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Abstract

This thesis describes the development and application of a technique to estimate high winds in complex 

and data-sparse terrain. The technique is used to characterize the 2-dimensional near-surface horizontal 

wind field in the McGregor Model Forest (MMF) of British Columbia under a typical storm scenario. 

An analysis of historical wind extremes in the Central-Interior ofBritish Columbia reveals that southerly 

gusts associated with fall and winter cyclones account for most extreme wind events in the region. To 

determine the climatology of this windy season, daily weather maps of mean sea-level pressure from 

October through March are averaged for the 25-year period from 1970 to 1994. A storm composite is 

then constructed by including only those maps where the daily extreme gust speed at the Prince George 

Airport was from a southerly direction. A pressure anomaly map for strong winds is constructed by 

subtracting the composite from climatology, and the statistical significance of the composite is tested 

at the 99% level using a Student's t-test. The analysis is repeated to construct individual composites for 

moderate (51-70 km/h), strong (71-90 km/h) and severe (>90 km/h) southerly gust events. Map-pattem 

classification techniques are then used to identify a representative map pattern for each storm scenario. 

These "keyday" scenarios are then simulated with a 3-dimensional mesoscale numerical model whose 

output is used to determine wind speed ratios between grid points in the complex forested terrain and 

a neighbouring airport location. The speed ratios provide an estimate of the winds likely to occur above 

the forest canopy in the MMF based on a single wind measurement at the Prince George Airport.

Strong gusty winds can knock down trees in forested areas (windthrow) resulting in economic loss to 

the forest industry, particularly if inappropriate forestry practices are employed in areas prone to high 

winds. The complex terrain and sparsity of wind data in forested areas is a major obstacle to the 

development and implementation of wind risk management strategies in British Columbia. By providing 

a potential-risk surface for terrain prone to high winds, this project represents a first step toward a 

windthrow-risk assessment model for the McGregor Model Forest.

m



TABLE OF CONTENTS

Abstract iii

Preface xv

Thesis Structure and Overview xvii

Acknowledgements xix

PARTI: Problem Statement & Research Approach 20

1 Wind, Trees and Complex Terrain 21

1.1 INTRODUCTION 21
1.2 STUDY AREA 22
1.3 BACKGROUND 23

1.3.1 Windthrow 23
1.3.2 Wind and Complex Terrain 25
1.3.3 Winds and Windthrow in British Columbia 28

1.4 PROBLEM STATEMENT 30
1.5 OBJECTIVES 32
1.6 METHODOLOGY 32

1.6.1 Overview to Research Approach 33
1.6.2 Working Assumptions 33
1.6.3 Study Components and Objectives 34

PART H: Examination of Central-Interior Wind Regime 37

2 Climate Normals 38

2.1 INTRODUCTION 38
2.2 OBJECTIVES 38
2.3 STUDY AREA: Climate Station Location and Local Topography 39
2.4 METHOD: Definition of Climate Normals 39
2.5 RESULTS 40

2.5.1 Surface Wind Normals 40
2.5.2 Temperature Normals 41
2.5.3 Precipitation Normals 43
2.5.4 Frost Normals 44

2.6 SUMMARY AND CONCLUSIONS 45

IV



3 Return Periods of High-Wind Events 47

3.1 INTRODUCTION 47
3.2 OBJECTIVES 48
3.3 METHODS 48

3.3.1 Extreme-Value Theory 49
3.3.2 Daily Extreme Gust Data 52

3.4 RESULTS 53
3.4.1 Extreme Value Analysis 53
3.4.2 Seasonal Characteristics 55
3.4.3 Directional Characteristics 57

3.5 DISCUSSION 58
3.5.1 Topographic Influences 59
3.5.2 Climatological Influences 59

3.6 SUMMARY AND CONCLUSION 60

PART m : Extrapolation of High Winds 64

4 A Synoptic Climatology for High Winds 65

4.1 INTRODUCTION 65
4.2 OBJECTIVES 66
4.3 METHODS 66

4.3.1 Composite Classifications 67
4.3.2 Correlation-based Map-pattem Classifications 67
4.3.3 Study Area and Data Selection 70
4.3.4 Analysis of Fall-Winter Cyclones 73

4.4 RESULTS 76
4.4.1 Storm Composites 76
4.4.2 Keyday Storms 78
4.4.3 Storm Related Weather 79

4.5 DISCUSSION 79
4.6 SUMMARY AND CONCLUSIONS 80

5 Numerical Simulation of Keyday Storms 82

5.1 INTRODUCTION 82
5.2 OBJECTIVES 82
5.3 METHODS 83

5.3.1 The Regional Atmospheric Modeling System (RAMS) 83
5.3.2 Modelling Approach 84

5.4 KEYDAY MODEL RESULTS 86
5.5 MODEL VALIDATION 90

5.5.1 Station Locations 90
5.5.2 Validation Methods 91
5.5.3 Simulation Results 93

5.6 SUMMARY AND CONCLUSION 96



PARTrV: Application of Results 98

6 A High-Wind Model for the McGregor Model Forest 99

6.1 INTRODUCTION 99
6.2 OBJECTIVES 99
6.3 METHODS 100

6.3.1 Model Description 100
6.3.2 Model Validation 101

6.4 RESULTS 101
6.4.1 Speed Ratios 101
6.4.2 Model Validation 102
6.4.3 Model Error 103

6.5 DISCUSSION AND CONCLUSION 104

7 Executive Summary and Conclusion 106

7.1 INTRODUCTION 106
7.2 PROJECT OBJECTIVES 106
7.3 PROJECT OVERVIEW 107

7.3.1 Climate Normals 107
7.3.2 Extreme Value Analysis 108
7.3.3 Synoptic Climatology 110
7.3.4 Wind Monitoring Network 112
7.3.5 Numerical Simulation 112
7.3.6 Extrapolation Model 114

7.4 SUMMARY OF KEY FINDINGS 116
7.5 CONCLUSION 117
7.6 EXPECTED BENEFITS 118

7.6.1 Role of Risk Management Models 118
7.6.2 A Windthrow Risk Assessment Model for the McGregor Model Forest 119
7.6.3 Related Benefits 120

7.7 RECOMMENDATIONS FOR FUTURE WORK 121

References 124

Appendix A - Figures & Tables 129

Appendix B - GrADS Scripts 194

Appendix C - MMF Climate Monitoring Network 207

VI



Tables Page

Table 2.1 Wind Directions at Prince George and Neig^dx)nring Stations: Comparison of mean
wind speed, by direction and time of year,at four airport locations.......................................... 137

Table 2.2 Annual Temperature Models: Optimal linear regression models for annual daily,
maximum, and minimum temperature.................................................................................  142

Table 2.3 Monthly Temperature Models: Optimal linear regression models for monthly daily 
temperature.   ...........................................................................................................................142

Table 2.4 Model Comparison: Regression parameters for annual and monthly linear regression 
models.........................................................................   142

Table 2.5 Frost Normals: Length of frost-free period and average date of first and last frost during 
for stations in and surrounding the Prince George Forest District.............................................146

Table 3.6 Airport Wind Stations: List of airport stations included in extreme value analysis, 
showing period of record and station elevation..........................................................................147

Table 3.7 Extreme Value Analysis Sample Calculation: Ranking of annual wind extremes U and 
calculation of the empirical cumulative frequency C(U), exceedence E(U) and return periods T (U) 
for Prince George Airport...........................................  151

Table 3.8 Summary of Gumbel Least Squares Regression Analysis: Regression parameters are
given at the 95% confidence level. Uncertainties in the regression parameters (g and -gU^J were 
used to determine the upper and lower limits to the ‘best’ estimate of the modal wind, 155

Table 3.9 Extreme wind and Return Period Estimates: ‘Best-esfimate’ of (a) return period for
extreme wind gusts of a given magnitude (left column); and (b) extreme wind for a given return 
period (right column) at selected stations ................................................................................ 156

Table 3.10 Return Period Confidence Intervals: Upper and lower bounds to the ‘best-estimate’ 
within a 95% confidence interval ............................................................................................ 157

Table 3.11 Seasonal Frequencies of Annual Wind Extremes: Frequency (in percent) of annual wind
extremes recorded at each airport wind station during winter, spring, summer and fall. . . .  157

Table 3.12 Seasonal Return Periods: Estimated return periods for extreme winds of a given 
magnitude occurring in January, April, July and October at the Prince George Airport. . . .  159

Table 3.13 Directional Frequencies of Annual Extreme Winds: Frequency (in percent) of annual 
extreme wind direction recorded at each airport station............................................................159

Vll



Table 3.14 Prince George Airport (1956-1994): Directional frequencies of monthly extreme wind 
gusts by speed class.....................................................................................................................162

Table 3.15 Prince George Airport (1956-1994): Directional frequencies of monthly extreme wind
gusts by speed season..............................................................     162

Table 3.16 Quesnel Airport (1958-1988): Directional frequencies of monthly extreme wind gusts by 
speed class...................................................................................................................................163

Table 3.17 Quesnel Airport (1958-1988): Directional frequencies of monthly extreme wind gusts by 
season...........................   163

Table 3.18 Smithers Airport (1968-1994): Directional frequencies of monthly extreme wind gusts 
by speed class..............................................................................................................................164

Table 3.19 Smithers Airport (1968-1994): Directional frequencies of monthly extreme wind gusts 
by season..................................................................................................................................... 164

Table 3.20 Williams Lake (1961-1994): Directional frequencies of monthly extreme wind gusts by 
speed class...................................................................................................................................165

Table 3.21 Williams Lake (1961-1994): Directional frequencies of monthly extreme wind gusts by 
season..........................................................   165

Table 4.22 Summary of Storm Composite Results: Comparison of storm-composite characteristics
to climatology for the fall-winter period................................................................................   170

Table 4.23 Summary of Map-Pattem Classification Results: Identifrcation of keyday storms and
comparison of storm characteristics........................................................................................... 170

Table 4.24 Severe Keyday Storm Weather Properties: Comparison of mean daily weather elements 
before, during and after severe gust events................................................................................ 172

Table 4.25 Storm Composite Weather Properties: Comparison of storm composite weather with 
climatology..................................................................................................................................172

Table 5.26 RAMS Model Configuration: Summary of relevant model configuration parameters used 
to initialize the keyday and validation numerical simulations...................................................174

Table 5.27 Validation Storm Characteristics: Observed speed and direction of the daily extreme
gust and maximum hourly wind at the Prince George Airport during the validation storm events. 

................................................................................................................................................... 179

Table 6.28 Keyday Wind Speed Ratios at Wind Monitoring Stations: Ratio of simulated wind
speed for grid cells nearest available wind monitoring locations, to the wind speed simulated for 
the grid cell nearest the Prince George Airport, during each of the keyday numerical simulations 
(model level k=3)........................................................................................................................ 185

Vlll



Table 6.29 Mean Absolute Error: Comparison of average observed daily maximum hourly wind 
speed to average extrapolated maximum wind speed, and calculation of mean absolute error using 
moderate wind speed ratios for all wind classes at each of the wind monitoring stations. . .  188

Table 6.30 Percent Frequency of Mean Absolute Error: Comparison of model error at 10-metre 
stations, showing frequency of error less than 1 m/s, 2 m/s and 3 m/s, and greater than 3 m/s.

 188

IX



Figures Page

Figure 1.1 Map of Study Area: (a) Location of the McGregor Model Forest in the east central- 
interior ofBritish Columbia, 30 km northeast of Prince George, (b) Digital elevation model (100 
m resolution) of study area shown in (a). (Coverage; 100 x 120 k m .)   .......................130

Figure 1.2 Factors Influencing Windthrow: Windthrow involves complex interactions between
many factors which operate at multiple scales: (a) individual tree level, (b) stand level and (c) 
landscape level............................................................................................................................ 131

Figure 1.3 Research Method Flow Diagram: Overview of the methodology used to extrapolate high 
winds from the Prince George Airport, to the McGregor Model Forest................................... 132

Figure 2.4 Climate Station Location and Local Topography: Map approximating boundaries of 
the Prince George Forest District, showing location of principal climate stations (^) and airport 
wind monitoring stations at Dome Creek, MacKenzie, Quesnel and Prince George...............133

Figure 2.5 Windrose for Prince George Airport: Radial histogram showing directional frequency, 
and distribution of mean wind speeds during the 30-year climate normal period, 1951-1980. 

...................................................................................................................................................13(4

Figure 2.6 Mean Wind Speed and Extremes at Prince George Airport: Mean wind speed (left-
axis) compared to the maximum hourly speed and maximum gust speed (right-axis) observed 
during the period 1955-1980....................................................................................................  135

Figure 2.7 Windrose Diagrams for Neighbouring Stations: Radial histograms showing directional 
frequency, and distribution of mean airport wind speeds at (a) MacKenzie, (b) Fort St. James and 
(c) Quesnel during the 30-year climate normal period, 1951-1980........................................  136

Figure 2.8 Wind Speeds at Prince George and Neighbouring Stations: Comparison of mean
monthly wind speed at four airport locations, showing seasonal differences, as well as differences 
between stations.......................................................................................................................... 137

Figure 2.9 Monthly Temperature Normals and Extremes for McGregor Climate Station: (a)
daily mean, maximum and minimum temperatures, and (b) daily extreme maximum and minimum 
temperatures compared to mean daily temperature................................................................... 138

Figure 2.10 Monthly Temperature Normals for Neighbouring Climate Stations: Daily mean (dly),
maximum (max) and minimum (min) temperatures..................................................................139

Figure 2.11 Temperature Correlations: Scatter plots between temperature and geographical attributes 
of climate station location..........................................  - ......... 140

Figure 2.12 Annual Dally Temperature Model: A 2nd-order linear model describing the variation
in mean annual daily temperature with station latitude and elevation......................................141



Figure 2.13 Temperature Inversions: Comparison of monthly daily temperatures at McGregor with 
stations at higher elevations, showing evidence of a climatic temperature inversion at Barkerville 
in January.....................................................................................................................................141

Figure 2.14 Precipitation Normals at McGregor Climate Station: Mean monthly snow (cm), rain
(mm) and total precipitation (mm) amounts at the McGregor station during the 30-year period 
1951-1980..................................................................................................................................  142

Figure 2.15 Precipitation Normals for Neighbouring Stations: Mean monthly precipitation amounts
for surrounding climate stations (see Fig. 2.14)......................................................................... 144

Figure 2.16 Precipitation Correlations: Scatter plots between annual (rain, snow and total) 
precipitation amounts and station geographical attributes.........................................................145

Figure 2.17 Effect of Elevation on Frost Free Period: Scatter plot of spring and fall frost dates and 
elevation...................................................................................................................................... 146

Figure 3.18 Gumbel Distribution, C(U): Extreme-value distribution shown with a Gumhel scaling 
factor g = 0.08 kph ' and a wind modal value of = 90 kph...................................................146

Figure 3.19 Location of Airport Stations and Exposure: Map of Central-Interior, showing location
of airport wind monitoring stations at Prince George, Quesnel, Smithers and Williams Lake. 

................................................................................................................................................... 147

Figure 3.20 Time Series (^Annual Wind Extremes: Maximum annual gust speeds observed at Prince
George, Quesnel, Smithers and Williams Lake airport wind stations.......................................149

Figure 3J21 Time Series of Monthly Wind Elxtremes: Maximum monthly gust speed observed at the
Prince George Airport during the period of record 1955-1994...............................................  150

Figure 3.22 Distribution of Annual Wind Extremes: Box plot of maximum annual gust speeds at 
Prince George (PGA), Quesnel (QLA), Smithers (SMA) and Williams Lake (WLA) airport wind 
stations..............................................................................................................................  150

Figure 3.23 Empirical Return Periods: Scatter plots of ‘ranked’ annual extreme wind speed against 
the empirical return period at four airport locations.................................................................. 152

Figm-e 3.24 (a) 'Best-fit' line to the plot of the Gumhel reduced variate against the annual 
maximum gust speed at Prince George Airport: Coefficient of determination = 0.975, 
significantly different than zero F(l,22) = 862, p<0.0001.......................................................  153

Figure 3.24 (b) 'Best-Bt' line to the plot of the Gumbel reduced variate against the annual 
maximum gust speed at Quesnel Airport: Coefficient of determination R^= 0.913, significantly 
different than zero F(l,14) = 147, p<0.0001............................................................................  153

Figure 3.24 (c) 'Best-fit' line to the plot of the Gumhel reduced variate against the annual 
maximum gust speed at Smithers Airport: Coefficient of determination R̂ = 0.962, significantly 
different than zero F(l,16) = 403, p<0.0001....................    154

xi



Figure 3.24 (d) 'Best-Qt* Une to the plot of the Gumhel reduced variate against the annual 
maximum gust speed at Williams Lake Airport: CoefGciant of determination = 0.989,
significantly different than zero F(l,22) = 1782, p<0.0001.................    154

Figure 3.25 Seasonal Characteristics of Monthly Extreme Gust Speeds: (A) maximum gust; (O)
mean gust; and (0) 2 x standard deviation in monthly extreme gust speed..............................157

Figure 3.26 Windrose diagram of the monthly extreme gusts at the Prince George Airport (by
speed class): Radial histogram showing directional frequency, and distribution of monthly 
extreme wind gusts during the period, 1957-1994...............................    160

Figure 3.27 Windrose diagram of the monthly extreme gusts at the Prince George Airport (by 
season): Radial histogram showing directional frequency, and distribution of monthly extreme 
wind gust directions by time of year during the period 1957-1994......................................... 161

Figure 3.28 Mean Sea-Level Pressure Climatology: Comparison of 25-year average summer and fall 
mean sea-level pressure patterns and 10-metre winds............................................................... 166

Figure 4.29 Kirchhofer Sums-of-Squares Technique: Flow diagram of keyday map-pattem
classification program  ....................   167

Figure 4.30 Synoptic Climatology Study Area: Map of study area used to develop synoptic- 
composites of fall and winter cyclones.......................................................................................167

Figure 4.31 Prince George Airport Wind Extreme Distributions: (a) Monthly distribution of all 
daily extreme wind gusts from a southerly direction recorded during the period 1970-1994. (b) 
Distribution of southerly gusts occurring during the fall-winter period, (c) Annual distribution of 
gust events shown in (b)..............................................................................................................168

Figure 4.32 Keyday Study Area: Map of gridded area used in map-pattem classification 168

Figure 4.33 Synoptic Climatology: (a) 25-year mean climatological fields (mean sea-level pressure, 
and 850 hPa and 500 hPa pressure surfaces) for the fall-winter period (1970-1994). (b) Composite 
fields for all southerly gusts greater than 30 km/hr (1970-1994). (c) Deviation from normal 
climatology and statistical significance of anomaly at the 99% level (shaded region) 169

Figure 4.34 Storm Composites and Keyday Events: (a) Mean sea-level pressure storm composites 
stratified by moderate (51-70 km/h), strong (71-90 km/h) and severe (>90 km/hr) daily extreme 
gust speeds, (b) Deviation from normal climatology for fall-winter period and statistical 
significance of anomaly at 99% level (shaded area), (c) Keyday maps identified by map-pattem 
classification analysis..................................................................................................................171

Figure 5.35 Smoothed Topography and Wind Monitoring Network: (a) RAMS model domain 
smoothed to a 1 km resolution. Terrain elevation contours are shown (above mean sea-level) 
every 100 m. (b) Digital elevation model (100 m resolution) of area in (a) showing location of 
wind monitoring stations available for model validation...........................................................173

XU



Figure 5.36 Keyday Simulation Results: Results of the three keyday simulations for model level k=3
(corresponding to a mean height of 78.6 metres). Shown from top to bottom is the initialization 
field (12Z), a snapshot of the windfield after six hours of simulation (ISZ) and at the end of the 
model run (OOZ)....................  175

Figure 5.37 (a) Moderate Keyday Simulation Time Series: Temporal evolution of moderate keyday 
simulated wind speed (top plots) and direction (bottom plots) at grid cells closest to the indicated 
climate stations for vertical model levels k=3 (left) and k=2 (right).........................................176

Figure 5 J7  (b) Strong Keyday Simulation Time Series...............................................................176

Figure 537 (c) Severe Keyday Simulation Time Series..............................................................177

Figure 5.38 (a) Moderate Keyday Wind Maximums: Wind vectors (shown every 3 grid points) are
colour coded according storm category, with yellow, orange and red denoting moderate (51-70 
km/h), strong (71-90 km/h) and severe (90+ km/h) winds respectively (blue vectors are less than 
51 km/h).......................................................................................................................................177

Figure 538 (b) Strong Keyday Wind Maximums. ..................................................................... 178

Figure 538 (c) Severe Keyday Wind Maximums..............................  178

Figure 5.39 Validation Simulation Results: Results of the validation simulations for model level k=3 
(corresponding to a mean height of 78.6 metres). Shown from top to bottom is the initialization 
field (12Z), a snapshot of the windfield after six hours of simulation (18Z) and at the end of the 
model run (OOZ).......................................................................................................................... 180

Figure 5.40 (a) 18 March 1997 Validation Time Series: Comparison of observed (left-hand plots)
vs. simulated (right-hand plots) wind speed and direction for model level k=3 at grid cells closest 
to indicated wind monitoring stations in the Prince George Bowl (top plots) and the McGregor 
Model Forest (bottom plots)....................................................................................................... 181

Figure 5.40 (b) 04 December 1996 Validation Time Series.......................................................... 182

Figure 5.40 (c) 21 October 1996 Validation Time Series.............................................................183

Figure 5.41 Observed Wind Characteristics : Prevailing wind directions measured during the October 
1996 to March 1997 windy season............................................................................................. 184

Figure 6.42 AU-Keyday Model Validation: Comparison of observed daily maximum hourly wind
speed vs. extrapolated wind maximum under a synoptic southerly flow using the set of three 
keyday speed ratios....................................................................................................  186

Figure 6.43 Moderate Keyday Validation: Comparison of observed daily maximum hourly wind
speed vs. extrapolated wind maximum under a synoptic southerly flow using the moderate keyday 
speed ratios for all wind classes..................................................................................................187

xiu



Figure 6.44 Absolute Model Error: Histograms showing frequency distribution of absolute model 
error at each of the wind monitoring locations...........................................................................189

Figure 6.45 Model Error: Histograms showing the frequency distribution of model error at each of 
the 10-metre wind monitoring stations....................................................................................... 190

Figure 6.46 Contour Plot of Wind Speed Ratios: Ratio of simulated mean maximum wind speed for 
each grid cell, to the wind speed simulated for the grid cell nearest the Prince George Airport.

................................................................................................................................................... 191

Figure 6.47 Moderate Keyday Wind Directions: Direction of simulated wind maximums for the 
moderate keyday storm scenario at a mean height of 70 m and horizontal resolution of 1 km. 

................................................................................................................................................... 192

Figure 6.48 Strong-to-Severe Wind Directions: Vector average of simulated wind directions, and 
scalar average of maximum mean wind speeds, for the strong and severe keyday storm scenarios 
at a mean height of 70 m and horizontal resolution of 1 km......................................................193

XIV



Preface

Funding for this thesis project was provided by the McGregor Model Forest Association (MMFA). The 

McGregor Model Forest (MMF) is one of ten model forests established under Canada’s Green Plan to 

support the shift toward sustainable forestry management. This shift has required the recognition of 

forests as complex and dynamic ecosystems sustained by natural renewal processes and disturbance 

regimes which operate at multiple scales, from individual sites to extensive landscapes. A goal of the 

MMFA is to develop a knowledge and understanding of the natural processes that have shaped the forest 

ecosystem and to model these processes, allowing possible future conditions of the landscape to be 

portrayed and evaluated relative to key social, economic, and ecological concerns (McGregor Model 

Forest, 1994a). The focus of the initial five-year work plan developed by the MMFA has been a decision 

support system for analysing forest management options known as the “Brass Ring” (McGregor Model 

Forest, 1994b). The MMFA made the strategic decision to focus its initial activities toward modelling 

key ecological processes and human-induced disturbances at the landscape level. To support the 

development of the Brass Ring, seven research teams were formed, conducting a total of 31 projects 

(McGregor Model Forest, 1995).

In 1993, the MMFA realized that a better knowledge of ecological patterns and processes that shaped 

the historical landscape was required. A partnership meeting was held in November 1993 and the 

decision was made to limit the list of key drivers to be studied to six agents: climate, fire, soils, insect, 

geomorphology and hydrology. After a detailed request for proposals, a contract was signed with the 

University of Northern British Columbia to address the deliverables for this program area. An 

Ecological Processes Team was formed, consisting of UNBC faculty members, graduate students and 

collaborators having expertise in one or more areas relevant to the key drivers. The work program of 

the Ecological Processes Team consisted of five projects: Geomorphological and Hydrological 

Processes; Climate Studies and Monitoring; Fire; Forest Insect and Disease; and Soil and Vegetation 

Successional Processes.
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This thesis has resulted from participation in the Climate Studies and Monitoring project. Climate is 

a significant determining factor in the development of forests, and indeed, in how an ecosystem 

functions. Wind, temperature and precipitation (as well as radiation and other parameters) can act to 

limit or enhance the productivity of the forest. Disturbance events that manifest themselves from 

extremes in climatic elements include fire, windthrow and floods, which in turn initiate other 

disturbances such as insect outbreak and disease. These climatic parameters are all dramatically affected 

by the presence of complex terrain. The assessment of the ways in which complex topography affects 

these important climatic variables, particularly the wind, is non-trivial. The main goal of the Climate 

Studies and Monitoring project was to assess the influence of topography on extreme wind behaviour, 

in order to help the MMFA identify areas of the MMF which are adversely affected by high winds. This 

thesis describes the development and application of the technique used to extrapolate high wind 

estimates over the McGregor landscape. The results of this project are intended to complement the 

efforts of the Forest Practices Team to test and develop a model for extrapolating temperature and 

precipitation.
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Thesis Structure and Overview

For convenience and presentation purposes, the thesis is organized into four parts:

Part L PROBLEM STATEMENT & RESEARCH APPROACH (Chapter 1)

Part n. EXAMINATION OF CENTRAL-INTERIOR WIND REGIME (Chapters 2,3)

Part m . EXTRAPOLATION OF HIGH WINDS (Chapters 4,5)

Part rV. APPUCATION OF RESULTS (Chapters 6,7)

Chapters two through six have individual objectives, methods, results and conclusions. Chapters one 

and seven are introductory and summary chapters respectively. Figures and tables referenced in the text 

are found in Appendix A.

• Part I provides the necessary background information on wind and windthrow to establish the 

rationale for the thesis; identify the main objectives; and gives an overview to the research 

approach adopted to meet these objectives.

• Part n  examines the wind regime of the central-interior of British Columbia using historical wind 

records in order to determine the dominant storm type for the region. In Chapter 2, the long-term 

(30-year) wind normals are described along with related climate normals (temperature, 

precipitation and frost period) which may have a bearing on windthrow. In Chapter 3, the return 

periods of high wind events are determined by analyzing the observed annual wind extremes. The 

monthly wind extremes are also examined to determine the directional and seasonal characteristics 

of high winds. The surface station data are then interpreted by looking at the large scale 

atmospheric circulation, and conclusions are drawn about the dominant storm type.

xvu



• Part in  addresses the spatial extrapolation of extreme winds. Chapter 4 examines in closer 

detail the synoptic climatology of the dominant storm type identified in Part H. Three keyday 

storms are identified which are representative of moderate, strong and severe winds occurring at 

the Prince George Airport. The surface weather accompanying these storms is described relative 

to the climate normals described in Chapter 2. In Chapter 5, the three keyday storms are used 

to initialize a series of numerical weather simulations in order to estimate the maximum mean 

winds likely to occur across the McGregor Model Forest landscape under each of the three storm 

scenarios.

• In Part IV, the results from the numerical modelling exercise are generalized for application in 

the McGregor Model Forest. In Chapter 6, the simulated wind maximums are used to test a 

simplified model for extrapolating high winds to the McGregor based on a single wind 

measurement at the Prince George Airport. Chapter 7 provides an executive summary of the 

thesis results, discusses how the results may be used to assess areas of the McGregor which may 

be adversely prone to windthrow, and makes recommendations for improvements and future work.

Readers mav wish to skip to Chapter 7 for an overview to the thesis.
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1 Wind, Trees and Complex Terrain

1.1 INTRODUCTION

Windthrow or forest blowdown is increasingly recognized as a major natural renewal agent in forested 

landscapes. Canopy gaps, large pit/mounds and decaying matter that result from windthrow play an 

important role in soil development and ecological succession (Kimmins, 1997). In managing for a 

sustainable forest, these processes must be understood and incorporated into forestry practices. While 

occurring naturally, windthrow is also affected by harvesting and silviculture decisions, particularly in 

areas prone to high winds. Wind damage in managed forest stands is reported to be steadily increasing 

in many parts of the world (Navratil, 1995).

One of the reasons for the observed increase in wind damage is the change from natural stand conditions 

that have resulted from the intensification of forestry management and silvicultural practices. From an 

economic stand point, windthrow also impacts the productivity of managed forests. In the Prince George 

Timber Supply Area, the estimated annual loss of timber that cannot be salvaged or recovered due to 

wind damage is 26,400 m^/yr, compared with an annual harvest of approximately 18 million cubic 

metres (B.C. Ministry of Forests, 1995). In addition to these unrecoverable losses, timber which is 

salvageable is associated with increased harvesting costs and poses a greater hazard to the forest worker. 

Recently, concern over windthrow has been heightened in British Columbia, as alternatives to 

clearcutting are being investigated in response to new ecological and social concerns (Chen et al., 1995; 

Jull, 1996; Coates, 1997). Many foresters are concerned that new partial cutting techniques will leave 

stands susceptible to windthrow (Mitchell, 1995a). The windiness of a region, particularly the probable 

occurrence of severe winds and their directional and seasonal characteristics, must be known before 

wind risk management strategies can be implemented and appropriate silviculture systems designed.
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However, implementation of such strategies is often hindered by three compounding factors: 1) wind 

measurements tend to be spatially limited, typically restricted to airport locations; 2) local terrain plays 

a considerable role in modifying wind speed and direction, particularly in mountainous regions; and 3) 

damage tends to be associated with “extreme events” which by definition lie outside the scope of normal 

experience and thus normal scientific description. The main goal of this thesis was to assess the 

influences of topography on extreme-wind behaviour, in order to identify areas prone to high winds in 

the McGregor Model Forest of British Columbia.

1.2 STUDY AREA

The McGregor Model Forest (MMF) is located 30 km northeast of Prince George and encompasses an 

area of 182,298 hectares within the boreal forests ofBritish Columbia's central-interior (Figure 1.1a). 

The boundaries of the MMF are contiguous with provincial Tree Farm Licence 30 (TFL 30). The total 

productive land base is 159,932 hectares, or about 88 percent of the total area. The area is located in 

the Suh-Boreal Spruce hiogeoclimatic zone with small areas of the Interior Cedar-Hemlock in the 

southeast portion and Engelmann Spruce-Subalpine Fir zones located in the northeast portion (B.C. 

Ministry of Forests, 1991). The TFL 30 is commercially logged and approximately 386,000 cubic 

metres of timber are harvested annually, predominantly during the winter months. Based upon data 

collected by the licensee, the base case analysis includes a net deduction of 3,640 cubic metres per year 

to account for non-recoverable losses due to fire (1,000 cubic metres), wind damage (1,160 cubic 

metres) and insects (1,480 cubic metres) (B.C. Ministry of Forests, 1996). Gross losses due to 

windthrow are significantly higher than 1,160 cubic metres per year , but the licensee has adopted an 

aggressive salvage approach to minimize the overall net loss. The licensee has indicated that in the past, 

approximately one quarter of the volume harvested has been damaged timber.

Located on the McGregor Plateau, the TFL 30 is generally characterized by deep soils, heavy snowfalls 

and substantial summer rainfall. The terrain ranges from rolling hills in the west, to the steep western
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slopes of the Canadian Rockies in the east (Figure 1.1b). The southern portion of the MMF is 

characterized by a broad east-west drainage basin formed by the confluence of two major river systems. 

The Fraser River flows northwest out of the Rocky Mountain Trench and traverses the southern edge 

of the McGregor Plateau, where it turns southward back toward Prince George. The McGregor River 

flows southwest out of the Rockies and into the Fraser.

1.3 BACKGROUND

The two sections which follow are not intended to be an exhaustive review of the literature on wind and 

windthrow, but rather to provide the necessary background to establish the rationale behind the focus 

of this study. For an extensive listing of the literature documenting the impacts of wind on forests, see 

the bibliography compiled by Everham (1996). A background into atmospheric motions is given in the 

section on wind and complex terrain for the reader who may be unfamiliar with this subject matter. For 

a more thorough description of atmospheric motions, see the introductory text by Stull ( 1995), or Holton 

(1979) for a more advanced understanding.

1.3.1 Windthrow

If the stem strength of a tree is greater than the pressure exerted by the wind (windload), a tree does not 

break but may uproot and topple over, carrying with it a massive plate of roots and soil. This occurs 

when the critical load on a tree surpasses the resistive forces anchoring the tree and is referred to as 

windthrow.' In simple terms, factors which contribute to an increase in windload, or a decrease in the 

resistive forces anchoring a tree, will be important in determining when, where and how wind damage 

is likely to occur. In practice, however, windthrow is a complex phenomenon caused by the 

simultaneous interaction between a number of environmental factors such as rooting depth, soil

‘Where the windload exceeds the stem strength, windbreak is said to occur. Leaning and bending 
are considered an intermediate or light stage of windbreak and windthrow.

23



properties, tree and stand morphology, topography and wind (see reviews by Stathers et al., 1994 and 

Navratil, 1995). The study of windthrow must therefore be considered a multidisciplinary subject which 

covers a broad range of basic and applied sciences, such as physics, meteorology and engineering, in 

addition to soil science and forest physiology, ecology, and pathology. As a result of such multi

discipline research, significant advances have been made in the last decade and the first symposium 

volume on the topic was written following the “Wind and Wind-Related Damage to Trees” conference 

held in Edinburgh, England in 1993 (see Courts and Grace, 1995). This conference, held under the 

auspices of the International Union ofForestry Research Organisations (lUFRO), was the first of its kind 

and brought together researchers from seventeen countries. A follow-up conference entitled "Wind and 

other Abiotic Risks to Forests" was held in Finland in August, 1998 and selected proceeding were 

published in a special issue of Forest Ecology and Management (Vol. 135, 2000).

Windthrow events can be broadly categorized into two types. Catastrophic windthrow occurs 

infrequently when exceptionally strong winds cause widespread and extensive damage to large areas. 

Endemic windthrow occurs more frequently, but on a smaller scale and is often an indirect result of 

forest management practices. This may occur as a result of numerous lower velocity windstorms, and 

typically affects individual stems, or small groups of trees. Endemic windthrow also tends to spread 

progressively from an abrupt, or unstable boundary. The causes and interactions between the various 

factors affecting windthrow are typically investigated at three levels: the individual tree level, stand level 

and landscape level (refer to Figure 1.2). At the individual tree level (Fig. 1.2a), stability is affected 

by tree morphology and soil conditions. Windthrow is more common in shallow than deep rooted 

species, and more common in shallow and/or wet soils than deep and/or dry soils (Kimmins, 1997). It 

is also a common result of damage to root systems by pathogenic organisms, or mechanical disturbance.

Stand height, stand density, species composition and silviculture treatments in conjunction with 

individual tree stability, determine the overall stability of stand structures (Fig. 1.2b). Environmental 

factors in combination with cutblock location and alignment, have a bearing on the incidence and
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severity of blowdown (Moore, 1977; Navratil, 1995; Slathers et al., 1994). Stand level features and 

topography in turn affect windthrow by modifying wind exposure, wind direction, speed and turbulence, 

causing highly variable wind conditions (Fig. 1.2c). The assessment of the way in which complex 

topography affect extreme wind behaviour is non-trivial. In keeping with the strategic decision of the 

McGregor Model Forest Association to model landscape level disturbances, this thesis focuses on the 

role that wind and topography plays in this complex phenomenon.

1.3.2 Wind and Complex Terrain

1.3.2.1 Turbulence:

Windthrow is the result of both the stationary and dynamic windloads on trees. The stationary windload 

is related to the mean wind around a tree crown. The dynamic windload is very complex and is related 

to turbulent fluctuations in the wind speed and swaying (oscillation) of the tree. According to Miller 

(1985), windthrow arises as a result of storm force winds of 70 km/hr and associated gusts of higher 

wind speeds. Catastrophic damage occurs as the wind speed approaches 100 km/hour. Mean wind 

speeds of more than 108 km/hr over a 10 minute period will damage trees and stands under almost any 

stand, site and soil conditions (Mayer, 1989). However, it is generally accepted that windthrow, 

especially endemic windthrow, is more affected by the turbulent component of the wind, than by the 

mean wind speed (Gardiner, 1995). In particular, gusts with frequencies that correspond to the natural 

sway of an object are likely to cause the most severe damage (Navratil, 1995; Slathers et al., 1994). A 

gust, usually defined as a positive departure from the mean over a specified time, can be an extreme case 

of the normal fluctuations in the wind. A defining feature of the atmospheric layer adjacent to the earth's 

surface, commonly called the planetary boundary layer (PEL), is that the flow is generally turbulent, 

resulting in considerable mixing. The turbulent nature of the lower atmosphere is responsible for 

sporadically mixing volumes of faster moving air from higher layers of the troposphere to the surface 

in the form of a gust. The causes of this turbulent mixing may he mechanical (due to vertical wind shear
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and aerodynamic roughness of the surface) or thermal (due to convective air currents).

1.3.2.2 Synoptic meteorology;

Wind flow in the PEL is in general related to winds aloft in the “free” atmosphere. The forces which 

establish and sustain the flow aloft are pressure forces arising from non-uniform heating of the globe. 

The pressure gradient force acts perpendicular to the isobars (lines of equal pressure, or height contours 

on a constant pressure surface) on a weather map, from high to low pressure (or heights). The Coiiolis 

‘force’ plays a role in the wind direction aloft, but performs no work. The CorioUs force is an apparent 

force caused by the rotation of the earth (a non-inertial frame of reference). The Coriolis force acts 

perpendicular to the wind direction. In the Northern Hemisphere it acts to the right of the wind 

direction, causing winds to blow clockwise around a high pressure system and counter-clockwise around 

Lows. The field of synoptic meteorology is primarily concerned with predicting the day-to-day 

propagation and development of these large scale (~ 1000 km) pressure systems.

The geostrophic wind is a theoretical wind that results from a steady-state balance between the pressure 

gradient and Coriolis forces. In regions of straight isobars above the top of the boundary layer and away 

from the equator (where the Coriolis force vanishes), the actual winds are approximately geostrophic. 

These winds blow parallel to the isobars (or height contours) with low pressure (heights) to the left in 

the Northern Hemisphere. The wind is fastest in regions where the isobars are closer together (i.e., 

where the pressure gradient force is larger). In the boundary layer, turbulent drag slows the wind below 

the geostrophic value and turns the wind to point at a small angle across the isobars toward low pressure. 

The angle depends on the magnitude of the frictional force, and is typically 10-20° over flat grasslands, 

or a smooth water surface, and 25-40° over urban and rolling terrain (Henderson-Sellers and Robinson, 

1986; Byers, 1974). The frictional force is at its maximum at the surface and gradually decreases with 

height until it becomes insignificant aloft in the free atmosphere where the geostrophic wind 

approximation holds. The decrease with height also leads to a clockwise change in wind direction with

26



height, which is sometimes referred to as the Ekman spiral, although often this “theoretical” spiral is 

perturbed or masked by non-ideal flow conditions.

Very complex terrain usually creates its own circulation pattern in the lowest air layers, rather than 

simply modify the geostrophic wind. Local circulations such as the sea breeze, and anabatic and 

katabatic valley winds, can only occur during anticyclonic (high pressure system) weather conditions 

when the atmosphere is relatively stable and geostrophic winds are light. They are masked by cyclonic 

(low pressure system) weather activity and cloudy conditions, which limit the development of thermal 

differences (horizontal temperature gradients). Under such windy and cloudy conditions, the 

atmospheric stability is near-neutral, and turbulence is generated mechanically.

1.3.2.3 Mechanical turbulence:

In forests, the generation of mechanical turbulence is affected by topography and stand conditions. In 

general, the higher the wind speed and the rougher the forest canopy, the greater the degree of 

mechanical turbulence for a given value of “overhead” wind speed, at (say) z ~ 1 km. Topographically 

induced changes in wind speed may occur, for example, as lee-slope turbulence or valley funnelling (see 

Fig. 1.2c). A narrowing valley can accelerate winds leading to eddy formation. Turbulence also occurs 

when the flows from two valleys meet at a junction. The effects of vegetation on the wind are similar 

to those of topography, but at a different scale. Cutblock shape and orientation can accelerate or 

decelerate winds similar to the effect of valleys, depending on alignment with respect to prevailing 

winds.

1.3.2.4 Wind and wind gust measurements;

Meteorological data, particularly wind gust measurements, are typically only routinely measured from 

city airports as part of the synoptic monitoring network. Wind and wind gust measurement are therefore
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often not available for areas that are sparsely populated, or which have mountainous terrain. In Canada, 

airport wind speeds are measured at the 10-metre level using a U2A cup anemometer and have a short 

period of record, beginning in the mid-1950s. Mean winds are recorded every hour and represent a two- 

minute mean. A wind gust is reported when the instantaneous peak wind speed exceeds the two-minute 

mean by at least 10 km/hour, and the peak attains a speed of at least 30 km/hour. The hourly two-minute 

mean wind speed and direction is archived at the Canadian Climate Centre in Downsview, Ontario. 

However, only the speed and direction of the daily extreme wind gust is included in the archive.

1.3.2.5 Models of the orographic windfield:

Airflow over non-uniform terrain is not easy to generalize and requires the use of either: a) empirical 

models for extrapolating surface winds to the local surroundings, such as WndCom (Ryan, 1983), or by 

applying the guidelines like those produced by Walmsley et al. (1989); or b) the simulation of actual 

atmospheric motions using 3-dimensional dynamical models, such as the Colorado State University 

Regional Atmospheric Modeling System or CSU RAMS (Pielke et al., 1992).

1.3.3 Winds and Windthrow in British Columbia

Mitchell (1995a) provides a synopsis of windthrow in British Columbia and describes windthrow 

research as being in its infancy. A quantitative approach to determining the windthrow hazard at a 

particular site is not yet possible in B.C. because information on the frequency and occurrence of strong 

winds is not available, nor is there enough information about the response of different species, crown 

classes, tree heights or stand densities to high winds. A hazard-based classification system is all that is 

currently possible, given that very little windspeed data has been collected in BC forests and that very 

little is known about the threshold forces required to overturn the wide range of species and crown 

classes that comprise stands in B.C.
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According to a provincial survey conducted in 1992, windthrow damage accounts for 4% of the 

provincial annual allowable cut or approximately 3 xlO® m ,̂ a level of damage which is similar to that 

caused by wildfire or insect infestation. With the exception of the provincial survey in 1992, there have 

been no comprehensive studies of windthrow in BC. There have been a limited number of site specific 

studies, however no studies could be found for the Central-Interior. No systematic reporting mechanism 

is in place for monitoring windthrow and prior to the 1992 provincial survey, windthrow occurrence 

could only be estimated from stumpage receipts for salvage timber, but this represented only a portion 

of the total windthrow and furthermore did not generally lend itself to determining the exact timing of 

occurrence which is crucial in identifying the dominant storm type. From a meteorological perspective, 

a more comprehensive reporting system is maintained by BC Hydro which documents storm-related 

damage to power lines. However, this database has a limited length (beginning in 1992) and is difficult 

to utilize because it requires a detailed knowledge of powerline orientation with respect to local tree 

lines. As a result of the 1992 survey, a unified program of windthrow and administration has been 

proposed by Stathers et al. (1994), but has not yet been adopted on a province wide basis.

In British Columbia, strong winds are associated with the passage of fronts that originate in the Pacific 

Ocean or in the Arctic, or from strong winds associated with thunderstorm activity. At recurrence 

intervals of 10 to 20 years, thousands of hectares in B.C. are windthrown by storm or hurricane force 

winds, while every year hundreds of hectares are blown over in uncut stands and along cutblock 

boundaries and road allowances (Stathers et al., 1994). However, because accurate records on 

windthrow are not being maintained locally, it is impossible to ground truth the importance of any 

particular storm type.

In a survey of fifty-nine sites on Vancouver Island, the simultaneous occurrence of high rainfall and 

exposure to winter storm winds from the south was found to be the major cause of blowdown in 

streamside leave strips (Moore, 1977). Storm winds from a southerly direction during the period from 

October to March are also reported to have caused the vast majority of blowdown in other studies in

29



Alaska, Washington and Oregon (cited in Moore, 1911)} In the Western-Interior, Coates (1997) 

examined windthrow damage at Date Creek 2 years after partial cutting and found that the vast majority 

of trees fell in a northerly direction, suggesting winds from the south caused most of the damage. Two 

major events were reported to have occurred during the two year study period, one in mid-October 1993 

and another in mid-August 1994. While these investigations lend support to the importance of winter 

storms, caution must be exercised when taking relationships derived in coastal regimes and applying 

them to the Central-Interior, especially given the differences in forest types, the complexities of 

windthrow, and the increased frequency of summertime convective storms in the interior.

1.4 PROBLEM STATEMENT

The complex terrain and sparsity of wind data in forested areas is a major obstacle to the development 

and implementation of wind risk management strategies in British Columbia. A quantitative approach 

to determining the windthrow hazard at a particular site is not yet possible because information on the 

frequency and occurrence of strong winds is not available. Detailed wind climatologies for forested 

areas in North America are rare and hazard-based classification will still play an important role in 

minimizing wind damage (McCarter et al., 1998). From a forest management viewpoint, very little can 

be done to prevent losses from major catastrophic storms. Some loss is inevitable and should be factored 

into the Allowable Annual Cut (AAC) calculations according to wind history and stand conditions. On 

the other hand, control measures to limit the extent of endemic windthrow related to silviculture 

activities have been established based on its relationship to individual tree stability, stand stability and 

external stability factors such as the sheltering and diverting effects of both topography and forest 

canopies (Navratil, 1995). The most obvious and immediate cause of all windthrow, however is wind. 

Yet, Stathers et al. (1994) recognize there is not enough known about wind zones in B.C. forests to 

implement a quantitative windthrow hazard classification scheme.

În fall and winter, synoptic scale pressure gradients are larger, implying stronger winds.
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Longterm wind records in the Central-Interior are limited to a few airport locations, having an average 

separation of 150 km (see Part II). The nearest longterm wind station to the MMF is the Prince George 

Airport (Fig. 1.1a). The complex terrain of the Central-Interior therefore requires the use of either; a) 

empirical models for extrapolating surface winds to the local surroundings; or b) the simulation of actual 

atmospheric motions using a 3-dimensional dynamical model. As empirical models are usually 

developed for specific terrain-types, a more versatile 3-dimensional model such as RAMS was favoured 

in this research project. RAMS advances gridded fields of atmospheric variables such as velocity, 

pressure and temperature through a series of discrete time steps based on the physical equations 

governing atmospheric motions, and can incorporate the effects of topography and forests on windflow. 

RAMS is currently used by the Canadian Forest Service to forecast fire danger conditions in Alberta 

(Anderson et al., 1996). Snook et al. (1998) successfully used RAMS to predict the regions of highest 

winds during a fall blizzard and severe wind event which blew down 8100 hectares of forest in 

Steamboat Springs Colorado in October 1997.

Prior to the development of a technique for assessing areas prone to high winds, it was important to 

assess whether severe-wind events in the MMF are primarily due to convective wind bursts (summertime 

events mainly), or due to synoptic scale wind storms (wintertime events mainly), as this would affect 

the type of analysis possible. Because accurate records on windthrow are not being maintained locally, 

it was impossible to ground truth the importance of any particular storm type in predicting windthrow 

occurrence. If straight-line synoptic winds are the most important, then extrapolation of extreme winds 

from an airport location would be a feasible expectation If convective storms are most important, then 

extrapolation is not realistic because of the spatial inhomogeneity of these storms and difficulties 

associated with their numerical simulation. From a wind-risk management perspective, it would be 

extremely difficult to design silviculture systems which could minimize the occurrence of windthrow 

resulting from convective storms. Synoptic storms on the other hand have greater predictability, and 

because of their spatial scale, have the potential to cause more pervasive damage. Therefore, after an 

assessment of the seasonal and directional characteristics of wind gusts in the Interior (see Part H), the
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decision was made to focus on the identification of areas in the MMF which are prone to high winds 

derived from synoptic scale forcing.

1.5 OBJECTIVES

Windthrow is a complex phenomenon caused by the simultaneous interaction between a number of 

environmental factors. In keeping with the objectives of the McGregor Model Forest Association 

(MMFA) to model key landscape level disturbances, this thesis focused on the role that topography plays 

in this complex phenomenon by trying to assess the influences of topography on extreme-wind 

behaviour. The thesis, therefore, had a very applied-science objective, namely to characterize the wind 

field in the McGregor Model Forest under a typical storm scenario, in order to help the MMFA identify 

potential areas of windthrow-prone terrain. In particular, the research focused on the identification of 

areas of the MMF which are prone to strong synoptic winds.

Specifically, the objectives of this study were:

1) To determine the synoptic climatology of the prevailing storm winds in the Central-Interior; and

2) To test and develop a model for extrapolating high winds across the MMF landscape under this 

flow condition.

1.6 METHODOLOGY

The complex terrain and sparsity of wind data in EC’s forests would typically demand the use of either 

empirical extrapolative techniques, or a numerical modelling approach to obtain an estimate of the 

windfield. This project utilizes both techniques by modelling synoptic composites of severe-wind events 

to derive wind speed ratios between grid points in the complex forest terrain and a neighbouring airport 

location.
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1.6.1 Overview to Research Approach

An overview to the method used to extrapolate high winds under the prevailing storm condition is shown 

in Figure 1.3. An analysis of historical wind extremes recorded at four airport locations in the 

Central-Interior was undertaken to determine the dominant storm type for the region (Step 1). Synoptic 

climatology and map pattern classification techniques were used to identify recurring and representative 

map patterns for moderate, strong and severe winds under this prevailing flow condition (Step 2). 

Atmospheric soundings taken at the Prince George airport during these three "keyday" storms were used 

to initialize a series of 12-hour numerical weather simulations (Step 3). The maximum hourly wind 

simulated at each grid point was recorded, and gridded wind maximums were constructed for each 

keyday scenario. Each grid of maximum wind speeds was normalized by the corresponding maximum 

speed simulated for the airport (Step 4). This provided a gridded set of speed ratios stratified by storm 

category. To extrapolate high wind estimates under the prevailing flow condition, the synoptically 

parameterized model multiplies the daily maximum mean surface wind speed at the airport by the 

appropriate grid of speed ratios.

1.6.2 Working Assumptions

A fundamental working assumption of this research approach is that the atmospheric circulation is a 

critical determinant of the surface environment. A second assumption is that surface winds at the Prince 

George Airport are forced by the same large scale atmospheric circulation as surface winds in the MMF. 

That is also to say, given the proximity of the MMF to the Prince George aerological station, an 

assumption of this analysis is that the upper level wind flow (i.e. that above the turbulent PEL) at both 

locations is essentially the same. While the first assumption is widely accepted in the field of synoptic 

meteorology, the second will require scrutiny and its validity will be borne out in the analysis.
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1.6.3 Study Components and Objectives

To meet the objectives of this thesis, six individual studies were identified, each with its own objectives 

and methodology. The six stages of the thesis were;

1) Deployment of a temporary climate monitoring network;

2) Compilation and presentation of historical climate data;

3) Analysis of the return periods of high wind events;

4) Development of realistic wind storm scenarios;

5) Numerical simulation of keyday storms; and

6) Construction of a synoptically parameterized extrapolation model.

The objectives of the six studies are outlined below.

Study 1: Climate Monitoring

1.1 To provide local wind data for validating the numerical simulations in stage 5 of this 

project; and

1.2 To provide temperature, precipitation, radiation and humidity data for validation of 

the climate model developed by the Forest Practices Team.

Study 2: Climate Normals

2.1 Identification and synthesis of historical climate data relevant to the MMF;

2.2 To characterize climatic conditions in the region; and

2.3 To examine the influence of topography and highlight the challenges of interpolating 

climatic variables in data sparse terrain.
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Study 3: Extreme Value Analysis

3.1 To determine the return periods of extreme winds of various magnitudes;

3.2 To describe the directional and seasonal characteristics of these events; and

3.3 To assess whether severe winds in the region are primarily due to convective wind 

bursts or synoptic scale wind storms.

Study 4: Svnoptic Climatoloev

4.1 To develop composites of fall and winter cyclones that are associated with moderate, 

strong and severe southerly winds in the Interior; and

4.2 To identify a representative mean sea level pressure map for each storm composite.

Study 5: Numerical Simulation

5.1 To perform numerical simulations of the three keyday storm events identified as 

being representative storm scenarios for moderate, strong and severe winds under a 

synoptic southerly flow condition;

5.2 To use the model output to characterize the wind flow under these conditions and to 

demonstrate the influences of topography on high winds; and

5.3 To obtain estimates of the speed and direction of the maximum winds which are 

likely to be observed in the McGregor Model Forest (MMF) under each storm 

scenario.

Study 6: Extrapolation Model

6.1 To test and develop a model for extrapolating high winds across the MMF landscape
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under a synoptic southerly flow condition; and

6.2 To use the model to characterize the strength and direction of winds in the MMF 

under this prevailing flow condition due to topographic variation.

With the exception of the climate monitoring study, each of the individual studies is reflected in chapters 

two through six, respectively. The climate monitoring study is included in Chapter 5 with the numerical 

simulation study. Chapter 7 provides an executive summary of the thesis results, discusses how the 

results may be used to assess areas of the MMF which may be prone to windthrow, and makes 

recommendations for improvements and future work.
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PART H: Examination of Central-Interior Wind Regime
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2 Climate Normals

2.1 INTRODUCTION

British Columbia is a land of great variety, with strong relief and bold topography. Climatic differences 

are larger vertically than horizontally, and even a small area may contain climates of much diversity. 

Meteorological data are often only measured at city airports which are typically located in valley 

bottoms, and are not available for areas that are sparsely populated, or which have mountainous terrain. 

Models must often be used to extrapolate meteorological parameters to these areas. One such model that 

was applied by Benton (1998) to extrapolate climatic parameters over the complex landscape of the 

McGregor Model Forest (MMF) is the mountain microclimate simulation model (MTCLIM) 

(Hungerford, 1989). MTCLIM extrapolates daily air temperature, incoming radiation, humidity and 

precipitation, making corrections for differences in elevation, slope and aspect between the point of 

measurement and the site of interest. A main goal of this thesis was to provide a module for 

extrapolating high winds over the McGregor landscape in order to complement Benton's McGregor 

Model Forest Climate Model (or MMFCliM). The identification, synthesis and analysis of existing 

sources of climate data was a logical starting point prior to undertaking both studies. This chapter 

therefore examines the 30-year climate normals for stations within and surrounding the Prince George 

Forest District. Climate normals for the McGregor station are specifically highlighted and are compared 

to the normals for the surrounding stations.

2.2 OBJECTIVES

The objectives of the climate normal study were:

1) Identification and synthesis of historical climate data relevant to the McGregor Model Forest;

38



2) To characterize climatic conditions in the Central-Interior of British Columbia; and

3) To examine the influence of topography and highlight the challenges of extrapolating climatic 

variables in data sparse terrain.

2.3 STUDY AREA: Climate Station Location and Local Topography

The McGregor Model Forest is situated near the centre of the Prince George Forest District, an area 

which covers 3.3 million hectares (Figure 2.4). Seven climate stations are located within the forest 

district: Hixon, Dome Creek, Prince George, McGregor, Aleza Lake, Chief Lake and McLeod Lake. 

Seven additional neighbouring stations were included in this investigation: MacKenzie and Pine Pass 

at the northern boundary; Fort St. James and Vanderhoof to the west; and Quesnel, Barkerville and 

McBride along the southern boundary. There is a notable deficiency in the availability of climate data 

along the north-eastern boundary. A variety of landscapes characterize the area. A large central plateau 

is the dominant terrain feature, bounded to the east by the Rocky Mountains. The terrain varies from 

the gently rolling hills in the southwest, to the deep valleys and steep rugged mountains in the east and 

north. At its southeastern fringes, the plateau extends into the Fraser River trench, which runs northwest 

from McBride to Aleza Lake. Beyond Aleza, the Fraser turns southward passing through Prince George, 

Hixon and Quesnel.

2.4 METHOD: Definition of Climate Normals

The data examined and presented in this chapter are from the 1951-1980 climate normal period. The 

atmosphere varies naturally, not only from day to day, but from year to year. It is therefore necessary 

to obtain a sample of conditions which is long enough to incorporate most of the variability. It is 

customary (although somewhat arbitrary) to describe the climate of a location using weather elements 

which have been averaged over a thirty year period (so-called climate normals). For example, the daily 

maximum temperature for any month is the mean of all daily maximum temperatures recorded in that
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particular month. The normal is an average of the set of 30 monthly means, and the annual maximum 

daily temperature is obtained by averaging the respective monthly values.

2.5 RESULTS

Climate data were examined for fourteen recording stations in and surrounding the Prince George Forest 

District. The climate normals included in this summary are wind, temperature, precipitation and frost 

period (Environment Canada, 1982 a-d). Wind, precipitation and frost period are perhaps most relevant 

to windthrow, because they can directly influence both the wind forces acting on trees, and tree 

anchorage. Temperature is also important as it will determine the form of precipitation which in turn 

influences windload and tree anchorage. Climate normals for the McGregor station are specifically 

highlighted in the text, and are then compared to the normals for the surrounding stations.

2.5.1 Surface Wind Normals

Only seven of the fourteen reporting climate stations recorded wind measurements, and only four had 

sufficiently long-term records for the determination of climatic wind normals. The nearest station to the 

MMF for which wind normals are available is the Prince George Airport. The airport is located on a flat 

plateau 90 metres above the Fraser River, 5 km southeast of the city. The river valley lies north-south, 

as does a ridge of higher terrain to the east. This tends to confine the wind in a north-south direction, 

as can be seen from the windrose diagram in Figure 2.5. Near the surface (10 metres), the annual 

frequencies of southerly and northerly winds are 33% and 19%, respectively, while the frequency of 

westerly winds is only 7%. Calms are also rather frequent (14% annually). Channelled northerly and 

southerly winds are prevalent year round, but are even more frequent in winter. Westerlies in contrast, 

are more frequent in summer. For example, in December the frequencies of southerly and northerly 

winds are 39% and 24, respectively, while westerlies are at a minimum (3%). In June, westerlies are 

at a maximum (12%), while the frequency of southerly and northerly winds, a relative minimum (28%
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and 14, respectively). Respective calms for January and June are 16% and 12%. Winds are less than 

20 kph 85% of the time, and the annual mean is 11 kph. The strongest winds are associated with 

channelled northerly and southerly winds, and westerlies. Winds are also slightly stronger in winter than 

in summer as can be seen from Figure 2.6 which compares the mean wind speed for each month to the 

maximum hourly speed and maximum gust speed observed that month over the entire period of record.

Windrose diagrams for Fort St. James, MacKenzie and Quesnel are given in Figure 2.7. The strong 

control of the surface air movement by topography is as obvious at these locations as at the Prince 

George Airport. MacKenzie and Quesnel are in valley-bottoms running northwest-southeast, tending 

to funnel the wind in these directions. Fort St. James at the western edge of the central plateau, is further 

removed from the influence of the Rockies: the winds are more evenly distributed and the station has 

the highest occurrence of easterly winds. MacKenzie and Fort St. James, located on the southeast shores 

of Williston and Stuart Lake respectively, are also influenced by lake breezes. An indication of the 

seasonal wind speed by direction is given in Table 2.1. A generalization about wind direction is that 

southerly winds are most frequent in winter and northerly winds in summer. Wind speed tends to be low 

generally, but highest in winter, with the exception of January which exhibits a relative lull as shown 

in Figure 2.8. This winter-time lull is due to the influence of arctic high pressure systems (see results 

of temperature correlations in the following section). Wind speeds are particularly low in the deep 

protected valleys at Quesnel and Dome Creek.

2.5.2 Temperature Normals

The monthly temperature normals for the McGregor station are given in Figure 2.9. July is the warmest 

month with a mean daily maximum of 22.5 °C and a mean daily minimum of 15.3 °C. January is the 

coldest month with a mean daily maximum of -7.1 °C and minimum o f-16.1 ”C. The daily temperature 

is below 0 “C for five months of the year (November through March). The annual mean daily 

temperature at the McGregor station is 2.5 ”C, and the annual maximum and minimum temperatures are
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9.3 “C and -2.2 ”C, respectively. The annual range of monthly temperatures is 12 “C. Clearer skies, 

calmer conditions and higher solar elevation angle in summer are conducive to more efficient heating 

of the ground and of the near-surface air by day, and to rapid cooling after sunset. This produces a 

greater mean daily temperature range in summer than in winter as is evident from Figure 2.9a. 

However, the daily range in temperature is greater in winter when the circulation may at one time permit 

cold Arctic air to move in, while at another time produce a southerly flow of relatively warm air from 

lower latitudes. This annual variation in the temperature range is evident in Figure 2.9b which 

compares the mean daily temperature to the temperature extremes.

Charts of mean temperature fail to portray actual conditions in B.C. as meteorological records are too 

few, and the topography too varied for satisfactory mapping of actual temperatures. The monthly 

temperature normals for the surrounding stations are given in Figure 2.10. There is very little variation 

between the monthly and annual means at the McGregor station and the immediately adjacent stations 

at Aleza Lake, Prince George and Dome Creek. Across the district, temperature decreases with 

increasing latitude and elevation. The annual mean daily temperature ranges from 4.5 °C at Quesnel to 

1.9 “C at MacKenzie. The temperature gradient eastward is not significant, except for where there are 

drastic changes in elevation, such as at Barkerville and Pine Pass which have annual daily temperatures 

of 1.4 °C and 0.8 °C, respectively.

A regression analysis of the climate normals found that a 2nd-order linear model was appropriate for 

explaining the variation in the mean aramal maximum and daily temperature with station latitude and 

elevation. Scatter plots between temperature and the geographical attributes of the climate stations are 

given in Figure 2.11. A total of 44 climate stations from within 53” ±3” latitude and 123” ±3” longitude 

were included in the regression analysis in order to obtain a normal distribution of the dependent and 

independent variables. A linear combination of station latitude and elevation accounted for 93% and 

71% of the variability in the maximum and daily temperatures, respectively. The results of this 

modelling exercise are summarized in Table 2.2 through Table 2.4. Results for armual daily
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temperature are depicted in the contour plot in Figure 2.12. Temperature was found to decrease by 

approximately 1 °C per degree latitude and 0.5 °C per 100 metre rise in elevation. The effects of 

elevation did not improve the prediction of the annual minimum temperature however, and only 25% 

of the variability could be explained by changes in latitude. Daily minimum temperature is normally 

recorded during the night when frost pockets, cold air drainage and temperature inversions prevail so 

that the details of fine scale topography are likely to dominate the microclimatology.

Seasonal differences were explored through the development of models to explain the variation in 

maximum temperature for the months of January, May, July and October. The effect of latitude was 

observed to decrease, while the effects of elevation and longitude increased. For example. May 

temperatures decreased by 0.6 °C per degree latitude, 0.7 °C per 100 metre rise in elevation and 0.3 °C 

per degree longitude. A notable exception was the month of January, which is influenced by subsidence 

inversions associated with the winter anticyclone. An example of this temperature inversion is evident 

in Figure 2.13, which compares the monthly daily temperatures ofMcGregor, Pine Pass and Barkerville. 

Though Barkerville, well up in the Caribou Mountains, is 655 metres higher than McGregor, its mean 

January temperature is 1 “C above McGregor. The explanation is largely the gravitational flow of the 

surface-cooled air to valley-bottoms in calm clear weather, but another factor may be the shallowness 

of the layer of continental Arctic air from the northeast, which is responsible for very cold spells in the 

valleys, but often fails to rise to Barkerville. Barkerville has lower means than McGregor for all other 

months of the year. The relationship is not observed at Pine Pass, due to its northern latitude.

2.5.3 Precipitation Normals

The monthly precipitation normals for McGregor are given in Figure 2.14. On average, the McGregor 

station experiences 157 days with measurable precipitation (104 days in the form of rain and 55 in the 

form of snow), and the total annual precipitation at the station is 964 mm (620 mm rain and 328 cm 

snow). The precipitation is fairly evenly spread over the year, with slightly more precipitation in winter
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than summer. Spring is definitely the driest season, with a precipitation minimum occuring in April (43 

mm). Rain turns to snow in late October and back to rain in mid-March as the mean daily temperature 

passes the 0 °C line.

Precipitation normals for the surroundings are given in Figure 2.15 and exhibit slightly more variability 

than the temperature normals. Precipitation is not heavy, except at higher elevations, Barkerville and 

Pine Pass receiving a total of 1044 mm and 1916 mm per year, respectively. Stations in the west are at 

the extreme edge of the rain shadow of the Coast Mountains. Vanderhoof is the driest station, receiving 

only 464 mm annually. Total annual precipitation increases eastward, to 616 mm at ChiefLake, and 897 

mm at Aleza Lake. Snow is measured at all stations from October until April and comes earlier at higher 

elevations. Lower elevations receive more rain than snow, while at higher elevations snow is greater. 

Pine pass for example receives 1076 cm of snow and 701 mm of rain. Correlations with station location 

are not as pronounced as temperature correlations (compare Fig. 2.16 with Fig. 2.11). Rain is most 

strongly correlated with distance from the Pacific Ocean, or station longitude (r = 0.56), while snow is 

more strongly correlated with elevation (r = 0.60).

2.5.4 Frost Normals

The normal frost-free period at the McGregor station is 95 days. The last mean frost date (spring) is 

June 3, and the first frost (fall) is September 7. Frost normals for the surrounding stations are tabulated 

in Table 2.5. The frost-free period is most strongly correlated with elevation (r = -0.63), decreasing by 

roughly 6 V2 days per 100 metre rise in elevation, F (l,l 1) = 7.30 , p = 0.021. Hixon, the station with the 

lowest elevation has the longest frost-free period (122 days), while Barkerville has the shortest period 

(48 days). Figure 2.17 shows how the frost-free period decreases with increasing elevation.
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2.6 SUMMARY AND CONCLUSIONS

Climate data were examined for fourteen recording stations in and surrounding the Prince George Forest 

District. Simple temperature, precipitation and frost models were explored, and the results are

summarized below.

• Across the district, temperature decreases with increasing latitude and elevation. The temperature 

gradient eastward is not significant, except where there are drastic changes in elevation. A 

2nd-order linear model was appropriate for explaining the variation in the mean annual maximum 

and daily temperature with station latitude and elevation. The annual daily temperature was found 

to decrease by approximately 1 °C per degree latitude and 0.5 °C per 100 metre rise in elevation.

• Precipitation normals exhibit slightly more variability than the temperature normals. Precipitation 

is not heavy (except at higher elevations), and is fairly evenly distributed over the year, with 

slightly more precipitation during winter, while spring is the driest time of the year. Stations in 

the west in particular are drier, because of the rain shadow effect of the Coast Mountains. Snow 

is measured at all stations from October until April and comes earlier at higher elevations. Lower 

elevations receive more rain than snow, while at higher elevations snow is greater. Correlations 

with station location are not as pronounced as temperature correlations. Rain is most strongly 

correlated with station longitude (r = 0.56), while snow is more strongly correlated with elevation 

(r = 0.60).

• The frost free period at the McGregor climate station is 95 days, and for the surrounding terrain, 

is estimated to decrease roughly by 6.5 days per 100 metre rise in elevation.

Wind stations are few and records are short. Only seven of the fourteen climate stations located in the 

Prince George Forest District had wind measurements, and only four had sufficiently long-term records 

for the determination of climatic wind normals. The nearest station to the MMF for which wind normals 

are available is the Prince George Airport. British Columbia lies full in the Westerlies between the sub-
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tropical high pressures and the Aleutian Low. Some generalizations about winds in the Central-Interior 

are:

• Southerly winds are most frequent during winter, while the prevailing winds during summer are 

northerly;

• The mean wind speed tends to be low generally, but is highest in winter and lowest in summer; 

and

• The control of surface air movement by topography is strongly evident at most climatological 

stations.

In contrast to precipitation, temperature and frost, winds over non-uniform terrain are not as easy to 

generalize. Winds in the boundary layer are modified by turbulent surface drag. Each location has 

unique landscape characteristics (hills, valleys, depressions etc.) and creates its own perturbation in the 

wind flow, so that the detailed wind climate of every landscape is unique. Because the focus of this 

thesis was to assess the influence of topography on extreme wind behaviour, the seasonal and directional 

characteristics of wind gusts in the Central-Interior are more closely examined in the next Chapter. The 

synoptic climatology of these strong winds is examined in Chapter 4, and the weather accompanying 

these storms is described relative to the climate normals given here.
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3 Return Periods of High-Wind Events

3.1 INTRODUCTION

Prior to developing a technique for extrapolating high winds, it was important to determine whether 

severe-wind events in the McGregor Model Forest (MMF) are primarily due to convective wind bursts 

(summertime events mainly), or due to synoptic scale wind storms (wintertime events mainly), as this 

would affect the type of analysis possible. Because accurate records on timing of windthrow were not 

being maintained locally, it was impossible to determine in advance the relative importance of any 

particular storm type to windthrow in the Central-Interior. The main goal of this chapter is to determine 

the dominant storm type for the region. This chapter therefore focuses more closely on the wind regime 

of the Central-Interior, and contrasts the behaviour of extreme winds to the climate normals given in the 

preceding chapter. Procedures for estimating the likelihood of extreme winds are presented, and the 

uncertainties inherent in these procedures are discussed. Knowledge of the typical return period between 

extreme wind events could benefit the development of wind-risk management practices by providing 

an estimate of the time window available for tree stability improvement over time, in planning 

sequenced harvesting passes, or to factor natural losses into the equation for a sustainable harvest. A 

directional and seasonal categorization of the wind extremes is also provided. Directional categorization 

of maximum winds is an important consideration in the spatial design of harvesting and silvicultural 

applications. Seasonal variability in the occurrence of extreme wind events is another important 

consideration since variable soil moisture and frozen ground affect a tree’s ability to withstand wind 

loads.
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3.2 OBJECTIVES

In this chapter, annual and monthly wind extremes from four airport weather stations in the Central- 

Interior are analysed. The specific objectives of this analysis were:

1) To determine the return periods of extreme winds of various magnitudes;

2) To describe the directional and seasonal characteristics of these events; and

3) To assess whether severe winds in the region are primarily due to convective wind bursts or 

synoptic scale wind storms.

3.3 METHODS

Determining the likelihood of severe wind gusts is an extreme value problem. A gust, usually defined 

as a positive departure from the mean over a specified time, is an extreme case of the normal fluctuations 

in the wind. Gusts are due to turbulent air motions that sporadically bring faster moving air from higher 

layers of the troposphere to near the surface. Consequently, these winds tend to occur only briefly in 

sudden bursts, but are nonetheless important because of their ability to damage both human and natural 

structures such as forests. According to Miller (1985) (cited in Navratil, 1995), endemic windthrow in 

forests arises as a result of winds with speeds of more than 70 kph and associated gusts of higher wind 

speeds. Wind measurements, particularly gusts speeds, are typically limited to airport locations and 

therefore have a short period of record beginning in the mid-1950's. To determine the speed of an 

extreme wind having a return period longer than the period of record, say the 100-year wind, requires 

extrapolation jfiom the available observations. The objective of an extreme value analysis is to model 

the observed data extremes to allow generalizations about the likely recurrence of these events.
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33.1 Extreme-Value Theory

Extreme value theory has many important and well established applications, particularly in the field of 

engineering. Wind climatology provides the building designer and the building code writer with 

information on the extreme winds that might affect a structure during its lifetime. When designing a 

dam, the interest is in knowing the typical period between extreme rainfall events. In many areas prone 

to flooding, annual flood series are analysed to estimate the probability and magnitude of future 

occurrences. The treatment which follows is intended to apply to the prediction of extreme winds in 

‘well-behaved’ climates.^ In such climates, it is reasonable to assume that a random variable may be 

defined which consists of the largest annual wind speed U, during a period of N consecutive years.

U = Uj, Uj, ..., Un (3.1)

A statistical analysis of such a series can be expected to yield a useful prediction of long-term extremes.

3.3.1.1 Cumulative frequency;

The first step in the analysis is to rank the observations by increasing wind speed and for each U; 

calculate an empirical cumulative frequency C(U; ), commonly given by the following expression:

C(UJ = i / (N+l)  (3.2)

which represents the probability of a wind speed U < U j. It should be noted that several alternative 

expressions to Eqn (3.2) have been published in the literature (see for example Singh, 1985). The 

expression given is the one popularized by Gumbel (Linacre, 1991). It is favoured here because it avoids

well-behaved climate is one in which extraordinary events such as hurricanes are not expected to occur.
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the final value in the ranked set as the highest possible, and preserves symmetry by making the last 

percentile differ from 100 per cent, as much as the first differs from zero.

3.3.1.2 Return period:

A return period is the average time within which a given wind speed will be exceeded just once. The 

probability that U; will be exceeded is E(UJ = 1-C(UJ. The return period T(U) is the reciprocal of the 

exceedence, E(U). Therefore,

T(UJ = 1 / [1-C(UJ] years (3.3)

Unfortunately, wind speed records are relatively short and to determine the speed of an extreme wind 

having a return period longer than the period of record, say the 100-year wind, requires extrapolation 

from the available observations. The extrapolation may be either graphical or based on an equation 

representing the cumulative distribution function.

3.3.1.3 Extreme-value distributions;

The two most common probability curves are the Fisher-Tippet Type I and Type II distributions, more 

commonly known as the Gumbel and Weibull distributions, respectively. The former is the distribution 

recommended for analysis of extreme winds by the National Building Code of Canada (1980). 

Differences in the choice of the model are reported to become more significant as the return period 

increases, eg. 3-6% for 100-year winds (Simiu and Scanlan, 1978). According to Flesch and Wilson 

( 1993) and others (see for example Linacre, 1992 and Simiu and Scanlan, 1978), the Gumbel distribution 

is the most appropriate probabilistic model for extreme wind behaviour.

The Gumbel distribution, shown graphically in Figure 3.18 is given by:
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C(U) = e)i:p{-exp[-g(U-UJ]} (3.4)

where is the modal value of the set and 1/g is the Gumbel scaling factor which can be determined 

graphically as follows. Applying the natural logarithm to Eqn (3.4) twice yields:

-ln[-lnC(U)] = g(U-UJ (3.5)

It can be seen from this equation that a graph of the reduced variate y = - In [-In C(U) ] against the annual 

maximum wind speed U results in a straight line having slope g and intercept -(gU^).

Substituting for C(U) from Eqn (3.3) yields the predictive equation:

U(T) = Urn - [ha[-ln(l.l/T)}]/g (3.6)

For return periods longer than about 10 years, Eqn (6) can be shown to simplify to:

U(T) = Urn + (lnT)/g (3.7)

Knowledge of g and therefore allows rapid estimation of the extreme wind for any specified return 

period T > 10 years.

3.3.1.4 Errors and model assumptions:

Statistical methods for regression analysis place three requirements on the data. The data used in an 

analysis should: 1) be a random statistical variable, 2) come from a static and homogeneous population, 

and 3) be statistically independent. Wind speed can be assumed to satisfy the first requirement, and 

since only the annual extremes are studied, it is reasonable to expect that the data will be statistically 

independent. The static population requirement remains to be assessed on a station-by -station basis.
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Errors include, in addition to those associated with the quality of the data, modelling errors and sampling 

errors. Modelling errors are due to an inadequate choice of the probabilistic model itself. Sampling 

errors are a consequence of the limited size of the samples from which the distribution parameters are 

estimated and become, in theory, vanishingly small as the sample size increases indefinitely. It is usually 

stipulated that measurements over at least 20 years are needed to estimate long-term extreme values 

(Linacre, 1992).

3.3.2 Daily Extreme Gust Data

Four airports in the Central-Interior were identified as having records greater than the 20-year minimum 

period recommended for an extreme value interpolation (Table 3.6). Airport locations are shown in 

Figure 3.19 together with a brief description of the station exposure. The wind speed at these airport 

locations is measured at the 10-metre level with a U2A anemometer. A wind gust is reported when the 

peak wind speed exceeds the two minute mean by at least 10 kph and the peak attains at least 30 kph.

Archives of the daily extreme gust speed were obtained from the Canadian Climate Centre. As outlined 

above, the analysis requires that only the annual extremes be modelled. The largest annual wind gusts 

recorded at each station are shown in the time sequences given in Figure 3.20. Quesnel, Smithers and 

Williams Lake exhibited no clear trend and can be assumed to satisfy the static population requirement. 

Prince George however, appears to exhibit a time trend with wind speeds decreasing over time. The 

trend, however, is not as evident in the time sequence of the largest monthly gust where the higher 

speeds observed between 1960-1970 appear to be part of a larger random fluctuation (see Figure 3.21). 

The selected data sets are therefore considered to satisfy the model requirements.

The distributions of the annual extremes are compared in the box plots given in Figure 3.22. The 

bottom and top of the box is closely related to the first and third quartile so that approximately 50% of 

the values lie within the box, and 25% above and below the box. A horizontal line in each box gives
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the location of the median. For example, from the box plot for Quesnel, it can be seen that 

approximately 75% of the annual wind extremes are below 80 kph. In contrast, 100% of the annual wind 

extremes at Prince George are above 80 kph. Gusts at Prince George and Smithers are seen to be 

significantly larger than those at Quesnel and Williams Lake. However there is no significant difference 

between the respective high and low speed stations as is evident by the vertical overlap between 

boxplots. Smithers has a median value which is approximately equal to the mean (93 kph), suggestive 

of a normal distribution, while the other stations exhibit a slight positive skew. The two low speed 

stations also exhibit one or more outliers at speeds greater than 105 kph.

3.4 RESULTS

3.4.1 Extreme Value Analysis

The annual wind extremes were ranked by increasing speed in order to calculate the empirical 

cumulative frequency C(Uj), exceedence E(Uj) and return period T(UJ for each station. An example 

of the calculations is shown for Prince George in Table 3.7. A scatter plot of the ranked wind speed 

against the empirical return period (Figure 3.23) suggests that an exponential distribution is an 

appropriate model. The Gumbel reduced variant G(UJ was therefore calculated for each station (see 

for example the last column of Table 3.7). A simple least squares regression was performed for each 

station using the Gumbel reduced variant as the dependent variable and the ranked wind speed as the 

independent variable. The results of the regression analysis are summarized in Table 3.8 and shown 

graphically in Figure 3.24.

The results for each station were statistically significant. For example, the result for the Prince George 

data set was a coefficient of determination = 0.975, significantly different than zero F(l,22) = 862, 

p < 0.0001. The velocity corresponding to a zero reduced variate or probability of 0.01, was shown by
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Eqn (3.5) to be the modal wind. = 90.0 kph. The slope of the line is g = 0.080 kph *. The Quesnel 

data did not show an impressive conformity to a straight line (Figure 3.24b), but had a coefficient of 

determination = 0.913. The poor fit is believed to be a consequence of Quesnel being located in a 

deep protected valley. There was also evidence of a possible step change from moderate to high gust 

speeds in the scatter plot in Fig. 3.23. The modal wind is U„ = 72.0 kph and the slope is g= 0.085 kph *.

3.4.1.1 Estimated return periods;

Having determined the parameters of the Gumbel distribution, ‘best-estimates’ of the extreme wind for 

any specified return period can be estimated from Eqn (3.6) or (3.7). The simplified prediction equations 

(T > 10 years) are:

Prince George: U(T) = 90.0 + 12.5 InT (3.8a)

Quesnel: U(T) = 72.0 + 11.8 InT (3.8b)

Smithers U(T) = 84.3 +13.9 InT (3.8c)

Williams Lake U(T) = 78.7 + 8.5 InT (3.8d)

where the return period T is to be entered in years and the extreme wind is in kph. Extreme wind speeds 

associated with return intervals of 5, 10, 20, 50 and 100 years were calculated using the more general 

form of the prediction equation (3.6). The results are shown on the right-hand side of Table 3.9. Return 

periods for extreme winds of 50, 70,90, 110 and 130 kph given on the left-hand side of the page were 

computed by solving Eqn (3.6) for T(U).

Some examples of the interpretation of the data in the preceding table are as follows:

• The 100-year wind at Prince George is 148 kph. The 100-year wind is the speed likely to be 

exceeded only once in a century on average, and corresponds to a cumulative probability of
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C(U)=0.99. Therefore the chance of having a wind speed of 148 kph in Prince George in any 

particular year is 1 per cent.

• Return periods at Quesnel are 5 times larger than at Prince George. On average, wind speeds of 

90 kph can be expected to occur in Quesnel every 5 years; while in Prince George the same wind 

is expected to occur every 1-2 years, thus suggesting more severe limitations for protection of an 

exposed understory in Prince George based on a five-year harvesting sequence.

3.4.1.2 Confidence intervals:

A measure of the sampling error can be obtained by calculating confidence intervals for the extreme 

wind predictions. The 95% confidence intervals for the regression parameters (g and -gUjJ are included 

in Table 3.8. Confidence intervals for the extreme wind predictions were determined by carrying 

through the uncertainties in the regression parameters in the calculation of and U(T). A visual 

inspection showed that adding the uncertainties to the best estimate yielded the lower bounds to both 

and U(T), and subtracting, the upper bounds. The 95% confidence intervals for the extreme wind 

predictions given in Table 3.9 are shown in Table 3.10. For example, the 95% confidence interval for 

the true value of the 100-year wind at Prince George was found to lie within a rather broad interval 131- 

168 kph. Confidence intervals around the Quesnel estimates were nearly twice as large as those for 

Prince George. The best results were obtained for Williams Lake where the 100-year wind is 118±10 

kph. The intervals can be anticipated to become larger for longer return periods. For instance, 

comparing the confidence intervals for 5-year wind with those for the 100-year wind, the interval 

becomes 13% larger for Williams Lake and 15-18% larger for the remaining three stations.

3.4.2 Seasonal Characteristics

Since variable soil moisture and frozen ground affect a tree’s ability to withstand wind loads, seasonal 

variability in the occurrence of extreme wind events is another important consideration. The majority
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of the annual extreme wind gusts at most stations tends to be either a fall or wintertime event (see Table 

3.11). For instance, nearly half of the annual extreme wind gusts observed at Prince George occurred 

during the fall, and one-quarter were wintertime events. An exception is Quesnel, where the highest 

number of annual maximums were recorded during the spring (37%). All stations exhibited a low 

frequency of annual extremes occurring during the summer months.

3.4.2.1 Monthly wind extremes:

Seasonal variability was more closely examined by studying the complete set of monthly extremes. The 

largest monthly gust speeds observed during the period of study, and the mean monthly gust speed, are 

compared in Figure 3.25. Most stations show relative maxima in the mean monthly gust speed during 

the spring and fall, and a minimum during the summer. Prince George exhibits a single maxima 

occurring in October and an absolute minimum in August. The greatest variance (as shown by the 

standard deviation) occur during the spring and fall months (most notably in March and October). An 

exception is Williams Lake, which has a relative maximum during the summer months as a result of two 

extreme wind events, one in July of 1965, the other June, 1985.

3.4.2.2 Monthly return periods :

Months having higher gust speeds can be expected to have shorter return periods. To demonstrate, 

return periods for Prince George were calculated for the months of January, April, July and October. The 

‘best-estimates’ of the return periods appear in Table 3.12. The highest wind gusts observed at Prince 

George occur in October. On average, a wind speed of 110 kph is expected to occur in October every 

nine years, whereas the same wind speed is only expected to occur in July every sixty years.
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3UL3 Dlrectioiial Characteristics

Directional categorization of wind maximums is an important consideration in the spatial design of 

harvesting and silvicultural applications. For instance, it is recommended that longitudinal axes of 

cutblocks and strips be oriented perpendicular to the prevailing wind directions and that harvest 

sequences progress against the prevailing winds (Navratil, 1995). The Canadian Climate Centre, only 

archives the direction and speed of the daily extreme gust. Calculating return periods for different 

directions therefore was not possible, because this would necessitate a daily extreme gust for each wind 

direction. The only alternative available was to compute the directional frequency of the extreme wind 

gusts. Directional frequencies of the wind extremes were determined on an annual and monthly basis 

for the eight cardinal points; N, NE, E, SE, S, SW, W, NW.

3.4.3.1 Annual wind extremes;

The directional frequencies of the annual wind extremes are shown in Table 3.13. Between 80-95% of 

the annual wind extremes recorded at the four stations had either a southerly and/or westerly component. 

At Prince George, the prevailing directions were southerly (69%) and westerly (18%). Due to the 

limited size of the annual data set it was not practical to characterize the directional frequencies as a 

function of either gust size or time of year. A ‘next-best’ approach was considered to be a 

characterization of the monthly extremes.

3.4.3.2 Monthly wind extremes:

Directional frequencies of the monthly extremes were determined both as a function of wind speed class

and time of year (season). Results for Prince George are shown graphically as windrose diagrams in

Figures 3.26 and 3.27. The directional frequency as a function of gust size is given in Figure 3.26, and 

the directional frequency by season in Figure 3.27. Both figures depict the fact that more than half
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(55%) of all the monthly gust extremes recorded at Prince George were blowing from the south. 

Westerly gusts in contrast accounted for 25%, and winds from the southwest another 10%. From Figure 

3.27, it can be determined that 78% of the monthly extremes are between 50-90 kph. Wind speeds in 

excess of 90 kph account for 15% of the monthly extremes. Wind directions in this ‘extreme-of- 

extremes’ category are mainly southerly (70%). Figure 3.27 shows that approximately 70% of all 

southerly gusts are either winter or fall events, while westerly gusts tend to be spring (29%) and summer 

(41%) events.

Results for the other three stations are tabulated together with the directional frequencies for Prince 

George in Table 3.14 through Table 3.21. Prevailing directions at Quesnel, Smithers and Williams Lake 

are up and down the mountain valleys in which these stations are situated. However, with the exception 

of a more pronounced presence of northerly gusts, the stations exhibit similar tendencies to those at 

Prince George. Monthly extreme gusts having a southerly component remain the most frequent, with 

frequencies between 52% and 68%. Southerly gusts are more frequent during the fall and winter 

months, while the number of westerly gusts is at a maximum during spring and summer. Westerly gusts 

are approximately 50% less frequent than at Prince George (occuring only 8-13% of the time) due to the 

higher incidence of northerly gusts. Gusts having a northerly component tend to be evenly distributed 

throughout the year and occur between 22% and 35% of the time.

3.5 DISCUSSION

To benefit the development of wind risk management practices, the results of this analysis must be 

spatially extrapolated. Flesch and Wilson (1993) found that spatial extrapolation was possible for the 

province of Alberta in areas well removed from the foothills. The results of the present analysis 

highlight the potential challenges of extrapolating extreme wind predictions in nonuniform terrain.
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3.5.1 Topographic Influences

Two of the stations included in the analysis are in what may be described as well-exposed settings, 

namely the flat plateau and hilltop stations at Prince George and Williams Lake, respectively. In 

contrast, the other two stations are in highly sheltered river-valley locations. The highest gust speeds 

however, were found to occur at Prince George and Smithers, while the lowest speeds were at Quesnel 

and Williams Lake. The appearance of highest gust at Prince George and Smithers may be explained 

by the scale of the topographic influences at each station. Smithers, located in a deep mountain valley, 

is prone to slope winds and funnelling effects. Quesnel and Williams Lake are located in the broader 

Fraser River valley, and are sheltered by the Caribou mountains. Quesnel is also prone to localized 

sheltering effects from a hill immediately upstream of the prevailing wind direction. Prince George, 

located in the southeast comer of the Central Plateau is somewhat outside of the sheltering influence of 

the Caribou mountains. Another important topographic influence is the generation of mechanical 

turbulence. The stronger the wind, the greater the degree of mechanical turbulence generated. This 

effect is not linear, and may have manifested itself in the Quesnel series where there was evidence of 

a step change from moderate to high gust speeds (Figure 3.23). Wind extremes in areas of complex 

terrain are therefore likely to be site specific making extrapolation to the local surroundings an uncertain 

exercise.

3.5.2 Climatological Influences

The seasonal and directional characteristics of the maximum wind gusts seem attributable to mean 

climatological pressure patterns and the position of the polar jet stream. The jet stream is a relatively 

narrow ‘stream’ of rapidly moving air (up to 400 km/h) flowing in a meandering path from west to east 

at roughly 10 km elevation. The mean position of the jet, and the belt of westerlies in which it is 

embedded, shifts south in winter with the seasonal migration of the polar front. As it moves southward 

in winter, it also moves to higher altitudes and on average, its speed increases. Cyclonic and frontal
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activity are associated with the position and intensity of the Jetstream. The peak gusts observed in the 

spring and fail coincide with the transitional period when frontal activity is at a maximum. Average 

summer and fall mean sea-level pressure patterns for the period 1982 through 1994 are compared in 

Figure 3.28. In summer, the Pacific High is strong and rather far north. Winds over the Central-Interior 

are light and from the west. In fall and winter, the continent is colder than the ocean and there is a 

tendency for the denser, stagnating air to form high pressure cells over the continent, while lower 

pressure exists over the oceans. The Pacific High is weaker and displaced farther south by the Aleutian 

Low which is well developed. Winds are stronger and have a more southerly component. Stronger 

weather and precipitation along the west coast during this period is associated with the movement of this 

low pressure system and with associated rapidly moving lows from the southwest which typically move 

into the Aleutian Low position while their fronts track across B.C.

The southerly winter gusts are, therefore, most likely associated with the flow ahead of a cyclone and 

frontal system moving across the Pacific Coast. Summer gusts, in contrast, may be the result of gusty 

westerly winds typically found behind a cold front, or due to wind bursts from day-time convective 

storms which are able to develop and propagate in the weak prevailing westerly flow. Summertime 

westerlies allow the passage of unstable maritime polar air over the warmer land surface, which 

combined with orographic lift, results in increased thunderstorms as one moves eastward across the 

Central Plateau toward the Rockies. Thunderstorms are relatively infrequent however, typically 

occurring 5 days per summer at Smithers, but 20 days per summer in the eastern part to the region.

3.6 SUMMARY AND CONCLUSION

Typical return periods of extreme wind events at four locations in the Central-Interior were estimated 

by assuming that the set of annual extreme gust speeds can be described by an exponential extreme-value 

distribution. A summary of the key results from the extreme value analysis for the case of the Prince 

George Airport station follows.
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A ‘best-estimate’ of the 100-year wind at Prince George is 148 kph, while the 95% confidence interval 

for the true value of the 100-year wind spans from 131 to 168 kph. Seasonal variability in the return 

period was examined by estimating typical return periods for annual extreme gusts occurring in January, 

March, July, and October. On average, a wind speed of 130 kph can be expected to occur in October 

every twenty-seven years, but is only expected to occur in July once every two-hundred and fifty years. 

A directional and seasonal categorization of the extreme wind events was undertaken by examining the 

monthly and annual wind extremes. Wind gusts at Prince George were found to occur most frequently 

from the south, and to a lesser extent from the west. This was found to be particularly true of winds in 

the ‘extreme-of-extremes' category. The southerly gusts were primarily fall and winter events, while 

gusts from the west tended to be spring or summer events.

The results of the directional and seasonal categorization of the historical wind extremes suggested that 

southerly gusts, associated with winter cyclones moving across the Pacific Coast, are statistically the 

most significant contributor to extreme-wind events. A conclusion that may be drawn from the results 

of this analysis is that synoptic winds driven by a straight-line geostrophic flow are likely to be the most 

significant contributor to windthrow events, and that wind bursts from convective storms are likely to 

play only a secondary role. The importance of fall synoptic scale gusts over summer convective storms 

cannot be confirmed however, because accurate records of windthrow events do not exist for the 

Central-Interior. Investigations of windthrow events along coastal locations lend support to the 

importance of winter storms. In a survey of fifty-nine sites on Vancouver Island, the simultaneous 

occurrence of high rainfall and exposure to winter storm winds from the south was found to be the major 

cause of blowdown in streamside leave strips (Moore, 1977). Storm winds from a southerly direction 

during the period from October to March are also reported to have caused the vast majority ofblowdown 

in other studies in Alaska, Washington and Oregon (cited in Moore, 1977). While these investigations 

lend support to the importance of winter storms, caution must be exercised when taking relationships 

derived in coastal regimes and applying them to the Interior, especially given the differences in forests 

and the complexities of windthrow. Given that windfirmness generally improves with frozen soil and
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snow cover, this suggests that the window for endemic windthrow in the Central-Interior is rather 

narrow, possibly limited to the fall months.

If, as the results of this analysis would suggest, straight-line synoptic winds (i.e. a southerly flow) are 

the most important, then extrapolation of extreme winds from an airport location would be a reasonable 

approach. However, there are at least two notable limitations to this investigation. Firstly, airport 

anemometers are designed to measure synoptic winds (which have a large horizontal component), and 

may not adequately resolve convectively-driven wind gusts (which have a large vertical component). 

Secondly, convective storms typically manifest themselves at a length scale on the order of 1 km 

(sub-mesocale), not at the synoptic scale (which is on the order of 1000 km). Therefore, for convective 

storms, the stations used in this analysis (which have an average separation of 150 km, and are all 

located in river/mountain valleys running north-south) may not fully capture the significance of certain 

terrain effects operating in the rolling and mountainous MMF landscape (eg. daytime convective storms 

caused by topographic lifting). If convective storms are most important, then simple extrapolation may 

not be realistic because of the spatial inhomogeneity of these storms and difficulties associated with their 

numerical simulation. From a wind-risk management perspective, it would be extremely difficult to 

design sihviculture systems which could minimize the occurrence of windthrow resulting from 

convective storms. Synoptic storms on the other hand have greater predictability, and because of their 

spatial scale, have the potential to cause more pervasive damage. Therefore, although there is a potential 

bias toward the frequency of synoptic storms, the decision was made to focus on the identification of 

areas in the MMF which are prone to severe winds under a synoptic southerly flow.

The fact that the extreme wind events are derived from synoptic scale forcing which is characterized by 

a prevailing wind direction makes the task of spatial extrapolation more tractable. One way to achieve 

extrapolation may be via a 3-D mesoscale model like RAMS (Pielke et al., 1992), which can incorporate 

the effects of topography and forests on windfiow. A means to extrapolate high winds is described in 

the next section. In Chapter 5, the synoptic chmatology of the strong wind events is first refined by

62



examination of the surface weather and radiosonde data corresponding to those days on which the annual 

extremes were recorded. Once archetypical soundings of strong wind events have been identified, the 

soundings are then used to initialize a series of model runs with RAMS (Chapter 6).
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PART ni: Extrapolation of High Winds
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4 A Synoptic Climatology for High Winds

4.1 INTRODUCTION

This chapter examines the synoptic climatology of severe wind storms which may potentially contribute 

to forest blowdown in the central-interior of British Columbia. A fundamental working assumption of 

synoptic climatology is that the large scale atmospheric circulation is a critical determinant of the local 

surface environment. According to Barry and Perry (1973), a synoptic climatology regards patterns of 

weather (clouds, rain, wind etc.) as an implicit function of sea-level pressure distribution. In Part II, it 

was shown that fall and winter are typically the windiest times of the year in B.C. To determine the 

synoptic climatology of this windy season, daily weather maps of mean sea-level pressure from October 

through March were averaged for the 25-year period 1970-1994. A storm composite for high southerly 

winds was then constructed by including only those maps where the daily extreme gust speed at the 

Prince George Airport was from a southerly direction, and greater than 30 km/h. Six hundred and 

twenty-six storm cases were subsequently identified. A pressure anomaly map for strong winds was 

constructed by subtracting the composite from climatology and the statistical significance of the 

composite was tested at the 99% level using a Student's t-test. The analysis was repeated to construct 

individual composites for moderate, strong and severe wind storms. Map-pattem classification 

techniques were then used to identify a recurring and representative map pattern for each storm 

composite. In Chapter 5, the keyday maps identified in this analysis are used to initialize a series of 

numerical weather simulations in order to obtain estimates of severe winds in the McGregor Model 

Forest (MMF).
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4.2 OBJECTIVES

The main goal of the synoptic climatology component to this investigation was to develop reahstic and 

representative storm scenarios for initializing the numerical simulations in Chapter 5. The specific 

objectives identified for this study therefore were;

1) To develop synoptic-composites of fall and winter cyclones that are associated with both 

moderate, strong and severe southerly winds in the Central-Interior; and

2) To identify a recurring and representative map pattern for each storm composite.

4.3 METHODS

Yamal (1993) identifies and provides worked examples of the main classification methods used in 

modern synoptic climatology. According to Yamal (1993), every synoptic climatology has two stages: 

1) classification of the atmospheric circulation; and 2) the assessment of the relationship between those 

categories and the surface environment. Classifications are usually in the form of synoptic weather 

maps, and may be manual (subjective) or automated (sometimes called objective). The order in which 

these stages occur distinguishes the two approaches to developing a synoptic classification. In the 

circulation-to-environment approach, the atmospheric circulation is classified first and then related to 

the surface environment. Classifications in this approach tend to be more general and are independent 

of the surface variable (or variables). In contrast, the environment-to-circulation approach classifies the 

atmospheric circulation on the basis of surface-based criteria and the synoptic classes are not 

independent of the environmental response. Both the environment-to-circulation and circulation-to- 

envirorunent approaches were utilized to develop a synoptic climatology for southerly wind gusts in the 

Central-Interior. The two synoptic classifications selected for this analysis are described below.
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4.3.1 Composite ClassiGcatlons

Compositing is one of the easiest classification methods to conceptualize and apply. Composites can 

be viewed as a climatology based on events, rather than means calculated over some period of time. 

Composites are typically average pressure maps of specific situations, and evoke an environment-to- 

circulation approach toward synoptic classification. Compositing is often the method of first or last 

resort, and because of its flexibility, is amenable to almost any research problem (Yamal, 1993). 

Compositing also offers a means for determining the variability and significance of the synoptic features 

accompanying surface-based events, such as severe-southerly winds (eg. Mass and Bond, 1996). While 

a case study can isolate mechanisms which are important for an individual storm, the compositing of a 

large number of cases into one data set can identify processes common to most cyclones. Ideally, 

compositing assumes that a correct temporal and spatial orientation can be chosen which will reveal 

these common features. This usually involves centering a cyclone along a trough of low pressure and 

tracking the feature as it evolves. In regions where a significant proportion of features form and/or decay 

in situ or are persistent, the approach would he to focus on a fixed geographical region rather than on 

a moving synoptic feature (eg. Achtor and Horn, 1986). This approach is therefore amenable to the Gulf 

of Alaska since it is often the decay centre for storms in the Pacific. Two potential drawbacks associated 

with composites are: 1) they are no better than the criteria upon which they are based; and 2) they can 

average disparate atmospheric settings. These two problems can normally be addressed by manually 

inspecting the maps or other data used to create the composites. A more objective approach to 

addressing the second drawback is to calculate and plot standard deviations for each composite.

43.2 Correlation-based Map-pattem Classifications

In contrast to compositing, map-pattem classifications employ a circulation-to-environment approach 

to synoptic climatology. Early map classifications were subjective and labour intensive, requiring a 

meteorologist to manually categorize daily weather maps. Automated map classifications are considered
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an improvement over manual techniques because, when based on standardized criteria and data, results 

can be replicated and studies compared. Automated classifications can be considered a pattern 

recognition problem involving digitized weather maps. Such techniques are generally based on principal 

component analysis, factor analysis or pattern correlation techniques. The latter were favoured in this 

study because: 1) results from eigenvector-based techniques are often difficult to interpret and lack the 

uncomplicated appeal of a readily interpretable weather map; and 2) correlation-based techniques are 

typically capable of classifying more than 90 per cent of the weather maps in a sample (Yamal, 1993). 

There are two approaches to correlation-based classifications. The first, introduced by Lund ( 1963), uses 

chart-to-chart correlation coefficients to determine the most highly correlated and frequently occurring 

map patterns. Kirchhofer (1973) introduced a variation on this scheme which uses a simple sums-of- 

squares formula to compare normalized daily pressure grids. The two algorithms are similar, but the 

Kirchhofer formula is easier to code and Yamal (1984) provides a computer program based on this 

technique. A flow diagram of the program is shown in Figure 4.29, and a description of the algorithm 

is given below.

Step 1: Normalize Grids

The data on each grid are first normalized in order to obtain generalized map pattems which

are free of seasonal effects according to the equation:

Z,=—  (4.9)s

where,

Z, = the normalized value at grid point I

Xj = the observed value at grid point I

X  = the mean, and s the standard deviation as calculated from the “population” which is all

points of the N-point grid.
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Step 2: Calculate Scores

A Kirchhofer score is calculated for all grid-pair combinations using the following sums-of- 

squares formula:

(4.10)
i= l

where Z„,- and Ẑ , are the normalized grid values of point I on days a and b, respectively. 

Two maps are considered similar if S is less than a prescribed threshold. To distinguish 

between maps which are statistically similar overall, but which have differing pattems in 

specific sectors, subscores for each row and column of the grids are also computed using 

(Eq. 4.10). Maps which meet the prescribed grid, row and column thresholds are termed 

“significant-pairs”.

Step 3: Select Keydays

The record of significant-pairs is examined, and the map having the largest number of 

significant scores associated with it is designated as keyday 1. This map and all the maps 

associated with it are removed Irom the data set and the procedure is repeated to find keyday 

2, 3 etc. The procedure continues until all days are clustered into a specified group size 

minimum (eg. 5 or more significant days per keyday). Any maps remaining at this stage are 

labelled “unclassified”.

Step 4: Reclassify Maps

Because any given map may be significantly correlated with more than one other map, it is 

possible for days to have been misclassified in Step 3. To correct this, each grid is
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reclassified. In the reclassification procedure, Kirchhofer scores between each grid and each 

of the keydays identified in Step 3 are calculated. The lowest significant score is recorded 

for each daily grid, with the associated keyday denoting the synoptic type of that day. The 

output from this step is a map-pattem catalogue for the entire data set.

Willmott (1987) demonstrated that the Kirchhofer score given by Equation 4.10 is related to the 

correlation coefficient (r) used by Lund through the equation 5=2N(l-r). Selection of the appropriate 

r-value is critical to the analysis. While higher r-values cause within-group variance to decrease and 

between-group differences to increase, it also results in more map pattems and a greater number of 

unclassified days. Many investigators therefore opt for lowering the r-value in order to produce a 

workable number of map-pattem categories and to increase the number of grids classified. Values are 

typically chosen to correspond to a correlation coefficient of 0.5 to 0.7 (Yamal, 1993).

4.3.3 Study Area and Data Selection

Surface maps exhibiting a tight southeast-to-northwest pressure gradient over the Interior (such as in the 

southeast comer of a cyclone situated olï the coast of B.C.), will result in strong southerly winds over 

the region. The importance of such a map feature is supported by the review of two existing synoptic 

climatologies for the region and provides a focal point to the current investigation. Overland and Hiester 

(1980) produced a subjective sea-level climatology for the coastal region of southem Alaska, which they 

used to stratify coastal winds under strong orographic influence by synoptic map type. Three of the map 

pattems identified in Overland and Hiester (1980) may be recognized as potential candidates for strong 

southerly winds in the interior ofB.C. In order of annual percent fi-equency, the three map pattems were 

the Aleutian Low (33%), a stagnating low off the Queen Charlotte Islands (17%) and a low in the Gulf 

of Alaska (12%). The Aleutian Low was prevalent during all seasons while the other two map pattems 

were primarily winter features, but were also common during fall and spring. Biasing and Lofgren 

(1980) applied map-correlation techniques to the identification of recurring anomaly pattems in sea-level

70



pressure over the North Pacific Sector and Western North America. Five major anomaly pattems were 

identified for each season. Anomalies of the three noteworthy features from the Overland and Hiester 

study were identifiable in the winter and fall pattems here. One winter anomaly pattern featured a strong 

Aleutian Low, and another a strong somewhat southeasterly displaced Aleutian Low. Relevant fall 

pattems included a negative pressure anomaly over southem Alaska, and a slightly below-normal 

pressure anomaly off the North American West Coast. In order to resolve all three potential map 

pattems noted above, the grid selected for this study covered the area from 110° to 190° west longitude 

and 35° to 70° north latitude (see Figure 4.30).

Two types of data were required for determining the synoptic climatology of strong winds; gridded 

pressure data to classify the large scale atmospheric circulation, and station data to assess the 

relationship between the atmospheric circulation and the local surface environment. An earlier 

examination of long-term wind records at the Prince George Airport (see Fig. 3.20 and Fig. 3.21) 

showed an anomalous increase in wind speed during the period 1960-1970. Yamal (1985) reports that 

the Pacific north-west coast experienced a significant change in both temperature and precipitation 

regimes in the middle of this anomaly, and according to White and Walker (1973) (cited in Yamal, 

1985), abmpt changes in the relationship between equatorial sea surface temperature and Aleutian Low 

intensity took place at about the same time. To avoid mixing data from two potentially distinct 

populations, this study was limited to the 25-year period 1970-1994. A description of the two data sets 

selected for this study is given below.

4.3.3.1 Environmental data:

Periods of gusty winds were taken as a surrogate for strong winds. Records of the direction and speed 

of the daily extreme gust measured at the Prince George Airport were obtained from the Canadian 

Climate Centre for the period 1970-1994. Wind direction measurements prior to 1977 were taken to the 

nearest 20 degrees (eg. 360, 340, 320 etc.), while the remainder of the data was recorded to the nearest
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10 degrees or 36 compass points. Gusts were reported when the peak wind speed exceeded the two- 

minute mean by at least 10 km/hour and the peak attained a speed of at least 30 km/hour. The data set 

had a 97% availability, and according to the criteria for recording gust measurements, there was no gust 

activity on 54% of the available days.

4.33.2 Atmospheric circulation data & analysis software;

The gridded data used in this study were obtained from model output of the NCEP/NCAR Reanalysis 

Project (Kalnay et al., 1996). The goal of this project is to produce a 40-year record of global analyses 

of atmospheric fields. The quality and utility of the re-analyses are considered superior to archives of 

real-time weather analyses because: 1) the model used a frozen state-of-the art data assimilation routine, 

eliminating perceived climate jumps associated with changes in data assimilation systems; 2) additional 

observations are used that were not available for the real-time analyses; and 3) the model output data 

are temporally and spatially continuous. Reanalysis information and partial model output of selected 

fields are available free of charge at http://wesley.wwb.noaa.gov/reanalysis.html. Daily-averaged mean 

sea-level pressure data and 850 hPa and 500 hPa pressure surface data were obtained for the North 

Pacific sector and western North America for period 1970-1994. The data are stored in GRIB (GRIdded 

Binary) format and have a spatial resolution of 2.5° latitude, resulting in a grid size for this study of 

17x24 (see Figure 4.30). The daily grids represent an average of 4 daily assimilation cycles (OOZ, 06Z, 

12Z and 18Z) and therefore, result in smoothed map features. One drawback to using the daily data is 

that it was not suitable for studying storm development over time.

The gridded data were studied utilizing the Gridded Analysis and Display System (GrADS), an 

interactive desktop tool for the analysis and display of earth science data developed by the Center for 

Ocean-Land-Atmosphere studies, Calverton, MD. The software is GRIB compatible and is freely 

distributed at http://grads.iges.org. GrADS implements a 4-Dimensional data model, where the 

dimensions are usually latitude, longitude, vertical level, and time. Operations may be performed on
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the data directly using a set of built-in functions, or users may add their own functions as external 

routines written in any language. A programmable scripting language can also be used to automate 

complex multi-step calculations or displays. Once the data have been accessed and manipulated, the 

results may be displayed using a variety of graphical output techniques.

4.3.4 Analysis of Fall-Winter Cyclones

Using the environment-to-circulation approach to synoptic climatology, composites for moderate, strong 

and severe wind storms were constructed. The map composites were used to characterize the storm 

events and to assess the spatial representativeness of the storm winds. Map-pattem classification 

techniques were then applied in a nontraditional manner to find archetypical pressure pattems for each 

storm composite.

4.3.4.1 Development of storm composites:

The compositing-criterion established for this analysis was southerly gusts (greater than 30 km/h) 

occurring during the fall and winter months. Based on the monthly distribution of the southerly gusts 

(Figure 4.31a), the fall-winter period was defined to be October through March. The distribution of the 

daily extreme gust speeds satisfying the composite-criteiia is shown in Figure 4.31b. A total of 626 

potential storm cases were identified. Because the typical lifetime of a cyclone is greater than one day, 

it was possible that the compositing-criteria classified more than one gusts from the same storm event. 

However, to allow for the possibility of stagnating map features, no corrective measures were taken. 

Figure 4.31c shows that more storm-events were identified per year during the period 1970-1976. This 

anomaly was most likely due to the change in the number of compass points used to resolve wind 

direction measurements (as noted above). More events were classified during this period, because a 

coarser resolution was used to record wind direction. No attempt was made to account for this 

measurement bias, and it is estimated to account for approximately 15% of the total number of storm
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cases identified in this study. The effect of maintaining this bias was to allow slightly more variability 

in the orientation and position of the map features associated with southerly gusts.

The date of each storm-event was entered into a GrADS script which computed the mean and standard 

deviation of the pressure on the corresponding daily maps (see script “composite.gs” in Appendix B). 

Each map was inspected before being included in the composite calculation. Almost all the map pattems 

were associated with a strong surface low, however, no maps were rejected at this stage as the 

composites would later be refined (see below). Composite maps were computed for mean sea-level 

pressure (MSLP) and the 850 hPa and 500 hPa pressure surfaces. To determine the degree of departure 

from normal climatology, cUmatological fields were constructed for each map level. The climatological 

fields were prepared by averaging the entire set of daily grids from October through March (N=4556) 

(“climate.gs”). Pressure and height anomaly maps were then constructed by subtracting the climatology 

fields from the composites. The statistical significance of the anomalies was computed using a two- 

tailed Student’s t-test. The composite, standard deviation and climatological fields were entered into 

a third script (see function “sigfig.gs”) which calculated the t-values at each grid point. The significance 

was tested at the 99% level by interpolating from an encoded t-table, and the areas of significance were 

plotted on the anomaly maps.

Since this research project was primarily concerned with extreme wind events, the above exercise was 

repeated by focussing more closely on the third and fourth quartile of the distribution shown in Figure 

4.31b. As synoptic winds are believed to be a function of storm intensity, the composites were stratified 

according to gust size. This approach would also act to limit the possibility of having multiple map 

pattems from the same storm event in a single composite unless it was due to a stagnating feature. 

Composites of MSLP were constructed for each of the following speed categories: moderate (51- 70 

km/h), strong (71-90 km/h) and severe (91+ km/h). The number of storm events falling into each 

category were 202, 70 and 11, respectively. No maps were rejected because in this instance every map 

was associated with an intense cyclone, suggesting that most of the variability seen earlier was caused
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by the lower velocity wind storms.

4.3A2 Identification of kevdav storms:

Map-pattem classification techniques were applied to the set of daily MSLP grids in each of the 

composite categories. The aim of this analysis was to find the single most recurring and representative 

map-pattem in each of the three speed class categories. This required selecting a grid threshold value 

which would minimize the total number of map types, while maintaining the correlation between grids 

at a reasonable level. A smaller 20x13 grid covering British Columbia and the southern coast of Alaska 

(Figure 4.32) was utilized in this analysis, because the results of the compositing exercise (given below) 

determined that a low in the Gulf of Alaska was the most significant contributor to strong wind events 

in the Interior.

A version of the Kirchhofer sums-of-squares technique presented in Yamal (1984) was obtained from 

the author. Daily grids of MSLP were exported from Or ADS and converted to floating decimal point 

for input into the map-pattem classification program. The group size minimum and row and column 

thresholds were set at their default values, namely a group size of 5 and row and column thresholds equal 

to 2 times the number of columns and rows, respectively. In specifying the overall grid threshold value, 

the desire was to find a single map pattem which was highly correlated with at least 50% of the maps 

in any given speed category. A series of preliminary map classification trials were preformed to find 

the optimal grid threshold. A threshold value corresponding to a correlation coefficient of r = 0.8 

produced too many map types for the purposes of this study, and left too many days unclassified. A 

threshold of r = 0.6 produced fewer map types in the higher speed class categories, but resulted in too 

many equally frequent map types in the lowest speed category. As it was desirable to apply the same 

criteria to each speed category, the optimal grid threshold was determined to be r = 0.7.

75



4.4 RESULTS

4.4.1 Storm CœiqxMites

The climatological fields constructed as part of this analysis are given in Figure 4.33. The climatology 

of British Columbia during the fall-winter period is shown to be dominated by a strong westerly 

maritime air stream (see 500 hPa climatology, Fig. 4.33a). The prevailing climatological surface feature 

is the Aleutian Low. The cyclonic flow around this semi-permanent feature, and the relatively weak 

pressure gradient over the Interior, explains why the prevailing winds for that region are generally light 

and from a southerly direction. In the compositing of all southerly gusts (greater than 30 km/h), the 

importance of the Aleutian Low was diminished and two additional recurring map patterns became 

readily identifiable: a low in the Gulf of Alaska and a low off the coast of B.C. While the majority of 

the MSLP maps associated with these three patterns exhibited a strong southeast to northwest pressure 

gradient over the Interior, the position and orientation of the corresponding surface low was highly 

variable. The maximum standard deviation in mean-sea level pressure occurred southwest of the 

Aleutians (16 hPa), while a relative minimum (9 hPa) occurred over the composite-criteria area 

(Central-Interior). The most frequently occurring of these map patterns, as is evident by the MSLP 

composite shown in Figure 4.33b, was the low in the Gulf of Alaska.

The surface composite representing the average weather conditions during southerly gust events is 

shown in Fig. 4.33b. The composite exhibits a southeast-northwest oriented pressure gradient over the 

Interior, situated between the low in the Gulf of Alaska to the northwest, and a continental high pressure 

area to the southeast. In comparing the MSLP composite to climatology, these map features were found 

to be statistically significant departures from normal climatology (Fig. 4.33c). The anomaly in MSLP 

near the centre of the storm is 8-10 hPa below normal, while the pressure at Prince George is about 4 

hPa lower than normal. The 500 hPa composite shows an intensification of the low pressure trough over
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the northeast Pacific and ridging over the west coast which is indicative of warming due to the flow of 

warm air from the south. However, there were no significant changes in the 500 hPa heights over the 

criteria area. For this reason, the stratification of the storm composite according to gust speed was 

limited to the study of mean sea-level pressure. The removal of the lower velocity storms resulted in 

a noticeable lowering in the standard deviation of the composite fields, and the variation in map patterns 

became less in higher speed class categories. While this may be due to the decrease in the number of 

cases included in each category, it may also be a manifestation of the observation that deviations in wind 

direction generally become less as wind speed increases. The statistical significance of the difference 

in map pattem between the speed class categories was not tested. The composites of medium (51-70 

km/h), strong (71-90 km/h) and severe (>90 km/h) wind gusts are shown in Fig. 4.34a. Each composite 

shows an incremental intensification of the pressure gradient over the central and southern portions of 

British Columbia (see Table 4.22). The coefficient of determination between mean daily extreme gust 

speed and the relative strength of the pressure gradient is =0.96.

Increments in speed class category are also accompanied by decreasing pressure over the criteria area 

(Table 4.22), and can be attributed to the eastward propagation of the map features. For instance, there 

is a slight northeastward displacement in the position of the storm centre in each of the map composites 

shown in Fig. 4.34a. The trough feature north-east of the low in the composite maps is further evidence 

of a north-eastward tracking storm system. This distortion in the pressure pattem is more readily 

identifiable in the anomaly maps (Fig. 4.34b), and storm motion is most pronounced in the severe-storm 

anomaly, where the largest pressure drop is seen to occur over northem B.C. The sea-level pressure at 

Prince George during severe wind storms is 12 hPa below normal, while the sea-level pressure at the 

centre of the storm depression is 4 hPa higher than it is for storms in the strong gust category. Taken 

together, this evidence would suggest that gusts in the severe category are associated with an 

orographically split storm system. When the surface low encounters the coastal barrier, the upper 

portion of these storm systems are able to travel over the mountain barrier, while the surface feature 

decays. As the upper level storm travels over the mountain range, a broad and intense pressure gradient
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sweeps across the Interior. By constructing composites one day prior and one day after the peak gust 

event, it was seen that there is a difference in the prevailing storm tracks between the moderate and the 

strong and severe events. The moderate category storms appear to track eastward through the Central- 

Interior, causing an anticyclonic shift in the flow to a more northwesterly direction after passage of the 

system. The strong and severe events are thought to be related to storms tracking northeastward.

4.4.2 Kqrday Storms

The aim of this component of the analysis was to find, for each of the speed class categories, the daily 

map pattem which most closely resembled the composite for that category. The criteria established for 

meeting this objective was to find a keyday map which was correlated at r=0.7 or higher, with at least 

50% of the maps in its respective category. In order to diminish the influence of the Aleutian Low upon 

the map-pattem classification, the smaller grid shown in Fig. 4.32 was used in this analysis. Due to the 

variability of map pattems in the lowest speed category, a map satisfying the criteria adopted for this 

analysis could not be found. Application of the classification criteria to the moderate storm category 

resulted in four map types, one of which was correlated with 45% of the maps in this category. To 

increase the number of days explained to 50% required using a grid threshold of less than r = 0.6. For 

the purposes of this study, the preference was to maintain the higher map correlation, and designate the 

first map-type as the keyday for this storm category (see Table 4.23). Application of the classification 

criteria to the strong and severe storm categories resulted in keydays which were correlated with 89% 

and 73% of the maps in their respective categories.

The keyday maps are shown in Fig. 4.34c and their storm characteristics are compared in Table 4.23. 

All three keyday events were fall storms, occurring in either October or November. While the pressure 

values for the keyday maps are generally lower than their composite values (compare with Table 4.22), 

the pressure pattems in the vicinity of the composite-criteria area are very similar. The daily extreme 

gust speed for the keydays storms are approximately equal to their mean composite value suggesting that
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selected maps represent archetypical pattems for moderate, strong and severe winds. Further evidence 

that strong synoptic winds in the Interior are associated with decaying storms in the Gulf of Alaska are 

also seen in the results here. Pressure at the centre of the keyday storms are seen to increase with 

increments in gust speed category, and troughing in the strong and severe keyday maps is indicative of 

storms propagating over the coastal barrier.

4.4.3 Storm Related Weather

An examination of surface weather records from the Prince George airport for the fall-winter period 

showed that the peak gust events were also accompanied by peaks in temperature and precipitation. 

Table 4.24 provides a demonstration of this trend for the severe gust events. Similar trends were 

observed for the moderate and strong storm categories, with the exception of snowfall. With the lower 

speed wind storms, snowfall amounts were high on all three days, but more snow fell before the peak 

in gust speed, which is typical of warm front weather. The amount of rainfall and warming associated 

with the storm events was also seen to increase with storm intensity (Table 4.25), and the increases in 

temperature and rainfall were significantly above the climatic normals for the period. For example, the 

mean daily temperature for the October-March period is -3.6 °C, while the average mean daily 

temperature during the severe storm events was +3.6 °C.

4.5 DISCUSSION

Following this analysis, it was later learned that there are two errors in the widely distributed Yamal 

(1984) code. As pointed out by Blair (1998), the first error interferes with the attempt to ensure that 

grids classified as similar are sufficiently similar at the sub-grid level. The second error, involves the 

conversion of the Kirchhofer scores to correlation coefficients which causes a slight lowering of the 

Kirchhofer scores and might allow some grids to be classified as similar, even though their scores do 

not satisfy the intended correlation thresholds for similarity. The two errors are not considered
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problematic for this analysis, however, because of the manner in which the technique was applied. 

Normally, the Kirchhofer technique is applied to an entire population of maps which will have a large 

degree of variability, and subgrid scores are therefore critical. Here, the technique was applied to a small 

sub-population of already similar maps, as dictated by the composite criteria (and as was also verified 

by a manual inspection of each map entering the analysis). Furthermore, the potential for suhgrid 

differences was minimized by limiting the size of the domain. The second error is also not considered 

problematic to the current analysis. Because the aim of this analysis was to find a single representative 

map-pattem for each storm composite, this required selecting a grid threshold value which would 

minimize the total number of map types, while maintaining the correlation between grids at a reasonable 

level. The exact value of the correlation coefficient was not as critical. A series of preliminary map 

classification trials were performed to find the optimal overall grid threshold. An optimal grid threshold 

corresponding to a correlation coefficient of r=0.7 identified three keyday maps which were highly 

correlated with 50%, 89% and 73% of the maps in the moderate, strong and severe storm categories 

respectively. The daily extreme gust speed recorded at the Prince George airport during each of the 

keyday storms were approximately equal to their mean composite value, suggesting that the selected 

maps represent archetypical patterns for moderate, strong and severe winds. Further evidence for 

supporting the representativeness of the three keyday storm is seen the validation of the numerical 

simulations in Chapter 5, and in the general applicability of the wind speed ratios derived in Chapter 6.

4.6 SUMMARY AND CONCLUSIONS

It was argued in Part II that fall and winter cyclones are the most significant contributor to high winds 

occurring in the interior of British Columbia. Using the principles of synoptic climatology, a mean sea- 

level pressure storm composite of these high wind events was constructed. Similar to the mean sea-level 

pressure pattem for coastal Europe, the storm composite exhibits a strong southeast-to-northwest 

oriented pressure gradient over the Interior, situated between a deeper than normal low in the Gulf of 

Alaska, and a stronger than normal Idaho High. An examination of surface weather records ifom the
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Prince George Airport revealed that the peak gust events are also accompanied by above normal 

temperatures and precipitation, and that the amount of rainfall and warming associated with the storm 

events increase with storm intensity.

Using the correlation-based map-pattem classification technique proposed by Kirchhofer (1973) and 

encoded by Yamal (1984), three daily mean sea-level pressure maps were subsequently identified as 

model scenarios for moderate (51-70 km/h), strong (71-90 km/h) and severe (>90 km/h) southerly daily 

extreme gusts occurring at the Prince George Airport. All three keyday storms were fall events. The 

moderate and severe keyday storms occurred November 21,1988 and November 12,1975 respectively, 

while the strong keyday event occurred October 26, 1994. Two errors in the Yamal (1984) code 

reported by Blair (1998) were not considered problematic to this analysis because of the manner in 

which the technique was applied. The daily extreme gust speed recorded at the Prince George airport 

during the keyday storms were approximately equal to their mean composite value, suggesting that the 

selected maps represent archetypical pattems for moderate, strong and severe gust events.

A qualitative approach towards winthrow hazard classification is all that has previously been possible 

given the sparsity of wind speed data in B.C. forests. The main goal of this research project was to 

identify areas of the McGregor Model Forest which are prone to high wind speeds. The fact that extreme 

winds in this region are derived from synoptic scale forcing which is characterized by an extensive zone 

of straight-line parallel southerly flow, makes spatial extrapolation of the winds possible. In Chapter 

5, the three keyday storm scenarios identified in this chapter are used to initialize a series of numerical 

weather simulations in order to characterize areas of the McGregor Model Forest which are prone to 

severe winds under a synoptic southerly flow.
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5.1 INTRODUCTION

Numerical weather models are used to simulate the state of the atmosphere by knowing its present 

condition and solving the mathematical equations which govern atmospheric motions and 

thermodynamic properties to predict its future state. The physical laws governing atmospheric motions 

are well known and are described by a set of non-linear partial-differential equations (e.g. Pielke 1984). 

However, an analytical solution to the full set of governing equations does not exist, so that an 

approximate solution must be found numerically. A numerical weather model can solve the set of 

governing equations by evoking finite-difference approximations at discrete grid point locations. The 

initial, lateral and top boundary conditions may be specified by observations, or during idealised 

simulations, using typical climatic values. By determining the primary modes of atmospheric 

circulation, synoptic climatology methods allow for the definition of representative scenarios for model 

runs (Yamal 1993). In this chapter, the three keyday storm events identified in Chapter 4 are used to 

initialize a series of numerical weather simulations. The results of this modelling exercise are employed 

in Chapter 6 to derive a simplified model for extrapolating high winds across the McGregor landscape 

on the basis of a single wind measurement taken from the Prince George Airport.

5.2 OBJECTIVES

The objectives of the numerical simulation component of this study were:

1) To perform numerical simulations of the three keyday storm events identified in the previous 

chapter as being representative storm scenarios for moderate, strong and severe winds under a 

synoptic southerly flow condition;
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2) To use the model output to characterize the wind flow under these conditions and to demonstrate 

the influences of topography on high winds; and

3) To obtain estimates of the speed and direction of the maximum winds which are likely to be 

observed in the McGregor Model Forest (MMF) under each storm scenario.

5.3 METHODS

5.3.1 The Regional Atmospheric Modeling System (RAMS)

The numerical weather model used to perform the keyday simulations was the Colorado State University 

Regional Atmospheric Modeling System, version 3b (CSU RAMS 3b) (Pielke et al. 1992). RAMS is 

a 3-dimensional, mesoscale model for simulating and forecasting meteorological phenomena in vertical 

terrain-following coordinates. The model domain size has no lower limit (although in practice the 

turbulence and other parameterization schemes are optimized for meso-synoptic scales), and widely 

varying atmospheric phenomena have been successfully studied, ranging from synoptic-scale weather 

systems to individual thunderstorms and turbulent eddies (Bossert and Poulos, 1993). Two-way 

interactive nested grid capabilities allow small scale phenomena to be resolved on a finer grid, while the 

larger systems from which they are derived are simultaneously modelled on a coarser grid. The model 

advances gridded fields of atmospheric variables such as velocity, pressure and temperature from an 

initial state through a series of discrete time steps, to a future state based on the set of quasi-Boussinesq 

equations which govern atmospheric motions. These equations consists of three prognostic equations 

(two horizontal momentum equations and the thermodynamic energy equation), and three diagnostic 

equations (continuity, hydrostatic approximation and the equation of state). Optimized parameterization 

schemes are used for describing the actions of turbulent diffusion, solar and terrestrial radiation, moist 

processes, sensible and latent heat exchange, multiple soil layers, a vegetation canopy, water surfaces, 

terrain steering effects and cumulus convection (Walko et al., 1995).

83



RAMS has three major components: 1) the atmospheric model written primarily in FORTRAN 77; 2) 

an Isentropic Analysis package (ISAN) which reads in observational data and generates gridded 

initialization fields; and 3) a postprocessing and analysis RAMS Evaluation and Visualization Utility 

(REVU). There are two basic methods of initializing the model. With the first method, data from a 

single sounding is used to construct horizontally homogenous fields of velocity, temperature, pressure 

and moisture for each model level. The second method is more complex and involves objectively 

analysing data from one or more sources, and from multiple locations, to produce variable three- 

dimensional model initialization fields. Variable initialization requires a minimum of either gridded 

pressure level data or sounding data from one or more locations. Surface observations are also optional. 

Sounding data offers a higher vertical resolution over gridded pressure level data, but has poor horizontal 

resolution (one station every 600-800 km  ̂in Canada), and is typically only available every 12-hours 

(00 and 12 Coordinated Universal Time or UTC). For a more detailed description of the model, refer 

to Pielke et al. (1992). In the section which follows, an overview of the modelling approach and model 

configuration parameters used in this study is given.

5.3.2 Modelling Approach

While RAMS is a complex model, capable of performing highly sophisticated and detailed weather 

simulations, a simplified modelling approach was adopted from the outset in this work. The intent was 

to use the model to diagnose the wind field and obtain a dynamically balanced realization of the flow 

under each storm scenario, rather than provide a prognostic evolution of the windfield. After trial 

simulations using a horizontally homogeneous initialization failed to produce a stable solution, an 

additional level of complexity was introduced and a variable initialization approach was adopted. 

Surface observations and atmospheric soundings taken at the Prince George Airport during the three 

keyday storm events were used to initialize three 12-hour numerical simulations using a single grid.

The domain of any mesoscale model must be artificially enclosed and boundary conditions must be
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specified at the perimeter surface of the model in order to integrate in time the approximate forms of the 

governing equations/ However, it is often difficult to accurately specify the boundary conditions, and 

this can lead to erroneous solutions being generated along the boundaries. As a practical problem, errors 

generated in this way are only serious when they propagate from the boundary into the region of interest. 

It is, therefore, desirable to remove this boundary as far from the region of interest as possible, and 

expanding the grid in the horizontal is one means to minimize the effect of the lateral boundary. A 120 

km X 100 km grid encompassing the up-wind region south and west of the MMF was therefore selected 

for the modelling exercise (refer to Fig. 1.1). To resolve the topographic influences of the main terrain 

features in the MMF, a horizontal grid size of 1 km was selected. Since a finer grid size would have also 

demanded a smaller time step in order to preserve numerical stability, a 1 km grid size was also deemed 

as the finest practicable given computer memory and CPU constraints. Terrain data were obtained from 

the McGregor Model Forest Association (MMFA) at a resolution of 100 metres (Fig. 1.1a) and were 

smoothed to 1 kilometre using a silhouette averaging scheme that preserved realistic heights and 

eliminated computational instability associated with 2 a x  topographic wavelengths (see Figure 5.35a. 

for smoothed topography). The model had 29 vertical levels and extended to a height of 16 km (using 

a spacing of 50 m at the surface which was stretched by a factor of 1.2 for each successive level, to a 

maximum separation of 1000 m).

The minimum attention necessary to obtain realistic results was given to the model optimization 

parameters. For example, since the intention here was to model topographic influences on the wind 

field, and not edge effects of individual cutblocks, a uniform surface roughness corresponding to 

coniferous forest cover was selected. Other relevant model configuration parameters are summarized 

in Table 5.26 Archive sounding data for the Prince George Airport were available on CD ROM from 

the National Climatic Data Center (1995) in Asheville, North Carolina. Each keyday simulation was 

initiated at 12UTC (4:00 a.mPST) and “nudged” toward the subsequent afternoon conditions at 00UTC

T op and lateral perimeters are incorporated because of computational necessity and have no physical meaning 
(in contrast to the bottom boundary which is real and has physical significance).

85



(4:00 p.m. PST) using a 5 second time step. In the nudging scheme, the model solution was gradually 

forced toward the analyzed data during each time integration. The nudging was strong, but was limited 

to the outer lateral (10 grid points in from lateral edges) and top boundaries (above 12 km). The model 

was executed on a Silicon Graphics Power Indigo 2 and each time step required approximately 35 

seconds of CPU time, making the total run time 84 hours or 3.5 days. In an attempt to simulate wind 

gust activity, the RAMS code was also modified to record the hourly wind maximum at each grid point 

in the model domain for the second (k=2) and third (k=3) model levels (corresponding to a mean height 

of 25 metres and 80 metres respectively). To assist with evaluating the performance of each model run, 

the code was also modified to output temperature and wind time series data for k=2 and k=3 every hour 

at grid cells nearest the available climate station locations. It was later learned however, that simulating 

gusts would require direct numerical simulation of the turbulence and a much finer grid resolution than 

was feasible for this study. Nevertheless, the information obtained from the modifications to the code 

proved useful in assessing when the model had reached a dynamically balanced state. After three hours, 

the hourly time series wind data and one-hour wind maximums simulated for a given location became 

nearly identical, and the model was assumed to have reached a balanced state. The largest hourly wind 

maximums recorded in the nine hours beyond the first three hours of simulation were then used as an 

estimate of the largest wind speed likely to occur under each storm scenario. Gridded wind maximums 

were subsequently constructed for each keyday storm scenario. In Chapter 6, the estimated wind 

maximums are used to derive wind speed ratios (relative to the wind speed at the airport), at each grid 

point in the MMF domain, for winds in each of the three gust categories: moderate, strong and severe.

5.4 KEYDAY MODEL RESULTS

In the preceding chapter, three mean sea level pressure maps were identified which are archetypical of 

synoptic-scale storms that produce moderate (51-70 km/h), strong (71-90 km/h) and severe (> 90 km/h) 

southerly wind gusts at the Prince George Airport. Vertical profiles of the atmospheric conditions 

(temperature, pressure, humidity and wind speed and direction) taken from weather balloons released
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at Prince George every twelve hours at 00 UTC and 12 UTC were used to initialize three 12-hour 

simulations using RAMS in order to obtain an estimate of the windfield likely to occur in the MMF 

during each storm scenario/ In this section, the keyday modelling results are briefly presented and 

discussed, and an estimate of the maximum winds likely to occur under each storm scenario is given. 

The validity of the keyday simulations is addressed in Section 5.5, while validation of the estimated wind 

maximums is discussed in Chapter 6. The moderate and strong keyday storms were both fall events 

(October 22, 1993 and October 25, 1994 respectively). The severe keyday storm was a winter event, 

occurring January 20,1973. Results of the three keyday simulations are depicted in the plots shown in 

Figure 5.36. The winds shown are for the third model level (k=3), which corresponds to a mean height 

of approximately 80 metres. Because erroneous solutions may be generated by the model along the 

lateral boundaries, especially the inflow (southern) boundary, the plots in Fig. 5.36 show only the grid 

interior enclosing the MMF.

Output from the RAMS isentropic analysis package is depicted in the top three frames in Fig. 5.36 which 

show the initialization fields interpolated onto the model grid from the 12 UTC sounding taken at the 

Prince George Airport during the keyday storm events. The three initializing wind fields represent an 

unbalanced condition, and have not been adjusted for kinematic effects. All three fields exhibit a strong 

southerly flow characterized by conditions at PGA during the keyday storm events. The moderate 

initialization wind field is seen to be slightly stronger than the strong keyday field, particularly over the 

river basin area in the centre of the domain. This is a consequence of the time at which observed winds 

at PGA reached their daytime maximum. The peak gust during the moderate keyday storm occurred 

close to 12 UTC, while the peak during the strong keyday storm occurred closer to the 00 UTC 

sounding. Consequently, the moderate keyday simulation was nudged away from the peak gust event, 

and the strong keyday simulation was nudged toward the storm peak. The peak wind gust observed

The vertical profiles were incomplete for the moderate (88/11/21) and severe (75/11/12) keyday 
events identified in Chapter 4. The map-pattem analysis was repeated with these dates removed from 
the analysis in order to identify alternate moderate (93/10/22) and severe (73/01/20) keydays.
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during the severe keyday storm occurred midway between 12 UTC and 00 UTC.

After six hours of simulation (centre row) the winds have been adjusted for terrain effects, and are 

showing the influences of topography. The strong keyday windfield is generally stronger than the 

moderate keyday across the entire domain. In most locations, winds are even more intense in the severe 

keyday simulation. One exception is the wind jet which developed in the strong keyday event where 

there is a merging wind flow out of the McGregor and Torpy and Fraser river valleys. The most striking 

feature of the simulated windfield is the nearly easterly flow that develops across the central drainage 

basin as the southerly synoptic flow encounters the northwest-to-southeast oriented mountains along the 

eastern boundary and the McGregor Plateau along the northem boundary. The general flow pattems in 

all three simulations are similar: an easterly flow develops over the broad central drainage basin; winds 

speed up as air is forced over the McGregor Plateau; and there are strong outflow winds along the deeper 

McGregor and Fraser river valleys. Winds across the drainage basin appear more easterly for the 

moderate and strong category where winds appear to be steered around the McGregor Plateau. 

Differences between the moderate category storm and the strong and severe storms become more 

apparent at the end of the 12-hour simulation (00 GMT). The moderate keyday winds are lighter and 

have veered (clockwise shift) by as much as 90 or 180” over the drainage basin. The strong and severe 

keyday windfields continue to show a southeasterly flow over the Plateau.

The temporal evolution of the simulated windfields is more closely examined in Figures 5.37a through 

5.37c which show the speed and direction of simulated winds at discrete grid point locations. Winds 

are clearly seen to be progressively stronger for each keyday event. Frictional effects are evident in the 

plots for k=2 (corresponding to a mean height of 25 metres), where winds are significantly lighter and 

there is more variation in wind direction. However, there is little evidence of winds veering with height 

due to frictional effects. Simulated winds increase with time in the MMF for the strong and severe 

storms, but decrease in the moderate category. Veering of the winds with time is also clearly seen in the 

simulated wind direction for the moderate category storm. Wind speeds in the Prince George Bowl area
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(not shown) were found to increase with time for the moderate and severe storms, but decreased during 

the strong keyday simulation.

The speed and direction of the maximum wind simulated at each grid point during the three keyday 

model runs is shown in Figures 5.38a through 5.38c. The wind maximums did not necessarily occur 

at the same time at each grid point during the simulations, and the plots therefore should not be 

interpreted as a snapshot of the windflow. This is particularly true in the case of the moderate keyday 

scenario, where the strongest winds occurred in the southeast comer of the domain toward the end of 

the simulation (i.e. after the winds had veered). The plots are shown over a digital elevation model 

which has a higher resolution (100 m) than was actually modelled (1 km). This was done to aid 

interpretation of the observed fields presented in the validation section, and in order to simplify 

orientation with respect to key landscape features. For presentation purposes, wind vectors are only 

shown every 3 grid points. The wind vectors are colour coded according storm category, with yellow, 

orange and red denoting moderate, strong and severe winds respectively (blue vectors are less than 50 

km/h). Within the MMF, all winds simulated during the moderate keyday were less than 51 km/h. 

Moderate and strong category winds which occurred during the strong and severe keyday simulations 

were generally associated with flow over hills, valley funnelling or outflow conditions. Winds greater 

than 90 km/h occurred along the mountain ridge line located southeast of the McGregor camp station 

during the severe keyday simulation. The simulated winds are not representative of true gusts however, 

and are more comparable to hourly winds. For instance, the peak gust speed measured during the strong 

wind event at the Prince George Airport was 70 km/h, while the peak hourly wind was 43 km/h, which 

is comparable to the blue zones (see PGA, Fig. 5.38b). The peak gust measured during the severe wind 

event was 92 km/h and the peak hourly wind was near 70 km/h, comparable to orange zones (see PGA, 

Fig. 5.38c). Therefore, actual gust speeds would be even higher than those indicated in Figure 5.38. 

According to Linacre (1992) mean wind to gust ratios are typically in the range of 1.2- 2.0. The mean 

wind to gust ratio for southerlies at the Prince George Airport is 1.7. This gust ratio was determined on 

the basis of the strong correlation (r = 0.83, F(l,243) = 540.46, p<0.001) between daily extreme
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southerly gusts and the daily maximum hourly wind at the airport between October and March during 

the period 1972 - 1993.

5.5 MODEL VALIDATION

A direct validation of the keyday simulations was not possible due to the limited availability of 

meteorological observations during these storm events. The keyday storms selected by the map-pattem 

analysis in Chapter 4 were drawn from storm events which occurred during the period 1970-1994, and 

preceded wind records at most stations within the model domain. Therefore, three southerly gust events 

which occurred during the 1995-1997 storm seasons were simulated to assess the representativeness of 

the keyday storms, and the suitability of RAMS to this application. Wind data from a network of 

temporary climate stations deployed in the MMF as part of this project during this two year period, 

supplemented with data from other existing stations were used to assess the validity of these simulations. 

Ideally, it would have been preferred to have one validating storm for each storm category. However, 

given the typical return period of severe wind events (2-3 years for gusts of 90-100 km/h), this was not 

possible. Instead, the three strongest events recorded during the validation period were simulated using 

the identical model configuration as the keyday storm scenarios. A total of 16 southerly storm events 

with a daily extreme gust greater than 50 km/hr were observed during the 1995-1997 storm seasons. 

There were no severe category storms, and only a single strong wind event. In order to increase the 

number of candidate storms, daily extreme gusts having a wind direction of 180° ±10° were considered. 

A single additional strong category storm event was subsequently identified. The three highest wind 

events are shown in Table 5.27.

5.5.1 Station Locations

Meteorological stations located within the model domain are shown in Figure 5.35b. In addition to the 

airport station located in the southwest comer of the domain (PGA), there are three 10-metre towers
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(Plaza, PG Pulp and Northwood) operated by the local environment ministry in the Prince George Bowl 

area. Stations in or near the MMF include; two 10-metre climate research stations (Averil and Aleza) 

operated by the federal and provincial forest ministries (CPS and MoF, respectively); three 10-metre 

fire weather stations (Rainbow, Seebach, and Woodall) operated by Northwood Pulp and Timber 

Limited; and a fourth fire weather/climate station maintained by the MoF (McGregor). Unfortunately, 

the Northwood fire weather stations are not operated during the fall-winter period, making only six pre

existing stations available for the validation analysis, only two of which are located within the 

boundaries of the MMF. As part of the MMF Climate Studies and Monitoring Project, data collection 

was supplemented by the installation of three additional stations within the MMF. Three 3-metre tripod- 

based stations were deployed at Dojo, Seebach and Flute. A more detailed description of these three 

stations is included in Appendix C.

5.5.2 Validation Methods

Given the modelling approach adopted in this analysis, the temporal evolution of the modelled fields was 

not expected to be adequately captured. The typical storm duration for both the keyday and validation 

events (as defined by a period of sustained southerly winds greater than 20 km/h at PGA) was 10-16 

hours. Therefore, nudging the numerical solution toward a single sounding (00 UTC) was unlikely to 

fully capture the synoptic evolution of the storm events. Consequently, a quantitative evaluation of the 

model’s performance using the statistical methods recommended by Willmott et al. (1985) (cited in 

Jackson and Steyn, 1994) was not considered appropriate to this analysis. Model validation was further 

confounded by a number of other factors which are highlighted below.

1) Limited observations: while it is not realistic to have wind measurements at each grid point, a 

higher station density than was available would have been necessary to validate all of the major 

topographic windfield features in the MMF.

2) Measurement error; the cumulative errors associated with airport wind speed measurements
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(cup anometers) may be as high as 10 percent (Linacre 1992), and wind directions are only 

reported to 36 compass points. RM Young wind monitors were used at all other stations, and have 

a wind speed error of 2%, and a 5% error for wind direction. The airport measurements were not 

used in the validation exercise, but would be a source of initiaUzation error (see item 7 below).

3) Observational inconsistencies: the underlying vegetation varied between stations, as did 

measurement height. Winds are generally observed to increase with height, and the wind profile 

above a locale is dependant upon the aerodynamic roughness of the underlying surface. Variations 

in measurement height and surface roughness therefore make it difficult to compare observed 

winds to model winds at a given height. Given the lack of accurate surface roughness 

measurements, and the fact that surface conditions also varied between storm events (eg. 

vegetation height, snow cover etc.), no attempt was made to correct for measurement height 

differences.

4) Simulation inconsistencies ; while every attempt was made to maintain consistency between the

model runs, there were two differences worth noting. Firstly, some runs were nudged towards the 

storm peak, while others where nudged away from the storm peak. Secondly, there were 

differences in sounding resolution (i.e. the number of vertical data points) used to initialize each 

model run.

5) Modelled vs. observed fields: modelled winds are instantaneous and represent a volume averaged 

value, whereas observations are measured at single point and are typically recorded as either a one- 

hour average or a two-minute average before the hour (PGA and McGregor).

6) Subgrid effects: observations may include the influence of cutblock boundaries resulting from 

improper exposure, or small scale topographic effects (< 1 km) which may cause localized speed

up or sheltering effects. Such influences would not be resolved by the model.

7) Initialization errors: sounding data is assumed to represent an instantaneous vertical profile of 

the atmosphere above a point. In reality, the sondes take a finite period to ascend ( 1 - 2  hours), 

and are carried a considerable distance by winds aloft (on the order of 100 km under strong winds). 

As noted above (see point 4) the soundings used to initialize each run had different vertical
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resolutions. Sounding data for storm events which occurred in 1994 or later were obtained directly 

from the local aerological station, and were available at much higher resolution (every 10 seconds, 

or on the order of400 levels) than data from archived sources (typically on the order of 40 levels). 

Coarser soundings could be associated with greater interpolative errors. Sensitivity tests showed 

that using a higher resolution sounding produced (near surface) winds that were 0.5 to 1 m/s faster.

As a result of the above limiting factors, the focus in this chapter therefore is a qualitative evaluation of 

the model performance, rather than a quantitative validation of the modelling results. A more 

quantitative validation of the synoptically parameterized extrapolation model derived from the RAMS 

output was possible however, and is given in Chapter 6. The primary aim in this chapter is to assess 

whether 1) the numerical simulations reached a stable and balanced solution; and 2) if the model results 

provide a plausible estimation of the wind field based on theory and experience. Trends in the time 

series data (temperature and wind speed) and model integral quantities (such as kinetic energy, peak 

vertical velocities, and surface pressure) were used to determine whether the simulations reached a stable 

solution. Similarity between model runs, and evidence of topographic influences, were assessed to 

determine if the wind field was realistic. Modelled wind directions were qualitatively assessed by 

comparison to the prevailing storm winds observed at each station. For this purpose, a windrose diagram 

was constructed at each wind monitoring station for the fall-winter period. The magnitude of the 

simulated wind speeds were qualitatively assessed by comparison to observed winds speeds at each of 

the wind monitoring stations.

5.5.3 Simulation Results

Results from the numerical simulation of the three validation storms are depicted in Figure 5.39 which 

includes the initializing wind field (12 UTC) and a snap shot of the wind flow after six (18 UTC) and 

after twelve hours (00 UTC) of simulation. The two strong category storms had nearly identical 

initializing wind fields and were substantially stronger than the moderate counterpart. Similarities
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between the strong wind storms are still evident after six hours of simulation. After 12 hours, winds 

simulated for both storms have diminished, but in the case of the October 1996 event, the winds across 

the drainage basin have veered by approximately 45°. However, variation in wind direction was 

considerably less during the strong category simulations than during the moderate validation run. After 

12 hours, the moderate simulation had undergone substantial veering, as it did during the moderate 

keyday simulation (compare with Fig. 5.36). In general, winds within the MMF resemble the same flow 

pattems noted in the keyday simulation. Gridded wind maximums were also constructed from model 

output for the validation simulations (not shown), and exhibited many similarities to the keyday 

maximums in Fig. 5.38. However, during the validation model runs, moderate and strong category 

winds were seen to occur within the MMF in all three simulations and there were no severe winds 

simulated for the MMF.

Simulated winds at grid point locations nearest to the monitoring stations are compared to observed 

winds in Figures 5.40a through 5.40c for each of the validation scenarios. Observed winds increased 

with time in the Prince George Bowl area and decreased in the MMF. A sirnilar trend is observed in the 

simulations. The Bowl area monitoring stations show an incremental intensification of the wind with 

each storm. The moderate storm generally had the lowest wind speeds, while the October 1996 event 

had the strongest winds. The same trend is evident in the simulated wind speeds for the Bowl grid point 

locations. In contrast, observed winds from the MMF stations had approximately the same magnitude 

for each storm, yet the simulated winds still exhibited the incremental intensification noted for the Bowl 

area However, winds near the end of each simulation are similar and comparable in magnitude to 

observed winds. There is also greater variability between the MMF observations (speed and direction) 

than in the Bowl area due to the greater variation in topography, station elevation and station separation. 

This variation between stations is not as evident in the simulations, because the simulated winds are for 

the same height and the model assumes a uniform surface roughness. With the exception of a few 

anomalies, both observed and simulated wind directions during the strong category storms remained 

relatively constant with time. The observed and simulated wind directions during the moderate category
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storm exhibited a clockwise shift midway through the 12-hour period. A clockwise shift was also noted 

in the moderate keyday simulation. An examination of daily MSLP maps before, during and after each 

storm event suggests that the difference between the moderate and higher category storms may be due 

to a preferred storm track. During moderate storms, the low pressure system tends to track eastward 

directly through the model domain. This would cause the wind to shift from southerly to easterly as the 

bottom portion of the low sweeps through the area. The higher category storms tend to track 

northeastward allowing only the southerly and southwesterly flow in the lower right hand quadrant to 

sweep over the study domain.

Observed wind directions during the three validation storms were northerly, northeasterly and easterly 

at Flute, Dojo and Seebach, respectively. A similar clockwise rotation of the wind is evident in the 

simulation results, but is not as pronounced or as persistent, and the discrepancies between modelled and 

observed wind directions are greater. Variation in model discrepancies is notably greater at Seebach and 

Flute. The discrepancies may be partially due to frictional effects given the height difference between 

the modelled and observed fields. Wind directions in the lower boundary layer typically veer (clockwise 

shift) with height. A clockwise shift of approximately 45“ would make the observed wind at 3-metres 

agree with the simulated wind direction. However, the discrepancy is greater than can he explained by 

frictional effects alone, and may also be due to non-ideal station exposure, or localized effects not 

resolved by the model. For instance, the prevailing northeasterly winds at Dojo are most likely the result 

of wind funnelling given the orientation of the Fraser River near this location. Simulated winds at Dojo, 

however were more easterly. The gap through which the Fraser flows is very narrow in the vicinity of 

Dojo and may not be fully resolved at a scale of 1 km. The prevailing northeasterly winds at Seebach 

appear to be associated with down slope winds, and local topography near Flute may also cause 

funnelling of the wind in a northeasterly direction. Also, the location of these two stations along the 

western edge of the Rockies may be influenced by weather systems not captured by the synoptic 

climatology at PGA such as Arctic outbreaks and subsequent funnelling of winds through gaps along 

the mountain barrier. At Seebach, both observed and modelled winds were easterly during the strong
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validation storms. Observed wind directions at Flute during the validation storms were more variable, 

but generally had a strong northerly component. Winds simulated for Flute during the two strong 

category storms were more easterly.

To lend support to the representativeness of the keyday storms, and the ability of RAMS to provide a 

plausible estimation of the resulting wind field, prevailing wind directions measured during the October 

1996 to March 1997 windy season are shown in Figure 5.41. The prevailing wind directions are 

consistent with the wind directions measured during the three validation storm events and with the 

results of the numerical simulations. With the exception of the 3-metre stations (Dojo, Seebach and 

Flute), the prevailing wind direction was southerly or southeasterly. Prevailing wind directions at Aleza 

and McGregor were southeasterly and show good agreement with the results of the numerical 

simulations. Prevailing winds at Averil were southerly (27%) to southeasterly (20%), and simulated 

winds were generally southeasterly. Equally strong, but less frequent winds also occurred out of the 

north at the 10-metre stations, while the prevailing wind direction at each of the 3-metre stations was 

northeasterly.

5.6 SUMMARY AND CONCLUSION

Atmospheric soundings taken at the Prince George airport during the three keyday storms were used to 

initialize a series of 12-hour simulations utilizing the Regional Atmospheric Modeling System (RAMS). 

RAMS was used in a diagnostic mode, to quickly obtain a dynamically balanced realization of the flow. 

The general flow pattem in all three simulations was similar. An easterly flow developed over the broad 

central drainage basin. Wind speeds increased where the air was forced over the McGregor Plateau and 

strong outflow winds occurred along the deeper McGregor and Fraser river valleys. The maximum wind 

simulated at each grid point were recorded, and gridded wind maximums were constructed for each 

keyday scenario. Direct validation of the keyday simulations was not possible due to the limited 

availability of observations during these storm events. Three southerly gust events during the 1995-1997
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storm season were simulated to assess the representativeness of the keyday storms, and the suitability 

of RAMS to this application. Wind data from a temporary climate network deployed in the MMF, 

supplemented with data from existing stations, were used to assess the validity of these simulations. 

Simulated winds were comparable to hourly winds and showed general agreement with 10 metre winds 

in a clear opening. Frictional effects were evident at the 3-metre stations where the observed winds were 

significantly lower than the simulated value. Prevailing wind directions at the 10-metre towers showed 

reasonable agreement with the simulated wind field. Simulated directions at the 3-metre stations were 

plausible when subgrid effects are taken into consideration. While the model validation performed in 

this section was rather qualitative, the similarities noted between the keyday simulations and the 

validation runs lend support to both the representativeness of the keyday storms, and the ability of 

RAMS to provide a realistic estimate of the windfield under each storm scenario.
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PART IV: Application of Results
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6 A High-Wind Model for the McGregor Model Forest

6.1 INTRODUCTION

The complex terrain and sparsity of wind data in British Columbia forests would typically demand the 

use of either empirical extrapolation techniques or numerical modelling to estimate winds over the 

landscape. The model proposed here incorporates both techniques by using model output from the 

numerical simulation of three keyday storms, to derive speed ratios between grid points in the complex 

forest terrain and a neighbouring airport location. In Part I, it was shown that prevailing storm winds 

in the Central-Interior are from a southerly direction and are related to the passing of synoptic scale 

disturbances. In Part II, three keyday pressure maps were identified as typical of disturbances which 

cause high southerly winds in the Interior, and three numerical simulations were carried out to determine 

the maximum wind speeds likely to occur under each storm scenario. In this chapter, an example is 

given of how the results from Parts I and H of this thesis may be generalized for application in the 

McGregor Model Forest (MMF). The model described here is intended to provide an estimate of the 

winds likely to occur above the forest canopy in the MMF based on a single wind measurement at the 

Prince George Airport (PGA). The model strictly only applies when there is a strong southerly flow with 

winds gusting higher than 50 km/h, although a relaxation of these constraints is also examined.

6.2 OBJECTIVES

1) To test and develop a model for extrapolating high winds across the MMF landscape under a 

synoptic southerly flow condition; and

2) To use the model to characterize the strength and direction of winds in the MMF under this 

prevailing flow condition due to topographic variation.
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6.3 METHODS

6.3.1 Model Description

The three keyday numerical simulations in Chapter 5 provide an estimate of the wind field likely to 

occur in the MMF when winds at PGA are from a southerly direction, and the daily extreme gust speed 

recorded at the airport falls into one of three categories: moderate (51-70 km/h), strong (71-90 km/h) 

or severe (90+ km/h). These results were used to construct a more generalized model for extrapolating 

the maximum wind speeds likely to occur in the MMF for any given wind speed at the airport which was 

greater than a threshold value of 30 km/h and from a southerly direction (180°). Therefore, as was the 

case with the numerical simulations, the synoptically parameterized extrapolation model developed here 

also has a horizontal resolution of 1 km, and provides an estimate of the maximum mean surface wind 

speed, rather than a gust maximum.

The estimated wind maximums from the three keyday numerical simulations were first used to derive 

wind speed ratios (relative to the wind speed at the airport), at each grid point in the MMF domain, for 

winds in each of the three gust categories. Simulated wind maximums at a mean height of 70 metres 

(model level, k=3) were selected for this purpose. Each grid of maximum wind speeds was normalized 

by the corresponding maximum simulated for the airport at this level (9.2 m/s, 12.4 m/s and 13.7 m/s 

for the moderate, strong and severe, respectively). This provided a gridded set of three speed ratios 

stratified by daily extreme gust speed. To extrapolate high wind estimates under a southerly flow 

condition, the model multiplies the mean surface wind speed at the airport by the appropriate grid of 

speed ratios. To determine the appropriate speed ratio category, a mean wind to gust ratio of 1.7 is 

applied to the observed wind speed at PGA. It was not possible to develop a similar scheme for varying 

the wind direction within a gust category. The model assumes that wind directions are identical to what 

was simulated for the keyday which corresponds to the gust category determined by the gust ratio.
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6.3.2 Model Validation

A qualitative validation of the keyday numerical simulations was given in Chapter 5, and the difficulties 

associated with comparing model winds to observed winds were discussed. The same challenges exist 

here and are compounded by the short period of observations available in the MMF and the long return 

interval between strong and severe wind events. Nevertheless, a more quantitative validation of the 

synoptically parameterized extrapolation technique presented in this chapter was possible. Validation 

of the extrapolated wind speeds was assessed by the comparison of observed daily wind maximums 

under a strong southerly flow to the extrapolated wind speed determined by application of the 

appropriate speed ratio. Validation storm dates were identified by the occurrence of southerly gusts 

(180°) greater than 50 km/hr during the fall and winter months. Six stations in or near the MMF and 

three stations in the vicinity of Prince George were used to perform the validation (refer to Chapter 5 

for a description of each station). Validation of this technique is limited to verifying the magnitude of 

the wind estimates, as verification of the wind direction was addressed in Chapter 5.

6.4 RESULTS

6.4.1 Speed Ratios

Speed ratios calculated for the wind monitoring stations are shown in Table 6.28 together with the 

period of record available at each station. No general trends are distinguishable between stations or 

storm categories with the possible exception of the three BCMOE stations located in the Prince George 

Bowl area (Northwood, PG Pulp and Plaza), which exhibit speed ratios less than 1.0 for all storm 

categories. The period of record available at each station varies from 2 to 8 years, with the stations 

deployed as part of this project having the shortest record (Averil, Dojo, Flute and Seebach), while the
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BCFS climate station at the MMF forest camp site has the longest period of record. However, the MMF 

forest camp station had extensive periods of missing data during the winter months and this is reflected 

in the low number of storm dates for this station. The total number of storm events recorded at each 

station is given in the last column of Table 6.28. To increase the sample size for those stations having 

the shortest period of record, the gust threshold was lowered to 35 km/hour and the allowable wind 

direction was extended by ±10°. No severe-gust storms were recorded at PGA during the period 1989-97 

and only one strong-gust event occurred during the 1996-97 period.

6/L2 Model Validation

The maximum daily hourly wind which occurred at PGA during each of the identified gust-events was 

entered into the model and a corresponding wind maximum was extrapolated for each of the wind 

monitoring stations as described in the previous section. Application of the gust ratio to the maximum 

daily wind entered into the model increased the number of storms classified as strong gust events. The 

extrapolated wind maxima are compared to the observed daily maximum at each station in the scatter 

plots given in Figure 6.42. With the exception of Averil and Flute (not shown), the correlation between 

the observed and extrapolated wind maximums were statistically significant at the 95% level. The 

correlation for Flute was negative and is not included in Fig. 6.42. It should be noted that the wind 

monitor at this station experienced failures during many of the high wind events. It is suspected that this 

may have been related to the heavy rainfall and subsequent freezing which typically accompanied the 

storm events. In the case of Averil, increasing the sample size by lowering the gust threshold and 

increasing the number of allowable wind directions resulted in a significant decrease in the correlation 

coefficient. The correlation and test results shown for Averil therefore only include storm events which 

satisfied the original model criteria. The effects of surface fiiction are clearly evident at the 3-metre 

wind stations (Dojo, Seebach and Flute) where the observed wind speeds are significantly lower than 

the extrapolated value.
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The scatter plots in Fig. 6.42 also suggest that there is a tendency for the strong category speed ratios 

to over predict winds in exposed areas (Aleza, Averil and McGregor) and under predict winds in 

sheltered locations (see Northwood and Plaza). In an attempt to correct this bias, two alternative 

measures were explored. First, speed ratios where calculated for the three numerical simulations of the 

validation storm scenarios also presented in Chapter 5, and a mean ratio was then calculated for each 

station. The second alternative explored was to apply the moderate keyday ratios to all storm events 

since it was most representative of the largest number of storms. Both measures improved the 

correlation at those stations biased by strong category events, with the exception of Averil. While there 

were no apparent differences in the correlations between the two schemes, application of the moderate 

ratios generally yielded results which were closer to the one-to-one line and this approach was therefore 

adopted (see Figure 6.43).

6.4.3 Model Error

The mean absolute error of the extrapolated maximum mean wind speeds using the moderate wind speed 

ratios at each of the wind monitoring stations is shown in Table 6.29. The average mean absolute error 

for the six 10-metre stations is 1.5 m/s, while the mean absolute error at each of the 3-metre stations is 

significantly higher (5.65, 3.38, and 5.35 m/s at Dojo, Flute and Seebach, respectively). Assuming a 

model error of 1.5 m/s for all locations, the difference in wind speed due to measurement height at the 

3-metre stations is therefore 4.15 m/s, 1.88 m/s, and 3.85 m/s at Dojo, Flute and Seebach, respectively. 

However, according to Linacre (1991), the ratio of a wind speed at 3 m, to the wind at 10 m, for a 

surface roughness of z„ = 0.1 m (between open and rough terrain) is 0.65. Therefore, the wind speed 

errors at Dojo and Seebach are larger than can be explained by measurement height alone, and are 

probably also due to topographic influences not resolved by the model. These two 3-metre stations are 

known to have had poor topographic exposure. Seebach was located on a steep south-westward facing 

slope, and Dojo had higher terrain located to the north of the station. The Dojo cutblock also 

experienced significant tree growth during the period of measurement.
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The frequency distribution of the mean absolute error at each station is shown in Figure 6.44. The 

frequency distributions at the two poorly exposed 3-metre stations are both positively skewed., while 

the distribution for Flute (not shown) resembled those of the 10-metre stations. Extrapolated wind 

speeds at the 10-metre stations were within an absolute error of 3 m/s over 70% of the time; within 2 m/s 

between 45 and 85% of the time; and within 1 m/s between 20 to 40% of the time (see Table 6.30). As 

seen in Figure 6.45, the model shows a slight bias toward overestimating the wind speed at most 

stations. A notable exception is Averil, which doesn’t exhibit any model error bias.

6.5 DISCUSSION AND CONCLUSION

Model output from the numerical simulation of the moderate, strong and severe keydays storm events 

were used to test and develop a model for extrapolating high winds across the MMF landscape under 

a synoptic southerly flow condition. Speed ratios derived from the moderate keyday simulation were 

found to be equally applicable to extrapolating winds in the other two storm categories. The estimated 

wind maximums correlated well with 10 metre wind speeds in a clear opening, and were within 3 m/s 

of observed winds at the six 10-metre wind monitoring locations over 70% of the time. Taken together 

with the qualitative validation of the numerical simulations given in Chapter 5, these results are 

encouraging and should provide an adequate picture of prevailing storm winds in the MMF.

The second objective of this chapter was to use the extrapolation model to characterize the strength and 

direction of the prevailing storm winds in the MMF. In this chapter, model validation focused on the 

magnitude of the wind estimates. In Chapter 5, a comparison of the keyday simulations and three 

validation scenarios suggested that there are possibly two wind regimes related to a difference in the 

prevailing storm tracks between the moderate and the strong and severe events. The moderate category 

storms appear to track eastward through the central interior, which may account for the anticyclonic shift 

in the flow to a more northwesterly direction behind the storms. The strong and severe events are thought 

to be related to storms tracking northeastward. Therefore, to complement the extrapolation model, two

104



possible wind directions should be given, one for moderate storms and one to reflect the strong and 

severe events. A vector average of wind directions and scalar average of wind speeds was performed 

for the latter case. The final model design is reflected in Figure 6.46 through Figure 6.48. Fig. 6.46 

provides a contour map of the moderate speed ratios. The contour plot of wind speed ratios also 

highlights areas prone to high winds: moderate wind speeds over the central drainage basin; higher 

winds over the McGregor Plateau; and severe winds in areas prone to valley funnelling, merging wind 

streams and along mountain ridge lines. Wind directions for storm winds in the moderate category are 

given in Fig. 6.47 and the average of the strong and severe keydays is given in Fig. 6.48. Given the 

opposing wind directions seen in the southeast comer of the MMF, application of the moderate speed 

ratios in this region may not be appropriate to strong and severe wind storms. Another limitation is that 

the stations used to validate the model results were not located in areas prone to extreme winds, having 

speed ratios lower than or only slightly greater than one. The station at Averil remains deployed and will 

allow ongoing verification of the model to be performed by the MMFA.
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7 Executive Summary and Conclusion

7.1 INTRODUCTION

This thesis resulted from participation in the Climate Studies and Monitoring project, funded by the 

McGregor Model Forest Association (MMFA). Wind, temperature and precipitation can act to limit or 

enhance forest productivity. Natural disturbances that manifest themselves from extremes in these 

climatic elements include fire, windthrow and floods. These climatic parameters are all dramatically 

affected by the presence of complex terrain. The assessment of the ways in which complex topography 

affects these important climatic variables, particularly the wind, is non-trivial. The main goal of the 

Climate Studies and Monitoring project was to assess the influence of topography on extreme wind 

behaviour, in order to identify areas of the McGregor Model Forest (MMF) which are prone to high 

winds. This chapter provides an executive summary of the technique developed in this thesis to identify 

areas prone to high winds, discusses a potential application of this work, and makes recommendations 

for improvements and future work.

7.2 PROJECT OBJECTIVES

To meet the main objective of the McGregor Model Forest Climate Studies and Monitoring project, six 

individual studies were identified:

1) Compilation and presentation of historical climate data;

2) Analysis of return intervals between severe wind events;

3) Development of realistic storm scenarios;

4) Deployment of a temporary climate monitoring network;

5) Numerical simulation of keyday storms; and
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6) Construction of an extrapolation model for high winds.

7.3 PROJECT OVERVIEW

Strong gusty winds can knock down trees in forested areas resulting in economic loss to the forest 

industry, particularly if inappropriate forestry practices are employed in areas prone to strong winds. 

Forest blowdown is also recognized as a natural renewal agent, and therefore poses a complex challenge 

for establishing sustainable forest management practices. The wind climatology of a region, particularly 

the probable occurrence of severe winds and their directional and seasonal characteristics, must be 

known before wind risk management strategies can be implemented and appropriate silviculture systems 

designed. The MMF is located 30 km northeast of Prince George in the central-interior of British 

Columbia (Fig. 1.1). Long-term wind records in the Central-Interior are limited to a few airport 

locations having records dating back to the mid-1950's to early-1960's. There has been no detailed 

description, or analysis of winds in the interior of British Columbia. The identification, synthesis and 

analysis of existing sources of climate data was therefore a logical starting point to undertaking this 

study.

7.3.1 Climate Normals

Climate data were obtained for fourteen recording stations in and surrounding the Prince George Forest 

District (Fig. 2.4). Only seven of the fourteen stations identified recorded wind measurements, and only 

four had sufficiently long-term records for the determination of climatic normals and return intervals. 

The nearest airport stations to the MMF are Prince George, Fort St. James, MacKenzie and Quesnel. 

The local winds at each of the four airport locations was characterized by examining the annual and 

monthly mean wind normals for the 30-year period, 1951-1980. Winds are relatively light across the 

Interior Plateau which is protected from the west by the Coastal Mountains, and in the east by the 

Canadian Rockies. Prevailing wind directions are southerly in winter and northerly in summer. Wind
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speeds tend to be low generally, but are highest in winter and lowest in summer. For instance, at the 

Prince George Airport, the annual frequency of southerly and northerly winds is 33% and 19%, 

respectively, while the frequency of westerly winds is only 7% (Fig. 2.5). Calms are also rather frequent 

(14% annually). While Prince George is the windiest of the four stations, winds are less than 20 km/h 

85% of the time, and the annual mean wind speed is only 10.9 km/h.

Forests in the interior, therefore, grow and mature in a relatively low wind regime, and are not as wind 

firm as in coastal locations, where annual mean winds speeds are on the order of 15-20 km/h. 

Catastrophic damage is, therefore, likely to occur during rare high wind events, or when there are 

unusually strong winds from a non-prevailing wind direction. Endemic damage is likely to occur more 

frequently during lower intensity storms in areas were previously sheltered trees have been exposed as 

a result of harvesting, or are otherwise already adversely susceptible to windthrow. It is therefore 

important to know the return intervals of hoth moderate, strong and severe wind events.

7.3.2 Extreme Value Analysis

In British Columbia, strong winds are associated with the passage of fronts that originate in the Pacific 

Ocean or in the Arctic, or from strong winds associated with thunderstorm activity. Knowledge of the 

typical return period between extreme wind events could benefit the development of wind-risk 

management practices by providing an estimate of the window available for tree stability improvement 

over time, in planning sequenced harvesting passes, or to factor natural losses into the equation for a 

sustainable harvest. Directional categorization of maximum winds is also an important consideration 

in the spatial design of harvesting and silvicultural applications. Seasonal variability in the occurrence 

of extreme wind s is another important consideration since variable soil moisture, snow load and frozen 

ground affect a trees ability to withstand wind loads.

Typical return periods of extreme wind events at four airport locations in the Central-Interior were
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estimated by assuming that the set of annual extreme gust speeds can be described by a Gumbel 

distribution (Table 3.9). A directional and seasonal categorization of the extreme wind events was 

undertaken by examining the monthly and annual wind extremes. The strongest gust on record at the 

Prince George Airport occurred January 17,1968. This winter storm resulted in mean winds of 65 km/h 

and gusts of up to 129 km/h being recorded at the Prince George Airport. A wind gust of this magnitude 

at the airport has a return period of approximately 25 years. A wind gust of at least 70 km/h can be 

expected to occur every year, and a ‘best-estimate’ of the 100-year wind at Prince George is 148 km/h. 

The 95% confidence interval for the true value of 100-year wind lies within 131-168 km/h. An annual 

wind extreme was ten times more likely to occur during the fall-winter months than spring-summer. In 

contrast to the mean winds, which tend to be channelled by local topography and have a prevailing 

north-south component (Figs. 2.6 and 2.7), the strongest daily extreme wind gusts occur most frequently 

from the south, and to a lesser extent from the west. The southerly gusts were primarily fall and winter 

events, while gusts from the west tended to be spring and summer events. For example, at the Prince 

George Airport (Fig. 3.26), the prevailing annual wind gust directions are southerly (69%) and westerly 

(18%), and approximately 70% of all the southerly gusts are either winter or fall events, while westerly 

gusts tend to be spring (29%) and summer (41%) events (Fig. 3.27).

The directional and seasonal patterns observed in the airport wind records can be explained by looking 

at the large scale (synoptic) atmospheric circulation patterns. A 25-year mean sea level pressure map 

for summer and fall was constructed using model reanalysis data having a 2.5° latitude resolution (Fig. 

3.28). In summer, the Pacific High over the ocean is strong and rather far north. The clockwise flow 

around the high explains why winds over the Central-Interior are light and from the west. This weak 

westerly flow allows the passage of unstable maritime polar air over the warmer land surface, which 

combined with orographic lift, results in increased thunderstorms as one moves eastward across the 

Central Plateau toward the Rocky Mountains. Summer gusts may, therefore, be the result of gusty 

westerly winds typically found behind a cold front, or due to wind bursts from day-time convective 

storms which are able to develop and propagate in the weak westerly flow. In winter, the Pacific High
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is weaker and displaced farther south hy the Aleutian Low which is well developed. Winds over the 

Central-Interior are stronger and have a more southerly component. The southerly winter gusts may 

therefore be associated with the flow ahead of a frontal system attached to a cyclone moving across the 

Pacific Coast. Differences in the wind climates between stations (particularly differences in wind speed, 

direction and return period) would he related to the variability in storm tracks and local topographic 

influences.

The main conclusion drawn from the analysis of the historical climate data was that the majority of 

strong wind events recorded in the Central-Interior appear to be due to winter cyclones, while 

summertime convective storms (thunderstorms) appear to be of less significance. However, it is also 

possible that the relative importance of convective storms can not be adequately resolved by the airport 

monitoring network. Although there is a potential bias toward the importance of synoptic storms, in 

consultation with the available literature, forest practitioners and other researchers, a pragmatic decision 

was made to focus on extrapolating high winds under this prevailing synoptic storm pattern.

7.3.3 Synoptic Climatology

To further refine the synoptic climatology of the windy season, the mean climatology map (Fig. 3.28) 

was reconstructed for the fall-winter period (Oct-Mar), by including only those days where the daily 

extreme wind gust at the Prince George Airport was from a southerly wind direction and greater than 

30 km/h. The resulting storm composite (Fig. 4.33b) exhibited a strong southeast-to-northwest oriented 

pressure gradient over the Interior, situated between a low in the Gulf of Alaska to the northwest, and 

a continental high pressure area to the southeast. In comparing the MSLP composite to climatology, 

these map features were found to be statistically significant departures from normal climatology (Fig. 

4.33c). The anomaly in MSLP near the centre of the storm is 8-10 hPa below normal, while the pressure 

at Prince George is about 4 hPa lower-than-normal. The 500 hPa composite shows an intensification 

of the low pressure trough over the northeast Pacific and ridging over the west coast which is indicative

110



of warming due to the flow of warm air from the south. An examination of surface weather records from 

the Prince George airport for the fall-winter period showed that the peak gust events were also 

accompanied by peaks in temperature and precipitation significantly above the climatic normals for the 

period. For example, the mean daily temperature for the October-March period is -3.6 °C, while the 

average mean daily temperature during severe storm events is +3.6 °C.

To examine the differences between wind storms of varying intensities, individual composites were 

constructed for moderate (51-70 km/h), strong (71-90 km/h) and severe (>90 km/h) gust events. Each 

composite showed an incremental intensification of the pressure gradient over the central and southern 

portions of British Columbia (Table 4.22). The coefficient of determination between mean daily 

extreme gust speed and the relative strength of the pressure gradient is =0.96. The amount of rainfall 

and warming associated with the storm events was also seen to increase with storm intensity (Table 

4.25). Increments in speed class category are accompanied hy decreasing pressure over the Interior, 

attributable to the eastward propagation of the storm centre. By constructing composites one day prior, 

and one day after the peak gust event, it was seen that there is a difference in the prevailing storm tracks 

between the moderate and the strong and severe events. The moderate category storms appear to track 

westward through the Central-Interior, causing an anticyclonic shift in the flow to a more northwesterly 

direction. The strong and severe events are thought to be related to storms tracking northeastward.

Since the main goal of this thesis was to characterize the wind field in the MMF under a typical storm 

scenario, map-pattem classification techniques were used to find a single keyday event which could then 

be used to initialize a 3-dimensional mesoscale simulation of the storm event. The aim of the map- 

pattem analysis was to find, for each speed class category, the daily map-pattem which most closely 

resembled the composite for that category. The criteria established for meeting this objective was to find 

a keyday map which was correlated at r=0.7 or higher, with at least 50% of the maps in its respective 

category. Application of this criteria resulted in three keyday maps which were correlated at r=0.7 or 

higher with 50%, 89% and 73% of the maps in the moderate, strong and severe storm categories
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respectively. The daily extreme gust speeds recorded at the Prince George airport during the keyday 

storms were approximately equal to their mean composite value, suggesting that the selected maps 

represent archetypical patterns for moderate, strong and severe gusts.

7.3.4 Wind Monitoring Network

To provide additional data for validation of the numerical simulations and the speed ratios in the 

subsequent two studies, three 3-metre tripod-based weather stations were installed in the MMF to 

supplement the existing stations within the study domain (see Dojo, Seebach and Flute in Fig. 5.35b). 

The stations were installed in the spring of 1996, and remained deployed until the fall of 1997. As a 

minimum, each station measured wind speed and direction, temperature and rainfall. Daily and hourly 

averages, and 24-hour and 1-hour extremes were recorded using a 1-minute sampling interval (see 

Appendix C for a more complete description of the monitoring network).

A total of eight southerly high wind events occurred at the Prince George Airport during the MMF 

monitoring campaign. However, the prevailing wind direction during the windy season (October - 

March) was northeasterly at all three locations (Fig. 5.41). This is due in part to the height of the 

measurements, and the strong topographic steering which occurs at each location. However, the 

prevailing northeasterlies may also be the result of gap-like winds from an anticyclone to the east of the 

Rockies, which would suggest that the Prince George Airport may not totally reflect the synoptic 

situation in the MMF, particularly along the western boundary.

7.3.5 Numerical Simulation

Atmospheric soundings taken at Prince George during the three keyday storms were used to initialize 

a series of 12-hour numerical weather simulations utilizing the Colorado State University Regional 

Atmospheric Modeling System (CSU RAMS) (Pielke et al. 1992). The maximum wind simulated at
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each grid point was recorded, and gridded wind maximums were constructed for each keyday scenario. 

Each simulation was initiated at 12UTC (4:00 a.m PST) and “nudged” toward the subsequent afternoon 

conditions at 00 UTC (4:00 p.m. PST) using a 5 second time step. To resolve the topographic influences 

of the main terrain features in the MMF, a horizontal grid size of 1 km was selected (Fig. 5.35). (Other 

key model configuration parameters are given in Table 5.26.)

The general flow patterns in the three keyday simulations were similar (Fig. 5.36). The most striking 

feature of the simulated windfield is the nearly easterly flow that develops across the central drainage 

basin as the southerly synoptic flow encounters the northwest-to-southeast oriented mountains along the 

eastern boundary, and the McGregor Plateau along the northern boundary. Winds increase where air 

is forced over the McGregor Plateau, and there are strong outflow winds along the deeper McGregor and 

Fraser river valleys. Winds across the drainage basin were more easterly for the moderate and strong 

category where winds appear to be steered around the McGregor Plateau. Differences between the 

moderate category storm and the strong and severe storms became more apparent at the end of the 

12-hour simulation. The moderate keyday winds were lighter and veered (clockwise shift) by as much 

as 90 or 180” over the drainage basin, and strong winds occurred in the southeast comer of the model 

domain as winds were funnelled into the Rocky Mountain Trench. The strong and severe keyday 

windfields continued to show a southeasterly flow over the Plateau. As seen in the storm composites, 

the moderate gusts tend to come from cyclones that track eastward directly through the Interior. This 

would result in winds veering as the backside of the low sweeps through the area. The strong and severe 

gusts are related to storms which track northeastward and winds remain southerly as the warms sector 

sweeps over the MMF.

The wind maximums recorded during the strong keyday simulation were generally stronger than the 

moderate keyday maximums across the entire domain (Fig. 5.38). Winds were even stronger in the 

severe keyday simulation. One exception was a wind jet which developed during the strong keyday 

simulation where there is a merging wind flow out of the McGregor, Torpy and Fraser river valleys.
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Within the MMF, all winds simulated during the moderate keyday were less than 51 km/h. Moderate 

(51-70 km/h) and strong (71-90 km/h) category winds which occurred during the strong and severe 

keyday simulations were generally associated with flow over hills, valley funnelling or outflow 

conditions. Winds greater than 90 km/h occurred along the mountain ridge line located southeast of the 

McGregor camp station during the severe keyday simulation. As seen during the model validation runs 

discussed below, however, the simulated wind maximums are not representative of true gusts. Actual 

gust speeds would be even higher than those indicated (Fig. 5.38.). According to Linacre (1991) mean 

wind to gust ratios are typically in the range of 1.2 - 2.0.

Direct validation of the keyday simulations was not possible due to the limited availability of 

observations during these storm events. Three southerly gust events during the 1995-1997 storm season 

were simulated to assess the representativeness of the keyday storms, and the suitability of RAMS to this 

application. The three strongest wind events recorded during the validation period were simulated using 

the identical model configuration as the keyday storm scenarios. Wind data from a temporary climate 

network deployed in the MMF, supplemented with data from existing stations (Fig. 5.35b), were used 

to assess the validity of these simulations. Simulated winds showed general agreement with 10 metre 

winds in a clear opening. Prevailing wind directions at the 10-metre towers showed reasonable 

agreement with the simulated wind field. Simulated directions at the 3-metre stations were plausible 

when subgrid effects were taken into consideration. Gridded wind maximums were also constructed 

from model output for the validation simulations and exhibited many similarities to the keyday 

maximums.

7.3.6 Extrapolation Model

Results from keyday simulations were used to construct a model for extrapolating high winds across the 

MMF landscape under a synoptic southerly flow condition. The model is intended to provide an 

estimate of the winds likely to occur above the forest canopy in the MMF based on a single wind
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measurement at the Prince George Airport. Each grid of maximum wind speeds was normalized by the 

corresponding maximum simulated for the airport. This provided a gridded set of speed ratios stratified 

by storm category. To extrapolate high wind estimates under a southerly flow condition, the model 

multiplies the mean surface wind speed at the airport by the appropriate grid of speed ratios. The wind 

speed ratios derived from the moderate keyday simulation were found to be equally applicable to 

extrapolating winds in the other two storm categories. The final model design is therefore reflected in 

the contour map of the moderate wind speed ratios (Fig. 6.46) and wind directions given by the vector 

average of the strong and severe keyday simulated wind maximums (Fig. 6.48).

Validation of this extrapolation technique was limited to verifying the magnitude of the wind estimates, 

as verification of the wind direction was addressed during the numerical modelling exercise. The 

validity of the extrapolated wind speeds was assessed by the comparison of observed daily wind 

maximums under a strong southerly flow, to the extrapolated wind speed determined by application of 

the moderate keyday speed ratios. Validation storm dates where identified by the occurrence of 

southerly gusts (180 ±10°) greater than 30 km/h occurring at the Prince George airport during the fall 

and winter months. No severe-gust storms were recorded at the airport during the entire validation 

period. The daily maximum hourly wind which occurred at the airport during each of the identified 

gust-events was entered into the model, and a corresponding wind maximum was extrapolated for each 

of the wind monitoring locations. The estimated wind maximums correlated well with 10 metre wind 

speeds in a clear opening (Fig. 6.43). With the exception of two stations (Averil and Flute), the 

correlation between the observed and extrapolated wind maximums were statistically significant at the 

95% level. Extrapolated wind speeds at the six 10-metre wind monitoring stations were within an 

absolute error of 3 m/s over 70% of the time (Table 6.30).
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7.4 SUMMARY OF KEY FINDINGS

The key findings of this work are summarized below:

• In British Columbia, strong winds are associated with the passage of fronts that originate in the Pacific 

Ocean or in the Arctic, or from strong winds associated with thunderstorm activity.

• An analysis of historical wind extremes in the central interior of British Columbia revealed that 

southerly gusts associated with fall and winter cyclones account for most of the extreme wind events 

in the region.

• Synoptic climatology and map-pattem classification techniques were used to identify representative 

map patterns for moderate (51-70 km/h), strong (71 -90 km/h) and severe (>90 km/h) southerly wind 

events in the Central-Interior.

• The keyday storms are characterized by a strong southeast-to-northwest oriented pressure gradient 

over the Interior, situated between a low in the Gulf of Alaska to the northwest, and a continental high 

pressure area to the southeast.

• The "keyday" scenarios were simulated with a 3-D mesoscale numerical model whose output was used 

to determine wind speed ratios between grid points in the complex forested terrain and a neighbouring 

airport location.

• The speed ratios provide an estimate of the winds likely to occur above the forest canopy in the MMF 

based on a single wind measurement at the Prince George Airport.
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7.5 CONCLUSION

This thesis has described a technique developed to estimate severe winds in complex and data-sparse 

topography. The technique was used to characterize the 2-dimensional near-surface horizontal wind 

field in the McGregor Model Forest (MMF) of British Columbia, under a typical storm scenario. The 

complex terrain and sparsity of wind data in EC’s forests would typically demand the use of either 

empirical extrapolative techniques, or a numerical modelling approach to obtain an estimate of the 

windfield. This project utilized both techniques by modelling synoptic composites of high-wind events 

(keydays) to derive wind speed ratios between grid points in the complex forest terrain and a 

neighbouring airport location. The numerical model used to perform the keyday simulations was the 

Colorado State University Regional Atmospheric Modeling System (CSU RAMS) (Pielke et al. 1992). 

RAMS is a complex model capable of performing highly sophisticated and detailed weather simulations. 

A simplified modelling approach was adopted, however, as the intent was to use the model to diagnose 

the wind field and obtain a dynamically balanced realization of the flow under each storm scenario, 

rather than provide a prognostic evolution of the windfield. Given the rather simplistic approach taken 

in initializing and configuring the RAMS model, the results of the keyday simulations were encouraging. 

The similarities noted between the numerical simulation of the keyday storms and validation events, 

supports both the representativeness of the keydays, and the ability of RAMS to provide a realistic 

estimate of the windfield. Wind speeds extrapolated using the speed ratios derived from the keyday 

simulations correlated well with 10 metre winds in a clear opening, and wind directions agreed 

favourably with the prevailing storm winds measured at each monitoring station. Taken together with 

the qualitative validation of the numerical simulations, the results validate the working assumption that 

extreme winds can be extrapolated under a straightline synoptic flow condition, and the technique should 

provide an adequate picture of prevailing storm winds in the MMF. While a sophisticated model such 

as RAMS is not deemed practical for day-to-day application in the forestry sector, the synoptic- 

parameterization developed here would allow for realistic wind estimates at all grid points in the MMF 

simply by knowing the synoptic-type and surface wind at the Prince George Airport.
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7.6 EXPECTED BENEFTTS

Windthrow involves complex interactions between many factors, including stand development which 

influences tree stability, site conditions that influence tree anchorage, and topography and stand structure 

that cause highly variable wind conditions (Navratil, 1995). Until very recently, the predictability of 

windthrow using a modelling approach was considered to be very low (Mayer, 1989), and most wind 

risk assessments simply ranked the relative hazards as being either low, medium or high based on a 

functional understanding of windthrow (Miller 1985; Mayer, 1988; Mitchell, 1995a). However, these 

hazard-based classifications do not specify the overall likelihood of damage. With an improvement in 

the understanding of the mechanics of windthrow, recent emphasis has been placed on the development 

of risk management models.

7.6.1 Role of Risk Management Models

Risk is defined as the probability that a certain hazard will occur (Gardiner, 1998). Quine (1998) 

identifies four stages to the process of risk management: identification of the risk agent, an estimate of 

the likelihood that a hazard will occur and its consequences, assessment of alternative responses and 

implication of chosen course. The prediction of when, where and how frequently damage will occur, 

is key for decision support management systems. With an improvement in the understanding of the 

mechanics of windthrow, recent emphasis has been placed on the development of risk management 

models. One of the main goals of the lUFRO 1998 Conference on "Wind and other Abiotic Risks to 

Forests" was to consider the degree to which this new understanding could be incorporated into forest 

management through risk assessment and decision support systems (Peltola, 1998). Risk-hased models 

are reported to be under development in Britain (Gardiner, 1998), the Czech Republic (Lekes and 

Dandul, 1998), Finland (Kellomaki and Peltola, 1998), and Switzerland (Valinger and Fridman, 1998).
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While the models differ in their complexity, they share the following fundamental components: a 

mechanistic module, a wind module and an integrated geographic information system. The mechanistic 

module predicts the critical wind speed needed to cause wind damage based on measurements of tree 

and stand parameters. The wind module describes the wind climate and utilizes wind speeds statistics 

to determine the probability that the threshold wind speed is exceeded. A geographical database of 

spatial stand data provides input to each module, and allows the information on critical wind speed, 

relative wind climate and the annual average wind speed statistics to be linked together making it 

possible to map the probability of wind damage.

Development of the European windthrow risk models has benefited from the availability of long-term 

records of wind (early 1900's) and atmospheric pressure (1800's), which Alexandersson et al. (1998) 

showed could be used as a surrogate for estimating return periods of strong winds. Meteorological 

observations in Europe also have a higher spatial resolution than is available in any other continent 

(Stull, 1995). As in British Columbia, the wind climate of the coastal European states is also dominated 

by extra-tropical cyclones (low pressure systems) which form in the Atlantic, and past west to east across 

or close to Britain. The strongest winds typically occur during the winter months, and similar to what 

was found for the Central-Interior, wind speeds are often increased by the presence of an anticyclone 

(high pressure areas) over the mid- Atlantic or south-western Europe.

7.6.2 A Windthrow Risk Assessment Model for the McGregor Model Forest

Detailed wind climatologies for forested areas in North America are rare, and according to McCarter 

et al. (1998), hazard-based classification will still play an important role in minimizing wind damage. 

By determining the synoptic climatology of strong winds in the Central-Interior, and providing a 

potential-risk surface for terrain prone to severe winds, this project represents a first critical step in 

moving toward a winthrow-iisk assessment model for the MMF. For instance, the information on areas 

prone to severe winds could be entered into a GIS framework, together with information on soil
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properties, stand conditions, etc. to provide a threat rating for windthrow occurrence. It is anticipated 

that the results of this analysis will, at some future stage, be incorporated into a decision support system 

that includes a data management system for forest representation and forest modelling. The technique 

developed in this thesis for identifying areas prone to high winds would be equally applicable to other 

forested areas, especially coastal locations such as Vancouver Island, were the wind climatology is 

dominated by cyclonic activity and strong winds are driven hy straight line synoptic flow.

7.6.3 Related Benefits

The technique developed and described in this thesis for identifying areas prone to high winds would 

also be of benefit toBC Hydro in minimizing and/or forecast planning for electrical power interruptions. 

Tree blowdown onto transmission lines is responsible for the majority of severe power disruptions in 

British Columbia (British Columbia Hydro and Power Authority, 1999). The technique developed here 

could be used to identify transmission line corridors, and stand edges at risk from blowdown. The winter 

storms identified and described in Chapter 4 also have the potential to cause ice-damage due to the 

above normal temperatures and precipitation, and subsequent freezing that occurs following the passage 

of the cold front. Accurate forecasting of these storms would allow for better budgetary and emergency 

response planning for dealing with such power interruptions. Maps of terrain prone to prevailing high 

winds could also aid in the assessment of wind power generation capabilities and in locating future wind 

turbines. Finally, the synoptic-typing methods employed in this analysis also lends itself to assessing 

the impacts of climate change scenarios. If a given synoptic type is found to cause the majority of severe 

wind events, and a climate modelling exercise was to predict an increase (decrease) in this synoptic type, 

then more (less) wind related damage could be expected.
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7.7 RECOMMENDATIONS FOR FUTURE WORK

The focus of this thesis on southerly gusts associated with fall and winter cyclones has recently been 

supported by Sagar and lull ( 2001), who installed ten 10-metre wind towers in northeastern British 

Columbia between 1995-2000. Extreme wind events (1-sec wind speed > 20 m/s) recorded during the 

5-year campaign occurred predominantly during the fall and winter months (October through March). 

The three most prevailing wind directions were SB, SSE, and S, respectively. In analysing the data, 

Sagar and lull (2001) found that the spatial and temporal distribution of extreme wind events were very 

dependent on local topography. Despite the large scale synoptic forcing, most extreme wind events were 

isolated to only one of the ten sites on a given date, suggesting to the authors that local topography leads 

to high winds. However, given the extended size of their monitoring network, this could also be due in- 

part to variability in prevailing storm tracks. This further highlights the difficulties of attempting to 

extrapolate extreme winds and directions over a wide area, and supports the limited-area numerical 

modelling approach adopted in this study. This thesis has demonstrated that extrapolating high winds 

under a straight-line synoptic flow is a reasonable hypothesis. Therefore, further development of the 

extrapolation technique developed in this thesis warranted, and the recommendations outlined below 

should be given consideration by future researchers.

• Synoptic Climatologv:

The synoptic climatology of high wind events could be improved with the use of hourly re-analysis data 

rather than daily assimilated fields. This would provide a clearer picture of the development and 

propagation of the storm systems, and may allow a map of prevailing storm tracks to be constructed. 

To assess the influence of Arctic outbreaks, and subsequent funnelling of high winds through gaps along 

the eastern mountain barrier, a synoptic climatology for high northerly winds could also be constructed, 

and a typical outbreak scenario could be simulated. To identify terrain prone to high convective winds, 

the EC Ministry of Forests lightening strike database could be used to construct prevailing storm tracks
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for summertime thunderstorms.

• Numerical Modelling:

A more detailed numerical simulation of the keyday and validation storms should be undertaken. To 

obtain wind estimates at a higher resolution than 1 km, a series of nested runs should be initialized and 

nudged using hourly gridded analysis data in addition to vertical sounding data. The model domain 

should be expanded to include as many of the stations installed by Sagar and full (2001) as feasible 

within the inner domain. However, caution should be exercised not to over extend the inner grid beyond 

the region of straight line flow (as dictated by the station used to construct the synoptic composites). 

The simulation period should also be extended to a minimum of 24-hours to allow adequate time for the 

model to settle down prior to the peak wind event. These measures would provide more accurate wind 

estimates, and be caple of capturing the temporal evolution of the winds, thereby allowing for a more 

thorough validation of the numerical modelling results. While it may not be possible to simulate actual 

gust speeds. Brasseur (2001) has demonstrated that it is possible to estimate gust speeds based on 

physical considerations using simulated meteorological fields with an accuracy at least equal to that of 

other empirical techniques. More importantly however, a physical approach allows for the determination 

of a bounding interval around gust estimates, which provides a range of likely gust magnitudes, and 

refinement of the estimates will come with improvements in modelling capabilities. Brasseur’s approach 

may allow return periods of extreme winds events to be eventually mapped.

• Wind Monitoring:

Climate monitoring is essential to the continued development and validation of both the extrapolative 

climate model (MMFCliM) and the extrapolation model for high winds. A deficiency was noted in the 

monitoring practices of the fire weather stations maintained by the licensee. While hourly readings are 

recorded at each station, only the noon parameters are routinely downloaded and archived, and
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operation of these stations is limited to the fire season. To further test the accuracy of the extrapolation 

model, more wind stations should be installed. In locating future stations, consideration should be given 

to both the high (<1.5) and low (>1) speed ratio locations delineated in Fig. 6.46. A first step would be 

to retrofit the existing fire weather stations to record and archive hourly data on a year round basis.

• Windthrow Monitoring:

Finally, in relation to the actual occurrence of windthrow, it was not possible to confirm the contribution 

of straight-line synoptic winds, because records of windthrow necessary for ground truthing a 

relationship are not being maintained. It is difficult to assess baseline conditions with respect to 

windthrow because of the noted record keeping deficiencies. For instance, it is difficult to determine 

what portion of windthrow is natural, and how much is the result of an intensification of forestry related 

activities. It is imperative that record keeping methods of windthrow events be immediately established 

and maintained for future evaluations. Accurate records will be necessary to evaluate whether imposed 

treatments to limit the extent of windthrow related to harvesting and silviculture activities are effective. 

A windthrow monitoring database similar to that maintain by BC Hydro to document power 

interruptions should be maintained using the guidelines provided in the windthrow handbook.
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Figure 1.1 Map of Study Area: (a) Location of the McGregor Model Forest in the east central-interior 
of British Columbia, 30 km northeast of Prince George, (b) Digital elevation model (100 m resolution) 
of study area shown in (a). (Coverage: 100 x 120 km.)
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A. Individual T ree Stability
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Figure 1.2 Factors Influencing Windthrow: Windthrow involves complex interactions between many 
factors which operate at multiple scales: (a) individual tree level, (b) stand level and (c) landscape level. 
At the individual tree level, stability is affected by tree morphology and soil conditions. Stand height, 
stand density, species composition and siliviculture treatments in conjunction with individual tree 
stability, determines the overall stability of stand structures. Stand level features and topography in turn 
affects windthrow by modifying wind exposure, wind direction, speed and turbulence. (Adapted from 
Stathers et al., 1994; Navratil, 1995.)
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PART I: Synoptic Climatology

STEP1

Identify dominant storm type 
&

establish storm criteria

STEP2A

Composite mean sea-level 
pressure maps according to 

storm criteria

STEP 2B

Find a "keyday" map most 
representative of all storms

PART II: Numerical Simulation

.  .

STEP 3

Perform a 3-D mesoscale 
simulation of keyday event

STEP 4

Use model output to derive 
wind speed ratios

Figure 1.3 Research Method Flow Diagram: Overview of the methodology 
used to extrapolate high winds from the Prince George Airport, to the McGregor 
Model Forest.
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Figure 2.4 Climate Station Location and Local Topography: Map approximating boundaries of the 
Prince George Forest District, showing location of principal climate stations (*■) and airport wind 
monitoring stations at Dome Creek, MacKenzie, Quesnel and Prince George. (Scale: 1 cm=14.3 km.)
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P R I N C E  G E O R G E  A
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DISTRIBUTION OF WIND SPEED (KPH

Figure 2.5 Windrose for Prince George Airport: Radial histogram showing directional frequency, 
and distribution of mean wind speeds during the 30-year climate normal period, 1951-1980. The 
indicated direction is the direction from which the wind is blowing. The radial length is the percent 
frequency that the wind blows from the given direction in the following speed classes: 0-8.9,9-18.9,19- 
29.9, 30-42.9, 42-54.9, 55-69 km/h. The bottom bar histogram shows the frequency distribution (in 
percent) by speed class (in km/h, or kph in figure) for all wind directions.
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Figure 2.6 Mean Wind Speed and Elxtremes at Prince George Airport:
Mean wind speed (left-axis) compared to the maximum hourly speed and 
maximum gust speed (right-axis) observed during the period 1955-1980.
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DISTRIBUTION OF WIND SPEED (KPH)

(a)

(b)

QUESNEL A

DISTRIBUTION OF WIND SPEED (KPH)

(c)

Figure 2.7 Windrose Diagrams for Neighbouring Stations: Radial histograms showing directional 
frequency, and distribution of mean airport wind speeds at (a) MacKenzie, (b) Fort St. James and (c) 
Quesnel during the 30-year climate normal period, 1951-1980. (Refer to Fig. 2.5 for interpretation of 
windrose and definition of speed categories.)
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T able 21  Wind Directions at Prince George and Nei^ibourlng Stations: Comparison of mean wind

N NE E SE S SW W NW Mean

MACKENZIE Jan 8.8 9 5.3 12.6 8.3 9.2 4.6 8.4 8.5

Apr 7 8.9 4.4 10.3 8.4 9.1 5.8 7.9 7.7

Jul 6.9 9.1 3.8 6.6 7.8 11 6.8 9 8.1

Oct 7.5 8.7 3.8 11.5 8.8 9.7 5.2 7.6 9.1

PRINCE GEORGE Jan 12.1 5.2 3.7 5.6 17.6 9.4 11.5 6.7 11.4

Apr 13.6 13 7.8 8.9 11.2 11.4 13.3 12.2 11.7

Jul 10.9 8.6 5.9 6.6 10J2 10.1 11.9 10.9 8.7

Oct 11.4 8.5 5.2 7.2 17.8 11.1 13.2 9.2 12.5

DOME CREEK Jan 2.8 4.6 4.1 6.8 2.3 2.6 3.8 a.4 3.3

Apr 3.1 6.5 3.7 7.3 2.3 3.8 4.7 8.6 4.7

Jul 2.9 3.7 3.4 4.6 2.4 3.2 5.9 8.3 3.9

Oct 2.5 3.1 3.6 7.9 2.3 3.2 4 5.9 3.9

QUESNEL Jan 10.7 5.7 7.1 14 10.4 6.5 7.3 13 9 6

Apr 10.6 9.2 8.7 13.4 12.7 10.9 11.6 14.3 7.7

Jul 9.5 7.4 7.6 9.3 9.3 7.2 8.3 11.3 4.8

Oct 10.2 6 8.7 14.2 11.5 8.3 9.8 12.4 6.7
 ̂S haded  colum ns indicate prevaiiing wind direction.
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Figure 2.8 Wind Speeds at Prince George and Neighbouring Stations: Comparison of 
mean monthly wind speed at four airport locations, showing seasonal differences, as well as 
differences between stations.
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Figure 2.9 Monthly Temperature Normals and Extremes for McGregor Climate Station: (a) daily 
mean, maximum and minimum temperatures, and (b) daily extreme maximum and minimum 
temperatures compared to mean daily temperature. Station elevation is 610 m above mean sea-level.
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Figure 2.10 Monthly Temperature Normals for Neighbouring Climate Stations: Daily mean (dly),
maximum (max) and minimum (min) temperatures. Station elevations are given under station name and 
annual means shown in parenthesis in the legend.
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Figure 2.11 Temperature Correlations: Scatter plots between temperature and geographical attributes 
of climate station location. Plots on the left show the correlation between the annual daily, minimum 
and maximum temperature with station elevation, longitude and latitude. Plots on the right show the 
correlation between the monthly maximum temperature for January, May, July and October and station 
location.
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Contour Plot: Daily Temperature
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Figure 2.12 Annual Daily Temperature Model: A
2nd-order linear model describing the variation in mean 
annual daily temperature with station latitude and 
elevation. The annual mean daily temperature decreases 
by approximately 1 “C per degree latitude and 0.5 “C per 
100 metre rise in elevation.
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Figure 2.13 Temperature Inversions: Comparison of
monthly daily temperatures at McGregor with stations at 
higher elevations, showing evidence of a climatic 
temperature inversion at Barkerville in January.
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Table 2.2 Annual Temperature Models: Optimal linear regression models for annual daily, maximum,

Optimal Model R̂ (%) Significance Test

Maximum LAT + ELEV 93 F(2,41)=260.5, pcO.OOOOl

Minimum LAT 25 F(l,42)=14.12, p<0.00001

Daily LAT + ELEV 71 F(2,41)=49.81, p<0.00001

Table 23
temperature.

Monthly Temperature Models: Optimal linear regression models for monthly daily

Optimal Model R (̂%) Significance Test

January LAT 81 F(l,42)=176.5, p=0.00001

May LAT + LONG + ELEV 86 F(3,40)=79.83, p=0.00001

July LAT + LONG + ELEV 91 F(3,40)=138.8, p=0.00001

October LAT + ELEV 78 F(2,41)=72.2, p=0.00001

Table 2.4 Model Comparison: Regression parameters for annual and monthly linear regression
models. (See Tab e 2.2 and 2.3 for 3-values.)

Temperature
rc]

Constant Latitude
[deg]

Elevation
[Km]

Longitude
[deg] [%]

bO Err bl Err b2 Err b3 Err

Maximum 69.11 3.8 -1.05 4.8 -5.17 7.7 - - 93

Minimum 24.56 30.1 -0.52 26.9 - - - - 25

Daily 50.24 9.6 -0.84 9.5 -3.44 20.9 - - 71

January 70.31 8.4 -1.46 7.5 - - - - 81

May 80.07 7.9 -0.61 11.5 -7.2 7.9 -0.28 17.9 86

July 104.3 4.8 -0.83 7.2 -6.22 7.4 -0.27 14.8 91

October 65.93 7.3 -0.97 8.2 -5.66 12.7 - - 78
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Figure 2.14 Précipitation Normals at McGregor Climate Station: Mean monthly
snow (cm), rain (mm) and total precipitation (mm) amounts at the McGregor station
during the 30-year period 1951-1980.
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Figure 2.15 Precipitation Normals for Neighbouring Stations: Mean monthly precipitation amounts 
for surrounding climate stations (see Fig. 2.14). Note change in vertical axis for Pine Pass.
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between annual (rain, snow and total) precipitation 
amounts and station geographical attributes.
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Figure 2.17 Effect of Elevation on Frost Free Period:
Scatter plot of spring and fall frost dates and elevation. Frost 
free period decreases 6.5 days per 100 metre rise in station 
elevation.

Table 2.5 Frost Normals: Length of frost-free period and
average date of first and last frost during for stations in and 
surrounding the Prince George Forest District.
, station Frosi-free Perod 

(Dnys) (Scnng)
Flint Frcst 

(Fall,

Aleza Lake 91 June 8 September 8

Barkerville 48 June 28 August 16

Dome Creek 72 June 16 August 28

Fort St. James 83 June 11 September 3

Hixon 122 May 26 September 26

MacKenzie 75 June 16 August 31

MacLeod Lake 92 June 7 September 8

McBride 96 June 2 September 7

McGregor 95 June 3 September 7

Pine Pass 79 June 19 September 7

Prince George 85 June 6 August 31

Quesnel 104 June 3 September 16

Vanderhoof 54 June 24 August 18

146



Gumbel Distribution

g = 0.08 kph-1 Um = 90kph

0.8

0.6

0.4

0.2

90 12060 70 80 100 110 130 140
Annuai maximum wind: kph

Figure 3.18 Gumbel Distribution, C(U): Extreme-value distribution shown with a 
Gumbel scaling factor g = 0.08 kph"' and a wind modal value of U„ = 90 kph.

Table 3.6 Airport Wind Stations: List of airport stations included in extreme 
value analysis, showing period of record and station elevation.

Station Period of Record Length of Record 
(years)

Station Elevation 
(metres)

Prince George 1956-1994 39 676

Quesnel 1958-1988 31 545

Smithers 1968-1994 27 523

Williams Lake 1961-1994 34 940
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Figure 3.19 Location of Airport Stations and Exposure: Map of Central- 
Interior, showing location of airport wind monitoring stations at Prince George, 
Quesnel, Smithers and Williams Lake. Airport locations are shown next to city 
centres by larger light-coloured circles indicated by an A Description of 
station exposure given below. (Scale: 1 cm = 58 km.)

STATION EXPOSURE

Prince George: Located on a flat plateau 90 metres above the Fraser River which runs N-S. 
Surroundings are heavily wooded with rolling hills rising to an elevation of 1220 metres.

Quesnel: Situated in the Fraser River valley which runs N-S and cuts through rolling and hilly 
countryside. A hill to the southeast of the airport result in a high frequency of calms.

Smithers: Station is located in the Bulkley Valley of the Skeena Mountains which runs NNW-SSE. The 
surrounding country is mountainous with peaks reaching 2560 metres.

Williams Lake: Airport is situated on a hill top east of the Fraser River. Winds are reported to be 
unaffected except for some local effects caused by dense stands of tall trees surrounding the airport.

148



140

Prince G eorge

120

I
I 100

0

60
1955 1960 1965 1970 1975 1980 1985 1990 1995

Year

140

Quesnel

120
Î

100

I

1955 1960 1965 1970 1975 1980 1985 1990 1995
Year

140

Sm ithers

120  -

I
100

s0

1955 1960 1965 1970 1975 1980 1985 1990 1995
Year

140

W illiams Lake

120€
I

I 100

I

1955 1960 1965 1970 1975 1980 1985 1990 1995
Year

Figure 3.20 Time Series of Annual Wind Extremes:
Maximum annual gust speeds observed at Prince George, 
Quesnel, Smithers and Williams Lake airport wind stations.
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Figure 3.21 Time Series of Monthly Wind Extremes: Maximum monthly gust speed 
observed at the Prince George Airport during the period of record 1955-1994.

130 -

120 -
s z
S : 110 -

T3
0) 100 -
&

CD 90 - . . .

T3
C

5
80 -

70 -

60 —

*
*

PGA OLA SMA WLA

Figure 3.22 Distribution of Annual Wind Extremes: Box plot of maximum annual 
gust speeds at Prince George (PGA), Quesnel (QLA), Smithers (SMA) and Williams 
Lake (WLA) airport wind stations. Note outliers (*) at QLA and WLA.
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Table 3.7 Elxtreme Value Analysis Sample Calculation: Ranking of annual wind extremes U and
calculation of the empirical cumulative frequency C(U), exceedence E(U) and return periods T(U) for

Annual 
maximum 

wind U: km/h

Number of 
values less than 

or equal to U

100 C(U)
percentile

Exceedence 
100 E(U)

Return period 
T(U): years

Gumbel
reduced
variate

80 4 IfrO 90.0 1.11 -0.834

81 5 1Z5 87j IJA 4)232

83 6 15^ 85a 1.18 a.640

84 7 1T5 825 221 41556

85 11 27.5 72J 138 a.255

87 14 35a 65a 1.54 -0.049

89 15 3T5 6 2 j 1.60 0.019

90 16 4oa 60.0 la ? 0.087

91 17 425 525 124 0256

93 19 47.5 525 1.90 0.295

94 20 50.0 50.0 2.00 0367

95 21 525 425 221 0.440

96 23 525 42.5 235 0.592

98 24 60.0 40.0 230 0.672

100 25 625 325 267 0.755

105 27 625 3 2 j 208 0234

106 28 70.0 30.0 233 1.031

107 29 725 225 3.64 1234

109 31 725 225 4.44 1367

113 33 8 2 j 17.5 521 1.648

114 34 8&0 15a 6.67 1.817

116 35 825 12.5 8.00 2.013

121 37 925 7.5 1233 2552

129 39 925 2.5 40.00 3.676
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plots of ‘ranked’ annual extreme wind speed 
against the empirical return period at four airport 
locations.

152



s
I  
I
0)XI
E3
ü

Prince G eorge Airport (1956-1994)
5

4

3

2

1

0

1

■2
50 60 70 80 90 100 110

Annuai maximum wind: kph
120 130

Figure 3.24 (a) 'Best-Qt' Une to the plot of the Gumbel reduced variate against the 
annual maximum gust speed at Prince George Airport: Coefficient of determination 
R^= 0.975, significantly different than zero F(l,22) = 862, p<0.0001.
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Figure 3.24 (b) 'Best-GP line to the plot of the Gumbel reduced variate against 
the annual maximum gust speed at Quesnel Airport: Coefficient of determination
R^= 0.913, significantly different than zero F(l,14) = 147, p<0.0001.
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Figure 3.24 (c) 'Best-Bt' line to the plot of the Gumbel reduced variate against the
annual maximum gust speed at Smithers Airport: Coefficient of determination 
= 0.962, significantly different than zero F(l,16) = 403, p<0.0001.
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Figure 3.24 (d) 'Best-Bt' line to the plot of the Gumbel reduced variate against 
the annual maximum gust speed at Williams Lake Airport: Coefficient of
determination R^= 0.989, significantly different than zero F(l,22) = 1782, p<0.0001.
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Table 3.8 Summary of Gumbel Least Squares Regression Analysis: Regression parameters are given
at the 95% confidence level. Uncertainties in the regression parameters (g and -gU^ were used to

Station: R" Standard Slope Y-intercept
m-

Modal Wind U„,
Error g (-g u j lower upper

Prince George 0.975 0.177 0.080 ±0.006 -7.24 ± 0.565 77.6 105.5
Quesnel 0.913 0.411 0.085 ±0.012 -6.12 ± 1.013 52.6 97.7
Smithers 0.962 0.244 0.072 ±0.008 -6.07 ±0.711 67.0 106.0
Williams 0.989 0.141 0.117 ±0.006 -9.21 ± 0.496 70.8 87.4
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Table 3.9 Extreme wind and Return Period Estimates: ‘Best-estimate’ of (a) return period for 
extreme wind gusts of a given magnitude (left column); and (b) extreme wind for a given return period 
(light column) at selected stations. The true range of the extreme wind estimates are given in Table 3.10 
at a 95% confidence level.

1
Station Wiiui sp'.cd 

(kph;
Rctarr pcr ocl 

■years;
Relurr. period 

(years)
Extreme wind 

(kpn)

Prince George 50 1.00 5 109
70 1.01 10 119
90 1.58 20 128
110 5.47 50 139
130 25.0 100 148

Quesnel 50 1.00 5 90
70 1.44 10 98
90 5.14 20 107
110 25.8 50 118
130 139 100 126

Smithers 50 1.00 5 105
70 1.06 10 116
90 2.06 20 126
110 6.88 50 138
130 27.4 100 148

Williams Lake 50 1.00 5 92
70 1.07 10 98
90 4.27 20 104
110 39.4 50 112
130 405 100 118
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Table 3.10 Return Period Confidence Intervals: Upper and lower bounds to the ‘best-estimate’ 
within a 95% confidence interval.

Station: Return Period 
(T)

Best Estimate 
U(T)

95% Confidence Interval 
lower upper

A U /2

Prince George 5 108.7 95.0 125.8 15.4
10 118.1 103.8 135.9 16.1
20 127.1 112.1 145.6 16.8
50 138.8 123.0 158.2 17.6
100 147.5 131.1 167.7 18.3

Quesnel 5 89.6 <58.1 117.4 24.7
10 98.5 75.8 127.3 25.8
20 106.9 83.2 136.8 26.8
50 117.9 92.8 149.0 28.1
100 126.1 100.0 158.2 29.1

Smithers 5 105.1 85.7 129.4 21.9
10 115.6 95.1 141.2 23.1
20 125.6 104.1 152.4 24.2
50 138.5 115.8 167.0 25.6
100 148.2 124.5 177.9 26.7

Williams Lake 5 91.5 83.0 100.9 9.0
10 97.9 89.1 107.7 9.3
20 104.1 94.9 114.2 9.7
50 112.0 102.5 122.6 10.1
100 118.0 108.2 128.8 10.3

Table 3.11 Seasonal Frequencies of Annual Wind Extremes: Frequency (in percent) of annual wind 
extremes recorded at each airport wind station during winter, spring, summer and fall.

Season: Prince George Quesnel Smithers Williams Lake

Winter (Dec-Feb) 26 23 40 35

Spring (Mar-May) 15 37 30 18

Summer (Jun-Aug) 10 16 0 9

Fall (Sep-Nov) 49 24 30 38
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Figure 3.25 Seasonal Characteristics of Monthly Extreme
Gust Speeds: (a) maximum gust; (□) mean gust; and (0) 2 x 
standard deviation in monthly extreme gust speed.
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Table 3.12 Seasonal Return Periods: Estimated return periods for extreme winds of a given magnitude

Wind Speed 
(kph)

January April

Return Period (Years) 

July October Annual

50 1.0 1.1 1.2 1.0 1.0

70 1.8 2.1 3.4 1.4 1.0

90 5.5 6.0 13 3.2 1.5

110 20 21 60 8.9 5.5

130 76 74 270 27 25

Table 3.13 Directional Frequencies of Annual Extreme Winds: Frequency (in percent) of annual

Direction Prince George Quesnel Smithers Williams Lake

N 0 5 3.7 0

NE 0 0 0 2.9

E 2.6 0 3.7 0

SE 2.6 25 0 64.7

S 69.2 45 11.1 8.8

s w 7.7 0 51.9 2.9

w 17.9 15 29.6 14.7

NW 0 10 0 5.9

159



o n t h l y  E x t r e m e  G u s t s  ( 1 9 5 7 - 1 9 9 4  

N o r t h

W e s t E a s t

S o u t h

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D i s t r i b u t i o n  o f  Wi n d  S p e e d s  ( k p h )

Figure 3.26 Windrose diagram of the monthly extreme gusts at the Prince George Airport (by 
speed class): Radial histogram showing directional frequency, and distribution of monthly extreme wind 
gusts during the period, 1957-1994. Gusts are mainly from the south (53%), and both from the south 
and greater than 70 kph almost 30% of the time.
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Figure 3.27 Windrose diagram of the monthly extreme gusts at the Prince George Airport (by
season) : Radial histogram showing directional frequency, and distribution of monthly extreme wind gust 
directions by time of year during the period 1957-1994. Approximately 40% of all monthly extreme 
gusts at Prince George are southerly events which occur during the fall or winter.
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Table 3.14 Prince George Airport (1956-1994): Directional frequencies of monthly extreme wind

Speed Class: 
min 
max

31
50

51
70

71
90

91
110

111
130

All
Speeds

Direction:
E 0.00 0.22 044 0.00 0.00 0.66
NE 0.22 0.44 0.66 0.00 0.00 1.32
N 0.66 3.75 1.99 0.22 0.00 6.62
NW 0.22 1.3:» 1.3:» 0.00 0.00 2.87
W 2.21 11.70 6.40 2.65 0.66 23.62
SW 1.10 4.86 3.75 0.22 0.66 10.60
s 2.65 18.54 21.63 9.27 1.10 53.20
SE 0.00 0.88 0.00 0.22 0.00 1.10

All Directions 7.06 41.72 36.20 12.58 2.43 100.00

Table 3.15 Prince George Airport (1956-1994): Directional frequencies of monthly extreme wind
gusts by speed season.
Season: Winter Spring Summer Fall All Seasons
Direction:
E 0.00 0.22 0.44 0.00 0.66
NE 0.44 0.44 0.00 0.44 1.32
N 1.77 1.10 2.43 1.32 6.62
NW 0.44 0.44 1.32 0.66 2.87
W 3.09 6.84 9.71 3.97 23.62
SW 0.66 4.64 4.86 0.44 10.60
s 18.32 11.04 5.74 18.10 53.20
SE 0.00 0.44 0.44 0.22 1.10

All Directions 24.72 25.17 24.94 25.17 100.00
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Table 3.16 Quesnel Airport (1958-1988): Directional frequencies of monthly extreme wind gusts by

Speed Class:
min
max

31
50

51
70

71
90

91
110

111
130

All
Speeds

Direction:
E 0.56 1.67 0.28 0.00 0.00 2.50
NE 0.00 0.00 0.00 0.00 0.00 0.00
N 4.72 7.50 1.39 0.00 0.00 13.61
NW 8.06 10.54 2.22 0.28 0.28 21.38
W 4.17 3.33 1.94 0.00 0.00 9.44
SW 0.00 1.39 0.00 0.00 0.00 1.39
s 7.78 17.50 5.00 0.83 0.00 31.11
SE 8.06 11.11 1.39 0.00 0.00 20.56

All Directions 33.35 53.04 12.22 1.11 0.28 100.00

Table 3.17 Quesnel Airport (1958-1988): Directional frequencies of monthly extreme wind gusts by
season.
Season: Winter Spring Summer Fall All Seasons
Direction:
E 0.56 1.11 0.28 0.56 2.51
NE 0.00 0.00 0.00 0.00 0.00
N 3.06 3.33 4.44 2.78 13.61
NW 6.11 4.44 5.83 5.00 21.38
W 0.56 1.94 5.00 1.94 9.44
SW 0.28 0.28 0.55 0.28 1.39
s 8.06 10.27 5.28 7.50 31.11
SE 6.39 4.44 3.06 6.67 20.56

All Directions 25.02 25.81 24.44 24.73 100.00
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Table 3.18 Smithers Airport (1968-1994): Directional frequencies of monthly extreme wind gusts by 
speed class.
Speed Class: 
min 
max

31
50

51
70

71
90

91
110

111
130

All
Speeds

Direction:
E 1.60 0.96 0.32 0.00 0.00 2.88
NE 0.32 0.64 0.32 0.00 0.32 1.60
N 9.90 4.15 2.56 0.00 0.00 16.61
NW 6.07 2.24 0.96 0.32 0.32 9.91
W 4.79 5.11 3.19 0.00 0.00 13.09
SW 6.39 7.35 2.24 1.60 0.32 17.90
s 12.46 9.58 4.47 1.28 0.32 28.11
SE 4.15 3.83 0.96 0.96 0.00 9.90

All Directions 45.68 33.86 15.02 4.16 1.28 100.00

Table 3.19 Smithers Airport (1968-1994): Directional frequencies of monthly extreme wind gusts by 
season.
Season: Winter Spring Summer Fall All Seasons
Direction:
E 0.64 0.64 0.95 0.64 2.88
NE 0.32 0.32 0.64 0.32 1.60
N 2.88 7.02 5.43 1.28 16.61
NW 0.64 2.88 4.15 2.24 9.91
W 2.56 1.92 3.83 4.78 13.09
SW 6.08 5.75 3.19 2.88 17.90
S 9.90 4.79 4.47 8.95 28.11
SE 2.56 2.24 1.92 3.18 9.90

All Directions 25.58 25.56 24.59 24.27 100.00
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Table 3.20 Williams Lake (1961-1994); Directional frequencies of monthly extreme wind gusts by

Speed Class: 
min 
max

31
50

51
70

71
90

91
110

111
130

All
Speeds

Direction:
E 0.75 1.00 0.50 0.00 0 .00 2.25
N E 0.00 0.00 0 .00 0.25 0.00 0.25
N 2.01 4.51 0.25 0.00 0.00 6.77
N W 5.01 7.27 2.26 0.02 0 .00 14.56
W 1.50 4.26 1.50 0.75 0.00 8.01
SW 0.50 1.25 1.25 0.00 0.00 3.00
s 3.26 7.27 3.76 0.25 0.00 14.54
SE 5.01 27.07 17.54 1.00 0.00 50.62

All Directions 18.04 52.63 27.06 2.27 0.00 100.00

Table 3.21 Williams Lake (1961-1994): Directional frequencies of monthly extreme wind gusts by 
season.
Season: Winter Spring Summer Fall All Seasons
Direction:

E 0.25 0.50 1.50 0.00 2.25
NE 0.00 0.00 0.25 0.00 0.25
N 0.50 1.75 3.02 1.50 6.77
NW 1.25 4.54 4.51 4.26 14.56
W 1.25 0.75 5.26 0.75 8.01
SW 0.00 0.75 2.00 0.25 3.00
s 4.26 3.51 3.51 3.26 14.54
SE 17.54 13.03 4.76 15.29 50.62

All Directions 25.05 24.83 24.81 25.31 100.00
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Figure 3.28 Mean Sea-Level Pressure Climatology: Comparison of 25-year average summer and fall 
mean sea-level pressure patterns and 10-metre winds. Plots were constructed using the Gridded Analysis 
and Display System (GrADS) using data derived from the NCEP/NCAR Reanalysis Project. (Prince 
George Airport located at 53° 53' N and 122° 40' W.)
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Figure 4.29 Kirchhofer Sums-of-Squares Technique: Flow 
diagram of keyday map-pattem classification program.
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Figure 4.30 Synoptic Climatology Study Area: Map of study area 
used to develop synoptic-composites of fall and winter cyclones. Prince 
George Airport located at 53“ 53' N and 122“ 40' W.

167



150

o 100

F M A M J J A 
Month

S O N D

w

b 80

B̂ CTAwAiIi IiiiiHi
30 40 50 60 70 80 90 100 110

Speed (km/h)
(B)

c  30

0) 20 .... .

(C)

Figure 4.31 Prince George Airport Wind Extreme Distributions: (a)
Monthly distribution of all daily extreme wind gusts from a southerly 
direction recorded during the period 1970-1994. (b) Distribution of southerly 
gusts occurring during the fall-winter period, (c) Annual distribution of gust 
events shown in (b).
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Figure 4.32 Keyday Study Area: Map of gridded area used in map-pattem
classification.
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(a) Climatology

MSLP

850 hPa

500 hPa

(b) Composite (c) Anomaly

Figure 4.33 Synoptic Climatology: (a) 25-year mean climatological fields (mean sea-level pressure, and 850 hPa and 500 hPa pressure surfaces) for 
the fall-winter period (1970-1994), (b) Composite fields for all southerly gusts greater than 30 km/hr (1970-1994). (c) Deviation from normal 
climatology and statistical significance of anomaly at the 99% level (shaded region).
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Table 4.22 Summary of Storm Composite Results: Comparison of storm-composite characteristics 
to climatology for the fall-winter period.

rumber of 
oays

_

meai’ daily 
extrorne gust 
speed  (km/h)

MSLP (hPa) 

storm centre ' criteria-area

relative strength 
of pressure 

gradient^

Climatology 4556 ^004 1016 1

1 All stoims.
1 gusts > 30km'hr

626 52 996 1012 3

1 Moderate 
1 51-70 km/h

202 59 992 1010 4

1 Strong- 
1 71-90 km/h

70 78 984 1008 5

Severe
gusts J- 90k,n/hr

11 99 988 1004 6

“The magnitude of the pressure gradient was estimated by counting the number of isobars passing through the area defined by 50°-55° latitude and 
120°-125° longitude.

Table 4.23 Summary of M ap-Pattem Classification Results: Identification of keyday storms and

% of maps 
con elated at 

r = 0.7 0 - r.igher

... .................—
extreme da=ly 

gust speed  
(km/h!

r/ISLP fhPa) rrhtivf' 
strength of 
pressure 
gradient

storm centre criteria-area

Moderate:
88/11/21

45 57 96d moo 5

Strong:
94/10/26

89 74 972 992 5

Severe:
75/11/12

73 98 976 1006 7

“ See Table 4.22 for explanation
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(a) Composite (b) Anomaly (c) Keyday
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75/11/12

Figure 4.34 Storm Composites and Keyday Events: (a) Mean sea-level pressure storm composites stratified by moderate (51-70 km/h), strong (71 -90 
km/h) and severe (>90 km/hr) daily extreme gust speeds, (b) Deviation from normal climatology for fall-winter period and statistical significance of 
anomaly at 99% level (shaded area), (c) Keyday maps identified by map-pattem classification analysis.
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Table 4.24 Severe Keyday Storm Weather 
Properties: Comparison of mean daily weather 
elements before, during and after severe gust events.

Q
t

,Q

average daily extreme 
gust sp eed  (km/n)

55 99 50

average maximum daily 
tdnpi'iatui. 1,

4.5 8.2 5.0

average daily mean 
temi'ui Hill r

0.4 3 6 0 5

average daily 
rainfall tmin)

0 3 ' 6 1 0

average daily 
snowfall (mm)

0 4 1.3 0.4

average total daily 
precipitation (mm)

0.7 2 9 ■A

climatology 

all gust 

moderate 

strong 

severe

Table 4.25 Storm Composite Weather 
Properties: Comparison of storm composite 
weather with climatology.

E 1

! t
f  I
0.8 -3.6 0.5 1.2 1.7

4.7 0.6 0.9 1.3 2.2

5.4 1.4 0.9 1.0 1.9

6.4 2.1 1.1 0.8 1.9

8.2 3.6 1.6 1.3 2.9
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Figure 5.35 Smoothed Topography and Wind Monitoring Network; (a) RAMS model domain 
smoothed toa 1 km resolution. Terrain elevation contours are shown (above mean sea-level) every 100 
m. (b) Digital elevation model (100 m resolution) of area in (a) showing location of wind monitoring 
stations available for model validation. (Coverage: 100 x 120 km.)
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Table 5.26 RAMS Model Configuration; Summary of relevant model configuration 
parameters used to initialize the keyday and validation numerical simulations.

1. MODEL GRIDS:

Horizontal Grid:

Dimensions: 120 km X  100 km grid
Resolution: 1 kilometre

Vertical Grid:

Levels: 29 levels (16 km top)
Minimum spacing: 50 metre at surface
Stretch factor 1.2
Maximum spacing: 1000 metres

(refer to text for explanation of vertical grid parameters)

Soil Grid:

Levels: 11
Depth: 0.5 metre

2. TIME INTEGRATION:

Equations: nonhydrostatic
Initialization: variable (sounding data only)
Duration: 12-hour (12Z to OZ )
Time step: 5 seconds
Nudging: strong nudging along lateral boundary (10 grid points from 

lateral edges) and above 12 km only.

3. MODEL OPTIONS:

uniform surface roughness (coniferous forest)
• moisture as a passive tracer (no clouds or precipitation)
• two passes through topography smoother
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MODERATE STRONG SEVERE
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Figure 5.36 Keyday Simulation Results: Results of the three keyday simulations for model level k=3 (corresponding to a mean height of 78.6 metres). Shown 
from top to bottom is the initialization field (12Z), a snapshot of the windfield after six hours of simulation (18Z) and at the end of the model run (OOZ). Wind 
barbs are shown every four grid points (or 4 km) using speed intervals of 5 and 10 m/s for a half barb and a full barb, respectively. Plots show only the grid 
interior enclosing the MMF (compare with Fig. 5.35). Elevation contours are shown every 100 m. (Coverage: 60 x 92 km.)
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MODERATE KEYDAY: 22 OCT 1993
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Figure 5.37 (a) Moderate Keyday Simulation Time Series: Temporal
evolution of moderate keyday simulated wind speed (top plots) and direction 
(bottom plots) at grid cells closest to the indicated climate stations for 
vertical model levels k=3 (left) and k=2 (right).

STRONG KEYDAY: 25 OCT 1994
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Figure 5.37 (b) Strong Keyday Simulation Time Series.
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SEVERE KEYDAY: 20 JAN 1973

McGregorWind Speeds 
{S(MUUTœK=3)

McGregorWind Speeds 
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Figure 5.37 (c) Severe Keyday Simulation Time Series.

m oderate - m ax a t  resolution of 3  kir Scale: 10 m/s =

Figure 5.38 (a) Moderate Keyday Wind Maximums: Wind vectors 
(shown every 3 grid points) are colour coded according storm category, with 
yellow, orange and red denoting moderate (51-70 km/h), strong (71 -90 km/h) 
and severe (90+ km/h) winds respectively (blue vectors are less than 51 
km/h). (Coverage: 100 x 120 km.)
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Figure 5.38 (b) Strong Keyday Wind Maximums.

severe - m ax  a t  resolution of 3  km Scale: 10 m/s «»

Ml
Figure 5.38 (c) Severe Keyday Wind Maximums.
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Table 5.27 Validation Storm Characteristics: Observed speed and direction of the daily extreme gust

Date
Daily Extreme Gust Maximum Hourly Wind

speed (km/h) direction (deg) speed (km/h) direction (deg)

18 Mar 1997 69 180 43 180

21 Oct 1996 74 190 48 190

CWI%cl996 82 180 46 190
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18 MAR 1997 04 DEC 1996 21 OCT 1996

12Z

18Z

OOZ

\ V j J J

Figure 5.39 Validation Simulation Results: Results of the validation simulations for model level k=3 (corresponding to a mean height of 78.6 metres). Shown 
from top to bottom is the initialization field (12Z), a snapshot of the windfield after six hours of simulation (18Z) and at the end of the model run (OOZ). Wind 
barbs are shown every four grid points (or 4 km) using speed intervals of 5 and 10 for a half barb and full barb, respectively. Plots show only the grid interior 
encompassing the MMF (compare with Fig. 5.35). Elevation contours are shown every 100 m. (Coverage: 60 x 92 km.)

180



MODERATE VALIDATION: 18 MAR 1997
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Figure 5.40 (a) 18 March 1997 Validation Time Series: Comparison of observed (left-hand 
plots) vs. simulated (right-hand plots) wind speed and direction for model level k=3 at grid cells 
closest to indicated wind monitoring stations in the Prince George Bowl (top plots) and the 
McGregor Model Forest (bottom plots).
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M O D /ST R O N G  VALIDATION: 04  D E C 1996
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'O '-  N. Wood

hour (PST)

McGregorWind Speeds
(SIMULATED K=3)

20

15

10

5

0 0
5 6 7 8 9 10 11 12 13 14 15 16

-S ' Averil 

•A  Aleza 

A* Flute 

O Dojo 

-V- Seelsach 

-B* lyfaGregor

hour (FST)

McGregorWind Directions 
(SIMIXATH) K=3)

360

270270

I 180180

5 6 7  8 9 10 11 12 13 14 15 16

# .  Averil 

A - Aleza 

A - Rute 

O' Dojo 

A  Seebach 
- S -  McGregor

hour (PST) hour (F%T)

Figure 5.40 (b) 04 December 1996 Validation Time Series.
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STRONG VALIDATION: 21 OCT 1996
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Figure 5.40 (c) 21 October 1996 Validation Time Series.
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Figure 5.41 Observed Wind Characteristics: Prevailing wind directions measured during the October 
1996 to March 1997 windy season. Wind measurements are 1-hour means with the exception of PGA 
and McGregor. Wind speeds are shown in intervals of 5 m/s. (Note: McGregor data is for the period 
October 1994 to March 1995.)
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Table 6.28 Keyday Wind Speed Ratios at Wind Monitoring Stations: Ratio of simulated wind speed 
for grid cells nearest available wind monitoring locations, to the wind speed simulated for the grid cell 
nearest the Prince George Airport, during each of the keyday numerical simulations (model level k=3). 
Also shown is the length of available wind records for model validation, and the number of southerly

Station

moderate

Speed Ratios 

strong severe

Period of 
Record

Years Number of 
Storms

Averil 0.91 1.19 1.01 1996-1997 2 8

Aleza 0.65 1.08 0.89 1993-1997 5 26

McGregor 0.54 1.1/1 1.36 1989-1996 8 23

Dojo 0.97 1.02 0.91 1996-1997 2 8

Seebach 1.07 1.1(5 0.81 1996-1997 2 7

Flute 0.67 1.15 0.85 1996-1997 2 7

Northwood 0.88 0.53 0.77 1993-1997 5 34

PGPulp 0.9 0.76 0.93 1993-1997 5 32

Plaza 0.85 0.42 0.8 1992-1997 6 3
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Figure 6.42 AIl-Keyday Model Validation: Comparison of observed daily maximum hourly wind 
speed vs. extrapolated wind maximum under a synoptic southerly flow using the set of three keyday 
speed ratios. Broken line is the regression line and the solid line is the 1:1 line.
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Figure 6.43 Moderate Keyday Validation: Comparison of observed daily maximum hourly wind 
speed vs. extrapolated wind maximum under a synoptic southerly flow using the moderate keyday speed 
ratios for all wind classes. Broken line is the regression line and the solid line is the 1:1 line.
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T able 6.29 Mean Absolute E rror : Comparison of average observed daily maximum hourly wind speed 
to average extrapolated maximum wind speed, and calculation of mean absolute error using moderate

Station Height
(in)

t v C T l î S

N
Otîscrvcd

On/.-s)
Modeiied 

: m/s)
Mean Absolute 

Errt'-r ■* (m/s)

Averil 10 17 8.26 9.23 1.72

Aleza 10 26 6.42 6.65 1.13

McGregor 10 23 3.9 5.48 1.59

Northwood 10 34 6.9 8.62 1.76

PGPulp 10 32 7.59 8.86 1.65

Plaza 10 40 7.77 8.28 1.16

Dojo 3 19 3.94 9.59 5.65

Flute 3 15 3.83 6.81 3.38

Seebach 3 15 5.53 10.88 5.35
“ Error convention is (modelled - observed).

Table 6.30 Percent Frequency of Mean Absolute Error: Comparison of model error at 10-metre

Station .picncy of Absolute Mean Error “ (9f )

■ m/s < 2 m/s 3 m/s >  S lU /S

Averil 20 45 80 20

Aleza 40 85 100 0

McGregor 30 70 90 10

'Northwood 20 60 85 15

PGPulp 35 50 75 25

r*laza 40 80 90 10

Percent Fivoucnc}' 65 87 n
“ Frequency rounded to nearest 5%.
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Figure 6.44 Absolute Model Error: Histograms showing frequency distribution of absolute model 
error at each of the wind monitoring locations.
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Figure 6.46 Contour Plot of Wind Speed Ratios: Ratio of simulated mean maximum wind speed for 
each grid cell, to the wind speed simulated for the grid cell nearest the Prince George Airport. Speed 
ratios were derived from wind maximums simulated for the moderate keyday storm category at a mean 
height of 70 m and horizontal resolution of 1 km. Topography contours shown in black every 200 m 
from 600 to 2000 m. Refer to Fig. 6.47 and Fig. 6.48 for corresponding wind directions. (Coverage: 100 
X  120 km.)
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Figure 6.47 Moderate Keyday Wind Directions: Direction of simulated wind maximums for the moderate keyday storm scenario at a mean 
height of 70 m and horizontal resolution of 1 km. (Coverage: 55 x 85 km.)
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Figure 6.48 Strong-to-Severe Wind Directions: Vector average of simulated wind directions, and scalar average of maximum mean wind 
speeds, for the strong and severe keyday storm scenarios at a mean height of 70 m and horizontal resolution of 1 km. (Coverage: 55 x 85 km.)
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B .l INTRODUCTION: The Gridded Analysis and Display System

The Gridded Analysis and Display System (GrADS) is an interactive desktop tool for the analysis and 

display of earth science data developed by the Center for Ocean-Land-Atmosphere studies, Calverton, 

MD. The software is GRIB (GRIdded Binary) compatible and is freely distributed over the Internet 

(http://grads.iges.org). GrADS implements a 4-Dimensional data model, where the dimensions are 

usually latitude, longitude, level, and time. Operations may be performed on the data directly using a 

set of built-in functions, or users may add their own functions as external routines written in any 

language. A programmable scripting language can also be used to automate complex multi-step 

calculations or displays.

Three GrADS scripts were written in order to constmct the synoptic composites developed in Chapter 

4 (see Table B.l). GrADS was executed with the following command: grads -Ic "open 

/dl/murphyb/grads/daily/mslp/PRESmsl.daily. 1970_1994.ctl". The control (.ctl) file, synoptic 

climatology programs, and supplementary scripts and data files are provided in the sections below.

Table B .l Synoptic Climatology Scripts:

SCRIPT DESCRIPTION

CLMATE.GS

COMPOSITE.GS

SIGFIG.GS

Produces a mean daily map for a specific averaging period. 

Produces a average map for a discontinuous list of dates/times. 

Computes the statistical significance of climate anomalies.
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B.2 GrADS SCRIPT FILES: Synoptic Climatology Programs
SCRIPT: CLIMATE.GS

PURPOSE: Produces a mean daily map for a specific averaging period.

AUTHOR: Brendan Murphy, University of Northern B.C.

DETAILS: The script as written, com putes a 25-year mean for the Fall/Winter period
November through March. It assu m es the use of daily data for the 25-year 
period 1970-1975. Therefore, t=1 is 01JAN1970 and t=9131 is31D E C 1994.

CALLS: Other scripts called are: m ap.gs and isoplth.gs

OUTPUT: The following grids are left in memory:

dim - mean climatology map

VARIABLES WHICH REQUIRE CHANGING BY THE USER:

MAPPATH
OUTPATH

IMAX
VAR
LEVEL

7d1/murphyb/grads/scripts/'
7d1/murphyb/grads/results/'

9131
■PRESmsl'
0

START OF SCRIPT

'o' : say  "
'set grads off 
'run 'MAPPATH'map'
•set lev 'LEVEL

' Run climate function (see  declared function below) 

climate(VAR, IMAX, LEVEL)
' Output resulting climatology (dim) and standard deviation (sdev) in mb

run isoplth LEVEL 
if(LEVEL=0) then 

‘d clim/100' 
else  

'd dim' 
endif
'draw title Climatology 1970-1994('VAR'): N='_Nclim

prompt 'Print Climatology? (y/n) ' 
pull ans
if (ans=‘y'lans='Y')

'enable print 'OUTPATH'dim.gmf 
'print'
disable print'
say  ' FILE PRINTED: 'OUTPATH'dim.gmf 

endif

END OF SCRIPT
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FUNCTION climate(VAR,IMAX,LEVEL) 

s a y "
say 'PLEASE WAIT ... building climatology from daily data' 
say ' '

* initialize the average counter 
n=0

* initialize the sum grids to 0 
'define x=const('VAR', 0, -a)'
'define x2=const('VAR',0,-a)‘

* initialize time counter 
1 = 1

* begin iteration to sum grids 
while(k=IMAX)

* *** check date ***
'set t 'i
'q time'
year=substr(result,16,4) 
month=substr(result,13,3) 
day=substr( result, 11,2)
if(month='JAN')l(month='FEB')l(month='MAR')l(month='OGT')l(month='NOV‘)l(month='DEC') 

if(month='JAN')&(day='01 ') 
say Time = 'day month year ' n = 'n+1 

endif

* *** check for invalid data ***
'set gxout stat'
d VAR
card=sublin(result,7)
nvalid=subwrd(card,8)
'set gxout contour'

* *** add valid data to running sum ***
if(nvalid 1=0)

n=n+1
'define x=x+'VAR 
'define x2=x2+pow('VAR',2)' 

endif
if(month='DEC')&{day='31 ')

'c'
'run isoplth LEVEL 
if(LEVEL=0) then 

'dx/'n'/IOC 
e lse  

'dx/'n'/r 
endif
'draw title 1970 to 'year' (n='n')' 

endif 
endif 
i=i+1 

endwhile

* Compute average and standard deviation 

if(nl=0)
'define dim  = x/'n
'define sdev=sqrt((x2/'n')-(pow(clim,2)))' 

e lse
'define dim = const(x,-999,-a)'

197



'define sdev=const(x,-999,-a)' 
endif
say  'FINISHED (n= 'n')'; say ' 
'undefine x'
'undefine x2'
'c'
_Nclim=n

RETURN
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SCRIPT: COMPOSITE.GS

PURPOSE: Produces a com posite (average) map for a list of dates/times which are supplied by the user.

AUTHOR: Brendan Murphy, University of Northern B.C.

DETAILS: The file containing the list of dates/tim es to be included in the com posite n eed s to b e specified
by the user (see  INDAT). The first line of IN DAT should provide the variable, level and number
of dates to be included in the composite. (Note: INDAT must be consistent with the current .ctl)

eg. PRESmsl 0 2 HGTprs 850 2
1 1
9131 9131

CALLS: Other scripts called are: map.gs and isoplth.gs

OUTPUT: The following grids are left in memory:

comp - the composite map
sdev - the standard deviation of the composite

* VARIABLES WHICH REQUIRE CHANGING BY THE USER:

MAPPATh = Vdl/murphyb/grads/scripts/'
OUTPATH = Vdl/murphyb/grads/results/'
INDAT = 7d1/murphyb/grads/gusts/gusts.dat'

START OF SCRIPT

* Allow user to select grid domain

* say  ' '
run 'MAPPATH'map'

* Obtain variable to be composited

file = substr(INDAT,25,10) 
headerl = sublin(read(INDAT),2) 
var = subwrd(headerl.l) 
level = subwrd(header1,2) 
imax = subwrd(header1,3)

'set lev ' level

* Read in list of discontinuous times and echo input data

say  ' '
say  'Reading INDAT: 'INDAT 
say  "
say  ' headerl 
i=1
while(i<=imax)

data=sublin(read(INDAT),2)
_it.i=subwrd(data,1) 
say  ' 'data 
i=i+1 

endwhile

say  ' '
say  'Building composite for: 'var 
say  'Number of fields: 'imax
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say 'Level: 'level
sa y "

* Run composite function (see  declared function below) 

compo(var,imax,level)

* Output resulting composite (comp) and standard deviation (sdev) in mb 

s a y "
say 'MAP: GOMPOSITE('var') N='_Ncomp 
'o'
'set grads off 
'set cstyle 1 '
'set ccolor 1 ' 
run isoplth 'level 
if(level=0)

'd comp/100' 
else

'd comp' 
endif
'draw title Comp 'var': 'file' n='_Ncomp 
s a y "
prompt 'Print Composite? (y/n) ' 
pull ans
if(ans='y' I ans='Y')

'enable print 'OUTPATH'comp.gmf 
'print'
'disable print'
say'FILE PRINTED: 'OUTPATH'comp.gmf 
sa y ' ' 

endif
prompt 'Plot standard deviation? (y/n) ' 
pull ans
if(ans='y' I an s= T )

'c'
'set cmin O'
'set cmax 20'
'set cint 2' 
set ccolor 1 '
'd sdev/100'
'draw title SDEV Comp('var'): 'file' n='_Ncomp 
prompt 'Print Standard Deviation? (y/n) ' 
pull ans
if(ans='y' I ans='Y')

'enable print 'OUTPATH'sdev.gmf 
'print'
'disable print'
say  'FILE PRINTED: 'OUTPATH'sdev.gmf 
say  ' ' 

endif 
endif

END OF SCRIPT
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FUNCTION compo{var,imax,level)

* Initialize the average counter 
n=0

* Initialize the temporary sum grids (mean and mean square) to zero
'define x=const('var',0,-a)'
'define x2=const(Var',0,-a)'

* Start iteration 

i=1

whiie{i<=imax)

'set t 'Jt.i

* *** check for invalid data ***
'set gxout stat'
'd 'var
card=sublin(result,7) 
nvalid=subwrd(card,8) 
set gxout contour'

* *** display valid maps *** 
if(nvalid != 0)

'c'
'run isoplth 'level 
if(level=0)

'd 'var'/100' 
else  

'd 'var 
endif
'draw title 'var ' (t='_it.i')'

* *“  allow user to exclude displayed map from com posite ***
(Comment this section out for large data sets!) 
prompt 'MAP:' J t . i '  Include in com posite? (y/n) ' 
pull ans
while (!(ans='y') & !(ans='n') & !(ans='Y') & !(abs='N')) 

say  ' '
prompt 'Please en ter (y/n): ' 
pull ans 
say  ' ' 

endwhile

* * *  add fields to running sum s *** 
if(ans='y' I ans='Y') 

n=n+1
'define x=x+'var 
'define x2=x2 + pow('var',2)' 

endif 
endif

i=i+1

endwhile

* Calculate the mean (composite) of se lected  maps and their standard deviation 
if(n!=0)

'define com p = x/'n
'define sd ev  = sqrt((x2/'n')-(pow(comp,2)))' 

e lse
'define com p = const(x,-999,-a)'
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'define sdev = const(x2,-999,-a)' 
endif

* Assign the number of fields included in composite to a global 
" variable for future processing and drop temporary grids 

undefine x'
'undefine x2'
_Ncomp=n
RETURN
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SCRIPT: SIGFIG.GS

USAGE: 'run sigfig n' <n = number of fields in the composite>

PURPOSE: Computes the statistical significance of climate anomalies using a  two-tailed Student's t-test.

AUTHOR: Brendan Murphy, University of Northern B.C.

DETAILS: The composite (comp), standard deviation (sdev) and climate (dim) fields are used to calculate
t-values at each grid point (tvals). The statisitlcal significance is tested at the 95% or 99% level 
by interpolating from an encoded t-tabie. Areas of significance are shaded-in over the climate
anomaly (comp-clim).

CALLS: Grids comp, sdev and dim must be already defined in memory.
(See programs climate.gs and com posite.gs).

Function also requires the external data files t1 .dat and tS.dat.

START OF SCRIPT

FUNCTION sigfig(n)

define tvals=abs((comp-clim)/(sdev/sqrt('n')))'

* 99% level 
siglev='T

* 95% level
* siglev='5‘

'set grads off
set gxout shaded'
set d e v s  'studt(n,siglev)
'set ccols 0 9'
* se t  d ab  99%%' 
d tvals'
'set gxout contour'
'set ccolor 1 '
'set cint 2'
'd (comp-clim)/100'
'draw title Anomaly & Statistical Significance (99% level)'

END OF SCRIPT

FUNCTION studt(n,siglev)

* t-table taken from: Zar, H. Jerroid (1984) Biostatistical Analysis, 2nd ed (pp.484-485). 

i=0
while(i<50)

i=i+1
if (sigiev='T)

t1 .i=sublin(read(t1 .dat),2) 
e lse

t5.i=sublin(read(t5.dat),2)
endif

endwhile
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if(n<=50) 
say 'n is less than or equal to 50'
If (siglev='1 ') 

tcrit=t1 .n 
endif
if(siglev='5')

tcrit=t5.n
endif

else
say 'n is greater than 50’ 
if (siglev='5') 

if (n<=60)
tcrit=2.G09-O.G09*(n-50)/10 

endif
if (n>60 & n<=70) 

tcrit=2.000-O.OG6*{n-6G)/10 
endif
if (n>7G & n<=90) 

tcrit=1.994-G.GG7*(n-7G)/2G 
endif
if (n>9G & n<=12G) 

tcrit=1.987-G.0G7*(n-9G)/30 
endif
if (n>12G&n<=150) 

tcrit=1,980-G.GG4*(n-12G)/3G 
endif
if (n>150 & n<=20G) 

tcrit=1,976-G.GG4*(n-150)/5G 
endif
if (n>2GG&n<=1GGG) 

tcrit=1.972-G.G1 *(n-2G0)/8G0 
endif 

e lse  
if (n<=6G)

say 'n is less than or equal to 60 and sgnf is 1%' 
fcrit=2.678-0.018*(n-50)/10) 

endif
if (n>60 & n<=7G) 

tcrit=2.66G-G.012*{n-6G)/1 G 
endif
if (n>7G & n<=9G) 

tcrit=2.648-G.0G9*(n-7G)/2G 
endif
if (n>90 & n<=12G) 

tcrit=2.632-G.015*(n-90)/3G 
endif
if (n>12G&n<=15G) 

tcrit =2.617-G.DG8*(n-120)/30 
endif
if (n>15G & n<=2GG) 
tcrit=2.6G9-G,G08*(n-15G)/5G 

endif
if (n>2GG&n<=1GGG) 

tcrit=2.601-G.02*(n-2GG)/800 
endif 

endif 
endif
say ‘tcrit='tcrit 
return (tcrit)
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B J  SUPPLEMENTARY GrADS FILES

B.3.1 Script Files

MAP.GS

* Defines Map Area 
'set m pdset m res'
'set grads off 
'set poli off

'set mpvals -170 -120 40 70' 
'set mproj nps'
'set lat 20 90'
'set Ion -220 -90'

ISOPLTH.GS

* Defines Contouring Interval 
function isopltfi(arg)
'set ccolor 1'
'se t grads off 
'se t cstyle 1 ' 
if(arg=0)

'set cmin 954'
'set cint 4' 

endif
if(arg=850)

'set cmin 840'
'set cint 60' 

endif
if(arg=500)

'set cmin 4760'
'set cint 60' 

endif

B^.2 Sample Control File

PRESm sl.daily.1970_1994.ctl

d se t ^PRESmsl.daily.b%y20101.e% y21231 
dtype grib
options y rev tem plate
index -'PRESmsl.daily. 1970_1994,idx
undef -9.99E+33
title MSLP.daily.1970_1994
xdef 144 linear 0 2.5
ydef 73 linear -90 2.5
tdef 9131 linear 0GZ01jan70 1dy
vars 1
PRESmsI 0 1,102,0 ** P ressu re :Pa
ENDVARS
zdef 1 linear 1 1
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B.3 j  Data Files

T1.DAT TS.DAT

63.657 12.706
9.925 4.303
5.841 3.182
4.604 2.776
4.032 2.571
3.707 2.447
3.499 2.365
3.355 2.306
3.250 2.262
3.169 2.228
3.106 2.201
3.055 2.179
3.012 2.160
2.977 2.145
2.947 2.131
2.921 2.120
2.898 2.110
2.878 2.101
2.861 2.093
2.845 2.086
2.831 2.080
2.819 2.074
2.807 2.069
2.797 2.064
2.787 2.060
2.779 2.056
2.771 2.052
2.763 2.048
2.756 2.045
2.750 2.042
2.744 2.040
2.738 2.037
2.733 2.035
2.728 2.032
2.724 2.030
2.719 2.028
2.715 2.026
2.712 2.024
2.708 2.023
2.704 2.021
2.701 2.020
2.698 2.018
2.695 2.017
2.692 2.015
2.690 2.014
2.687 2.013
2.685 2.012
2.682 2.011
2.680 2.010
2.678 2.009
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C.1 OVERVIEW TO MONITORING NETWORK

To provide additional data for validating the numerical simulations in Chapter 5, and the extrapolation 

model in Chapter 6, three 3-metre tripod-based weather stations were installed in the McGregor Model 

Forest (MMF) to supplement the existing stations within the study domain (see Dojo, Seebach and Flute 

in Fig 1.1, Appendix A). The three stations were also intended to provide validation data for the model 

(MMFCliM) developed by Ross Benton for extrapolating temperature and precipitation. The locations 

were therefore chosen to provide a range of slope, aspect, elevation and wind exposure. The stations 

were also situated in order to represent the three biogeoclimatic zones (BGCZ) which comprise most 

of the MMF, and had to be accessible year round. The geographical attributes of the stations are 

summarized in Table C.l.

Table C.1 MMF Climate Monitoring Network; Location of 3-metre climate monitoring stations.
Installed Location Elevation BGCZ Dismantled

Dojo Mar 28/96 54“ 15' 22" N 
122“ 24'31" W

740 m SES mkl Nov 8 797

Seebach June 07/96 54“ 22' 45" N
121“ 59' 14" W

890 m BBS vk Oct 22/97

Flute June 13/96 54“ 18' 23" N 
121“ 50' 35" W

839 m ESSFw k2 Oct 22/97

Dojo, the western most station, was located on the north leading edge of a narrow trench through which 

the Fraser flows southwestward. Seebach located in the northeast, was situated mid-way up the western 

sloping wall of the Seebach River valley. Flute, located in the east on a small knoll south of a east-west 

gap through the western edge of the Rockies. All three stations were installed in the spring of 1996 in 

recently planted cutblocks (3-6 years), and remained deployed until the fall of 1997. The station were 

visited periodically to inspect for damage, and to download data (see Station History, Table C2.1). A 

series of Fortran programs were written to correct clock and wind vane alignment problems documented 

during the station visits (Table C2.2). The parameters measured at each station varied. As a minimum, 

each station measured wind speed and direction, temperature and rainfall. Daily, hourly and extremes 

were recorded using a 1-minute sampling interval. A description of the instrumentation is included in

208



th e  d a ta  lo g g er p ro g ra m s g iv en  b e low .

C.2 STATION DOCUMENTATION

Table C.2.1 Station History: Record of station downloads and description of any problems encountered.
FILE* START END COMMENTS

dojo0596.dat 1996,088,1900 1996.128,0900 Data from stn a s installed by envs312/m ar28  
Wnd Monitor North corrected/Time not DST

dojo0696.dat 1996,128,1600 1996,165,0900 Data after stn rebuilt
All future Wnd uncorrected/AII future time is DST

dojo1296.dat 1996,255,1500 1996,337,1200 SM not plugged in after download 06/96  
Missing 3 months

dojo0497.dat 1996,337,1300 1997,113,1000 Okay

dojo0897.dat 1997,113,1100 1997,225,1400 Okay

bach0696.dat 1996,159,1500 1996,165,1800 Okay

bach1196.dat 1996,232,2100 1996,329,1400 SM not plugged in after download (missing 2 months)

bach0497.dat 1996,329,1500 1997,119,1300 Okay

bach0897.dat 1997,119,1400 1997,225,1200 Okay

bend0197.dat 2000,000,0100
(165,1900)

2000,214,1600
(014,0900)

Clock error: stn started June 13 (1900)
Wnd Monitor damaged (icing?) four days prior

bend897a.dat
bend897b.dat

2000,214,1700
1997,041,1000

2000,241,1600
1997,225,1100

Wnd Monitor checked on Feb 10/97 - OKAY 
Data logger time corrected to 9:12 DST @ 8:12 PST

bach1097.dat 1997,225,1300 1997,295,1000 Station dismantled

bend1097.dat 1997,225,1200 1997,295,1200 Station dismantled

dojo1197.dat 1997,225,1500 1997,312,1300 Station dismantled

* File naming convention gives month/date on which data was downloaded

Table C.2.2 Data Correction: Description of Fortran programs written to correct problems documented in Table C.2.1. 
PROGRAM ACTION

hly_corr.f correct HOURLY data from DOJO and SEEBACH stations 

diy_corr.f corrects DAILY data from DOJO and SEEBACH stations 

bnd_corr.f corrects HOURLY data from BEND station 

mk_dty.f creates a DAILY data set for BEND from corrected hourly data

bend.dly.f corrects DAILY data from BEND (post clock correction) in a format consistent with mk_dly.f.
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c.3 DATA LOGGER PROGRAMS

DOJO0596.DOC
McGregor Model Forest 
Satellite Climate Sation

DOJO Cutblock 4/18, SBSmkI 
Lat: 540 15' 22.43"

Long; 122o 24' 31.16"
Elev.: 740 m

Initial Development: EN VS 312, Mar/96 
Modified: Brendan Murphy, May/96

Tripod Base Climate Station: 
Equipment
CM10 Tripod Support Structure 
Vynckier Equipment Shelter 
CSI CR10 DATA LOGGER 
CSI SM716 Storage Module 
PS12-12V Power Supply 
ICP 5 Watt Solar Panel 
RM Young Radiation Sheild 
HMP35CF Temp/RH Probe 
RM Young Wind Monitor 
TE 525M Tipping Bucket 
REBS Net Radiometer 
Li-Cor 200S Pyranometer

Flag Usage:
10 Output

Height 
3.0 m 
1.5 m

3.0 m
1.3 m
1.3 m
3.0 m
3.0 m
3.0 m
3.0 m

S/N

A6614 
20838  
4087  
01608  
9601 
9601 
9601 
16978  
13936  
0 9 4250  
19884

Input Channel Usage:
1L 2 Temp/RH Probe Orange
2H 3 Temp/RH Probe Green
2L 4 Wind Monitor Green
3H 5 Pyranometer Red
3L 6 Pyranometer Black
6H 11 Net Radiomer Red
6L 12 Net Radiometer Black

Excitation Channel Usage:
E2 2500mV DC Wind Monitor - direction
E2 2500mV DC Temp/RH Probe - humidity
E3 250mV DC Temp/RH Probe - temperature

Pulse Input Channel Usage:
PI Wind Monitor - speed
P2 Tipping Bucket

Input Location Usage:
1 
2
3
4
5
6
7
8

Black
Yellow
Black

Red
Black

Air Temperature oC
Relative Humidity %
Solar Radiation MJ/m^2
Net Radiation kW/m^2
Wind Speed m/s
Wind Direction degrees
Rainfall mm
Logger Temp oC
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Page 2 Table 1 

9 Battery Voltage

Output Array Definitions;

1) Hourly Output Table ID: 60 (minutes)

volts

01 Table ID 060
02 Year YYYY
03 Julian Day ODD
04 Time HHMM
05 Average Air Temperature 1.3 m oC
06 Average Relative Humidity 1.3 m %
07 Average Net Radiation 3.0 m KW/m^2
08 Average Wind Speed 3.0 m m/s
09 Average Wind Direction deg
10 Standard Deviation of Wind Direction deg
11 Standard Deviation of Wind Speed m/s
12 Maximum Hourly Wind Speed 3.0 m m/s
13 Time of Maximum Hourly Wind Speed HHMM
14 Total Solar Radiation MJ/nrY'2
15 Total Rainfall mm

2)
01 Table ID 024
02 Year YYYY
03 Julian Day DDD
04 Time HHMM
05 Average Air Temperature 1.3 m oC
06 Average Relative Humidity 1.3 m %
07 Average Solar Radiation MJ/m^2
08 Average Net Radiation 3.0 m KW/m/^2
09 Average Wind Speed 3.0 m m/s
10 Average Wind Direction deg
11 Standard Deviation of Wind Directon deg
12 Maximum Air Temperature 1.3 m oC
13 Maximum Relative Humidity 1.3 m %
14 Maximum Solar Radiation MJ/rry'2
15 Maximum Net Radiation 3.0 m KW/m^2
16 Maximum Wind Speed 3.0 m m/s
17 Time of Maximum Wind Speed HHMM
18 Minimum Air Temperature 1.3 m oC
19 Minimum Relative Humidity 1.3 m %
20 Minimum Net Radiation 3.0 m KW/m^2
21 Minimum Wind Speed 3.0 m m/s
22 Time of Minimum Wind Speed HHMM
23 Total Solar Radiation MJ/m'^2
24 Total Rainfall mm
25 Mimimum Panel Temperature oC
26 Minimum Battery Voltage V
27 Maximum Battery Voltage V

* 1 Table 1 Programs
01: 2 S ec. Execution Interval
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01: P4 Excite,Delay,Volt(SE)
01: 1 Rep
02: 4 250 mV slow Range 
03: 2 IN Chan
04: 3 Excite all reps w/EXchan 3 
05: 0 Delay (units .01 sec)
06: 250 mV Excitation 
07: 1 Loc [:Temp_oC ]
08: .002 Mult 
09: 0 Offset

HMP35CF Temp/RH Probe - Temp 
Wiring:
black
orange
white

E3
1L(SE#2)
AG

02: P55 Polynomial 
01: 1 Rep
02: 1 X Loc Temp_oC 
03: 1 F(X) Loc [:Temp_oC 
04: -74.168 CO 
05: 646.22 Cl 
06: -3848.9 C2 
07: 16107 C3 
08: -34225 C4 
09: 30009 C5

03: P4 Excite,Delay,Volt(SE)
01: 1 Rep
02: 5 2500 mV slow Range 
03: 3 IN Chan
04: 2 Excite all reps w/EXchan 2 
05: 15 Delay (units .01 sec)
06: 2500 mV Excitation 
07: 2 Loc [:RH_% ]
08: .1 Mult 
09: 0 Offset

HMP35CF Temp/RH Probe - Humidity 
Wiring:
red 
yellow 
purple 
green

12V
E2
AG
2H (SE#3)

04: P2 Volt (DIFF)
01: 1 Rep
02: 25 2500 mV 60 Hz rejection Range
03: 3 IN Chan
04: 3 Loc [:Solar Rad]
05: 0.0077 Mult (60 se c  scan rate)
06: 0 Offset

Li-Cor Pyranometer S/N 19884  
Cal. 7.78 mV per KW/m^2 
Wiring:
red 3H
black 3L
clear G

If, for som e reason, the pyranom eter is outputing 
a value less than zero in darkness hours, then set  
the value to zero so as to preserve correct daily 
values

05: P89 If X<=>F 
01: 3 X Loc Solar Rad 
02: 4  <
03: 0 .0000 F 
04: 30 Then Do
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06: P30 Z=F
01: 0.0000 F
02: 00 Exponent of 1G
03: 3  Z Loc [:Solar Rad]
07: P95 End 
08: P2 Volt (DIFF)
01:1 Rep
02: 24 250 mV 60 Hz rejection Range
03: 6 IN Chan
04: 4 Loc [:Q* KW/m^2]
05:1 Mult 
06: 0.0000 Offset

RBES Net Radiometer S/N Q19884  
Wiring:
red
black

6H
6L

09: P89 If X<=>F - Check Flux Direction 
01: 4  X Loc Q* KW/m-^2 
02: 3 >=
03: OF
04: 30 Then Do

10: P37 Z=X*F - If positive, use top calibration factor 
01: 4  X Loc Q* KW/m'^2 
02: 0.0085 F
03: 4 Z Loc [:Q* KW/m^2]

11: P94 Else

12: P37 Z=X*F If negative, use bottom calibration factor 
01: 4 X Loc Q* KW/m^2 
02: 0.1284 F
03: 4 Z Loc [:Q* KW/m^2]

13: P95 End

14: P3 Pulse 
01: 1 Rep
02: 1 Pulse Input Chan
03: 21 Low level AC; Output Hz.
04: 5 Loc [:Wspd m/s ]
05: 0.098 Mult 
06: 0 .0000 Offset

RM Young Wind Monitor - Wind Speed  
Model: 05103-10 S/N: 16978  
Wiring:
red PI
black (r&b) G

15: P4 Excite, Delay,Volt(S E)
01: 1 Rep
02: 5 2500 mV slow Range 
03: 4  IN Chan
04: 2 Excite all reps w/EXchan 2 
05: 2 Delay (units .01 sec)
06: 2500 mV Excitation 
07: 6 Loc [:Wdirdeg ]
08: 0.142 Mult 
09: 0 .0000 Offset

RM Young Wind Monitor - Wind Dir 
Model: 05103-10 S/N: 16978  
Wiring:
black (g&b) AG
green 2L (SE#4)
black E2
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16: PS Pulse TE525M Tipping Bucket S/N 13936-694
01:1 Rep Wiring:
02: 2  Pulse Input Chan black P2
03: 2  Switch closure white G
04: 7  Loc [:Rain mm ] clear G
05: 0.1 Mult
06: 0.0000 Offset

17: P17 Module Temperature
01: 8 Loc [: Panel oG ]

18: P10 Battery Voltage
01: 9  Loc [:Batt_V]

HOURLY OUTPUT ARRAY 
(Table ID: 060)

19: P92 If time is
01: 0  minutes into a
02: 1 minute interval
03: 10 Set high Flag 0 (output)

20: P80 Set Active Storage Area 
01: 1 Final Storage Area 1 
02: 60 Array ID or location

21: P77 Real Time
01: 1220 Year,Day,Hour-Minute

22: P71 Average Air Temperature & RH
0 1 :2  Reps
02:1  Loc Temp_oC

23: P71 Average Net Radiation 
01: 1 Rep
02: 4  Loc Q* KW/m^2

24: P69 Wind Vector : Horizontal Wind Speed, Direction, Sigma 
01:1 Rep
02: 0 Sam ples per sub-interval 
03: 0 Polar Sensor/(S, D1, SOI)
04: 5 Wind Speed/East Loc Wspd m/s 
05: 6 Wind Direction/North Loc Wdir deg

25: P82 Standard Deviation of Wind Speed  
01:1 Rep
02: 5 Sample Loc W spd m/s

26: P73 Maximize 
01: 1 Rep
02: 10 Value with Hr-Min 
03: 5 Loc W spd m/s
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27: P72 Totalize 
01: 1 Rep
02: 3  Loc Solar Rad

28: P72 Totalize
01: 1 Rep
02: 7 Loc Rain mm

DAILY OUTPUT ARRAY 
(Table ID: 024)

29: P92 If time is
01: 0 minutes into a
02: 5 minute interval
03: 10 Set high Flag 0 (output)

30: P80 Set Active Storage Area 
01 ; 1 Final Storage Area 1 
02: 24  Array ID or location

31: P77 Real Time
01:1220  Year,Day,Hour-Minute

32: P71 Average Air Temp, RH, Solar & Net Radiation
01; 4  Reps
02: 1 Loc Temp_oC

33: P69 Wind Vector 
01: 1 Rep
02: 0 Sam ples per sub-interval 
03: 0 Polar Sensor/(S, D 1.SD 1)
04: 5 Wind Speed/East Loc Wspd m/s 
05: 6 Wind Direction/North Loc Wdir deg

34: P73 Maximize Air Temp, RH. Solar, & Net Rad 
0 1 :4  Reps 
02: 0 Value only 
03: 1 Loc Temp_oC

35: P73 Maximize 
01: 1 Rep
0 2 :1 0  Value with Hr-Min 
03: 5 Loc Wspd m/s

36: P74 Minimize Air Temp & RH
0 1 :3  Reps
02: 00 Time Option
03: 1 LocTemp_oC

37: P74 Minimize Net Radiation
01: 1 Rep
02: 00 Time Option
03: 4 Loc Q* KW/m^2
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38: P74 Minimize 
01:1 Rep
0 2 :1 0  Value with Hr-Min 
03: 5 Loc Wspd m/s

39: P78 Resolution 
01:1 High Resolution

40: P72 Totalize 
01:1 Rep
02: 3 Loc Solar Rad

41: P78 Resolution 
01: 0 Low Resolution

42: P72 Totalize
01: 1 Rep
02: 7 Loc Rain mm

43: P74 Minimize 
01: 2 Reps 
02: 00 Time Option 
03: 8 Loc Panel oC

44: P73 Maximize 
01:1 Rep 
02: 00 Time Option 
03: 9 Loc Batt_V

45: P96 Serial Output 
01:71 SM192/SM716/CSM1

46: P End Table 1
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BACH0598.DOC
McGregor Model Forest 
Satellite Climate Sation

SEEBACH Cutblock 11/9, SBSvk 
Lat: 54o 22' 44.95"

Long: 121o 59' 13.57"
Elev.: 890 m

Initial Development: Brendan Murphy May/96

Tripod B ase Climate Station:
Equipment Height S/N
CM10 Tripod Support Structure 3.0 m
Hoffman Equipment Shelter 1.5 m A6614
CSI CR10 Datalogger 20340
CSI SM716 Storage Module 3742
PS12-12V Power Supply 7046
ICP 5 Watt Solar Panel 3.0 m 9602
RM Young Radiation Sheild 1.3 m 9602
HMP35CF Temp/RH Probe 1.3 m Cl 455
RM Young Wind Monitor 3.0 m 16827
with 50ft cable Cl 122

TE 525M Tipping Bucket 3.0 m 694

Flag Usage:
10 Output

Input Channel Usage:
1L 2 Temp/RH Probe Orange
2H 3 Temp/RH Probe Green
2L 4 Wind Monitor Green

Excitation Channel Usage:
E2 2500mV DC Wind Monitor - direction Black

E2 2500m ’̂  DC Temp/RH Probe - humidity Yellow
E3 250mV DC Temp/RH Probe - temperature Black

Pulse Input Channel Usage:
PI Wind Monitor - speed Red
P2 Tipping Bucket Black

Input Location Usage:
1 Air Temperature oC
2 Relative Humidity %
5 Wind Speed m/s
6 Wind Direction degrees
7 Rainfall mm
8 Logger Temp oC
9 Battery Voltage volts

Output Array Definitions:

1) Hourly Output Table:
01 Table ID - Station 2, 60 minutes 2060
02 Year YYYY
03 Julian Day DDD
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04 Time HHMM
05 Average Air Tem perature 1.3 m oC
06 Average Relative Humidity 1.3 m %
07 Average Wind S peed  m/s
08 Average Wind Direction deg
09 S tandard Deviation of Wind Direction deg
10 Maximum Hourly Wind S peed  3.0 m m/s
11 Time of Maximum Hourly Wind Speed  HHMM
12 Total Rainfall mm

2) Daily Output Table ID;
01 Table ID - Station 2, 24 fiour
02 Year
03 Julian Day
04 Time
05 Average Air Temperature 1.3 m
06 Average Relative Humidity 1.3 m
07 Average Wind Speed 3.0 m
08 Average Wind Direction
09 Standard Deviation of Wind Directon
10 Maximum Air Temperature 1.3 m
11 Maximum Relative Humidity 1.3 m
12 Maximum Wind Speed 3.0 m
13 Time of Maximum Wind Speed
14 Minimum Air Temperature 1.3 m
15 Minimum Relative Humidity 1.3 m
16 Minimum Wind Speed 3.0 m
17 Time of Minimum Wind Speed
18 Total Rainfall
19 Mimimum Panel Temperature
20 Minimum Battery Voltage
21 Maximum Battery Voltage

2024
YYYY
DDD
HHMM
oC
%
m/s
deg
deg
oC
%
m/s
HHMM
oC
%
m/s
HHMM
mm
oC
V
V

* 1 Table 1 Program s
01: 60 S ec. Execution Interval

01: P4 Excite,Delay,Volt(SE)
01:1 Rep
02: 4 250 mV slow Range 
03: 2 IN Chan
04: 3 Excite all reps w/EXchan 3 
05: 0 Delay (units .01 sec)
06: 250 mV Excitation 
07:1 Loc [:Temp„oC ]
08: .002 Mult 
09: 0 Offset

HMP35GF Temp/RH Probe - Temp 
Wiring:
black
orange
white

E3
1L(SE#2)
AG
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02; P55 Polynomial 
01: 1 Rep
02: 1 XLocTem p^oC  
03: 1 F(X) Loc [:Temp_oC 
04: -74.168 CO 
05: 646.22 01 
06: -3848.9 0 2  
07: 16107 03  
08: -34225 0 4  
09: 30009 0 5

03: P4 Excite,Delay,Volt(SE)
01: 1 Rep
02: 5 2500 mV slow Range 
03: 3 IN Ohan
04: 2 Excite all reps w/EXchan 2 
05: 15 Delay (units .01 sec)
06: 2500 mV Excitation 
07: 2 Loc [:RH_% ]
08: .1 Mult 
09: 0 Offset

HMP35CF Temp/RH Probe - Humidity 
Wiring:
red 12V
yellow E2
purple AG
green 2H (SE#3)

04: P3 Pulse 
01: 1 Rep
02: 1 Pulse Input Ohan
03: 21 Low level AC; Output Hz.
04: 5 Loc [:Wspd m/s ]
05: 0.098 Mult 
06: 0.0000 Offset

RM Young Wind Monitor - Wind Speed  
Model: 05103-10 S/N: 16978  
Wiring:
red PI
black (r&b) G

05: P4 Excite,Delay,Volt(SE)
01: 1 Rep
02: 5 2500 mV slow Range 
03: 4 IN Ohan
04: 2 Excite all reps w/EXchan 2 
05: 2 Delay (units .01 sec)
06: 2500 mV Excitation 
07: 6 Loc [:Wdir deg ]
08: 0.142 Mult 
09: 0.0000 Offset

RM Young Wind Monitor - Wind Dir 
Model: 05103-10 S/N: 16978  
Wiring:
black (g&b) AG
green 2L (SE#4)
black E2

06: P3 Pulse 
01: 1 Rep
02: 2 Pulse Input Chan 
03: 2 Switch closure 
04: 7 Loc [:Rain mm ] 
05: 0.1 Mult 
06: 0 .0000 Offset

TE525M Tipping Bucket S/N 13936-694
Wiring:
black P2
white G
clear G

07: PI 7 Module Tem perature 
01: 8 Loc [: Panel oC ]

08: P10 Battery Voltage 
01: 9 Loc [:Batt_V ]
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HOURLY OUTPUT ARRAY

09
01
02
03

P92 If time is 
0 minutes into a 
60 minute interval 
10 Set high Flag 0 (output)

10: P80 Set Active S torage Area 
01:1 Final Storage A rea 1 
02: 2060 Array ID or location

11 : P77 Real Time
01:1220  Year,Day,Hour-Minute

12: P71 Average Air Tem perature & RH
0 1 :2  Reps
02:1 Loc Temp_oC

13: P69 Wind Vector : Horizontal Wind S peed, Direction, Sigma 
01:1 Rep
02: 0 Sam ples per sub-interval 
03: 0 Polar Sensor/(S , D1, SD1)
04: 5 Wind S peed /E ast Loc W spd m/s 
05: 6 Wind Direction/North Loc Wdir deg

14: P73 Maximize 
01: 1 Rep
0 2 :1 0  Value with Hr-Min 
03: 5 Loc W spd m/s

15: P72 Totalize
01:1 Rep
02: 7 Loc Rain mm

DAILY OUTPUT ARRAY

16: P92 If time is 
01: 0 minutes into a 
02: 1440 minute interval 
03: 10 Set high Flag 0 (output)

17: P80 S et Active S torage Area 
01: 1 Final Storage Area 1 
02: 2024 Array ID or location

18: P77 Real Time
01: 1220 Year,Day,Hour-Minute

19
01
02

P71 Average Air Tem p & RH 
2 Reps
1 Loc Temp_oC
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20
01
02
03
04
05

P69 Wind Vector 
1 Rep
0 Samples per sub-interval 
0  Polar Sensor/(S, D1, SD1 )
5  Wind S peed/E ast Loc W spd m/s
6 Wind Direction/North Loc Wdir deg

21; P73 Maximize Air Temp & RH 
01: 2  Reps 
02: 0 Value only 
03: 1 LocTemp_oC

22: P73 Maximize 
01: 1 Rep
0 2 :1 0  Value with Hr-Min 
03: 5 Loc Wspd m/s

23: P74 Minimize Air Temp & RH
0 1 :2  Reps
02: 00 Time Option
03: 1 Loc Temp_oC

24: P74 Minimize 
01: 1 Rep
02: 10 Value with Hr-Min 
03: 5 Loc Wspd m/s

25
01
02

P72 Totalize 
1 Rep
7 Loc Rain mm

26: P74 Minimize 
0 1 :2  Reps 
02: 00 Time Option 
03: 8 Loc Panel oC

27: P73 Maximize 
01: 1 Rep 
02: 00 Time Option 
03: 9 Loc Batt_V

28: P96 Serial Output 
01:71 SM192/SM716/CSM1

29: P End Table 1
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BEND0696.DOC
McGregor Model Forest 
Satellite Climate Sation

FLUTE Cutblock 10/16, ESSFwk2 
Lat: 54o 18' 22.59"

Long: 121o 50' 34.73"
Elev: 839 m

initial Development: Brendan Murphy June/96

Tripod B ase Climate Station: 
Equipment
CM10 Tripod Support Structure 
Hoffman Equipment Shelter 
CSI CR10 Datalogger 
CSI SM716 Storage Module 
PS12-12V Power Supply 
ICP 5 Watt Solar Panel 
Shop Fabricated Radiation Sheild 
1078 Temperature Probe (25t)
RM Young Wind Monitor 
with 50ft cable

BCFS Tipping Bucket Rain G auge

Flag Usage:
10 Output

Input Channel Usage:
2H 3 Tem p Probe
2L 4 Wind Monitor

Height 
3.0 m 
1.5 m

3.0 m
1.3 m
1.3 m
3.0 m

3.0m

S/N

20323
3743
7052
9603

C3465
21672
C1121
BCFS01

Red
Green

Excitation Channel Usage:
E2 2500mV DC
E3 250mV DC

Pulse Input Channel Usage:
PI Wind Monitor - speed
P2 Tipping Bucket

Input Location Usage:
1 Air Tem perature
5 Wind S peed
6 Wind Direction
7 Rainfall
8 Logger Temp
9 Battery Voltage

Output Array Definitions:

Hourly Output Table:
01
02
03

04
05
06

Table ID - Station 3, 60 minutes 
Year
Julian Day 

Time
Average Air Tem perature 1.3 m 
Average Wind Speed

Wind Monitor - direction 
Temp Probe

Red
Red

oC
m/s
degrees
mm
oC
volts

3060
YYYY
DDD
HHMM
oC
m/s

Black
Black
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07 Average Wind Direction
08 Standard Deviation of Wind Direction
09 Maximum Hourly Wind S peed  3.0 m
10 Time of Maximum Hourly Wind S peed
11 Total Rainfall

deg
deg
m/s
HHMM
mm

Haily Output Table:
01 Table ID - Station 3, 24 hour
02 Year
03 Julian Day
04 Time
05 Average Air Tem perature 1.3 m
06 Average Wind Speed 3.0 m
07 Average Wind Direction
08 Standard Deviation of Wind Directon
09  Maximum Air T em perature 1.3 m
10 Maximum Wind S peed  3.0 m
11 Time of Maximum Wind S peed
12 Minimum Air Tem perature 1.3 m
13 Minimum Wind S peed  3.0 m
14 Time of Minimum Wind S peed
15 Total Rainfall
16 Mimimum Panel Tem perature
17 Minimum Battery Voltage
18 Maximum Battery Voltage

* 1 Table 1 Program s
0 1 :6 0  S ec. Execution Interval

3024
YYYY
DDD
HHMM
oC
m/s
deg
deg
oC
m/s
HHMM
oC
m/s
HHMM
mm
oC
V
V

01
01
02
03
04
05
06

P11 Temp 107 Probe 
1 Rep 
3 IN Chan
3 Excite all reps w/EXchan 3 
1 Loc [:Temp_oC ]
1 Mult

Air Temperature 
Model: 1078 S/N: 034 6 5  
Wiring:
red 2L (SE#3)
black E3
purple AG

0.0000 Offset

02: P3 Pulse 
01:1 Rep
02: 1 Pulse Input Chan
03: 21 Low level AC; Output Hz.
04: 5 Loc [:Wspd m/s 1
05: 0.098 Mult
06: 0 .0000 Offset

RM Young Wind Monitor - Wind S peed  
Model: 05103-10 S/N: 16978  
Wiring:
red PI
black (r&b) G
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03: P4 Excite,Delay,Volt(SE)
01: 1 Rep
02: 5 2500 mV slow Range 
0 3 :4  IN Chan
04: 2 Excite all reps w/EXchan 2 
05: 2 Delay (units .01 sec)
06: 2500 mV Excitation 
07: 6 Loc [:Wdlr deg ]
08: 0.142 Mult 
09: 0.0000 Offset

RM Young Wind Monitor - Wind Dir 
Model: 05103-10 S/N: 16978  
Wiring:
black (g&b) AG
green
black

2L (SE#4) 
E2

04: P3 Pulse Tipping Bucket 
01:1 Rep
02: 2 Pulse Input Chan 
03: 2 Switch closure 
04: 7 Loc [:Raln mm ]
05: 0.25 Mult 
06: 0.0000 Offset

BCFS01
Wiring:
red
black
"unshielded"

P2
G

05: P17 Module Tem perature 
01: 8 Loc [:Panel oC ]

06: P10 Battery Voltage 
01: 9 Loc [:Batt_V ]

HOURLY OUTPUT ARRAY

07: P92 If time Is
01: 0 minutes into a
02: 1 minute interval
03: 10 Set high Flag 0 (output)

08: P80 Set Active S torage Area 
01:1 Final Storage Area 1 
02: 3060 Array ID or location

09: P77 Real Time
01: 1220 Year,Day,Hour-Minute

10
01
02

P71 Average Air Tem perature 
1 Rep
1 Loc Temp_oC

11: P69 Wind Vector : Horizontal Wind S peed, Direction, Sigma 
01: 1 Rep
02: 0 Sam ples per sub-interval 
03: 0 Polar Sensor/(S, D1, 801 )
04: 5 Wind S peed /E ast Loc W spd m/s 
05: 6 Wind Direction/North Loc Wdir deg

12: P73 Maximize 
01: 1 Rep
0 2 :1 0  Value with Hr-Min 
03: 5 Loc Wspd m/s
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13
01
02

P72 Totalize 
1 Rep
7  Log  R a in  m m

DAILY OUTPUT ARRAY

14: P92 If time is
01: 0 minutes into a
02: 5 minute interval
03: 10 Set high Flag 0 (output)

15: P80 S et Active S torage Area 
01: 1 Final Storage Area 1 
02: 3024 Array ID or location

16: P77 Real Time
0 1 :1 2 2 0  Year,Day,Hour-Minute

17
01
02

P71 Average Air Temp 
1 Rep
1 L o g  Temp_oC

18: P69 Wind Vector 
01:1 Rep
02: 0 Sam ples per sub-interval 
03: 0 Polar Sensor/(S, 01 , SD1)
04: 5 Wind S peed /E ast Loo W spd m/s 
05: 6 Wind Direction/North Log Wdir deg

1 9
01
02
03

P73 Maximize Air Temp 
1 Rep
0 Value only
1 Loo Temp_oC

20: P73 Maximize 
01: 1 Rep
02: 10 Value with Hr-Min 
03: 5 L o g  Wspd m/s

21
01
02
03

22
01
02
03

P74 Minimize Air Temp 
1 Rep
00 Time Option
1 L o g  Temp_oC

P74 Minimize 
1 Rep
10 Value with Hr-Min 
5 L o g  Wspd m/s

23: P72 Totalize
01:1  Rep
02: 7 L o g  Rain mm
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24:
01
02
03

25
01
02 :

03:

P74 Minimize 
2 Reps
00 Time Option
8 Loc Panel oC

P73 Maximize
1 Rep
00 Time Option
9 Loc Batt V

26: P96 Serial Output 
01:71 SM192/SM716/CSM1

27: P End Table 1
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