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Seasonal variability of Gne-grained sediment morphology in a salmon-bearing stream 

Abstract

This study incorporates an event-based sampling approach to characterize the suspended 

sediment structure and settling properties within O'Ne-eil Creek, British Columbia, Canada 

during the 2001 open water season. The factors investigated, which regulate flocculation of 

fine-grained sediment, were shear stress, conductivity, pH, suspended sediment 

concentration, bacterial content, and organic matter source and supply. Effective particle 

sizes are largest during active spawning, with much lower particle densities and settling rates 

than those of equivalent sized inorganic particles. This period exhibits increased suspended 

material for the given hydrologie conditions, and an abrupt change in isotopic signal (carbon 

and nitrogen). The isotopic variation is due to marine nutrients from anadromous sockeye 

(OncorAync/iHf ngrta) salmon that die shortly after spawning. These results indicate that the 

presence of spawning salmon changes particle structure due to a combination of biotic 

resuspension of settled material and incorporation of organic matter from post-reproductive 

carcasses into floe matrices.
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Chapter 1—Introduction

A recent review of Canadian research on fluvial systems (Ashmore et al., 2000) expresses the 

concern that, although the Canadian landscape has been formed largely due to glaciation, 

fluvial processes share a considerable, if often overlooked, role in shaping the land surface.

In terms of relative contemporary impact on the earth's surface, fluvial processes likely 

exceed those of glaciation. Ashmore et al. (2000) detail the major mechanisms by which 

material is eroded and moved through watersheds from headwaters to outlets, and describe 

the impact of these riverine processes on aquatic habitat and the effects of anthropogenic 

disturbances.

Material of a range of sources and sizes is transported differently depending on 

hydrologie regime, local climate, and physical and chemical nature of the particles. 

Hydrologie theory indicates that higher flow rates result in suspension of larger substrates 

(Hjulstrbm, 1939). As weH, discharge and precipitation dictate the provenance of material 

transported to and within rivers and streams. Hydrology also regulates storage of material in 

transit along waterways. While it was previously assumed that all eroded material in fluvial 

systems was transported inevitably out to sea, relatively recent research has identified 

conveyance losses form upstream inputs to overall sediment yields (e.g., Meade, 1982; 

Walling, 1983). Transported material is apparently retained due to deposition on floodplains 

during overbank flows and accumulation on streambeds in low energy discharge (Nicholas 

and Walling, 1996; Owens et al., 1999). While storage depends mainly on hydrologie 

conditions, several studies have focused on the role of in-stream modifications to particle 

structure (e.g., Droppo and Ongley, 1994; Droppo and Stone, 1994; Petticrew, 1996,1998).



These alterations are attributed to flocculation of smaller particles to form large aggregates, 

more prone to settle out of the water column.

Flocculation is a complex process involving cohesive or fine-grained sediments (< 63 

pm diameter) where primary inorganic grains are bound together (Tsai and Hwang, 1995; 

Liss et al., 1996) by some combination of physical, chemical, and biological mechanisms 

(Droppo et al., 1997). Numerous studies (e.g., Kranck, 1979; Droppo and Ongley, 1992, 

1994; deBoer, 1997; Petticrew and Biickert, 1998; Petticrew and Droppo, 2000) provide 

extensive proof for the existence of composite particles (also called floes or aggregates) 

resulting from flocculation. However, the relative contribution of factors causing 

flocculation is still uncertain. Petticrew and Biickert (1998) identified six m ^or factors 

influencing flocculation, (1) sediment mineralogy; (2) ionic concentration; (3) bacterial 

concentration; (4) shear stress and velocity; (5) suspended sediment concentration; and (6 ) 

organic matter source and supply. Considerable attention has focussed on most of these, the 

last point being the exception, under either laboratory conditions (e.g., Milligan and Hdl, 

1998), and naturally in both marine (Kilps et al., 1994) and freshwater (Droppo and Ongley, 

1994) environments. Regardless of the nature of flocculation, the potential implications for 

aquatic habitat are problematic.

Fine-grained sediment is a known pollutant affecting the habitat and survival of 

biological organisms (Newcombe and MacDonald, 1991). Sediment influences fish survival 

by altering food organism supply, channel morphology, and bed composition. Highly turbid 

waters result in a reduced ability of brook trout to identify prey and food sources (Sweka and 

Hartman, 2001). A related phenomenon is that increased fine-sediment loading reduces 

invertebrate density (Hartman et al., 1996). Van Steeter and Pithck (1998) note that



significant changes in channel morphology, specifically narrowing, cause loss of potentially 

important Ash habitat. Changing channel morphology redistributes the types of stream 

habitat available, and narrowing simply reduces habitat altogether. As well, fine sediment 

can degrade the quality of spawning habitat by filling interstitial spaces in gravels. Low flow 

periods after the annual snowmelt facilitate build up of fine sediment on and in the bed 

(Pitlick and Van Steeter, 1998). In fact, flushing of sediment that has infiltrated the bed 

gravels to appreciable depths requires movement of the gravels themselves. Considerable 

flow rates are necessary to do this, and so the fine sediment may be stored in the gravels for 

long periods of time. Sediment storage could reduce oxygen levels in spawning gravels by 

decreasing permeability and through oxidation of sediment-associated organic matter 

(Soulsby et al., 2001). Anthropogenic disturbances to watersheds have the potential to alter 

sediment dynamics, which could cause detrimental impacts to aquatic habitat and organisms.

Many studies have investigated the impacts of timber removal and associated 

activities (e.g., road and bridge building) on aquatic processes. Martin et al. (1984) found 

that stream water temperature tends to increase, as reduction of forest canopy enables greater 

infiltration of solar radiation. In addition, these authors found that pH decreases and 

concentration of exchangeable cations increases. Deforestation typically increases the 

potential for mass movement (Lowrance et al., 1984; Singh, 1998), and thus increases 

sediment supplies to streams. Road building and culvert installation associated with logging 

practices leads to extensive erosion and sediment inputs to streams (Ziegler and Œambelluca, 

1997; Gunn and Sein, 2000). A greater quantity of sediments can translate to alterations of 

stream channel morphology, position, and slope, as well as increased turbidity, all of which 

can act to modify in-stream habitats.



Concern for aquatic habitat quality has led to the development of sediment transport 

models in order to predict potential impacts of watershed disturbances. Spatial and temporal 

analysis is an integral part of determining potential impacts on spawning and rearing habitat. 

Transport of suspended fine-grained sediment is regulated by a number of variables, most of 

which are described above. Flocculation is the major process acting to change sediment 

structure and regulate the hydrodynamic behaviour of sediment (Droppo et al., 1997) and 

thus has the potential to control sediment retention in waterways. Predictive models typically 

do not account for flocculation of fine sediment. Thus, models that do not consider 

flocculation may provide inaccurate information by underestimating the amount of material 

deposited in transit (Nicholas and Walling, 1996; Droppo et al., 1998).

The purpose of this thesis is to assess temporal changes in suspended sediment 

structure in a single stream, O'Ne-eü Creek. This stream is located in the northern 

headwaters of the Fraser River in the Stuart-Takla region of northern British Columbia (BC), 

which is the setting for the first interior BC Gsh/forestry interaction project. It was chosen as 

such due to the well-documented annual migration of spawning Pacific sockeye 

(OncorhyncAw.; ngr&a) salmon. Earlier work by Petticrew (1996,1998) has indicated that 

Gne sediment is being deposited and stored as aggregates in the gravels during the spawning 

periods in this area. With future harvesting planned, further study with respect to the relative 

importance of the particular factors influencing flocculation is important in order to evaluate 

the potential impacts of timing of disturbances on this problem. The objectives of this study 

are (1 ) to characterize suspended sediment structure (i.e., size, shape, and settling 

characteristics) temporally, and (2 ) to determine the relative importance of the various factors 

(e.g., shear stress and suspended sediment, organic matter, and bacterial concentrations) that



influence flocculation within this system. In order to evaluate the seasonal changes in fine 

sediment structure and morphology, samples were collected over a range of hydrologie and 

biologic watershed events. These were partitioned into five discrete response types, which 

are: (1) rising water levels of springmelt; (2) summer low flow conditions; (3) rain events;

(4) active salmon spawning; and (5) post-spawn. These periods were chosen as they exhibit 

different sources of organic material, as well as a range of flow and shear rates.

Figure 1.1 presents the hypothesized seasonal trends for important flocculation 

factors, and the expected influence of these factors in terms of floc-building. Springmelt is a 

period characterized by high discharge, and this is when the first flushed material stored in

channel and on the floodplain occurs. Less suspended load is moved during the baseflow 

levels of the low flow period, where the source material is predominantly in-stream. Rain 

events are characterized by higher than baseflow discharge, where suspended sediment 

concentrations are expected to increase, and comprise a combination of in-stream and 

terrestrial inputs. Rain events occur during baseflow, salmon spawn, and post-spawn, so they 

reflect the combined effects of resuspension of gravel-stored material that occurs during 

storms and the predominant source of organic matter for the particular sampling date. The 

period of active salmon spawn combines the introduction of anadromous organics and 

biological disturbance of gravels. This organic matter is expected to remain within the 

system post-spawn, but, because live fish are no longer present, disturbance of gravels is 

minimal. Note that shear stress and discharge are both derived from velocity measurements, 

which means that they exhibit similar seasonal trends. Also, bacterial activity increases with 

temperature (Phillips and Walling, 1995), and depends on organic matter quality (Webster et 

al., 1999). Sediment mineralogy and ionic concentration are presumed to have little effect on



flocculation in O'Ne-eil Creek due to insignîGcant seasonal variation. Seasonal patterns of 

fine-sediment concentration, size, density, and settling rate were identified using this 

approach.

Dischaige
Suspended Sediment (S3) Concentration 
T emperature

fShear
Stress

Organic 
+  Matter

+
Bacteria

Rain Event

Spring

Figure 1.1 A hypothetical depiction of seasonal patterns of suspended sediment 
concentration ([SS]), discharge, and temperature. Inset relates four important factors to 
flocculation, where +/- symbols indicate whether flocculation is enhanced or inhibited. 
While only one rain event is shown, several typically occur during the season. Relative and 
absolute relationships between the variables depicted here are approximate.
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Chapter 2—Literature Review

2.1 Basin Scale Erosion

There are several factors that regulate the magnitude of sediment introduced to streams, 

including climate (e.g., precipitation, temperature), catchment characteristics (e.g., basin size, 

geology, topography, vegetation, soils), and human activities (Beschta, 1996). These factors 

collectively influence the amount and timing of sediment dehvery. Precipitation produces 

the driving force for sediment movement, where there is a direct relationship between stream 

discharge and precipitation (Dunne and Leopold, 1978). The process of runoff is dictated by 

the abihty for soils to store water. Basically, water enters the soil and whatever is not lost 

through evaporation or used for biological processes (e.g., uptake by vegetation) runs off on 

the surface or recharges the soil supply. Sediment can be eroded in both instances, where 

surface water will entrain and transport fine-grained sediment to streams, or saturation of 

soils can lead to mass movement. A secondary factor regulating both of these is soil texture 

(or hydrauhc conductivity), where the propensity for water infiltration increases with the 

grain size of soils (Brady and Weil, 1996). These variables, in addition to vegetation cover, 

aOect slope stabihty (Ritter et al., 1995). Mass movement of material does not occur unless a 

threshold is reached, where resisting strength is overcome by some driving force. Vegetation 

effectively enhances soil stability, as does cohesivity of soil particles, whereas precipitation, 

combined with topography (i.e., slope), creates the force to potentially trigger slope failure.

Basin size is an influential variable with respect to sediment dehvery. First, small 

basins tend to exhibit steeper slopes, implying that mass movement is an important dehvery 

process within these catchments. Second, floodplain area increases with basin size, resulting

10



in a greater opportunity for storage of sediment. While there is more soil in larger basins to 

potentially lead to higher amount of sediment transported, it has been found that sediment 

yield (quantity of sediment transferred from catchment to the mouth per unit area) decreases 

with increasing basin size (Ritter et al., 1995). The reasons for this are that sediment is 

stored in the floodplains and channels. As wed, sediment source areas can differ within 

actual basin area. This means that the probability that sediment wiU be delivered to a stream 

decreases with increased distance from the channels. Further, Pearce et al. (1986) state that 

area contributing to sediment delivery expands and contracts seasonally, depending on 

antecedent soil moisture, soil physical properties, water table elevations, and storm events. It 

appears that soil moisture is of utmost importance with respect to sediment erosion processes.

The anthropogenic influence on sediment erosion processes manifests itself in the 

form of land use practices. Whether it is for agricultural, urbanization, mining, or timber 

harvesting purposes, removal of vegetation and associated changes to the landscape surface 

results in changes in sediment erosion and transport. Trees and other vegetation perform a 

number of signiGcant functions related to sediment supply and delivery to surface waters. 

Interception of precipitation by the forest canopy decreases both direct erosion of soil by rain 

impact and the amount of water reaching the ground that will entrain sediment and transport 

it to surface waters (Duime and Leopold, 1978). Vegetation, via roots, increases the strength 

of the soil structure, resulting in an increased erosion threshold. Evapotranspiration by 

vegetation balances soil infiltration of precipitated water so that soil moisture remains at a 

level below the threshold for mass wasting under normal precipitation conditions (e.g., 

mudslides). Vegetation removal can thus disrupt the hydrological cycle of drainage basins 

by altering the balance between rainfall and evaporation, as well as changing the runoff
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response (Sahin and Hall, 1996). In addition, clearcutting can upset nutrient cycles and water 

chemistry. For example, Martin et al. (1984) state that increased exposure of the forest floor 

to solar radiation and direct precipitation causes increased temperature and water content, 

higher rates of decomposition of organic matter, and decreased pH in forest soils, which 

displaces exchangeable cations that can then be transferred to surface waters.

Deforestation can increase water runoff through soil compaction via heavy machinery 

and generate a greater amount of exposed sediment through road building, digging of 

roadside ditches, and introduction of culverts. Compaction is dependent on the type of 

machinery in use as well as the soil characteristics (Carling et al., 2001). How much 

harvesting directly leads to soil loss is subject to considerable disagreement; however, most 

researchers concur that roads and road construction cause a significant amount of soil loss. A 

special issue of the journal EnriA 6 'wr^cg f  awf Iwwÿbrr?» (2 0 0 1 ) focused on the

importance of forest roads as a source of sediment. The addition of forest roads can increase 

the drainage density of a basin, depending on the types of roads constructed (Croke and 

Mockler, 2001). Increasing the drainage density should, theoretically, increase sediment 

delivery as the source area of sediment becomes larger. Wemple et al. (2001) note that 

overall road-related erosion processes contribute significantly to sediment production in 

forested basins. However, they stated that road location, in terms of slope position, probably 

dictates how much sediment wiU be eroded. In a review of studies, Fransen et al. (2001) 

observe that the m^ority of the erosion is derived from unprotected cutbanks rather than 

directly from road surfaces. Bank stability is an important consideration, and thus riparian 

leave strips can reduce the possibility of mass wasting and bank erosion (Lowrance et al., 

1984), where large quantities of sediment can be added to streams instantaneously. As well.
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riparian forests are important buffers for Altering nutrient and sediment transport from 

adjacent disturbed areas (Perry et al., 1999).

A signiAcant problem induced by increased sediment loads in streams, other than 

water quality, is changes in erosional processes, as more sediment means more matenal 

being transported, which acts to scour streambeds and banks. This, in turn, can result in 

alteraAon of chaimel shape, posiAon, and/or slope. Disturbance of any type (man-made e.g., 

logging or natural e.g.. Ares) can alter the natural condiAons for maintaiinng the most 

efAcient stream funcAoiAng by altenng the rates of erosion and sediment yield (Beschta, 

1996). The magnitude and sigiuAcance of transported sediment is highly vanable both 

spaAally and temporally. Thus, it is important to examine sediment dynamics on both scales 

in order to determine the impact of planned or potenAal disturbances.

2.2 Sediment Transport

Stream channels are composed of a wide range of substrates varying in size and composiAon. 

Depending on the range of energy the system exhibits, mineral matenal is eroded and 

transported from areas of high elevaAon, or headwater streams, toward lower elevaAons 

where deposiAon occurs. In streams of high elevaAon and slope, much energy is dissipated 

in the form of turbulence, but the remainder is spent on moving substrates downstream 

(Ritter et al., 1995). The size of the substrates that wiU be moved is reliant on the amount of 

energy available, and this depends on factors such as topography and hydrology (e.g., 

velocity, discharge, and water temperature). Conversely, deposiAon of suspended matenal 

occurs when velocity/turbulence decreases to the point that transport is impossible (size 

dependent). This can occur in deltaic environments, on the upstream side of Aow blockages
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(e.g., large woody debris), in backwater areas, and/or during low flow after the freshet and 

climatically dry periods (Dunne and Leopold, 1978). Given the dependence of sediment 

transport on flow velocities, a quantitative relationship between water and sediment 

discharge exists (Wohnan and Miller, 1960).

There are two different categories of downstream transport, which also depend on the 

substrate size and available energy. Coarse material (sand to boulders) is often moved as 

bedload, meaning it remains close to the channel bed and slides, rolls, or bounces along with 

the slope gradient. Fine-grained sediment, composed of particles < 63pm in diameter (silts 

and clays), is transported as suspended load. Importantly, Petticrew (1998) suggests that 

hydrodynamic models predict little prolonged (> day) in-channel storage for particles of this 

size. The amount of sediment entrained (brought into suspension) depends on the type and 

amount of sediment available in/near the stream, as well as the size and shape of the specific 

sediment particles and the water velocity. These factors, in addition to water density, fluid 

viscosity, and sediment density, also dictate the settling rate or deposition of the suspended 

sediments in question.

An important property of fine-grained particles that differs from larger grains is cohesivity. 

This attribute expresses itself in two different ways. First, once these particles settle, a 

greater critical shear stress is required to resuspend them than their size indicates (Hjulstrüm, 

1939; Ritter et al., 1995). Second, these particles have a tendency to aggregate or flocculate. 

The phenomenon of flocculation alters sediment transport behaviour (Droppo et al., 1997), 

where fines, not typically believed to be stored in-channel, deposit. This has implications for 

biological organisms (Petticrew, 1998) and transport of particle-bound contaminants (Liss et 

al., 1996).
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2.3 Flocculation

Flocculation is a complex process involving the binding together of fine-grained, cohesive 

sediments by a combination of physical, chemical, and biological mechanisms (Tsai and 

Hwang, 1995; Liss et al., 1996; Droppo et al., 1997). Floes or aggregates are the products of 

this occurrence. A review of the available literature (e.g., Kranck, 1979; Droppo and Ongley, 

1992,1994; Petticrew, 1996; deBoer, 1997; Petticrew and Biickert, 1998; Petticrew and 

Droppo, 2000) provides extensive proof that fine-grained sediment is transported as 

aggregated or flocculated structures in both marine and freshwater systems, however there is 

much debate about the relative contribution of the factors that influence flocculation. In fact, 

the complexity of the process makes it diÆcult to isolate any one particular factor in natural 

environments. Petticrew and Biickert (1998) suggested six m ^or factors influencing 

flocculation: (1) sediment mineralogy; (2) ionic concentration; (3) bacterial concentration;

(4) shear stress and velocity; (5) suspended sediment concentration; and (6 ) organic matter 

source and supply. All of these except that last have been studied extensively in laboratory 

experiments (e.g., Milligan and Hill, 1998), and naturally in both marine (Kilps et al., 1994) 

and freshwater (Droppo and Ongley, 1994) environments. These factors either enhance or 

inhibit flocculation in the sense that they affect particle collision frequency or efficiency.

2.3.7 Minaro/ogy

Inorganic particles, like soil coUoids, exhibit surface charges, which depend on sediment 

mineralogy and pH of the water. In near neutral or high pH waters, there is a net negative 

charge, which induces an electric double layer that creates repulsive forces between particles

15



and enhances dispersion (Stumm and Morgan, 1981; Evangelou, 1998). The extent of this 

electrostatic layer depends on: (1 ) the type of mineral; and (2 ) the size of the mineral. 

Information from soil science literature (e.g., Brady and Weil, 1996) indicates that minerals 

of the Gne-grained fraction (silt and clay) exhibit different types and amounts of charge. 

Aluminosihcates commonly exhibit permanent charge due to isomorphous substitution, and 

the intensity of the charge is greater for 2 : 1  clays (e.g., smectite) versus 1 : 1  (e.g., kaolinite) 

and 2:2 (e.g., chlorite) clays (Evangelou, 1998). On the other hand, metal-oxides are 

observed to have pH-dependent charges due to (de)protonation of hydroxyl groups associated 

with the metal (Evangelou, 1998). Sihcate clays also exhibit pH-dependent charges at sites 

called broken edges, where hydroxyl groups are exposed. Since this phenomenon inhibits 

flocculation, but flocculation does occur, there must be conditions where this electrostatic 

double layer is overcome. Kretzschmar et al. (1997) found that this was the case in 

conditions of decreased pH or increased ionic strength.

2 . j . 2  Tonic ConccnfroTion

Arora and Coleman (1979) note that flocculation occurs only beyond a minimum electrolyte 

concentration called the critical salt concentration (CSC). In fact, McBride and Baveye 

(2 0 0 2 ) acknowledge that it was the effect of electrolyte concentration on (clay) interparticle 

interactions that yielded proof for diffuse double layers and attractive and repulsive forces 

upon colloidal particles in suspension. Aqueous cations are attracted to the negatively 

charged minerals, which effectively compresses the double layer, enhancing flocculation 

(Evangelou, 1998). Once this electrostatic layer is compressed, collisions between inorganic 

particles result more eÆciently in cohesion, and forces such as van der Waals are able to
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overcome the original repulsive force (Tsai and Hwang, 1995). Further, the rate of 

flocculation is dependent on the number of valence electrons a cation possesses (McBride 

and Baveye, 2002). Divalent cations, such as Ca^^, increase the rate of flocculation over 

monovalent cations (Zita and Hermansson, 1994). The role of salt flocculation has been 

studied extensively in marine systems (van Leussen, 1999); however, the relative 

contribution of ionic concentration versus biological components in freshwater environments 

is in question (Droppo and Ongley, 1994).

2.5.5 BocfgrmZ Concentration

Microbial association with inorganic particles e^ectively increases the efficiency of particle 

collisions to produce floes. Bacteria secrete extracellular polymeric fibrils or substances 

(EPS) that act to bind the primary constituents of floes (Droppo et al., 1997). They do so in a 

manner similar to aqueous cations, where the electrostatic double layer is compressed 

assisting particle collision, while the sticky nature of the ceUs/Bbrils 'glues' the particles 

together. Exopolymeric fibrils are a component of "marine snow" (Alldredge and Silver, 

1988; Santschi et al., 1998) and grain-to-grain adhesion of fine sands comprising bed 

material in marine environments (Dade et al., 1990). This bacterial adhesion in fine sands 

was correlated to increased critical shear required for entrainment by Dade et al. (1990), 

which indicates an increase in sediment stability due to bacterial presence. The adsorption of 

bacteria to particles tends to depend on sahnity (Bell and Albright, 1981), where free-floating 

bacteria are more prolific in marine environments. This relationship is probably not due 

directly to the salt concentration, but rather is more likely related to particle concentration
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(Kirchman and Mitchell, 1982). The relative proportion of bacteria cells bound to sediment 

as compared to free floating is greater in turbid freshwater environments.

The macromolecular compounds produced by bacteria have been shown to vary in 

quantity and composition as growing conditions change. For example, Phillips and Walling 

(1995) state that flocculation is depressed at low water temperatures due to decelerated 

microbial activity. Kirchman (1983) found a seasonal pattern for the number of cells per 

particle, where larger bacterial numbers were associated with suspended sediment in summer 

compared to winter months. This pattern may indicate that more bacteria were available to 

colonize particles or that the quality of particles as substrates for growth was greater in the 

summer period. Kirchman (1983) observed that the m^ority of particles colonized by 

bacteria were largely of irregular structure, which typically suggests high organic content. 

Cell size was also evaluated and significantly larger cells were found attached to particles 

rather than free-floating, which suggests that attached bacteria are more metabolically active 

than free-floating cells. This idea is corroborated by Koetsier et al. (1997), who identify a 

spatial and temporal pattern of bacterial response to changing quantity and source type of 

organic matter. Greater bacterial growth occurs when the nutrient supply is more 

biologically available.

Concentration of attached bacteria should also vary with concentration of suspended 

sediment. Goulder (1976) found a significant correlation between the concentrations of 

sediment-attached particles and suspended sediment, where attachment was highest when 

suspended sediment was the highest. A similar trend was identified by Droppo and Ongley 

(1994), where the attached bacteria and suspended sediment concentrations were highly 

correlated in the spring, during high suspended sediment concentration, but this correlation
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was not repeated during the summer, or low suspended sediment period. Thus, the causative 

factor for seasonal variation in sediment-attached particles is not singular, but rather likely 

due to a combination of changes in temperature, supply of organic matter, and suspended 

sediment concentration. As well, determining the relative importance of each of these factors 

is dependent on obtaining valid and rehable bacterial ceU counts.

The direct-count method, using fluorescence microscopy, has been commonly 

implemented to enumerate aquatic bacteria (Hobbie et al., 1977). A fluorescent dye is used 

to stain the bacterial cells so they are easily identdred. Given that freshwater bacteria are 

found as both sediment-bound and free-floating forms (Paerl, 1975), the method enables 

differentiation between the populations. This is important when assessing potential versus 

actual contribution of bacteria to flocculation, and this directly relates to the concentration of 

suspended sediment (i.e., at low suspended sediment concentrations there will be relatively 

more free-floating bacteria assuming all other factors are constant).

There are several prerequisites for this technique, including (1) filters of appropriate 

pore size to retain bacteria, (2) visibihty of ceDs on the surface, and (3) optimal contrast 

between the bacteria and the filter (Hobbie et al., 1977). Because the m^ority of aquatic 

bacteria fall in the size range of 0.3 to 0.7 pm, black nucleopore filters of at 1.0 pm pore size 

are used to examine sediment-bound bacteria as they wiU be retained on the filter; the filtrate 

is passed through 0.1 pm to determine free-floating bacteria (Droppo and Ongley, 1994). It 

should be noted that concentration refers to number of cells per unit volume of the filtered 

sample. Thus, a ratio of sediment-bound and free-floating bacteria can be obtained. This 

ratio may be erroneous as free floating bacteria may settle on the sediment during the 6rst 

filtration, which wiU prevent these cells from passing through the filter, and bacteria may be
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attached to the underside of sediment, no longer visible for counting. Kirchman and Mitchell 

(1982) estimate a possible 50% (coefficient of variation) systematic error in underestimating 

attached-bacteria using size fractionation and standard acridine orange direct counts. They 

suggest a technique of rinsing the stained filter twice with 1 mL of filter-sterilized water to 

decrease error from retention of unattached cells. As well, Droppo and Ongley (1994) 

accounted for cells attached on the undersides of particles by doubling the counted number. 

These suggestions collaborate to decrease the systematic error, which should make 

comparisons of bacterial counts comparable between studies.

2.5.4 wkf VgZoczfy

The influence of hydrodynamics on floes is a highly contentious issue. Interparticle 

collisions are induced by three main fluid dynamic mechanisms (Dyer and Manning, 1999):

(1) Brownian motion; (2) differential settling; and (3) turbulent shear. Brownian motion, or 

the random motion of water molecules, acts on particles < 0.1 pm in diameter (Tsai and 

Hwang, 1995), and is not significant for larger particles and floes (Partheniades, 1993; 

McBride and Baveye, 2002). Differential settling occurs in low shear environments (Lick et 

al., 1993). The premise is that larger particles (> 50 pm) settle faster than smaller ones, 

enabling collisions between these two particle populations. Turbulent shear is the primary 

mechanism for collision of particles between 0.1 and 50 pm (Tsai and Hwang, 1995), and is 

predominant in highly turbulent conditions. In this last case, the high-energy environment 

can result in both the formation and destruction of floes, depending on the floe strength.

Lick and Lick (1988) state that turbulent shear stresses inhibit flocculation through 

disaggregation processes, or increased collisions, and fluid shear itself is not important.
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However, Burban et al. (1989) note that high turbulence intensities destroy floes by 

stretching or breaking the bonds, whether they are biological or chemical. Further, van 

Leussen (1999) found that increased shear resulted in a reduction in floe size. Thus, it 

appears that there is an optimal range, where flocculation is enhanced at low shears, but 

higher shear results in disaggregation, either through increased collisions or the fluid motion 

itself.

2..). J Concg/Uration

Similar to shear stress, there is no clear understanding of how suspended sediment 

concentration influences flocculation. In general, it is believed that the probability of floes 

forming increases with increasing suspended sediment concentration. Work by Mdhgan and 

Hill (1998), Eisma and Li (1993), Droppo and Ongley (1994), and Beihane et al. 

(1997)con&rm this relationship (i.e., a strong positive correlation between maximum floe size 

and concentration). However, laboratory studies by Tsai and Hwang (1994) and Tsai et al. 

(1987) have shown that collisions between floes induced by high suspended sediment 

concentrations result in disaggregation. Dyer and Manning (1999) conSrm this latter theory 

and state that the simultaneous increase of shear stress and concentration may lead to break 

up of floes, but the effect of concentration appears to be of greater importance than shear for 

causing breakage. These experimental conditions may have been devoid of biological 

material. As suggested previously, sediment-attached bacteria are often found when 

suspended sediment concentration is high, and bacteria are typically found attached to 

amorphous particles (or floes). This would indicate that suspended sediment concentration, 

when associated with bacteria, results in larger floes.
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2.3.6 Organic Moffer

Although it has been identified that organic matter influences flocculation and floe structure 

(Petticrew and Biickert, 1998; Petticrew and Droppo, 2000), the extent of the contribution 

and the exact processes involved are in question. Two possible explanations include: (1) 

flocculation is partially facilitated by the organic matter promoting successful collisions; and 

(2) bacteria utilize and colonize organic particles and then promote floe building through the 

secretion of metabolic products. First, organic matter, whether it is dissolved or particulate, 

is composed of hundreds of macromolecules, such as proteins, polysaccharides, lipids, and 

humic and fulvic acids (Santschi et al., 1998). Polysaccharides, specifically, have been found 

to comprise Gbrils that form the binding material within floes (Leppard, 1997). As well, 

under certain conditions, organic matter (e.g., humic acid) will adsorb to inorganic particles, 

which affects the surface charge, and thus the diffuse double-layer, of these particles. In 

other words, organic matter can be composed of GbiiUar material or it can alter the surface 

properties of particles, where both increase the likelihood of floe formation. Second, aquatic 

microorganisms function primarily as decomposers of organic matter, and require this 

material as an energy and nutrient source (Ward and Johnson, 1996). The rate at which 

organic material is assimilated by bacteria is dependent upon its relative quality (Koetsier et 

al., 1997; Webster et al., 1999). Thus, it is apparent that, if microbial activity is a significant 

aspect of flocculation, then organic matter quality and quantity should be considered. 

Importantly, these factors, as well as temperature, vary seasonally (Ward and Johnson, 1996), 

which has implications for temporal variation of floe fonnation and structure in systems.

Sources of Organic Matter
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Organic material is introduced to stream ecosystems through several possible routes, from a 

variety of terrestrial, freshwater, marine, and atmospheric sources. The diversity with 

regards to both sources and routes creates spatial and temporal variation in quality and 

quantity of organic material. Examination of this on a longitudinal scale throughout 

watersheds led to the development of what is known as the River Continuum Concept (RCC) 

(Vannote et al., 1980), which predicts a gradual decrease in size and quality of organic matter 

as it is transported downstream (MinshaH et al., 1983). The definition of quality used here 

refers to the bioavailability of the source. In other words, a source of higher quality is more 

easily utilized and assimilated by microorganisms than lower quality material. There are two 

general types of organic matter that are important to the nutrient and energy budgets of 

stream ecosystems. These are: (1) allochthonous, or material derived from outside the 

channel, such as terrestrial vegetation, soil humus, and atmospheric particulate matter; and

(2) autochthonous, or organic matter that originates from sources within the aquatic system, 

such as periphyton and invertebrates (Merritt and Cummins, 1996; Young and Huryn, 1997). 

In addition, the former often influences the latter by providing essential nutrients and 

regulating light intensity (Minshall et al., 1985). Hynes (1975) was the Erst to acknowledge 

the importance of the interaction between aquatic and terrestrial domains of ecosystems 

(Minshall et al., 1985). SpeciEcally, topography, soil properties, and climatic patterns affect 

the Eow of organic material in stream systems, just as they do sediment delivery. Thus, 

spatial and temporal patterns in the terrestrial enviroiunent are intimately linked to those in 

the aquatic realm. This section will focus on the factors influencing organic matter source 

and Eow patterns, and the techniques available to quantify these variables.
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2.4.7

Allochthonous influence depends on the spatial variation of riparian species and relative 

contribution to streams. The speciGc composition of riparian vegetation depends on 

properties inherent in the parent geological material, climate, and topography (i.e., 

biogeoclimatic designation), and thus varies greatly depending on the scale of focus (e.g., 

watershed versus reach) (Allan et al., 1997). As well, the probability that riparian material 

will enter a stream depends on bank slope (France, 1995a), water level, vegetation proximity 

to channel, and size of material. Assuming that all material has an equal chance of 

introduction to streams, there is also an issue of organic matter quality. In particular, 

Webster et al. (1999) separated allochthonous inputs into four categories, which were large 

wood (logs), small wood (sticks), leaves, and fine particulate organic matter (FPOM). They 

found that small wood and leaves provided higher quality material than large wood and 

FPOM, and this was related to decomposition rates or microbial activity (i.e., higher quahty 

with higher rates). More specifically, Koetsier et al. (1997) found that leaves from different 

tree species contributed organic matter of differing quality, which was also related to rate of 

breakdown. It is apparent that organic matter quantity and quality varies on local spatial 

scales depending on the type of material available to streams from adjacent riparian forests, 

and factors that increase the probability of introduction of these sources.

Similarly, allochthonous inputs from riparian forests exhibit a temporal dynamic in 

the form of seasonal fluctuations, especially in temperate regions (Minshall et al., 1992; 

Johnson and Covich, 1997). This is related to two m ^or factors: (1) seasonal availabihty of 

species; and (2) seasonal fluctuations in stream discharge. First, a large proportion of 

allochthonous contribution to streams is in the form of leaves from riparian trees. However,
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there is an obvious variation in organic matter introduced to streams on a seasonal basis. The 

most conspicuous input comes from autumn-shed leaves, but imported leaves resulting from 

storms may also contribute significantly to the organic material load (Koetsier et al., 1997). 

Researchers (e.g.. Stout et al., 1985; Irons et al., 1991; Koetsier et al., 1997) have also 

identified a change in quality of leaves from the same species over time, and this is a function 

of the level of decomposition before they reach the aquatic system. Second, seasonal 

fluctuations in discharge a^ect the proportion of influence that allochthonous sources have 

on the total organic matter balance within streams. This is related to coupling between 

floodplains and stream/river channels and the retentiveness of the charmel itself. There is a 

lateral exchange of material between streams and associated floodplains, where, depending 

on flow level, organic matter, either recently deposited by riparian forests or stored from 

upstream inputs during floods, can be imported to streams (Tockner et al., 1999). As well, 

coarse detritus is easily retained within stream reaches by physical obstacles (e.g., rocks or 

large woody debris) within the channel (Johnson and Covich, 1997), whereas the ability of 

streams to retain smaller forms of organic matter depends on flow and flocculating 

conditions. These factors dictate the degree of local influence that riparian forests have on 

the organic composition of streams.

2.4.2 AwfocArAonoit;

Even though up to 90% of carbon used as energy sources within streams is derived from 

riparian forests (Johnson and Covich, 1997), autochthonous organic matter cannot be 

excluded from the overall carbon budget of stream ecosystems. The quantity of primary 

producers, such as periphyton and macrophytes, depends, to some degree, on riparian canopy
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cover, which regulates light intensity (Allan, 1995; Sand-Jensen, 1998) and allochthonous 

inputs of nutrients. As well, the abihty of these organisms to maintain the same habitat over 

time depends on discharge in a two-fold manner. At high flow, organisms may be uprooted 

or "ripped" from their habitat. As well, streambed substrates are mobilized and sorted in 

high discharges. This limits the habitat that autotrophs can occupy as well as their residence 

time. Aquatic organisms are also influenced by other properties of streams such as water 

temperature, and since this factor is a function of air temperature, there exists a seasonal 

variation in temperate regions. Thus, it is apparent that autochthonous sources of organic 

matter to streams also vary in space and time, and, as they are tightly hnked to the riparian 

organic matter, are seasonally dependent for reasons similar to those given above for 

allochthonous sources.

2.4.5 Manng-Dgffvgd

As described in the previous sections, transport of organic matter is typically conceptuahzed 

as a unidirectional process from headwaters to delta. However, the relationship between 

marine and freshwater systems also occurs in reverse due to mobile organisms that are able 

to travel against the gradient of flow (Garman and Macko, 1998). This is particularly 

apparent in freshwaters that are habitat for migratory fishes such as salmon (e.g., 

Oncorkync/wtr spp.). These salmonid fishes contribute significantly to nitrogen (Kline et al., 

1990; Bilby et al., 1996) and organic matter (Garman and Macko, 1998) budgets of 

freshwater ecosystems; specifically in the form of marine derived nitrogen and organic 

matter (MDN and MDOM, respectively) from post-reproductive carcasses (Kline et al., 

1994). Moreover, these nutrients are made available to terrestrial vegetation due to flooding
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and predator activity (Ben-David et al., 1998), where salmon carcasses are transported to 

riparian areas by high water or bears and other animals. Finney et al. (2000) note that the 

climatic change and commercial harvesting has influenced the productivity of freshwater 

systems, where marine derived nutrients contribute significantly to the trophic food webs. 

Hence, upstream migration of organic matter represents an ecologically important seasonal 

contribution to the annual material budgets of salmon-bearing streams that should not be 

ignored.

2.4.4 Boctgna

Here it is important to note that bacterial cells are also considered to be a source of organic 

material. Microorganisms provide a signihcant amount of energy to aquatic environments 

(Zimmermann et al., 1978). Dade et al. (1996) note the ubiquitous nature of microbes in 

marine sediments. Kirchman and Mitchell (1982) and HaU and Meyer (1998) emphasize the 

importance of bacteria in trophic food webs. The ecological significance of aquatic bacteria 

is mairdy associated with their ability to reminerahze dissolved and particulate organic matter 

(Kirchman and Mitchell, 1982). And, their activity results in the production of more biomass 

in the form of extracellular polymeric substances (EPS; see Section 2.3.3). For the purpose 

of this study, bacteria are considered to be a part of the autochthonous group because they 

utilize nutrients from other sources (Johnston et al., 1998) and their specific chemical signals 

depend on the available nutrient supply. However, it is important to acknowledge the 

signiGcant biological contribution that bacteria provide to aquatic environments.
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2.5 Identifying Source Types of Organic Matter

Organic matter is the energy source for a variety of freshwater and marine organisms, and 

thus it is important to identify provenance and transformations through trophic food webs in 

order to better understand such things as nutrient cycling, population dynamics, and 

interrelationships of energy pathways. Stable isotope analysis is one method of investigation 

that has shown great promise in this regard. Methodologies such as quantification of total 

organic carbon and gravimetric determination of percentage organic matter are used to assess 

the magnitude of organic inputs into aquatic systems, but are not suitable for identifying 

source materials.

2.J.7

The term isotope refers to the fact that there exist elements with two or more atomic forms, 

meaning they possess the same number of protons, but diKer by their neutron count 

(Ehleiinger and Rtmdel, 1988; Kendall and Caldwell, 1998). For example, carbon exists in 

two forms, which is 98.89% of the total carbon abundance within the earth-atmosphere 

system, and which comprises the other 1.11% (Ehleiinger and Rundel, 1988; Boutton, 

1991). Of the 1700 isotopic elements, 26 are known to be stable (not radioactive) (Sidle, 

1998). Stable isotopes do not appear to decay to other isotopes on geologic time scales, and 

thus are useful for a number of reasons to be mentioned within this section. Coincidentally, 

several of these stable forms include elements that are of significant biological importance.

Elements, such as carbon, nitrogen, sulfur, hydrogen, and oxygen, comprise the 

building blocks of biological organisms. Isotopic composition of these elements changes 

predictably as they cycle in nature (Peterson and Fry, 1987). For example, the essence of the

28



carbon cycle is that CO2  is exchanged between the atmosphere and the bio-, hydro-, and 

lithospheres. Carbon is assimilated by primary producers in the process of photosynthesis; 

the carbon is fractionated (Smith and Epstein, 1971) leaving these organisms with isotopic 

signals that differ from the original carbon source (atmospheric CO2). Further fractionation 

occurs proportionally to the number of transfers between trophic levels (Fry, 1988), but 

varies depending on the specific biochemical/metabolic pathways of the organisms within the 

chain (O'Leary, 1981; Cifuentes et al., 1988). In summary, &actionation is a function of 

variation in the physical and chemical properties of the isotopes and is proportional to 

differences in their masses (Broeker and Oversley, 1976; Ehleringer and Rundel, 1988). 

Similarly, nitrogen isotopic composition of various organisms differ from atmospheric 

nitrogen, but this depends on biological processes such as denitrification, fixation, and 

assimilation (Rennie et al., 1976; Cifuentes et al., 1988). Essentially, organisms exhibit a 

unique isotopic signal that reflects the concentration and isotopic composition of the sources 

of elements they utilize, as well as the various ways in which they metabolize these sources. 

The corollary is that, stable isotope information is useful for two types of analysis, which are: 

(1) the examination of fractionation processes; and (2) the ability to trace sources and sinks 

of organic material in nature.

A review of the primary literature indicates that there is great potential for the utility 

of stable isotope analysis (SIA). The first data on ratios was published by Nier and

Gulbransen (1939), and with the advent of an isotope mass spectrometer (Nier, 1947) as well 

as improved analytical techniques (McKinney et al., 1950; Fry et al., 1992), researchers from 

many fields have recognized the value of SIA. The initial focus was to determine isotopic 

ratios of organic material to examine differences in natural abundance of elements and then
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relate these differences to biochemical pathways (e.g., Craig, 1953,1954). This has led to 

the ability to determine the impact of environmental factors such as temperature, light 

intensity, and fluid dynamics on the isotopic composition of species (Cooper and DeNiro, 

1989; France, 1995b, 1995c; MacLeod and Barton, 1998). Stable isotopic tracers have been 

used to monitor flows of organic matter (i.e., trace trophic relations) in marine (Peterson et 

al., 1985; Fry, 1988; Hedges et al., 1988; Cifuentes et al., 1988) and freshwater systems 

(Bunn et al., 1989; France, 1995d), and the introduction of marine nutrients into freshwater 

environments (Kline et al., 1990; Bilby et al., 1996; Ben-David et al., 1998). These studies 

have included identifying the various sources of organic material into surface waters, 6om 

the floodplain (Hamilton and Lewis, 1992) and riparian (McArthur and Moorhead, 1996) 

regions. However, the utility of SIA for identifying sources can be limiting for several 

reasons.

The main limitation identified by these studies is the difGculty in discerning between 

the various sources of organic matter. There is overlap in carbon isotope ratios among the 

various terrestrial plants, and even between aquatic and terrestrial vegetation. In other words, 

in order for isotopes to be used as indicators of source origin, the signals from the various 

sources must be isotopicaHy distinct from one another (Lajtha and Michener, 1994). This has 

led to the development of mixing models that enable more accurate determination of sources, 

but the relative contribution of each source must be known. Others have suggested that 

analysing multiple stable isotopes simultaneously (Peterson et al., 1985; McArthur and 

Moorhead, 1996), or combining other tracers such as C/N ratios (Andrews et al., 1998), 

could prove to mitigate this problem.
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Other limitations include the fact that isotopic composition of organisms changes 

temporally and spatially. Decomposition of detritus results in further fractionation of the 

isotopic ratios, food sources of organisms may vary seasonally, and environmental conditions 

fluctuate over a range of time periods (microscales, diumal patterns, seasonal patterns). 

Isotopic ratios differ not only among species, but also within individuals of a single species. 

For example, Leavitt and Long (1989) identified intertree variability of the carbon isotopes in 

tree rings, which reflects changing environmental factors (e.g., light and nutrient levels) over 

time. However, given the extensive list of organic substances that have been studied, the 

methods' potential for tracing organics, and a well-deGned methodology with high precision 

and accuracy, it would seem that SIA has the foundation for much further use.

The basic premise behind measuring ratios of stable isotopes is that during 

fractionation, the heavier isotope of each pair is either enriched or depleted relative to the 

lighter isotope, thus organisms, which metabolize differently should exhibit different ratios. 

The method of stable isotope measurement involves the comparison of a sample to a standard 

with a known, and unchanging, ratio. Typical standards include Pee Dee Belemnite (PDB), a 

marine limestone fossil used for carbon analysis (Craig, 1953), atmospheric nitrogen 

(Mariotti, 1983), and the triolite standard of the Canyon Diablo meteorite (CD) for sulfur 

(Krouse, 1988). The reason for the use of this differential approach is that absolute 

variations are typically very small, and thus absolute isotopic composition is not reliable 

(Lajtha and Michener, 1994). The differential approach allows for very small differences in 

isotopic composition of two samples to be accurately and reliably determined.

Methods for sample preparation vary for each isotope; for example, if the carbon 

isotope is sought, the samples must first be acidified (usually 1 N HCl) in order to remove
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carbonates, which are heavier than organic molecules and will skew the results (L^tha and 

Michener, 1994). In general, all samples must be converted quantitatively to puiiGed gases 

(e.g., CO2 , N 2 , and SO2  or SFg) via combustion, the gases are cryogenically separated, and 

then analyzed by a stable isotope ratio mass spectrometer (Peterson and Fry, 1987). 

Ehleringer and Rundel (1988) summarize the mass spectroscopy process in that the converted 

pure gas is introduced to one end of the fhght tube, ionized by an electron beam source, and 

then the ions are deflected in a magnetic field into circular paths. The radii of the paths are 

proportional to the masses of the isotopes. The ions are separated, depending on associated 

mass, into collectors (Faraday cups), and the ionic impacts are converted into frequencies. 

The critical parameter is the ratio of the signals corresponding to the different collector cups. 

The differences in ratios are then calculated relative to the relevant standard as per equation 

(1):

6 (%o) = (Rsa / Rstd -1 ) X 1000 1.1

where R̂ a is the isotopic ratio of the sample and Rgtd is the isotopic ratio of the standard.

2. J.2 TbioZ Organic Matter aW Carbon

Typically, the percentage of organic matter in sediments is determined by loss-on-ignition 

analysis (Nelson and Sommers, 1996). Suspended sediment samples should be filtered onto 

pre-ashed, pre-weighed glass fibre Alters prior to the ignition process. The American Pubhc 

Health Association (1995) methodology indicates that the Alters are then dried and weighed, 

where the diAerence in weight, accoundng for the volume Altered, provides the total
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suspended sediment concentration. The filters are then ashed in a muffle furnace at 550°C 

for at least an hour to remove the organic material, leaving only inorganic particles, which 

allows for the calculation of organic matter percentage by subtraction and comparison to total 

suspended sediment. This method is limited in that structural components of the inorganic 

portion of the suspended sediment may be lost along with the organic material upon 

combustion (Nelson and Sommers, 1996). This would mean that the weight loss would be in 

excess of the actual organic matter content. This is particularly a problem with high clay, 

low organic matter sediments (Howard and Howard, 1990).

Organic matter content can also be estimated from total organic carbon measurements 

because it is largely composed of carbon derived from organic (living) sources. Organic 

carbon is the difference between total carbon and inorganic carbon, and thus is determined 

directly from a measurement of total carbon after the inorganic portion is removed (Nelson 

and Sommers, 1996). There are two basic steps involved in the process. First, the organic 

carbon must be converted to a measurable form. There are several methods to accomplish 

this, and the most common involves oxidation of organic carbon to CO2 by thermal 

combustion (Qian and Mopper, 1996). Second, the CO2 evolved from the previous step is 

detected by some method (e.g., nonsuppressed ion chromatography) (Fung et al., 1996). This 

win yield a value for organic carbon, which can then be converted to percentage organic 

matter using a multiplicative factor. However, determining the appropriate factor is difficult 

due to the variation among and within soil samples, and thus this estimation method is not 

highly accurate. Nelson and Sommers (1996) suggest that the organic carbon content be 

identified and reported as a gauge of organic matter because the latter is typically not 

accurately measurable.
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2.6 Characterizing Suspended Sediment Structure

The above review of literature has illustrated that there are two structural populations of 

particles, primary or individual grains and flocculated or composite particles. The latter 

tends to exhibit higher organic content and variable morphology and therefore each of the 

populations must be investigated by diHerent means. Assessing the primary or constituent 

particles, the building blocks of floes, results in an absolute particle size distribution (APSD). 

Measuring the APSD is relatively easy, in that it is not necessary to treat the samples gently 

when retrieving or processing them. A commonly used technique involves removal of all 

organic material, disaggregation of samples, and subsequent analysis in a Coulter Multisizer 

(Kranck and Milligan, 1983). The result is a spectrum of constituent particle size or the 

distribution of particles that potentially form floes in natural environments. Studies have 

shown that this type of distribution can yield important information about the inorganic 

source material delivered as suspended sediment (e.g., Kranck et al., 1993) as well as the 

spatial and temporal variation of suspended sediment in a given system (e.g., Walling et al., 

2000). Other research have used the APSD as a basis for comparison to determine the 

relative proportion and size of flocculated material to illustrate the size increase due to 

flocculation (e.g., Petticrew, 1996), the changes in hydrodynamic behaviour as a result of 

flocculation (e.g., Petticrew and Droppo, 2000), and the relative influence of environmental 

factors on flocculation (e.g., Droppo and Ongley, 1994). Measuring the effective particle 

size distribution (EPSD), or size range of floes, is more difficult as it requires non-destructive 

methodology, and this is generally achieved by utilizing in .yim techniques. A review by 

Wren et al. (2000) details the operating principles of the available techniques for measuring 

suspended sediment along with an in-depth comparison between them. For the purposes of
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brevity and relevance to the author's research, an examination of only three of these, being 

in-stream photography, settling chambers, and laser backscatter/diffraction, is provided here.

2.6.7 Tn-ftrgamfWogmp/ry

One non-invasive method to assess floe structure is to obtain snapshots of particles as they 

move in the water column. This is achieved by submerging a plankton camera as per 

Milligan (1996) and Petticrew (1996) parallel to the flow, where the shutter opens, a flash 

operates, and floes are backlit producing a silhouetted image. This is a non-microscopic 

method, and therefore is suitable for systems with a large median particle size (~300 pm) and 

low sediment concentration (Kranck et al., 1993). The photographs are then analyzed with 

any image analysis system capable of measuring particle size distributions. Potential limits 

to this method are the difficulty in aligning the camera parallel to the flow, especially in 

turbulent systems, and the fact that there is a minimum resolution of 32-43 pm/pixel due to 

the Aim, digitization, and lens aperture (Milligan, 1996). Thus, this technique is not useful in 

systems where the measured floe size is less then the techniques’ resolution (Biickert, 1999). 

In addition, this method is hampered by the specialized and time-consuming nature of the 

measurements (Phillips and Walling, 1995) and the fact that it is limited to low 

concentrations, where particles are less likely to overlap each other (i.e., easier to discern 

between individual particles). However, Wren et al. (2000) beheve that this technique could 

be successfully applied to research seeking conclusive information about the dimensional 

properties of suspended sediment particles.
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2.6.2

Several researchers have utilized modified Plexiglas plankton chambers (Droppo and 

Ongley, 1994; Droppo et al., 1996; deBoer, 1997) to assess floe structure. The samphng 

column is immersed parallel to the direction of the flow, capped, and inverted upright 

(Droppo, 2000). Particles are either allowed to settle onto a glass shde or Mülipore Alter for 

subsequent analysis with an microscope interfaced with an image analysis system. The 

sampling volume is varied depending on the suspended sediment concentration, as it is 

important to minimize overlap of particles. Droppo et al. (1996) modiAed the methodology 

by adding aragose in order to stabilize the Altered structures, enabling use of mulAple 

microscopic techniques without disrupAon of Aocs. AltemaAvely, water samples can be 

taken and Altered in a laboratory setAng, however, the extra steps of handling, transport, and 

resampling increase the probability of disturbing Aoc structures, and thus increases the 

chance of error (Phillips and Walhng, 1995).

2.6..) Tasgr

Available techniques for assessing in Am parAcle structure include laser 

backscatter/diffracAon sizing. This involves submerging a probe connected to a portable 

computer, where parAcles Aowing past an aperture are sized, resulAng in parAcle counts in 

real-time (BAckert, 1999). Two types of measurements occur with this method: (1) 

diffracAon-based; and (2) backscaAer-based. A Malvem parAcle size analyzer is an example 

of a diffracAon-based instrument, where a laser is passed through the water column, and the 

diffracAon caused by parAcles passing through the low intensity beam (2 mW) is measured. 

The Fraunhofer diffracAon theory is used to convert the resulAng diffracAon pattern to
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particle sizes (Kiishnappen et al., 1994; Biickert, 1999). The backscatter instrument (e.g., 

Par-Tec 200/300) used by Phillips and Walling (1995) requires an oscillating lens that 

sweeps the focus point of a laser across a deGned water column. The acquired signals are 

then translated to chord lengths of individual particles (Philhps and Walling, 1995). The use 

of these instruments is hmited in Geld experiments due to the size and awkwardness of the 

apparatus and the Gnancial expense of procuring this equipment (Phillips and Walling, 1995; 

Wren et al., 2000).

2.7 Summary

Sediment is eroded from watersheds and delivered to streams, where it is eventually 

transported from point of entry to the nver mouth. There are biologic, climatic, hydrologie, 

and geomorphic factors reguladng the magnitude and timing of sediment dehvery, and 

anthropogenic impacts have been found to change the inherent balance within these systems. 

Sediment is transported either as bedload or suspended load depending on the nature of the 

parGcles (e.g., cohesiveness, size) and energy available in the Guid medium. Fine-grained 

sediment typically comprises the majonty of the suspended load, which is generally not 

stored, over long time periods in the channel. However, it has been found that modiGcaGon 

of the Gne-grained size fracGon is caused by GocculaGon. A Goc is deGned as an aggregate 

of two or more pnmary parGcles (inorganic and/or organic) bound together by some 

combinaGon of physical, chemical, and biological factors. Researchers have tended to 

address the factors contribuGng to GocculaGon, including sediment mineralogy, ionic 

concentraGon, bactenal concentraGon, shear stress and velocity, suspended sediment 

concentraGon, and organic matter source and supply individually, in order to assess the
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causal linkages. However, it would seem that the complexity of the process of flocculation 

means that isolation of influential factors may be difficult, and perhaps a multivariate 

approach is preferable. In addition, the difficulty in obtaining m data concerning floe 

structure impedes the process of relating particle morphology to the influential factors.

Despite the difficulties, ah of these factors have been studied extensively, with the 

exception of the influence of organic matter source and supply. Organic material in aquatic 

systems is derived from both autochthonous and allochthonous sources. The quahty depends 

on the ease of assimhation by microbes (i.e., a higher quahty source is one that is more easily 

decomposed), which is rehant on the specific source (e.g., leaves versus large woody debris). 

Both the quantity and quahty of sources vary spatially and temporahy. At the seasonal scale 

variability is caused by climatic factors (e.g., temperature, precipitation, insolation) and 

hfecycle patterns of biological organisms. In other words, biological organisms exhibit an 

optimal range of tolerance for temperature, water availabihty, and radiation, and thus species 

composition changes over the annual timeframe. Spatial variation in source material occurs 

in the form of changing inputs longitudinahy from headwater to mouth, as weh as due to 

changes in hydrologie conditions. The latter is especiahy important for autochthonous 

sources that persist in the channel and are directly influenced by water currents. An added 

variable is that of marine derived organic matter in the form of migrating salmon that enter 

freshwater streams in order to spawn.

Organic matter sources can be quantised by several different methods. Stable isotope 

analysis (SIA) is used to trace the origin of sources, and to examine processes that cause 

fractionation of isotopic composition ratios. SIA is hmited because isotopic ratios must be 

distinguishable between sources in order to discriminate accurately. However, using
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multiple isotopes, and/or other tracing mechanisms in conjunction with SIA, should mitigate 

the problems. Loss-on-ignition analysis is employed to quantify organic matter in streams, 

as is the determination of total organic carbon.

There is an apparent need to characterize suspended sediment in aquatic systems 

because of the implications for contaminant transport and retention in fluvial systems and 

aquatic habitat quality. Many researchers have done so using either the absolute or effective 

particle size distributions, or both. In terms of examining the process of flocculation, the 

latter size distribution is necessary. There are several techniques used for the purpose of 

measuring these distributions, some of which are more limiting than others depending on the 

intent of the research and the resources available to the researcher.
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Chapter 3—Seasonal variation in structure and settling characteristics of fine
grained suspended sediment in a salmon-hearing stream

Abstract

Recently, researchers have found that the suspended sediment load of most fluvial 

systems is primarily comprised of aggregated or flocculated particles that typically 

exceed their constituent mineral grains in diameter by at least one order of magnitude, 

depending on the associated hydrologie conditions. Discrepancies in particle size of this 

magnitude imply that more material can be settled and stored, at least in the short-term, 

within freshwater systems than is indicated by conservative sediment transport models, a 

phenomenon that could potentially modify aquatic habitats. This study incorporates an 

event-based sampling approach to characterize the suspended particulate matter (SPM) 

concentration, absolute and effective particles size distributions (APSD and EPSD), and 

the settling velocity and density of the suspended sediment for O'Ne-eil Creek, British 

Columbia, Canada during the 2001 open water season. An increase in the average D99 

from 6 8  to 1056 pm for APSD and EPSD, respectively, indicates that the suspended 

sediment in O'Ne-eil Creek is transported as flocs/aggregates. Analysis of inorganic 

spectra demonstrates coarser grains moving as suspended particles during salmon activity 

and a change in source material for post-spawn suspended sediments. During the spawn 

period, the in particle sizes exceed those from all other event types and exhibit much 

smaller particle densities and settling rates than those of equivalent sized inorganic 

particles. The results indicate that the presence of spawning sockeye (OncorAynchw.; 

nerAu) salmon changes particle structure due to a combination of biotic resuspension of
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settled material and introduction of marine-derived organic matter to floc matrices. 

Further research is required to elucidate the exact nature of the relationships.
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3.1 Introduction

Hydrodynamic theory predicts that riverine fine-grained sediments (< 63 pm diameter) 

will be effectively transported, with minimal channel storage, out to sea, based on the 

assumption that they are moving as individual grains characterized by very slow settling 

rates. This idea that efficient translation of sediment (i.e., insignificant intermittent 

storage) occurs through river networks has led researchers to focus on developing and 

using yield models to predict sediment and contaminant source, fate and effect (Droppo, 

2001). However, recognition of an apparent conveyance loss from upstream inputs to 

downstream sediment yields (e.g., Meade, 1982; Walling, 1983) renders these models 

inadequate. The apparent ineHicient delivery of suspended sediment has been attributed 

to storage on floodplains and within channel beds (Owens et al., 1999). High discharge 

events (e.g., freshet and storms) inundate floodplains and suspended sediment is 

deposited as a result of laterally declining velocity, and increasing roughness gradients 

due to shallow flows and terrestrial vegetation (Nicholas and Walling, 1996). 

Conversely, low discharge periods are conducive to sediment deposition and 

accumulation on streambeds (Droppo and Stone, 1993; Pithck and Van Steeter, 1998). 

While the magnitude and duration of storage depends mainly on hydrologie conditions, 

the stored load may comprise a significant portion of a system's annual sediment budget 

(Walling et al., 1998; Owens et al., 1999) contrary to traditional thought. This is largely 

due to the misconception that particles are transported as single grains.

Studies that have examined Gne-grained sediment structure have led to a 

relatively new understanding that suspended sediment is commonly transported in a 

flocculated form (e.g., Droppo and Ongley, 1992,1994; Lick and Huang, 1993; Phillips
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and Walling, 1995,1999; Petticrew, 1996,1998; Droppo et al., 1997,1998), rather than 

as individual particles. Rocculation is the process whereby single sediment grains 

(inorganic and/or organic) combine together to form larger units or floes. Petticrew and 

Droppo (2000) identified two populations of composite particles that included compact 

aggregates and amorphous floes, distinguishable by respective densities and settling rates. 

Woodward et al. (2002) suggest that both aggregates and floes belong to the population 

of composite particles, where the source material distinguishes the respective type; they 

suggest aggregates enter the system as such and floes form within the water column.

Regardless of origin, particle structure is a m ^or factor in regulating the 

behaviour of suspended material in aquatic environments (Kranck, 1993; Nicholas and 

Walling, 1996). Rocculation alters the hydrodynamic properties of sediment (Petticrew 

and Biickert, 1998; Droppo, 2001) by increasing the effective size of particles, which 

results in corresponding changes to structural characteristics of particles within a system, 

including shape, density, porosity, and composition (Œbbs, 1985; Li and Ganczarczyk, 

1987; Andreadakis, 1993; Nicholas and Walling, 1996; Droppo et al., 1997,1998; 

Phillips and Walling, 1999; Droppo, 2000). Ruid dynamic principles dictate that these 

modifications will result in subsequent adjustments to transport and storage of sediment. 

For example, Petticrew and Biickert (1998) suggest that storage of fine-grained sediment 

in gravel beds should be increased compared to what is currently predicted by 

hydrodynamic models.

Fine-grained sediment represents a gravimetricaUy insignificant proportion of the 

total sediment load in ûeshwater systems due to the relatively small mass as compared to 

other substrate fractions. However, long-term storage of fine-grained sediment has
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important implications for streams that support prime salmon-spawning habitat, and the 

potential for increased storage is a speciAc concern in anthropogenically-di sturbed 

watersheds. Turbid water and heavily silted gravels can result in suffocation of eggs and 

a reduction of available food organisms (Newcombe and MacDonald, 1991), and are 

detrimental to emerging juveniles (Soulsby et al., 2001). Gravels must be clean and well 

oxygenated for optimal survivorship of salmon stocks. Road building and stream 

modification practices associated with timber removal translate to greater inputs of 

sediment to streams (Ziegler and Giambelluca, 1997; Gunn and Sein, 2000). Elevated 

sediment loads during lower stream flow are problematic because these periods are prone 

to create build-up of One sediment on streambeds (Pitlick and Van Steeter, 1998) and 

most salmon spawning occurs during late summer during baseflow discharge. Timing 

and type of forestry practices prescribed for specific watersheds should occur 

accordingly.

Accurate prediction of detrimental impacts to aquatic organisms due to fine

grained sediment requires adequate characterization of suspended and gravel-stored 

dynamics. As flocculation is regulated by many biological, chemical, and physical 

factors (see Droppo, 2001), which are highly dynamic in natural systems, the m sim 

process is complex. Efforts should be made to examine the variability of sediment 

structure on both temporal and spatial scales in natural systems prior to watershed 

disturbance requiring sediment modeling. The purpose of this study is to characterize the 

variability in fine sediment structure and settling properties over a variety of temporally 

di^erent conditions in a salmon-bearing stream located in the Stuart-Takla region of 

northern British Columbia in order to provide a basehne for (1) a basis of comparison to

54



future disturbances for identîGcation of changes and (2) the ability to predict storage 

patterns and their implications. This was accomphshed through construction of 

constituent and m .yitw particle populations, determination of relevant dimensions of 

particle structure (e.g., maximum and median diameter), quantihcation of settling 

properties (e.g., fall velocity and shape) and related densities, and subsequent comparison 

of these characteristics based on hydrologie and biologic events in the watershed.

3.2 Materials and Methods

3.2.1 Study Area

The study region (Figure 3.1) includes watersheds located in the Hogem Range of the 

Omenica Mountains in the Takla Lake region of northern British Columbia, an area under 

examination by partners in the Stuart-Takla Fish/Forestry Interaction Study (STFFS).

This project was undertaken in the early 1990s with cooperation between government 

agencies (e.g.. Department of Fisheries and Oceans (DFO) and the Ministries of Forest 

(MOF) and Water, Land, and Air Protection (MWLAP)) and academic institutions (e.g., 

the Universities of British Columbia (UBC) and Northern British Columbia (UNBC) and 

Simon Fraser University (SFU)), local First Nations communities (Tl'Azt'En Nation), and 

forestry companies (Canadian Forest Products (Canfor)) to obtain information regarding 

the relationship between forestry activities and the productivity of aquatic ecosystems in 

B.C.'s central interior. Considerable research on this topic has occurred in coastal 

systems of British Columbia; however, due to signiGcant diGerences in biogeoclimatic 

characteristics compared to the central interior, this information is generally not 

transferable. This is especially true for sediment research, in that basin traits (e.g., slope).
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surGcial geology, vegetation, and precipitation are some of the factors that play a role in 

regulating the magnitude and timing of sediment delivery through systems, and these 

differ signiGcantly on a regional scale.

Takla
Lake

HARVESTED FALL 1997

Study
Area

Prince
George

Forfar Fraser
River

Van Decar
(Rosette)

Trembteur
Lake

HARVESTED WINTER 96/97

5 km Baptiste

Figure 3.1. Map of the Stuart-Takla region of northern British Columbia. Note O'Ne-eil 
watershed in the center.

Part of the most northern extent of the Fraser River watershed (55°N, 125°50'W), 

O'Ne-eil (also known as Kynoch) basin features a range in relief from 700-1980 m 

(Petticrew, 1996). Surficial material is comprised of glacial tiUs and lacustrine clays at 

higher elevation (Macdonald et al., 1992) and fine-grained glaciolacustrine sediment in 

the lowland areas (Ryder, 1995). Encompassed within the Engeknann Spruce Sub-alpine 

Fir (ESSF) biogeoclimatic zone, the basin is relatively small (~ 75 km^), but O'Ne-eil 

Creek is an important Gsh-bearing stream, where annual migration of salmon is well 

documented (Petticrew, 1996). The mainstem channel of O'Ne-eü Creek is
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approximately 20 km in length and 4 to 5 m wide at the mouth (Petticrew, 1996). The 

study reach exhibits favourable spawning habitat with appropriate substrate size 

distribution in low gradient (0.5 - 2 %) riffles (Petticrew, 1996). Little anthropogenic 

disturbance has occurred within this watershed specifically, however, a forest service 

road enables access to the lower reaches. One site in O'Ne-eil Creek, downstream of the 

forestry access bridge and approximately 1500m upstream of the mouth, was sampled 

during the period of May 18 to August 21, 2001

One sampling site was deemed adequate for resolving temporal patterns in 

suspended sediment structure, while the interpolation of spatial trends was considered 

beyond the scope of this study. However, the identiGcation of temporal trends should 

enable translation of information to other watersheds at similar spatial scales (i.e., 

biogeoclimatic zones and reach position downstream from the headwaters), as weU as 

provide baseline data for O'Ne-eü Creek watershed prior to anthropogenic disturbances 

to allow prediction and comparison for future conditions.

3.2.2 Study Approach

Sediment transport is driven by hydrologie factors within watersheds, and thus as 

discharge changes over time so does the magnitude and source of sediment (Ritter et al.,

1995). High flow (discharge) provides a high-energy environment, where large 

substrates and obstacles that had blocked the Gow and enabled deposition of Gne-grained 

sediment are potenGally entrained and moved downstream. The pnnciple of conGnuity 

illustrates that, as discharge increases, there is a proporGonal increase in either the cross 

secGonal area and/or water velocity (Vogel, 1994). In other words, the entrainment

57



velocity and/or water level increases, enabling erosion of material from areas (e.g., 

floodplains, banks, and gravel storage) not ordinarily accessed at lower flows (Walling, 

1983; Owens et al., 1999). Therefore, a greater amount of material, especially Ane- 

grained sediment, could be entrained within the water column during these periods of 

high flow.

Flow velocities vary seasonally depending on factors such as precipitation and 

temperature (causing snowmelt). A concomitant variation in maximal sediment size of 

mineral material entrained and suspended should ensue, although some researchers 

indicate that maximal floc sizes could be reduced in higher flows due to breakage (Lick 

and Lick, 1988; Burban et al, 1989; van Leussen, 1999). This study was designed to 

determine what type of relationship exists for O'Ne-eil Creek. In order to evaluate the 

seasonal changes in fine sediment structure and morphology, it is necessary to collect 

samples over a range of watershed events. These were partitioned into Gve discrete 

response types, which are (Figure 3.2): (1) springmelt during the period of rising water 

levels; (2) summer low flow conditions, but isolated from rain events; (3) rain events; (4) 

the period during active spawning; and (5) post-spawn, where no actively spawning or 

live salmon were present. Springmelt is a period characterized by high discharge, and 

this is when the first flushed material stored in-channel and on the floodplain occurs. 

Less suspended load is moved during the baseflow levels of the low flow period, where 

the source material is predominantly in-stream. Rain events are characterized by higher 

than baseflow discharge, where suspended sediment concentrations are expected to 

increase, and comprise a combination of in-stream and terrestrial inputs. Rain events 

occur during baseflow, salmon spawn, and post-spawn, so they reflect the combined
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Figure 3.2 Schematic of sampling approach during the 2001 open water season. Points 
represent sampling times, shaded areas depict the four m^or event types of rising limb of 
springmelt, low flow after springmelt, and the active spawning period and post-spawn 
(i.e., no live/spawning salmon). Arrows designate sampled rain events. Note that June 
25^ sampling occurred prior to the onset of precipitation.

effects of resuspension of gravel-stored material that occurs during storms and the 

predominant source of organic matter for the particular sampling date. The period of 

active salmon spawn combines the introduction of anadromous organics and biological 

disturbance of gravels (see Figure 3.3). This organic matter is expected to remain within 

the system post-spawn, but, because live fish are no longer present, disturbance of gravels 

is minimal. Seasonal patterns of fine-sediment concentration, size, density, and settling 

rate were identiGed for each of the above stated response types using this approach.

a. Redd (Nest) ^cavation c. Egg burial

Figure 3.3 Spawning activities of salmon, a. Females dig out the area to prepare of egg 
deposition, b. Females deposit eggs and males subsequently fertilize, c. The fertilized 
eggs are buried for overwintering. From Soulsby et al. (2001).
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3.2.3 Discharge Measurements

Continuous discharge data was derived from datalogged stage gauge values. The stage 

height was logged hourly by equipment maintained by the Department of Fisheries and 

Oceans (DFO). Stage height was converted to discharge using an exponential equation 

(3.1) obtained from a rating curve developed by DFO:

Q = 0.247e^^^ 3.1

where Q is discharge (m^s'^) and S is stage height (m). The datalogging station was 

situated about 25 m upstream of the sampling site. Periodic cross-sectional flow 

measurements at the sampling site, using a Swoffer Model 2100 propeller current meter, 

were taken and these calculated discharges were closely related to the logged discharge 

values.

3.2.4 Sample Collection and Processing

3.2.4.1 Suspended Particulate and Organic Matter

Water was collected using wide-mouthed 1 L Nalgene bottles. The sampling process 

involved wading to the sampling point, which was designated by a length of steel bar 

driven into the streambed at the approximate center of the stream. The lid of the bottle 

was removed and placed over the opening. The bottle was then Immersed parallel to the 

flow and the cap removed from the opening. After hlUng, the immersed bottle was 

reverted to an upright position, and the cap was secured. The bottles were transported in 

a Coleman brand insulated cooler to the held laboratory, which was about 10 km from 

the stream. Anywhere from 20 to 60 bottles were retrieved, depending on the visually
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observed suspended sediment concentration for the sampling date (i.e., more bottles were 

collected when the suspended sediment concentration was lower).

Data for suspended particulate matter (SPM) and suspended organic matter 

(SOM) concentrations were obtained through gravimetric determination. The bottles 

were mixed well to obtain representative samples and then a known volume of stream 

water was filtered through pre-combusted and pre-weighed 47mm diameter glass-fibre 

filters with a nominal pore size of 0.7 pm. Triphcate samples were filtered. The filters 

were then folded in half, placed in glassine envelopes, and stored in a desiccator. The 

filters were stored until analysis could occur at the UNBC laboratory. The filters were 

dried at -60 °C and weighed to 10'  ̂grams, where the difference in weight divided by the 

volume filtered provides the SPM concentration. The filters were then ashed in a muffle 

furnace at 550°C for an hour to remove the organic material and then reweighed, 

allowing for calculation of SOM concentration.

3.2.4.2 Absolute Particle Size Distribution

In order to determine constituent or absolute particle size distribution for comparison 

with the floc or effective particle size distribution. Coulter Counter analysis of filtered 

inorganic sediment occurred. The method was as per Kranck and Milligan (1983), where 

all organics are removed with low-temperature ashing and ultrasonic dispersion, and 

subsequent sizing and enumeration of individual inorganic grains was attained by 

electroresistance particle size analysis via a Coulter Multisizer. Milligan and Kranck 

(1991) describe operation and calibration of this instrument. Water samples (three per 

sampling event) were filtered onto ashable, 8 pm SCWP MDlipore mixed acetate filters
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as per Petticrew (1998), which were dried and then completely combusted by low- 

temperature ashing ( -^ ° C )  at the Bedford Institute of Oceanography (Dartmouth, NS), 

leaving only the inorganic component of the sample. These filters effectively retain 

particles > 0.5 pm (Droppo, 2000). Sizing and counting of the remaining inorganic 

constituent particles took place at the UNBC laboratory using a Coulter Multisizer.

3.2.4.3 Effective Particle Properties

For the settling experiments, stream water was collected in 20 L water jugs and 

transported to the field laboratory. Then, at the field-based laboratory, for each settling 

run, a large rectangular plexiglass tube (1.51 x 0.14 x 0.06 m with a capacity of 13.4 L) 

equipped with two removable end caps (see Petticrew and Droppo, 2000) was filled with 

about 12 L of the well-mixed stream water (as the bottom end of the tube was capped). 

The tube was then carefully placed in a tripod that held it upright facing a charge-coupled 

device (CCD), with a resolution of 512 by 512 pixels, interfaced with an Intel-based PC 

running Northern Exposure (Empix Imaging, Mississauga, ON, Canada). About 45 

images, having square pixel dimensions of 55 |im ± 10 |rm, were captured and 

timestamped after waiting for turbulence to subside, as the particle population fell 

naturally downward due to gravity through the water column. A slight change in 

procedure occurred mid-June, where the analog CCD was replaced by a Retiga 1300 

digital CCD (resolution 1280 X 1024 pixels) with resulting images having 6.7 X 6.7 pm 

pixel dimensions. The software was also upgraded to Northern Eclipse (Empix Imaging, 

Mississauga, ON, Canada) with an associated specialized fastcapture program that 

allowed for collection of 100 images at timed intervals of three seconds. The settling
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tube was outfitted with a scale on the back of the tube attached using white adhesive 

paper to aid in image analysis.

The digital images from both techniques were analyzed using the Northern 

Eclipse software package in two ways. First, dimensions (e.g., diameter, area, perimeter, 

and shape) of 500-1500 particles for each run of 45 (for the spring samples) and 100 (for 

all other sample dates) images were measured by thresholding about every fourth 

greyscale image. This interval of four images ensured that particles were not measured 

more than once. The concept of thresholding is based on the fact that each pixel in a 

black and white image is characterized by a value between 0 for black and 255 for white. 

Northern Eclipse allows the user to 'highlight' objects by assigning a value to the image 

that best defines the object in question. This technique is limited by the choice of optics, 

which defines pixel size, where several pixels are required to reliably deEne an object 

(MiUigan and Hill, 1998), as well as the user's detection of a particle (i.e., operationally 

deEned). The minimal particle size detected was 42 pm. For each image, the 

thresholding was gradually increased until sections of the image were adequately 

represented, and then dimensional measurements were taken based on a pre-determined 

length calibration. The resulting database of dimensions enabled determination of the 

effective particle size spectra (EPSD).

Second, fall velocities and particle diameters were measured for as many particles 

as possible for each settling run (between 20 and 150). AH images from a particular run 

were overlain in a movie format to enable detection and tracking of individual falling 

particles. Once a suitable particle was displayed, the two relevant images were isolated 

and the Boolean operator minimum was used to fuse the images together so that the
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particle was shown frozen in its original position versus its fallen position. A straight- 

line measurement was then made between the centers of both images of the particle. 

Settling velocity was determined from the distance traveled by the particle divided by the 

time interval between images. The dimensions of the particles were then measured and, 

if the apparent size was different between the two due to particle rotation during settling, 

averaged dimensions were calculated.

Direct measurement of settling velocities is necessary rather than calculation 

based on Stokes' law of particle settling because of the apparent divergence from model 

settling rates found by Namer and Ganczarczyk (1993) and Petticrew and Droppo (2000). 

This is due to a decrease in sphericity that flocculated particles exhibit compared to

model particles. A version of Stokes' law corrected for particle shape deviating from

spherical was used to determine particle density. First, particle size and settling velocity 

measurements collected using image analysis allowed for computation of particle 

Reynolds numbers as per Namer and Ganczarczyk (1993):

Re = Xg M /^  / // 3.2

where Re is the Reynolds number, Xg is the diameter of the particle, and // are the fluid 

density and dynamic viscosity, respectively, and w is the settling velocity. Calculating 

Reynolds number was necessary in order to determine which version of Stokes' law to 

use for particle density derivation.

Appropriate correction factors were calculated according to the Reynolds 

numbers by:

= 0.843 lo g ( ^ /0.065) 3.3

for particles in Stokes' region (Re < 0.2),
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jkn = 5 .3 1 -4 .8 8 6  3.4

for particles in Newton's regime (1000 < Re < 3 x 10 )̂,

(0.43 / (1000 -  Re) /  (1000 -  0.2) + (0.43 / 3 . 5

for particles in the transition range (0.2 < Re < 1000), where is the Stokes correction 

factor, An is the Newton correction factor, k is the transition correction factor, and 6  is the 

two-dimensional shape factor. None of the measured particles fell within Newton's 

regime, so the densities were calculated for Stokes' region:

A - A v =  18w/f / (&sg%â ) 3.6

where yOt is the floe density, g is the acceleration due to gravity, and ^  is replaced by A to 

calculate the density of particles falling in the transition zone.

3.2.5 Spectral Analysis

Fine-grained inorganic sediment particle size distributions are typically plotted as 

smoothed histograms of log concentration versus log diameter (Milligan and Kranck, 

1991; Kranck, 1993; Petticrew, 1998). Usually these distributions are obtained from 

disaggregated, constituent particles measured using a Coulter counter, where the organic 

portion of the sample is removed. This study examines both constituent and flocculated 

material and the data for both were processed similarly and, for the most part, as per 

Kranck (1993). Diameter is deGned by class midpoints, where the class limits 

correspond to the resolution of this instrument (1/3 (()) (Kranck, 1993). AH particles for 

each sample were grouped into bin classes by their diameters. Then the volume was 

calculated for each bin class based on the formula for sphere volume and particle size 

spectra were presented as percentage volume (y-axis) versus bin diameter (x-axis) (log-
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log transformation). Typically, volume/volume values are used for this representation. 

Because volume/volume is dependent on the initial concentration of the sediment in the 

samples, data in this report are assessed in the form of percentage volume to allow for 

direct comparisons between samples.

Log-log plots were used to allow for comparison between samples and to assess 

compliance of particle spectra to a power law relationship (Kranck and Milligan, 1983; 

Kranck, 1993). Kranck and Milligan (1983) state that this type of plot enables 

comparison between spectra because "portions of distributions with similar relative 

values will have similar forms independently of the overall size distribution and the 

power law distribution will plot as straight hnes." In other words, the shapes of different 

spectra can be used to compare between them. The power rule mentioned above is 

defined by Kranck (1993), as

V = QD™ e ' ^ °  3.7

where V is the volume concentration of sediment, Q is the y-axis intercept, which is 

dependent on total concentrations, K describes the fall off in grain size at the coarse end 

of the distribution, m is the slope, D is the particle diameter, and ctDD defines the settling 

rate (based on Stokes' Law). Figure 3.4 illustrates the relationship between the variables.

There are two characteristics of the spectra that are of interest here for comparison 

between particle populations. The first is the shape of the left hmb of the particle 

spectrum. This is also referred to as the source slope of the curve because it accentuates 

differences in the source of the sediment (Kranck and Milligan, 1983; Kranck et al.,

1996). Kranck et al. (1996) compared sediment spectra from different environments and 

geographical locations and were able to differentiate the sites using the respective
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characteristic slope (m) values. This is because the spectrum slope gives an indication of 

proportion of fine versus coarse particles, which reflects the source sediment. Simply, 

steeper slopes indicate a smaller portion of the very fine particles being transported 

within the water column, whereas flatter curves suggest that very 6ne particles make up 

the larger portion of the fine sediment being moved. The spectra slope then can be used 

as a type of Angerprinting technique to differentiate source materials.

i m

mode

-3 0.01
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0.0001
100 10001 10

D, diameter (pm)

Figure 3.4 Model grain size distribution spectrum illustrating the signiAcance of 
variables noted in equation 1. The dotted line refers to parent source material described 
by V = QD™. The solid curve denotes a size distribution, which shows the effects of 
coarse grain fall off and settling rate. Mode is the peak of the curve corresponding to the 
size class with the greatest concentration of particles. Modified from Kranck (1993).

Differences can be noted visually, but the typical method for more rigorous 

analysis is the calculation of the slope of the regression curve for the section of the 

population falling between 1 and 10 pm. The 1 to 8 pm slopes were calculated for this 

study because findings by Petticrew (1998) indicate the spectral mode for the source
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sediment in O'Ne-eil Creek is 8 pm. It should be noted that this might only be reliable 

for absolute particle size distributions derived from Coulter analysis. Effective particle 

size distributions are typically limited by the lower end resolution, which often precludes 

that measurement of particles between 1 and 10pm m diameter (Bückert, 1999). The y- 

axis intercept (Q) is also part of the left limb of the curve. It reflects the volume of the 

finest particles and depends on total concentrations, which implies that the value of the 

intercept is reliant on the hydrologie conditions (i.e., higher energy environments should 

produce larger intercept values). However, this is only true for data plotted as 

volume/volume as calculating the percentage volume removes the effect of total 

concentrations.

The second characteristic of interest is the position of the spectrum mode, or size 

class exhibiting the highest concentration. Kranck et al. (1993) state that the mode is 

indicative of the coarsest particle size that can be kept in suspension under the flow 

conditions present in the system under consideration. Particles larger than the mode 

value settle out of suspension creating the abrupt fall off at the coarse end of the spectrum 

as displayed in Figure 3.4. The implications of this are that the larger the particle, the 

more energy it requires to become entrained or to remain entrained. Thus, if the mode is 

large, it is likely characteristic of a high-energy environment with higher bottom shear 

stress (Biickert, 1999).

Slope values and modes were extracted from the particle size spectra obtained 

from each APSD filter processed. The data were then coded by event type and an 

analysis of variance (ANOVA) was performed on the data set using Statistica® 6.0
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(StatSoft, Inc, Tulsa, OK) in order to assess the ability to determine differences between 

each sample type compared to replicates and to characterize any variation that exists.

A similar analysis was performed on the EPSD for each sampling day. However, 

a limitation of the analysis for the EPSD is that the di%rences between population modes 

are not always visually straightforward. This is because there may be bin classes with 

similar volumes of particles, which are separated by other classes with smaller volumes 

(as emphasized by Figure 3.5) probably due to a smaller number of particles in the bin 

class (classes with less than three particles are not represented) and the exponential 

increase in bin class volumes (Volume a  (Diameter/2)^). This problem was addressed by 

calculation of the D5 0 , Dg4 , and D9 9 values for cumulative percentage volume curves

I 10
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Figure 3.5 Example particle size distribution spectrum illustrating the difGculty in 
determining the precise value of the mode due to the erratic fluctuations at the curve 
peak.

instead of the mode. Linear interpolation between values was used to develop equations 

for deriving the particle diameter at these respective percentages of the population.
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Another method was as per Biickert (1999), who circumvented this problem by 

using a non-parametiic measure of goodness of fit, the Kolmogorov-Smimov test. 

Kurashige and Pusejima (1997) also identified this non-parametric test for independent 

samples as a way to compare between whole populations of particles. The Kolmogorov- 

Smimov test evaluates the similarity between two entire populations, where a positive 

result is attained when the descriptive statistics are significantly different. The one- 

sample test compares a cumulative relative frequency curve to a normal distribution. 

Biickert (1999) used the two-sample version of this test to identify differences between a 

base case (i.e., control) and experimental cases. In this study, SYSTAT® 9.0 (Systat 

Software Inc., Richmond, CA) was used to execute the Kolmogorov-Smimov two- 

sample test on data from spectra selected based on the objectives stated above.

3.3 Results

3.3.1 Discharge

The measured flow rate for O'Ne-eü Creek during the 2001 open water season ranged 

between 1.0 and 22.1 m^s'\ the minimum being August 20̂  ̂and the maximum falling on 

June 27*̂ , respectively. Spiingmelt began on May 21^, where Figure 3.6A shows a 

relatively constant increase in discharge after that date. The first large peak occurred on 

June 1^ with a flow rate of about 19 m ^s'\ followed by a decrease and another peak of 19 

m^s^ on June 5^. A third peak of 19 m^s^ took place on June 9^. Two more high points 

came on June 15*̂  (11.2 m^s" )̂ and June 20^ (12.5 m^s" )̂. This last peak was followed by 

a significant decline until a rain-on-snow event of about 1 mm hr'^ caused the highest 

flow of the season on June 27^ (22.1 m^s" )̂. Precipitation values are approximate
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Figure 3.6 Suspended sediment variability measured in O'Ne-eil Creek over the open 
water season in 2001. A. Discharge was calculated from stage height logged 
approximately 25 m upstream from the sampling site. Legend as per Figure 3.2. 
Precipitation data were collected at a meteorological station about 10 km from the stream. 
B. SPM and C. SOM were sampled periodically over the season, where bars are ± 1 SE 
among tiiphcate samples. Dotted hnes separate event types, while arrows identify rain 
events.

because the meteorological station was about 10 km from the O'Ne-eil Creek watershed.

Discharge values decreased from the m ^or peak to a baseflow of about 1 m^s'\ Small
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fluctuations in the curve correspond to rain events. Five rain events of different 

intensities were sampled over the season (Table 3.1). The rain events resulted in 

corresponding maximum increase of between 0.2 and 0.8 m^s'  ̂of flow through the 

sample site cross-section during the event. July 7 and 9 rose from 2.9 to 3.7 and 2.8 to

3.1 m^s'\ respectively, while the August events were 1.2 to 1.9,1.5 to 1.8, and 1.0 to 1.2 

m ^s'\ for August 2""̂ , 3"̂ , and 21^\ The highest intensity storm occurred on July 7, while 

the lowest was on August 21^. Note that Figures 3.2 and 3.6A indicate rain for the June 

25̂  ̂sampling date; however, precipitation began after sampling was already complete 

and stopped during the night. The water level did not increase between June 25"  ̂and 

26"̂ .

Table 3.1 Rainfall duration and intensity for five summer sampling periods in O'Ne-eil

Date Overlapping 
Event Type

Duration (hr) Rainfall
(mm)

Intensity (mm
hr'b

Increase
in Q 

(m"s-^)
July 7 Low Flow 7 5.8 0.83 0.8

July 9 Low Flow 6.5 2.8 0.43 0.7

August 2 Spawn 16.45 10.6 0.64 0.6

August 3 Spawn 4.5 3 0.67 0.3

August 21 Post-Spawn 11.5 5.4 0.39 0.2

3.3.2 SPM and SOM

Suspended particulate matter varied over the season with a maximal concentration of

18.1 mg during spiingmelt (May 27" )̂ and a minimum of 0.9 mg L'^ for the low flow 

period (July 16^). The peak of the springmelt hydrograph was not sampled as flows were
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too fast for safe entry into the stream. Suspended organic matter concentration varied 

correspondingly with maximum and minimum values of 3.5 and 0.33 mg L'^ for those 

same days. For the most part, the SPM and SOM curves followed that of the hydrograph 

in that the general trend was higher suspended material during higher discharge (Figure 

3.6). However, the data deviated from the hydrograph during the active spawning period, 

where the amount of suspended material was higher than what would be associated with 

low flows. Figure 3.7 displays the data grouped by the Ave event types to isolate and 

verify the differences.
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Figure 3.7 Suspended particulate and organic matter concentrations as grouped by event 
type. Five periods were sampled for each event type, except post-spawn (n = 4). Error 
bars ate ± 1 SB, and means tagged by similar letter are not signiAcantly different (a  = 
0.05).

Considerably more material was suspended during springmelt than any other 

period and differences between other events. An analysis of variance for SPM resulted in
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signiAcant main effects (Fo.o5(i), 4 .66 = 37.7, p < 0.001) and post hoc pair-wise comparison 

(Tukey Honest SigniAcant DiAerence (HSD) for unequal N (Spjotvoll/Stoline test)) 

indicated signiAcant diAerences between springmelt SPM and all other event types (p < 

0.001), between low Aow and both the rain and spawn events (p < 0.005), and between 

spawn and post-spawn (p < 0.001). Similar analyses were peAormed for SOM data and 

means were also found to be signiAcantly diAerent (Fo.osci). 4 ,6 5  = 33.3, p < 0.001). Pair

wise companson revealed that the main eAects diAerences are attributed to spnngmelt 

compared to all other event types (p < 0.01), and low Aow compared with rain and spawn 

events, p < 0.01 and p < 0.05, respecAvely. The post-spawn and spawn penods were not 

diAerent as they were with the SPM data, but the post-spawn and rain events were (p < 

0.005). AU SPM and SOM data were loganthmicaUy transformed because a Shapiro- 

WiUcs test of normality confirmed that the raw data were not normaUy distnbuted.

3.3.3 Absolute Particle Size Distnbution

Absolute inorganic parAcle size distnbuAons consisted of operaAonaUy deAned lower and 

upper Umits of approximately 1 and 120 pm, but the largest pnmary parAcles measured 

were no greater than 111 pm. Analysis of Ave absolute parAcle size distribuAons 

representing each of the diAerent event classes over the season is shown in Figure 3.8. 

The spectra are graphed as log-log distribuAons of parAcle sizes within each sample by 

the representaAve percentage volume. There is very Uttle visual diAerence between the 

APSD curves throughout the year with the excepAon of the post-spawn curve, which 

exhibits a Aatter slope and peaks at a smaller parAcle diameter.
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More stringent analysis involved two spectral properties in particular and included 

samples for all the dates and replicates collected. The first is the slope of the left limb, 

calculated using linear regression of the points from 1 to 8 |im. Figure 3.9A presents the 

means and standard errors for the grouped data. The average slope for the post-spawn 

period was 0.31, while all others events fell between 0.50 and 0.60. The post-spawn 

slopes were flatter than springmelt, low flow, and spawn periods. There is a visual 

difference between post-spawn and all other event classes, and the ANOVA states that 

this is statistically significant (Fo.o5(i),4,63 = 3.71, p < 0.01). Note, sample dates were 

removed from the group average if the coefGcient of determination derived from linear 

regression of source slope was insignificant (r  ̂< 0.497, a  = 0.05). Specifically, four 

replicates were removed in total; three of nine from the post-spawn period and one of 15 

for the low flow class.

0.1

May 24 (Spring)
June 25 (Low Flow)
July 31 (Spawn)
August 3 (Rain)
August 20 (Post-spawn)Ô  0.01

0.001
10 100 1000

Particle Diameter (pm)
Figure 3.8 Absolute particle size spectra of % volume by particle diameter (pm) 
representing five event types through the 2001 season.
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The second important spectral property is mode. The average mode values for 

each event type are presented in Figure 3.9B. Once again, spectra that were shown to

m  (I) 0.4

Figure 3.9 A. Source slopes, B. spectral modes, and C. particle diameter at 50, 84, and 
99% of the absolute particle size distributions (APSD) grouped by event type. Error bars 
are ± ISE. Springmelt, low flow, and post-spawn event labels are abbreviated. Means 
tagged by similar letter are not significantly different (a  = 0.05).
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possess insignificant values were removed in case the anomalous spectral left limb 

altered the mode as well. The main effects of an ANOVA are significant (Fo.o5(i), 4 ,6 3  = 

8 .0 , p < 0 .0 0 1 ) and attributable to differences between post-spawn and springmelt (p < 

0.005), post-spawn and rain (p < 0.05), post-spawn and spawn (p < 0.001), as weD as low 

flow and spawn and low flow and springmelt (p < 0.05). Visually it appears that 

springmelt and spawn periods are most similar in modal values with 13 and 13.5 pm, 

respectively. The lowest mode of 5.3 pm occurs during post-spawn, which are also the 

curves that possessed the lower or flatter slopes.

Further examination of the absolute particle size distributions included 

transformation to cumulative percentage volume curves, so that the particle diameters at 

50, 84, and 99% could be extracted. The results, averaged by event type are shown in 

Figure 3.9C. The spawn period demonstrates the highest values and the pattern of spawn 

> rain > springmelt > post-spawn > low flow holds for D99 and Dg4 , but the latter two 

categories are reversed for D5 0 . An ANOVA was used to test this pattern, and all 

percentile diameters had positive results. Pair-wise comparisons resulted from the 

Spjotvoll/Stoline test. Low flow and spawn periods were significantly different with 

respect to D%, D&4 , and D50 (p < 0.01). Springmelt consisted of smaller Dg4  values than 

spawn (p < 0.01) and rain events had greater Dg4  values than low flow (p < 0.05). D50  

values were greater during the presence of salmon as opposed to after die-off (p < 0 .0 1 ).

3.3.4 Elective Particle Size Distribution

The effective particle size distributions are analyzed in a similar maimer to the absolute 

spectra. One discrepancy is that the lower resolution of the image analysis technique
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limits the smallest particle measured, so the leA hmb of the effective particle size 

distributions is not the source slope because no particles between 1 and 8 pm could be 

measured. The grain size of the 50, 84,99^ percentiles is of primary importance in this 

case. The modal class is situated much higher and to the right on the graphs, which 

indicates a greater frequency of larger particles. However, because of the difhculties 

determining the spectral mode indicated in section 3.2.5, the mode was not included in 

this analysis. Figure 3.10 shows the EPSD, where the lower resolution is between 42 and 

67 pm, the upper size limit is greater than 1000pm. Note that there is considerably more 

variation in the curves as compared to the APSD.
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Figure 3.10 Effective particle size distributions as percentage volume by particle 
diameter derived from image analysis of in situ settling populations. The respective 
sampling dates and event types (S = Spring, L = Low Flow, R = Rain, SP = Spawn, and 
PS = Post-spawn) are displayed above each curve.
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When grouped by event type in Figure 3.11, D% and Dg# grouped averages reveal 

a trend; spawn > rain > low flow > springmelt > post-spawn, while the D50 differs by 

transposing the spawn and rain events. The range of averaged particle sizes is 832 to 

1366, 553 to 1177, and 294 to 654 pm, for D9 9 , Dg4 , and Dgo, respectively. Although 

these patterns are visually apparent, an ANOVA was performed on the log-transformed 

data and no signiAcant differences were detected between event types for any of the 

particle size variables. This lack of positive statistical results contradicts the differences 

that appear to exist in the ungrouped data displayed in Figure 3.12.
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Figure 3.11 Averaged particle diameter at 50, 84, and 99% of the effective particle size 
distributions (EPSD) grouped by event type. Error bars are ± ISE.

The diameters for each percentile appear to be much higher during the salmon 

spawn period, but the variation within the event is so large that an ANOVA cannot detect 

the differences between events. The rain data crossed over with other event types, and

79



two of these sampled rain events occurred during the salmon spawning period. The 

August 3"̂  rain date exhibits the highest values of the entire data set. In order to better 

understand seasonal patterns, rain event data was coded into the respective crossover 

event type (i.e., rain events during spawning were added to the spawn sample set). The 

result was that the highest values for all of mode, D9 9 , Dg4 , and D5 0  occurred during 

active salmon spawning. An ANOVA detected no statistically significant differences 

between event types for D5 0 , but the D99 and Dg4  data were different (Fo,o5(i). 3, 11 = 4.1 and 

4.2, p < 0.05) and attributed to variation between the spawn and post-spawn periods.
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Figure 3.12 Seasonal distribution of D9 9 , Dg ,̂ and D5 0  values derived from effective 
particle size distributions. Note the highest values of all percentages generally occur 
during the spawn period.

To further test the pattern statistically, the Kolmogorov-Smimov two-sample test 

was used to compare the general shape of the curves. All EPSD curves were compared 

against each other and the two-sided probabilities are detailed in Table 3.2, where
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signiGcant results are bold and italicized. Differences were found between curves within

and between event types. Within event differences are low Gow event dates of June 24th

and 26*̂ , August 3™ and all other rain events, and August and July spawn dates.)Td

Table 3.2 Two-sided probabihGes Goro Kolmogorov-Smimov test. SigniGcant p values 
(a  = 0.05) are italicized and bold. Lines separate event types, spnngmelt, low Gow, rain, 
spawn, and post-spawn, from top to bottom.
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Between event differences are more numerous. For the spnngmelt curves, the May 24th

spectrum diGers the August 3"̂  rain event and the July 31" spawn date. RepresenGng the

low Gow period, June 24"  ̂diGers from the July 7™ rain event and the August 17™ post-th  . 7 th  .
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spawn date, while EPSD curves from June 26* and July 12* both vary from August 3"̂  

and July 31^. The July 7* and August 2""̂  rain events differ from the July 31̂  ̂spawn 

date, and the August 3"̂  rain event varies from the August spawn date and all post

spawn spectra. For the active spawning period, July 31^ is significantly different from all 

post-spawn spectra. The spectra from each event were then averaged and the K-S test 

performed on this data. No significant differences were found. The largest differences 

between averaged curves were for post-spawn and spawn (D = 0.276), post-spawn and 

rain (D = 0.276), springmelt and rain (D = 0.241), and springmelt and spawn (D = 0.241).

3.3.5 Rain Events

Patterns derived from data with rain events could be confounded by the fact that these 

data overlap with other event types, as aU rain events occurred during one of the other 

event periods. Up until this point, rain events have been treated as if they occurred 

during a discrete period, and the overlapping event types have been generally ignored. A 

closer look at these events provides a pseudo-synoptic view of seasonal patterns because 

rain events were sampled during the low flow, spawn, and post-spawn periods. Figure 

3.13A shows the SPM and SOM concentrations for five rain events. The SPM 

concentrations for the low flow rain dates are lower than the spawn and post-spawn. 

Because the data are not normally distributed, a Kruskal-WaUis non-parametric test was 

used to test for differences, and resulted in signiEcant differences.

Little variation between the three overlap event types is apparent for SOM with 

the exception of the spawn period. The active spawning period exhibits higher SOM
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values, but with greater standard error (i.e., not statistically significant). The D9 9 , Dg ,̂ 

and D50 values follow a pattern similar to that found with all seasonal events, however.

a SOM

mode

E 2000

Spawnm 1500

Figure 3.13 Data summary (averages) for sampled rain events. A. SPM and SOM 
concentrations. B. Diameters at the mode, and 99, 84, and 50% of the cumulative 
percentage volume curves for the absolute particle size distributions (APSD). C. 
Diameters at 99, 84, and 50% of the cumulative percentage volume curves for the 
effective particle size distributions (EPSD). Error bars ± ISE. July 7"̂  and 9"̂  = Low 
Row, August 2 ^  and 3"̂  = Spawn, and August = Post-spawn periods.
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those derived from the APSD for the post-spawn overlapping rain event (August 21^) are 

signiBcantly higher than the spawn according to an ANOVA. Previously, the trend 

followed a decrease in constituent particle size from spawn to post-spawn. In terms of 

source slope (not presented in Figure 3.13 due to the large scale difference compared to 

the other variables), there are no differences between event types, with rain events 

exhibiting an average slope of 0.50 ± 0.06,0.48 ± 0.05, and 0.52 ± 0.07 for low flow, 

spawn, and post-spawn, respectively. This diners from the larger dataset for the post

spawn period, as previous findings were that post-spawn spectra had significantly smaller 

slope values.

3.3.5 Settling Velocity and Density

The relationship between settling velocity and particle size is shown in Figure 3.14.

There does not appear to be an obvious pattern between settling velocity and particle 

diameter for the grouped dataset. The m^ority of tracked floes/aggregates faU in the 

range of approximately 100 to 500 pm diameter, while the maximum size of tracked 

flocs/aggregates exceeds 2000 pm. The m^ority of the smaller aggregates exhibit 

settling velocities of 6 mm s"̂  or slower. However, a smaller proportion of this size class 

settle at velocities up to about 10 mm s '\  The faster travelling composite particles (> 6 

mm s'^) represent -4%  of the total number of particles, and belong to the post-spawn 

(2.5%), spawn (0.7%), rain (0.3%), and low flow (0.5%) event types.

Similarly, a subset of the seasonal floc/aggregate population, about 3.4%, exceeds 

500 pm in diameter. All event types are represented in this larger class, although the 

greatest number are from the rain (1.2%), spawn (0.8%), and post-spawn (0.8%) periods.
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Of the rain proportion, the m^oiity of particles were sampled on August 2"  ̂and 3"̂ ; both 

days belong to the spawn overlap period. When these days were added to the spawn 

period total, its proportion of particles greater than 500 pm increased to 1.7%. Particles 

in this size class aU settle at less than 6 mm s '\  with the exception of one particle from 

the post-spawn period that falls at more than 12 mm s"̂  and two others (7.7 and 6.2 mm s' 

)̂, two particles from the spawn period (velocities of 6.3 and 7.8 mm s'^), and two floes 

from rain events at 7.3 and 6.4 mm s '\
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Figure 3.14 Settling velocity by particle diameter. Symbols differentiate between event 
types. Arrows designate rain events that belong to the spawn sub-category.

A Kruskal-Wallis non-parametric test to compare median settling velocities 

between event types was used to determine whether differences exist between event 

types. SigniGcant differences were detected at the o-level of 0.05. It appears that the
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majority of the difference is due to higher settling velocities found during the post-spawn 

period. Similar testing for particle size revealed no signiAcant differences.

Figure 3.15 indicates that density decreases exponentially as particle diameter 

increases. Visual inspection reveals no apparent differentiation between event types 

except that the larger, least dense particles belong to the low Aow, spawn, and post

spawn periods. A similar proportion of particles from the latter two periods appear to fall 

in the lower diameter-higher density spectrum, but no particles sampled from the low 

Aow penod are represented. No large, low-density composite particles were observed for 

spnng, while only three Aocs > 500 mm (< 3 mm s'^) were found in low Aows. 

SigniAcant differences were detected using the Kruskal-Wallis H test and are again 

attributable to the post-spawn period, although a slight trend of increasing density Aom 

spring through to post-spawn is evident.
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Figure 3.15 Particle density by diameter. Symbols diAerenAate between event types. 
Arrows designate rain events that belong to the spawn sub-category.
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3.4 Discussion

3.4.1 Variation in SPM and SOM

Conventional hydraulic theory predicts a proportional relationship between suspended 

sediment concentration and flow due to increased turbulence and shear stress assuming 

constant sediment supply. The sources of sediments does change depending on flow 

conditions. Springmelt is characterized by flushing of a large pulse of stored inorganic 

and organic material from both the channel and the floodplain. This includes scouting of 

stream banks and removal of debris blockages. Rains events are presumed to draw from 

similar source supplies, although on a smaller scale. Sediment sources are limited to 

mainly in-stream for low flows. The data from this study follows the expected pattern 

with deviations during the active salmon spawning period. These observations indicate 

that the salmon presence is creating an increase in suspended inorganic material. Soulsby 

et al. (2001) note that female Gsh dig spawning redds by exerting enough force on the 

bed to move the gravels. After spawning, this same force is used to bury eggs. During 

this process, smaller material stored in the gravels is suspended and transported 

downstream. In a stream reach where hundreds of salmon are spawning simultaneously, 

a considerable amount of gravel-stored fine sediment is suspended. The data in Figure 

3.6B appear to reflect this biotic resuspension of sediment. The SPM elevation (aside 

from the freshet peak) is restricted to the active spawning period, and concentrations 

return to an expected level related to discharge when live salmon are no longer present 

within the reach. The rain event analysis elucidates that rain events sampled during the 

spawn period exhibit increased SPM concentrations compared to the low flow. The
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significant difference between low flow and rain events is due predominantly to the high 

SPM levels associated with the two rain events sampled during the spawn period.

A similar relationship is expected for the SOM pattern and the data comply. 

Springmelt is characterized by elevated organic matter concentrations. A pulse of 

organic material moves with inorganic material that has been entrained after storage over 

the winter months. Higher salmon spawn and rain concentrations compared to the low 

flow period likely reflect the decomposition of salmon carcasses and release of marine- 

derived organic material. The rain event analysis does not aid in interpretation of 

relationships because it shows that the August 3"̂  SOM concentration is the only 

detectable difference, and the variation within SOM data for this date is signiGcantly 

higher than any other sampling date. A technique that is more sensitive in quantifying 

the organic matter suspended within the water column, and determination of the sources 

as they change over the season, may better resolve the organic matter patterns seen here. 

These will be presented in the following chapter.

3.4.2 Variation in APSD

Slope values from absolute particle size distributions relate to the source materials from 

which the sample was derived (Kranck et al., 1996). Different sources will contain 

varying proportions of Gne and coarse particles. Spectral slopes for spring, low Gow, and 

spawn penods are denved from a steeper source than the post-spawn, indicating a greater 

proportion of larger grain sizes. Sources compnsed of a wider range of size classes, such 

as terrestnal, stream bank, and channel bottom inputs, likely contribute during these 

penods. The post-spawn rain event slope increased to equal those of other events when
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the channel bottom, banks, or floodplain was disturbed as might be expected in higher 

flows. During the post-spawn period, which exhibits low flow velocities, the greater 

proportion of smaller particles (< 5 pm) suspended could be a result of a hmited ability of 

the flows to entrain the larger material into the water column. The source is mainly the 

streambed during this period, and lower flow rates compared to other time periods means 

that only the finest size fraction will be mobilized.

Modal values extracted from APSD reveal the size of the largest particle that is 

suspended under the flow conditions in question (Kranck et al., 1993). A decrease in 

mode from springmelt to low flow to post-spawn tracks the relative decrease in 

discharge. The rain events appear to fall within a middle value compared to all other 

events, which is anticipated because rain events combine low flow, spawn, and post

spawn periods. The spawn period deviates from theoretical expectations with respect to 

flow conditions. Salmon spawn activity increases the inorganic particle size that is 

entrained. Petticrew and Droppo (2000) studied an anthropogenic disturbance of the 

gravel in O'Ne-eü Creek that was intended to simulate movement by spawning salmon. 

They found that the APSD were markedly altered after, compared with before, the 

disturbance. The concentration increased and the modal values were shifted to the right. 

Both findings corroborate the data presented here.

This relationship is further emphasized by significantly larger particle diameters 

measured when salmon were active in the stream as compared to the range of flow 

conditions experienced from springmelt to baseflow. Although the discharge measured 

during the freshet should have entrained all fines from the gravels to the same or greater 

depth as the salmon, the suspended fines are comprised of smaller inorganic particles.
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Combining this finding with the idea that a relatively small portion of the sampled 

inorganic particles was larger than 2 0  pm, implies that the notion of association between 

absolute particle size and discharge is misleading. Rather, the size more accurately 

reflects the source material available (Kranck et al., 1996; Petticrew, 1996), 

glaciolacustrine deposits in this case. Walling et al. (2000) report comparable results and 

relate the lack of association between APSD and flow to the relative importance of 

different sources. A possible systematic explanation for measuring larger particles for 

spawn as opposed to spring (D9 9 = 80 and 67, respectively) could be that the water level 

was considerably lower during salmon spawn. In the spring, the water level was -1 m as 

compared to < 0.5 m for low flows. This means that the probability of sampling near

bottom sands would be much greater during the salmon spawning period. Walling et al. 

(2 0 0 0 ) further note that the relationship between absolute grain size composition and 

discharge is complicated by the fact that hydraulic regulation of suspended sediment 

directly influences the in .yiiw or effective particle distributions, rather than the constituent 

inorganic grains.

3.4.3 Variation in EPSD

Comparison between absolute and effective distributions (Figures 3.8 and 3.10) indicates 

a large degree of flocculation occurring in O'Ne-eil Creek, with an average seasonal D99 

increase of 6 8  to 1056 pm. This translates to a floe factor of ~16, which is greater than 

the reported 10 times for maximal diameters by Petticrew (1998) for Stuart-Takla 

streams. Note the sampling technique used here enabled exclusion of sands and larger 

mineral particles, which is evidenced by the largest APSD diameter recorded being in the
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range of 6ne sands (-111 |im). Thus, majority of larger particles are floe s/aggregates.

As well, the maximum floe sizes reported here exceed those found in the Mackenzie 

River delta (-90 pm) (Petticrew and Droppo, 2000) and Fraser River ( -  100 pm) 

(Petticrew and Biickert, 1998). Petticrew (1998) found a maximum floe size of 1290 pm 

in 1994 after the peak of salmon spawn. Here, a m a x im u m  floe size of 2032 pm, and 

increased floe factor, measured during a similar time period seasonally indicates either 

inter-annual variation in particle structure, highly variable seasonal structure, or 

dUTerences in sampling and analysis techniques. Petticrew and Aroeena (in press) 

reported a floe factor of about 11 for gravel-stored floes in O'Ne-eil Creek for 2001 

samples in the same reach as presented here. As well, they used the same methodology. 

It is likely that in-gravel structures would be smaller than suspended floes and the data 

reported here support a difference of -1.5 ( l lx  to 16x floe factor). The between system 

disparities in floe size are probably attributable to either differences in discharge 

(Biickert, 1999), mineralogy (Milligan and Hih, 1998), or organic matter content 

(Droppo and Ongley, 1994; Petticrew, 1996), but clearly the Stuart-Takla streams are 

well-flocculated.

While it is not statistically supported, there is a seasonal pattern in effective 

particle sizes for O'Ne-eil Creek (Figures 3.11 and 3.12). A general increase in particle 

size from springmelt to spawn implies that discharge is not positively related to 

flocculation within this stream. The largest sizes are found during active salmon spawn, 

a time when base levels of flow were recorded. Variation occurs within and between 

sampled event types (Table 3.2), although conspicuous differences occur between spawn 

spectra and curves from all other event types. The pattern may be solidiGed by improved
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sample size. The trend of increasing floe size (spawn > rain > low flow > spring > post

spawn; Figure 3.11) does not lend support to the colhsion theory of aggregation (Müligan 

and Hill, 1998), which indicates that the largest particles should occur during highest 

particle concentration, so as to enhance colhsion. While the highest SPM concentrations 

occur in springmelt (Figure 3.7), the shear stress due to high flows could act to break 

larger aggregates and floes (Dyer and Manning, 1999).

Laboratory studies have dominated examination of the cormection between 

suspended sediment concentration and flocculation, where the organic component was 

controlled or excluded. The relationship becomes much more complex in natural 

systems. Researchers studying particle structure under Geld condiGons (e.g., Droppo and 

Ongley, 1994, Petticrew and Biickert, 1998, and Woodward et al., 2002) have speculated 

that organic matter content and biological acGvity may have signiGcant inGuence on 

parGcle structure in freshwater systems.

The hnkage between organic matter and parGcle structure remains relaGvely 

unexplored, however salmon carcass-denved nutnents are known to enhance the growth 

of microorganisms (Wold and Hershey, 1999). Bactenal adhesion is one mechanism of 

biological GocculaGon (Dade et al., 1990; Droppo et al, 1997). As weü, the nature of 

organic molecules appears conducive to assisGng Goc formaGon through the producGon 

of extracellular polymenc Gbnls. Using scanning electron microscopy, PetGcrew and 

Aroeena (in press) found visual evidence of changes to parGcle composiGon and structure 

of gravel-stored sediment due to salmon acGvity and carcass decomposiGon. Thus, it is 

possible that spawning salmon in O'Ne-eil Creek inGuence parGcle structure by some
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combination of increasing SPM during low flow conditions and introducing a pulse of 

organic matter.

3.4.4 Variation in Settling Properties

Petticrew and Droppo (2000) visually and quantitatively characterized two distinct 

particle populations sampled from a water column that included the suspended sediment 

and material resuspended from gravel-bed storage. While the m^ority of particles were 

small (< 500 pm) and settled slowly (< 6 mm s'^), two sub-populations were apparent: (1) 

small, fast settling, compact aggregates and (2) larger, slow settling, floes. Again, the 

m^ority of particles observed here are in the < 500 mm diameter, < 6 mm s'̂  fall velocity 

category, yet a proportion of the total group fit into these sub-populations as defined by 

size and settling rate (Figure 3.14). The m^ority of the largest size fraction belongs to 

the spawn event type; however, the small, faster settling particles occur after this period 

during post-spawn.

The post-spawn period in this study is characterized as the period when no living 

salmon remain in the stream. The system is in low flow conditions, therefore has a 

limited supply of inorganic sediment, but is receiving biological breakdown products 

from decaying salmon carcasses. These smaller, fast-setthng aggregates sampled during 

post-spawn were also observed by Petticrew and Droppo (2000), who sampled this same 

stream in the post-spawn period of 1996. The m ^or difference was that they disturbed 

the gravel matrix to resuspend gravel-stored floes. They presumed the compact 

aggregates they observed were resuspended from the gravels, while the larger floes were 

generated and carried in the water column. Clearly some of these compact aggregates are
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moving in the water column during low flows. As they have high settling velocities (100 

pm sands settle at -9  mm s'^), they wiU drop out of the water column more quickly than 

the larger floes. So, possibly the aggregates are stored on the gravel surface and moved 

via saltation along the bottom where they were sampled in the shallow, post-spawn 

waters (depth < 0.5 m). Sands of 100 pm have densities of ~2650 kg m'^, and would be 

more d i^cu lt to entrain at these flows (velocities < 0.3 m s'^), while irregular shaped,

200 to 500 pm particles, with densities between 1200 and 1500 kg m^ could potentially 

be moved in these shallow flows.

In terms of salmon influence on these same gravel beds in 2001, Petticrew and 

Aroeena (in press) observed an increasing settling rate in gravel-stored floes from pre- 

spawn to post-fish, with no appreciable increase in particle diameter. They report a mid

spawn low in mean particle size, combined with intermediate settling velocity and 

density. Particle break up induced by salmon activity is cited as a likely cause, which 

would support the argument that the suspended particle size described here is a function 

of flocculation processes occurring within the water column.

Important inferences can be made using the assumption that particle geometry and 

matrix properties regulate settling velocities. The bulk of particles > 500 pm settled < 6 

mm s'̂  and all particles fell considerably slower than predicted by Stoke's equation 

(Petticrew and Droppo, 2000). These particles are characterized by irregular shape with 

lower density, and higher porosity and organic content as compared to Stoke's spherical, 

dense, mineral counterparts. The spawn event exhibits the largest particles densities, 

which are still much smaller than the hypothetical values calculated using Stoke's 

equation for mineral grains of similar diameter. Organic material introduced to the
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stream by spawning salmon is likely incorporated into these particles to create large, light 

floes. Continuous settling and subsequent resuspension due to spawn activity probably 

facilitates stability for these particles, enabling preservation of size (Petticrew and 

Droppo, 2000). A partial explanation for the observed patterns in this study are that a 

high degree of flocculation occurs during active salmon spawn, resulting in much larger 

composite particles than possible without the presence of salmon. After salmon die-off, 

these large floes settle out of the water column and are stored on or within the gravels 

(assuming the discharge remains limited to facilitate storage). The smaller, fast-setthng 

aggregates may be sporadically entrained from the gravel surface, thereby moving by 

saltation downstream, and flocculation during this period occurs from smaller constituent 

particles. These compact aggregates hkely form from incorporation of inorganic particles 

into the matrices of existing floes. Again, spawning activity seems to play a substantial 

role in shaping particle morphology, in terms of both physical and chemical processes. 

Further examination of the connection between particle morphology and organic matter 

source and supply should clarify the nature of the relationship.

3.5 Conclusion

Temporal analysis of suspended sediment structure in relation to important hydrodynamic 

events and the presence of anadromous Sshes demonstrated that seasonal changes in 

suspended sediment concentration and structure in O'Ne-eil Creek are hnked to salmon 

spawning activity. Increases in both particle quantity and effective diameter occur during 

the presence of migrating salmon due to a combined eiKect of physical resuspension of 

gravel-stored sediment and introduction of pulse of nutrients from reproductive products
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and post-reproductive carcasses. The increase seen in diameter coincided with low 

settling velocity and density relative to expected or modeled values determined from 

Stoke's Law. The combined existence of these results indicates that the presence of 

spawning salmon enables incorporation of low density organics into floe matrices as well 

as other physical effects such as increased porosity. Further research into the organic 

processes involved should better explain the association and implications. The findings 

presented here necessitate careful planning of any anthropogenic disturbances in 

watersheds that support migratory salmon stocks to ensure suitability and availability of 

spawning habitat.
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Chapter 4— Contributions of seasonally changing organic matter sources to 
suspended sediment structure in a salmon-bearing stream

Abstract

The prevalence of aggregated or flocculated particles dominating the suspended sediment 

load of freshwater and marine environments is weU-documented. The predominant 

causative factor in marine systems is electrolyte concentration, however, it is more likely 

that flocculation in freshwater systems is due to organic binding agents such as 

bacteiially-produced exudates. Organic matter adsorbed to particles provides favourable 

microhabitat for bacterial colonization, which allows for increases in metabolic activity 

of these organisms, in addition to being composed of macromolecules that may facilitate 

particle binding directly. This study investigates the hypothesis that variability in particle 

structure between studied systems is largely due to temporal variation of organic matter 

source and supply. O'Ne-eil Creek, a site for annual migration of sockeye salmon 

(OncorAyncAwj in northern British Columbia, was sampled using a seasonal 

approach to characterize organic factors contributing to flocculation. Larger diameter 

particles where found in suspension during the period of salmon spawn, compared to low 

flow. Seasonal patterns from stable isotopes of carbon and nitrogen indicate that the 

change in particle size is related to salmon presence due to the introduction of microbial 

growth enhancing, post-reproductive carcass-derived nutrients. Enrichment of nitrogen 

due to the influx of marine-derived nutrients provided by post-reproductive salmon 

carcasses are an important factor related to increases in particle size. Future laboratory 

experiments directly examining the relationship wiU elucidate the issue more 

conclusively.
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4.1 Introduction

Fine-grained sediment (<63pm) in suspension not only moves as individual particles, but 

also as particle aggregates or floes. Floes are comprised of both organic and inorganic 

material, bound together by a combination of physical, chemical, and biological forces 

(Droppo et al., 1997). The rate of flocculation depends on site-specific variables such as 

ionic and suspended sediment concentration, shear stress, pH, and organic source and 

supply (Droppo and Ongley, 1994; Petticrew and Biickert, 1998). This is evident in the 

comparison between marine and freshwater systems. Floes are prolific in marine 

enviromnents, where high concentrations have afforded them being termed "marine 

snow" (Aüdredge and Silver, 1988). Conversely, riverine flocculation is less apparent 

visually, and hydrologie conditions were preliminarily thought to be too energetic to 

facilitate floc-building. Flocculation is now a weU-documented phenomenon in 

freshwater lotie systems (e.g., Droppo and Ongley, 1994; Petticrew, 1996,1998; 

Petticrew and Biickert, 1998; Petticrew and Droppo, 2000), although the resulting 

particles are typicaUy an order of magnitude smaUer than their marine counterparts (e.g., 

10  ̂to 10  ̂pm diameter).

The main operational difference between these riverine and marine systems is 

ionic concentration. Flocculation in saline environments has been attributed mainly to 

the high electrolyte concentration (AUdredge and Silver, 1988; van Leussen, 1999), while 

freshwater systems are characterized by much lower salinity (> 10  ̂pS cm"  ̂for marine at 

25°C versus «  10  ̂pS cm'^for freshwater; Kalff, 2002). van Leussen (1999) states that 

the role of salt flocculation is currently in question, and that organic binding agents may 

play an important function in the process for both environments. Further, Droppo and
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Ongley (1994) suggest that suspended sediment, organic matter and bacterial 

concentrations may combine to regulate freshwater/riveiine flocculation, although the 

extent that each individual variable contributes is uncertain.

Organic material introduced to river/stream ecosystems is derived from either 

autochthonous or aUochthonous sources. Both of these sources vary temporally.

Seasonal variation of terrestrial sources is attributed to the presence of species and 

hydrologie regime. The composition of the riparian species changes over time, as does 

the proportional species contribution to streams (Johnson and Covich, 1997). Stage 

height and precipitation also facilitate transfer of terrestrial material to streams (Koetsier 

et al., 1997; Tockner et al., 1999), both laterally and longitudinally. In-stream 

productivity is dependent on environmental factors such as insolation and temperature 

(AHan, 1995; Sand-Jensen, 1998), as well as terrestrial nutrients. In addition, the 

hydrologie regime regulates the available substrates and réfugia for aquatic organisms.

Organic substances incorporated into floe matrices are known to control floe 

morphology and settling behaviour (Petticrew and Droppo, 2000; Droppo, 2001). Floes 

containing high concentrations of organic matter tend to appear irregular and loosely 

boimd and exhibit low settling rates and densities, while compact aggregates (dense and 

fast settling) are probably comprised of a greater percentage of inorganic particles. The 

influence of organic material may be related to its quality in terms of utilization by 

bacteria, where higher quality sources should enhance microbial productivity (Petticrew 

and Aroeena, in press). Temporal variability in floe morphology may therefore be due to 

changes in the sources of inorganic and organic material. Investigation of this idea 

requires accurate definition of organic sources. The use of stable isotope analysis for this
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purpose has increased dramatically in recent years (Griffiths, 1998; Phillips and Gregg, 

2001). Stable isotopic tracers have been used to monitor flows of organic matter (i.e., 

trace trophic relations) in marine (Peterson et al., 1985; Fry, 1988; Hedges et al., 1988; 

Cifuentes et al., 1988) and freshwater systems (Bunn et al., 1989; France, 1995). Others 

(e.g., Kline et al., 1990; Bilby et al., 1996; Ben-David et al., 1998) have utilized this 

technique to characterize the introduction of marine nutrients into freshwater 

environments. The ultimate goal of this technique is to determine the proportional 

contributions of multiple sources to a mixture. Linear mixing models are used for this 

purpose to examine two source, single isotope, or three source, dual isotope signatures 

(Phillips, 2(X)1; Phillips and Gregg, 2001).

The objective of this study was to evaluate the role of seasonal changes in 

environmental factors that influence flocculation of suspended sediment. This was 

accomplished by measuring the suite of environmental (e.g., temperature, pH, 

conductivity, shear stress) and biochemical factors (e.g., dissolved organic carbon 

(DOC), colour, stable isotopes, bacterial content) over the period of one open water 

season in a productive salmon-bearing stream. The sampling strategy was intended to 

capture important hydrologie and biologic events within the study system, where samples 

were collected (1) for springmelt and baseflow to allow for comparison between 

instances of minimum and maximum suspended material, (2) for summer rain events to 

incorporate resuspension of material from the bed gravels, and (3) for periods when 

different organic sources were evident (e.g., spawning salmon). Trends and correlations 

between the regulatory factors and the sediment population characteristics are assessed 

here to determine the degree of contribution each may have to the process of flocculation
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at different times of the year. The overall goal is to gain information to explain the 

potential impacts of land use changes and changing contributions of both inorganic and 

organic material on sediment structure and settling properties (i.e., transport, settling, and 

storage), which has consequences for aquatic habitat.

4.2 Materials and Methods

4.2.1 Study Area

The study region (Figure 4.1) includes watersheds located in the Hogem Range of the 

Omenica Mountains in the Takla Lake region of northern British Columbia, an area under 

examination by partners in the Stuart-Takla Fish/Forestry Interaction Study (S'l'FFlS). 

This project was undertaken in the early 1990s with cooperation between government 

agencies (e.g.. Department of Fisheries and Oceans (DFO) and the Ministries of Forest 

(MOF) and Water, Land, and Air Protection (MWLAP)) and academic institutions (e.g., 

the Universities of British Columbia (UBC) and Northern British Columbia (UNBC) and 

Simon Fraser University (SFU)), local First Nations communities (Tl'AzfEn Nation), and 

forestry companies (Canadian Forest Products (Canfor)) to obtain information regarding 

the relationship between forestry activities and the productivity of aquatic ecosystems in 

B.C.'s central interior. Considerable research on this topic has occurred in coastal 

systems of British Columbia; however, due to significant differences in biogeoclimatic 

characteristics compared to the central interior, this information is generally not 

transferable. This is especially true for sediment research, in that basin traits (e.g., slope), 

surficial geology, vegetation, and precipitation are some of the factors that play a role in
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regulating the magnitude and tuning of sediment delivery through systems, and these 

differ significantly on a regional scale.

HARVESTED FALL 1937

Foffar Fraser
River

Van Decar
(Rosette)

Trembieur
Lake

HARVESTED WINTER 96/97

5 km Baptiste

Figure 4.1. Map of the Stuart-Takla region of northern British Columbia. Note O'Ne-eil 
watershed in the center.

Part of the most northern extent of the Fraser River watershed (55°N, 125°50'W), 

O'Ne-eil (also known as Kynoch) basin features a range in relief from 700-1980 m 

(Petticrew, 1996). Surficial material is comprised of glacial tills and lacustrine clays at 

higher elevation (Macdonald et al., 1992) and Gne-grained glaciolacustrine sediment in 

the lowland areas (Ryder, 1995). Encompassed within the Engelmann Spmce Sub-alpine 

Fir (ESSF) biogeoclimatic zone, the basin is relatively small (-  75 km^), but O'Ne-eil 

Creek is an important Gsh-beaiing stream, where annual migration of salmon is well 

documented (Petticrew, 1996). The mainstem channel of O'Ne-eil Creek is 

approximately 20 km in length and 4 to 5 m wide at the mouth (Petticrew, 1996). The 

study reach exhibits favourable spawning habitat with appropriate substrate size
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distribution in low gradient (0.5 - 2 %) riffles (Petticrew, 1996). Little anthropogenic 

disturbance has occurred within this watershed specifically, however, a forest service 

road enables access to the lower reaches. One site in O'Ne-ed Creek, downstream of the 

forestry access bridge and approximately 1500m upstream of the mouth, was sampled 

during the period of May 18 to August 21, 2001

One sampling site was deemed adequate for resolving temporal patterns in 

suspended sediment structure, while the interpolation of spatial trends was considered 

beyond the scope of this study. However, the identification of temporal trends should 

enable translation of information to other watersheds at similar spatial scales (i.e., 

biogeoclimatic zones and reach position downstream from the headwaters), as well as 

provide baseline data for O'Ne-eil Creek watershed prior to anthropogenic disturbances 

to allow prediction and comparison for future conditions.

4.2.2 Study Approach

The intent of this study is to examine the seasonal interaction between environmental 

conditions and flocculation. More speciGcaUy, the hypothesis is that the variability in 

size and shape of floes is regulated by the organic component. The assumption is that in 

temperate forest areas such as the study region, the quality and quantity of organic 

material incorporated into the stream system varies over the season depending on source 

types available, hydrologie regime, and conditions for biological processing. Organic 

matter of good quality, and/or high concentrations, may signiûcantly increase the size of 

floes, resulting in faster settling rates. This may be attributed to two factors: (1) 

flocculation is directly facilitated by the organic matter, or macromolecules comprising
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organic material; and/or (2) organic matter provides the nutrients and habitat for bacteria, 

which exude polymeric fibrils that bind particles together (Droppo et al., 1997). The 

latter is dependent on organic matter as a nutritional resource, and thus the bacterial 

concentration should provide an index for organic matter quality (Koetsier et al., 1997). 

Other factors influencing flocculation vary temporally as well, thus alternate hypotheses 

could be that floe size is regulated by (a) shear stress or (b) water chemistry parameters 

such as conductivity or pH.

Hydrological conditions regulate the presence and distribution of biological 

organisms (e.g., periphyton and invertebrates) (Allan, 1995), the transport and transfer of 

solutes (e.g., ions and nutrients) (Webster and Ehrman, 1996), and the provenance and 

movement of organic material (Minshall et al., 1985). Water temperature, which is 

intimately linked to air temperature, varies both seasonally and diumally, as well as 

among locations due to regional differences in climate, elevation, extent of streamside 

vegetation, and relative importance of groundwater inputs (Allan, 1995). Temperature is 

of significant biological importance in that it regulates metabolic rates of organisms, fluid 

dynamics, and levels of dissolved gases (Hauer and HiD, 1996).

Of utmost importance to transport of organic sources is the seasonal variation of 

organic matter supply to streams. Not only do hydrological factors affect the relative 

proportion of various sources of organic material, but the seasonal availability of source 

types does as well. As floodplains are inundated during overbank flow periods, stored 

organic matter may enter the stream. This occurs during episodic events such as spring 

melt (i.e., freshet) and rain events. Rain, and associated wind, has an added impact in 

that aUochthonous (generated from the watershed) material may get blown into the
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stream from hpaiian areas. Autochthonous (generated within the stream) sources are 

linked to several environmental factors, including temperature, light intensity, available 

nutrients, and discharge, where favourable conditions are more likely to occur during low 

flow periods. AUochthonous sources often follow seasonal lifecycles, where leaves and 

needles are shed in autumn, and new growth does not occur again until spring. A third 

source of organic matter exists in many watersheds that are linked to marine 

environments. Anadromous salmon, migrating upstream to spawn, are known to 

introduce important marine-derived nutrients to freshwater systems (Bilby et al., 1996). 

In general, organic matter contribution to streams is approximately harmonized with the 

seasonality of systems.

Johnston et al. (1998) present the seasonal variation in the source organic 

contributions to Stuart-Takla streams for 1996. Riparian litter inputs were noted for the 

period between July and October, varying between 10 and 3(X) g m"  ̂in dry weight, with 

the m^ority being of deciduous rather than coniferous origin. The magnitude of 

vegetation introduced to the streams decreased logarithmically with distance from stream 

banks, while the mean areal loadings decreased as channel width increased. In-stream 

productivity in the form of benthic algal biomass increased in late summer in response to 

introduction of salmon carcass derived nutrients.

The cycle of spawning salmon is that female fish cut spawning redds by digging 

up gravels, simultaneously leaving a depression for deposition of spawning products and 

cleaning out fine material stored in interstitial spaces that may hinder oxygen transfer for 

eggs (Figure 4.2; Soulsby et al., 2(X)1). After spawning, this action is used to bury eggs. 

Shortly thereafter (days) both the female and male die and the remaining carcasses are
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left to rot in-stream. Johnston et al. (1998) report that the organic inputs from such 

carcasses (15 to 200 g m'^), exceeded those of riparian leaf litter in Stuart-Takla streams 

exhibiting high densities of spawning salmon.

a. Redd (Nest) excavation c. Egg burial

Figure 4.2 Spawning activities of salmon, a. Females dig out the area to prepare of egg 
deposition, b. Females deposit eggs and males subsequently fertilize, c. The fertilized 
eggs are buried for overwintering. From Soulsby et al. (2001).

With this in mind, it is easy to see the potential impact of seasonal variation of the 

various environmental factors discussed here on flocculation. If physical, chemical, and 

biological factors interact in the process of flocculation, and they vary temporally, then so 

potentially should floe structure. In fact, Petticrew and Aroeena (in press) identdied 

seasonal variation in particle structure and settling behaviour, which they speculated was 

due to changing organic matter contributions and composition as well as physical 

resuspension of gravel-stored material by spawners. On a smaller temporal scale, 

Petticrew and Droppo (2000) observed a difference in floe morphology between rising 

and falling limbs of the freshet peak on a springmelt hydrograph. Thus, because the 

hydrologie conditions were similar for both time periods sampled, there must be 

associated differences in the suite of factors that influence sediment morphology 

occurring between these two instances or, alternatively, the source organic material could 

be the differentiating factor.

In the specific system where this study took place, the premise is that the relative 

importance of organic material of differing quality changes with time. Of particular
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interest is the pulse of organic matter introduced after the salmon-spawning period, where 

a large amount of nutrients is made available to microbes from post-spawn carcasses. In 

order to evaluate the seasonal changes in the suite of factors that influence flocculation, 

samples were collected over a range of watershed events to incorporate seasonal 

hydrologie and biologic changes. These were partitioned into five discrete response 

types, which are (Figure 4.3): (1) springmelt during the period of rising water levels; (2) 

summer low flow conditions, but isolated from rain events; (3) rain events; (4) the period 

during active spawning, which includes live and dead fish; and (5) post-spawn, where no 

actively spawning or live salmon were present, but carcasses were stiU evident
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Figure 4.3 Schematic of sampling approach during the 2001 open water season. Points 
represent sampling times, shaded areas depict the four m ^or event types of rising limb of 
springmelt, low flow after springmelt, and the active spawning period and post-spawn 
(i.e., no live/spawning salmon). Arrows designate sampled rain events. Note that June
25''  ̂sampling occurred prior to the onset of precipitation.

in the channel. Springmelt is a period characterized by high discharge, and this is when 

the first flushed material stored in-channel and on the floodplain occurs. Less suspended
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load is moved during the baseflow levels of the low flow period, where the source 

material is predominantly in-stream. Rain events are characterized by higher than 

baseflow discharge, where suspended sediment concentrations are expected to increase, 

and comprise a combination of in-stream and terrestrial inputs. Rain events occur during 

baseflow, salmon spawn, and post-spawn, so they reflect the combined effects of 

resuspension of gravel-stored material that occurs during storms and the predominant 

source of organic matter for the particular sampling date. The period of active salmon 

spawn combines the introduction of anadromous organics and biological disturbance of 

gravels. This organic matter is expected to remain within the system post-spawn, but, 

because live fish are no longer present, disturbance of gravels is minimal. Seasonal 

patterns of fluid properties, water chemistry, and organic matter were identified using this 

approach.

Chapter 3 indicates that the hydrologie regime differs greatly between these 

periods (i.e., maximum versus minimum discharge for springmelt and late summer, 

respectively), and it is presumed that other factors affecting flocculation (e.g., organic 

matter source and supply) do as well. The salmon-spawning period is of particular 

interest because marine-derived organic material is supplied to freshwater systems 

(Garman and Macko, 1998) from deposition of eggs and post-reproductive carcasses 

(Kline et al., 1994). More speciAcaHy, Kline et al. (1990) and Bilby et al. (1996) state 

that salmonid fishes contribute significantly to freshwater nitrogen budgets during this 

time. Springmelt was selected based on the premise that organic material stored within 

the system over the winter is introduced to streams during this time. Though it has been 

determined that organic matter influences flocculation (Petticrew and Biickert, 1998;
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Petticrew and Droppo, 2000), the nature and extent of this eA"ect is presently unclear. 

Correlational analysis was used to determine the significant factors that may cause the 

seasonal variation in particle structure seen in the previous chapter.

4.1.1 Sample Collection and Processing

4.1.1.1 Shear Velocity and Stress

Velocity profiles were used to estimate shear stresses acting on floes. Velocity 

measurements were taken at equal intervals of 5 or 10 cm, depending on the water depth 

at sampling time, from bed to surface using a Swoffer current meter (Model 2100). This 

instrument measures depth to a precision of ±0.05m and velocity to ±0.0 Im s '\  The 

graphical representation of the relationship of velocity versus water depth was derived 

and the horizontal axis (water depth) was logarithmically transformed. The shear 

velocity (V*; m s '^  along a hydraulically rough streambed was calculated from the slope 

(h) of the regression line fit to the data points as per Gordon et al. (1992), expressed as:

V, = 6 / 5.75 4.1

Bottom shear stress (to; N m'^) is directly proportional to the square of the shear velocity 

and the density of the water (p; kg m'^), which is dependent on temperature (Nowell and 

Jumars, 1984):

To = p (V*)  ̂ 4.2

Only one proAle per sample period was used to determine shear stresses exerted on floes; 

however, due to fluid turbulence, considerable variation was encountered in the current 

velocity for the peiiod(s) of data collection. For depth each interval, Gve velocity values 

were measured and the average was used to construct the velocity probles. This
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technique is limited by water depth (D), where it is difGcult to obtain a profile comprising 

greater than two velocity measurements when the propeller diameter exceeds D/3. The 

water level at the sampling point never fell below this critical depth.

4.1.1.2 Temperature, Conductivity, and pH

Both air and water temperature was monitored using Onset Stowaway Tidbit loggers 

measuring hourly intervals. Two loggers were fastened to the streambed at the sampling 

point (approximately the stream center), protected with steel tube shields, and one was 

suspended approximately three meters above the stream to provide air temperature 

measurements. These instruments operate in a range of -5  to 37 °C, with a resolution of 

0.15 °C. Logger precision is dictated by the resolution and calibration ensured accuracy. 

Conductivity (i.e., ionic concentration) was measured using a Hach CO150 meter, where 

the probe was calibrated with a standard (1413 pS cm'^ at 25 °C, Hanna Instruments) 

prior to sampling. Measurements are facilitated by immersing a probe interfaced to a 

hand-held monitor into the water and waiting for the digital readout to stabilize. Because 

conductivity depends on temperature, this instrument is equipped with a built-in 

temperature probe. This instrument is precise to ±0.1 °C and ±lpS for temperature and 

conductivity, respectively. A Canlab portable pH meter, precise to ±0.01, was used to 

measure pH. This instrument is utilized similarly to the conductivity meter in that it must 

be calibrated at pH 4 and 7 to a particular temperature beforehand, and equilibration must 

be reached before the value is accurately determined. Only one measurement of 

conductivity and pH was necessary per sampling day, as large fluctuations did not occur 

on small time scales.
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4.1.1.3 Chlorophyll a, Colour, and Dissolved Organic Carbon

Water was removed from a central sampling point within O'Ne-eil Creek as per Section

3.2.4.1 using 1 L wide-mouth Nalgene bottles for triplicate samples of (1) chlorophyll a 

extraction, (2) colour analysis, and (3) dissolved organic carbon (DOC). The first 

analysis required Altration through precombusted/weighed glass fibre filters (GF/F) with 

an operational pore size of 0.7 pm. Filters were retained in sterilized 50 mL centrifuge 

tubes covered with aluminum foil to reduce light exposure. Extraction in 30 mL of 90% 

buHiered (MgCOg) acetone occurred over a 24-hour period at 4 °C after which absorbance 

values were read using a spectrophotometer at 664,665, and 750 nm, before and after 

acidification with 0.1 N HCl, in order to determine the amount of chlorophyll a and 

phaeophytin a per volume filtered. Absorbance measurements were converted to 

pigment values as per Eaton et al. (1995):

' sampleChlorophyll a  (mg m'^) = 26.7 (664b -  665») x Vea / Vsampie x L 4.3

Phaeophytin a (mg m" )̂ = 26.7 (1.7(665») -  664y) x Vext / x L 4.4 

where 664y and 665» are the optical densities of 90% acetone extract before and after 

acidification, respectively, Vgxt is the volume of 90% acetone used (L), is the 

volume of the sample filtered (m^), and L is the light path (cm), which is effectively the 

width of the cuvette.

Water filtered through Nylaflo (Gelman) nylon membrane filters of 0.45 pm pore 

size was dispensed into 125 mL amber Redi-pak Boston Round narrow-mouthed bottles 

and sealed with Teflon-lined polypropylene caps for later analysis of dissolved organic 

carbon (DOC) using a Total Organic Carbon Analyzer (Shimadzu TOC5000-A) at
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Okanagan University College, Freshwater Laboratory located in Kelowna, British 

Columbia. Samples were preserved by a common method of 2N HCl at 200 pL to 40 mL 

of sample (Curtis, J., pers. comm.). Prior to acidibcation, a small aliquot of each filtered 

sample was scanned at the UNBC laboratory to diberentiate colour using a UV/VIS 

spectrophotometer (Perkin Elmer). Samples were stored at 4 °C in the dark during 

transport. The absorption spectra for the range of 290 to 800 nm wavelengths were 

obtained. Green and Blough (1994) state that light absorption by organic material, in 

both marine and aquatic environments, decreases exponentially for near UV and visible 

wavelengths and fits this mathematical relationship:

a(X) = u(r) exp [S (r - X)] 4.5

where a(X) and a(r) are absorption coefficients at wavelength A, and reference wavelength 

r, and a(A) is found from

a(A) = 2.303 A(A)/Z 4.6

where A(A) is the measured absorbance and Z is the cell pathlength (m). In general, the 

samples collected conformed to these functions. Those that did not were not analyzed

further. Each spectrum was then plotted as ln(u) versus A and S was determined to be the

slope of the hnear regression resulting from the data from 290 nm to the wavelength at 

which the absorbance dropped off to zero. The E^/Eg (absorbance values at 465 and 665 

nm) ratios were extracted from these spectra. This ratio has been used to characterize the 

composition of acidic material in soils, where higher values indicate fulvic material and 

lower ratios suggest humic material (Stevenson, 1994). Separate measurements were 

recorded for the absorbance coefficient at 320 nm (agio) as per Williamson et al. (1999).
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This value indicates the boundary between UV-B and UV-A radiation and may be used 

as a measure of coloured dissolved organic carbon (CDOC) in natural waters.

4.2.3.4 Stable Isotopes of Carbon and Nitrogen

Stable isotope mass spectrometry (UBC, Stable Isotope Laboratory) was used to 

characterize seasonal sources of organic matter. The isotope ratios for both organic tissue 

and suspended sediment filters were measured and expressed relative to conventional 

standards as 5 values delined as:

8X (%o) = (R:a / Rstd -1 ) X 1000 4.7

where X is ^^C or Rg, is the isotopic ratio of the sample (either or

and Rgtd is the isotopic ratio of the standard (PeeDee Belemnite for carbon and air for 

nitrogen). The technique enables assessment of seasonal distribution of organic matter 

sources by comparing isotopic ratios from source material with those from suspended 

sediment samples. Carbon and nitrogen content was measured prior to stable isotopes 

and C:N ratios were calculated from the resulting values. This ratio is often used to 

estimate sources for organic matter because autochthonous material exhibits much lower 

values (< 15) than allochthonous (Owen et al., 1999).

Tissue from terrestrial vegetation (e.g., spruce needles and birch leaves), in- 

stream periphyton and algae, and salmon flesh was collected and stored in 1.2 mL 

centrifuge tubes and freeze-dried. Isotopes of carbon and nitrogen, as well as percentages 

of each, were determined. It should be noted that algae and periphyton are separated here 

even though the term aZgoa is typically used to characterize both. In fact,

periphyton (or bioGim) is deGned by Steinman and MulhoGand (1996) as a complex
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assemblage of algae, bacteria, fungi, and meiofauna attached to substrata within a 

polysaccharide matrix. The algae collected for this study was visually distinguishable 

from periphyton. As well, it was necessary to 'scrape' periphyton from substrates, while 

algae was not readily attached and was much easier to collect. Then, water samples 

collected as in the previous section were Altered onto pre-combusted and weighed glass 

fibre filters, which were freeze-dried and analyzed as per the tissue samples. Seasonal 

trends were assessed using both carbon and nitrogen isotopes and ratios of percentage 

carbon and nitrogen for these filter samples.

A dual isotope (CJ4), three-endmember (algae, salmon, and terrestrial vegetation) 

mixing model based on mass balance equations (Phillips and Gregg, 2001) was used to 

deGne these trends more quantitatively, and to examine relationships (e.g.. Figure 4.4)
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Figure 4.4 Hypothetical partitioning of source contributions (terrestrial vegetation, algae, 
and salmon Gesh) to stable isotope mixtures denved Gom sediment Glter data.
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more conclusively. The spreadsheet used to determine source proportions, variances, 

standard errors, and confidence intervals can be accessed at

http://www.epa.gov/wed/pages/models.htm. Figure 4.4 shows a hypothetical partitioning 

of the three source types used for this study, terrestrial vegetation, algae, and salmon, 

with the resulting mixture falling within the triangle formed from the 3 points. This 

mixture represents the stable isotopes of the Gltered sediment, and its position within the 

triangle would vary seasonally due to differences in proportional source contributions.

4.2.3.5 Bacterial Content

Smaller amber (60 mL capacity) bottles were used for unGltered water samples 

designated for bacterial analysis. Because it was not possible to do the actual counts in 

the Beld due to availability and expense of required equipment, the samples were 6xed 

using a solution of 10% (w/v) phosphate buffered glutaraldehyde to a ratio of 1:9 to give 

a final fixative volume of 1%. All bottles were stored at 4 °C in the dark. The acridine 

orange direct count method was used to assess bacterial concentration in a similar manner 

as Droppo and Ongley (1994). In order to optimize visibility of bacterial cells, a very 

small amount of water (1.26 mL) was Altered onto 25 mm diameter polycarbonate Alters 

(Millipore). The volume was determined by tnal and error in order to obtain an optimal 

10 to 30 bactenal cells per Aeld of view as suggested by Kirchman et al. (1982). The 

Alters were pre-stained with Sudan black B dissolved in 100% ethanol to a Anal raAo, 

after düuüon to 50%, of 1:15,000 as per Zimmermann et al. (1978). The sample volume 

Altered was diluted with Alter sterilized disAUed water (0.2 |im pore size) to a total 

Altered volume of 4 mL, including acndine orange stain, and allowed to stain for 3 to 4
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minutes. After staining, low pressure was applied to gently pull the stained volume 

through the filter without causing cell damage. The prepared filters were counted under a 

BX-50 (Olympus) fluorescing microscope at lOOOx magnification. In order to control for 

contamination, the reagents were filtered through 0.2 |im filters, stained, and analyzed in 

the same manner as the samples. Sample concentrations were standardized by these 

blanks. Concentration of cells per volume was calculated as per (Kepner and Pratt,

1994):

Bacteria (cells/mL) = (N x At) / (d x Vf x G x Ag) 4.8

where N is the number of cells counted. At is the effective area of the filter (mm^), Ag is 

the area of the counting field of view (mm^), Vf is the volume of the diluted sample 

filtered (mL), d is the dilution factor, and G is the number of Gelds of view examined.

Discrimination between sediment-attached and free-Goating populations followed 

the methods prescribed by Droppo and Ongley (1994). First, 1.0 pm pore size Alters 

were used to capture the sediment-bound bacterial cells. The staining procedure 

described above was then used. Next, a second homogenous subsample was filtered 

without dilution and stain. The Gltrate was retained, stained, and Altered through a 0.1 

pm black Alter. Researchers (e.g., Kirchman and Mitchell, 1982) have noted that the 

raAo may be erroneous as free AoaAng bactena may setAe on the sediment during the Arst 

AltraAon, which will prevent these cells from passing through the Alter, and bactena may 

be attached to the underside of sediment, no longer visible to be counted. Filters were 

Aushed twice with 1 mL of Alter sterilized disAlled water after AltraAon (Kirchman and 

Mitchell, 1982) to reduce the former error. The latter effect was minimized by doubling 

the counted number of bactenal cells to account for the probability of attachment to the
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underside of particles (Droppo and Ongley, 1994). Differentiating between the two 

populations should provide a measurement of the potential versus the actual bacterial 

influence on flocculation, where the attached portion will be evaluated with respect to 

floe size.

4.2 Results

4.2.1 Shear Velocity and Stress

The sample site was exposed to dramatic changes in the discharge as shown in Chapter 3. 

This is further expressed as considerable variation in shear velocity over the season. The 

highest shear velocity (0.24 m s'^) occurred on May 29^ during the largest flow period

that was measured (~ 10.4 m^ s'^), while August 19™ was characterized by the lowest 

shear velocity of about 0.14 m s '\  Figure 4.5 shows the shear velocities for the season.

, t h  .

0.5

D ischarge 
Precipitation 
S h e a r  Velocity

20  - -  0.4

-  0.3

10 -

.go.
-  0.2

L.I l iLj  U4

0.0

</)
£

CD
>

I
5

Figure 4.5 Shear velocity values derived from vertical velocity profiles. Data are shown 
in conjunction with discharge and precipitation curves to facilitate interpretation.
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The corresponding range of shear stress was from 0.6 to 60.2 N m'^ with a mean of about

10.2 ± 3.0 N m'^. Shear stress follows the pattern of discharge, where higher values exist 

during hydrograph peaks. Increases in shear stress are also apparent after rain events 

particularly on the August 2°  ̂and 3"̂  events, which is consistent with increased discharge 

values. In fact, the data grouped by event type and logged for normality are signiGcantly 

different in terms of means. An ANOVA indicates that the spawn and post-spawn 

periods, with the lowest discharge of all event types, are different than the periods with 

faster flows. A correlation between shear stress and discharge is appropriate due to the 

mutual reliance on velocity in their derivation.

4.2.2 Temperature, Conductivity, and pH

Seasonal patterns for air and water temperature are seen (Figure 4.6). Both temperature 

curves are presented as daily averages. Diurnal variation also exists but is not presented 

here because sampling occurred at similar times of day over the entire season. Spring air 

temperature hovered at or below 10 °C, while maximum summer temperatures (high 20s) 

occurred in early August. Spring water temperature was approximately 3 °C, while peak 

summer temperatures of about 14 °C were measured in mid-August. Patterns in water 

temperature reflect air temperature fluctuations as well as water sources. For example, 

the spring period exhibits a larger dil^erence between air and water temperatures because 

of a greater supply of water derived from snow and ice combined with a lower influx of 

solar radiation. However, the general patterns are comparable in terms of large peaks and 

dips, which negates groundwater influence on water temperature.
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Conductivity and pH of water followed no obvious pattern of seasonality, but they 

were nonetheless included in correlational analysis (Section 4.3.6). Conductivity ranged 

from 41 to 154 with a mean of 69.9 ± 5.2 pS. pH values varied from 7.05 to 7.58 and 

averaged 7.25 ± 0.04.
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Figure 4.6 Air and water temperature displayed as daily averages.

4.2.3 Chlorophyll a. Colour, and Dissolved Organic Carbon

Chlorophyll a data show little variation between sample dates over the season; however, 

some trends and differences were found upon statistical analysis. A pattern is seen where 

slightly higher values were measured for the springmelt period as compared to all other 

times of the year. Table 4.1 lists chlorophyll o values as grouped by event type. Analysis 

of variance for the log-normalized transformation resulted in a positive main effects 

outcome with Fo.0 5.4 .36 = 6.4, p < 0.001. Pair-wise comparison of specific events (Tukey
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Honest Significant Difference for unequal N (Spj otvoll/Stoline test)) indicated that the 

variation was due to the higher chlorophyll a values found during springmelt, as this 

event type differed from all others except the post-spawn at a  = 0.05. Variation between 

the remaining four event types was not significant aside from the low flow period being 

lower than the post-spawn. In general, chlorophyll a  fluctuated with discharge aside 

from the apparent increase after salmon die-off. Phaeophytin a is not reported, but were 

found to be approximately zero for averages of data grouped by event type.

Table 4.1. Chlorophyll a  and colour indices as averaged over watershed event type.

Event Type Chlo
(mgm^

3320 (in ) DOC
(mg CL')

3320 • DOC S(mn^) E /̂Eg

Springmelt 0.76(0.10) 0.127 9.29 (0.39) 0.014 -0.014 29.7 (5.7)
Low Flow 0.33 (0.07) 0.070 4.77 (0.25) 0.015 -0.016 24.2 (2.5)
Rain 0.46 (0.09) 0.052 3.55(0.14) 0.014 -0.017 14.7 (3.6)
Spawn 0.37 (0.09) 0.037 2.85 (0.07) 0.013 -0.016 18.0 (3.8)
Post-spawn 0.47 (0.04) 0.034 3.80 (0.72) 0.010 -0.018 12.2 (1.0)

Colour was examined using three different methods. First, the spectra were 

graphed as the natural log of absorbance versus wavelength and the slopes of the 

regression curves were recorded for comparison between spectra. The slope parameter 

(S, nm^) provides a measure of how rapidly the absorption decreases with increasing 

wavelength (Green and Blough, 1994). Figure 4.7 shows examples of spectra taken from 

each event type, where the slopes of the spectra are similar, while the intercepts vary 

considerably. Table 4.1 lists S values averaged for each event type. A trend is seen of 

decreasing slope over the season (-0.014 to -0.018), and a Kruskal-WaUis non-parametric 

ANOVA test indicates that significant differences between event types are present
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(Ho.0 5 ,4 ^  = 13.4, p < 0.01) and probably attributed mainly to variation between 

springmelt and post-spawn periods.

8c
(0
-2
8
<

Spring (May 24)
Low Flow (June 24)
Rain (July 7)
Spawn (August 1 ) 
Post-spawn (August 19)

350 450 600 650400 500 550300

Wavelength (nm)
Figure 4.7 Example colour spectra for each event type in the form of In(absorbance) for 
wavelengths from 290 nm to the wavelength where absorbance was measured as zero. 
The slopes are the same, but the intercepts vary. Specific sample dates are provided in
parentheses.

Second, absorbance coefficients for the 320 wavelength (agzo) were measured. 

This index is the established boundary between UV-B and UV-A radiation, and, for that 

purpose, Williamson et al. (1999) use asio as a metric of coloured dissolved organic 

carbon (CDOC) in natural waters. Table 4.1 lists the averaged agzo values for each event 

type. An apparent pattern of decreasing absorbance with discharge exists. A Kruskal- 

Wallis test found this trend to be significant (Ho.0 5 ,4,24 = 19.4, p < 0.001). Wühamson et 

al. (1999) also examined the relationship between a32o and DOC. While agzo and DOC 

characterize the quality and quantity, respectively, of organic carbon sources, DOC-
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specific absorbance (agioiDOC), listed in Table 4.1, enables comparison of the two 

between water samples. Examination of the total ejects of an ANOVA yields no 

signiGcant differences.

Third, the E^/Eg ratio was calculated for all measured absorbance spectra. 

Variation between replicates was so large that seasonal patterns could not be visually 

determined. Grouping the data by event type revealed a general decrease over the season, 

where springmelt exhibited the highest averaged values (29.7 ± 5.4), the lowest were 

found during post-spawn (12.2 ± 1.0). This trend was not signiGcantly distinguishable 

using a Kruskal-WaUis test (p > 0.1).

Gravimetric determination of organic matter content (i.e., SOM) is often 

insensitive to characterize organic content in small quantities of sediment. Nelson and 

Sommers (1996) suggest determination of organic carbon as a more accurate method of 

quantifying organic matter in soils. Thus, the combination of particulate organic carbon 

(POC) and DOC values should provide a good index of the quantity of organic matter in 

the water column. Figure 4.8 displays the average POC and DOC values of triplicate 

samples for each sampling day including standard error of the mean. POC concentrations 

were obtained from Alters prior to mass spectrometry for stable isotope analysis. The 

seasonal POC pattern is very similar to the one between discharge and SPM, with 

deviation from the discharge curve during salmon spawn. DOC follows the discharge 

pattern more closely than POC. The seasonal DOC pattern is emphasized as averaged by 

event type (Table 4.1). Kruskal-WaUis (a  = 0.05) non-parametric tests indicate that 

seasonal patterns for POC and DOC are signiGcant.
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Figure 4.8 Seasonal patterns of particulate and dissolved organic carbon (POC and DOC) 
concentrations of the water column in relation to discharge. Error bars are ± 1 SE.

4.3.4 Stable Isotopes of Carbon and Nitrogen

While examining chlorophyll a, colour, and dissolved organic carbon quantitatively 

characterizes the organic matter, stable isotope analysis allows the identification of the 

specific source material. Initially, the proportion of carbon and nitrogen comprising the 

suspended sediment fraction was determined. Figure 4.9 shows the seasonal pattern of 

the ratio of carbon to nitrogen. The pattern in the C:N ratio shows high values occurring 

during the spring period and remaining fairly constant until the salmon are introduced to 

the reach. The C:N ratio decreases while the salmon spawn and carcasses are present in- 

stream. Figure 4.10 provides a breakdown of the C:N ratios for tissue types sampled 

within and adjacent to O'Ne-eil Creek over the season. Values for tissue samples taken 

several times over the season of allochthonous, or terrestriaUy-derived, vegetation
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Figure 4.9 Seasonal trend in C:N ratio of suspended sediment. Dotted lines indicate 
active spawning start (July 18^) and end (August 15^) dates. Error bars are ± 1 SE.
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Figure 4.10 Averaged C:N ratios for different types of organic material sampled in or 
adjacent to O'Ne-eil Creek. Dotted line separates allochthonous (terrestrially-derived) 
from autochthonous (produced in stream) organic material.
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exhibits C:N ratios greater than 15, ranging from 18.4 ± 1.23 %o for willow leaves and 

41.9 ± 7.42 for spruce needles. Autochthonous organic matter is characterized here by 

ratios <15; the lowest values being for salmon flesh with 3.4 ± 0.07 %o, while periphyton 

and algae ratios are 8.3 ± 1.22 and 9.2 ± 0.21 %o, respectively.

Stable isotope analysis of O'Ne-eil Creek suspended sediment reveals a trend of 

enrichment of the heavier isotope, as shown in Figure 4.11 over the season for both 

carbon and nitrogen, although the latter is much more pronounced. A slight increase in
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Figure 4.11 Seasonal trends for stable isotopes of carbon and nitrogen from suspended 
sediment. The dotted lines designate the salmon spawning period. Error bars are ± 1 SE.

carbon isotope ratio is seen from springmelt to low flow with values of -26.8 ± 0.09 

and -26.6 ± 0.10 %o, respectively. Once salmon enter the reach, the isotopic signal
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increases to -26.1 ± 0.18 %o. The peak of enrichment occurs just prior to the post-spawn 

period, where some salmon are still alive, but earlier returns have already begun to rot in 

.yim. After this point, the isotopic ratio decreases towards a signal more similar to the 

period prior to salmon presence; however, the measured trend ends before the decHne is 

complete, so the grouped average for the post-spawn event shows the highest enrichment 

as compared to all other event types (-25.6 ± 0.07 %o). The nitrogen isotope exhibits a 

similar pattern with enrichment of from springmelt to low flow of 2.02 ± 0.11 to 

2.42 ± 0.09 %c, a steep increase over the active salmon spawning period with a average of 

4.27 ± 0.38 %o, and further enrichment after salmon die-off is complete (5.60 ± 0.18 %o).

The combined effect of the two elements is typically shown as in Figure 4.12, and

6
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Figure 4.12 Stable isotopes for suspended sediment filters as grouped by event type. Bi
directional error bars are ± 1 SE for both variables.
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there is clearly an increasing trend, where springmelt < low flow < rain = spawn < post

spawn. Discharge associated with rain events was sampled over three different event 

types (low flow, spawn, and post-spawn), and the average is approximately equal to that 

of the salmon period due to the linearity of the relationship (Figure 4.12). In fact, linear 

regression was apphed to the semi-logged ungrouped data, and the linear relationship is 

significant with r^ = 0.663 for N = 46 and a  = 0.05.

For modeling purposes, the data derived from the suspended sediment filters were 

compared to the tissue samples, using the dual isotope, three endmember format 

developed by Phillips and Gregg (2001). The results are presented in Table 4.2. The 

results indicate that the predominant source of organic matter to the suspended sediment 

load changed over the season, although the 95% error bars are very large. For the 

springmelt period, the model suggests that aU organic material is derived from terrestrial 

vegetation, while the salmon and algal sources are contributing minimal amounts to the 

suspended sediment supply. Similarly, terrestrial vegetation dominates the low flow 

source organics. A shift begins toward a positive salmon contribution for the rain events 

category, with between 66 and 95% of the proportion remaining terrestrially-derived and 

21 to 34% being of salmon origin. The divergence continues for the active salmon 

spawn, where the suspended sediment samples were composed of anywhere from 56 to 

81% of vegetative tissue, 27 to 38% of salmon flesh, and 0 to 6.1% of algae. The post

spawn period was characterized by an overlap of terrestrial and salmon inputs, 46.0 ± 8.6 

and 46.8 ± 3.7%, respectively, and minimal algal inputs (7.2 ± 5.2%). Periphyton was 

excluded from the model because it utilizes nutrients from the water column (Johnston et 

al., 1998), which complicates modelling because the periphyton isotopic
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Table 4.2 Partitioning of organic matter source contributions to suspended sediment load 
in O'Ne-eil Creek as modeled for the five event types of springmelt, low flow, rain

Mixture
(Sediment)

Terrestrial
Vegetation

Salmon Flesh Algae

Springmelt
5"C [%«] (se) -26.8 (0.06) -28.8 (0.94) -21.0(0.50) -35.3 (0.76)
8'^N [%c] (se) 2.0(0.11) 1.1 (2.68) 10.8 (0.09) 0.5 (0.25)
Sample Size 10 14 4 3
Source proportions [%] 
(se) -  calculated

110.9(20.0) 8.7 (8.8) -19.7 (11.6)

95% Confidence limits 
(%)

68.4-100 0-27.8 0-4.5

Low flow
g"C [%«] (se) -26.6 (0.07) -28.8 (0.94) -21.0 (0.50) -35.3 (0.76)

[%c] (se) 2.4 (0.09) 1.1 (2.68) 10.8 (0.09) 0.5 (0.25)
Sample Size 10 14 4 3
Source proportions [%] 
(se) -  calculated

105.8 (19.0) 12.9 (8.4) -18.6 (11.0)

95% Confidence limits 
(%)

65.3-100 0-31.0 0-4.4

Rain events
6"C [%c] (se) -26.2 (0.11) -28.8 (0.94) -21.0 (0.50) -35.3 (0.76)
8^^ [%«] (se) 3.8(0.31) 1.1 (2.68) 10.8 (0.09) 0.5 (0.25)
Sample Size 10 14 4 3
Source proportions [ % ]  

(se) -  calculated
80.8 (16.5) 27.1 (7.3) -7.9 (9.5)

95% Confidence limits 
(%)

46.6-100 11.8-42.4 0-11.6

Spawn
8"C [%c] (se) -26.2(0.11) -28.8 (0.94) -21.0 (0.50) -35.3 (0.76)
8'^N [%c] (se) 4.3 (0.38) 1.1 (2.68) 10.8 (0.09) 0.5 (0.25)
Sample Size 10 14 4 3
Source proportions [%] 
(se) -  calculated

68.6 (15.7) 32.8 (7.0) -1.4 (9.0)

95% Confidence limits 
(%)

36.2-100 18.3-47.2 0-17.1

Post-spawn
8"C [%«] (se) -25.6 (0.07) -28.8 (0.94) -21.0 (0.50) -35.3 (0.76)
8 '^  [%c] (se) 5.6(0.18) 1.1 (2.68) 10.8 (0.09) 0.5 (0.25)
Sample Size 6 14 4 3
Source proportions [%] 
(se) -  calculated

46.0 (9.5) 46.8(4.1) 7.2 (5.7)

95% Confidence limits 
(%)

26.2-65.8 38.1-55.5 0-18.9

' Note that the model used here limits the total percentage of the three sources types to be 100. This 
explains the presence of negative values to balance those that are > 1 0 0 %.
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signature is then a mixture of the endmembers. Phillips and Gregg (2001) suggest that 

samples from the three source populations should be independent.

4.3.5 Bacterial Content

The sediment-attached bacteria content is high during springmelt, decreases for the lower 

flow period of June, July, and early-August, but then increases again in late August 

during the post-spawn session. Table 4.3 details the numbers averaged 6om  triplicates 

with associated standard error for attached-bacteria. In terms of grouped data, springmelt

Table 4.3 Attached and free-floating bacteria numbers per volume for samples extracted 
from O'Ne-eil Creek over the 2001 field season. Attached numbers are averages of 
triplicates (SE) while free-floating values are reported from individual samples. 
Percentage attached cells are denved from addition of attached and free-floating cell
counts.
Event Type Date Attached Bacteria 

(x 10^ ceUs mL^)
Free-floating 

Bacteria 
(x 10^ cells mL^)

% Attached

Spring
May 24 
May 25 
May 26

6.39 (0.06)
6.57 (0.59)
5.58 (0.53)

2.30 74.0

Low Flow
June 24 
June 26 
July 12

3.49 (0.23) 
3.04(0.13) 
3.24 (0.40)

0.81 79.0

Rain
July? 

August 2 
August 3

3.42(0.16) 
5.57 (0.17) 
3.98 (0.23)

1.23 73.5

Spawn
July 28 
July 31 

August 1

3.60 (0.35) 
2.86 (0.38) 
3.51 (0.30) 1.70 67.4

Post-spawn
August 17 
August 20 
August 21

8.54 (0.45) 
5.05 (0.13) 
5.48 (0.18)

1.81 82.5
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and post-spawn consist of similar concentrations of cells per volume (6.18 ± 0.30 x 10̂  

and 6.36 ± 0.11 x 10  ̂cells m L '\ respectively) with the latter having greater within group 

variation. Low flow (3.26 ± 0.13 x 10  ̂cells mL'^), rain (4.32 ± 0.23 x 10  ̂ceDs mL'^ ), 

and spawn (3.32 ± 0.23 x 10  ̂cells mL'^) periods exhibit similar values. Analysis of 

variance for log-normal data revealed signiGcant differences attributed to this pattern 

(i.e., springmelt and post-spawn differ from all other events, but not each other, while 

low Gow and rain differ from each other, but not spawn).

The same pattern is expressed in Gee-Goating bactenal concentration (Table 4.3), 

although these numbers are always lower than their sediment-attached counterparts. The 

percentage sediment-attached values indicate the dominance of attached cells, as all 

values are much greater than 50%. The lowest percentage occurs on August dunng 

the acGve spawning penod, while August 17^, when no hve salmon are present in the 

stream, exhibits the highest percentage.

4.3.6 CorrelaGonal Analysis

Analysis was undertaken to assess association occurring between variables presented 

here, as well as those presented in the previous chapter, using Spearman Rank 

CorrelaGon. In terms of effecGve parGcle size distnbuGons (EPSD), the variables denved 

from the spectra (D%, Dg ,̂ and D^o) were signiGcanGy correlated with each other, but not 

with any other environmental variables with the excepGon of D5 0  and SPM (r̂  = 0.527, N 

= 15). Other signiGcant outcomes were that discharge and shear stress were signiGcanGy 

associated (r̂  = 0.583, N = 24), as were SPM and SOM with r, = 0.731 for N = 70, and 

SOM with all of DOC, 8 3 2 0 , and agzoiDOC (r, > 0.9). Conversely, Spearman rank

134



correlation analysis was not able to detect association between air and water temperature. 

As listed in Table 4.4, SPM was also correlated positively with pH and DOC-speciGc 

absorbance (a^^:DOC) and negatively with the enrichment of the isotope. SOM 

related positively to pH, DOC, asio, a32o:DOC, and S, but negatively to and 8 ^̂ N. 

Discharge was positively correlated to SPM, SOM, pH, DOC, all colour variables, and 

C:N, but negatively associated with carbon and nitrogen isotopes. Air temperature

Table 4.4 Spearman rank correlation coefficients for aU data collected over the season. 
Italicized values are significant to a  = 0.05, N = 24. Note that Q = discharge and D%, 
Dg4 , and D50 values are from EPSD.

SPM SOM Q AlrT Attached
Bacteria

D9 9 Dw Dso

SPM - 0.737 0.424 -0.301 -0.044 0.297 0.357 0.527

SOM - 0.649 -0.600 0.168 0.093 0.165 0.457

Water T -0.151 -0.404 -0.198 0.338 -0.562 0.242 0.226 0.151

Conductivity 0.280 0.264 -0.050 -0.017 0.795 -0.220 -0.330 -0.104

pH 0.634 0.479 0.559 -0.427 0.226 -0.055 -0.022 0.201

DOC 0.258 0.549 0.979 -0.879 0.124 -0.236 -0.159 0.082

8320 0.385 0.670 0.955 -0.884 0.069 -0.154 -0.049 0.187

a32o‘DOC 0.537 0.778 0.882 -0.785 0.094 -0.025 0.085 0.182

S 0.315 0.650 0.806 -0.737 -0.231 -0.094 0.055 0.180

E4/E 4 0.368 0.192 0.655 -0.455 0.110 0.170 0.214 0.286

C:N 0.049 0.214 0.792 -0.784 -0.289 -0.121 -0.005 0.137

5^C -0.505 -0.576 -0.834 0.736 0.165 0.187 0.093 -0.313
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exhibited the reverse relationship with the same variables, but was not significantly 

related to SPM. And, attached-bacteria was negatively associated with water temperature 

and positively correlated to conductivity.

4.4 Discussion

4.4.1 /n Variables and Particle Structure

The patterns of shear stress and temperature fit with the accepted paradigm of seasonal 

variation. Shear stress correlated well with discharge, which is appropriate considering 

their mutual rehance on velocity in their derivation. Both shear stress and discharge are 

directly proportional to velocity as it is inherent in their calculation (Gordon et al., 1992), 

although shear stress increases with the square of velocity so the rate of increase is much 

less than discharge. The range in shear stress values displayed in Figure 4.5 are large, but 

the m^ority fall in the range of typical values for natural systems stated by Milligan and 

Hül (1998). In terms of the relationship with the effective particle size diameters found 

in chapter 3 (summarized in Table 4.5), shear stresses are higher when floe sizes are 

smaller and vice versa. This pattern corroborates the laboratory findings of Spicer and 

Pratsinis (1996) and Milligan and Hill (1998), who observed an inverse relationship 

between turbulence and maximal floe size, although the range of shear stress was much 

larger for the former study. Other researchers (e.g., Tsai et al., 1987 and Burban et al., 

1989) have reported a similar relationship in natural systems. It appears that increasing 

shear stress in natural systems, where O'Ne-eil Creek is no exception, induces floe 

breakage, which results in more compact aggregates, and continued breakup and
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reformation eventually results in much more stable particle structures (Milligan and Hill, 

1995; Petticrew and Droppo, 2000).

The increasing trend of air and water temperature shown in Figure 4.6 is 

important in that the highest values correspond to the largest diameter floes. Lau (1990) 

and Phillips and Walling (1995) suggest that a positive relationship between temperature 

and floe size occurs due to increased biological activity. In other words, bacterial cells 

could become more active at higher temperatures, producing more floc-binding agents to 

bridge particles together. Conversely, the lowest temperatures in this data set occur in the 

spring, when much smaller particles exist. However, a statistical association was not 

apparent between floe size and temperature. This could simply mean that the resolution 

of particle size was insufficient to detect the relationship and that a more sensitive 

analysis is required. Alternatively, the temperature connection may be secondary to other 

factors, such as the biochemical or electrochemical components.

Conductivity and pH did not follow a detectable seasonal pattern. Traditional 

theory suggests that flocculation in marine systems is predominantly caused by 

electrochemical processes (van Leussen, 1999). However, this factor does not appear to 

hold true for freshwater systems (Droppo and Ongley, 1994) due to the low salt content. 

In fact, contemporary research has identified the importance of sediment-adsorbed 

organic coatings (see van Leussen, 1999) and biological derivatives from microorganisms 

and organic decay (Droppo, 2001) in floe-budding processes. The data here appear to 

conform to the idea that a factor or a suite of factors other than conductivity are more 

important for regulating suspended sediment structure in O'Ne-eil Creek. The minimal
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range in conductivity over the season, and the lack of observable and statistical 

association between conductivity and floe size, emphasizes this point.

Similarly, pH is probably not an important factor for flocculation in the study 

stream. The main role of pH in flocculation is to alter the charge associated with clay and 

organic particles. Particles will exhibit a net negative charge in neutral pH conditions. 

The negative charge causes repulsion between particles and thus inhibition of 

flocculation (Evangelou, 1998). The range of pH measured in O'Ne-eil Creek was 

approximately half a pH unit, and the seasonal overview lacked any identiGable pattern. 

This range and pattern suggest that pH does not change electrostatic conditions 

experienced by suspended sediment particles sufficiently to cause the pattern of floe sizes 

seen in Figure 3.12. This relationship is further complicated by sediment mineralogy 

because the magnitude of charge depends on the type and size of minerals present. 

Mineralogy was not assessed directly in this study, however, based on the size of the 

particles, the observed texture, and the glaciolacustrine origination, it is speculated that 

the inorganic particles measured were comprised mainly of clay. Further, Kranck and 

Milligan (1983) and Kranck et al. (1996) recognize that the 1 to 10 pm slopes extracted 

from absolute particle size distributions (APSD) reveal differences in source material.

The spectral analysis of APSD presented in Figure 3.9A show little variation in source 

slope, which implies that no signiGcant change in source matenal occurred over the 

season. As well, the spectra are similar in terms of slope and mode to those found by 

Petticrew (1996) for the surGcial glaciolacustrine sediment presumed to represent the 

source inorganic material for this system. Thus, the mineralogy of the suspended 

sediment load does not appear to have changed over the season.
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4.4.2 Organic Matter and Particle Structure

Flocculation in freshwater systems is unique compared to marine environments mainly 

due to lower salt concentrations and the difference in organic matter inputs. The current 

belief is that organic matter is an important control on composite particle structure 

(Woodward et al., 2002). The previous chapter revealed the probable importance of 

salmon presence for increasing particle size by influencing SPM and organic matter 

source and supply. Petticrew and Droppo (2000) and Soulsby et al. (2001) recognize the 

role of salmon in resuspending settled particles from the gravels during spawning, which 

should mean that larger particles wQ be observed in the water column compared to low 

flow periods devoid of salmon activity. However, little attention has been paid to the 

relationship between salmon-derived organics and flocculation. Here, several indices of 

organic matter supply and source were measured in order to assess seasonal changes in 

the magnitude and type of organic material existing within O'Ne-eil Creek, and 

determine if such patterns could be related to particle structure. Vannote et al. (1980) 

discusses the concept of temporal adjustments to energy flow in streams due to species 

replacement. They identify the importance of energetic equilibrium in stream systems to 

the overall functioning of the local ecosystem, and suggest that this balance requires a 

seasonal shift in the contributions from different organic sources, namely autochthonous 

versus allochthonous, especially in temperate areas. Evaluating the two general types of 

source material necessitates the use of distinctive techniques.

4.4.2.1 Chlorophyll a
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Chlorophyll a  is measured typically as a surrogate for in-stream or autochthonous 

productivity because it is the most abundant pigment in plants (Steinman and Lamberti,

1996). Here chlorophyll a  was measured in an effort determine the relative contribution 

of in-stream sources to aggregate development compared to terrestrial sources (see next 

section). Essentially, a correlation between the primary productivity pattern and floe size 

may indicate an interaction between in-stream organics and flocculation.

In a general overview of lake productivity, Kalff (2002) recognizes the 

importance of a spring bloom to lake ecosystems due to rising levels of solar radiation 

and water temperature. This period is typically followed by a clear water phase caused 

by algal grazing, although this may not be detectable in oligotrophic or highly eutrophic 

lakes. Then, an increase in aquatic productivity in lakes, and thus chlorophyll a, is 

expected in response to the higher temperatures and longer periods of light exposure 

occurring during the summer months. The seasonal pattern of chlorophyll a  measured in 

O'Ne-eil Creek appears to follow a similar trend. Table 4.1 indicates that the highest 

pigment values were measured during spiingmelt, with a decrease thereafter, and little 

fluctuation through the summer. Post-spawn chlorophyll a was not significantly different 

than springmelt. The chlorophyll a  concentration is also much lower than lakes. This is 

probably because chlorophyll a is regulated by discharge in lode (flowing water) systems 

much more than in lakes.

Although no statistical correlation between discharge and chlorophyll a  was 

found, the availability of aquatic biomass to the water column where samples were 

extracted is likely controlled by water level and flow rate. Two possible mechanisms are 

(1 ) longitudinal patterns of aquatic productivity and (2 ) the inverse relationship between
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discharge and residence time (Reynolds, 1988; Basn and Pick, 1995). The first 

possibility relates to the high chlorophyll a values found during the spiingmelt period. 

Downstream changes in algal biomass occur in a step-wise pattern, where reaches 

exhibiting net growth, net loss, or no change in growth exist throughout the longitudinal 

proEle (Reynolds, 1988). In the spring, algal productivity increases, but so does 

discharge. In O'Ne-eil Creek, organisms that are either rooted to the streambed or 

stationary due to some blockage or still water are probably forcibly entrained in periods 

of high discharge, and/or organisms such as periphyton that are attached to large 

substrates are scoured off of surfaces by the rolling and colliding actions of these 

substrates during mobilization due to high discharge. Both actions will facilitate 

suspension of chlorophyll u-containing tissues, and downstream progression of large 

quantities of biomass should inevitably move through the study reach to be sampled.

Conversely, after this initial flush of spring bloom biomass, the continued flow of 

water in O'Ne-eil Creek likely translates to a short retention period. Basu and Pick 

(1995) acknowledge that the flowing action of rivers probably limits colony growth by 

preventing establishment. Observations made in the study reach support this idea in that 

little periphyton growth could be seen on bed substrates. As well, the relatively higher 

chlorophyll a values found after salmon die-off are likely due to unattached algae 

colonies, such as the ones collected during this time for stable isotope purposes, 

inhabiting slower moving areas (i.e., small pools sheltered by rocks, large woody debris, 

or immersed riparian vegetation) within the study reach. The growth rate of these 

organisms would be enhanced due to the large influx of marine-derived nutrients from
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decomposition of post-reproductive salmon carcasses (Johnston et al., 1998; Wold and 

Hershey, 1999).

Chlorophyll a  does not appear to be associated directly with particle size, as the 

seasonal pattern does not match that of the dimensional characteristics of the EPSD 

shown in Figure 3.12. This implies that the important particle-binding mechanism 

present in O'Ne-ed Creek is independent of pigment-containing organisms (i.e., primary 

aquatic productivity). Colour and stable isotope analysis should corroborate this Gnding, 

and provide greater insight into the problem.

4.4.2.2 Colour

Water colour is widely used to assess the concentration of humic substances in aquatic 

systems. Colour enables characterization of allochthonous organic sources because 

humic substances are of terrestrial origin and autochthonous production contributes little 

to water colour (Meih, 1992). Many different techniques are available to quantify water 

colour, some of which were used in this study. The combination of these variables 

enables reconstruction of the pattern of terrestrial organic matter introduction to O'Ne-eil 

Creek. This parameter was used to establish the seasonal pattern of terrestrially- 

introduced organic matter, and to determine any relationship that may exist between this 

source type and aggregate development.

Green and Blough (1994) sampled and compared inland, coastal, and offshore 

waters. They found a range in S of -0.014 to about -0.030 nm '\ where the lowest values 

were obtained from inland waters, which are much more susceptible to coloured, humic 

substances. As well, the lowest S values were associated with the highest asm values. On
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a different scale, the same pattern is expressed within this data set (Table 4.1). Green and 

Blough (1994) studied spatial variability, while data presented here are an assessment of 

temporal changes. Low S and high agzo values for the spring, as compared to the reverse 

relationship for post-spawn, indicates a decrease in colour, and thus humic substances, 

over time. Both of these indices correlate well with discharge (Table 4.4), which implies 

that the quantity of terrestrial material introduced to the stream decreases due to either (1 ) 

decreased area from which source material is drawn (i.e., higher floodplain dehvery of 

material and flushing of watershed soils in spring), (2 ) settling of terrestrial substances to 

the streambed and floodplain, or (3) flushing of material out of the system. This trend is 

exasperated by the seasonality of riparian vegetation, speciGcaUy the autumnal shedding 

of leaves (Koetsier et al. 1997). Once shed, the leaf litter is typically stored in the 

watershed until spring, when it is then introduced to the stream in one large pulse. 

Examination of the E4/E6 ratio may clarify this point.

According to Stevenson (1994), E4/E6 ratios for humic acids are typically less 

than 5.0, while the range for ftdvic acids is 6.0 to 8.5. The data listed in Table 4.1 for this 

study exceed both these ranges considerably. The reason for this may be discrepancies in 

techniques, where the standard method involves extraction in NaHCOg (Chen et al. 1977) 

and this study measured the values directly from Altered water samples. However, the 

pattern may still be meaningful. The E4/E6 comparison has been used to indicate mean 

residence times (e.g., Baes and Bloom, 1990), where the ratio is inversely proportional to 

mean residence time. The trend seen in Table 4.1 is a general decrease from spring to 

late summer. Two possible interpretations are that (1) high discharge flushes the humic 

material out of the system quickly and organic matter in the stream during low discharge
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remains there longer, and/or (2 ) the sources of organic matter changes over the season. 

Stevenson (1994) states that low ratios denote aromatic constituents, while high values 

indicate more aliphatic structures. Thus, aliphatic-iich compounds probably dominate the 

spring period and a transition toward aromatics occurs over the season.

The indices of agzo, DOC, and their ratio (a32o:DOC) denotes optical quality and 

quantity of organic matter, respectively, and, because of this, probably provides an 

estimate of changing source type. The quantity of organic carbon appears to be regulated 

by discharge in that the source area of organic material is much higher during springmelt 

and so is the DOC concentration (Table 4.1). However, calculating the ratio of agio to 

DOC appears to decrease the difference between event types. This could indicate that, 

although there is more organic material introduced to the stream in the spring, a greater 

contribution of higher optical quality material occurs during the salmon spawn and post

spawn periods, as shown by lower ratios (Table 4.1). A plausible explanation for this is 

that these periods are dominated by different sources of organic matter; terrestriaUy- 

versus salmon-derived. The implications of this are that the nutritional quality of sources 

differs between sampling events. Material that is readily degraded releases nutrients 

more efficiently (Webster et al., 1999), and is said to be of higher quality (not to be 

confused with optical quality). Decomposition of terrestrial vegetation takes 

considerable time, unless facilitated by microorganisms (Webster et al., 1999). Salmon 

decompose relatively quickly, especially in the presence of insect larvae (personal 

observation). Thus, salmon are of higher nutritional quality than terrestrial material, 

which implies that they are able to quickly provide microbial enhancing nutrients (Wold 

and Hershey, 1999) and floc-binding macromolecules.
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4.4.2.3 Stable Isotopes of Carbon and Nitrogen

A potential reason for signiAcantly lower DOC concentrations during the spawn period 

compared to springmelt could be that salmon exhibit a much lower C:N ratio than do 

plants. In other words, although there is a considerable amount of organic material 

available in the stream during the spawning process, the carbon content is much less than 

spring terrestrial inputs. The seasonal signal of C:N from suspended sediment Glters 

shows that the water column reflects the seasonal change in organic matter type. Figure 

4.9 displays the transitional decrease in C:N ratio caused by salmon presence within the 

study reach from a ratio greater than 15 to one less than 15. Figure 4.10 emphasizes the 

different C:N ratios for terrestrial- versus aquatic-derived organic matter. C:N ratios of 

autochthonous (i.e., in-stream productivity) are generally much lower than those of 

allochthonous (i.e., terrestrially-derived) materials (Owen et al., 1999). The data from 

this study conGrm this as terrestrial sources for O'Ne-eil Creek are characterized by 

ratios greater than 15, whereas the in-stream supply falls below 15. Thus, it appears that 

the suspended sediment load adopts an elemental signal related to changing type of 

source material. And, although, the ratio does not decrease as far as to match the 

measured ratio for salmon flesh, the presence of salmon detritus is detectable in the 

sediment load.

Stable isotopes provide even more specific information for characterizing organic 

matter sources. Di^erent types of organic tissue exhibit distinctly di^erent isotopic 

signals, which enables differentiation between samples and even tracing of trophic 

pathways through systems (Peterson and Fry, 1987). The data presented in Figure 4.10 

indicates httle temporal variation in (-27 to -26 %o) and 6 '^N (2 to 3 %o) until the
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salmon enter the reach. At this point, a steep increase in the heavier isotopes of each 

element occurs; steeper for nitrogen than carbon. Then, when hve salmon are no longer 

present in the stream, both carbon and nitrogen isotopes fall off; probably as salmon- 

introduced nutrients are utihzed or flushed downstream. This trend is supported by Ben- 

David et al. (1998), who reported that spawning PaciGc salmon exhibit higher 

proportions of heavier carbon and nitrogen isotopes (S^^C = -18.65 ± 0.18 and 0 ^ ^  = 

13.01 ± 0.13 %o) than terrestrial plants (means of = -27 %o and = 0 %o; France,

1997).

Dual isotope, three endmember modeling corroborates the visual stable isotope 

pattern (Table 4.2), although a significant amount of variation in proportion of 

contributors exists. Phillips and Gregg (2001) performed sensitivity analysis of this 

linear mass balance model. They found that large differences in isotopic signal between 

sources reduced the error (i.e., doubling the difference reduced the uncertainty by half). 

Further, sample size is important when dealing with source samples exhibiting similar 

isotopic signatures. Thus, increasing the number of samples collected, especially for 

terrestrial vegetation, which varies significantly in terms of species and season (France, 

1995), should improve the resolution of this model. As well, collecting tissue samples in 

a more continuous manner over the season, rather than the episodic approach presented 

here, and applying the model to sources collected at the same time as the mixture may 

also assist investigation of natural patterns.

The stable isotope analysis substantiates earlier indications that organic source 

type is of significant importance for flocculation in O'Ne-eü Creek. Larger particles 

were found during the salmon spawn (Table 4.5), a time when the dominant organic
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source type changes from terrestrial material, to higher quality, marine-derived organic 

matter introduced to the freshwater system by the salmon vector. Both carbon and 

nitrogen signals changed considerably in terms of the heavier isotopes, and DOC 

concentrations were much less during the spawn period compared to the spring. POC 

concentrations did increase shghtly for the spawn compared to the low flow period; 

however, they were equal to or less than the springmelt concentrations. With this in 

mind, it appears that either ( 1 ) the quality of salmon is more conducive to floc-building, 

or (2) nitrogen may have an important role. This could he either due to the 'sticky' 

nature of nitrogenous substances or because of the high nutritional value for 

microorganisms that nitrogen compounds provide (France, 1998; Bouillon et al., 2000).

Table 4.5 Summary of particle size, stable isotopes of carbon and nitrogen, and 
sediment-attached bacteria variables grouped by event type. Numbers in parentheses are 
standard error.
Event
Type

EPSD
Dpg

(pm)

EPSD
Dg4

(pm)

5^C
(%c)

5^^
(%c)

Attached 
Bacteria 

(xlO  ̂cells 
mL^)

Spring 847 (185) 668 (121) -26.8 (0.06) 2.0(0.11) 6.18(0.30)
Low Flow 896 (230) 749 (260) -26.6 (0.07) 2.4 (0.09) 3.26 (0.13)
Rain 1340 (367) 1107 (384) -26.2 (0.11) 3.8 (0.31) 4.32 (0.64)
Spawn 1366 (204) 1177 (225) -26.2 (0.11) 4.3 (0.38) 3.32 (0.23)
Post-spawn 832 (43) 553 (81) -25.6 (0.07) 5.6 (0.18) 6.36(0.11)

4.4.3 Bacterial Content

Composite particles are comprised of both inorganic and organic particles. The latter 

component provides a nutrient source for bacteria (Paerl, 1975; Goulder, 1976; Droppo 

and Ongley, 1994). Bacteria facihtate floc-building by producing extracellular polymeric
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fibrils that act to bind together primary inorganic particles (Droppo et al., 1997). These 

biological structures provide stability for otherwise incredibly fragile particles (Dade et 

al., 1990).

The relationship between sediment-attached and free-floating bacteria is not well- 

defined. However, studies indicate a general trend of higher sediment-attached numbers 

in beshwater systems, and larger free-floating populations in marine environments (Bell 

and Albright, 1981; Kirchman and Mitchell, 1982). Regardless of the relative 

proportions of sediment-attached versus free-floating bacteria, sediment associated 

bacteria are more metabolically active (Kirchman, 1983). This indicates great potential 

for biologically-induced floc-building. The pattern of sediment-attached bacteria in 

O'Ne-eil Creek is that the majority of bacteria are sediment-attached and high numbers 

were counted for spring and post-spawn periods. Because smaller floes were observed 

for the springmelt period, the high value for sediment-attached bacteria probably reflects 

the high SPM concentrations (7 to 17 mg sediment L'^) measured here. The same 

relationship is not likely for the post-spawn period (SPM ~ 1 to 6 mg L'*), rather the 

quality of organic matter (derived from salmon) adsorbed to particles probably provides 

appealing sites for bacterial colonization. As well, the spawn period exhibits slightly 

higher attached bacteria counts than low flow conditions, which probably reflects a 

combined effect of increased SPM and salmon-derived nutrients as this period exhibited 

high spawning activity (resuspension of gravel-stored material) and dying (introduction 

of carcass-derived nutrients).

One might expect the spawn period to possess greater incidences of sediment- 

attachment than post-spawn because of the continual introduction of microbial enhancing
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salmon nutrients and high SPM concentrations due to resuspension of gravel-stored 

sediment, but it is possible that salmon activity exerts high particle shear stresses that 

may make it difficult for particle colonization. Thus, the causative factor for seasonal 

variation in sediment-attached particles is not singular, but rather likely due to a 

combination of changes in temperature, supply of organic matter, and suspended 

sediment concentration. As well, determining the relative importance of each of these 

factors is dependent on obtaining valid and reliable bacterial cell counts.

There are several observed limitations to the Aciidine Orange Direct Count 

(AODC) method that may have impeded the collection of accurate bacterial counts.

First, large cells that may not have been attached to sediment particles were counted on 

the larger pore size Slters. Most of these were rod-like cells »  1 pm in length, which 

would probably pass through the Alter if there were aligned on their long axis. High 

incidences of these cells may have caused overestimation of attached-sediment counts. 

Second, photofading of fluorescing cells forced counting to occur quickly, to the point of 

possibly decreasing count accuracy. Also, the rate of fading was unequally distributed 

over the filter, so cells in one sector may have faded out before counting commenced.

4.5 Conclusion

There are definite seasonal patterns in the environmental, chemical, and biological 

variables that are known to influence flocculation in O'Ne-eil Creek. Shear stress, 

suspended sediment concentration, chlorophyll a, colour, and DOC appear to be 

regulated by hydrologie processes. The combined analyses of colour and stable isotopes
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strongly indicate that seasonal changes in dominant organic matter sources are important 

for freshwater flocculation. The data presented provide promising evidence for the 

ability of stable isotopes to detect the presence of salmon versus terrestrial organics in 

suspended sediment samples. The results indicate that the presence of salmon in streams 

may increase observed particle size within the water column due to some combination of 

biotic resuspension of large, settled particles and introduction of high quality, nitrogen- 

based, microbial enhancing organics. High quality organics lead to improved bacterial 

activity, which means greater probability for attachments through increased production of 

extracellular polymeric substances. Although statistical association between organic 

matter and particle size was not found, the apparent relation between seasonal patterns 

necessitates further examination of the importance of the organic component in the 

complex process of freshwater flocculation. Controlled laboratory experimentation 

involving different types of organic matter could enable better characterization of the 

relationships seen here. This information should assist in the understanding of potential 

land use impacts to this system, and possible consequences for fish habitat, with respect 

to freshwater flocculation.
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Chapter 5—Conclusions

Sediment is eroded from the terrestrial land base and delivered to surGcial waters, where 

it is eventually transported downstream. Biologic, climatic, hydrologie, and geomorphic 

factors regulate the magnitude and timing of sediment delivery. As well, storage of 

material on floodplains and in-channel controls the particulars of sediment conveyance 

downstream. SpeciGcaUy, the composition of suspended material is dependent on the 

nature of the particles (e.g., cohesiveness and size) and discharge. Fine-grained sediment 

typically comprises the m^ority of the suspended load, which is generally not stored, 

over long time periods in the channel. However, it has been found that modification of 

the Gne-grained size fraction by flocculation can potentially lead to underestimation of 

storage. Researchers have tended to address the factors contributing to Gocculation, 

including sediment mineralogy, ionic concentration, bacterial concentration, shear stress 

and velocity, suspended sediment concentration, and organic matter source and supply 

individually, in order to assess the causal linkages. However, the complexity of the 

process of Gocculation indicates that isolation of influential factors in natural 

environments may be difficult. In addition, the difGculty in obtaining representative in 

.rim data on Goc structure impedes the process of relating particle morphology to the 

influential factors.

Despite the difficulties, the previously identiGed GocculaGon factors have been 

widely studied, with the excepGon of the inGuence of organic matter source and supply. 

Organic matenal in aquaGc systems is derived from both in-stream and terrestrial 

sources. The quality depends on the ease of assimilaGon by microbes, which is reliant on 

the speciGc source (e.g., leaves versus large woody debns). Both the quantity and quality
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of sources vary spatially and temporally. At the seasonal scale variability is caused by 

climatic factors (e.g., temperature, precipitation, insolation) and lifecycle patterns of 

biological organisms (e.g., spawning salmon). Spatial variation in source material occurs 

in the form of changing inputs longitudinally from headwater to mouth, as well as due to 

changes in lateral flux of riparian contributions.

There is an apparent need to characterize suspended sediment structure and organic 

matter sources in freshwater systems because of the implications for aquatic habitat 

quality. As well, anthropogenic impacts have been found to increase sediment inputs to 

surGcial waters, so investigation of pristine watersheds could provide insight into land 

use planning strategies. The purpose of this study was to assess temporal changes in 

suspended sediment structure in a single stream, O'Ne-eil Creek. This stream is located 

in the northern headwaters of the Fraser River in the Stuart-Takla region of northern 

British Columbia (BC), which is the setting for the first interior BC fish/forestry 

interaction project. As a relatively pristine mountainous watershed with well- 

documented annual migration of PaciGc sockeye (CbicorAynchw.y n e r^ )  salmon for 

spawning purposes, this watershed is ideal for assessment of suspended sediment 

dynamics prior to land use activities.

In chapter 3, temporal analysis of suspended sediment structure in relation to 

important hydrodynamic events and seasonally changing organic matter sources 

demonstrated that sediment moving in O'Ne-eil Creek is predominantly Gocculated. The 

maximum size of particles in O'Ne-eil Creek exceeds that of other, more energetic 

Canadian watersheds, which is probably related to the system's inherent productivity. 

Increases in suspended sediment concentration and effective size occur during the
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presence of migrating salmon and are probably attributed to a combined effect of 

physical resuspension of gravel-stored sediment by spawning activities and the 

introduction of a pulse of nutrients from post-reproductive carcasses.

Chapter 4 indicated that there are definite seasonal patterns in the environmental, 

chemical, and biological variables that are known to influence flocculation in O'Ne-eü 

Creek. Hydrologie processes appear to regulate most measured variables, including shear 

stress, suspended sediment concentration, chlorophyll a, colour, and DOC. The data 

presented here supports the use of stable isotopes in the detection of changing organic 

source material. The similarity in seasonal patterns for the combined analyses of colour 

and stable isotopes and effective floc size strongly suggests that seasonal changes in 

dominant organic matter sources are important for freshwater flocculation. In fact, the 

results indicate that the presence of salmon in streams may increase observed particle size 

within the water column due to some combination of biotic resuspension of large, settled 

particles and introduction of high quality, organics that improve bacterial activity and 

enhance bacterial attachment to particles.

Although statistical association between organic matter and particle size was not 

found, the apparent relation between seasonal patterns necessitates further examination of 

the importance of the organic component in the complex process of freshwater 

flocculation. Controlled laboratory experimentation involving different types of organic 

matter could enable better characterization of the relationships seen here. As well, more 

sensitive microscopic techniques could assist in identifying which organic constituents 

are more important for the floc-buüding process. Further studies in watersheds having a
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range of productivity levels and source types should also help clarify the role of organic 

matter in freshwater flocculation.

In terms of aquatic habitat quahty, studies assessing sedimentation (i.e., quantity 

and residence time) and changes in inter-gravel oxygen regimes should indicate whether 

current levels of flocculation are detrimental to salmon survivorship. This present study 

will assist in the understanding of potential land use impacts to this system, and possible 

consequences for fish habitat, with respect to 6eshwater flocculation. Overall, the 

findings presented here necessitate careful planning of any anthropogenic disturbances in 

watersheds that support migratory salmon stocks to ensure suitability and availability of 

spawning habitat.
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