal space in whorled species can change depending 

on environmental conditions, with the space being longer for plants in sheltered sites 

(Idestam-Almquist and Kautsky, 1995), or in areas of low light (Cronin and Lodge,

2003).

In terms of flow environment, plants are exposed to diffusional stresses at slower 

velocities (Hurd et al., 1997) and to mechanical stresses at higher velocities (Schutten and 

Davy, 2000). Diffusional stresses occur because at slower velocities there is a thick 

diffusional boundary layer, that limits the supply of nutrients to the leaf surface layer 

(Cheer and Koehl, 1987; Koehl, 1996; Hurd et al., 1997). In order overcome these 

limitations, some macrophytes have small roughness elements on their leaves (Abelson et 

al., 1993; Hurd, 2000) that change the conditions in the boundary layer from laminar to 

turbulent, thus increasing the amount of local mixing, and consequently nutrient uptake 

by the plants. At faster velocities, productivity can be limited by tissue damage and 

dislodgment (Koch, 1993; Stewart and Carpenter, 2003), self-shading (Koehl and 

Alberte, 1988; Niinemets and Fleck, 2002), and the inhibition of enzymes (Koch, 1994). 

However, the central issue to living in high flow conditions is the reduction of drag, 

which is accomplished by the plant becoming smaller in stature and/or compliant with the 

flow (Ennos, 1999; Sand-Jensen, 2003), through a change in shape and orientation 

(Schutten and Davy, 2000).



Given the common morphological patterns found in macrophytes and the 

importance of fluid flow to productivity and ecology it would be appropriate to examine 

whether plants with different leaf types (linear-bladed, whorled and dissected) interact 

with the flow in the same manner. Furthermore, it is important to examine whether the 

intemodal spacing effects the flow patterns due to flow separation (Coutanceau and 

Defaye, 1991) and their compliance under different velocities. This examination should 

also include a comparison to a physical model of a circular cylinder, which is often used 

as an approximation for aquatic plants (e.g. Nepf, 1999). Specifically, the major features 

of the plants (e.g., entire leaves, dissected leaves, and rigidity) can be contrasted with the 

model.

The question of the macrophyte-flow interaction is addressed in Chapter 2 

through a literature review of: (1) basic fluid dynamic concepts; (2) the architecture of 

aquatic plants and how they differ from those in terrestrial systems; (3) adaptation of 

plants to a flow environment at both the individual and canopy scale, and the implications 

on distribution, photosynthesis, nutrient uptake, and grazing, predation, and competition; 

and (4) some of the methodologies used the characterize flow conditions. This 

background leads to the examination of the null hypothesis that plants with different leaf 

types (linear-bladed, whorled and dissected) affect the downstream fluid in the same 

manner in Chapter 3. This is done by taking short video sequences of Fluoroscein dye 

moving past the different plant morphologies, and conducting image analysis to 

determine the area of dye coverage and the concentration of dye in specified areas around 

the three different plant morphologies and a physical model. Similar techniques are used 

in Chapter 4 to examine the null hypothesis that intemodal spacing has no effect on the



flow patterns generated by the plants and their compliance under different velocities. 

Together, these chapters combine to address the issue of whether the morphological 

patterns seen in freshwater macrophytes have been influenced by fluid dynamics factors.
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Fluid Dynamics and Macrophytes 

Introduction

Freshwater aquatic plants (macrophytes) are important components of lake and 

river ecosystems (Biggs, 1996). They are considered ecosystem engineers because they 

create, and alter habitat for aquatic organisms by: (1) slowing or modifying water 

velocities; (2) altering oxygen regimes; (3) blocking light; (4) trapping detritus; (5) 

providing refuges from predators and disturbance; (6) providing oviposition sites; and (7) 

increasing the amount of attachment surface (Biggs, 1996; Wright et al., 2004). In 

addition, emergent vegetation around the edges of rivers and lakes help to reduce 

shoreline erosion by dampening the effect of wave energy (Kalff, 2002). Conversely, 

dense beds of submerged macrophytes in riverine systems can impair discharge, thus 

increasing the potential for flooding, as well as interfering with the use of water craft 

(Kalff, 2002). Macrophyte communities also have important ecological effects whereby 

they may increase the pH of poorly buffered waters, reduce dissolved oxygen levels, alter 

stream courses and bed roughness, shift invertebrate communities from free stone 

dwelling taxa to small burrowing taxa, and degrade the appearance of the stream (Biggs, 

1996). These positive and negative aspects of freshwater macrophytes speak to the 

importance of understanding vegetated hydraulic systems; especially since macrophytes 

increase the complexity of underwater landscapes (Chambers et al., 1999).

There are several critical components of the flow regime that regulate ecological 

processes in river ecosystems including: the magnitude; frequency; duration; timing; rate 

of change of hydraulic conditions in a set location; and development of the mainstream 

flow (Poff et al., 1997). There are also factors that affect the smaller scale velocities
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within macrophyte beds, which include: velocity over unvegetated substrate; biomass of 

macrophytes at a specific location; biomass of macrophytes immediately upstream of the 

location; and the depth of the water at that site (Gregg and Rose, 1982). At the river and 

the macrophyte scale, the physical structure of the riverine environment can be defined 

largely by physical processes, especially those related to the movement of water and 

sediment (Poff et al., 1997). The following chapter will examine fluid dynamic issues on 

the smaller scale, specifically, the flow patterns around individual macrophytes and 

through canopies. These smaller scale fluid dynamics are important because they speak 

directly to plant productivity through nutrient uptake (Borchardt, 1994), photosynthesis 

(Dennison, 1987), and sediment capture (Gregg and Rose, 1982). In addition, a basic 

understanding of fluid dynamics must be presented before one can examine how flow 

influences freshwater plant communities, and how flow is in turn influenced by 

individual plants. Patterns of water movement can be examined both qualitatively and 

quantitatively in order to characterize the macrophyte-flow interaction. It will become 

evident that the macrophyte-flow interaction is important for the autoecology of plants 

and the ecology of aquatic systems.

Fluid Dynamics and Macrophytes 

Types of Flow

The most logical place to begin a discussion of macrophyte-flow interaction is to 

look at the flow conditions, specifically, laminar, transitional, and turbulent (Figure 2.1). 

In laminar flow, it is assumed that all fluid particles move nearly parallel to each other in 

a smooth path. The large- and small-scale movements of the fluid are the same, at least 

down to the level at which molecular diffusion becomes the dominant mode of transport
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(Vogel, 1994). Transition flow, where the particle paths begin to deviate from a parallel 

path, occurs between laminar and turbulent flow, with the transition often occurring 

quickly (Vogel, 1994). Finally, turbulent flow occurs when individual fluid particles 

move in a chaotic fashion, even if the fluid as a whole appears to be traveling uniformly 

in one direction. In other words, intense small-scale motion in all directions is 

superimposed on the mean velocity (Vogel, 1994). Virtually all flows of aquatic interest 

are turbulent at large spatial scales (Nowell and Jumars, 1984), and as such, laminar and 

transitional flows are generally not applicable to natural systems except on very small 

scales (e.g., around individual leaves and within canopies; Ackerman and Okubo, 1993; 

Ackerman, 2002).

Reynolds Number

Reynolds number ( Re = — ; where u = velocity, 1 = characteristic length, and v
V

= the kinematic viscosity [the ratio of dynamic viscosity to density]) provides an 

indication of the flow conditions (Figure 2.1, 2.2), as it is a ratio of inertial to viscous 

forces (Vogel, 1994). The situation where viscous flow dominates (e.g.. Re «  1; 

creeping flow) is not dealt with in much detail here, rather the more typically flow 

conditions where inertia is relevant (e.g.. Re > 1) are presented. If the Reynolds number 

is low (e.g. small, slowly moving structures), the situation is relatively viscous, and the 

flow is smooth and orderly (e.g.. Figure 2.2a). At high Reynolds numbers (e.g. large, 

rapidly moving structures), inertial forces dominate, and the flow is turbulent (Koehl, 

1996). In natural rivers the transition to turbulent flow often occurs around Re = 10  ̂- 

10"̂  using the hydraulic diameter of the channel, but the actual value is dependent on the 

roughness of the bed relative to the water depth (Carling, 1992).
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Boundary Lavers

Velocity gradients occur near boundaries when the fluid comes in contact with a 

solid object due to the ‘no-slip’ condition at the boundary (Figure 2.3). This causes the 

velocity of the flow to decline toward the boundary (Thompson and Trioan, 1997) 

because the velocity of a fluid at the surface of a solid is actually zero. In general, a 

higher Re implies a thinner boundary layer but a higher shear rate (as will be defined in 

the next section). Similarly, the lower the Re, the thicker the boundary layer and the 

lower the shear rate in the boundary layer (Cheer and Koehl, 1987). The thickness of the 

boundary layer (5) around a cylinder shaped object under laminar flow conditions can be 

approximated by the formula: Ô ~ 5x/^Re^ , where 5 is a constant (which may range 

from 4.65-5.84), x is the downstream distance, and Rcx is the local Reynolds number 

taken x distance from the leading edge (Vogel, 1994; Zhang and Malmqvist, 1997). 

Additionally, shear is a consequence of the dissipation of momentum and energy, so 

another way of viewing the boundary layer is as the region near a surface where the 

action of viscosity produces a large loss of total pressure head (Vogel, 1994).

Drag is another important concept related to boundary layers. Drag is the 

hydrodynamic force that pulls a body in the direction opposite to fluid movement and in 

the case of boundary layers, the force that slows the flow (Koehl, 1996). At low Re, drag 

is due to skin friction, which is the viscous resistance of the fluid in the boundary layer 

around the body being sheared as the fluid moves past the body, so a greater wetted area 

leads to higher skin friction. At high Re drag is also due to skin friction but is dominated 

by pressure drag, which is the pressure difference across the body due to the fluid 

dynamic separation or the formation of a wake on the downstream side of the body
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(Vogel, 1987; Koehl, 1996). These concepts are important when considering boundary 

layers because differences in velocity can control the thickness of the boundary layer 

close to the plant surface and as both velocity and plant size increase so does the skin 

friction and drag, which effects the plant community (Biggs, 1996).

An example of the importance of boundary layers in macrophyte ecology can be 

seen in plants with an undulate or bullate blade morphology where the boundary layer 

thickness along the curved body changes due to changing pressure gradients. Hurd et al. 

(1997) demonstrated that when water moves up the rising portion of an undulation of a 

macrophyte blade, the velocity increases and the boundary layer thickness decreases. 

Conversely, as water moves down the descending portion of an undulation, the velocity 

decreases and the thickness of the boundary layer increases rapidly. Macroalgae in wave- 

exposed versus sheltered sites have different morphologies (smooth vs. undulate) because 

of contrasting demands of diffusional and mechanical stress. At low flows characteristic 

of sheltered environment, seaweed productivity may be limited by diffusion due to the 

development of a thick boundary layer that reduces the transport of essential inorganic 

nutrients to the blade surface (Hurd et al., 1996). Undulations are interpreted to be the 

plant’s response to water motion that increase local mixing. Conversely at high flows 

characteristic of wave-exposed environments, drag can damage or detach seaweeds from 

the bottom (Hurd et al., 1997). Smooth blades cause little water motion, specifically 

separation, allowing for less drag, which is an advantage in highly energetic 

environments because it prevents the plants from being broken, damaged, or uprooted. 

Undulate blades cause an increase in the water motion around them thus increasing the
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drag, which is advantageous in low energy environments because this added movement 

limits self-shading and increases mixing.

Changes in boundary layers are important to the productivity of aquatic plants for 

a number of reasons. First, turbulence caused by the interaction of flow with leaves 

greatly decreases the time that nutrients are exchanged relative to molecular diffusion 

alone. Second, where flow is laminar, as in lentic systems and at very small scales in 

other systems, boundary layer thickness depends on the velocity, and the size and 

orientation of the macrophyte blade (Losee and Wetzel, 1993; Crossley et al., 2002). 

Within dense macrophyte beds, thick boundary layers are the result of reduced turbulence 

caused by the hydroelastic response of plants (Ackerman and Okubo, 1993). In other 

words, viscous forces dominate over turbulent forces at a small distance from the plant or 

sediment surface. Conceptually, a layer of water sticks to plant and sediment surfaces 

and does not partake in the watver circulation (Kalff, 2002).

The concept of the roughness Reynolds number (Re* = u*k/v where u* = shear 

velocity =^frTp , x = shear stress, p = density, k = height of roughness elements, and v = 

kinematic viscosity), provides a better description of the flow situation close to the 

bottom, than the Re of the mean flow (Davis and Barmuta, 1989). This is because, the 

height of the roughness elements relative to the thickness of the viscous sublayer of the 

boundary layer (see below) determines the flow conditions near the bed (Davis and 

Barmuta, 1989). When the height of the roughness element is smaller than the thickness 

of the viscous sublayer, flow conditions are considered to be smooth turbulent, whereas if 

the height of the roughness is greater than the thickness of the viscous sublayer, the flow 

conditions are considered rough turbulent (Davis and Barmuta, 1989). Smooth turbulent



Literature Review 14

flows can only occur in smooth flow conditions, such that occurs over fine sediments, or 

adjacent to streamlined submerged macrophytes (Davis and Barmuta, 1989).

Shear Stress

Turbulent shear stress (x), which is the resistive force caused by the no-slip 

condition, can be determined from a log-linear regression of the logarithmic portions of 

velocity profiles (or viscous sublayer; Figure 2.3; Ackerman, 1997; Ackerman and 

Hoover, 2001), providing enough measurements are taken to achieve reasonable 

confidence limits (Nowell and Jumars, 1984). However, it must be mentioned that non- 

logarithmic layers may occur in strongly accelerating or decelerating flow such as in river 

reaches which narrow or widen rapidly (Hoover and Ackerman, in Press). The 

logarithmic profile may also be deformed by spatial variation in the mixture of the 

bottom roughness, which would include the presence of large rocks (Carling, 1992).

Shear stress is perhaps the most meaningful measure of flow as far as benthic organisms 

are concerned because it is the shearing force of water rather than velocity that is likely to 

erode or dislodge organisms (Lancaster and Hildrew, 1993). Shear forces are also 

important because they set a limit to the size of fine particles that can settle to the 

sediment surface. For example, at faster flows fine particles will not settle, creating a 

coarse substrata (Sand-Jensen, 1998). As such, the evaluation of the bed shear stress is 

important, because it is necessary not only for normalizing turbulence characteristics but 

also for assessing issues regarding sediments (Nezu and Onitsuka, 2001).

Laminar shear stress ( t  = , where p is the dynamic viscosity, z  is the

height (or depth) and du/dz is the local velocity gradient) is important in momentum 

transfer to the leaf surface. Since the viscosity of the fluid is directly related to the
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thickness of the boundary layer (i.e., how rapidly layers of fluid move with respect to 

each other), the presence of the no-slip condition denotes an area where shear stress 

exists (Vogel, 1988). Hence, the more viscous a fluid the larger the velocity gradient of 

the boundary layer and, the less viscous a fluid the steeper the velocity gradient of the 

boundary layer (Vogel, 1988). This is important because the process of nutrient 

exchange to a plant’s surface is enhanced by steeper boundary layers, which increase the 

rate of momentum transfer and thus the replenishment of the site of exchange.

Drag

Drag is a property of fluid dynamics that is of interest when considering the 

productivity of macrophytes. As indicated above there are two types of drag, skin 

friction and pressure drag (Vogel, 1988; 1994). In other words, the drag force on an 

object in a moving fluid depends on the velocity of the fluid, the size, and roughness of 

the object. Additionally, for a non-spherical object, the shape and orientation in relation 

to the flow are also important (Schutten and Davy, 2000). The drag on small organisms 

is mainly due to skin friction, whereas, for larger (and more upright) organisms pressure 

drag tends to be much greater (Biggs and Thomsen, 1995). An example of this occurs 

when plant stems bend downstream in response to faster flow, so that the frontal area is 

reduced, lowering pressure drag, whereas long ribbon-shaped leafs can fold against the 

stem, reducing skin friction (Ennos, 1999). Consequently, pressure drag will be high on 

dense plant communities because of the pressure drop from upstream to downstream.

This occurs because there is an area of slow flow at the end of the canopy due to the flow 

separation around the canopy (Vogel, 1994). Conversely, pressure drag will be lower in 

open plant stands due to the additional drag exerted by the plants that reduce the mean
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flow within vegetated regions relative to unvegetated ones, thus making the energy 

distribution even throughout the flow (Ackerman and Okubo, 1993; Vogel, 1994; Nepf, 

1999). A consequence of this velocity/pressure range is that more individual plants will 

have access to nutrients in open vs. dense canopies, whereas plants in dense canopies will 

have more protection from drag. For example, drag and acceleration forces may limit 

productivity by dislodging macrophytes from the substratum (Hurd et al., 1996).

At some point the momentum acquired by a macrophyte must be stopped because 

the plant is anchored to the substratum. A large, flexible structure can move with the 

flow for a time, thereby reducing drag and lift (a force perpendicular to the direction of 

flow), but this can only occur while acquiring momentum (Denny et al., 1997). 

Accelerating a body in a fluid involves a force with three additive components: (1) drag; 

(2) the force needed to accelerate the mass of the body forward; and (3) the force needed 

to accelerate the displaced mass of fluid backward. The additive forces, which depend 

upon the shape of the object, the volume of the body, and the density of the surrounding 

fluid, is commonly called the acceleration reaction. In other words, if an object is 

accelerated in one direction, an equal volume of fluid must be accelerated in the other 

direction. As such, to accelerate an object, a force proportional to the object’s volume 

and to the density of the medium must be applied (Vogel, 1994). This concept is relevant 

to aquatic systems because when a current flows past a plant, the plant resists 

acceleration thus causing a displacement of the fluid. For example, if the plant is large 

enough, it can simply comply as water passes by reducing the relative velocity and 

acceleration between the plant and the surrounding water and, thereby, reducing the
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hydrodynamic forces (Denny et al., 1997). These concepts are especially important in 

intertidal systems involving kelps (Dawes, 1981).

Froude number
Ü

The Froude number, (Fr = where u = mean velocity, g = acceleration due to 

gravity, and D = water depth), is the ratio of inertial to gravitational forces that describes 

the surface condition in a flowing system (i.e., the ratio of the inertia of the flow to the 

speed of a wave). The inertial force causes plant movement (i.e., compliance with the 

flow) or divert it from a straight course at constant speed (i.e., oscillations; Vogel, 1988). 

For conditions where Fr < 1 the flow is designated as sub-critical or tranquil flow, when 

Fr = 1 flow is critical, and for Fr > 1 flow is super-critical. Super-critical flow is 

characterized by broken, white water and is described as shooting or streaming flow 

(Davis and Barmuta, 1989). Nezu and Onitsuka (2001) showed that in biological 

systems, the maximum value of vorticity increases with an increase in Froude number. 

They also noted that the strength of the secondary currents increased with an increase of 

the Froude number. Secondary currents vary in flow direction from the mean flow, 

leading to what one might consider very large scale turbulence intensity. In other words, 

Froude number is relevant to macrophytes because it also characterizes the mean flow 

(Davis and Barmuta, 1989), and it describes the distribution of momentum in the main­

stream velocity (Kundu, 1990). Correspondingly, drag increases more quickly with 

velocity at the surface than in the water column (Vogel, 1994). Consequently, floating 

and emergent leaved plants exist in still or very slow moving water, whereas submerged 

plants, which are more adapted to comply to drag conditions exist in faster moving 

environments (Dawson, 1988).
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Turbulence Intensity

Mean velocity gives a measure of the average unidirectional flux of water past 

macrophyte blades, whereas turbulence intensity (i.e.,w^ / if *100, where Urms is the root 

mean square of the velocity) provides an indication of the velocity fluctuations that may 

lead to local mixing (Koehl and Alberte, 1988). Vegetation not only affects the mean 

velocity, but also affects the turbulence intensity and the resultant transport of nutrients. 

The conversion of mean flow to turbulent flow within stem wakes increases the 

turbulence intensity, and because wake turbulence is generated at the stem scale, the 

dominant turbulent length scale is reduced, relative to unvegetated, open-channel 

conditions (Ackerman and Okubo, 1993; Nepf, 1999). The combination of reduced 

velocity and reduced eddy-scale should reduce the in-canopy turbulent diffusion relative 

to unvegetated regions (Ackerman and Okubo, 1993; Nepf, 1999).

The eddy viscosity (the turbulent transfer of momentum that characterizes the 

transport and dissipation of energy in the smaller-scale flow), which is determined by the 

properties of the turbulence, characterizes mean momentum transfer by turbulence 

fluctuations (Mathieu and Scott, 2000). As such, it is an essential property of mass 

transfer to aquatic plants, since eddy viscosity is not constant within the boundary layer 

(Hinze, 1987) or the plant canopy (Ackerman and Okubo, 1993). For example, it has 

been shown that turbulence intensity is enhanced by the presence of a mesh, yet the 

diffusivity is diminished because the eddy scale is reduced (Nepf, 1999). That being 

said, it is clear that turbulent flows modify the rate at which materials and energy are 

exchanged between a macrophyte and its immediate environment (Hart et al., 1996).
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The random motion of eddies is an efficient way of transferring mass and 

momentum, because each eddy carries with it the properties of the fluid contained within 

it (Hurd, 2000). Mass transfer is an important concept in aquatic systems, whereby 

nutrients and wastes are transported towards and away from organisms. Any nutrient 

uptake by the macrophyte blade generates a nutrient depleted region adjacent the blade 

surface, called the concentration boundary-layer (Stevens and Hurd, 1997). If the 

timescale for significant changes in the viscous sublayer is much less than the timescale 

for molecular transport, then it is possible for there to be reduced net advection (Stevens 

and Hurd, 1997) that can be related to a thick diffusive boundary layer and ultimately to 

diffusional stress. In turbulent flow, mass shifts around in directions other than that of 

the overall flow (Vogel, 1994). For this reason, the thinner the diffusive boundary layer 

in the water flowing along a blade, the greater the rate of mass transfer to the blade 

surface (Koehl and Alberte, 1988). Thus, fluid dynamics can define the environment 

where freshwater macrophytes are productive.

Freshwater Macrophytes 

Architecture

The term freshwater macrophyte is broad, and used to encompass emergent, 

floating, floating-leaved and submerged plants that include representatives of 

Angiosperms, Pteridophytes, Bryophytes and large algae (Dawson, 1988). Plant 

architecture is also a broad term, but it is defined here to include only the 

photosynthetically active part of the plant. It is important to understand the function of 

plant architecture, and to determine whether it is a result of common ancestry, or whether 

it is due to similar environmental pressures. The uncertainty of the origin of plant
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architecture arises from the observation that freshwater macrophytes in different families 

have similar morphologies, whereas species in the same family can have different 

architectures. This may be because plants generally acelimate to changing environmental 

conditions through morphological rather than physiological means (Wells and Pigliucci, 

2000; Santamaria, 2002). Heterophylly (foliage plasticity) occurs in some species of 

freshwater macrophytes whereby the plant has more than one kind of leaf structure 

depending on whether they are under, on, or above the water surface. Heteroblastic 

development is a form of heterophylly whereby juvenile leaves have a different 

morphology than the adult leaves regardless of the environment (Sculthorpe, 1967).

The classification of organisms and the evolutionary relationships among them 

(systematics) is determined using comparisons of the evolved similarities (e.g., 

synapomorphies) in plant characteristics such as genetics and morphology (Raven et al.,

1999). However, this is sometimes difficult in aquatic plants, because they exhibit a wide 

range of phenotypic plasticity (the ability of an individual organism to alter its 

morphology and physiology in response to environmental conditions; Idestam-Almquist 

and Kautsky, 1995; Wells and Pigluicci, 2000; Santamaria, 2002) as well as similarity of 

form (Sculthorpe, 1967). Phytogeny is also a difficult concept to apply to aquatic plants 

because they represent a functional group. For instance, it is known that aquatic 

Pteridophytes (i.e., ferns) and Angiosperms (i.e., herbs) evolved from terrestrial ancestors 

polyphyletically (Sculthorpe, 1967), thus providing examples of convergent evolution. 

However, heterophylly occurs across distant taxa, which suggests that unrelated plants 

have adapted in a similar fashion to the aquatic environment (Wells and Pigliucci, 2000);
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adding to the argument that structural similarities occur due to adaptation to a common 

environment.

Freshwater macrophytes vary in morphology at different scales, ranging from leaf 

shape to growth form. There are four basic growth forms of vascular macrophytes: (1) 

emergent; (2) floating-leaved; (3) submerged; and (4) free-floating (Figure 2.5).

Emergent plants (e.g., Sparganium) tend to be mainly rhizomatous (having a horizontal, 

usually underground stem that often sends out roots and shoots from its nodes) or 

cormous (having a short thick solid food-storing underground stem) and are perennial. 

Heterophylly can be experienced in emergent plants due to the submerged or floating 

leaves preceding the aerial leaves in development (Sculthorpe, 1967). In addition, 

emergent macrophytes have aerial reproductive structures. Floating-leaved plants (e.g., 

Nuphar and Nympheae) can either have leaves attached to long flexible petioles that are 

rhizomatous or cormous or they can have compliant stems that rise through the water and 

produce floating leaves on relatively short petioles and be stoloniferous (stems growing 

horizontally above the ground and producing roots and shoots at the nodes). The 

reproductive structures are either floating or aerial, and consequently, heterophylly can be 

experienced since the submerged leaves precede the floating leaves in development 

(Schulthrope, 1967). Submerged macrophytes can be divided into three main types: (1) 

caulescent; (2) rosette; and (3) thalloid (Figure 2.6). Caulescent plants (ones with a well- 

developed aboveground stem), can be with or without rhizomes, and consist of long 

flexible stems that root from the nodes (e.g., Elodea and Myriophyllum). Rosette types 

(e.g., Isoetes and Vallisneria) are often stoloniferous, and have radical leaves arising from 

a condensed, often tuberous rhizome. Lastly, plants where the body is reduced to a
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cylindrical or flattened form, often bearing secondary branches (e.g., Podostemaceae) are 

of the thalloid type (Sculthorpe, 1967). Submerged leaves tend to be filiform, ribbon­

shaped, fenestrated, or finely divided (Sculthorpe, 1967). Finally, free-floating plants 

include small surface floating plants (e.g.. Lemma and Wolffia), as well as plants that are 

submerged with few or no roots (e.g., Ceratophyllum; Sculthorpe, 1967). Considering 

these different growth forms, submerged plants generally occur in deeper water, floating 

leaved communities occur closer to the shore, and emergent plants occur in reed-swamp 

communities, although this zonation can, and does overlap (Schulthorpe, 1967).

In freshwater macrophytes, there are two main patterns of growth, the first being 

an abbreviated axis producing a rosette of radical leaves (e.g., Isoetes spp.), the second 

being an elongated flexuous stem which is covered in leaves and rooted from its nodes 

(e.g., Myriophyllum; Sculthrope, 1967). There are several ways that leaves can be 

arranged around the stems of these macrophytes. For example, the leaves of caulescent 

macrophytes may be: (1) alternate (e.g., Potamogeton)', (2) paired and opposite (e.g., 

Cabomba); whorled (e.g., Hippuris and most species of Elodea and Myriophyllum-,

Figure 2.7); or (3) pseudo-whorled whereby the leaves actually occur alternately, but 

several condensed intemodes occur between two successive long intemodes (e.g., 

Myriophyllum heterophyllum) (Sculthorpe, 1967).

There are three main leaf forms in freshwater macrophytes, these being entire, 

fenestrated, and dissected. Entire leaves are generally thin and translucent, the shape 

varying from awl-like and linear to ovate and sagittate (or cordate; Figure 2.8). Entire 

leaves can also be petiole-like with sheathing at the base and upper limb with the leaf 

being either wide or narrow where it attaches to the petiole (Figure 2.9). Within the
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entire morphology, many of the broad leaf types either have undulate margins (Figure 

2.10) or bullate surfaces (Sculthorpe, 1967). Undulate margins along with fenestration 

occur in the leaves of the genus Aponogeton, which are entire and narrowly lanceoate. In 

this case, the margin is slightly undulate to tightly crinkled, and the leaf is generally 

twisted because the marginal regions grow faster than then median regions. The 

fenestration in Aponogeton madagascariensis is observed by the small areas of interstitial 

tissue that are lacking at maturity, sometimes to the extent that the lamina is thoroughly 

perforated leaving a skeleton like structure of veins (Figure 2.11; Sculthorpe, 1967). 

Thirdly, dissected leaves (e.g., Ceratophyllum) occur when the leaf is split into many free 

segments radiating from the petiole. The leaves of Ceratophyllum are quite rigid, 1-4 

times forked, and have two rows of teeth along the segments at the tip of the leaf (Figure 

2.12; Sculthorpe, 1967). Alternatively, the leaves of Myriophyllum spicatum are also 

dissected, but instead of being radial in structure, the segments grow alternately from a 

central vein, giving a feathery appearance.

As mentioned previously, leaf variations can be found: (1) across species; (2) 

among the population of the same species; and (3) between the leaves of a single plant 

(heterophylly; Wells and Pigliucci, 2000). For example, heterophylly occurs in 

Prosperpinaca palustris as a response to light quantity (Figure 2.13). When the leaves 

are submerged, or experience only eight hours of light a day, the leaves are highly 

dissected. Whereas the aerial leaves, or the leaves that experience sixteen hours of light a 

day are entire lanceolate leaves with serrated margins (Wells and Pigliucci, 2000). 

Heterophylly can also be induced by light quality as in Hippuris vulgaris whereby
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changes in red:far red signal the transition from submerged to aerial leaf morphology 

(Wells and Pigliucci, 2000).

Hormones also play a role in changes to plant morphology. It has been shown 

that plants exposed to abscisic acid produce aerial leaf morphology while still submerged. 

Abscisic acid is the drought stress hormone in terrestrial plants that regulates plants to 

changes in water availability. Gibberellic acid encourages the production of leaves 

characteristic of submerged plants while still in an aerial environment, but it is considered 

to be a response to photoperiod rather than water availability (Wells and Pigliucci, 2000).

Freshwater macrophytes have different morphological features depending on their 

environment. For example, lake sites with high wind exposure are usually dominated by 

small compact (rosette-like) species with stiff leaves arising from the base of the stem, 

and a strong root system. In contrast, species with long, slender highly flexible stems 

usually dominate shallow river channels or shorelines of low turbulence, which allow 

rooting and prevent damage to the stems. Macrophytes with floating leaves, such as 

Nuphar, are restricted to areas of little or no flow (Dawson, 1988; Kalff, 2002). Erect 

and canopy-forming species with apical growth, commonly dominate in deeper waters 

under relatively sheltered conditions (Figure 2.14; Kalff, 2002). To expand upon this 

concept, it has been shown that plant species occurring in highly energetic and disturbed 

environments are predicted to be more robust; i.e., shorter in height (Stewart and 

Carpenter, 2003), limited in lateral spread, shorter lived, have a larger proportion of 

annual production devoted to seeds, as well as having fewer storage structures (Barrat- 

Segretain, 2001). Conversely, competitive species that occur in more predictable habitats 

are predicted to be more delicate (i.e., taller in height; Stewart and Carpenter, 2003),
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extensive in lateral spread, longer lived, have a smaller proportion of production for 

annual reproduction, as well as having important vegetative storage structures (Barrat- 

Segretain, 2001). To further contrast the difference between low and fast flow, it has 

been observed that plants from fast-moving streams tend to have leaves with low 

branching angles (i.e., present a smooth surface to the flow), whereas, plants from slow- 

moving streams tend to have higher branching angles, and the leaves stick out more into 

the flow (i.e., present a rough surface to the flow; Ennos, 1999). This increase in angle 

also increases the drag, but results in the production of small vortices behind the leaves 

that would increase the supply of carbon dioxide and other nutrients (Ennos, 1999).

It is reasonable to suggest that the physical interaction of plants with the water 

flowing past them governs and selects for suitable plant forms and species. Thus the 

plants’ size, form and stand structure, together with the strength of its stems and the 

security of its method of anchoring to the substratum, are major factors in plant survival 

(Dawson, 1988). Another factor that may be useful in the description of architecture is 

the leaf-area index, which provides an estimate of the photosynthetically active surface in 

the macrophyte community, as well as the amount of substrate available that specific 

community (Den Hartog, 1982).

Several factors influence near-bed velocity and sediment composition within 

macrophyte beds in lowland streams, which are also closely related to differences in 

macrophyte morphology (Barrat-Segretain, 2001). Anderson and Charters (1982) 

suggested that water motion affects marine macroalgae through the transport of mass, 

momentum, and energy from the main body of the fluid through the boundary layer to the 

plant’s surface. The transport rates depend strongly on whether the flow in the boundary
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layer is laminar or turbulent, because the transfer rates in turbulent flow with turbulent 

diffusion are orders of magnitudes greater than those in laminar flow with rates 

determined by molecular diffusion alone. Plants occurring within or near the boundary 

layer or those that create their own unstirred layer through dense canopies tolerate the 

least hydrodynamic stress, whereas plants that are less densely branched and stronger are 

predicted to break at higher velocities than highly branched filaments and tufts (Sheath 

and Hambrook, 1988), thus demonstrating that where aquatic plants of different 

morphologies grow is dependent mainly on the fluid dynamics in that area.

Aquatic versus Terrestrial Plants

There are several important environmental (i.e., chemical and physical) factors 

that affect plants in aquatic systems. The first of these comparisons is of a mechanical 

and structural nature, which examines how plants support themselves in air compared to 

water. Secondly, the physiology of gas exchange is important when dealing with the 

transport of important nutrients given the different diffusivities of oxygen (0 %) and 

carbon dioxide (CO2) in air versus water. Another factor to consider is photon capture 

(discussed in a later section) which, relates directly to the productivity of plants and how 

light is attenuated in aquatic versus terrestrial environments. There is also the issue of 

mechanical damage caused by hydraulic stress, which will differ between aquatic and 

terrestrial systems. Finally, ecological factors such as pollination and diaspore dispersal 

differ given the lack of animal agents in aquatic systems.

One of the main differences between living in water versus air is the density of 

the medium. For example, the density of air varies directly with temperature, pressure, 

and altitude, with a variation of about 13%. Conversely, changes in the density of water
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are small (0.8%) over the biologically relevant range of temperatures (Denny, 1993). 

However, since water weighs much more then air, a small difference in density can have 

large implications for aquatic organisms (Denny, 1993). Another major difference 

between the density of air and water is that water density does not respond in a linear 

fashion to temperature; rather, water goes through a transition phase whereby ice is less 

dense than water, and so it floats (Denny, 1993). Similarly, if the density of any object is 

greater than the surrounding fluid, the object experiences a downward force proportional 

to its volume (negatively buoyant). Conversely, if the density of an object is less than the 

surrounding fluid, there is a net upward force (positively buoyant). Consequently, since 

the density of water is so close to the body density of plants, the effective or excess 

density (pd - Pf where Pd = density of the body, and pf = density of the fluid) is very 

sensitive to small changes in the density of the fluid. Comparatively, because the density 

of air is so small, it has little effect on the effective density of terrestrial plants (Denny, 

1993).

One consequence of the differences in density discussed above, is that terrestrial 

and aquatic plants have different means of supporting themselves. Specifically, 

terrestrial plants are rigid with a dominant axis, whereas aquatic plants do not possess a 

dominant axis because they are partially supported by the water itself. The support given 

to submerged macrophytes is also provided by the buoyancy provided by lancunate 

tissues (air filled spaces that run along the leaf in the mesophyll), which reduces the need 

for mechanical strength and rigidity (Sculthorpe, 1967). For this reason, aquatic stems do 

not need to support the weight of leaves, as is the case in terrestrial environments. 

Additionally, given the differences in density discussed above, and the fact that aquatic
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plants have low bulk densities, aquatic plants tend to be neutrally or positively (due to 

lacunae) buoyant. In contrast, terrestrial plants are roughly a thousand times denser than 

air and experience the compressing effects of gravity (Niklas, 1997).

The density differences between air and water translate to differences in 

kinematic viscosity, which is the ratio of the molecular or dynamic viscosity to density.

In addition, there are differences in the molecular diffusivity of gases related to 

photosynthesis. For example, even though the concentration of carbon dioxide (CO2) is 

the same in water and air between of 10°C and 20°C, a terrestrial leaf receives CO2 at a 

higher rate than that of an aquatic leaf due to greater diffusivity in air. Thus, aquatic 

plants must overcome diffusional stresses by living in areas of mixing (i.e., moving 

water), or they must have smaller or more dissected leaves (i.e., to increase surface area: 

volume) than terrestrial plants to maintain an adequate delivery rate of CO2. There is also 

a possibility that leaf edges influence the fluid and thus induce turbulence (Coutanceau 

and Defaye, 1991). Another difference between aquatic and terrestrial environments is 

related to the dissociation of CO2 in water (Denny, 1993). An equilibrium is reached in 

aquatic systems whereby when CO2 dissolves in water, much of it combines chemically 

with its surroundings to produce carbonic acid (H2CO3), which then dissociated into a 

hydrogen ion and a bicarbonate ion (HCO3 ), which is often used by aquatic plants as 

their carbon source for photosynthesis. The final ion in the equilibrium, carbonate (COs^" 

), is not used by plants. Carbon dioxide has a lower molecular diffusivity in freshwater 

than in air, consequently as indicated above, plants living in air can acquire CO2 more 

efficiently than their aquatic counterparts (Niklas, 1997). That being said, land plants and
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aquatic mosses are only able to use carbon dioxide (CO2), but many aquatic seed plants 

and algae are also able to use HCO3' (Sculthorpe, 1967).

The differences in the diffusivity of oxygen and carbon dioxide in air and water, 

may relate to the morphological differences between submerged macrophytes and the 

aerial form of the same species. This heterophylly is the presence on a single individual 

of two or more distinct types of leaf. For example, Proserpinaca palustris in the aerial 

form, has leaves with toothed margins that are smaller, broader, thicker, and fewer in 

number than those on submerged stems, which are highly dissected (Figure 2.13; 

Schulthorpe, 1967). In extreme examples of heterophylly, the leaf types are different in 

three aspects, habit, shape and anatomy, and a single plant may bear submerged, floating, 

and aerial leaves (Sculthorpe, 1967). There are many aquatic plants (e.g. Cabomba, 

Ceratophyllum, Potamogeton, and Sparganium) that change the morphology of their 

leaves when the shoot apex reaches the water surface and emerges into the aerial 

environment. This change usually consists of the submerged form being either linear or 

highly dissected, to an aerial form that is lanceolate or a more entire leaf form 

respectively (Figure 2.15; Sculthorpe, 1967).

On a smaller scale, the terrestrial plants have an external layer of waxy material 

(cuticle) that reduces the rate of water loss, the internalization of exchange surfaces such 

as superficial pores or stomata, and the development of conducting tissues (Niklas, 1992). 

These adaptations exist because terrestrial plants are exposed to the drier atmosphere, 

whereas aquatic plants are continuously covered in water (Niklas, 1997). It is important 

to note that aquatic plants do not possess stomata and as such nutrient exchange can 

occur over the entire surface (Sculthorpe, 1967). Consequently, the limiting state for
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uptake in aquatic plants is diffusional stress, rather than stomatal resistance in terrestrial 

plants (Eugster and Hesterberg, 1996; Vesala, 1998).

Terrestrial and aquatic plants also experience different mechanical stresses. One 

way that mechanical stresses are increased in both environments is through an increase in 

height, which is a strategy used by plants to maximize light capture for photosynthesis 

(Ennos, 1999; Strand and Weisner, 2001). As such, at increasing velocities, a strategy of 

minimizing mechanical stress in aerial environments is for leaves to reconfigure into a 

conical or cylindrical shape, and become more tightly rolled as wind speed increases. A 

similar phenomenon occurs with clusters of leaves, which form bundles that become 

tighter as wind speed increases (Vogel, 1994). In aquatic systems ribbon-shaped plants 

(e.g. Vallisneria spp.) become more compliant with the flow (streamlined) due to their 

lack of strengthening tissue, which reduces the hydrodynamic drag (at higher flows) and 

thus the mechanical damage (Sculthorpe, 1967). However, in order to colonize faster 

moving environments, the length of the leaf must be small since drag is a function of 

surface area (Vogel, 1994; Wilson et al., 2003). Highly dissected leaves are also able to 

reduce mechanical stresses by the segments grouping together thereby reducing the 

surface area exposed to the approaching flow (Vogel, 1994). Hence, in order to reduce 

drag, plants must either become compliant with the flow, or reduce the size of the 

individual surfaces facing the flow. Thus, it is clear that aquatic plants have adapted to 

these hydrodynamic constraints, however, the mechanisms are as yet not understood.

There are limitations to pollination in submerged aquatic plants due to a number 

of factors including the lack of animal agents in aquatic environments. Although the 

vegetative features of aquatic plants show modifications of morphology and anatomy in
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response to the aquatic environment, the reproductive structures are generally similar to 

those of related terrestrial plants in both general organization and microscopic structure 

(Sculthorpe, 1967; Ackerman, 1995). The flowers of the majority of aquatic angiosperms 

are adapted to aerial life, with either insects or wind as pollinating agents (Ackerman 

1995, 2000). Pollen can also be dispersed by water with the pollen being carried by 

wind, water currents, or surface tension (Ackerman, 2000). Truly submerged pollination 

also occurs whereby the drifting pollen, which are individually filiform or adherent in 

long chains, become entangled in the typically filiform, feathery, or peltate stigmas 

(Sculthorpe, 1967). Since there are no known aquatic organisms that transfer pollen 

among aquatically pollinated plants, pollen is transferred on or in the water by wind, 

gravity, and water currents (Ackerman, 2000).

There are several dispersal mechanisms for macrophytes. One of these is by 

animals and water birds, which are the main agents in the short and potentially long range 

dispersal of aquatic plants. Additionally, many submerged species spread by runners or 

by vigorous growth in their rhizomes (Philbrick and Les, 1996). Another means of 

dispersing, as with Isoetes spp., is to produce plantlets (young plant with a developing 

rhizome, adventitious roots, and two leaves) instead of sporangia (Sculthorpe, 1967). 

However, floods and normal river currents are probably the most powerful agents in 

distributing vegetative propagules. Whole plants of all life forms, rooted rhizomes and 

tubers, vegetative fragments, and tuiions (small specialized shoots), are often tom away 

and carried for kilometers (Sculthorpe, 1967); thus demonstrating how aquatic plants may 

be dispersed over large distances.
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Adaptations to Flow

Macrophytes must be able to support themselves in a variety of freshwater 

environments. It has been noted by Stevens and Hurd (1997) that under almost any field 

conditions the pressure gradients at leading edges of macrophyte leaves will be sufficient 

to cause separation in the flow. Separation points occur when the flow stops moving up 

the surface of the plant, and starts moving in the downstream direction (Vogel, 1994), 

where vortices are shed. Thus, with vorticity being generated in the wakes of the leaf 

edges, the vortex streets from the leaf wakes combine to produce the turbulence in the 

flow within and downstream of the plant body (Anderson and Charters, 1982). 

Accordingly, one of the consequences of increased branching angle is to increase 

vorticity, and with it the amount of nutrient and light getting to the plant (Denny and 

Robertson, 2002), whereas the function of decreased branching angle is to increase the 

amount of compliance and thus lower the drag that the plant experiences (Ennos, 1999; 

Speck, 2003).

Macrophytes have various strategies to overcome high fluid forces including: 

greater structural strength; greater flexibility; growth in thin layers; and by the restriction 

of their growth to non-critical seasons of water flow (Dawson, 1988). The more 

compliant plants adopt a more streamlined and compact form with increasing velocity 

(until the velocity is so high that they become damaged or dislodged). Less compliant 

plants have a low initial resistance and can tolerate small increases in velocity by having 

leaves at the water surface, but hydraulic resistance increases rapidly as leaves bend into 

the water and become submerged (Dawson, 1988). However, most aquatic plant species 

have flexible stems allowing them to bend into the flow, thus reducing the surface area
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directly exposed to the approaching flow (Sand-Jensen, 2003). Fortunately, compliance 

can occur without reducing the plant’s capacity for photosynthesis or nutrient uptake, and 

without negatively affecting productivity (Gerard, 1987), as will be discussed in the 

photosynthesis section. Flexibility also determines which sort of flow habitat is most 

mechanically stressful; for rigid organisms, waves produce larger forces than do 

unidirectional currents of the same peak velocity, whereas the opposite is true for flexible 

organisms (Koehl, 1996). Plants that grow in energetic environments tend to be small in 

stature and limited in lateral spread, whereas plants that grow in predictable habitats tend 

to be higher in stature and extensive in lateral spread (Barrat-Segretain, 2001). However, 

most giant kelps are both long and flexible while living in an energetic environment, and 

this morphology may be able to reduce the drag experienced by these plants (Denny et 

al., 1997). It has also been found that species with fewer branches break at higher current 

velocities as compared to highly branched species (Sheath and Hambrook, 1988). Plant 

architecture is clearly important as the shoot area defines the domain of the interaction 

with the water current, and the ability of the plant to uptake nutrients (Schutten and Davy,

2000). The relative magnitudes of the stem’s compliance and the anchorage strength 

determine whether an individual plant remains in position, breaks, or is uprooted. More 

specifically, compliance is the ability of the shoot structure to deform with increasing 

current velocity, thus reducing its roughness and frontal area (Schutten and Davy, 2000), 

and increasing the likelihood of the plant remaining anchored.

Distribution of Macrophytes

The vegetation of freshwater environments is defined by the effect and 

interactions of a single physical factor, water flow, which determines plant-form, growth-
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controlling factors, and habitat (Dawson, 1988). Dawson (1988) reported that at high 

flows, aquatic vegetation may be confined to the margins of the channel and to islands 

where emergent vegetation can be in direct competition with terrestrial vegetation. Very 

low flows allow the development of a vegetation characteristic of still water (e.g. 

emergent and floating plants; Dawson, 1988). Other factors to consider in regards to 

macrophyte distribution are that low flows may be accompanied by reduced oxygen 

concentrations, increased temperature, and desiccation (i.e., small ponds and streams can 

dry up due to extreme climatic variations; Lancaster and Hildrew, 1993), all of which can 

influence stream communities. Conversely, unusually high flows are often accompanied 

by increased velocity and hydraulic forces (i.e., drag and shear stress) on the stream bed 

(Lancaster and Hildrew, 1993). At intermediate flow regimes, the physical and chemical 

factors can control growth, interact with aquatic plants to regulate seasonal biomass 

(Dawson, 1988). For this reason, the plant community at a site reflects the balance 

achieved between the physiochemical environment and the plant’s tolerance, adaptation 

to, or the modification of these conditions by the plants’ presence (Dawson, 1988). Other 

factors influencing the distribution and growth of freshwater macrophytes are known to 

include turbulence, seasonal temperature patterns, surface and interstitial water 

chemistry, sediment composition, light, and other biota (White and Hendricks, 2000). 

Establishment of well-developed macrophyte patches, however, appear to be related 

primarily to constant or predictable discharge, turbidity, and canopy cover. Additionally, 

most macrophytes will grow where favorable combinations of substrate type, water 

depth, surface velocity, nutrient availability, and other environmental factors, occur 

(White and Hendricks, 2000).
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Flow Around Individual Plants 

Photosynthesis

Flow around individual plants directly influences the productivity of the plant as 

well as the plant canopy. For example, macroalgae rely on the movement of water for the 

delivery of nutrients to their surface, as such, an increase in velocity increases 

photosynthesis and thus, productivity (Stewart and Carpenter, 2003). However, many 

abiotic and biotic factors control net macrophyte productivity including: photon flux 

density and spectral composition (Dennison, 1987; Falkowski and Raven, 1997); nutrient 

availability (Borchardt, 1994); temperature (Davison, 1991); water motion (Wheeler, 

1988); inter- and intra-specific competition for space and resources (Creed et al., 1996); 

and rates of herbivory (Leonard et al., 1998; reviewed in Hurd, 2000). Although, it is 

generally agreed that light intensity is the limiting factor in determining the maximum 

depth at which plants will occur in a given body of water. The depth where respiration 

equals photosynthesis for a particular plant is known as the compensation depth; plants 

cannot exist below this depth (Riemer, 1993). Due to the limitations surrounding photon 

capture in aquatic systems, freshwater macrophytes must maximize photosynthesis. As 

indicated by Hurd and Stevens (1997) flapping is a technique used by marine algae in 

order to enhance photon capture by reducing self-shading. Schutten and Davy (2000) 

also noted that at low current velocities, the spreading of leaves increases the area for 

light interception. However, when exposed to faster currents, the plant receives less 

efficient light interceptions due to the resulting compliance, which reduces resistance and 

minimizes mechanical damage (Koehl and Alberte, 1988). Another strategy used by 

plants to maximize photon capture under poor light conditions is to have longer branches
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and taller plants (associated with a decreased number of branches and below-ground 

biomass); this is also a physical response to flow (Strand and Weisner, 2001). The most 

basic morphological response however, is to increase the size of the leaf surface and the 

number of photosynthetic cells on that surface (Rascio, 2002).

Gas exchange and light capture are essential to the productivity of plants, making 

heterophylly a prime example of the functional explanation for plant morphology. 

Accordingly, an increase in surface area: volume is a technique used to maximize light 

capture (Gerard and Mann, 1979; Gutschick, 1999), and to increase the flux of nutrients 

available to the plant (Wheeler, 1988; reviewed in Hurd, 2000). Fine-scale 

morphological features might act as roughness elements generating transitional or 

turbulent flow at the plant surface at low mainstream velocities (Koch, 1994; reviewed in 

Hurd, 2000). Additionally, the hairs of some macroalgae may increase the deposition of 

particulate material and create a still region at the thallus surface in which extracelluar 

enzymes can act (Koch, 1993).

Photon capture differs between aquatic and terrestrial environments due to the 

different spectral characteristics of light in these two systems. This is related to the fact 

that water attenuates the intensity of sunlight and preferentially absorbs the red 

wavelengths of light. In contrast, air neither attenuates nor alters the spectral properties 

of light (Niklas, 1997), although forest canopies have been found to reduce the red to far- 

red ratio (the ratio between transmitted light in the red band (655-665 nm) to far-red light 

(725-735 nm; Lieffers et al., 1999). Light can penetrate only a relatively small distance 

(as compared to the atmosphere) into an aqueous medium because water absorbs light 

more strongly than air. For example, light traveling through 50 m of air, will lose almost
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none of its intensity, but only 78% of incident blue light will still present, and virtually 

none of the incident red light when light travels through 50 m of water (Denny, 1993). In 

addition to this, turbidity decreases water transparency and thus increases light 

attenuation (James et al., 2004), which leads to a decrease in plant biomass (Christian and 

Sheng, 2003). For this reason, aquatic plants living a few centimeters below the water 

surface can experience significantly lower light intensities shifted in favour of blue 

wavelengths than plants living in air (Niklas, 1997). In addition to the problem of the 

reception of necessary intensities of appropriate wavelengths of light, a photosynthetic 

organism under water must also acquire dissolved carbon (Sculthorpe, 1967). Structural 

modifications of submerged leaves to increase their photosynthetic efficiency include: an 

extremely thin cuticle; thin leaves; and the presence of chloroplasts in the epidermis (as 

opposed to being found only in the mesophyll as with land plants; Sculthorpe, 1967).

Leaf shape, the length of intemodes, and the pattern of leaf arrangement are all important 

in defining the total amount of direct light a shoot can receive (Niklas, 1992). For 

example, it has been documented that in terrestrial plants, leaves that are more erect tend 

to have better light-use efficiency (Gutschick, 1999). However, in aquatic systems, a 

canopy with horizontal leaves is more successful in low light conditions, where leaf 

angles become more erect with increasing irradiance (Niinemets and Fleck, 2002). In 

terms of the length of the intemodes, low light levels increase this length as a way to 

extend leaves higher in the water column (Cronin and Lodge, 2003). Moreover, because 

chlorophyll a (the most common photosynthetic pigment) absorbs strongly at a 

wavelength of 680-710 nm (red light; Kirk, 1994), it is a relatively ineffective means for
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gathering light at depth (Denny, 1993). Interestingly, the diversity of accessory pigments 

found in the algae, are not seen in freshwater macrophytes (Dawes, 1981).

Nuritents

Barrat-Segretain (2001) has shown that one modification to poor nutrient 

conditions is for the shoot to root ratio to increase with decreasing sediment fertility in 

turbulent flow. The shoot to root ratio varies greatly among species and growth forms 

with bottom dwelling angiosperms having the lowest ratio, and taller erect and canopy- 

producing angiosperm species generating the highest ratios. Angiosperms growing in 

nutrient-poor environments have disproportionately large root systems and a reduced 

shoot to root ratio (Kalff, 2002) to aid in nutrient uptake as well as with anchorage. 

Additionally, plants at sheltered sites with thick diffusive boundary layers, increase their 

below-ground biomass, compared to plants at wave-exposed sites, probably in order to 

supply the plant with nutrients through root uptake (Strand and Weisner, 2001). It is 

known that rooted submerged macrophytes can take up inorganic nutrients from both the 

sediments and from the water column, but the rooted macrophytes generally obtain most 

of their phosphorus and nitrogen from the sediments (White and Hendricks, 2000; Kalff, 

2002). This is important because nutrients, especially nitrogen and phosphorus, usually 

control the rates of growth after disturbance (Biggs, 1996). Consequently, the maximum 

biomass that macrophytes achieve at a particular site, is the result of a balance between 

the conditions available for growth and the plants’ physiological responses at its current 

phase of growth (Hurd et al., 1996). In macrophytes lacking roots, nutrient uptake 

generally occurs across the blade surface, making surface area the measure that best 

reflects the rate at which nutrients are taken up across the cell membrane (Hurd et al..
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1996). Advection ensures a near continual supply and availability of nutrients to 

macrophytes directly through the replenishment of water, and indirectly through the 

supply to the sediments (Dawson, 1988).

Phosphorous is a nutrient that is mainly associated with organic matter and fine 

mineral particles of aluminum, calcium, and iron compounds. As a result, coarse- 

textured sediments contain much lower concentrations of nitrogen and phosphorous than 

fine-textured sediments (Sand-Jensen, 1998). Temporary sediment retention during 

summer exerts a strong influence on sediment processes and reduces the transport of 

nitrogen and phosphorous to downstream lakes and estuaries (Sand-Jensen, 1998). 

Phosphorous and nitrogen are generally considered the most critical nutrients for 

autotrophic production, although other elements (e.g., iron, potassium, and silica) can 

limit growth under certain circumstances. In nutrient-poor freshwaters, phosphorous is 

usually the principal nutrient limiting autotrophic production, whereas is in temperate 

marine waters, nitrogen is the more common limiting nutrient (Chambers et al., 1999). 

The relatively large and slow-growing macrophytes also have a much lower nitrogen and 

phosphorus requirement per unit carbon (biomass) than the much smaller phytoplankton 

(Kalff, 2002). When phosphorous is not limiting, temperature exerts the dominant 

control over algal growth rates (Bothwell, 1988).

Grazing, Predation, and Competition

It is also possible for grazers and predators to have an effect on macrophyte 

productivity. Although, direct grazing is generally not a controlling factor in the overall 

distribution and biomass of freshwater plants (Chambers et al., 1999). The higher 

structural carbon content appears to be responsible for making macrophytes as a group 

less desirable to herbivores than phytoplankton or periphyton (Kalff, 2002).
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Additionally, if resources are plentiful, there is no competition, regardless of the amount 

of niche (not canopy) overlap between individual plants as well as different macrophyte 

species (Abrams, 1980). Alternatively, if there is territoriality or if species actively alter 

their resource utilization to avoid a competitor, competition may occur in spite of the fact 

that there is little or no niche overlap (Abrams, 1980). Furthermore, it has been said that 

abiotic processes dominate lotie processes when flows are highly energetic, whereas 

biotic interactions such as competition or predation tend to occur in more predictable 

flow environments (Poff and Ward, 1989). Competition can be defined as a contest 

between plants for environmental resource, when that resource is limiting, and can be 

identified by growth inhibitions in one species that are caused by another (Agami and 

Waisel, 2002). For example, floating macrophytes (e.g., Azolla) can block light from 

submerged species (e.g., Elodea) thus decreasing its productivity (Forchhammer, 1999). 

Allelopathy is another form of competition whereby one organism produces a chemical 

substance that inhibits the growth of another organism, giving the first species the 

competitive advantage (Gopal and Goel, 1993). For example in Ceratophyllum 

demersum emits a chemical which limit the growth of cyanobacteria (Gross et al., 2003). 

Thus, competition is a complicated phenomena which is highly dependent on nutrient 

acquisition; generally a function of flow.

Flow in Macrophyte Canopies 

Effect of Macrophytes on Flow

Changes in water flow or velocity can alter the biomass and species composition 

of submerged plant communities, however, aquatic plants can also alter flow patterns. 

Marine and freshwater macrophytes can modify their physiochemical environment by
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slowing water flow, trapping sediments, and altering temperature and water chemistry 

profiles (Ackerman and Okubo, 1993; Chambers et al., 1999). These modifications occur 

because the nature of flow is changed as it enters and passes through plant canopies. 

Ackerman and Okubo (1993) have shown that upon entering the canopy, the velocity of 

the ambient current is considerably reduced. They also demonstrated that flow within the 

mid-portion of the canopy is consistent in terms of average velocity, with a slight 

increase in speed below the region of maximum leaf area. Accordingly, turbulence in the 

flow entering the canopy is suppressed by the consumption of energy by the 

hydrodynamic drag forces of large, divided fronds (Anderson and Charters, 1982). The 

drag is also reduced in canopies due to the protection of neighbouring plants (Sand- 

Jensen, 2003). In short, because turbulence in the incoming flow is damped, the net 

effect is a smooth internal and exiting flow at velocities below a critical value (6 - 1 2  cms'^ 

depending on the spacing of the branches), and an abrupt transition to turbulent flow at 

velocities above (Anderson and Charters, 1982). Anderson and Charters (1982) also 

demonstrated that the decrease in transition velocity from single plants to groups of 

plants suggests that the transition depends on the density of branches in the flow path, not 

only on a single dimension characteristic of the plant’s morphology. This is evident in 

the modification of turbulence in the flow passing though an algae with bushy 

morphology. If the flow entering the plant mass is turbulent, the turbulence will be 

damped as the water flows through the plant. This occurs because the dense morphology 

of the plant reduces the velocity within the plant structure. Conversely, turbulence is 

generated in the flow within the plant canopy because small branches act a roughness 

elements that trip the boundary layer creating an area of turbulence close to the plant
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surface (Anderson and Charters, 1982). Additionally, it has been shown that different 

macrophyte morphologies affect the flow within the canopy differently due to their 

differences in stem flexibility (Shi and Hughes, 2002).

The plastic morphological response of macrophytes to water motion has prompted 

the suggestion that by changing their morphology, submerged plants are able to modify 

their hydrodynamic environment and thereby reduce drag or diffusional stresses (Hurd et 

al., 1997). In a plant canopy, most of the flow enters through the upstream margin, 

whereas the deflected flow moves above and along the sides of the plant canopy. The 

high macrophyte density at the surface of the canopy develops in the unidirectional flow 

of the shallow streams because the shoots and leaves bend over becoming very dense at 

the canopy surface (Sand-Jensen and Pedersen, 1999). Sand-Jensen and Mebus (1996) 

demonstrated that as water velocity is reduced within these macrophyte patches, the 

velocity is accelerated around the patches to maintain the downstream discharge (i.e., 

continuity) of water, resulting in steeper vertical velocity gradients at the patch surface 

than those encountered above the sediment surface upstream of the patch. Hurd and 

Stevens (1997) showed that since small, finely branched plants slow down and dampen 

turbulence, conditions within the plant body at low mainstream flows could be ideal for 

the formation of thick diffusion boundary layers. Thus, for small, branched plants, the 

potential for diffusion-limited productivity is much greater than that for larger, broadly 

branched macrophytes.

Due to the fact that plants are flexible and interact with the flow, branching 

patterns, leaf/stem length and stiffness will influence the effective plant surface area 

exposed perpendicularly to the flow, and, thereby, the effective pressure drag. However,
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due to the uncertainty of estimates of typical plant parameters, transition from turbulent 

to laminar flow, and the flexibility of the plant canopies, it is very difficult to predict or 

model turbulence since flow rates and boundary layer thickness change temporally 

(Sand-Jensen and Pedersen, 1999). Sand-Jensen and Pedersen (1999) indicate that these 

scaling parameters are important because the flow patterns generated or modified by the 

presence of the plants have strong implications for: (1) plant metabolism, physical 

resistance and canopy development; (2 ) sedimentation and resuspension of sediment 

particles; and (3) the growth and survival of micro-organisms and invertebrates on plant 

surfaces or on sediments shielded by the canopies.

Disturbance

Flow may be disrupted in streams due to unpredictable peak flows, which may 

move the substratum, wash away individual organisms, and cause high mortality to biota 

(Winterbottom et al., 1997). Hydraulic disturbance by sudden increases in flow may be 

the major mechanism controlling differences in biomass and structure between streams. 

The type and duration of disturbance may be more important to stream ecosystems than 

factors such as nutrient levels or plant/animal interactions due to biomass removal (Biggs 

and Thomsen, 1995). Extreme hydraulic forces accompanying spates (i.e., sudden 

floods) can erode organisms from the stream bed, particularly where the substrate is 

moved. Consequently, flow structures in the water column determine the likelihood that 

entrained particles and benthic organisms will be transported out of the reach (Lancaster 

and Hildrew, 1993). The degree of disturbance of the plant communities for a given peak 

flow depends on the properties of both the plants and the habitat. At the plant level, the 

physical structure of the organism (which determines the drag properties), the strength of
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the root systems, intercellular connections, and how flexible the organism is, are 

important factors determining the impact of disturbance. At the habitat level, the age of 

the community and the shear stress to which it is already acclimatized contribute to the 

biotic resistance of the community (Biggs, 1996). Along these lines, the degree of habitat 

resistance is primarily a function of bed sediment stability or, more specifically, the 

ability of given sediments to resist being carried along in the current (Biggs, 1996). 

Velocity Profiles

The complex spatial distribution of roughness elements among plant stands, 

stream bed and banks, and the differences in flow velocity outside and inside plant 

canopies, may result in variable velocity profiles and the distortion of logarithmic profiles 

(Sand-Jensen and Pedersen, 1999). This variability is representative of higher slopes and 

higher hydraulic roughness leading to a more turbulent flow for the same mean velocity. 

The vertical hydraulic gradients and deviations from the mean current flow created by 

streambed features such as riffles and bars may play a strong role in the distribution and 

nutrition of lotie macrophytes (White and Hendricks, 2000). Another factor influencing 

velocity profiles is seasonal variability in the rate of discharge, however, the seasonal 

growth of plants can in turn modify the speed or velocity of this flow. Major changes in 

flow may eliminate or strongly suppress the growth of a plant population. Plants adjust 

to increased flow conditions by shedding their above-substratum parts or by rapid 

reinvasion from less vulnerable areas through the production of numerous propogules or 

seeds (Dawson, 1988).
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Sediments

The creation of a low energy environment above the sediments within macrophyte 

patches leads to the retention of fine mineral and organic particles (Petticrew and Kalff, 

1992; Sand-Jensen, 1998). This trapping of particles by macrophytes also produces 

sediments with a higher organic content and smaller grain size within the bed than in 

nearby uncolonized areas (Chambers et al., 1999). Increased current velocity, however, 

results in river beds with larger sediment particles that are usually less nutrient rich, and 

less densely packed than river beds that experience slower current velocity. For this 

reason, aquatic macrophytes tend to grow better in low flows, either because of increased 

sediment nutrient concentrations or due to the increased sediment stability (Chambers et 

al., 1991). Consequently, both macrophyte diversity and the distribution of macrophytes 

is positively correlated to the substratum type (Baattrup-Pedersen and Riis, 1999) 

demonstrating the importance of having fine sediments settle out of the water column 

(French and Chambers, 1996).

Baattrup-Pedersen and Riis (1999) showed that emergent macrophyte species are 

primarily assoeiated with finer-textured substrata (e.g. mud, peat and fine sand), whereas 

submerged macrophyte species are primarily associated with the coarser-textured 

substrata (e.g. coarse sand, stone, and gravel). For macrophytes, substrate type and 

coheSiveness also affect the strength of below-ground anchorage. In sediments that are 

not yet compact, the long-rooting plants (e.g. Sparganium erectum) are best adapted to 

resist spates. On coarser gravels the plants usually have a dense interweaving of shallow, 

often horizontal, roots (e.g. Rannunculus spp.), which curl around particles. These
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different methods of anchoring can stabilize the habitat and increase the overall resistance 

of a site to flow changes (Biggs, 1996).

Methodologies

Given the importance of fluid dynamics to aquatic plants, it is important to 

characterize and measure the fluid dynamic conditions in and around macrophyte 

canopies. A variety of flow visualization techniques exist that allow the observer to see 

the flow patterns, and depending on the complexity of the technique, measurement 

velocity and turbulence. Additionally, there are several methods of measuring velocity 

from which other quantities such as shear stress can be derived. It is important to have an 

accurate representation of flow conditions since they are one of the main factors 

regulating freshwater macrophyte productivity.

Flow Visualization

One of the most effective ways of assessing fluid flow is by observing streaklines 

of dye. Dye is injected into the flow upstream of the working section through an L- 

shaped hypodermic tube. The tube has to be so thin that its wake is smooth and laminar 

(Anderson and Charters, 1982). This method was used by Sand-Jensen and Pedersen 

(1999), whereby dye was injected into the flow upstream and along the sides of 

macrophyte stands, as well as in the interior, and the movements of the dye were 

observed to aid in the interpretation of the flow patterns. Nepf (1999) used a similar dye 

plume technique to measure diffusivity in the field within an emergent stand of Spartina 

altemiflora. When using dye tracking as a method of quantifying flow patterns, it is 

important to record the water depth, canopy height, percentage of the water column 

occupied by vegetation, vegetation density, size and patchiness of the plant bed, wind
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intensity and direction, and waves if possible and applicable (Koch and Verduin, 2001). 

The disadvantage of flow visualization with dye is it only allows for an estimation of 

average flows over relatively broad spatial scales when used in the field. Thus, when 

smaller scale questions are asked, more sophisticated techniques (such as PIV as is 

discussed in a later section) need to be employed (e.g., Koch and Verduin, 2001).

Alternatively, according to Hurd et al. (1997) another way to visualize the flow is 

by using time-lapse photography of two tracers, whereby a thin mixture of reflective resin 

is added to the tank and used to create particle streaks. Using this technique, Hurd et al. 

(1997) were able to see that the gradient region of the velocity profile becomes thinner 

with increasing free-stream velocity. It is possible to compare these observations with 

predicted values from the flat-plate boundary layer theory (Hurd et al., 1997). Neutrally 

buoyant particles can also be added to the water, and be illuminated by a laser light sheet. 

Images of the illuminated particles are taken using a high-resolution video camera 

equipped with a macro lens, mounted perpendicular to the light sheet (Stamhuis and 

Yideler, 1998). Mica Pearlescence flakes acting as tracers are another way to assess flow 

patterns. These particles are generally too fine to be used in velocity analysis but have 

the advantage that their plate-like nature aligns with velocity gradients so that regions of 

velocity variation, including turbulence, are visually represented (Hurd and Stevens,

1997). For example, in steep velocity gradients, the mica particles minimize drag by 

aligning with the shear. There is little reflection of light off of the aligned particles, and 

the viewer sees a dark patch of fluid; the black regions in the photographs therefore 

indicate shear. In regions where velocity gradients are weak, the mica particles are
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aligned randomly and scatter light in all directions, appearing silvery white (Hurd and 

Stevens, 1997).

Velocimetry

Particle-image velocimetry (PIV) is a powerful method to measure turbulence as 

well as coherent vortices in shallow water flows. This method offers spatial information 

related to the velocity field (Nezu and Onitsuka, 2001). A laser beam is expanded with a 

cylindrical lens system to form the plane light sheet whose thickness can be made less 

than 1 mm. Tracer particles are illuminated only when moving through this light sheet, 

and their images are recorded by a camera whose direction of observation is usually 

facing the sheet (Khalili et al., 2001). In the most frequently used PIV technique, two 

short exposures are taken, separated by a short time interval. The velocity measurement 

is thereby reduced to a recording of the displacement of individual particles during that 

time interval (Khalili et al., 2001).

An acoustic Doppler velicometer (ADV) can be used to measure velocity, 

turbulence, Reynolds stress and turbulence intensity for a given volume adjacent to or 

above the substratum (Bouckaert and Davis, 1998), as well as around macrophyte blades 

(Rybicki et al., 1997; reviewed in Hurd, 2000). The probe emits a series of acoustic 

pulses and records the reflection of these pulses from particles suspended in water 

(Khalili et al., 2001). The acoustic sensor consists of a transmitting transducer 

surrounded by two (2D) or three (3D) receiving transducers, usually mounted on short 

arms. The transmitted beams are typically orientated so that the sampling volume is 

located below the probe. This volume has a cylindrical shape, with a diameter of 

approximately 0.5 cm and a height of about 1 cm (Khalili et al., 2001).
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Velocity can also be measured with cylindrical hot-wire anemometers, to help 

with the interpretations of flow visualization around and within macrophyte stands (Sand- 

Jensen and Pedersen, 1999). The working principle of the thermal anemometer is based 

on heat transfer from an immersed, electrically heated sensor to a fluid. In homogeneous 

fluids with constant temperature and pressure, the velocity of the fluid passing the sensor 

determines the rate of heat loss from the heated element; that is, more heat is released to 

the fluid at higher velocities (Khalili et al., 2001).

Approximations and Derived Measurements

To determine values for mean shear stress, velocity profiles are measured, from 

which velocity is regressed against the logged depth values from the log-linear part of the 

velocity profile (Biggs and Thomsen, 1995; reviewed in Ackerman and Hoover, 2001). 

However, non-logarithmic layers may occur in strongly accelerating or decelerating flow 

like those found in river reaches which narrow or widen rapidly. The logarithmic profile 

may also be distorted by spatial variation in the mixture of roughness types on the bed, or 

by the extreme bed roughness that occur over dunes and large rocks (Carling, 1992; 

Hoover and Ackerman, in Press). In these circumstances it is often possible to obtain 

near log-normal distributions of velocity from close to the bed, which can be used to 

estimate the local bed shear stress (Carling, 1992). The velocity of the fluid is zero at the 

surface of any solid object and a velocity gradient (du/dz) must form perpendicular to the 

solid surface. This gradient (as extrapolated from the velocity profile) is the change in 

velocity with the change in distance perpendicular to the solid surface. The shear stress in 

laminar flow is thus expressed as: T = p (du/dz); where p is the viscosity (Vogel, 1994; 

Ackerman, 1997; reviewed in Hurd, 2000). However, things are complicated in turbulent
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flow because flow moves in both the horizontal and the vertical direction. To account for 

this the equation becomes f  = where f  = l^ —  is the kinematic eddy

viscosity (Kundu, 1990). This is simplified into the law of the wall w = —  In —  ,
^  V^o y

where m* is the friction velocity and r  -  p u l .

A Preston-static tube can be used to measure shear stress in laboratory as well as 

field settings (Ackerman and Hoover, 2001). This technique involves the use of a surface 

mounted Pitot tube to measure the total pressure at the boundary and a static pressure tap. 

The Preston tube must be small enough to be within the wall layer, pressure differences 

must be large, and the static pressure must be constant and measured close to the dynamic 

pressure tap (Ackerman and Hoover, 2001). This technique is however limited in that the 

flow needs to be as unidirectional as possible, and the water needs to be fast flowing 

since this method depends on measuring the dynamic pressure of the flow (Ackerman 

and Hoover, 2001).

Other Measurements

Drag, according to Schutten and Davy (2000), can be measured by attaching each 

individual shoot to a spring balance using a clamp of neutral buoyancy, with known and 

very small resistance, before submerging the blade into the flume current. The resulting 

tension is then read from the spring balance and corrected for the resistance arising from 

the clamp. Forces measured with the spring balance could potentially have a vertical 

component included because of the angle between the current and the plane of 

measurement; however, any such component would have been transferred to the tension 

only as the sine of that small angle.
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The dispersion of particles released and captured in a macrophyte canopy were 

used to measure the eddy diffusivity (Ackerman, 2002). This method can also be used 

with plastic models of plants as the capturing surface in order to examine the eddy 

diffusivity around different shapes, and at different heights in the water column (Harvey 

et al., 1995). A similar technique is to inject microparticles over a set period of time, 

after which those attached to glass rods (covered in vacuum grease) are counted under a 

black light. Once again, this is a technique used to determine the particle distribution and 

thus, the eddy viscosity, across the flume section (Harvey et al., 1995).

A technique that provides a relative estimate of water motion between and within 

sites is to measure the dissolution of a substance such as plaster, sugar, or benzoic acid 

from a module attached to the macrophyte surface (Angradi and Hood, 1998; Koehl and 

Alberte, 1988; reviewed in Hurd, 2000). Rough estimates of average shear velocities 

along surfaces of blades of different morphologies exposed to the same field conditions 

were made by measuring the weight loss during a 10 min interval of candy (e.g.. Life 

Savers) sewn to blades (Koehl and Alberte, 1988). This method requires that a 

calibration model be developed in a flume to relate mass loss of plaster, sugar or benzoic 

acid standards to water velocity and temperature. This model can then be used to 

calculate water velocity based on in situ loss of these substance standards (Angradi and 

Hood, 1998). This method is, however, very limited because the flow variables 

addressed using dissolution are diverse and are often nonspecific. For example, one 

cannot discern between the measurement of current velocity, flow intensity, turbulence 

intensity, or water motion (Porter et al., 2000).
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Conclusion

The vegetation of aquatic systems is defined by the movement of water, which 

influences plant form, dominates the growth-controlling factors (e.g. nutrients and light), 

and defines the canopy structure. Thus, different flows will directly determine the 

presence (or absence), and location of instream vegetation (Dawson, 1988). On a smaller 

scale, it can be seen that water motion affects an aquatic plant through the transport of 

mass, momentum, and energy from the flowing water through the boundary layer to the 

plant’s surface. The transport rates depend strongly on whether the flow in the boundary 

layer is laminar or turbulent. This is because the transport rates in turbulent flow with 

eddy diffusion are much larger than those in laminar flow with molecular diffusion 

(Anderson and Charters, 1982). Consequently, it is important for macrophytes to be able 

to alter morphologically to flow conditions because, different morphologies (i.e., bladed, 

whorled, and dissected leaves) potentially have different implications on the flow. This 

is relevant since it has been documented that there is a close relationship between 

environment and leaf structure and function (Rascio, 2002). Additionally, since plant 

form is important in creating and defining habitat in aquatic systems, it is important to 

examine the fluid dynamics surrounding macrophytes at a small scale using flow 

visualization techniques in order to determine what is happening around individual 

macrophytes to make implications to an ecological scale. The ecological scale provides 

an integrated response to a broad range of disturbances (Bunn et al., 1999). Intact 

ecosystems are required as references to compare the effectiveness of restoration 

programs, and as sources of natural genetic material for local stream reaches in need of 

restoration (Kauffman et al., 1997). Unfortunately, undisturbed ecosystems are becoming
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rare, and for many rivers it is due to anthropogenic processes (e.g. timber harvest, 

livestock grazing, agriculture, and urbanization; Poff et al., 1997) which alter flow 

regimes.
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Turbulent

Figure 2.1: a) Laminar flow as seen by the smooth dye streakline, b) transitional flow as 
seen by the increasing waviness of the streakline, and c) turbulent flow as seen by the 
choatic nature of the streakline.
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Figure 2.2: The transition to turbulent flow of a fluid as it passes a circular cylinder seen 
in cross section at different Reynolds numbers: (a) 1, (b) 10, (c) 13, (d) 26, (e)105, and (f) 
150.
(From: http://nmm.media.mit.edu/student/95/aries/mas864/obstacles.html)

http://nmm.media.mit.edu/student/95/aries/mas864/obstacles.html


65

Figure 2.3: A rectangular block of fluid is deformed by shear stress, so two faces become 
parallelograms (after Vogel, 1994).
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Figure 2.4: The benthic boundary layer concept. A velocity profile is presented from the 
surface (U = 0) to the free stream (U = U«=; after Ackerman, 1989).
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Figure 2.5: The four basic habitats of freshwater macrophytes: (A, B) free-floating; (C) 
submerged; (D, F) floating-leaved; and (E, F) emergent (Wells and Pigliucci, 2000).



68

PODOSTEMOMACEAS.

Ttbâelii Toi.
flfot ÉB IWb«. P ficnnr. C Timaf W Uft^m

1. FWawm&l,

Figure 2.6: Examples of caulescent macrophytes a) Elodea canadensis and b) 
Myriophyllum spicatum (from; http://plants.ifas.ufl.edu/myrspi8.jpg; Vie Ramey, 
University of Florida) ; rosette macrophytes c) Isoetes spp. (from: 
http://www.anbg.gov.au/images/photo_cd/9J18G146043/006; Murray Fag, Australian 
National Botanic Gardens) and d) Vallisneria americana', and a thalloid macrophyte e) 
Tristicha alternifolia (From: http://biodiversity.uno.edu/delta/angio/www/podostem.htm; 
Watson and Dalhoitz, 1992 onwards).

http://plants.ifas.ufl.edu/myrspi8.jpg
http://www.anbg.gov.au/images/photo_cd/9J18G146043/006
http://biodiversity.uno.edu/delta/angio/www/podostem.htm
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a) b) d)

Figure 2.1 \ Different arrangements of leaves around plant stems: a) opposite, b) alternate,
c) whorled, and d) rosulate. (From:
http://extension.oregonstate.edu/mg/botany/leaves3.html; 2004 Oregon Sate University)

http://extension.oregonstate.edu/mg/botany/leaves3.html
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Figure 2.8: Morphologies of entire leaves ranging from linear to sagittate (cordate). 
(From: http://www.csdl.tamu.edu/FLORAAVilson/tfp/veg/shapes3.gif)

http://www.csdl.tamu.edu/FLORAAVilson/tfp/veg/shapes3.gif
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Figure 2.9: An example of a petiole-like freshwater macrophyte, Nuphar advena (from: 
http://plants.ifas.ufl.edu/nupadv7.jpg; Vic Ramey, University of Florida)

http://plants.ifas.ufl.edu/nupadv7.jpg
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Leaf Margjln;

serrate undulate

Figure 2.10: Different leaf margins that occur within entire leaf morphologies (From: 
httD.7/collections.ic.gc.ca/gardens/Horticulture/The%20Structure%20of%20Plants.htm).
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Figure 2.11: Fenestration occurs when small areas of interstitial tissue are lacking at 
maturity as demonstrated in this leaf of Aponogeton madagascariensis (Photo by Patrick 
Ragaz).
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Figure 2.12: Dissected leaves (e.g. Ceratophyllum) occur when the leaf is subdivided.
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1 cm

Figure 2.13; From left to right, the leaves represent the transition from submerged to 
aerial leaf morphology observed in the vertically ascending stems of Proserpinaca 
palustris. (Wells and Pigliucci, 2000).
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Figure 2.14: Typical growth forms of freshwater macrophytes in slow to very fast flows 
in shallow an deeper flowing waters (Dawson, 1988).
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a) b)

Figure 2.15: Two examples of heterophylly: (a) Cabomba caroliniana has dissected 
submerged leaves and entire floating leaves, and (b) Potamogeton natans has linear 
submerged leaves and ovate floating leaves. (From: http://plants.ifas.ufl.edu/cabaqu2.jpg; 
Vic Ramey, University of Florida, and
http://www.miljolare.no/bilder/planter/ferskvann/makro/potamogeton_natans.jpg)

http://plants.ifas.ufl.edu/cabaqu2.jpg
http://www.miljolare.no/bilder/planter/ferskvann/makro/potamogeton_natans.jpg
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The Effect of Macrophyte Morphology (Linear-bladed, Whorled, and Dissected) on
Fluid Dynamics

Abstract:

Fluid dynamic factors are important in defining the environments in which 

macrophytes live, and have likely played a role in their evolution. For example, 

freshwater macrophytes with different leaf morphologies (i.e., linear-bladed, whorled and 

dissected) are common, but it is not known how these morphologies affect the flow 

around them. An examination of the manner by which macrophytes affect their flow 

environment was undertaken using flow visualization and image analysis of three 

macrophyte species, Vallisneria americana (linear linear-bladed or ribbon-shaped), 

Elodea canadensis (whorled), and Ceratophyllum demersum (dissected), and a circular 

cylinder (physical model). The study was undertaken at five velocities ranging from ~1 -  

11  cm s'\ using fluoroscein dye to visualize the flow patterns and digital recording to 

capture the information. The flow patterns showed that at slower velocities the flow was 

laminar as indicated by smooth dye streams, and stickiness as indicated by the loops of 

dye attached to the leaf of Vallisneria, to the individual leaf whorls of Elodea, and to the 

individual leaf segments of Ceratophyllum. At faster velocities, turbulence in the flow 

was indicated by the generation of eddies, which were widely spaced downstream of the 

cylinder, Vallisneria, and Elodea, and closely spaced downstream of Ceratophyllum.

The transition from laminar to turbulent flow occurred at lower velocities for the plants 

than for a circular cylinder, with the exception of Ceratophyllum, thus indicating an 

increase in local mixing. In addition, both the area of dye coverage and the concentration 

of dye decreased at slower rates for the plants than for the cylinder, suggesting that plants 

retain more fluid relative to the physical model. The consequence of these results
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indicated that there is both an increase in local flow around the plants and a retention of 

fluid near the plants which provides more opportunity for nutrient exchange in the 

boundary layers surrounding freshwater macrophytes. Therefore, it appears that aquatic 

plants alter the flow in ways that maximize flow across leaves, which would enhance 

nutrient exchange and thus macrophyte productivity.

Introduction:

Aquatic plants are important primary producers in aquatic ecosystems (Dodds and 

Biggs, 2002), and are also ecosystem engineers in that they can (1) promote water quality 

by providing physical protection for algal grazers; (2 ) compete with the algae for 

nutrients; and (3) reduce water currents and allow suspended material to settle (Schutten 

and Davy, 2000; Palmer et al., 2004; Wright et al., 2004). Interestingly, there are 

freshwater macrophytes from different families that share common architecture and 

habitat, and plants from the same families that differ in architecture suggesting that 

genetics is probably not the only factor influencing plant morphology (Sculthorpe, 1967; 

Schlichting, 1986; Ackerly et al., 2000; Givnish, 2002; Santamaria, 2002; Santamaria et 

al., 2003; Dorken and Barrett, 2004). For example, Vallisneria and Elodea are in the 

same family (Hydrocharitaceae monocotyledons) yet have very different architectures; 

Vallisneria has long ribbon-shaped leaves, and Elodea has shorter whorled leaves. 

Ceratophyllum (Ceratophylleaceae) and the submerged foliage of Cabomba 

(Nymphaeaceae) in the dicotyledons have highly dissected whorled morphologies and are 

in different families. Moreover, heterophylly (foliage plasticity) occurs in some species 

of freshwater macrophytes whereby a plant may have different leaf shapes depending on 

whether they are under, on, or above the water surface. Heterophylly occurs across
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distant taxa, which suggests that unrelated plants have adapted in a similar fashion to the 

aquatic environment (Sculthorpe, 1967; Goliber and Feldman, 1990; Wells and Pigliucci, 

2 0 0 0 ); adding to the argument that structural similarities occur due to adaptation to a 

common fluid environment. The three common patterns of macrophyte morphology (i.e., 

linear-bladed, whorled, and dissected leaves) exist in different flow habitats ranging from 

stagnant ponds to flowing streams (Dawson, 1988). Specifically, Vallisneria, Elodea and 

Ceratophyllum all live in both still and flowing water (Cook et al., 1974). As such, it 

would be appropriate to examine the nature of the factors that have potentially influenced 

these morphologies, including fluid dynamic factors.

Fluid dynamics may play a large role in influencing macrophyte structure as fluid 

dynamic factors are important in defining the microenvironments in which plants live 

(Dawson, 1988). For example, plants living in energetic environments are exposed to 

high drag forces that may cause damage to their leaves or blades, whereas in low energy 

environments productivity may be limited by a thick boundary layer over which nutrients 

are absorbed (Hurd et al., 1997; Schutten and Davy, 2000). Regardless of the 

environmental conditions, a boundary layer begins at the surface of a boundary, where 

the velocity is zero, and grows until the velocity of the boundary equals that of the 

mainstream velocity (Vogel, 1994). Boundary layers are influenced largely by Reynolds 

number (Re), which is the ratio of inertial to viscous forces (Vogel, 1994). The higher 

the Re, the thinner the boundary layer, and the higher the shear rate (i.e., the faster the 

fluid moves past a solid surface); and the lower the Re the thicker the boundary layer and 

the lower the shear rate (Cheer and Koehl, 1987). If the Re is low (e.g., small, slowly 

moving objects or low flow velocities), the flow is dominated by viscous forces, and is
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consequently smooth and orderly, encouraging the growth of a thick boundary layer 

(Koehl, 1996). This thick boundary layer may lead to diffusional stresses (i.e., limited 

mass transfer) due to the low flux of nutrients through the boundary layer to the leaf 

surface compared to the rate at which the plants can utilize these nutrients.

Drag is also an important concept related to plants as it is the hydrodynamic force 

that pulls a body in the direction opposite to fluid movement and in the case of boundary 

layers, the force that slows the flow (Koehl, 1996). At low Re, drag is due to skin 

friction, which is the viscous resistance of the fluid in the boundary layer around the body 

being sheared as the fluid moves past the body. Consequently, the greater the surface 

area, the greater the skin friction. At high Re, drag includes skin friction but is 

dominated by pressure drag, which is the pressure difference across the body due to the 

fluid dynamic separation or the formation of a wake on the downstream side of the body 

(Vogel, 1987; Koehl, 1996). The drag force depends on the velocity of the fluid, the 

frontal area and roughness of the object. Additionally, for a non-spherical object, the 

shape and orientation of the object in relation to the flow are also important (Schutten and 

Davy, 2000). For example, when plant stems bend downstream in response to faster 

flow, their frontal area is reduced, lowering pressure drag. Long ribbon shaped leaves 

can fold against the stem or each other, reducing skin friction (Ennos, 1999). It is thus 

important to consider how fluid dynamic factors at low and high velocity effect the 

morphological patterns observed in macrophytes.

This study will focus on the null hypothesis that plants with different leaf types 

(linear-bladed, whorled and dissected) effect the downstream flow patterns in the same 

manner. It is expected that Vallisneria (linear-bladed) will act in a manner similar to a
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physical model provided by a circular cylinder despite its flexibility, because of its 

smootb-linear-bladed morphology. It is expected that Elodea (whorled) will also act 

similar to the cylinder because of its rigid structure, and because the whorls of entire 

leaves are likely spaced far enough apart to not have a significant effect on flow 

separation. It is, however, expected that Ceratophyllum (dissected) will act more as a 

mesh because of the high level of dissection in its leaves.

Materials and Methods:

The data were obtained from photographs and short videos of Fluorescein dye 

moving past (I) the empty test section of the flume, (2) a circular cylinder (0.7 cm 

diameter), (3) Vallisneria americana, (4) Elodea canadensis, and (5) Ceratophyllum 

demersum (5 cm long sections). The empty flume was used to establish that the observed 

patterns in the study were due to the subject-flow interaction. The circular cylinder was 

used as a physical model for comparison as it is a well characterized fluid dynamic 

system and a first approximation to an aquatic plant (Kundu, 1990; Coutanceau and 

Defaye, 1991; Williamson, 1996; Palmer et al., 2004); E. canadensis was acquired from 

Tabor Lake, Prince George, B.C., whereas V. americana and C. demersum were 

purchased from Ward Scientific Supply (Rochester, NY, USA). Plants were maintained 

in aquaria at -20 °C under natural light conditions, with potting soil (vermiculite 

removed) as the substrate. Water velocities over the range of I-I I  cms'* were used in 

this study, which are similar to velocities used by Nepf and Koch (1999) and Leonard and 

Luther (1995). These velocities are at the lower end of the range where the macrophytes 

occur in the field (Wiegleb, 1984; French and Chambers, 1996; Elliot, 2000; Shi and
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Hughes, 2002; Wuest and Lorke, 2003), but are consistent with within-canopy flows 

(Sand-Jensen and Mebus, 1996).

Flume

A recirculating flume of dimensions 19.2 cm (width) x 24.7 cm (height) x 170 cm 

(length) was used for this study, with the test section being 1 2 0  cm downstream of the 

flow straighteners (Figure 3.1). Velocity profiles were obtained using a 3-dimensional 

Acoustic Doppler Velocimeter (ADV; SonTek; sampling at 25 Hz) for each mainstream 

velocity examined during the experiments. These profiles show the logarithmic boundary 

layer development, except at the faster velocities, where not enough data points were 

collected in the logarithmic layer close to the bottom of the flume. The log portion of

these profiles was used to calculate the shear velocity (u* from m = — In—  ; where u is

the velocity in the downstream direction, K is the von Karman constant (= 0.40), z is the 

distance from the boundary, and zq is the roughness length (height): Table 3.1; Hoover 

and Ackerman, 2001; Figure 3.2 a-e).

Photographs

Photographs or short videos (duration 40 seconds) were taken from both a 

top and side perspective with a Nikon CoolPix995 (Melville, NY, USA) digital 

camera placed approximately 60 cm directly across from the subject. The 

camera was set with the ISO (sensitivity setting) at 400; the image adjustment at 

lighten image; the shutter speed at 1/30; and the overall camera setting was at 

shutter priority auto. All photographs were taken with a black cloth surrounding 

the working section of the flume and the camera so that no external light could 

enter the system.
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Dye (3 g/L sodium fluoroscein in distilled water) was released 3 cm 

upstream of the subject and 3 cm vertically up from the base of the stem using a 

peristaltic pump (mini-pump variable flow; slow flow, VWR, Canada; see Figure

3.1). Dye was released isokinetically, i.e., to match the mainstream velocity as 

close as possible (Table 3.2). Dye was used to provide an indication of the 

pattern of water flow around the subjects (i.e., physical model, and three plant 

species).

Top perspective

A positioning device consisting of a modified syringe attached 

perpendicularly to a Plexiglas plate was mounted to the side of the flume. The 

subject (i.e., model or plant species) was placed in the top of the syringe and held 

in place with mounting putty (Lepage, FUN-TAK) the putty was covered in 

black tape in order to reduce reflectance (Figure 3.3). The subject was 

positioned so that the dye would intercept in the centre, 3 cm up from the false 

bottom of the flume. The lighting consisted of: (1) a 15 W florescent black light 

(41 cm long, 2.5 cm diameter; General Electric; Burnsville, MN, USA) attached 

approximately 15 cm above the flume, 15 cm downstream of the plant; and (2) a 

6 V 15W white halogen mieroscope light (set at intensity #6 ; VWR; Mississauga,

ON, Canada) that was placed on the stand direetly over top of the subject (Figure

3.1). A corrugated plastic sheet with a 1 cm wide and 17 cm long slit was placed 

on the top of the flume to illuminate the flow behind the subject. It was assumed 

that surface waves and buoyancy effect (i.e., gravity) were not likely significant 

based on the depth of the positioning device below the surface (~ 6 - 8  cm below
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the surface depending on the velocity) and on the relatively short distance (~ 1 0  

cm) that the dye travels horizontally. Based on these assumptions, the fluid 

patterns in the empty test section were set as the base to which comparisons were 

made (i.e., they were set as the control).

Side perspective

A similar set up was used for photographs in the side perspective. In this 

case, the subject was placed in the hole drilled in a false bottom placed in the 

flume and held in place with putty, such that the putty was flush with the false 

bottom. The lighting scheme was the same as for the top view except that the 

corrugated plastic sheet with the slit was not used (Figure 3.1).

Concentration Curve

A concentration curve was generated in order to convert from pixel value 

in the photographs to the concentration of dye in the flow. This process was 

undertaken separately for side and top perspectives because of the different 

lighting schemes. The 100% dye concentration was set at 3g (sodium 

fluorescein) /L (distilled water), and serial dilutions were made (i.e., 100-0.01%

[= 100, 10, 1, 0.1, 0.01%], 200-0.02%, 300-0.03% and 50-5%) omitting the 

values above 100% in the analyses. The dye of a given concentration was placed 

in a cuvette with black tape on the upstream and downstream sides and around 

the cap to minimize leakage. The cuvette was placed upside down in the test 

section of the flume and a cuvette containing 100% dye was placed 0.5 cm 

upstream, and a cuvette containing 0% dye was placed 0.5 cm downstream of the 

cuvette under investigation (Figure 3.4). Photographs of the cuvettes were made 

using the same lighting scheme as was used to take the photos. The photos were
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imported into MATLAB version 6.5 (Mathworks, Natick, Massachusetts) for 

conversion to gray scale and the background dye, determined as 69 in the side 

perspective and 19 in the top perspective, was subtracted (see below). Since the 

flume water was changed frequently (i.e., after every trial) the background dye 

never exceeded the aforementioned pixel values. Five pixels were sampled from 

each cuvette directly below the top of the cuvette, where the reflectance of the 

plastic no longer influenced the dye. This technique was verified by sampling 

pixels in the dye stream immediately downstream of the dye injector, where the 

concentration of dye should be 100%. The results from both locations were 

similar in side (186 ± 0  [mean ± standard error], n = 1 0  where a pixel value of 

186 = 100% concentration) and top perspectives (89 ± 3, n = 10 where a pixel 

value of 8 8  = 100% concentration). Lastly, the positions of the 100% and 0% 

dye cuvettes were changed to determine whether the lighting varied across the 

test section, but no differences (186 ± 0 , n = 1 0  for 1 0 0 % concentration, and 0  ±

0 , n = 1 0  for 0 % concentration) were detected.

The concentration curve (Figure 3.5) was non linear and was, therefore, 

divided into two portions: (1) an exponential portion for 0.01-5% dye plotted 

using a log-log transform; and (2 ) a linear portion from 1 0 -1 0 0 % dye data 

(Figure 3.6 a-d). The 10% dye concentration was used as the demarcation 

between the two portions of the curve because that is where the curve changed in 

the original plot (Figure 3.5).

Pixel values were grouped into fourteen bins of non-uniform size based 

on the following equation, (((actual pixel value -  estimated pixel value)/ actual pixel value)
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X 100%), where actual pixel is the value from the cuvette photographs, and 

estimated pixel is the pixel value determined from the concentration curve. The 

bin sizes are as follows: 0, 0.001-0.050, 0.051-0.150, 0.151-0.250, 0.251-0.500, 

0.501-1.000, 1.001-2.000, 2.001-5.000, 5.001-10.000, 10.001- 20.000, 20.001-

40.000, 40.001-60.000, 60.001-80.000, and 80.001-100. The reason for non­

uniformity in bin size was to minimize the error in estimation. In this case the 

degree of error accepted was set differently for the non-linear (< 1 0 % dye 

concentration) and linear (> 1 0 % dye concentration) portions of the 

concentration curve. The errors were 27% and 12 % for non-linear and linear 

portions, respectively for the side perspective and 25% and 13% for the top 

perspective. A mock photograph of known area was examined to test this 

binning method (Figure 3.7). The distribution of colour within the photograph 

was set as white = 23.6%; gray = 27.7 %; black = 48.7 %. The distribution 

determined using the MATLAB based system was white = 24.3 %; gray = 27.0 

%; black = 48.7%. These results indicate that the binning method appears to 

work well and would be appropriate to apply to the dye patterns in the 

photographs and videos. Since it is known that 100% dye concentration is 3g/L, 

the actual dye concentration was calculated through cross multiplication and 

used in further analysis.

Image Analvsis

A MATLAB program (Image Analysis Toolkit -  version 6.5.0 Release

13.0.1) was used to edit the photos and to extract the digital information in the 

flow around the subject of interest (e.g. cylinder or plant) (Box 3.1). Before the
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photos were processed in MATLAB, the subject was removed from the picture in 

Adobe Photoshop (Version 5.0 limited edition; Adobe system, San Jose, 

California) so that it would not be included in the analysis. The photos were 

converted to gray scale so that the output was a two dimensional array 

corresponding to the spatial location and pixel intensity (0 -  255). The 

brightness and intensity of the image was then adjusted using MATLAB routines 

to maximize visibility and any background level of dye (i.e., the dye in the flow 

from an earlier trial) was subtracted from the image (see box 3.1). Four domains 

of interest were identified: (1) upstream of the subject in the side perspective (6  

cm high X 2 cm wide), (2) downstream of the subject in the side perspective ( 6  

cm high X 7 cm wide), (3) upstream of the subject in the top perspective (4 cm 

wide X 2 cm long) and, (4) downstream of the subject in the top perspective (4 

cm wide x 7 cm long). These domains were compared in the statistical analyses, 

which will be discussed in a later section.

The area of dye coverage was defined as any area in the domain (i.e., 

upstream vs. downstream in top and side perspectives) containing dye (i.e., a 

non-zero pixel after background correction). The concentration of dye in the 

domain was determined from these same data by converting the pixel intensities 

to dye concentration using the relationship described above (see Concentration 

Curve). This procedure used the frequency distribution of the pixel intensities, 

which were multiplied by the concentration at the midpoint of each frequency 

bin (recall that 100% dye concentration is 3g/L). This analysis was repeated for
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each of the three photographs taken at a given velocity. The average and 

standard deviation of the three observations are reported.

Acoustic Doppler Velocimeter (ADV; SonTek) Measurements

Velocity measurements in three dimensions were taken on a horizontal plane (i.e.,

top perspective) 3 cm above the bottom of the flume using an ADV to examine the flow 

around: (1) the empty test section; (2) a circular cylinder; (3) Vallisneria americana; (4) 

Elodea canadensis; and (5) Ceratophyllum demersum. Each set of measurements was 

taken at a frequency of 25 Hz for 120 s in a 2 cm x 2 cm grid that was 8  cm wide and 16 

cm long. The exception occurred in the vicinity of the subject where measurements were 

taken at a 3 cm distance due to interference of the acoustic signal with the subject (Figure 

3.8). These measurements were made at the same five flume velocities as the photos in 

order to have quantitative verification of any patterns that may occur. The ADV also 

gives the root mean square of the velocity, which can be divided by the average velocity 

to give turbulence intensity. This data was not included in this thesis because the trend 

was similar to that seen in the velocity contour plots, where there was an increase in 

turbulence intensity directly behind the plant. In all cases (cylinder and plants) the 

turbulence intensity was approximately 60% upstream and beside the subject, and 

approximately 100% behind the test subject at the lowest velocity (1.3 cms'^). At the 

fastest velocity (1 1 .0  cms'*), the turbulence intensity ranged from 2 0 % upstream and 

around the cyinder to 40% behind the cylinder, in Vallisneria the range was from 20- 

25%, in Elodea from 30-50%, and in Ceratophyllum from 25-30%.

Plant Angles and Oscillations

The downstream deflection and rate of oscillation of the plants in the flow were 

examined using the 40 s video recordings. The angle of deflection (angle from the
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vertical) of the subject was measured for the cylinder and the three plant morphologies. 

Since the plants did not remain stationary (i.e., they oscillated), the angle of deflection 

was measured at the mean position taken at the location where the moving plant tips were 

most frequently (Stephan and Gutknecht, 2002), under the assumption that the plant stem 

is a straight line as in most cases there was a slight curve in the stem. The oscillations 

were counted as the number of times the plant rose and fell during the 40 s recording. 

With Vallisneria, only one blade was examined; the one that was parallel to the flow in 

the downstream position. Additionally, the angle of the leaf from the stem was measured 

for Ceratophyllum for the leaves in both the upstream and downstream position, from the 

base of the plant to the apex.

Statistical Analysis

Effect of Velocitv on Dve Coverage and Concentration

To determine whether increasing velocity affected the area of dye coverage and/or

the concentration of dye in that area, the average and standard deviation in each domain

were determined for three images taken at each velocity. The resultant values (area or

concentration) were then regressed on the test velocity and stem Reynolds number based

on the diameter of the subject (i.e.. Re = — , where u is the velocity, 1 is the diameter
V

of the plant stem and whorl, and o is the kinematic velocity; Vogel, 1994). The null 

hypothesis examined was that the slope of the regression would equal zero. In other 

words there is no relationship in area of dye coverage or concentration of dye with 

increasing velocity.

Effect of Location and Perspective on the Dve Coverage and Concentration
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An analysis of covariance (ANCOVA) was used to test the null hypothesis that 

there is no difference in the upstream and downstream flow patterns in both the side and 

top perspectives for the different subjects. Area was normalized by using the relative 

frequency (# pixels of dye/ total # pixels x 1 0 0 %) of dye in the ealeulation of the area of 

dye coverage. In this case, the area of dye coverage was used as the dependent variable, 

the domains (i.e., side or top perspeetive, upstream or downstream) were the categorical 

factors, and velocity was the continuous predictor (the covariate). Comparisons between 

side and top views were make within the same test section. A Fisher least significant 

difference (LSD) test was used for Post Hoc pair wise eomparisons. The same analysis 

was used to examine the eoneentration of dye in the specified area.

Effect of Morphologv on the Rate of Oseillation

ANCOVAs were condueted to test the null hypothesis that the rate of stem 

oscillation did not differ among plant morphologies. The oseillation rate was used as the 

dependent variable, the different subjects were the categorical factors, and velocity was 

the continuous predictor. A Fisher LSD test was used for Post Hoe eomparisons.

Effect of Velocitv and Node Position on the Leaf Angles of Ceratophyllum

ANCOVAs were used to test the null hypothesis that the position of the leaf on 

the stem (i.e., from base to apex) had no effect on the angle of the leaf. The angle of the 

Ceratophyllum leaf from the stem was used as the dependent variable, the node position 

on the stem was the categorical factor, and velocity was the continuous predictor. A 

Fisher LSD test was used for Post Hoe eomparisons.

Effect of Location on Velocitv
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ANCOVAs were used to test the null hypothesis that the pattern of velocity 

upstream of the subject is the same as the pattern of velocity downstream of the subject. 

This was done by grouping together the upstream ADV velocity measurements (14 

points) and the downstream ADV velocity measurements (30 points). The average 

measured velocity (of each point) was used as the dependent variable, the position 

(upstream or downstream) of the measurements was the categorical factor, and test 

velocity was the continuous predictor (the covariate). A Fisher LSD test was used for 

Post Hoc pairwise comparisons. Since the area where the ADV velocity measurements 

were taken was larger then the area used in the image analysis, only the measures of 

velocity that were in the same area used in photos from the top perspective were used 

(i.e., 4 cm wide and 2 cm long upstream, and 4 cm wide by 7 cm long downstream. 

Results:

Empty flume

The flow, as indicated by the dye streaklines was similar in both side and top 

perspectives (i.e., left and right panels, respectively (Figure 3.9a-j). The dye streaks were 

approximately linear at the two lowest velocities (1.3 and 2.0 cm s'\ Figure 3.9a-d), but 

became “wavy” at the higher velocities (5.0, 8.4, and 11.0 cms"\ Figure 3.9e-j). In 

addition the dye streaks were wider (had less contrast) at the higher velocities indicating 

relatively fast flows (e.g. Figure 3.9i-j). In terms of the area of dye coverage, there was 

little evidence of an effect of velocity in the “upstream” or “downstream” (defined 

arbitrarily here as there was no subject placed in the flow) domains (Figure 3.10a-d). The 

concentration of dye imaged in the domains tended to decrease with increasing velocity, 

and this was significant in three of the four domains and was on the order of -O.IgL 

Vcms'^ (Figure 3.10f-h).



Chapter 3 93

In terms of the area of dye coverage in a specified domain, the ANCOVA showed 

that there was a significant difference between the flow upstream and downstream of the 

empty test section (p < 0 .0 0 1 ), but not between the side and top perspectives (p = 0.082; 

Table 3.3a), suggesting that surface waves and buoyancy do not have a significant effect 

on the side vs. top fluid patterns. A significant interaction (p = 0.047) was found for the 

side versus top perspectives by the upstream and downstream position. The post hoc 

comparisons for the empty test section support this, showing that significant differences 

occurred between all domains (p < 0.003), with the exception of the side and top 

perspectives upstream of the test section (p = 0.81: Table 3.4a).

In terms of the concentration of dye in a specified domain, the ANCOVA showed 

that there was a significant difference between the upstream and downstream positions (p 

= 0.017), but not between side and top views (p = 0.95; Table 3.3a), supporting the 

assumption that surface waves and buoyancy do not have a significant effect on the side 

vs. top fluid patterns. Post hoc comparisons agreed, whereby significant differences 

occurred between the upstream and downstream position in the side perspective (p = 

0 .0 1 1 ), between the side perspective upstream and the top perspective downstream (p = 

0.034) and between the top perspective upstream and the side perspective downstream (p 

= 0.042; Table 3.5a).

Cylinder

The dye streakline upstream of the circular cylinder did not appear to change with 

increasing velocity, in that it remained in a straight stream in both side and top 

perspective (Figure 3.11). However, downstream of the cylinder, there was laminar flow, 

with loops of dye that indicate “stickiness”, and a large area of recirculation at the slower 

velocities. The transition between laminar and turbulent flow as indicated by the onset of
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eddies occurred between 5.0 cms'^ and 8.4 cms'^ (Re ~ 350-590). At the faster velocities, 

the flow was turbulent, and as such less sticky, and the recirculation zone was smaller. 

The dye streaklines downstream in the top perspective revealed a classic attached eddy at

1.3 cms'* (Re ~ 90; Figure 3.11b), a von Karman vortex street at 2 cms'^ (Re ~ 140;

Figure 3.lid ), and more turbulent structures at higher velocities (Figure 3.11f,h,j).

The image analysis indicated that there was no relationship between the area of 

dye coverage and velocity in the upstream flow (p = 0.19 and 0.28; Figure 3.12a,b). 

However, there was a significant increase, on the order of 0.5 cm^/cms'\ in the dye 

coverage downstream in the side perspective with velocity (p = 0.018; Figure 3.12c), and 

a tendency for increase in the top perspective (p = 0.41; Figure 3.12d). Additionally, 

there was a tendency for the dye concentration to decrease with velocity in the upstream 

and downstream domains (e.g., ~ -0.05 gL'Vcms'*), and this was significant in the case of 

the downstream side perspective (p = 0.014; Figure 3.12g).

In terms of the area of dye coverage in a specified domain, the ANCOVA 

indicated that there were significant differences upstream and downstream of the cylinder 

(p < 0.001), but no differences occurred between the side and top perspectives (p = 0.52; 

Table 3.3b). The post hoc comparisons concurred in that there were significant 

differences (p < 0 .0 0 1 ) between the upstream and dowstream domains, but no significant 

difference between side and top perspectives upstream of the cylinder (p = 0.94; Table 

3.4b). Furthermore, there was no significant difference between the side and top 

perspective downstream of the clinder (p = 0.28).

The ANCOVA of the concentration of dye indicated that there was no significant 

difference between side and top perspectives (p = 0.39), nor between the upstream and
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downstream position of the cylinder (p = 0.22: Table 3.3b). Post hoc comparisons also 

showed that domain had no significant effect on the concentration of dye (Table 3.5b).

Vallisneria americana

The dye streakline upstream of Vallisneria remained in a relatively straight stream

in both side and top perspeetive (Figure 3.13). The dye streaklines downstream showed a 

large amount of recirculation under the leaf, and a high amount of stickiness on the leaf. 

The flow was laminar at 1.3 cms"' (Re ~ 25) as indicated by the smooth dye streakline 

(Figure 3.13a,b); the transition from laminar to turbulent occurred at about 2.0 cms"  ̂ (Re 

~ 40) when eddies began to detach (Figure 3.13c,d); von Karman vortices were shed at 

5.0 cms ' (Re ~ 100; Figure 3.13f); and more widely spaced eddies with less stickiness 

and recirculation were observed at the higher velocities (Figure 3.13g-j).

The image analysis indicated that there was no relationship between the area of 

dye coverage and velocity in both the upstream (p = 0.072) and downstream (p = 0.69) 

flow in the top perspective (Figure 3.14b,d). However, there were significant increases 

in the area of dye coverage with velocity in both the upstream (p = 0.034) and 

downstream (p = 0.014) flow in the side perspective, with slopes of 0.03 cm^/cms'^ and 

0.2 cm^/cms"\ respectively (Figure 3.14a,c). In addition, there was a significant decrease 

of -0.05 gL'Vcms"' in the dye concentration with velocity in the side perspective 

upstream (p = 0.042), although a non-significant increase in the top perspective upstream 

(p = 0.64; Figure 3.14e,f). There was also a tendency for the dye concentration to 

decrease with velocity in the up and downstream domains (Figure 3.14g,h).

The ANCOVA of the area of dye coverage in a specified domain, revealed that 

there was a significant difference in the flow upstream and downstream of Vallisneria (p 

< 0.001), but not between the side and top perspectives (p = 0.37; Table 3.3c). The post
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hoc comparisons indicated the same whereby, there were significant differences between 

the upstream and dowstream domains in the top and side perspectives (p < 0 .0 0 1 ), and no 

significant difference in the side and top perspectives upstream (p = 0.95) or downstream 

of Vallisneria (p = 0.26; Table 3.4c).

The ANCOVA of the concentration of dye showed that there was no significant 

difference between side and top view (p = 0.84), nor between the up and downstream 

position of Vallisneria (p = 0.64: Table 3.3b). Post hoc comparisons showed that no 

significant effect occurred between any of the domains (Table 3.5c).

Elodea canadensis

The dye streakline upstream of Elodea was reasonably straight up to a velocity of

8.4 cms'^ (Re ~ 840) when some waviness was noted (Figure 3.15). The dye streaklines 

downstream were attached to the individual whorls of leaves (i.e., “sticky”), were in 

filamentous loops at the lower velocities and recirculation was present (Figure 3.14a-d). 

The transition from laminar to turbulent occurred at ~ 5.0 cms ' (Re ~ 500) when the dye 

streak was no longer smooth and eddies began to form (Figure 3.15e,f ); von Karman 

vortices were shed at 8.4 cms'^ (Re ~ 840; Figure 3.15h); and turbulent structures 

occurred at 11.0 cms'^ (Re ~ 1100) as indicated by the widely spaced eddies, less 

stickiness on leaves and lower recirculation (Figure 3.15i-j).

The image analysis indicated that there was no relationship between the area of 

dye coverage and velocity in the upstream flow in both the side and top perspective 

(Figure 3.16a,b), nor in the side perspective downstream (Figure 3.16c). However, there 

was a significant increase in the area of dye coverage with velocity downstream in the top 

perspective (p = 0.026) of ~ 0.10 cm^/cms'* (Figure 3.16d). There was also a tendency 

for the dye concentration to decrease with velocity in the up and downstream domains.
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and this was significant in the case of the downstream side (p = 0.049) and top 

perspectives (p = 0.046; Figure 3.16g,h).

The ANCOVA of the area of dye coverage showed that there was a significant 

difference between the flow upstream and downstream of Elodea (p < 0.001), but no 

significant difference between the side and top perspectives (p = 0.26; Table 3.3d). The 

post hoc comparisons showed that there were significant differences between the 

upstream and dowstream domains in the side and top perspective (p < 0.001). No 

significant differences were detected in the side and top perspectives upstream (p = 0.58), 

or downstream of Elodea (p = 0.26; Table 3.4d), but a significant interaction (p = 0.043) 

was found between the side versus top perspective by upstream versus downstream 

comparisons (Table 3.3d).

The results of the ANCOVA of the concentration of dye showed that there was no 

significant difference between side and top view (p = 0.29), or between the up and 

downstream position (p = 0.30: Table 3.3d). Post hoc comparisons showed that domain 

had no significant effect on the concentration of dye (Table 3.5d).

Ceratophyllum demersum

The dye streakline upstream of Ceratophyllum was relatively straight although 

some waviness was noted at 5 cms'^ (Figure 3.17). The dye streaklines downstream of 

Ceratophyllum showed a high amount of “stickiness” to the individual leaf segments due 

to laminar flow at 1.3 cms'^ (Re ~ 300), along with a large amount of recirculation 

(Figure 3.17a,b). The flow became transitional between 5.0 and 8.4 cms'* (Re ~ 1200- 

2000) where the loops of dye could no longer be detected (Figure 3.17c-f). Turbulent 

structures were evident at the higher velocities as indicated by closely spaced eddies, and 

a reduced amount of stickiness and recirculation (Figure 3.17g-j).
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There was no relationship between the area of dye coverage and velocity in the 

upstream flow in the side and top perspectives (Figure 3.18a,b). However, there was a 

significant decrease in the area of dye coverage with velocity downstream in the top 

perspective (p = 0.028) on the order of -0 .1 2  cm^/cms'\ and a similar trend in side 

perspective (p = 0.31; Figure 3.18d). The dye concentration tended to decrease with 

velocity in all perspectives, but these were not significant (Figure 3.18e-h).

Results of the ANCOVA of the area of dye coverage indicated that there was a 

significant difference between the flow upstream and downstream of Ceratophyllum (p < 

0.001), and only marginal significance between the side and top perspectives (p = 0.057; 

Table 3.3e). A significant interaction (p = 0.047) was found in the side versus top 

perspective by upstream versus downstream position. The pairwise comparisons 

revealed signficant differences between all combinations of perspectives with the 

exception of top versus side upstream (Table 3.4e).

The ANCOVA of the concentration of dye showed that there was no significant 

difference between side and top perspective (p = 0.25), nor in the up and downstream 

position (p = 0.83: Table 3.3e). Post hoc comparisons showed that domain had no 

significant effect on the concentration of dye (Table 3.5e).

Comparison of the Three Plant Morphologies and the Theoretical Model

A direct comparison of the results should reveal whether there are differences 

among the three plant morphologies and the physical model. Firstly, the velocity at 

which the transition from laminar (smooth streakline) to turbulent (eddies) flow occurs 

was lower for the plants, with the exception of Ceratophyllum, than for the cylinder 

(Figure 3.19a). The transition occurred in Vallisneria (linear-bladed) at ~2 cms"\ in
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Elodea (whorled) between ~2-5 cms‘\  and in Ceratophyllum (dissected) between -5-8.4 

cms'V It should be noted that the use of Re does not change the pattern of observation 

reported here. Specifically the Re for the cylinder ranged from 90-770, Vallisneria from 

25-220, Elodea from 130-110, and Ceratophyllum from 300-2600. Secondly, in all 

cases, the rate of change in the area of dye coverage with velocity was lower for the 

plants than for the cylinder (Figure 3.19b). More specifically, the rate of change 

increased significantly for the cylinder at a rate of -0.5 cm^/cms’', as it did for 

Vallisneria at -0.2 cm^/cms'\ There was no significant trend for Elodea (-  -0.0004 

cmVcms’'), and the rate for Ceratophyllum decreased non-significantly at -  -0.2 

cm^/cms'\ Thirdly, the rate of change in the concentration of dye with velocity also 

decreased at a slower rate for the plants then for the physical model (Figure 3.19c). The 

concentration of dye downstream of the circular cylinder decreased significantly at a rate 

of -  -0.05 gL'Vcms'*. For Vallisneria, the trend was non-significant with the decrease 

being on the order of -  -0.07 gL'Vcms'\ The rate for Elodea decreased significantly on 

the order of -  -0.06 gUVcms '. Although the rate was similar for Ceratophyllum (-  - 

0.06 gL'Vcms"^), it was non-significant. The non-significant trends are likely due to a 

higher degree of variance.

ANCOVA s were used to determine if there were differences among the cylinder 

and the linear-bladed, whorled, and dissected leaf morphologies, when adjusted for a 

common mean velocity and a common regression line. Plant morphology (p < 0.001: 

Table 3.6a), side versus top perspective (p = 0.044), and upstream versus downstream 

position (p < 0 .0 0 1 ) were found to have a significant effect on the area of the domain 

covered in dye, whereas there was no significant effect of velocity (p = 0.083). More
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Specifically, post hoc comparisons revealed that there were no significant differences 

between subjects in the upstream direction from both the side and top perspectives (Table 

3.7a,b). This indicates that the upstream flow was similar in all cases. There were 

significant differences in the side perspective, downstream of the subjects between: (1) 

the cylinder and the empty test section (p = 0.007: Table 3.7c); (2) Elodea and 

Vallisneria (p = 0.043); (3) the empty test section and Elodea (p = 0.002); and (4) a 

marginally significant difference (p = 0.059) between Ceratophyllum and the empty test 

section. There were also significant differences in the top perspective, downstream of the 

subjects between: (1) all subjects and the empty test section (p < 0.009: Table 3.7d); (2) 

the cylinder and Ceratophyllum (p = 0.036); and (3) Vallisneria and Ceratophyllum (p = 

0.010). There were also significant interactions between the plant and the upstream and 

downstream position (p = 0.003), and between the side and top perspectives and the 

upstream and downstream positions (p = 0.014; Table 3.6).

The concentration of dye was affected significantly by velocity (p < 0.001: Table 

3.6b). However, neither plant morphology (p = 0.13), side versus top perspective (p = 

0.17), nor upstream versus downstream position (p = 0.17) had a significant effect on the 

concentration of dye. Post hoc comparisons revealed that there was no significant 

difference upstream of the subjects in the side and top perspectives (Table 3.8a,b). The 

only significant differences that occurred in the downstream position was in the side 

perspective between the empty test section and the cylinder (p = 0.005), Elodea (p = 

0.025), and Ceratophyllum (p = 0.038; Table 3.8c). Marginally significant differences 

were observed in the top downstream perspective for the circular cylinder and 

Ceratophyllum (p = 0.055) and the empty test section (p = 0.052).
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Velocity Measurements

ADV measurements were taken in a horizontal slice and velocities were recorded 

in u (streamwise), v (cross-stream), and w (vertical) components, though statistics were 

only performed for the u and w velocity components. The contour plots of the u velocity 

component showed a pattern of decreasing velocity behind the subject (Figures 3.20- 

3.24a,c). The patterns in both the streamwise (u) and vertical (w) velocity components in 

the empty test section showed a relatively uniform pattern, although there was more 

variance with increasing velocity (Figure 3.20a-d). The velocity pattern downstream of 

the circular cylinder showed that there was an area of reduced velocity which, diminished 

in size with increasing velocity (Figure 3.21a,c). In the vertical component, there was 

downward velocity (i.e., negative velocity) directly downstream of the cylinder at the 

slower velocity (Figure 3.21b), and this region moved ~ 5 cm downstream of the cylinder 

at the faster velocity (Figure 3.2Id). The velocity patterns in the streamwise component 

(u) of Vallisneria showed a small area of reduced flow downstream of the plant at the 

slower velocity (Figure 3.22a), but this pattern disappeared as velocity increased (Figure 

3.22c). Similarly, in the vertical component (w), the flow moved upwards directly 

downstream of the plant at the slower velocity (Figure 3.22b), with no obvious pattern 

occurring at the fastest velocity (Figure 3.22d). Elodea showed a pattern of reduced flow 

in the streamwise component (u), though this area of reduced flow was much larger ( - 1 0  

cm vs. 5 cm) at the faster velocities (Figure 3.23a,c). In terms of w, the flow moved 

upwards downstream of the plant at the slow velocity (Figure 3.23b), but no obvious 

trend was noted as velocity increased (Figure 3.23d). Finally, Ceratophyllum showed an 

area of reduced flow directly downstream the plant at the slower velocity in the
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was

streamwise component (u) (Figure 3.24a), but the flow remained fairly uniform as 

velocity increased (Figure 3.24c). In the vertical velocity component (w), the flow 

fairly uniform at the slower velocity (Figure 3.24b), but began to move upwards directly 

downstream the plant as velocity increased (Figure 3.24d).

An ANCOVA of the velocity data showed that there was a significant effect of 

test subject on the streamwise velocity (u) at the different test velocities (p < 0.001; Table 

3.9a), as well as on the upstream and downstream position (p = 0.023), however, there 

was no effect between plant morphologies (p = 0.47). In the vertical velocity (w), there 

was also a significant effect on the velocity contours at the different test velocities (p = 

0.014: Table 3.9b). Additionally, there was a significant difference in velocity between 

the different plant morphologies (p < 0 .0 0 1 ), and between the upstream and downstream 

positions (p < 0.001). Post hoc comparisons of the streamwise component (u) showed 

that there were significant differences between downstream of the cylinder and of the 

empty test section (p = 0.044: Table 3.10a), between the upstream and downstream 

position of Elodea (p = 0.034), between upstream of Elodea and downstream of 

Vallisneria (p = 0.010), between downstream of Elodea and the empty test section (p = 

0.014), between up and downstream position of Vallisneria (p = 0.034), between 

downstream of Vallisneria and upstream of the empty test section (p = 0.046), and 

between downstream of Vallisneria and the empty test section (p = 0.0021). An 

evaluation of the vertical velocity component (w), indicated that there were significant 

differences between upstream and downstream position of the cylinder (p < 0.001: Table 

3.10b). Downstream of the cylinder was significantly different than all other plant and 

position combinations (p < 0.002), as was upstream of Elodea (p < 0.008).
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Plant Response to Flow

The angle of deflection remained stationary at 0° for the circular cylinder (Figure 

3.25a), however it increased with velocity for the plants. The deflection from the vertical 

increased significantly for Elodea (p < 0.001: Figure 3.25c) and Ceratophyllum (p = 

0.003; Figure 3.23d). The results for Vallisneria (p = 0.30; Figure 3.25b) were not 

significant. An ANCOVA of these results indicated that velocity had a significant effect 

on the angle of deflection (p < 0.001), as did the plant morphology (p < 0.001; Table 

3.11a). Significant pairwise differences (p < 0.008: Table 3.11b) were found between all 

combinations of subjects. To summarize, the rate of change in the angle of deflection 

remained at zero for the cylinder due to its rigid architecture. For Vallisneria there was a 

slight though non-significant increase, a larger and significant increase for Elodea, and a 

larger and also significant increase for Ceratophyllum, thus demonstrating that the more 

complex the plant architecture, the greater the rate of change in the angle of deflection 

with increasing velocity (Figure 3.26a).

Oscillations were not observed for the circular cylinder (Figure 3.25e).

Significant or near significant increases in oscillation were observed for Ceratophyllum 

(p = 0.018; Figure 3.25h), Vallisneria (p = 0.087; Figure 3.25f), and Elodea (p = 0.083; 

Figure 3.25g) and the rate was on the order of 0.05 Hz/cms V The ANCOVA revealed 

significant effects of velocity (p < 0.001: Table 3.12a) and plant morphology (p < 0.001). 

Pairwise comparisons however, showed that all differences occurred between the 

cylinder and the plants (p < 0.001: Table 3.12b), with no significant differences in 

oscillation rate occurring between the different plant morphologies. As an overview, the 

cylinder did not oscillate because of its rigid structure, the three plant morphologies
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however, showed a similar trend of an increasing rate of oscillation with increasing 

velocity, which was significant only for Ceratophyllum (Figure 3.26b).

Discussion: 

Macrophvte-Flow Interaction

The transition from laminar to turbulent flow (smooth dye streaks to eddies) 

occurred at lower velocities for the plants, with the exception of Ceratophyllum, than for 

the cylinder. This is interesting because Hurd and Stevens (1997) documented that the 

blades of marine algae induce the transition to turbulence at lower velocities than a flat 

plate, which was their physical model. Additionally, the transition for Ceratophyllum 

occurred at approximately the same velocity (> 5 cms'^) as for the coarsely branched 

algae Gelidium coulteri (Hurd and Stevens, 1997). The transition to turbulent flow is 

important because it lead to a reduction in the thickness of the diffusional sublayer on the 

leaf surface, thus enhancing local mixing and nutrient delivery (Anderson and Charters, 

1982; Borchardt, 1994; Hurd et al., 1996; Nepf, 1999). Additionally, both the area of dye 

coverage and the concentration of dye decreased at slower rates for the plants than for the 

circular cylinder, which demonstrates that plants retain more fluid, thus increasing the 

opportunity for exchange between the water column and the leaf surface. This would 

indicate that both fluid retention and mixing occur around the plants. This would provide 

the opportunity for nutrient uptake by the plants and replenishment of nutrients from the 

surrounding fluid. In other words, the recirculation on the downstream side of the plant 

increases the opportunity for the well mixed fluid to come in contact with the plant 

surface. Therefore it appears that aquatic plants alter the flow in ways that maximize 

flow across leaves, which would enhance nutrient exchange.
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In this study, a circular cylinder was used as a physical model because it is a 

simple form, and the downstream flow patterns have been well documented (e.g., Kundu, 

1990). The similarities among the plants (with the exception of Ceratophyllum) likely 

occurred because the Reynolds numbers examined here (cylinder (Re = 90-770), 

Vallisneria (Re = 25-220), Elodea (Re = 130-1100), and Ceratophyllum (300-2600)) 

were above the point (with the exception of Vallisneria) where attached vortices are shed 

(Re > 80; Kundu, 1990), and below the point where the wake is completely turbulent (Re 

< 5000; Kundu, 1990). The wake remained laminar for all Re examined here, however, 

changes occurred in the downstream eddies which began as small recirculating vortices, 

and grew with increasing Re and eventually became unstable and detached (von Karman 

vortex street; Figure 3.27). As such, the experimental results coincided with the 

theoretical expectations in most cases. Specifically, it was expected that Vallisneria 

would act like a cylinder because of its uniform structure (i.e., no branches). This was 

generally the case except that it retained more fluid than the cylinder, perhaps due to the 

inclined orientation. It was expected that Elodea would act similar to the cylinder 

because of its rigid cylinder-like structure. This was however, not the case as the leaf 

whorls trapped the dye and the regression analysis indicated that Elodea was more 

similar to Ceratophyllum. Ceratophyllum was expected to act more as a mesh, because 

of its high level of dissection which was predicted to break up the vertical circulation 

behind the plant, similar to a mesh (Nowell and Jumars, 1984). This is an important 

distinction because turbulence is dissipated by the resistance of the mesh, and as such is 

straightened, as has been demonstrated with the red alga Gelidium nudifrons (Anderson 

and Charters, 1982), and with Gelidium coulteri (Hurd and Stevens, 1997). Additionally,
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as Re increases, vortices form closer to the branch (Kundu, 1990), leading to less 

entrainment of the dye because the recirculation zone is smaller. Hence, if features on 

the plant generate small scale turbulence it could enhance mass and momentum transfer, 

and thus productivity. However, it has also been suggested that that since mesh-like 

structures slow fluid down and dampen turbulence, there could be the potential for 

diffusion-limited productivity to be greater in branched rather than linear-bladed 

morphologies (Hurd and Stevens, 1997). This is, however unlikely considering that it has 

been shown that the critical velocity where limitations change from diffusional to 

mechanical stress is between 2 and 6  cms'' (Jumars et al., 2001; Hurd et al., 1996; Koch, 

1993; Koch, 1994). This is consistent with this study as the transition from laminar to 

turbulent flow occurred at approximately 5 cms"\

It was reasonable to expect differences in area of dye coverage among plant 

morphologies (Vallisneria > Elodea > Ceratophyllum) because leaves can act as edges to 

which dye can attach, and flow separation occurs (Coutanceau and Defaye, 1991); 

separation would increase the dispersion of the dye. Separation points occur when the 

flow stops moving up the surface of the plant, and starts moving in the downstream 

direction (Vogel, 1994). Stevens and Hurd (1997) noted that under almost any field 

conditions in the marine environment, the pressure gradients at leading edges of 

macrophyte leaves will be sufficient to cause separation in the flow. This process of 

separation, whereby the separated shear layer attaches on the solid boundary, forms a 

closed recirculating zone (Kiya et al., 2000), has been shown to enhance mass-transfer 

(Schwinge et al., 2002). This area of recirculation would be much larger for Vallisneria 

than for Elodea and Ceratophyllum because the size and shape of recirculation is
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dependent on how the leaves are arranged, their diameter and length (Schwinge et al., 

2002), and the boundary layer thickness (Lozee and Wetzel, 1993). This is demonstrated 

by flow through a mesh, which reduces highly turbulent flow structures to smaller eddies 

(Nowell and Jumars, 1984; Sand-Jensen and Pedersen, 1999) because of the thinness of 

the structure and the small size of the openings.

The rate of change in the concentration of dye with change in velocity decreased 

in all cases, but less so for the plants than for the cylinder, which indicates that more fluid 

is being retained by the plants. It is interesting that the area of dye coverage is affected 

by the different plant morphologies, but that the concentration of dye downstream of the 

plant is not. In other words, the dye dispersed differently (i.e., area changes) according to 

the plant shape, but the same amount of dye is retained. Comparatively, Hurd et al.

(1996) showed that blade morphology (i.e., undulate versus smooth) affected the flow 

patterns, with the undulations generating recirculating eddies, and the smooth blades 

acting like plates. However, despite differences in flow patterns, nitrogen uptake was 

similar between the two different blade morphologies. This supports the previous 

statement demonstrating that that freshwater macrophytes of different morphologies have 

different ways of interacting with the flow, while retaining the same amount of fluid.

In addition to plant morphology, the angle of the plant in the flow is important as 

an increase in the angle of deflection results in a decrease in the drag forces acting on the 

macrophyte (Dawson and Robinson, 1984). Consequently, plants living in faster moving 

water have leaves with low branching angles, which produce a more streamlined surface. 

In contrast plants living in slower moving water have leaves that stick out more into the 

flow presenting a rough surface which, increases the drag coefficient, but results in the
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production of small vortices behind the leaves that increase the supply of carbon dioxide 

and nutrients, thereby increasing the rate of photosynthesis (Ennos, 1999; Sand-Jensen 

and Pedersen, 1999; Schutten and Davy, 2000). Moreover, it is well documented that 

smooth, flexible stems are best able to reduce drag (Armstrong, 1989; Johnson, 2001), 

especially when the angle of deflection is greater than 30°, the plant is more streamlined 

and the pressure drop around the stem is reduced. When deflected almost horizontally 

(as seen with Ceratophyllum  and Vallisneria) the leaf can block vertical exchange flow 

(Nepf and Koch, 1999). This could deprive the leaves higher up in a canopy of nutrient- 

enriched water if the flow was prevented from travelling vertically. However, if the flow 

is not blocked, secondary flow may promote direct transport between the sediments and 

the water column and thus lessen diffusive boundary layer limitations on nutrient and 

inorganic carbon exchange (Nepf and Koch, 1999).

Furthermore, the rate of change in the angle of deflection with change in velocity 

increased with increasing complexity in architecture (i.e., Vallisneria < Elodea < 

Ceratophyllum). This is likely because Vallisneria's architecture is already deflected 

from the vertical, Elodea  is relatively rigid with whorls of leaves, and Ceratophyllum  is 

relatively flexible with highly dissected leaves exposed to the flow. It is also interesting 

to note that Ceratophyllum, which was the most compliant plant retained the least dye 

and Vallisneria, the plant whose compliance changed the least, retained the most dye 

(Figure 3.19). This relates back to the argument that the size of the recirculation zone is 

dependent on the size, shape, and orientation of the leaf (Schwinge et al., 2002). There 

were however, no significant differences among the different plant morphologies and the 

rate of change in the frequency of oscillations with velocity. Oscillations are due to
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phase differences between lift and the shedding frequency of vortices, and are not found 

for circular cylinders (Norberg, 2003). These plant movements are important because 

they cause a dampening of the flow which in turn causes a dissipation of mechanical 

energy, which increases the effectiveness of energy transfer (Bruchert et al., 2003). 

Additionally, oscillations can noticeably change the formation of vortex shedding 

patterns even with cylinders (Williamson, 1996), potentially increasing local mixing. 

Local mixing can also be increased because the waving of plants (i.e., monami) has been 

shown to cause in increase in the vertical transport of momentum into the canopy 

(Ackerman and Okubo, 2003; Ghisalberti and Nepf, 2002).

Finally, the technique of isokinetic dye injection appears to be valid in that 

differences in upstream flows were not detected. Changes present in the relative 

downstream position of the empty test section were due to the expansion of the dye 

plume, which increased with distance from the source (i.e., dye injector; Mercier and 

Jaluria, 1999; Macdonald et al., 2002; Hara and Kato, 2004).

Implications of the Macrophyte-FIow Interaction

The significance of these findings relate to issues of macrophyte productivity 

(e.g., photosynthesis and nutrient uptake), sediment capture, and the evolutionary 

question about form and function relationships, that has previously been examined in 

seaweeds (Norton et al., 1982). Light is the limiting factor in determining the maximum 

depth at which plants occur in a given body of water (Riemer, 1993), and since it is 

known that both low (Hurd and Stevens, 1997; Schutten and Davy, 2000) and high 

(Koch, 1993) flows affect photon capture, macrophytes must adapt to maximize 

photosynthesis, and thus primary productivity. At low flow, a thick diffusive boundary
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layer occurs which, leads to a decrease in the amount of carbon availability, and thus a 

reduction in photosynthesis (Koch, 1993;1994). At high flow, photosynthesis can be 

limited by the washing away of extracellular enzymes that catalyze the reaction between 

bicarbonate and carbon dioxide (Koch, 1994), and by breakage of the photosynthetically 

active parts of the plant (Koch, 1993; Stewart and Carpenter, 2003). The question of 

form and function relationships relates to the structural similarities of the plants on fluid 

dynamics. For example, linear-bladed morphologies are better suited to higher flows 

because they are better able to comply to the flow (Gutierrez and Fernandez, 1992) and 

thus are damaged at higher velocities than branched morphologies (Sheath and 

Hambrook, 1988). Conversely, morphologies with small scale roughness are able to 

induce turbulence at lower velocities thus enhancing local mixing and preventing the 

depletion of nutrients. For example, undulate margins have been shown to take up 

labeled carbon at a faster rate than smooth blades at the same velocity (Armstrong, 1989). 

This is congruent with the current study whereby Vallisneria interacted the least with the 

flow because of its high angle of deflection, Ceratophyllum broke the flow up into 

smaller turbulence structures, and Elodea affected the flow in a fashion between these 

two extremes. Thus, the interaction between macrophyte morphology and fluid dynamics 

has implications for the productivity of the individual plant and the ecosystem.

Quantitative similarities in the concentration of dye among plant morphologies 

may result from different flow patterns that maximize contact of flow with the leaves, 

and as such provide light and nutrients to the leaf surface. But, as mentioned above, a 

morphology that increases nutrient uptake may not be the same morphology that 

increases photosynthesis, as high levels of dissection may cause self-shading (Norton et



Chapter 3 111

al, 1982). As well, it has been documented that linear-bladed seaweeds have higher rates 

of photosynthesis than branched morphologies (Irwin and Davenport, 2002). This 

suggests that Vallisneria should have better photosynthetic abilities than the whorled and 

dissected morphologies, and Ceratophyllum should have better nutrient uptake than the 

linear-bladed and whorled morphologies.

Leaf development in aquatic macrophytes is a dynamic process which, 

emphasizes the close relationship between environment and leaf structure (Rascio, 2002). 

One classic example of this is found in a number of seaweeds where high drag 

morphologies (e.g., rugosity and undulation) are found in low energy environments and 

low drag morphologies (e.g., smooth, straight blades) are found in high energy 

environments (Ackerman and Okubo, 1993; Hurd and Stevens, 1997). Consequently, 

species with high phenotypic plasticity may adopt a variety of morphologies to meet 

environmental conditions without being developmentally committed to those conditions 

should they change (Taylor and Hay, 1984). For example, in order to increase 

photosynthetic ability, plants generally increase the size of the leaf surfaces thus 

increasing the number of chloroplasts in contact with the environment (Rascio, 2002; 

Ronzhina et al., 2004). Specifically, Elodea reduces the thickness of its leaves, 

Ceratophyllum has a highly dissected morphology and, Vallisneria has few layers of 

photosynthetic cells, due to the presence of inner aerenchyma lacunae, which can be 

involved in supplying carbon dioxide (Rascio, 2002). Another plant feature that 

increases photosynthesis is the ability of the plant to oscillate with the flow, thus causing 

the fluid to become stirred (Koehl and Alberte, 1988). For example, algae with undulate 

blades have been shown to oscillate with greater amplitude, but smooth blades oscillate
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with greater frequency (Koehl and Alberte, 1988). The greater amplitude would increase 

local mixing, whereas the greater frequency would mean that less surface area is being 

exposed to the flow, thus decreasing the drag forces.

The flexibility of the plant stem can also cause changes in flow patterns (e.g., 

canopies of flexible plants tend to have a logarithmic velocity profile whereas canopies of 

more rigid plants do not have a logarithmic velocity profile), as was demonstrated in 

canopies of Myriophyllum and Hydrilla (Shi and Hughes, 2002). It has also been shown 

that morphology can affect the flow within the canopy. The flow within a canopy of 

whorled and dissected leafed morphologies was reduced considerably more than the flow 

in a linear-bladed leafed canopy, demonstrating that there was less interaction between 

the flow and the linear-bladed morphology (Sand-Jensen and Mebus, 1996; Champion 

and Tanner, 2000). This corresponds with the results seen in the angle of deflection data, 

where the linear-bladed morphology {Vallisneria) changed the least with increasing 

velocity. As such, it is likely that Vallisneria is better suited to higher flow environments 

because it is less affected by the flow, whereas Ceratophyllum may be better suited to 

slower flow environments because of its high level of interaction with the flow. It 

appears that there is a strong relationship between plant morphology and fluid dynamics 

that may have influenced the convergent evolution of these morphologies.

At the larger scale, an improved understanding of flow effects would aid in efforts 

to restore streams and rivers, and maintain water quality as aquatic macrophytes act as 

ecosystem engineers. This is especially important as many streams have been degraded 

as the result of anthropogenic processes including: channelization, removal of riparian 

vegetation, irrigation, pollutant discharges, and stormwater runoff (Poff et al., 1997).
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Restoration efforts often focus on improving physical habitat within the channel, 

replanting streamside forests, and building stormwater retention structures. One of the 

goals of these restoration practices is to create flow conditions that improve the “health” 

of streams, as such it is important to link the physical aspects of the flow and the 

biological aspects of the plant (Hart and Finelli, 1999), since freshwater macrophytes act 

as ecosystem engineers in aquatic systems (Wright et al., 2004). It should be noted that 

the range of velocities examined here are typical of within canopy conditions. If higher 

velocities were obtainable, transport limitations (i.e., diffusional stress) would become 

negligible, and there would be more compliance observed in the plants, less retention of 

fluid, and ultimately dislodgment and loss of plant biomass.
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Box 3.1: Matlab commands for the image analysis.

1) Import file
I=imread('c:\julianne\photoshop\elodea\4inc6ta.png');

2) Edit image
I=rgb2gray(I);

Convert to gray scale 
I=imadjust(I,[0 0.2],[0 1]);

Adjusts the intensity of the image.
Pixval

Gives pixel value at mouse click.
I=imsubtract(I,69);

Subtracts background value (use value given by above 
command)

3) Crop image
I=imcrop(I);

Use mouse to select area based on lines drawn on the flume 
I=imresize(I, [600 900], 'bicubic') ;

To make image larger and thus easier to see; the matrix 
dimensions change depending on domain.

4) Extract pixel values
[n x]=imhist(I,1 0 0 );

Groups the pixel values into 100 different bins
n

Gives the number of pixels in each bin
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Table 3.1: Shear velocity (u*) determined for each of the velocities used for the

U (cms‘̂ ) u* (cms' )̂
1.3 0.12
2.0 0.24
5.0 0.42
8.4 0.33
11.0 0.35
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Table 3.2: Pump settings for isokinetic release of dye at each water velocity.

Water Velocity 
(ems'  ̂± St.dev)

Pump Speed Increment Internal Tubing 
Diameter

1.3 ±0.1 Slow 0 3/32” = 0.21 cm
2.0 ±0.5 Slow 3 3/32” = 0.21 cm
5.0 ±0.3 Fast 10 3/32” = 0.21 cm
8.4 ±0.5 Slow 2 3/16” = 0.42 cm
11.0 ±0.9 Slow 6 3/16” = 0.42 cm
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Table 3.3; ANCOVA results for the area of dye coverage and the concentration of dye for 
(a) the empty test section, (b) the circular cylinder, (c) Vallisneria, (d) Elodea, and (e) 
Ceratophyllum. (Area = area of dye coverage; Cone. = concentration of dye; velocity = 
average flume vélocités; side/top = side and top perspectives; before/after = upstream and

(a)

Effect

Univariate Resuits for Each DV (Empty Test Section) 
Sigma-restricted parameterization 
Effective hypothesis decomposition
Degr. of I area j area j area area ) conc. i conc. 

Freedom I SS 1 MS 1 F p 1 SS i MS
conc. conc. 

F P
Intercept ll 15.896351 15.89635 20.600621 0.0003921 5.9861951 5.9861951 80.562241 0.000000
velocity
side/top

......1|
11
Î
1

19

0.02138 0.02138 0.02771 0.870021 
2.681131 2.68113! 3.474561 0.082011 

3Î 75762 31.75762 41.15577 0.000012 
3.63(g2l 3.630221 4 . 70 - ; . ' , Ii (i-'K ea  

11.57467 0 77164 i 1

1.9889601 1.9889601 26.767431 0.000113
0X1002791 0.0002791 0.00375)0.951949 

3^382251 0.5362251 7.216521 0.01 # 1 5
0.028648 0.028648! 0.385541 0.54M 72 

'l ï ï l4 5 7 Ï a 0 7 4 3 d 5 l

before/after _ 
side/top'before/after
Error
Total 19| 48 66502 1 3.668690}

(b)
Univariate Results for Each DV (Cylinder) 
Sigma-restricted parameterization 
Effective hypothesis decomposition______
Degr. of area 

Freedom- S3
area
MS

area area
P

conc.
S3

lide^op

side/top;before/ajter
Error
T otaf""................. ^

22 059. 22.05981 22.2123 0.00027
1 5 . ^  5.43651 5.474110.03354

J  0.4341; 0.4345ii 0.43751! 0.51833
1 95.6831; 95.6839 96.3455 0.00000
1 0.3294 0.3294.1 0.3317: 0.57318

14.8971^ o"993ll
116.781:

1.97869 1.97869: 95.6720; 0.00000
0.437851
0.01650
0.03349;
0.00042;
0.310231

0.43785t
0.01650;
0.03349
0.00042
0.02068:

21.1706:
0 7979
1 6196. 
0.0207(1

0.00034
0.38580
0.222511
0.88752

0.79851:

(c)

Effect

Univariate Resuits for Eacfi DV { Vallisneria) 
Sigma-restricted parameterization 
Effective fiypothesis decomposition
Degr. of j area 

Freedom SS
area
MS

area 
F________ .

60.88711 O.OOOOO1I

area
_e_

conc.
SS

conc.
MS

conc,
F

conc
__e_

velocity
side/tqp,_______
.before/after...........
side/top’before/after
Error...................
Total 19

25.68525! 25.685251
2.076881 2 .0 7 6 ^  4.! 84:
0.36396! 0.36396 0.8628 0.36767:

81.817581 81.817M  193 9494 OOOOOOC 
0.455471 0.455471 1.07971 0.31522:
6.32775! 0 42185 ________ I

91.04164!

2.074531 2.074531! 37.30564! 0.000020
0.199396
0.002246
0 .0 1 2 ^ 0
0.003279
0.834Ï36

0.199396! 3.58567 0.077732 
0.002246! 0.04038 0.843438 
0.012980! 0.23342 0.635978 
0.003279! 0.058971 0.811423 
0.055609!_________ I

1.052036

(d)

Effect

Univariate Results for Each DV ( Elodea) 
Sigma-restricted parameterization 
Effective hypothesis decomposition
Degr. of area 

Freedom ! SS
area
MS

area
F

conc. ! conc.
SS MS

conc.
F

Intercept
velocity^
side/top
More/attex_____
slde/top*befora(after„
Error..............  _
Total

40.6380 40.637981 111.6627 o .o o o o o d
0.1589! 0.158881 0,4366
0.4885 0.488551 1.3424

^92.42441 92.42442 253.9585
 ̂ 1.77681 1.776811 4 . 6 ^
5.4590 0.363941

0.51880
0.26472
0.00000
0.04310

19 100.30771

2.9495231 2.949523! 120.1269! 0.000000
0.6493321 0.6493321 26.44571 0.000120
0.029748! 0.029748! 1.21161 0.288375
0 028255 0 028255 1 1508 0.300344
0.0789951 0.078995! 3.21731 0.093045
0.368301! g ^ ^ 5 3 !
1.1546311

(e)

Effect

Univariate Results for Each DV ( Ceratophylluni) 
Sigma-restricted parameterization 
Effective hypothesis decomposition

of
Freedom

area
S 3

area 
MS :

are conc.
SS MS

conc.
F

conc.
__

lnt<
veiogiy.. 
side./tp2_...
before-after 
side/top'before/after 
Error

■13.71454: 43.714541 109.4433
1.35136 1.351361 3.3833
1.69315 1.69315 4.2390

65.794651 65.7946S 164.^ 8
7.873771 1.87377 4.% 12
5.99140 0 39943

0.08573Ï

0 .00000:

gÔ468&

3.4922961 3.492296! 32.721281 0.000041 
0.446894 0 446894 4.18720 0.058675 
0,152006! 0.152006! 1 .4242^0,251243 
0.005253! 0 .0 & 2 ^  0.0492lTg827427 
0.033108! 0.033108 0.31021 0 585767 
1.600929! 0.1067297........ l "

Total 76.70433 2.238190’
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Table 3.4; Post hoc comparisons for the area of dye coverage (Table 3) in the different
domains surrounding different test subjects: (a) empty test section, (b) circular cylinder, (c)
Vallisneria, (d) Elodea, and (e) Ceratophyllum. Significant results indicated in bold.

(a) Empty flume side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.81

side; downstream < 0.001 < 0.001

top; downstream < 0.001 0.002 0.003

(b) Cylinder side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.94

side; downstream < 0.001 < 0.001

top; downstream < 0.001 < 0.001 0.28

(c) Vallisneria side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.95

side; downstream < 0.001 < 0.001

top; downstream < 0.001 < 0.001 0.26

(d) Elodea side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.58

side; downstream < 0.001 < 0.001

top; downstream < 0.001 < 0.001 0.078

(e) Ceratophyllum side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.95

side; downstream < 0.001 < 0.001

top; downstream < 0.001 < 0.001 0.021
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Table 3.5: Post hoc comparisons for the concentration of dye (Table 3) in the different
domains surrounding different test subjects: (a) empty test section, (b) circular cylinder, (c)
Vallisneria, (d) Elodea, and (e) Ceratophyllum. Significant results indicated in bold.

(a) Empty flume side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.59

side; downstream 0.011 0.042

top; downstream 0.034 0.11 0.66

(b) Cylinder side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.76

side; downstream 0.56 0.37

top; downstream 0.88 0.67 0.64

(c) Vallisneria side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.76

side; downstream 0.62 0.84

top; downstream 0.64 0.87 0.97

(d) Elodea side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.76

side; downstream 0.75 0.99

top; downstream 0.33 0.20 0.20

(e) Ceratophyllum side; upstream top; upstream side; downstream top; downstream

side; upstream

top; upstream 0.55

side; downstream 0.46 0.19

top; downstream 0.36 0.75 0.10
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Table 3.6: ANCOVA results for (a) the area covered in dye and (b) the concentration of 
dye in that area for the different domains. (Velocity = covariate; Plant = empty test section, 
circular cylinder, Vallisneria, Elodea, and Ceratophyllum', Side/Top = perspectives; and 
Before/After = upstream and downstream).

(a)

Effect

Univariate Resuits for Each DV (Spreadsheets) 
Sigma-restricted parameterization 
Effective hypothesis decomposition

Degr. of 
Freedom

area
SS

area
MS

area
F

area
P

Intercept 1 142.98801 142.9880 220.1792 0.000000
velocity 1 1.9909 1.9909 3.0657 0.083840
plant 4 14.7433 3.1, 5 6756 0.000456
side/top 1 2.7284 2.7284 4.2013 0.043711
before/after 1 355.9598 355.9598 348.1224 0.000000
plant*side/top 4 2.9329 0.7332 1.1291 0.348892
plant*before/after 4 11.51^^__ 2.8796 4.4341 0.002764
slde/top*before/after 1 4.0612| 4.0612 6.2537 0.014463
plant*slde/top*before/after 4 4.0045 1.0011 1 5416 0.198277
Error 79 51.3039] 0.6494
Total 99 449.24341

(b)

Effect

Univariate Resuits for Each DV (Spreadsheets) 
Sigma-restricted parameterization 
Effective hypothesis decomposition
concentration

SS
concentration

MS
concentration

F
concentration

P
Intercept 15.77032 15.77032 261.623C 0.000000
velocity 3.18859 3.18859 52.8973 0.000000
piant 0.44452 0.11113 1.8436 0.128760
side/top 0.11398 0.11398 1.8909 0.172993
before/after 0.11516 0.11516 1.9104 0.170817
piant’ side/top 0.08680 0.02170 0.3600 0.836338
piant'before/after 0.50106 0.12526 2.0781 0.091504
side/top* before/after 0.01323 0.01323 0.2195 0.640741
plant's ide/top ’ before/after 0.13123 0.03281 0.5443 0.703693
Error 4.76202 0.06028
Totai 9.35658
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Table 3.7: Post hoc comparisons between the subjects for the area covered in dye (Table 6 ) 
in the different domains; (a) side upstream, (b) top upstream, (c) side downstream, and (d) 
top downstream. Significant results indicated in bold.

(a) Cylinder Vallisneria Elodea Ceratophyllum Empty flume

Cylinder

Vallisneria 0.98

Elodea 0.85 0.83

Ceratophyllum 0.91 0.89 0.94

Empty flume 0.75 0.73 0.89 0.83

(b) Cylinder Vallisneria Elodea Ceratophyllum Empty flume

Cylinder

Vallisneria 0.97

Elodea 0 .6 6 0 .6 8

Ceratophyllum 0.98 0.99 0.67

Empty flume 0.99 0.96 0.65 0.97

(c) Cylinder Vallisneria Elodea Ceratophyllum Empty flume

Cylinder

Vallisneria 0.090

Elodea 0.74 0.043

Ceratophyllum 0.38 0.41 0.23

Empty flume 0.007 0.28 0 .0 0 2 0.059

(d) Cylinder Vallisneria Elodea Ceratophyllum Empty flume

Cylinder

Vallisneria 0.63

Elodea 0.72 0.39

Ceratophyllum 0.036 0 .0 1 0 0.080

Empty flume < 0 .0 0 1 < 0 .0 0 1 < 0 .0 0 1 0.009
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Table 3.8: Post hoc comparisons between the subjects for the concentration of dye in the
plume (Table 6) in the different domains; (a) side upstream, (b) top upstream, (c) side
downstream, and (d) top downstream. Significant results indicated in bold.

(a) Cylinder Vallisneria Elodea Ceratophyllum Empty flume

Cylinder

Vallisneria 0.90

Elodea 0.77 0.86

Ceratophyllum 0.38 0.46 0.57

Empty flume 0.73 0.64 0.52 0 .2 2

(b) Cylinder Vallisneria Elodea Ceratophyllum Empty flume

Cylinder

Vallisneria 0.91

Elodea 0.75 0.66

Ceratophyllum 0.25 0.30 0.14

Empty flume 0.90 0.81 0.84 0 .2 0

(c) Cylinder Vallisneria Elodea Ceratophyllum Empty flume

Cylinder

Vallisneria 0.23

Elodea 0.58 0.52

Ceratophyllum 0.47 0.64 0.87

Empty flume 0.005 0.11 0.025 0.038

(d) Cylinder Vallisneria Elodea Ceratophyllum Empty flume

Cylinder

Vallisneria 0.46

Elodea 0.15 0.49

Ceratophyllum 0.055 0.23 0.61

Empty flume 0.052 0.23 0.60 0.99
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Table 3.9: ANCOVA results for velocity in the (a) streamwise component (u) and (b) 
vertical component (w) for the test subjects. (Velocity = different test velocities (covariate); 
Plant = empty test section, circular cylinder, Vallisneria, Elodea, and Ceratophyllum-, and 
Bef ore/After = upstream and downstream).

(a)

Effect

Univariate Results for Each DV (streamwise velocity (u)) 
Sigma-restricted parameterization 
Effective hypothesis decomposition

Degr. of 
Freedom

vel (x) vel (x) 
8 8  : MS

vel (x)
F 1

vel (x) 
P

Intercept 1 72.107 72.107 84.8731 0.000000
velocity 1 3819.222 3819.222 4495.343 0.000000
plant 4 2.998 0.750 0.882 0.474875
before/after 1 4.424! 4.424 5 207 0.023220
plant*before/after 4 3.877 0.969 1.141 0.337392
Error 289 245.5331 0.850
Total 299 4079.8991 1

,(b )

Effect

Univariate Results for Each DV (vertical velocity (w)) 
Sigma-restricted parameterization 
Effective hypothesis decomposition

vel (z) 
SS

vel (z) 
MS

vel (z) 
F

vel (z) 
P

Intercept 0.07739 0.077394 1.51060 0,220048
velocity 0.30981 0.309814 6.04708 0.014515
plant 1.00565 0.251412 4.90716 0.000766
before/after 1.28823 1.288225 25.14408 O.OOUUdl
plant'before/after 1.03662 0.259155 5.05828 0.000592
Error 14.80655 0.051234
Total 18.85226) 1
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Table 3.10: Post hoc comparisons for velocity (Table 8 a,b) in the (a) streamwise 
component (u), and (b) vertical component (w) for the different test subjects. (Cell No.:l = 
upstream of the cylinder; 2 = downstream of the cylinder; 3 = upstream of Elodea; 4 = 
downstream of Elodea; 5 = upstream of Ceratophyllum; 6  = downstream of Ceratophyllum; 
7 = upstream of Vallisneria; 8 = downstream of Vallisneria; 9 = upstream in the empty test 
section; and 1 0  = downstream in the empty test section).

(a)

Cell No

LSD test; variable vel (x) (stream wise velocity (u))
Probabilities for P ost Hoc T ests
Error: Betw een MS = .84960. df = 289 .00
plant before/aftei {1}

6 .1293
{2} {3} 

6 .0660  6 5593
{4} 1 

5.9762:
{5}

6 .3313
{6}

6.1044:
{7}

6 .4380
{8}

5 .8553'
{9}

6 .4047
{10}

6 .4584
1 1| 1 0.81785 0 20241 0.57785 0.54885 0.92785 0.35985 0.31957 0.41395 0.23205
2 1: 2 0.81785 0.07365 0.64442: 0.33505 0.84330 0.17685 0.27921 0.21881 0.04434
3 2i: 1 0.20241: 0.07365 0.034651 0.49865 0 09895 0.71873 0.01092 0.646151 0.71375
4 2i 2 0  57785 0.64442 0.03465! 0.19731 0.50987 0.09395) 0 .53435 0.12007 0 01364
5 51 1 0.54885 0.335051 0.49868 0.19731 0 40965 0.75153 0.08432 0 8 2 7 6 7 0.64403
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Table 3.11: ANCOVA results (a) and post hoc comparison (b) for examining the angle of 
deflection and the different test subjects. (Velocity = covariate; and Plant = circular 
cylinder, Vallisneria, Elodea, and Ceratophyllum). Significant differences indicated in 
bold.

(a)

Effect

Univariate Results for Eacfi DV (angle) 
Sigma-restricted parameterization 
Effective fiypotfiesis decomposition
Degr. of ' angle ■ angle angle I angle 

Freedom ' SS MS F p
Intercept
velocity
plant
Error
Total

1 3906.17 3906.167 36.64167 0.000008
1
3

Ï9

1761.57
11849.58
2025.49

1761.5751 16.52439
3949.859 37.05153 

106.604

_g,000660
0.000000

23 15636.64 i:

(b) Cylinder Vallisneria Elodea Ceratophyllum

Cylinder

Vallisneria < 0.001

Elodea 0.008 < 0.001

Ceratophyllum < 0.001 0.023 < 0.001
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Table 3.12: ANCOVA results (a) and post hoc comparisions (b) for the frequency of 
oscillations between the different test subjects. (Velocity = covariate; and Plant = circular 
cylinder, Vallisneria, Elodea, and Ceratophyllum). Significant differences indicated in 
bold.

(a)

Effect

Univariate Results for Eacfi DV (oscillations) 
SIgma-restrlcted parameterization 
Effective hypothesis decomposition
Degr. of 

Freedom
oscillations per ; oscillations per 

second second 
SS MS

oscillations per 
second 

F
Intercept 1 0.0309081 0.030908 1.27783
velocity 1 0.721379 0.721379 29.82397
plant 3 0.Ô32280 0.177-127 7.33535
Error 19 0.459570 0.024188
Total 23 1.713229 1

(b) Cylinder Vallisneria Elodea Ceratophyllum

Cylinder

Vallisneria < 0.001

Elodea 0.001 0.73
Ceratophyllum 0.002 0.61 0.87
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Black light

Microscope 
light —

Flow straighteners

15 cm
Dye injector

Outlet

Inlet

1 2 0  cm

Figure 3.1: Lighting and dye injector set up for the photos (flume dimensions: 19.2 cm (width) x 24.7 cm (height) x 170 cm (length) 
with water depth ranging from 9.7-13.3 cm from the lowest (1.27 cms"') to the highest (11.0 cms'*) test velocities)
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Figure 3.2: Velocity profiles in the empty test section at: (a) 0.013 m s'\ (b) 0.020 
m s'\ (c) 0.050 ms , (d) 0.084 ms‘\  and (e) 0.11 m s'\ Each point represents the 
mean of 120 s of data samples taken at 25 Hz using an acoustic doppler 
velicometer (ADV).
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9.7 c m -
13.3 cm 
(range of 
water depth 
with
increasing
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Flume bottom 
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False bottom
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Figure 3.3: Diagram of the positioning device attached to the side of the flume 
with the cylinder in place for the top perspective.
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Figure 3.4: Cuvette set up for creating the concentration curve.
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Figure 3.5: Original concentration curve (pixel value (i.e., intensity) vs. dye 
concentration) for the (a) side and (b) top perspectives. The dotted line is at the 10% 
concentration point, where the graph was divided into a linear and non-linear 
components.
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Figure 3.6: Pixel intensity vs. dye concentration curves, (a) log (pixel value) versus log 
(dye concentration) in the side perspective for 0.01-5% dye, (log pixel value = (0.30 ± 
0.02) log %concentration + (1.86 ± 0.02); r  ̂= 0.98; p = 0.001). (b) pixel value versus 
dye concentration in the side perspective for 10-100% dye (pixel value = (0.44 ± 0.03) 
%concentration (143 ± 2); r  ̂= 0.98; p < 0.001). (c) log (pixel value) versus log (dye 
concentration) in the top perspective for 0.01-5% dye, (log pixel value = (0.36 ± 0.02) log 
%concentration (1.50 ± 0.02); r  ̂= 0.98; p < 0.001). (d) pixel value versus dye 
concentration in the top perspective for 10-100% dye (pixel value = (0.25 ± 0.02) 
%concentration -t- (63.5 ± 0.9); r  ̂= 0.99; p < 0.001).
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■

Figure 3.7: Mock photo used to test image analysis method in MATLAB.
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14 151 12

Circular
Cylinder

Figure 3.8: Grid used to take ADV measurements in the test section (120 cm downstream 
of the flow straighteners). The grid was drawn on the top of the flume wall in the 
downstream direction, and on a sliding piece of plexiglass in the cross stream direction. 
The centre of the probe was aligned with the centre of both lines.
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Figure 3.9: Flow visualization in the empty test section using fluoroscein dye in the side 
(left) and the top (right) perspectives. Velocities increase from top to bottom panels [(a) 
and (b) are 1.3 cms' , (c) and (d) are 2.0 cm s'\ (e) and (f) are 5.0 cm s'\ (g) and (h) are 
8.4 cms ', and (i) and (j) are 11.0 cms ']. Flow is from left to right. Top and side photos 
were taken sequentually.
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Figure 3.10: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or Reynolds number (based on the hydraulic diameter) in the different 
domains for the empty test section: (a) and (e) upstream in the side perspective, (b) and 
(f) upstream in the top perspective, (c) and (g) downstream in the side perspective, and 
(d) and (h) downstream in the top perspective. Solid line is the regression and dotted 
lines are the 95% confidence limits of the mean.
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Figure 3.11: Flow visualization around a 0.7 cm diameter circular cylinder using 
fluoroscein dye in the side (left) and the top (right) perspectives. Velocities increase 
from top to bottom panels [(a) and (b) are 1.3 cm s'\ (c) and (d) are 2.0 cm s'\ (e) and (f) 
are 5.0 cm s'\ (g) and (h) are 8.4 cms'*, and (i) and (j) are 11.0 cms'*]. Flow is from left 
to right. Top and side photos were taken sequentually.
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Figure 3.12: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or Reynolds number (based on the diameter) in the different domains for 
the circular cylinder: (a) and (e) upstream in the side perspective, (b) and (f) upstream in 
the top perspective, (c) and (g) downstream in the side perspective, and (d) and (h) 
downstream in the top perspective. Solid line is the regression and dotted lines are the 
95% confidence limits of the mean.
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Figure 3.13: Flow visualization around Vallisneria americana using fluoroscein dye in 
the side (left) and the top (right) perspectives. Velocities increase from top to bottom 
panels [(a) and (b) are 1.3 cm s'\ (c) and (d) are 2.0 cm s'\ (e) and (f) are 5.0 cm s'\ (g) 
and (h) are 8.4 cms ', and (i) and (j) are 11.0 cms ']. Flow is from left to right. Top and 
side photos were taken sequentually.



146

Side Top
Reynolds number (x 10 )̂

0.0 0.4 0.8 1.2 1.6 2.0 2.4 0.0 0.4 0.8 1.2 1.6 2.0 2.4

I

i
s

Io
P

i

10

8

6

4

2

0

0

1

(a) y = (0.029+0.008)x + 0.33+0.05  
F  = 0.81, p = 0.034

(b) y = (0.029+0.008)x + 0.310.8  
F  = 0.71, p = 0.072

Side Top

_—--- "--------= j^ -

10
y  = (0.22±0.04)x + 3.0+0.3  

= 0.89, p = 0.0148

6

4

2

0

(d) y = (0 .1±0.1)x + 4.5+0.9
F  = 0.056, p = 0.69

-  - '  5
h - _----------------1

I
I
P

à
I&
'o
§

i
a
8

p

2 .0

1.5

1 .0

0.5

0 .0

2 .0

1.5 

1 .0  

0.5 

0 .0

( e )  y = (-0 .05±0.01)x + 0.63+0.09
r  = 0.79, p = 0.042

( g )  y  = (-0.07±0.04)x + 0.8+0.2  
= 0.54, p = 0.15

y = (0.01±0.03)x + 0.3+0.2  
f  = 0.077, p = 0.64

(h) y = (-0,004±0.015)x + 0.5±0.1  
f  = 0.024, p = 0.80

t __Î

8 10  120 2 4 6 8  10 12 0 2 4 6
Velocity (cms'^)

Figure 3.14: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or stem Reynolds number (based on the plant diameter) in the different 
domains for Vallisneria americana: (a) and (e) upstream in the side perspective, (b) and 
(f) upstream in the top perspective, (c) and (g) downstream in the side perspective, and 
(d) and (h) downstream in the top perspective. Solid line is the regression and dotted lines 
are the 95% confidence limits of the mean.
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Figure 3.15: Flow visualization around Elodea canadensis using fluoroscein dye in the 
side (left) and the top (right) perspectives. Velocities increase from top to bottom panels 
[(a) and (b) are 1.3 cm s'\ (c) and (d) are 2.0 cms"\ (e) and (f) are 5.0 cms"*, (g) and (h) 
are 8.4 cms *, and (i) and (j) are 11.0 cms *]. Flow is from left to right. Top and side 
photos were taken sequentually.
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Figure 3.16: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or stem Reynolds number (based on the plant diameter) in the different 
domains for Elodea canadensis: (a) and (e) upstream in the side perspective, (b) and (f) 
upstream in the top perspective, (c) and (g) downstream in the side perspective, and (d) 
and (h) downstream in the top perspective. Solid line is the regression and dotted lines are 
the 95% confidence limits of the mean.
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Figure 3.17: Flow visualization around Ceratophyllum demersum using fluoroscein dye 
in the side (left) and the top (right) perspectives. Velocities increase from top to bottom 
panels [(a) and (b) are 1.3 cms'*, (c) and (d) are 2.0 cm s'\ (e) and (f) are 5.0 cm s'\ (g) 
and (h) are 8.4 cm s'\ and (i) and (j) are 11.0 cms"']. Flow is from left to right. Top and 
side photos were taken sequentually.
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Figure 3.18: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or stem Reynolds number (based on the diameter) in the different 
domains for Ceratophyllum demersum: (a) and (e) upstream in the side perspective, (b) 
and (f) upstream in the top perspective, (c) and (g) downstream in the side perspective, 
and (d) and (h) downstream in the top perspective. Solid line is the regression and dotted 
lines are the 95% confidence limits of the mean.
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Figure 3.19: Comparison of the fluid dynamic conditions around plants and a physical 
model (a) The velocity at which the transition from laminar to turbulent occurs for the 
different plants; (b) Rate of change in the area of dye coverage with increasing velocity 
for the different test subjects; and (c) The rate of change in the concentration of dye with 
increasing velocity for the different test subjects. The dotted line represents the average 
result for the physical model (circular cylinder).
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Figure 3.20: Contours of the velocity field measured 3 cm from the flume bottom in a 2 
cm X 2 cm grid in an empty flume. Each point of the contours was the mean of 120 s of 
data samples at 25 Hz. (a) streamwise velocity (u) at 1.3 cms"\ (b) vertical velocity (w) at
1.3 cms'*, (c) streamwise velocity (u) at 11.0 cms'*, and (d) vertical velocity (w) at 11.0
cms Scale bars in cms'*.
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Figure 3.21: Contours of the velocity field measured 3 cm from the flume bottom in a 2 
cm X 2 cm grid (3 cm in the vicinity of the cylinder) around a circular cylinder. Each 
point of the contours was the mean of 120 s of data samples at 25 Hz. (a) streamwise 
velocity (u) at 1.3 cms'*, (b) vertical velocity (w) at 1.3 cms'*, (c) streamwise velocity (u) 
at 11.0 cms'*, and (d) vertical velocity (w) at 11.0 cms'*. Scale bars in cms'*.
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Figure 3.22; Contours of the velocity field measured 3 cm from the flume bottom in a 2 
cm X 2 cm grid (3 cm in the vicinity of the plant) around Vallisneria americana. Each 
point of the contours was the mean of 120 s of data samples at 25 Hz. (a) streamwise 
velocity (u) at 1.3 cm s'\ (b) vertical velocity (w) at 1.3 cm s'\ (c) streamwise velocity (u) 
at 11.0 cm s'\ and (d) vertical velocity (w) at 11.0 cm s'\ Scale bars in cm s'\
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Figure 3.25: Regressions for the angle of deflection for (a) the circular cylinder and the 
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for the number of oscillations per second with increasing velocity for (e) the circular 
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d)

Figure 3.27: The transition to turbulent flow of a fluid as it passes a circular cylinder seen 
in cross section at different Reynolds numbers: (a) 1, (b) 10, (c) 13, (d) 26, (e)105, and (f) 
150.
(From: http://nmm.media.mit.edu/student/95/aries/mas864/obstacles.html)

http://nmm.media.mit.edu/student/95/aries/mas864/obstacles.html
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The Effect of Internodal Spacing on Downstream Flow Patterns and Compliance in
Elodea canadensis and Ceratophyllum demersum

Abstract:

Aquatic macrophytes experience both diffusive and mechanical stresses, and as 

such, must contend with different constraints. Specifically, at low velocities, plants must 

overcome boundary layer limitations in order to increase exchange rates and hence 

nutrient uptake, whereas at high velocities they must reduce drag to minimize tissue 

damage or dislodgement. Given these constraints and the plasticity in macrophyte 

morphology, the experimentally manipulated internodal spacing and compliance 

(deflection of the plant from the vertical) of a whorled leaf macrophyte, Elodea 

canadensis, and a whorled macrophyte with highly dissected leaves, Ceratophyllum 

demersum, were examined in a flow chamber at velocities from - 1 - 1 1  cms '. 

Fluoroscein dye was used to visualize the flow patterns and a digital camera was used to 

record the images. Increasing the internodal spacing in Elodea affected the downstream 

flow patterns by reducing the plant-flow interaction (e.g., less fluid came in contact with 

the plant surface as compared to the other plants) but not the degree of compliance 

exhibited by the plant. Conversely, in Ceratophyllum, the downstream flow patterns did 

not change significantly with increased internodal spacing, but the compliance increased 

considerably. These results suggest that Elodea may be better suited to faster flow 

environments because it would experience less of a plant-flow interaction, which would 

minimize hydrodynamic drag. Conversely, Ceratophyllum may be better suited to slower 

flow environments because of the high plant-flow interaction, which would induce small 

scale mixing close to the leaf surface, thus enhancing mass transfer. It appears that fluid
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dynamics have a determining role in the plastic response of macrophyte morphology, and 

thus the evolution of plant form and function.

Introduction:

Freshwater macrophytes are phenotypically plastic in that they are able to change 

their morphology and physiology in response to environmental conditions (Idestam- 

Almquist and Kautsky, 1995; Santamaria et al., 2003). This allows macrophytes to grow 

in a wider range of environments than would be possible for a single morphotype 

(DeWitt et al., 1998). Macrophytes are also able to change their morphology in response 

to water motion and thus to colonize different hydrodynamic environments (Sculthorpe, 

1967; Stewart and Carpenter, 2003). For example, at slower velocities entire leaf forms 

in macroalgae tend to be shorter and thicker as opposed to longer and more slender in 

faster velocities (Norton et al., 1982; Guitierrez and Fernandez, 1992) so that it would 

seem logical to expect the same in freshwater macrophytes. Dissected morphologies 

however, show the opposite trend whereby intemodal leaf segments are slender in slow 

flow environments and shorter and firmer in faster moving water (Sculthorpe, 1967). 

Macrophytes have also been known to increase their intemodal spacing in response to 

low light levels (Cronin and Lodge, 2003), and to living in wave-sheltered sites (Idestam- 

Almquist and Kautsky, 1995). It would seem important, therefore, to determine whether 

a change in plant architecture such as intemodal spacing effects the local fluid dynamic 

conditions, and thus the diffusional and mechanical stress acting on submerged 

freshwater plants.

Gas exchange and light capture are essential to the productivity of plants. One 

way that plants enhance uptake, is through heterophylly (different leaf morphologies on
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the same plant, or in the same species, depending on environment), which is a prime 

example of the functional explanation of plant architecture (e.g., Properpinaca 

palusturis', Sculthorpe, 1967; Wells and Pigluicci, 2000). As a comparison, macroalgae 

increase the surface area: volume in order to maximize light capture, and to increase the 

flux of nutrients available to the plant (Hurd, 2000). Another way to increase nutrient 

flux to the plant is through the possession of fine-scale roughness elements (such as fine 

hairs, toothed edges, bullate surfaces etc.), which generate turbulent flow at the plant 

surface at low velocities (Abelson et al., 1993; Hurd, 2000). One of the principle ways in 

which this occurs is through vortex generation as the fluid passes by an object (Kundu, 

1990; See chapter 3). This type of turbulence generation would also be important to 

freshwater macrophytes as a means of increasing local mixing that would deliver 

nutrients through inertial processes as opposed to diffusion (Okubo et al., 2002). It is 

reasonable to postulate that intemodal spacing in freshwater macrophytes may be 

important in the generation of vortices in that it would affect the presentation of whorls of 

leaves to the mainstream flow.

Macrophytes must also be able to withstand the potential of mechanical damage 

present in a flowing system due to fluid dynamic forces (e.g., lift, drag, shear stress, 

acceleration forces; Vogel, 1994; Okubo et al., 2002). Flexibility can increase in the 

ability of macrophytes to become compliant under flowing conditions, and thus decrease 

the magnitude of hydrodynamic forces experienced (Sand-Jensen, 2003). Plants that 

grow in energetic environments tend to be small in stature and limited in lateral spread, 

whereas plants that grow in predictable habitats tend to be higher in stature and extensive 

in lateral spread (Barrat-Segretain, 2001). In contrast, giant kelps are both long and
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flexible, and this morphology may reduce the drag experienced hy these algae (Denny et 

al., 1997). It has also been found that macroalgae with fewer branches are better able to 

withstand the mechanical stresses of higher velocities than highly branched macroalgae 

(Sheath and Hamhrook, 1988). Schutten and Davy (2000) confirmed this result in 

freshwater plants, where plants with less surface area were found to experience lower 

drag. Clearly the ability of a plant to reduce the risk of damage is central to its survival 

and, it would be useful to determine how freshwater macrophytes respond to increasing 

flow conditions (i.e., remain stiff, comply, or break). As indicated above, intemodal 

spacing is an important morphological feature that appears to confer benefits at both low 

and high velocities. It would be instructive to investigate how this feature affects the 

fluid dynamics surrounding freshwater macrophytes with whorled leaves. It is expected 

that an increased intemodal spacing would generate less turbulence and less compliance 

by the plant. The following chapter examines the null hypothesis that intemodal spacing 

has no effect on the flow or compliance of whorled-leafed macrophytes with entire and 

highly dissected leaves (i.e., Elodea canadensis and Ceratophyllum demersum, 

respectively).

Materials and Methods:

In order to examine the null hypotheses, photographs and short videos were taken 

of Fluoroscein dye moving: (1) in an empty test section; (2) past a circular cylinder (0.7 

cm diameter); (3) past Elodea canadensis (referred to as Elodea in this report); (4) past 

Elodea with the leaf whorl at every second node removed; (5) past Elodea with the leaf 

whorl at every second and third node removed; (6 ) past Ceratophyllum demersum 

(referred to as Ceratophyllum in this report); (7) past Ceratophyllum with the leaf whorl



Chapter 4  164

at every second node removed; and (8 ) past Ceratophyllum with the leaf whorl at every 

second and third node removed (all plant segments in 5 cm lengths: Figures 4.1, 4.3, 4.5, 

4.7,4.9,4.12,4.15). All specimens of Elodea were collected from Tabor Lake, Prince 

George, B.C., and all specimens of Ceratophyllum were purchased from Ward Scientific 

Supply (Rochester, NY, USA). The whorls were removed where they attached to the 

stem by pulling them off with tweezers. A sample size of three was used for each intact 

and manipulated segment of each plant.

The experimental protocols and procedures were the same as those used in 

Chapter 3. The plants were examined in a recirculating flow chamber (see Chapter 3; 

Figure 3.1) operated at velocities ranging from about 1-11 cms"\ similar to the velocities 

used by Nepf and Koch (1999), and Leonard and Luther (1995). Fluoroscein dye was 

injected isokinetically upstream of the plant and excited by a black light. A white light 

was also used to ensure that the plants were visible and could be recorded as photographs 

and video clips by the digital camera (Nikon CoolPix995; Melville, NY, USA). A pixel 

intensity versus dye concentration curve was used in the image analysis undertaken in 

MATLAB version 6.5 (Mathworks, Natick, Massachusetts). The area of dye coverage 

and the concentration of dye were determined for an upstream and downstream domain 

with respect to the plant in both the side and top perspective. The angle of deflection 

(angle from the vertical), the frequency of oscillations, and the angle of the leaves of 

Ceratophyllum from the stem were also measured from the video recordings.
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Statistical Analysis

Effect of Velocity on Dye Coverage and Concentration

The average and standard deviation of the area of dye coverage and/or the

concentration of dye in that area, were computed from the three images taken at each

velocity. The area or concentration was then regressed on the test velocity and whorl
_ u l

Reynolds number based on the diameter of the subject (i.e., ^ ’ ^here 1 is the

diameter of the stem plus the leaves, u is the velocity, and t) is the kinematic velocity; 

Vogel, 1994). The null hypothesis examined was that the slope of the regression is equal 

to zero, in other words there is no trend in area of dye coverage or concentration of dye 

with increasing velocity.

Effect of Intemodal Spacing on the Rate of Oscillation

Analyses of covariance (ANCOVAs) were conducted using the frequency of 

oscillations as the dependent variable. The different plants were the categorical factors, 

and velocity was the continuous predictor (the covariate). A Fisher LSD test was used 

for Post Hoc comparisons. This statistical test was chosen to test whether there is a 

difference between slopes for the different regressions.

Effect of Velocitv and Node Position on the Leaf Angles of Ceratophyllum

The dissected nature of the leaves of Ceratophyllum provided the opportunity to 

examine the response of leaf segments on the upstream and downstream side of the plant. 

The leaves were defined as moving closer to the stem when they moved towards the stem 

in the same direction as the flow in the chamber. ANCOVAs were conducted using angle 

of the Ceratophyllum leaf segment from the stem as the dependent variable. The node 

position on the stem was the categorical factor, and velocity was the continuous predictor
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(the covariate). A Fisher LSD test was used for Post Hoc comparisons between leaf 

angles of the different nodes.

Results:

It was established in Chapter 3 that the upstream flow patterns were not 

significantly different in any perspective or morphology because the dye was injected 

isokinetically. Consequently, only the downstream flow patterns are examined here. 

Cylinder

The flow patterns downstream of the circular cylinder have been discussed in the 

previous chapter, but are included here for comparative purposes. Laminar flow was 

observed at the slower velocities, as indicated by the loops of dye (“stickiness”), and the 

large area of recirculation downstream of the cylinder. The transition from laminar to 

turbulent flow occurred between 5.0 cms'^ and 8.4 cms'^ (i.e.. Re ~ 350-590). At the 

faster velocities, the flow was turbulent, with fewer loops of dye and a smaller 

recirculation zone. This is best seen in the top perspective where the dye streaklines 

revealed a classic attached eddy at 1.3 cms'^ (Re ~ 90; Figure 4.1b), a von Karman vortex 

street at 2 cms ' (Re ~ 140; Figure 4. Id), and more turbulent structures (eddies) at higher 

velocities (Figure 4.1f,h,J).

There was a significant increase in the dye coverage downstream in the side 

perspective with velocity (i.e., 0.5 cm^/cms ^ p = 0.018; Figure 4.2c), and a positive trend 

in the top perspective (p = 0.41; Figure 4.2d). Additionally, the dye concentration tended 

to decrease with velocity in the up and downstream domains, and this was significant in 

the case of the downstream side perspective (p = 0.014; Figure 4.2g).
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Elodea

The pattern of flow around Elodea was reported in Chapter 3 but it is repeated 

here for comparative purposes. The downstream dye streaklines were attached to the 

individual whorls in filamentous loops, and recirculation was present at the lower 

velocities (Figure 4.3a-d). The transition from laminar to turbulent occurred at ~ 5.0 cms' 

 ̂ (Re ~ 500), as indicated by the onset of eddies downstream of the plant (Figure 4.3e,f ). 

Von Karman vortices were shed at 8.4 cms'^ (Re ~ 840; Figure 4.3h) and more turbulence 

(widely spaced eddies, and less stickiness and recirculation) was evident at 1 1 .0  cms"'

(Re ~ 1100; Figure 4.3i-j).

There was a significant increase in the area of dye coverage with velocity 

downstream in the top perspective (p = 0.026) of ~ 0.10 cm^/cms"' (Figure 4.4d). 

Additionally, the dye concentration tended to decrease with velocity in the up and 

downstream domains, and this was significant in the case of the downstream side (p = 

0.049) and top perspectives (p = 0.046; Figure 4.4g,h).

Elodea with the Leaf Whorl at Everv Second Node Removed

The dye streaklines downstream of Elodea with the whorls at every second node 

removed showed a large amount of “stickiness” to the whorls at the lower velocities 

(Figure 4.5a-f). The transition from laminar to turbulent occurred between 5.0 cms"' and

8.4 cms"' (Re ~ 500-840; Figure 4.5e-h). At the higher velocities, turbulence was 

indicated by the closely spaced eddies, and the reduced amount of stickiness and 

recirculation as compared to the slower velocities (4.5g-j). There was also some 

compliance (bending into the flow) with increasing velocity.

There was a significant increase in the area of dye coverage with velocity 

downstream in the side perspective (p = 0.015), which was on the order of ~ 0.2
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cm^/cms'^ (Figure 4.6c), although this trend was not significant in the top perspective. 

Additionally, the dye concentration tended to decrease with velocity in the upstream and 

downstream domains, and this was significant in the case of the downstream top 

perspective (p = 0.016; Figure 4.6g,h).

Elodea with the Leaf Whorls at Everv Second and Third Node Removed

The dye streaklines downstream of Elodea with the whorls at every second and 

third node removed were laminar, as indicated by the loops in the dye attached to the 

individual whorls, at the lower velocities (Figure 4.7a,b). The transition from laminar to 

turbulent flow occurred between 5.0 ems'* and 8.4 cms'* (Re ~ 500-840) as indicated by 

the dye streakline becoming increasingly wavy (Figure 4.7c-h). The onset of eddies 

denotes that the flow was turbulent at the higher velocities (Figure 4.7g-j). There was 

little compliance, or bending into the flow with increasing velocity.

There were no significant trends in the area of dye coverage with velocity 

downstream of the plant, and the trend in the side perspective was positive, but was 

negative in the top perspective (Figure 4.8c,d). The dye concentration however, 

decreased significantly with velocity in the downstream side (p = 0.035) and top (p = 

0.007) perspectives at -0.07 and-0.05 gL'*/cms'*, respectively (Figure 4.8g,h). 

Ceratophyllum

The flow patterns downstream of Ceratophyllum were discussed in Chapter 3, and 

are presented here for comparative purposes. The dye streaklines downstream of 

Ceratophyllum “stuck” to the individual leaf segments at 1.3 cms'* (Re ~ 300), and there 

was considerable recirculation behind the plant (Figure 4.9a,b). The transition of the dye 

from smooth laminar to eddies occurred between 5.0 and 8.4 cms * (Re ~ 1200-2000;
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Figure 4.9c-f). Closely spaced eddies, and the reduced amount of stickiness and 

recirculation, indicated turbulent flow at the higher velocities (Figure 4.9g-j).

There was a significant decrease in the area of dye coverage with velocity 

downstream in the top perspective (p = 0.028), with a rate on the order of -0 .1  cm^/cms"' 

(Figure 4.10d). There was also a tendency for the dye concentration to decrease with 

velocity in the up and downstream domains, although no cases were significant (Figure 

4.10e-h).

An examination of the effect of velocity on leaf angle on the upstream side of the 

stem revealed that all leaves moved closer to the stem with increasing velocity (~ - 

l°/cms"*), although this was only significant for the bottom most (p = 0.006) and the third 

leaf up from the bottom (p = 0.02; Figure 4.lla,c). On the downstream side of the stem, 

the bottom three leaves moved significantly closer to the stem with increasing velocity (~ 

-l°/cms'^), but moving up the stem the trend was similar for the next two leaves, but not 

significant, and the leaf at the apex moved away from the stem, though the trend was not 

significant (Figure 4.11a-f).

Ceratophyllum with the Leaf Whorls at Everv Second Node Removed

The dye streaklines downstream of Ceratophyllum with the whorls at every 

second node removed were laminar, as denoted by smooth dye streaklines and the large 

amount of “stickiness” on the individual leaf segments at the lower velocities. At the 

lower velocities, there was also recirculation behind the plant (Figure 4.12a-f). The 

transition from laminar to turbulent flow occurred between 5.0 cms'^ and 8.4 cms'^ (Re ~ 

1 2 0 0 -2 0 0 0 ) as indicated by the dye streakline changing from smooth to more chaotic in 

structure (Figure 4.12e-h). At the higher velocities, turbulence was indicated by the
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closely spaced eddies, and less stickiness and recireulation (Figure 4.12g-j). There was 

also a high amount of compliance of the plant into the flow with increasing velocity.

There was a positive but not significant trend in the area of dye coverage with 

velocity downstream of the plant in the top perspective (Figure 4.13d). There was 

however, a significant decrease in dye concentration of -0.07 gUVcms'^ (p = 0.039) in 

the side and -0.031 gUVcms'* (p = 0.007) in the top perspective (Figure 4.13g,h).

The leaf at the base of the plant on the upstream side tended to move away from 

the stem with increasing velocity, but this was not significant. Conversely, the next leaf 

showed a non-significant trend to move closer to the stem, and the top three leaves 

moved significantly closer to the stem with increasing velocity (i.e., -1.6 to -3.2 °/cms'\ 

Figure 4.14a-e). On the downstream side of the stem, the leaf at the base of the plant 

tended to move towards the stem, the next leaf moved significantly away from the stem at 

a rate of ~ 0.5 7cms '. The third and fourth leaves from the bottom of the plant moved 

towards the stem with increasing velocity, but the leaf at the apex of the plant moved 

significantly away from the stem with increasing velocity (Figure 4.14a-e).

Ceratovhvllum with the Leaf Whorls at Everv Second and Third Node Removed

At the slower velocities, laminar flow was indicated by the filamentous dye loops 

attached to the individual leaf segments, and the recirculation behind Ceratophyllum with 

the whorls at every second and third node removed (Figure 4.15a-f). The dye streakline 

downstream became increasingly complex with increasing velocity and the transition 

occurred between 5.0 cms"  ̂and 8.4 cms'^ (Re ~ 1200-2000; Figure 4.15e-h). At the 

higher velocities, turbulence was indicated by the closely spaced eddies, and a reduced
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amount of stickiness and recirculation (Figure 4.15g-j). This manipulated segment of 

Ceratophyllum showed a high amount of compliance with velocity, similar to above.

There was no significant trend in the area of dye coverage downstream in the side 

perspective although there was a tendency for an increase with velocity (Figure 4.16c,d). 

There was also a tendency for the dye concentration to decrease with velocity in both the 

side and top perspectives (Figure 4.16g,h).

The leaf at the base of the plant tended to move closer to the stem as did the 

second and third leaves up the stem, and the leaf at the apex did so significantly (p = 

0.031, 0.026, <0.001, respectively). The rate of change in compliance towards the stem 

increased as the leaves approached the apex of the plant (-1.3 to -2.0 7cms“̂ ; Figure 

4.17a-d). On the downstream side of the stem, the bottom three leaves tended to move 

away from the stem, whereas the leaf at the apex tended to move closer to the stem with 

increasing velocity (Figure 4.17a-d).

Effect of Manipulating Intemodal Spacing 

Area of Dye Coverage

An ANCOVA was undertaken on all of the plant types to determine whether there 

were significant differences among their responses to velocity. There was a significant 

effect of velocity on area of dye coverage (p = 0.023; Table 4.1a), plant type (i.e., species 

and intemodal spaces; p < 0.001), side versus top perspective (p = 0.036), and upstream 

versus downstream domain (p < 0.001). There were also significant interactions 

between the plant and the upstream versus downstream domain (p = 0 .0 0 1 ), as well as 

between the side versus top perspective and the upstream versus downstream domain (p = 

0 .002).
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Upon closer inspection however, ANCOVAs conducted on each plant species and 

manipulation revealed that in terms of area of dye coverage, there was a significant effect 

of velocity for the cylinder (p < 0.001; Table 4.2a), but not for Elodea (p = 0.52; Table 

4.2b), or Elodea with the whorl at every second node removed (p = 0.08; Table 4.2c), or 

for Elodea with the whorls at every second and third node removed (p = 0.78; Table 

4.2d). There were significant differences between the upstream and downstream domains 

for all plants, but no significant effect of side versus top perspectives for any of the 

manipulations (Table 4.2). Pairwise comparisons in the side perspective downstream 

revealed significant differences in the area of dye coverage between the cylinder and 

Elodea with the whorls at every second and third node removed (p = 0.001), the cylinder 

and the empty test section (p = 0.003), Elodea and Elodea with the whorls at every 

second and third node removed (p < 0.001), Elodea and the empty test section (p =

0.001), and between Elodea with the whorls at every second node removed and Elodea 

with the whorls at every second and third node removed (p = 0.039: Table 4.3c). In the 

top perspective, significant differences occurred between the subjects and the empty test 

section (p < 0.001), but not among any of the subjects (Table 4.3d).

ANCOVAs were conducted on Ceratophyllum and its manipulated stems. This 

analysis demonstrated that there was only a marginal effect of velocity on the area of dye 

coverage for Ceratophyllum (p = 0.08; Table 4.4b), and no effect for Ceratophyllum with 

the whorl at every second node (p = 0.39; Table 4.4c) and every second and third node 

removed (p = 0.11; Table 4.4d). There was however, a significant upstream versus 

downstream effect, but no significant effect of side versus top perspective for either of 

the plants (Table 4.4). Pairwise comparisons showed that the area of dye coverage in the
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side perspective was significantly different between Ceratophyllum with the whorls at 

every second node removed and the cylinder (p = 0.006), the cylinder and the empty test 

section (p = 0.003), and between Ceratophyllum and the empty test section (p = 0.042: 

Table 4.5c). In the top perspective, significant differences in area of dye coverage 

occurred between the subjects and the empty test section, the cylinder and Ceratophyllum 

(p = 0.023), and between the cylinder and Ceratophyllum with the whorls at every second 

node removed (p = 0.007; 4.5d).

Concentration of Dye

An ANCOVA was conducted on the concentration of dye for all of the subjects, 

which revealed a significant effect of velocity (p < 0.001; Table 4.1b), plant type (p = 

0.39), side versus top perspective (p = 0.007), and upstream versus downstream domain 

(p < 0.001). Separate ANCOVAs conducted for Elodea and its manipulated intemodes 

showed that there was a significant effect of velocity on the concentration of dye for all 

of the plants (Table 4.2). However, there were no significant effects of upstream versus 

downstream domain, or side versus top perspective for any of the plants (Table 4.2). 

Pairwise comparisons showed that in the side perspective, downstream of the Elodea 

manipulations, significant differences occurred between the subjects and the empty test 

section (Table 4.6c), but not among any of the subjects. In the top perspective, the only 

significant difference occurred between the cylinder and the empty test section (p =

0.029; Table 4.6d).

ANCOVAs conducted on the concentration of dye for the different 

Ceratophyllum intemodal manipulations showed that velocity had a significant effect on 

Ceratophyllum with the whorl from every second node removed (p = 0.003; Table 4.4c)
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and Ceratophyllum with the whorls from every second and third node removed (p <

0.001; Table 4.2d), but only marginal significance for unmanipulated section of 

Ceratophyllum (p = 0.059; Table 4.4b). The same pattern occurred in the upstream 

versus downstream position, but no significant effects were noted between the side and 

top perspectives (Table 4.4). In the side perspective, downstream of the Ceratophyllum 

manipulations, significant differences in concentration were found between the cylinder 

and Ceratophyllum (p = 0.040), the cylinder and the empty test section (p = 0.002), and 

between Ceratophyllum and the empty test section (p = 0.020: Table 4.7c). In the top 

perspective downstream, significant differences were found between the cylinder and 

Ceratophyllum (p = 0.031), Ceratophyllum with the whorls at every second and third 

node removed (p = 0.004), and the empty test section (p = 0.029; Table 4.7d).

Angle o f Leaf from the Stem

An ANCOVA of the leaf angle results for the different manipulations of 

Ceratophyllum revealed a significant effect of manipulation on leaf angle (p = 0.005: 

Table 4.8a). However, there were only significant differences between the leaves on the 

upstream side of the stem of Ceratophyllum, and the leaves in the upstream and 

downstream position on the manipulated segments of Ceratophyllum (Table 4.8b). In 

terms of the rate of change in the leaf angle, the apical leaf in the approaching flow 

moved towards the stem at a faster rate than the leaves lower down on the stem for all 

three plant segments (Figure 4.18a). Only unmanipulated Ceratophyllum showed a trend 

in the downstream direction, whereby the apical leaf moved away from the stem, and the 

other leaves moved towards the stem at a faster rate the closer they were to the base of 

the plant (Figure 4.18b). Neither of the Ceratophyllum manipulations showed a trend in
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the rate of change in leaf and angle from the stem with increasing velocity. The same 

analyses were not conducted for Elodea due to the relatively short and stiff structure of 

the leaves, which were not observed to change in angle of deflection upon viewing the 

video clips.

Angle o f Deflection

The angle of deflection for the different species and their associated 

manipulations increased significantly with increasing velocity (p < 0.003; Table 4.19a-g). 

The rate ranged from 2-3 °/cms'^ for Elodea and 4-5 °/cms'^ for Ceratophyllum. As such, 

the ANCOVA showed that there was a significant effect of velocity (p < 0.001), as well 

as for plant type (p < 0.001; Table 4.9a). More specifically, post hoc tests showed that 

there were significant differences between the cylinder and Elodea, and the three 

Ceratophyllum manipulations. Differences also occurred: between Elodea and Elodea 

with the whorls at every second node removed and Ceratophyllum', between Elodea with 

the whorls at every second and third node removed and the three Ceratophyllum 

manipulations; Elodea with the whorls at every second and third node removed and 

Ceratophyllum and Ceratophyllum with the whorls at every second and third node 

removed; and between unmanipulated Ceratophyllum and the two Ceratophyllum 

manipulations (Table 4.9b).

Oscillations

The frequency of oscillations increased with velocity for both plant species and 

their associated manipulations (Figure 4.20a-g). This was significant for Elodea with the 

whorls at every second node removed (p = 0.031), Ceratophyllum (p = 0.018), 

Ceratophyllum with the leaves at every second node removed (p = 0.006), and
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Ceratophyllum with the leaves at every second and third node removed (p = 0.048). The 

ANCOVA showed that velocity (p < 0.001) and plant type (p = 0.002; Table 4.10a) had a 

significant effect on the frequency of oscillation. However, pairwise comparisons 

revealed that all of the significant pairwise differences occurred between the cylinder 

(which did not oscillate) and the test subjects (Table 4.10b).

Comparison of Plant Types

The transition from laminar to turbulent flow, occurred at a velocity equal to or 

greater than the physical model for all plants with the exception of unmanipulated Elodea 

(Figure 4.21a). The transition for the cylinder, Elodea with the leaves from every second 

node removed, and Ceratophyllum occurred between 5 and 8.4 cm s'\ for Elodea between 

2 and 5 cm s'\ at ~ 8.4 cms'^ for Elodea with the leaves from every second and third node 

removed, and between 8.4 and 11 cms”' for Ceratophyllum with the leaves from every 

second, and every second and third node removed. It should be noted that the use of Re 

did not change the pattern of observation reported here. Specifically the Re for the 

cylinder ranged from 90-770, from 130-1100 for Elodea and its manipulations, and from 

300-2600 for Ceratophyllum and its manipulations. Collectively, this would indicate that 

the manipulations reduced the level of local mixing.

A direct comparison of the rate of change in the area of dye coverage with 

increasing velocity revealed that the rate was slower for all of the plants than for the 

physical model (Figure 4.21b). The rate of change for the circular cylinder increased 

significantly on the order of ~ 0.5 cm^/cms"\ as it did for Elodea with the whorl at every 

second node removed although at a slower rate on the order of ~ 0.2 cm^/cms‘\  There 

was a positive, although non-significant trend seen in Elodea with the whorls at every
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second and third node removed (~ 0.08 cm^/cms'^), and in Ceratophyllum with the whorls 

at every second and third node removed (~ 0.2 cm^/cms'^). Non-significant negative 

trends in the area of dye coverage with increasing velocity were seen in Elodea (~ - 

0.0004 cm^/cms ’), Ceratophyllum (~ -0.2 cmVcms"’), and Ceratophyllum with the whorl 

at every second node removed (~ -0 .0 1  cm^/cms'^).

A direct comparison of the rate of change in concentration of dye with velocity 

showed that the rate of change for the plants was less than the rate for the physical model 

(Table 4.21c). The rate for the circular cylinder decreased significantly, at ~ -0.05 gL 

Vcms'\ as did Elodea (~ -0.06 gL'Vcms'^), Elodea with the whorls at every second and 

third node removed (~ -0.07 gL'Vcms'*), and Ceratophyllum with the whorl at every 

second node removed (~ -0.07 gUVcms'^). The rates for Elodea with the whorl at every 

second node removed (~ -0.06 gL'Vcms'^), Ceratophyllum (~ -0.07 gL'Vcms'^), and 

Ceratophyllum with the whorls at every second and third node removed (~ -0.08 gL 

Vcms'^), also decreased though non-significantly.

The rate of change in the angle of deflection with increasing velocity was lower 

for the Elodea series than for the Ceratophyllum series of manipulations (Figure 4.22a). 

Elodea and Elodea with the whorl at every second node removed showed an increase on 

the order of - 3 . 1  °/cm s'\ whereas Elodea with the whorls at every second and third 

node removed showed a much slower rate of change at -  1.9 °/cms'\ The rate of change 

for Ceratophyllum (~ 5.2 7cms'^), Ceratophyllum with the whorl at every second node 

removed (~ 4.4 7cms'^), and Ceratophyllum with the whorls at every second and third 

node removed (-  5.2 7cms'*) were similar. The rate of change in the frequency of
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oscillations with increasing velocity was similar for all plants although the Elodea 

manipulations oscillated at lower rates (i.e., 0.05 vs. 0.07 Hz/cms'^; Figure 4.22b). 

Discussion:

The response of flow to intemodal spacing was different between the entire- 

whorled (Elodea) and dissected-whorled (Ceratophyllum) morphologies. For Elodea the 

plant-flow interaction decreased with increased spacing, reducing the opportunity for dye 

attachment (Schwinge et al., 2002), and thus exchange between the fluid and the leaf 

surface. For Ceratophyllum and the associated manipulations, the plant-flow interaction 

was greater because the angle of the leaf from the stem did not differ significantly among 

the different manipulations. Resultantly, there was always a highly dissected, mesh-like 

obstruction maintaining similar downstream flow patterns (i.e., small scale eddies) 

(Nowell and Jumars, 1984; Sand-Jensen and Pedersen, 1999). This would enhance the 

local mixing and contact of the fluid with the leaf surface, a feature that suggests this 

morphology may be better suited to slower flows.

Despite differences in dye patterns, the concentration of dye decreased at a slower 

rate for the plants than for the cylinder. This suggests that although plants, and different 

manipulations thereof, have different ways of affecting the flow, they still retained more 

fluid than a physical model. This would provide more opportunity for nutrient uptake. A 

similar trend was demonstrated in macroalgae by Hurd et al. (1996) where different blade 

morphologies produced different flow patterns, but the uptake of nitrogen remained 

similar between the two morphologies. It is not known whether other nutrients would 

behave the same manner. It seems reasonable to expect that a variation in the 

morphology of a freshwater plant species (i.e., intemodal spacing) and the resultant fluid
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dynamic patterns identified above may influence nutrient uptake. This is an issue that 

should to be examined experimentally in freshwater macrophytes.

The compliance of Elodea and Ceratophyllum increased with velocity which 

would increase the interception efficiency of both direct and diffuse light but could lead 

to canopy shading (Niinemets and Fleck, 2002). In addition, there was a trend for the 

individual leaves of the Ceratophyllum to fold in closer to the stem as velocity increased, 

which would decrease drag, but also photosynthesis due to self-shading. Subsequently, at 

slower velocities where diffusion is limiting, the leaves protrude more into the flow, thus 

presenting more surface area for photon capture and increasing the efficiency of light use 

by the plant (Gutschick, 1999; Niinemets and Fleck, 2002). Leaf shape, the length of 

intemodes, and the pattern of leaf arrangement are all important in defining the total 

amount of direct light a shoot can receive (Niklas, 1992). This is especially true for 

aquatic macrophytes because water attenuates the intensity of sunlight and preferentially 

absorbs the red wavelengths of light, so that submerged aquatic plants experience 

significantly lower light intensities shifted in favour of blue wavelengths (Niklas, 1997).

These results demonstrate that an increasing intemodal spacing has different 

implications for different plant morphologies. For example, Elodea may be better suited 

to faster flow because the plant-flow interaction decreased with increased intemodal 

spacing. Conversely, Ceratophyllum would probably be better suited to slower flow 

conditions because the highly dissected morphology ensures greater plant-flow 

interaction. Additionally, the high level of compliance would increase the amount of 

surface area exposed for photon capture as well as reduce drag, as mentioned above.
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It is important to recognize that the plants in this study were grown in a low flow 

environment prior to the experiments. Had they been taken from high flow areas, there 

may have been morphological differences such as shorter intemodal spaces (Idestam- 

Almquist and Kautsky, 1995) and more robustness in their stmcture (Schutten and 

Davey, 2000). This however, should have minimal effects on the results of the 

experiment because the plant segments were experimentally manipulated to alter the 

intemodal spacing, and since the experiments were conducted at the lower end of the 

velocity range, breakage was not an issue, although there may have be a decrease in the 

degree of compliance.

Often, while plants acclimate to increase productivity, they increase the chance of 

mechanical damage (Ennos, 1999). For example, a natural response of aquatic 

macrophytes to increase photosynthesis is to grow closer to the light source (i.e., away 

from the bottom), thus increasing mechanical stress by exposing the plant to higher 

velocities (Ennos, 1999; Strand and Weisner, 2001). A strategy of minimizing 

rnechanical stress in aquatic systems is for plants to become more compliant with the 

flow (streamlined) in order to reduce the hydrodynamic drag (Schulthorpe, 1967). 

However, in order to inhabit faster moving environments, the length of the leaf must be 

small since drag is a function of surface area (Vogel, 1994). Hence, in order to reduce 

drag, plants must either become compliant to the flow, or reduce the size of individual 

surfaces facing the flow. Therefore, an increase in intemodal spacing would be 

beneficial to plants that grow higher in the water column in relatively low flow 

environments beeause the reduction in leaf area would decrease drag. This is important 

because the plants need to remain erect in the water column in order to maximize light
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interception. An increase in intemodal spacing would not be beneficial at higher 

velocities because the plants would either be deflected downwards (i.e., increased 

compliance) and/or not be robust enough to withstand high drag forces.

Intemodal spacing is a form of phenotypic plasticity that can link certain plant 

characteristics to environmental conditions (Santamaria et al., 2003; Idestam-Almquist 

and Kautsky, 1995). For example, plants growing in wave-protected sites tend to be 

longer, with longer intemodes as well as more shoots with longer branches, as compared 

to those in the wave-exposed sites (Idestam-Almquist and Kautsky, 1995). This pattem 

also applies to marine invertebrates where intersetal spacing increases with decreasing 

velocity (Sebens et al., 1997; Marchinko and Palmer, 2003). It would appear that this 

form of phenotypic plasticity (i.e., intemodal spacing and compliance) is important for 

aquatic macrophytes.

The null hypothesis that intemodal spacing has no effect on the flow patterns 

generated by the plants and their compliance under different velocities was rejected. 

Intemodal spacing has been found to affect surface area to volume ratios (Denny, 1993; 

Hurd and Stevens, 1997; Gutschick, 1999) and the degree of compliance (Sculthorpe, 

1967; Sand-Jensen, 2003; Speck, 2003). The surface area:volume ratio is important for 

diffusion, local mixing, and drag. For example, the aerial form of the heterophyllous 

plant, Properpinaca palustris, has leaves with toothed margins that are smaller, broader, 

thicker and fewer in number than those on submerged streams, which are highly dissected 

(Schulthorpe, 1967; Wells and Pigluicci, 2000). This high level of dissection is thought 

to increase the surface arearvolume ratio, but the small leaf segments would also work to 

trip boundary layers (i.e., change them from laminar to turbulent) (Gutschick, 1999), thus
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increasing the delivery of gases to the leaf surface. In addition to plants altering their 

morphology in response to environmental conditions, plants can also change their local 

conditions, as was shown by Koehl and Alberte (1988), who found that the flapping of 

macroalgae increased photosynthesis, whereas the clumping together of fronds decreased 

photosynthesis due to self shading. This demonstrates that the macrophyte-flow 

interaction is a complicated one in that water motion has an effect on plant morphology, 

and this interaction can affect productivity. In other words, fluid dynamics have had a 

determining role in the plasticity of freshwater macrophytes because of the plant-flow 

interaction, which matches plant morphology to environmental condition. In this case, 

increased intemodal spacing allowed the plant to remain higher in the water column in a 

relatively low energy environment because of a lower plant-flow interaction.
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Table 4.1: ANCOVA results for (a) the area covered in dye and (b) the concentration of 
dye in that area for the different domains for all of the test subjects combined. (Velocity = 
average flume velocity; Plant = empty test section, circular cylinder, Elodea, Elodea with 
the leaves at every second node removed, Elodea with the leaves at every second and 
third node removed, Ceratophyllum, Ceratophyllum with the leaves at every second node 
removed, and Ceratophyllum with the leaves at every second and third node removed; 
Area = area of dye coverage; Cone. = concentration of dye; side/top = side and top 
perspectives; before/after = upstream and downstream domain). Grey values are 
significant.

(a)

Effect

Univariate Results for Each DV (ancova_spreadsheet_ch2) 
Sigma-restricted parameterization 
Effective hypothesis decomposition

Degr. of 
Freedom

area
8 8

area
MS

area
F

area
P

Intercept 1 213.8189 213.8189 380.6048 0.000000
velocity 1 2.9844 2.9844 5.3124 0.022797
plant 7 18.0545 2 5792 4.5911 0.000133
side/top 1 2.5104 2.5104 4.4687 0 0::6478
before/after 1 526.8370 526 8370 937 /Q72 0000000
plant*slde/top 7 3.5427 0.5061 0.9009 0.508095
plant*before/after 7 13 6716 1.9531 3 4766 0 001927
side/top*before/after 1 5.3689 5. ..1689 9.5567 0.002449
plant*side/top*before/after 7 3.6078 0.5154 0.9174 0.495361
Error 127 71.3470 0.5618
Total 159 647.9242] |

(b )

Effect

Univariate Results for Each DV (ancova_spreadsheet_ch2) 
Sigma-restricted parameterization 
Effective hypothesis decomposition

conc.
8 8

conc.
MS

conc.
F

conc.
P

Intercept 25.73763 25.73763 537.2375 0.000000
velocity 5.30758 5.30758 110.7884 0.000000
plant 0.73668 0.10524 2 .106 / 0.038608
side/top 0.36289 0.36209 7.5749 0.006786
before/after 0.57799 0.57799 12.0648 0.000703
plant*side/top 0.11445 0.01635 0.3413 0.933496
plant*before/after 0.62744 0.08963 1.8710 0.079586
side/top*before/after 0.07847 0.07847 1.6380 0.202932
plant*side/top*before/after....... 0.21367 0.03052 0.6372 0.724427
Error 6.08424 0.04791 1
T  otal 14.103421 1 1
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Table 4.2: ANCOVA results for the area of dye coverage and the concentration 
of dye for (a) the circular cylinder, (b) Elodea, (c) Elodea with the leaves at 
every second node removed, and (d) Elodea with the leaves at every second and 
third node removed.

( a )
Univariate Resuits for Each DV (Cyiinder) 
Sigma-restricted parameterization 
Effective hypothesis decomposition

Effect
Degr. of 

Freedom
area % area

F
area

P
conc.

88
conc. conc.

F
conc.

P
interceat 1 22,0598 22.05984 22.21238 0.000278 1.9786971 1.978697 1 95.67204 I 0.000000
velocity
side.'toj)
before/after
side/top'before/after___
Error

1
1
1
1

15

5.4365
0,4346

2 ^ 6 8 3 9
0.3294

14.8970

5.43651
0.43455

95.68384
0.32944
0.99313

5.47411 
0.43756 

96.34554 
0.33172

0.033544
0.518336
0,000000
0.573188

0.437853 1
o . o i e s o T T
0.033497
0.000428
0.310231

_0.437853 
0.016504 1 
0.033497 
0.000428 
0.020682

21.17066 ! 
0.79797 
1.61964 I  

0.02070j

0.000346
0.385807
0.222516
0.887524

Totai 19 116.7814 0.798514 !

( b )
Univariate Resuits for Each DV ( Elodea ) 
Sigma-restricted parameterization 
Effective hypothesis decomposition

Effect
Degr. of 

Freedom
area

8 8
area
MS

area area conc.
8 8

conc.
MS

conc.
F

conc.
P

intercept 1 40.63801 40.637981 111.66271 O.OOOOOdI 2.9495231 2.9495231 120.12691 0.000000
velocity
side/top
before/after
s  de/top‘before/after
Error
Totai

1
.......... .......1

1
1

15
19

0.1589  
0 4885  

92.4244  
1.7758 
5.4590  

100.3077

0.15888  
0.48855  

92 4 2 ^
1.77681 
0.36394

0.4366  
2 2 l  .3424 
"253.9585  

4.8822

0.51880611 0,6493321 
0.264723 0.029748  
O.OOOOOa 6.028255  
0.0431 o d  0.078995  

I I  0.3683011 
II 1.154631)

0.6493321
0.029748
0.028255
0.078995
0.0245531

26.4457)
1,2116
1.1508
3.21731

0.0001%
0.288375
0.300344
0.093045

(c )

Effect

Univariate Results for Each DV ( Elodea 2nd) 
Sigma-restricted parameterization 
Effective hypothesis decomposition
Degr. of area ; area ' area area conc. conc. conc. , conc. 

Freedom 88 ' MS F p 88 MS F i p
Intercept l l 27.41857 27.418571 108.3929 O.OOOOOdI 1.351336 1.3513361 41.09747 0.000016
velocity
side/top
before/after
side/top'before/after
Error

1
1
1
1

H

0.91044) 0.91044 3 5992 
0.07360 0.07360 0.2910 

83.129361 83.12%6I 3 2 8 .^ 3  
0.14255 0.14255 0.5635  
3.541381 0.25296

0.078628110.174365 
0.598070 0.116977  
O .O O O O od 0.108770  
0.465267 0.102537  

I I  0460337

0.174365' 5.30288
0.1169771 3.55756  
0.10877C 3.30796 
0.102537 3 11839 
0.032881:

0.037153
0.Ô8Ô193
0.090396
0.099202

Totai iq 89.33794 I II 0.999678) 1

(d)

Effect

Univariate Results for Eacfi DV ( Elodea 
Sigma-restricted parameterization 
Effective hypotfiesis decomposition_______

3rd)

Degr. of 
Freedom

area
88

area
MS

area
F

area conc.
88

conc.
MS

conc.
F

conc.
_2_

intercept
velocity
side/top
before/after
side/top'before/after
Error
Totai

1
1
1
1

151
19

28.67930i 28.679301 108.28451 O.OOOOOdI 3.083176) 3.0831761 96.756121 0.000000
0.020181 0.02018! 0.0762,
0.38676 0.38676 1.4603

56.47179i 56.47179i 213.2207:
0.08260! 0.08260 0.3119
3.97277: 0.26485:________ i

0.78626a 0.732808| 0.732808| 
0.245589 0.129212 Ô. 129212 
O .O O p O od 0.049666 0.049666  
0.584784 0.0004771 0.000477  

_ _ _ _ _ I I  0.4779821 0.031865!

22.99695! 0.000236  
4.054941 0.062343 
1.55861 0.231004  
0.01498! 0.9Ô4222

60.93410 1.390145
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Table 4.3; Post hoc comparisons between Elodea and its associated manipulations for the 
area covered in dye in the (a) side perspective upstream, (b) in the top perspective 
upstream, (c) in the side perspective downstream, and (d) in the top perspective 
downstream. Significant results indicated in bold. {Elodea 2"“̂ = Elodea with every

 j  j  —  —  o r d  _  --- ----- --------------------1  A  * u : „ A  „ ^ A ^

Cylinder Elodea Elodea Empty flume

Cylinder

Elodea 0.84

Elodea 0.94 0.9

EZofko 3"̂ 0.76 0.91 0.81
Empty flume 0.73 0 .8 8 0.79 0.97

(b) Cylinder Elodea 2 "" Elodea 3'̂ '̂ Empty flume

Cylinder

Elodea 0.63

0.91 0.71

EZotka 3"" 0.93 0.70 0.98
Empty flume 0.99 0.62 0.90 0.92

(c) Cylinder Elodea EZo(Zga 2 "'' Elodea 3*̂^ Empty flume

Cylinder

Elodea 0.72

2"'' 0.24 0.13

EZofZga 3"̂ 0 .0 0 1 < 0 .0 0 1 0.039
Empty flume 0.003 0 .0 0 1 0.071 0 .8

(d) Cylinder Elodea EZo jga 2°" Elodea Empty flume

Cylinder

Elodea 0.69

EZofZeo 2 "'' 0.96 0.73
Elodea 3'̂ '̂ 0 .2 2 0.40 0.24
Empty flume < 0 .0 0 1 < 0 .0 0 1 < 0 .0 0 1 < 0 .0 0 1



Table 4.4: ANCOVA results for the area of dye coverage and the concentration
of dye for (a) the circular cylinder, (b) Ceratophyllum, (c) Ceratophyllum with
the leaves at every second node removed, and (d) Ceratophyllum  with the leaves
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(a )
Univariate Results for Each DV (Cyiinder)
Sigma-restricted parameterization 
Effective hypothesis decomposition
Degr. of area area area area conc. 1 conc. conc. conc.

Effect Freedom SS MS F SS MS F D
Interceat 1 22.0598 22.05984 22.21238 0.0002781 1.978697 i 1.978697 95.67204 0.000000
velociiv 1 5.4365 5.43651 5.47411 0.0335441 0.437853 ■0.437853 21.17066 0.000346
side/top 1 0.4346 0.43455 0 43756 0.518336 0.016504 0.016504 0.79797 0.385807
before/after 1 95.6839 95.68394 96.34554 0.000000 0.033497 0.033497 1.61964 0 22251G
side/top'before/after 1 0 3294 0,32944 0.33172 0.573188 0.000428 0.000428 0 02070 0.887524
Error 15 14.8970 0.99313 10.310231 0.020682
Total 19 116.7814 0.7985141 i

(b)
Univariate Results for Each DV ( Ceratophyllum ) 
Sigma-restricted parameterization 
Effective hypothesis decomposition
Degr. of area area area area conc. conc. conc. conc.

Effect Freedom SS MS F P SS MS F P
Intercept 1 43.71454 43.71454 109.4433 O.OOOOOdI 3.4922961 3.492296 32.72128 0.000041
velocity
side/top
before/after
side/top'before/after
Error

__ 1
1
1
1

15

1.35136 
1 69315 

65.79465 
1.87377 
5.99140

1.35136
1.69315

65.79465
2Î.87377

0.39943

3.3833
4.2390

164.7228
4.6912

0.0857381 
0 057310
o.oooôôd
0.046839

0.446894 
0.152006 
Ô.005253! 
0.033108 
1.6009291

0.446894
0.152006
0.005253
0.033108
0.106729

4.18720
1.42423
0.04921

20 .31021

0.058675
0.251243
0.827427
0.585767

Total 19 76.70433 ! II 2.2381901

(c )
Univariate Results for Each DV ( Ceratophyllum 2nd) 
Sigma-restricted parameterization 
Effective hypothesis decomposition
Degr. of area area area area conc. conc. conc. conc.

Effect Freedom SS MS F P SS MS P
intercept 1 20.26384 20.26384 65.0744 O.OOOOOll 2.4540231 2.454023 104.35301 0.000000
velocity
side/top
before/after
side/top'before/after
Error
Totai

1
1
1
1

15
19

0.24563  
0 25525 

49.58870 
0.46875  
4.67092  

55.22925

0.24563
0.25525

49.58870
0.46875
0.31139

0.7888i
0.8197

159.2470
1.5053

0.388484
0.379584
6.000000
0.238763

0.291062
0.0610931 
0148957  
0.001925  
0.352748  
0.855785|

0.291062.
0.061093  
0.148957  
0 001925  
0.023517

i

12.37691 0.003106 
2.59791 0.127844 
6.3341 0.023707  
0.0819 0.778716

(d )
Univariate Results for Each DV ( Ceratophyllum 3rd) 
Sigma-restricted parameterization
Effective hypothesis decomposition
Degr. of area area aioa area conc. conc. conc. conc.

Effect Freedom SS MS F P SS MS F P
intercept 1 21.88786 21.88786 28.40197 0.000084 4.9197711 4.9197711 106.5441 0.000000
velocity 1 2.13744 2.13744 2.77357 0.116574 1.097093 1.097093 23.7590 0.000202
side/top t 0.11254 0.11254 0.14603 l_0.70771E 0.013358 0.013358 0.2893 0.598574
before/after 1 65.82507 65.82507 85.41545 o.oooooc 0.227015 0.227015 4.9163 0.042470
side/top'before/after 1 0.80929 0 80929 1.05014 0.321717 0.085267 0.085267 1.8466 0.194266
Error 15 11.55969 0.77065 0.692639,1 0.046176
Totai 19 80.44402 2.115372]
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Table 4.5: Post hoc comparisons between Ceratophyllum and its associated 
manipulations for the area covered in dye in the (a) side perspective upstream, (b) in the 
top perspective upstream, (c) in the side perspective downstream, and (d) in the top 
perspective downstream. Significant results indicated in bold. {Ceratophyllum =
G^stptophyllum with every second node removed; Ceratophyllum = Ceratophyllum
with every seconc and thirc node removecI)

Cylinder Ceratophyllum Ceratophyllum  2““* Ceratophyllum  3̂ ‘* Empty flume

Cylinder

Ceratophyllum 0.91
Ceratophyllum 0.78 0.87
Ceratophyllum  3”̂̂ 0 .8 8 0.98 0.89
Empty flume 0.73 0.82 0.95 0.84

(b) Cylinder Ceratophyllum Ceratophyllum  2““* Ceratophyllum  3̂ “* Empty flume

Cylinder

Ceratophyllum 0.98

Ceratophyllum 2"̂ 0.97 0.95
Ceratophyllum  3"" 0.64 0 .6 6 0.62
Empty flume 0.99 0.97 0.98 0.63

(c) Cylinder Ceratophyllum Ceratophyllum  2““* Ceratophyllum  3̂ “* Empty flume

Cylinder

Ceratophyllum 0.35

Ceratophyllum  2““* 0.006 0.07
Ceratophyllum  3'̂ ‘* 0.16 0.64 0.18
Empty flume 0,003 0.042 0.82 0.11

(d) Cylinder Ceratophyllum Ceratophyllum  2'“' Ceratophyllum  3'“' Empty flume

Cylinder

Ceratophyllum 0.023

Ceratophyllum 2"̂ 0.007 0.67
Ceratophyllum  3'̂ ‘* 0.16 0.38 0.19
Empty flume < 0.001 0.005 0.015 < 0.001
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Table 4.6: Post hoc comparisons between Elodea and its associated manipulations for the
concentration of dye in the (a) side perspective upstream, (b) in the top perspective
upstream, (c) in the side perspective downstream, and (d) in the top perspective
downstream. Significant results inc icated in bold.

(a) Cylinder Elodea EW ga Elodea 3"̂^ Empty flume

Cylinder

Elodea 0.74

Ekdga 2"" 0.54 0.34

Elodea 3"̂^ 0.58 0.38 0.95
Empty flume 0.70 0.47 0.82 0.87

(b) Cylinder Elodea Moffgo 2°" Elodea 3*̂“̂ Empty flume

Cylinder

Elodea 0.72

Ekdga 2"" 0.37 0.59

0.74 0.49 0.22

Empty flume 0.89 0.82 0.45 0.64

(c) Cylinder Elodea EZodgo 2"̂ Elodea 3"̂*̂ Empty flume

Cylinder

Elodea 0.53

kodga 2"" 0.56 0.96

EZodgo 3"̂ 0.37 0.79 0.75
Empty flume 0.002 0.012 0.011 0.024

(d) Cylinder Elodea EZodgo 2"̂ Elodea 3̂ ^ Empty flume

Cylinder

Elodea 0 .1 1

EZodga 2"'̂ 0.075 0.85

EZodga 3"̂ 0.13 0.91 0.77
Empty flume 0.029 0.56 0.69 0.49
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Table 4.7: Post hoc comparisons between Ceratophyllum and its associated
manipulations for the concentration of dye in the (a) side perspective upstream, (b) in the
top perspective upstream, (c) in the side perspective downstream, and (d) in the top
perspective downstream. Significant resu ts indicated in bo d.

(a) Cylinder Ceratophyllum Ceratophyllum 2"̂ Ceratophyllum  3"̂^ Empty flume

Cylinder

Ceratophyllum 0.33

Ceratophyllum  2”‘* 0.65 0.15

Ceratophyllum  3*̂^ 0.42 0.87 0.20

Empty flume 0.70 0.17 0.95 0.23

(b) Cylinder Ceratophyllum Ceratophyllum  2““* Ceratophyllum  3'̂ Empty flume

Cylinder

Ceratophyllum 0.19

Ceratophyllum  2“‘* 0.89 0.24

Ceratophyllum  3̂ “* 0.92 0.16 0.81

Empty flume 0.89 0.15 0.79 0.97

(c) Cylinder Ceratophyllum Ceratophyllum 2"̂ Ceratophyllum  3"* Empty flume

Cylinder

Ceratophyllum 0.42

Ceratophyllum  2”“* 0.11 0.44

Ceratophyllum  3'“* 0.040 0.21 0.63

Empty flume 0.002 0.020 0.11 0.27

(d) Cylinder Ceratophyllum Ceratophyllum  2”‘* Ceratophyllum  3̂ “* Empty flume

Cylinder

Ceratophyllum 0.031
Ceratophyllum  2”** 0.080 0 .6 8

Ceratophyllum  3'̂ '* 0.004 0.47 0.26
Empty flume 0.029 0.98 0.66 0.48
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Table 4.8: (a) ANCOVA and (b) post hoc comparisons for the angle of the
Ceratophyllum  leaves (and the manipulations thereof) from the stem in the up and
downstream position. Significant results indicated in bold.

(a)

Effect

Univariate Results for Each DV (leaf angle) 
Sigma-restricted parameterization 
Effective hypothesis decomposition
Degr. of 

Freedom
angle

88
angle

MS
angle i angle 

F 1 P
Intercept 1 167470.3 167470.3 845.3146 0.000000
velocity 1 1556.2 1556.2 7.8551 0 005646
plant 2 2149.5 1074.8 5.4250 0.005187
f r o n t / b a c k 1 436.3 436.3 2.2022 0.139636
p l a n ; ' f r o n t / b a c k 2 1281.1 640.6 3.2333 0.041823
Error 173 34274.0 198.1
Total 179 39944.6 1 1

( b ) Cento 0^ Cento limn Cento 2ndl%) Cento 2ndDa\ui Cento 3idlJ) Cento 3rd Ii)«ii

Cemto Op

Cento D o v h i 010019

Cento 2nd Op aoo© 0.93

Cento 2nd Down aoosi 0.86 0.94

Cento SdOp <aooi 0.33 0.31 0.27
Cento ^ D d\ui <aooi 0.43 0.40 0.36 0.86
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Table 4.9: (a) ANCOVA and (b) post hoc comparisons for the angle of deflection 
between Elodea  and Ceratophyllum  and there associated manipulations. Significant 
results indicated in bold.

(a)

Effect

Univariate Results for Each DV (plant angle) 
Sigma-restricted parameterization 
Effective hypothesis decomposition
Degr. of 

Freedom
Angle ■ Angle Angle Angle 

88 ! MS . F p
Intercept 1 81.181 81.181 1.113041 0.298862
Velocity 1 7072.331 7072.327 96.96575 0.000000
Plant 6 7655.67 1275.944 17.49395 0.000000
Error 34 2479.84 72.9361 1
Total 41 17207.831 I

(b) cylinder Elodea Elodea ^id Elodea 3rd Cerato Cerato 2nd Cerato 3rd

Qlinder

Elodea 0.0018
Elodea 2nd 0.53 0.0097

Elodm 3rd 0 .M8 0.19 0.16

Cerato <0.001 <0.001 <aooi <0.001

Cerate 2nd <0.001 0.70 0.003 0.098 <aooi

Cerato 3rd <0.001 0.10 <0.001 O.OOS3 0.0031 0.21
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Table 4.10: (a) ANCOVA and (b) post hoc comparisons for the frequency of oscillations 
for Elodea, Ceratophyllum, and there associated manipulations. Significant results 
indicated in bold.

(a) Univariate Results for Eacfi DV (oscillations) 
Sigma-restricted parameterization 
Effective hypothesis decomposition
Degr. of oscillations per oscillations per .oscillations per oscillations per

Freedom second second second second
Effect 88 MS F P
Intercept 1 0.007968 0.007968 0.39643 0.534231
Velocity 1 1.155310 1,155310 57.479m 0.000000
Plant 6 0.57/; 07 0 .096 '8f: 4.78538 0.001925
Error 27 0.542690 0.020100
Total 34 2.275107} 1 1

(b) Cylinder Elodea Elodm 2nd Elodm 3rd Cerato Cerato 2nd Cerato S d

Cylinder
Elodea <0.001

Elodea 2nd 0.005 0.14
Elodea 3rd <aooi 0.61 032

Cerato <0.001 0.83 0.20 0.76
Cerato 2nd 0.001 0.31 0.63 0.60 0.42
Cerato &id <0.001 0.59 0.34 0.97 0.74 0.63
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Figure 4.1: Flow visualization around a 0.7 cm diameter circular cylinder using 
fluoroscein dye in the side (left) and the top (right) perspectives. Velocities increase 
from top to bottom panels [(a) and (b) are 1.3 cm s'\ (c) and (d) are 2.0 cms"\ (e) and (f) 
are 5.0 cms"\ (g) and (h) are 8.4 cm s'\ and (i) and (j) are 11.0 cms'*]. Flow is from left 
to right. Top and side photos were taken sequentially.
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Side TopReynolds number (x 10 )
0.0 1.5 3.0 4.5 6.0 7.5 0.0 1.5 3.0 4.5 6.0 7.5

1 0

8
(a) y =  (0.01110.006)X + 0.4310.04  

F  = 0.47, p = 0.19
( b )  y = (0.003±0.002)X + 0.410.1  

F = 0.36, p = 0.28

6

4

î :

I
I
Q

10
y = (0.49±0.10)x + 2.410.7  

f  = 0.88, p = 0.01^8

6

4

2

0

y = (0 .0510.05)x  + 4.310.3  
= 0.22, p = 0.41

2.0
(e) y = (-0 .0510.02)x  + 0.610.1

W)

0.5

0.0

2.0 ( g )  y = (-0.0510.01)x + 0.54+0.06

0.5

0.0
6 8 10 120 2 4

y = (-0 .0 3 i0 .0 2 )x  + 0 .610.2  
= 0.31, p = 0.32

y = (-0 .0310.02)x + 0.510.1  
f  =  0.47, p = 0.19

0 4 8 10 1262

Velocity (cms'^)

Figure 4.2: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or Reynolds number (based on the diameter) in the different domains for 
the circular cylinder: (a) and (e) upstream in the side perspective, (b) and (f) upstream in 
the top perspective, (c) and (g) downstream in the side perspective, and (d) and (h) 
downstream in the top perspective. Solid line is the regression and dotted lines are the 
95% confidence limits of the mean.
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Figure 4.3: Flow visualization around Elodea canadensis using fluoroscein dye in the 
side (left) and the top (right) perspectives. Velocities increase from top to bottom panels 
[(a) and (b) are 1.3 cm s'\ (c) and (d) are 2.0 cms"\ (e) and (f) are 5.0 cm s'\ (g) and (h) 
are 8.4 cms ', and (i) and (j) are 11.0 cms'^]. Flow is from left to right. Top and side 
photos were taken sequentially.
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(I)) y = (0.009±0.010)x + 0.63±0.06 

= 0.21, p = 0.43

y = (0.10±0.02)x + 3.8±0.2 
= 0.84, p = 0.026

I

a
I
I
Q

(-0.04±0.02)x + 0.6±0.1
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§
§O
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1.0

(g ) y = (-0.06±0.02)x + 0.7±0.1 
= 0.77, p = 0.049

y = (-0.03±0.02)x + 0.5±0.1 
= 0.44, p = 0.21

y = (-0.06±0.02)x + 0.9±0.1 
= 0.78, p = 0.046

Velocity (cms'^)
Figure 4.4; Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or stem Reynolds number (based on the plant diameter) in the different 
domains for Elodea canadensis: (a) and (e) upstream in the side perspective, (b) and (f) 
upstream in the top perspective, (c) and (g) downstream in the side perspective, and (d) 
and (h) downstream in the top perspective. Solid line is the regression and dotted lines are 
the 95% confidence limits of the mean.



200

Figure 4.5: Flow visualization around Elodea with the whorl at every second node 
removed using fluoroscein dye in the side (left) and the top (right) perspectives. 
Velocities increase from top to bottom panels [(a) and (b) are 1.3 cms"\ (c) and (d) are 
2.0 cms"\ (e) and (f) are 5.0 cms ’, (g) and (h) are 8.4 cm s'\ and (i) and (j) are 11.0 cms‘ 
*]. Flow is from left to right. Top and side photos we re taken sequentially.
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Figure 4.6: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or stem Reynolds number (based on the plant diameter) in the different 
domains for Elodea canadensis with every second node removed: (a) and (e) upstream in 
the side perspective, (b) and (f) upstream in the top perspective, (c) and (g) downstream 
in the side perspective, and (d) and (h) downstream in the top perspective. Solid line is 
the regression and dotted lines are the 95% confidence limits of the mean.
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Figure 4.7; Flow visualization around Elodea with the whorls at every second and third 
node removed using fluoroscein dye in the side (left) and the top (right) perspectives. 
Velocities increase from top to bottom panels [(a) and (b) are 1.3 cm s'\ (c) and (d) are 
2.0 cms"\ (e) and (f) are 5.0 cm s'\ (g) and (h) are 8.4 cm s'\ and (i) and (j) are 11.0 cms" 
’]. Flow is from left to right. Top and side photos were taken sequentially.



203

I
I

i
s
c/3

I
O

Side

2 4

Top
Reynolds number (x 10 )

8 10 12  0  2  4

(a) y = (0.002±0.01 l )x  + 0.33±0.07 
,•2 _  n nr «  -  n

y  = (0 .08±0.10)x + 3.2±0.7  
= 0.16, p = 0.508

6

4

2

0

8 10 12
r y )  y = (-0.02+0.01)x + 0.58±0.07

, 2 _ ^ j j „ _ n - -

y = (-0.10±0.06)x + 4.5+0.4  
i  = 0.45, p = 0.20

2 .0
(e) y = (-0 .06+0.04)x + 0.6±0.2  

= 0.44, p = 0.22

I W)

0.5

0 .0

2 .0
( a )  y = (-0.07±0.02)x + 0.8±0.I

, 2 _ n c i  « - n n - i e

Bc3

0.5

0 .0
0 2 6 8 10 124

( f )  y = (-0.03+0.01)x + 0.60+0.06  
2̂ _  n "7/1 »  -  n AAn

(h) y = (-0 .05±0.01)x + 0.82+0.05

0 2 

Velocity (cms"^)
8 10 12

Figure 4.8: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or stem Reynolds number (based on the plant diameter) in the different 
domains for Elodea canadensis with every second and third node removed: (a) and (e) 
upstream in the side perspective, (b) and (f) upstream in the top perspective, (c) and (g) 
downstream in the side perspective, and (d) and (h) downstream in the top perspective. 
Solid line is the regression and dotted lines are the 95% confidence limits of the mean.
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Figure 4.9: Flow visualization around Ceratophyllum demersum using fluoroscein dye in 
the side (left) and the top (right) perspectives. Velocities increase from top to bottom 
panels [(a) and (b) are 1.3 cm s'\ (c) and (d) are 2.0 cm s'\ (e) and (f) are 5.0 cms"\ (g) 
and (h) are 8.4 cm s'\ and (i) and (j) are 11.0 cms ']. Flow is from left to right. Top and 
side photos were taken sequentially.
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Figure 4.10: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or stem Reynolds number (based on the diameter) in the different 
domains for Ceratophyllum demersum: (a) and (e) upstream in the side perspective, (b) 
and (f) upstream in the top perspective, (c) and (g) downstream in the side perspective, 
and (d) and (h) downstream in the top perspective. Solid line is the regression and dotted 
lines are the 95% confidence limits of the mean.
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Figure 4.11: Regression analysis for the leaf angle from the stem of Ceratophyllum in the 
upstream (i.e., faces the oncoming flow; • )  and downstream (i.e., in the wake of the flow; 
o) position from the plant stem (a) is the bottom most leaf, (b) is the second leaf from the 
bottom, (c) is the third leaf from the bottom, (d) is the fourth leaf from the bottom, (e) is 
the fifth leaf from the bottom, and (f) is the top most leaf (apex).
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Figure 4.12: Flow visualization around Ceratophyllum with the whorl at every second 
node removed using fluoroscein dye in the side (left) and the top (right) perspectives.
Velocities increase from top to bottom panels [(a) and (b) are 1.3 cms \  (c) and (d) are 
2.0 cms"', (e) and (f) are 5.0 cm s'\ (g) and (h) are 8.4 cm s'\ and (i) and (j) are 11.0 cms' 
]̂. Flow is from left to right. Top and side photos were taken sequentially.
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Figure 4.13: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or stem Reynolds number (based on the diameter) in the different 
domains for Ceratophyllum demersum with every second node removed: (a) and (e) 
upstream in the side perspective, (h) and (f) upstream in the top perspective, (c) and (g) 
downstream in the side perspective, and (d) and (h) downstream in the top perspective. 
Solid line is the regression and dotted lines are the 95% confidence limits of the mean.
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Figure 4.14; Regression analysis for the leaf angle from the stem of the Ceratophyllum 
with every second node removed in the upstream (i.e., faces the oncoming flow; • )  and 
downstream (i.e., in the wake of the flow; o) position from the plant stem (a) is the 
bottom most leaf, (b) is the second leaf from the bottom, (c) is the third leaf from the 
bottom, (d) is the fourth leaf from the bottom, and (e) is the top most leaf (apex).



210

Figure 4.15: Flow visualization around Ceratophyllum with the whorl at every second 
and third node removed using fluoroscein dye in the side (left) and the top (right) 
perspectives. Velocities increase from top to bottom panels [(a) and (b) are 1.3 cm s'\ (c) 
and (d) are 2.0 cm s'\ (e) and (f) are 5.0 cm s'\ (g) and (h) are 8.4 cm s'\ and (i) and (j) 
are 11.0 cms'^]. Flow is from left to right. Top and side photos were taken sequentially.
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Figure 4.16: Regression of area of dye coverage (a-d) and concentration of dye (e-h) 
versus velocity or stem Reynolds number (based on the diameter) in the different 
domains for Ceratophyllum demersum with every second and third node removed: (a) 
and (e) upstream in the side perspective, (b) and (f) upstream in the top perspective, (c) 
and (g) downstream in the side perspective, and (d) and (h) downstream in the top 
perspective. Solid line is the regression and dotted lines are the 95% confidence limits of 
the mean.
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Figure 4.17: Regression analysis for the leaf angle from the stem of the Ceratophyllum 
with every second and third node removed in the upstream (i.e., faces the oncoming flow; 
•)  and downstream (i.e., in the wake of the flow; o) position from the plant stem (a) is 
the bottom most leaf, (b) is the second leaf from the bottom, (c) is the third leaf from the 
bottom, and (d) is the top most leaf (apex).
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Figure 4.19: Regression results for the angle of deflection versus velocity for (a) the 
circular cylinder, (b) Elodea, (c) Elodea with every second node removed, (d) Elodea 
with every second and third node removed, (e) Ceratophyllum, (f) Ceratophyllum with 
every second node removed, and (g) Ceratophyllum with every second and third node 
removed. Solid line is the regression and dotted lines are the 95% confidence limits of the 
mean.
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Figure 4.20: Regression results for the frequency of oscillation with increasing velocity 
for (a) the circular cylinder, (b) Elodea, (c) Elodea with every second node removed, (d) 
Elodea with every second and third node removed, (e) Ceratophyllum, (f) Ceratophyllum 
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node removed. Solid line is the regression and dotted lines are the 95% confidence limits 
of the mean.
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Figure 4.21: Comparison of the fluid dynamic conditions around plants and a physical 
model (a) The velocity at which the transition from laminar to turbulent occurs for the 
different plants; (b) Rate of change in the area of dye coverage with change in velocity 
for the different test subjects; and (c) The rate of change in the concentration of dye with 
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Chapter 5: Conclusion to Thesis

Aquatic plants are important constituents of freshwater systems because they act 

as ecosystem engineers, in that they alter the physical environment, which leads to a wide 

range of other changes (Wright et al., 2004). Of these physical factors, the flow 

environment has the potential to limit macrophyte productivity at both low and high 

velocities. At low velocity, the potential for diffusional stress is high due to the 

existence of a thick boundary layer (Hurd et al., 1997; Schutten and Davy, 2000), 

whereas at high velocities, the potential for damage or breakage is dominant due to the 

increase in drag forces acting on the plant (Sand-Jensen, 2003). Macrophytes can be 

plastic in their morphology, exhibiting heterophylly and foliar plasticity with changing 

environmental conditions. It is reasonable to suggest that fluid dynamics may have 

played a determining role in plant architecture.

This thesis investigated the interactions between a number of characteristically 

shaped freshwater macrophytes and their flow environment. A review of the existing 

data on plant-flow interactions was presented in Chapter 2. Chapter 3 examined the 

interaction of linear-bladed, whorled and dissected leaf plants with flow by examining 

flow patterns qualitatively and quantitatively. Chapter 4 examined the effect of the 

plastic trait of intemodal spacing on macrophyte-flow interaction in whorled and 

dissected leafed macrophytes using the same methodology to macrophytes that were 

manipulated experimentally.

Experiments revealed that the linear-bladed species Vallisneria, and the whorled 

species Elodea, affected the flow similar to a circular cylinder (used as a physical model). 

Conversely, the whorled dissected leafed species, Ceratophyllum acted more like a mesh.
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in that it broke the flow up into smaller eddies. In all cases the transition from laminar to 

turbulent flow occurred at slower velocities for plants than the cylinder indicating an 

increase in local mixing. This would be beneficial to the plants as it would replenish the 

nutrients near the leaf surface, and thus promote the flux of nutrients and dissolved gases 

across the boundary layer to the leaf surface (Anderson and Charters, 1982; Hurd et al., 

1996), thereby increasing productivity (Borchardt, 1994). Another important difference 

between the different plant morphologies and the circular cylinder was that both the rate 

of change in area and concentration of the dye were slower for plants than for the 

cylinder. This indicates that plants retain fluid for a longer time than a cylinder, perhaps 

providing more opportunity for uptake. In terms of plant compliance, the rate of change 

in angle of deflection was smallest for Vallisneria (linear-bladed) and greatest for 

Ceratophyllum (dissected), indicating that Vallisneria interacts less with the flow.

In terms of the effects of manipulated intemodal spacing on the flow (Chapter 4), 

the transition from laminar to turbulent flow occurred at faster velocities for plants with 

increased intemodal spacing than for the cylinder. This suggests a decrease in local 

mixing, which indicates that increased intemodal spacing is a response to slower flows, 

rather than to other factors (e.g., nutrient flux; Idestam-Almquist and Kautsky, 1995). 

However, plants with increased intemodal spacing are generally exposed to higher flow 

conditions because they exist higher in the water column, generally to increase light 

interception (Ennos, 1999; Santamaria, 2002; Cronin and Lodge, 2003). The rate of 

change in area of dye coverage decreased at a slower rate for the plants than for the 

eylinder, as did the rate of change in the concentration of dye, reiterating the observation 

that plants retain more fluid than a physical model. Whereas this indicates an increase in
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the opportunity for nutrient uptake by the plants, it should be noted that the fluid is not as 

well mixed as the fluid around intact plants and is retained for a longer period of time. 

Elodea with the whorl at every second and third node removed, interacted the least of the 

plants of this species with the flow, demonstrating that intemodal spacing does have an 

effect on the downstream fluid patterns. All of the Ceratophyllum plants exhibited a high 

plant-flow interaction, but the unmanipulated plant was the most compliant, 

demonstrating that intemodal spacing has an effect on how the plants responded to the 

flow.

This thesis showed that freshwater macrophytes of different morphologies have 

different ways of interacting with the flow, while retaining the same amount of fluid. 

Vallisneria may be better suited to faster flow environments because it had the least flow 

interaction shown by the angle of deflection in the flow compared to the whorled and 

dissected morphologies. This would indicate that drag forces would be less for this 

linear-bladed architecture (Sheath and Hambrook, 1988; Gutierrez and Femandez, 1992; 

Schutten and Davy, 2000). This is consistent with observations that smooth bladed 

morphologies in macroalgae are found in faster flow environments than other 

morphologies (Ackerman and Okubo, 1993; Hurd and Stevens, 1997). Conversely, it is 

expected that Ceratophyllum would be better suited to slower flow environments because 

it had the greatest flow interaction that led to the creation of small scale mixing, which 

would enhance nutrient flux (Anderson and Charters, 1982; Nowell and Jumars, 1984; 

Gutschick, 1999) and thus productivity. It is likely that Elodea is best suited to a flow 

environment between these two extremes because, at low flows the plant-flow interaction 

generated a large area of recirculation and many filamentous loops of attached dye
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whereas at higher flows it deflected in the flow and generated vortices. In terms of 

phenotypic plasticity, increased intemodal spacing was found to decrease the plant-flow 

interaction in Elodea, as is evident in the reduced recirculation of dye, and in 

Ceratophyllum, as evident from a decrease in the degree of compliance. An increase in 

interhodal spacing would be beneficial in relatively low flow environments because there 

would be less drag on the plants. This is important because the plants with this plastic 

response are taller and therefore extend higher in the water column to increase light 

interception. Conversely, this mechanism would not function in relatively high flow 

environments because the plants would be deflected downwards (i.e., increased 

compliance) and/or not be robust enough to withstand high drag forces. Consequently, 

the plant-flow interaction can be linked to the productivity of freshwater macrophytes as 

demonstrated by the different responses to flow discussed above. These different 

responses observed throughout this study suggest that the fluid dynamic environment 

influences the plasticity of plant architecture, and the evolution of leaf morphology in 

general.
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