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ABSTRACT

In the Omineca region of British Columbia, forest companies have traditionally 

overlooked the use of pine-lichen ’woodlands, primarily because of the low economic value of 

timber in them. These woodlands are now facing increased harvesting pressure as sources of 

wood fibre become more valuable. They also provide important winter habitat for northern 

caribou {Rangifer tarandus Linnaeus) that range in the area. Caribou use pine-lichen stands that 

are 70 to 140 years old because they provide a source of high value forage. A recent 

understanding of the successional trend of pine-lichen woodlands in the area has been developed 

by Coxson et al. (1999) who noted that pine-lichen woodlands succeed to a feather moss phase 

beyond 140 years of age. This thesis examines the functional aspects of forest characteristics as 

they relate to the succession process and the forest management of these stands.

The characteristics of the microclimate at the forest floor strongly influence which plants 

can exist there. Liehens predominate when the mieroclimate precludes the development of 

pleurocarpous mosses and vaseular plants. This relationship was assessed by evaluating how 

stand strueture influeneed irradiance on the forest floor. Stand architecture variables (basal area, 

volume and biomass) were evaluated and related to leaf area index values. Plots with a 

component of feather moss had higher values for leaf area index and all stand characterization 

variables compared to those plots without it. Organic accumulations were also found to be 

higher on microsites where feather moss was present.

The evaluation of stand characterization variables provided guidance for using a 

geographic information system to identify pine-lichen woodlands on the landscape. A relatively 

high level of success (68% accuracy) was attained by querying forest cover and terrain mapping
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for the location of pine lichen woodlands. Variables assessed were the leading tree species, the 

composition of the leading species, site index and aspect. Combining this classification with the 

concepts of succession, forecasts regarding the availability of pine-lichen woodlands into the 

future were made. The forecasts are dynamic outcomes relative to the management regimes that 

are applied to the landscape. Two separate models were run to express contrasting results of 

managing lichen woodlands. Regardless of the model applied, a decrease in the abundance of 

pine-liehen woodlands in a favourable state for foraging was evident over the next 90-year 

period. Applying different management strategies, however, can reduce the duration when this 

abundance is low.

A retrospective study of cut-blocks in pine-lichen woodlands was conducted to identify 

general trends of lichen recovery after mechanical disturbance. On sites with well-drained sand 

soils, terrestrial lichens recovered to >40% cover 20 years after harvesting. The rapid rate of 

recovery is speculated to be a function of creating favourable microclimate conditions for the 

lichens and for providing a lichen dispersal mechanism that is not existent under a natural 

disturbance process. The results of the retrospective study lead us to believe that a subset of 

terrestrial lichen sites in the Omineca region may be more resilient to forest harvesting than is 

currently recognised.
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CHAPTER 1 - INTRODUCTION

Terrestrial lichens express dominance on sites influenced by extreme environmental 

conditions where other forms of vegetation are unsuccessful. They are able to survive in harsh 

environments because they are adapted well for persisting through periods of heat stress yet are 

able to re-hydrate and photosynthesize in a very short period of time (Lechowicz & Adams 

1973, Tegler & Kershaw 1980,1981). Unlike most other forms of vegetation, lichens do not 

have roots, thus they gather all required resources from the atmosphere (Rowe 1984). This trait 

enables lichens to colonise on substrates that are unfavourable for other forms of vegetation. 

Regarding a direct relationship with the growing substrate, lichens simply require a suitable 

microsite to anchor.

Though lichens can survive with limited resources, their ability to compete is very poor. 

Thus, if conditions are present that can support bryophyte or vascular plant communities, lichen 

presence is quickly minimised. Crawley (1997) identified that a plant’s distribution in the field 

can be viewed as a refuge from competitors or enemies, rather than a place that provides the 

plant with the optimal conditions to grow. This concept holds very true for defining the 

ecological niche of terrestrial lichens. They are generally present on a site not because they out- 

compete other forms of vegetation, but because other forms of vegetation cannot persist under 

the harsh environmental conditions that lichens can.

The niche that lichens dominate is very susceptible to change and has been the subject of 

many successional studies (Brulisauer et al. 1996, Carroll & Bliss 1982, Coxson et al. 1999, 

Johnson 1981, Maikawa & Kershaw 1976, Momeau & Payette 1988, Oksanen 1986, Payette et
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al. 2000). Across Canada, this niche is often characterised by forest stands that are influeneed 

by a continental climate and are dominated by pine (Pinus Contorta Dougl. ex Loud, or P. 

banksiana Lamb.) or spruce (Picea mariana (P. Mill.) B.S.P.) forest overstoreys (Ahti 1977, 

Johnson 1981). The soils of these sites tend to be coarse textured and the stands are generally 

initiated by wildfire. The sites traverse a successional pattern resulting in a reindeer lichen phase 

(dominated by Cladina spp.) that exists between 70 and 150 years (Carroll & Bliss 1982,

Coxson et al. 1999, Maikawa & Kershaw 1976). Beyond 150 years, the serai development has 

varying outcomes depending on the region where the site is situated. In the Omineca region of 

north-central British Columbia, Coxson et al. (1999) documented a chronosequence of lichen 

woodlands that culminates in a plant community dominated by feather moss mats.

The succession trend resulting in a feather moss climax raises concerns when 

considering the importance of terrestrial lichen as a souree of forage for northern earibou. If 

these sites are left untouched as in a preservation approach, indications are that lichen abundance 

will decline. In turn, it is often recognized that some form of disturbance must be applied to the 

landscape to promote the rejuvenation of terrestrial lichen communities. Currently, the most 

significant form of disturbance on the landscape is forest harvesting.

The history of forest companies harvesting trees from pine-lichen woodlands is limited. 

Though companies have been active in the Omineca region since the mid 1970's (P. Valk, pers. 

comm.), initial harvesting was in the higher value stands of white spruce {Picea glauca 

(Moench) Voss) and lodgepole pine. Harvesting the low volume, poor growing sites of pine- 

lichen woodlands did not exist due to economics and operability constraints. In recent years, 

however, the technology related to both harvesting and proeessing of timber has improved.
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Once undesirable stands are now eonsidered an important source of fibre, thus, the area of pine- 

lichen woodlands being harvested is inereasing.

The laek of past forestry activities in pine-lichen woodlands has helped maintain the 

availability of management options that can be condueted in them. The eurrent demand for fibre 

sources, however, has inereased the demand for information on these eeosystems. If resouree 

managers can develop an understanding of the environmental conditions required for a lichen 

community to be successful, it may be possible to develop strategies that ensure the retention of 

liehen woodlands on the landseape. Forestry aetivities may provide the means of ereating the 

desired eonditions. Prior to proposing management strategies, however, the various factors 

necessary for the suceess of terrestrial lichen must be understood.

In this thesis, I assess stand level factors as they relate to the succession of lichen sites in 

the Omineea. Specifically, I compared the development of the forest overstorey between lichen- 

dominated and moss-dominated microsites, as well as the composition of the surfaee organic 

mat between selected mierosites. Information from the stand strueture of liehen woodlands was 

then utilised in a geographic information system (GIS) as a tool for identifying their location on 

the landseape. Results from GIS queries were applied in a time step modelling process to 

foreeast the presenee of terrestrial liehen communities taking suecession into consideration.

The role of wildfire as the primary disturbanee agent on the landscape is eurrently being 

replaeed by forest harvesting. In general, forestry is considered detrimental to terrestrial liehen 

beeause aetivities can reduce the abundanee of them immediately after harvesting. This 

relationship, however, is poorly understood (Stevenson 1991) and damage may only have a short 

term effect (Webb 1998, Woodard 1995). In faet, some sites may benefit from meehanical
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treatments, especially when they contain lichen species that rely on fragmentation as a 

reproduction technique (Harris 1996, Webb 1998). Findings from a retrospective study in the 

Omineca region support the proposition that lichen woodlands on coarse textured soils may be 

more resilient to mechanical disturbances than is currently believed by resource managers 

throughout British Columbia.



CHAPTER 2 - MICROSITE REPLACEMENT OF TERRESTRIAL LICHENS BY 
FEATHER MOSS MATS IN LATE SERAL PINE-LICHEN WOODLANDS OF NORTH-

CENTRAL BRITISH COLUMBIA*

SUMMARY

Pine-lichen woodlands in north-central British Columbia show a long period of 

successional development where reindeer liehens (comprised of predominantly Cladina spp.) 

dominate plant cover at the forest floor surface. In mid- to late-suceessional stands, however, 

lichen cover is replaced in a mosaic of surface microsites by feather moss mats (largely 

Pleurozium schreberi (Brid.) Mitt.), with moss mats often burying liehen mats that previously 

had occupied these mierosites. We compared moss- and lichen-dominated mierosites at this 

stage of stand development, looking at the influence of canopy structural variables and 

development of forest floor plant communities on mierosite expression. Mierosites with high 

feather moss mat cover had greater canopy leaf area index values, compared to mierosites where 

lichen cover predominated. Leaf area index values were highly correlated with stand level 

structural variables, including basal area, total volume, and biomass of the dominant canopy tree 

species, lodgepole pine (Pinus Contorta Dougl. ex Loud.). Changes in stand architecture were 

further associated with the accumulation of litter and organic matter at the forest floor surface. 

These factors suggest that the manipulation of stand strueture in managed forests, for instance 

through partial-cut harvesting, may delay successional changes and promote continued lichen 

growth in these forest types. This is an important consideration in the management of pine-

* Chapter has been accepted for publication as: R. Sulyma and D.S. Coxson.



stands in northern BC, where lichen mats provide significant forage values for caribou 

populations.

INTRODUCTION

Liehen woodlands dominate coniferous forests across large areas of northern Canada 

(Kershaw 1978). These woodlands are typically characterized hy a post-fire serai sequence 

where mat-forming lichen communities at the forest floor surface are replaced by feather moss 

mat dominated communities late in stand life. Within pine-lichen forests of Western Canada, 

reindeer lichens are most prolific in 80 to 100 year old lodgepole pine stands (Johnson 1981, 

Rowe 1984, Stevenson 1991). This stage, in absence of stand destroying fires, is followed by a 

feather moss-dominated stage, which occurs approximately 150 years after a stand initiation 

(Carroll & Bliss 1982, Maikawa and Kershaw 1976, Payette et al. 2000).

The shift between a lichen-dominated mid-seral stage and a moss-dominated late-seral 

stage is often associated with stand characteristics at a site (Brulisauer et al. 1996, Johnson 1981, 

Lesica et al. 1991, Maikawa & Kershaw 1976). Among factors that have been postulated as 

important in this respect are increased levels of shading and resultant changes in moisture 

availability that result from reduced incident solar radiation at the forest floor surface (Johnson 

1981, Lesica et al. 1991). This has been expressed in general terms as a reference to crown 

closure increasing as a stand ages, which creates shaded conditions more suitable for feather 

moss to become established (Carroll and Bliss 1982, Maikawa and Kershaw 1976).

These same trends occur in pine-lichen woodlands of north-central British Columbia 

(Coxson et al. 1999, Coxson & Marsh 2001). However, the reference to crown closure does not
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appear to adequately deseribe the functional components that influence the transition from 

lichen to moss-dominated ground cover in these sites. This is primarily based on the reasoning 

that crown closure of pine stands occurs long before forest floor lichen communities shift to a 

feather moss-dominated stage (Famden 1996). The processes involved appear to he complex, 

involving overall stand development, particularly changes in total tree biomass. Recent findings 

hy Pharo and Vitt (2000) further point to the role of stochastic events in determining the 

development of bryophyte and macro-lichen cover in local mierosites.

We characterized spatial distribution of reindeer lichens and feather moss mats 

(comprised predominantly of Pleurozium schreberi (Brid.) Mitt.) within canopy gaps in late- 

suceessional pine-lichen woodlands from the Omineea region of north-central British Columbia, 

correlating changes in the relative cover of liehens and mosses with changes in overstorey forest 

canopy structure and biomass. These factors have recently assumed greater significance to 

forest managers, as attempts are made to extend the duration of lichen-dominated successional 

phases within managed pine forests to provide forage for caribou populations (Harris 1996, 

Racey et al. 1996, Rosso & Rosentreter 1999).

MATERIALS AND METHODS 

Study Area

Pine-lichen woodlands were located in an area 300 km northwest of Prince George, BC, 

in the vicinity of Germansen Lake (Figure 2.1). This area falls within the Omineca River 

watershed and is in the boreal white and black spruce (BWBS) biogeoclimatic zone. The chosen



Plughat

M anson  Site

G e m a n s e n

10 Kilometres

O m te a R iv c A  \  wjUiston

Omineca - 
Germansen 
Region

Prince Geor^

Figure 2.1. Stand sampling areas in the Omineca study area.
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sites fall under a dry cool variant of the BWBS biogeoclimatic zone identified as the dkl 

(Meidinger and Pojar 1991).

In the Omineca region, the BWBS zone is found from valley bottoms up to 1100 m 

elevation in an area roughly north of 54° N latitude (Meidinger and Pojar 1991). Characterized 

by a northern continental climate, the zone has long cold winters and a short growing season. 

Average monthly temperatures remain below 0°C for 5-7 months of the year and rise above 

10°C for only 2 to 4 months of the year. July is the warmest month with a mean summer 

temperature of 13.0° C (Anonymous 1993). Between 330 and 570 mm of precipitation falls 

annually, 35 to 55 percent of this falling as snow.

Study sites in pine-lichen woodlands were chosen to represent stands at a similar stage of 

late successional development, from 100 to 130 years in age, where the forest floor surface was 

dominated by terrestrial lichen mats, predominantly Cladina mitis (Sandst.) Hustich and C. 

rangiferina (L.) Nyl. Stands were labelled as West Germansen, Germansen Lake, and Manson. 

Terrain at the West Germansen and Manson sites was flat-uniform, while terrain at the 

Germansen Lake site was slightly more variable ranging from flat-uniform to slightly rolling. 

Methods

Measurements within pine-lichen woodlands were taken at 2 different scales. Stand-level 

plot measurements were conducted within 625-m^ plots that were centred on a candidate canopy 

gap within the stand as outlined in Figure 2.2. Within this canopy gap, detailed microsite plot 

measurements were taken, using 1-m  ̂quadrats located within the perimeter of a canopy gap 

(Figure 2.2).
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stand-level plot 
centered on 
canopy gap

Micro-site plots 
within canopy gap

'4 m-''
Perimeter of 
canopy gap

Figure 2.2. Layout of stand sampling protocol. Top, stand sampling area centred on canopy 
gap; bottom, detailed location of sample plots within canopy gap.
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A total of 30 stand-level plots were established in natural gaps within the pine-lichen 

woodland, 10 at each study site (Table 2.1). These gaps result from self-thinning during the first 

century of stand development. Five of the stand-level plots at each site were selected based on 

the dominant expression of reindeer lichens at the forest floor surface and 5 were selected based 

on the dominant expression of feather moss mats. A quick assessment was conducted to 

determine if moss-dominated mierosites had the potential to support lichens. This was done by 

looking for remnant or buried lichen mats within or under existing moss mats.

Microsite plots were established within each canopy gap, these centred within the stand- 

level plots as outlined in Figure 2.2. This allowed for the detailed characterization of forest floor 

plant communities within canopy gaps and of surrounding canopy structure within the stand. A 

systematic format of data collection was employed. The stages involved were:

1) laying out the nested design within the stand-level plots;

2) obtaining percent cover measurements within all microsite plots based on estimation within 

the following categories: Cladina spp, i.e. reindeer lichens; foliose lichens, e.g. Peltigera spp.; 

other lichens; feather moss mats, predominately Pleurozium schreberi (Brid.) Mitt.; other 

mosses; mineral soil; rock; coarse woody debris; litter; and forbs. Although these categories for 

the estimation of non-vascular plant cover are based on morphology, in many ways these groups, 

particularly the differentiation between “reindeer lichens” and feather-moss mats, act as 

functional groups in that they delineate mid- and late-seral successional stages within these 

stands (Coxson and Marsh 2001);

3) measuring the presence or absence of all vascular and selected non-vascular (macro-lichens, 

mosses and liverworts only) plant species within randomly selected microsite plots;



Table 2.1. Plot locations in the Omineca region of north-central British Columbia.

Site Longitude Latitude Elevation Plot type Oldest

Tree

Stand Ages 

Mean
SD

Age
n

Liehen 153 119 10 100
West Germansen Sites 125° 06' 50" 55° 38'55" 1120 m

Moss 147 121 6 100

Lichen 150 117 3 100
Manson Sites 124° 34' 00" 55° 42' 05" 955 m

Moss 154 114 4 100

Lichen 160 113 2 100
Germansen Lake Site 124° 56' 53" 55° 40' 50" 1045 m

Moss 146 114 12 100
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4) measuring tree density in all 4 quarters of the stand-level plots and obtaining detailed 

measurements of other tree parameters (basal area, tree volume, tree biomass, crown biomass, 

and crown area) within the south quarter of stand-level plots (the south side of each plot location 

having the greatest influence on direct light interception within the canopy gap);

5) sampling randomly chosen mierosite plots for organic matter accumulation, separated hy 

aboveground components (the cumulative biomass of lichens, acrocarpous moss and litter) and 

below-ground components (humus accumulation) including all litter, above the mineral soil 

horizon; and

6) measuring leaf area index in all mierosite plots.

This sampling protocol ensured that vegetation cover estimates were obtained prior to 

other stand-level measures being taken, thereby minimizing disturbance effects on surface 

vegetation.

Detailed assessments in the stand-level plots were conducted using standard forest 

mensuration techniques to collect tree data (Husch et al. 1993). Qualitative assessments on tree 

form and overall health were also recorded. A subset of 20 stems, based on the 10 largest and 

another 10 chosen from a range of diameter classes, was selected to determine the age of each 

stand plot. Core samples were taken at stump height (0.30-m) and rings were counted in the 

field. A correction factor of seven years was applied to determine total age, based on 

comparisons with trees destructively sampled at the forest floor surface. Tree volumes were 

subsequently calculated using the volume equations in the Forestry Handbook (Watts 1983). 

Biomass figures were determined using equations derived by Standish et al. (1985) and crown 

area was determined using equations from Cade (1997).
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The composition of forest floor plant communities and organic matter accumulation was 

assessed in a minimum of 10 randomly chosen quadrats for each microsite plot series. Species 

composition within microsite plots was determined using visual estimates taken within 0.71 x 

0.71-m (0.5-m^) quadrats nested in the southwest comer of the larger 1-m  ̂quadrat. 

Nomenclature of lichens, mosses, liverworts and vascular plants, respectively, followed 

Esslinger and Egan (1995), Lawton (1971), Stotler and Crandall-Stotler (1977) and Hitchcock 

and Cronquist (1973). Voucher specimens for lichens and bryophytes were housed in the 

University of Northern British Columbia (UNBC) herbarium.

Leaf area index (LAI) was measured in mierosite plots using the remote mode procedure 

of the LAI-2000 (LI-COR inc., Lincoln Neb.) plant canopy analyser. LAI data were collected 

during time periods when there was no direct radiation on the foliage, under conditions of 

diffuse overcast sky.

Data Analysis

Measured values are reported as the mean plus or minus one standard deviation (x ± 1 

SD) except for species mean cover values presented in Table 2.1 which are reported as the mean 

plus or minus one standard error (x ± 1 SL). Treatment effects (moss versus lichen-dominated 

microsites) were examined by analysis of variance at each stand location. The statistical 

significance of treatment effects in microsite plots (leaf area index and soil litter/organic matter 

content) at each stand was examined using paired t-tests. These comparisons are denoted as 

significant in the text when probability values in any of the stand locations were <0.05. To 

determine if differences existed with stand characterization variables (which could he correlated 

to the microsite level), the significance level was set at 0.1. This reduced the probability of a
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Type II error resulting from extraneous data in the sample. T-tests were also used to evaluate the 

significance of correlation coefficients (Fisher 1990).

Leaf area index values were compared between quadrats with <1% percent cover of 

feather moss versus those with ^1%. This threshold represents the percent cover that can be 

clearly expressed through ocular evaluation of quadrats. An index value of moss was derived 

for each plot based on the coding of moss presence for each quadrat. This code was compared 

to the average LAI value for each plot. The correlation between the two variables, moss 

presence code and LAI, indicated the relationship between them.

Not all quadrats within the chosen openings were used in the analysis of leaf area index. 

Assessment of the raw data indicated that most outlier data points occurred in quadrats that were 

adjacent to a tree or that had a tree within the quadrat. Tree stems within one metre of the 

sensor blocked out a large portion of the visible sky but did not accurately represent foliage 

interceptance cover. In turn, all quadrats around the perimeters of the gaps were dropped. 

Though the relationship was consistent between the raw data and the data not containing 

quadrats on the perimeter, the effect was greater where outliers were dropped.

RESULTS

The species composition of vascular plants within moss- or lichen-dominated microsites 

showed little variation between plot types (Table 2.2). Likewise, this consistency was 

maintained among the three sites, supporting the classification of all three sites into the same 

plant association. The two exceptions are the presence of Vaccinium membranaceum Dougl. ex 

Hook, at the West Germansen site and not at the other two sites and the absence of
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Table 2.2. Percent frequency occurrence and mean percent cover by species (± 1 SE) in moss-

and lichen-dominated microsite plots at West Germansen, Manson, and Germansen Lake 
Sites. Total n for lichen- and moss-dominated microsite plots was 36 and 112 
respectively.

West Germansen Sites Germansen Lake Sites Manson Sites

Species
Micro
plot
type

Percent
frequency

Mean
percent

cover

SE
of

cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Percent
frequency

Mean
percent

cover

SE of 
cover

Vascular Plants

Arctostaphylos lichen 0 0 28.6 0.21 0.15 313 0.54 0.33
uva-ursi (L.) 
Spreng

moss 0 0 - 27.9 0.32 0.14 56.8 0.49 0.11

Arnica lichen 0 0 . 0 0 . 0 0 .

cordifolia Hook.

moss 3.1 0 - 0 0 - 0 0 -

Calamagrostis lichen 0 0 0 0 0 0
canadensis 
(Michx.) Beauv.

moss 0 0 - 0 0 - 2.7 0 0

Calamagrostis lichen 0 0 - 0 0 - 0 0 .

purpurascens R. 
Br.

moss 0 0 - 2.3 0.01 0.01 0 0 -

Cornus lichen 76.5 0.41 0.12 85.7 0.47 0.27 0 0 .

canadensis L.

moss 87.5 0.86 0.12 65.1 0.37 0.08 13.5 0.07 0.03

Empetrum lichen 11.8 0.09 0.06 0 0 - 0 0 -

nigrum L.

moss 46.9 1.02 0.3 2.3 0.02 0.02 8.1 0.23 0.19

Epilobium lichen 0 0 14.3 0.01 0.01 0 0
angustifolium L.

moss 0 0 - 18.6 0.02 0.01 0 0 -
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West Germansen Sites Germansen Lake Sites Manson Sites

Species
Micro
plot
type

Percent
frequency

Mean
percent

cover

SE
of

cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Geocaulon 
lividum (Rich) 
Fern.

lichen 0 0 0 0 16.7 0.04 0.04

moss 0 0 0 0 0 0

Linnaea 
borealis L.

lichen 215 0.09 0.05 71.4 0.44 0.17 58.3 0.58 0.24

moss 43.7 0.2 0.05 72.1 0.91 0.23 83.8 0.57 0.12

Lycopodium 
complanatum 
(L.) Holub

lichen 0 0 - 0 0 - 0 0 -

moss 34.4 0.4 0.15 0 0 0 0

Oryzopsis
asperifolia
Michx.

lichen 5.9 0.01 0.01 14.3 0.07 0.07 16.7 0.05 0.04

moss 18.8 0.04 0.02 11.6 0.04 0.02 21.6 0.11 0.04

Oryzopsis 
punjens (Torr.) 
Hitchc.

lichen 5.9 0.03 0.03 42.9 0.16 0.1 16.7 0.13 0.09

moss 3.1 0.02 0.02 25.6 0.07 0.02 16.2 0.04 0.02

Pyrola
asarifolia Michx.

lichen 5.9 0.06 0.06 0 0 - 0 0 -

moss 3.1 0.02 0.02 2.3 0.01 0.01 0 0 -

Pyrola secmda 
L.

lichen 0 0 - 0 0 - 0 0 -

moss 3.1 0 0 0 0 - 0 0 -

Rosa acicularis 
Lindl.

lichen 0 0 - 28.6 0.16 0.14 8.3 0.01 0.01

moss 9.4 0.07 0.06 27.9 0.15 0.1 8.1 0.01 0
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West Germansen Sites Germansen Lake Sites Manson Sites

Species
Micro
plot
type

Percent
frequency

Mean
percent

cover

SE
of

cover

Percent
frequency

Mean
percent
cover

SB of 
cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Vaccinium
caespitosum
Michx.

lichen 88.2 0.65 0.16 0 0 16.7 0.08 0.06

moss 84.4 1.66 0.45 9.3 0.06 0.05 2.7 0.01 0.01

Vaccinium 
membranaceum 
Dougl. ex Hook.

lichen 41.2 0.28 0.13 0 0 - 0 0 -

moss 59.4 0.45 0.1 0 0 0 0

Vaccinium 
vitis-idaea L.

lichen 0 0 - 100 0.39 0.07 66.7 1.71 0.97

moss

Non-vascular Plants

0 0 90.7 0.93 0.13 78.4 1.03 0.23

Barbilophozia 
lycopodioides 
(Wallr.) Loeske

lichen 52.9 0.19 0.06 100 0.34 0.13 83.3 1.25 0.43

moss 56.3 5.82 282 53.5 0.17 0.04 64.9 0.45 0.09

Cetraria 
cucullata (Bell.)

lichen 0 0 - 0 0 - 8.3 0.01 0.01

Ach.
moss 0 0 - 4.7 0 0 13.5 0.04 0.02

Cetraria 
ericetorum Opiz

lichen 94.1 0.42 0.04 85.7 0.2 0.08 91.7 0.46 0.04

moss 40.6 0.14 0.04 27.9 0.17 0.12 86.5 0.41 0.04

Cetraria nivalis 
(L.) Ach.

lichen 0 0 - 0 0 - 8.3 0.01 0.01

moss 6.3 0.03 0.02 2.3 0 0 2.7 0 0

Cladina mitis 
(Sandst.) Hustich

lichen 100 21.94 3.98 100 9.71 2.13 91.7 6.08 0.79

moss 68.8 323 0.96 97.7 8.24 1.48 100 5.87 1.03
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West Germansen Sites Germansen Lake Sites Manson Sites

Species
Micro
plot
type

Percent
frequency

Mean
percent

cover

SE
of

cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Cladina 
rangiferina (L.)

lichen 70.6 2.04 0.55 85.7 1.09 0.41 91.7 2.92 0.9

Nyl.
moss 81.3 4.33 0.88 83.7 2.5 0.7 100 2.46 0.44

Cladina 
stellaris (Opiz)

lichen 0 0 - 0 0 - 0 0 -

Brodo
moss 9.4 0.23 0.17 2.3 0.05 0.05 0 0 -

Cladonia 
bellidiflora 
(Ach.) Schaer.

lichen 0 0 - 0 0 - 0 0 -

moss 18.8 0.08 0.03 0 0 0 0

Cladonia 
borealis Stenroos

lichen 5.9 0.03 0.03 0 0 - 0 0 -

moss 9.4 0.02 0.02 0 0 - 0 0 -

Cladonia 
carneola (Fr.) Fr.

lichen 41.2 0.11 0.05 14.3 0.01 0.01 8.3 0.04 0.04

moss 18.8 0.05 0.03 4.7 0 0 5.4 0.02 0.01

Cladonia 
cenotea (Ach.) 
Schaer.

lichen 5.9 0.01 0.01 0 0 - 16.7 0.05 0.04

moss 6.3 0.01 0 2.3 0 0 8.1 0.02 0.01

Cladonia
cervicornis

lichen 29.4 0.08 0.04 14.3 0.01 0.01 333 0.1 0.06

subsp. 
Vericillata 
(Hoffin.) Schaer

moss 12.5 0.04 0.02 7 0.01 0 13.5 0.04 0.02

Cladonia
chlorophaea

lichen 35.3 0.11 0.05 28.6 0.03 0.02 33.3 0.17 0.07

(Soirrni.) Spreng.
moss 31.3 0.09 0.03 18.6 0.02 0.01 40.5 0.13 0.03
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West Germansen Sites Germansen Lake Sites Manson Sites

Species
Micro
plot
type

Percent
frequency

Mean
pereent

eover

SE
of

cover

Percent
frequency

Mean
percent
cover

SB of 
cover

Percent
fi-equeney

Mean
percent
cover

SE of 
cover

Cladonia 
comuta (L.)

lichen 76.5 0.29 0.06 71.4 0.24 0.09 91.7 0.43 0.05

Hoffm.
moss 53.1 0.18 0.04 62.8 0.18 0.03 86.5 0.36 0.03

Cladonia 
crispata (Ach.)

liehen 47.1 0.19 0.07 71.4 0.31 0.14 58.3 0.27 0.09

Flot.
moss 46.9 0.55 0.23 37.2 0.12 0.03 56.8 0.23 0.04

Cladonia 
deformis (L.)

lichen 58.8 0.18 0.05 0 0 - 25 0.09 0.06

Hoffin.
moss 25 0.08 0.03 18.6 0.03 0.01 27 0.09 0.03

Cladonia
ecmocyna

lichen 100 1.29 0.37 85.7 0.33 0.14 83.3 0.75 0.31

Leight.
moss 78.1 0.46 0.07 62.8 0.22 0.04 83.8 0.37 0.04

Cladonia 
fimbriata (L.) Fr.

lichen 41.2 0.14 0.05 14.3 0.01 0.01 41.7 0.14 0.06

moss 21.9 0.06 0.03 0 0 - 40.5 0.13 0.03

Cladonia 
gracilis (L.) 
Willd.

lichen 0 0 0 28.6 0.09 0.07 16.7 0.05 0.04

moss 31.3 0.23 0.08 4.7 0 0 29.7 0.06 0.02

Cladonia
multiformis

lichen 5.9 0.01 0.01 0 0 - 0 0 -

Merr.
moss 21.9 0.1 0.04 0 0 - 5.4 0.01 0

Cladonia
phyllorophora

lichen 70.6 0.21 0.05 85.7 0.31 0.09 58.3 0.29 0.07

Hoffin.
moss 25 0.09 0.03 32.6 0.11 0.03 51.4 0.19 0.04
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West Germansen Sites Germansen Lake Sites Manson Sites

Species
Micro
plot
type

Percent
frequency

Mean
percent

cover

SE
of

cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Cladonia 
pleurota (Florke)

lichen 0 0 - 28.6 0.03 0.02 8.3 0.01 0.01

Schaer
moss 21.9 0.08 0.03 7 0.02 0.01 16.2 0.02 0.01

Cladonia 
pyxidata (L.)

lichen 47.1 0.19 0.06 14.3 0.01 0.01 0 0 -

Hoffin.
moss 12.5 0.03 0.02 0 0 - 10.8 0.01 0.01

Cladonia
sulphurina

lichen 64.7 0.21 0.06 28.6 0.14 0.09 25 0.03 0.01

(Michx.) Fr.
moss 34.4 0.25 0.16 18.6 0.02 0.01 32.4 0.11 0.03

Cladonia 
uncialis (L.)

lichen 47.1 1.58 0.7 85.7 1.09 0.67 91.7 0.85 0.39

Wigg.
moss 34.4 0.28 0.13 55.8 0.26 0.07 78.4 0.87 0.24

Dicranum spp. lichen 82.4 0.69 0.24 85.7 0.51 0.15 75 0.77 0.24

moss 84.4 4.87 2.16 76.7 0.44 0.07 97.3 1.33 0.27

Nephroma spp. lichen 5.9 0.01 0.01 14.3 0.43 0.43 0 0 0

moss 0 0 0 7 0.12 0.1 0 0 0

Pannaria 
pezizoides 
(G.Web.) Trev.

lichen 0 0 0 0 0 0 0 0 0

moss 0 0 0 2.3 0 0 0 0 0

Feltigera 
aphthosa (L.) 
Willd.

lichen 35.3 0.6 0.47 57.1 1.94 1.68 83.3 1.84 0.74

moss 46.9 0.19 0.05 83.7 1.21 0.33 94.6 1.53 0.29
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West Germansen Sites Germansen Lake Sites Manson Sites

Species
Micro
plot
type

Percent
frequency

Mean
percent

cover

SE
of

cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Percent
frequency

Mean
percent
cover

SE of 
cover

Peltigera 
malacea (Ach.)

lichen 17.6 0.09 0.06 71.4 1.61 1.26 58.3 1.55 0.84

Funck
moss 28.1 0.22 0.11 55.8 0.45 0.12 45.9 0.84 0.3

Pleurozium 
schreberi (Brid.) 
Mitt.

lichen 76.5 0.44 0.13 85.7 0.44 0.12 66.7 0.38 0.11

moss 90.6 17.46 4.3 100 22.68 3.64 100 16.82 3.32

Pohlia spp. lichen 58.8 0.29 0.12 14.3 0.01 0.01 16.7 0.08 0.06

moss 50 0.28 0.07 30.2 0.03 0.01 40.5 0.19 0.04

Polytrichum
Juniperinum

lichen 52.9 0.31 0.12 85.7 0.33 0.14 50 1.04 0.56

Hedw.
moss 56.3 0.45 0.19 39.5 0.24 0.08 54.1 0.87 0.31

Ptilidium
pulcherrimun

lichen 0 0 - 0 0 - 0 0 -

(G.Web.) Hampe
moss 0 0 0 2.3 0 0 0 0 0

Ptilium
crista-castrensis 
(Hedw.) De Not.

lichen 5.9 0.03 0.03 57.1 0.06 0.02 8.3 0.04 0.04

moss 40.6 0.21 0.07 30.2 0.1 0.05 18.9 0.11 0.04

Stereocaulon 
alpinum Funck

lichen 52.9 0.39 0.13 71.4 0.26 0.14 41.7 0.18 0.09

moss 43.8 0.18 0.04 39.5 0.18 0.1 54.1 0.36 0.15
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Arctostaphylos uva-ursi (L.) Spreng from West Germansen, though it was present at both the 

other sites. Regarding relationships between moss- and lichen-dominated microsites, Empetrum 

nigrum (L.) was the only vascular plant that expressed a weak trend of higher cover on moss- 

dominated microsites.

The cover of non-vascular plants and cryptogams also expressed limited variation at the 

species level when assessed both between different types of microsites and between sites. 

Pleurozium schreberi (Brid.) Mitt, was the only species to express a significant difference in the 

percent cover between microsite types. Another weak trend was the tendency for higher cover 

of Cladonia spp. at lichen microsites compared to moss microsites. This trend concurs with the 

successional development of lichen woodlands in the Omineca (Coxson and Marsh 2001).

Table 2.3 lists percent cover estimates by evaluation category. Lichen and litter cover- 

related categories expressed consistent trends of higher values at the lichen-dominated 

microsites. Only moss-related estimates showed trends of higher values in moss-dominated 

microsites. The Feather Moss group was the sole category to express significant differences 

between moss- and lichen-dominated microsites.

At all three sites, consistent relationships were found between stand structure and the 

presence of moss- or lichen-dominated microsites (Table 2.4). Analysis of variance indicates a 

significant “treatment” effect between moss- or lichen-dominated microsites and canopy 

structural variables within each stand. At each site, plots with dominant moss cover had 

significantly higher values for total plot tree basal area, total plot tree volume, total plot tree 

biomass, and total plot crown biomass compared to lichen-dominated plots. An additional 

variable that supported this trend was crown area, although, it was found to be significantly



Table 2.3. Mean percent cover estimates by category (± 1 SD) for moss-dominated and lichen-dominated microsite plots at West 
Germansen, Manson, and Germansen Lake sites.

n
Site

Reindeer
Lichens

Other
Lichens

Foliose
Lichens

% Cover by Functional Group

Feather Other Mineral 
Moss Moss Soil

Rock Coarse
Woody
Debris

Litter Forbs

West Germansen

Lichen- 88
Dominated
Microsites

24.8 ± 17.9 4.6 ±4.3 0.1 ±0.4 0.0 3.0 ±2.9 0.1 ±0.3 1.2 ±0.3 3.5 ±5.5 6.8 ± 6.9 4.6 ±5.4

Moss- 167
Dominated
Microsites

Manson Sites

11.8 ± 12.0 2.7 ±2.6 0.4 ± 1.0 16.5 ± 20.9 3.1 ±3.3 0.0 0.5 ± 0.2 5.06 ±  11.2 4.2 ± 2.9 8.1 ±6.5

Lichen- 90
Dominated
Microsites

12.1 ± 5.7 1.0 ±0.9 1.4 ±2.2 0.2 ± 0.2 1.5 ±2.2 0.0 0.2 ± 0.5 1.7 ±3 .0 9.1 ±5.8 4.8 ±2 .7

Moss- 94 9.6 ± 6.9
Dominated
Microsites

Germansen Lake Site

1.6± 1.5 2.3 ± 2.6 9.3 ± 11.3 2.6 ± 1.6 0.1 ±0.4 0.1 ±0.4 2.1 ±3 .7 6.5 ± 2.6 4.6 ±2 .4

Lichen- 92
Dominated
Microsites

12.9 ± 5.3 0.9 ±0.6 2.5 ±3.5 0.1 ±0.2 1.0 ± 1.2 0.0 0.6 ± 1.0 0.3 ± 0.8 7.8 ±5.8 5.6 ± 2.6

Moss- 22
Dominated
Microsites

11.5 ± 9.0 0.7 ± 1.3 2.5 ±2.9 21.8 ± 19.8 2.1 ±3.4 0.0 1.1 ±2.2 0.3 ± 1.3 6.6 ± 7.3 4.2 ±2 .6

to
-1̂
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Table 2.4. Mean stand-level plot values (± 1 SD) for basal area, tree volume, tree biomass,

crown biomass, and crown area from stand plots centred on gap openings (see Figure 2.2 
for layout), these respectively selected for moss presence, denoted as ‘Moss’ Stand 
Plots, or for moss absence, denoted as ‘Lichen’ Stand plots. T values and significance 
values are shown for T-test comparisons between ‘Moss’ and ‘Lichen’ plots; values in 
parenthesis are n-1 for each stand plot combination.

Plot Site 
Variable

‘Moss’ Plots ‘Lichen’ plots Significance
Value

Tree Basal Area (m /̂ha)

West Germansen 25.7±2.2 19.7±3.5 T(9)-3.24 P=0.018

Germansen Lake 31.7±2.8 26.Ü5.6 T(9)=2.01 P=0.100

Manson 32.9±2.3 28.8±4.0 T(9)=1.96 P=0.098

Tree Volume (m /̂ha)

West Germansen 160.9±15.0 130.2±23.4 T(9)=2.77 P=0.028

Germansen Lake 259.3±15.4 209.3±28.3 T(9)=3.48 P=0.013

Manson 245.9±33.8 209.1±26.6 T(9)=1.91 P=0.097

Tree Biomass (kg/m )̂

West Germansen 11.94±0.69 9.15±1.45 T(9)=3.87 P=0.012

Germansen Lake 16.10±8.27 12.96±2.11 T(9)=3.10 P=0.027

Manson 15.83±1.53 13.66±1.56 T(9)=2.22 P=0.062

Crown Biomass (kg/m )̂

West Germansen 2.55±0.07 1.89±0.27 T(9)=5.32 P=0.027

Germansen Lake 2.71±0.17 2.19±0.49 T(9)=2.24 P=0.089

Manson 2.79±0.14 2.50±0.26 T(9)=2.16 P=0.074

Crown Area (mVm )̂

West Germansen 1.21±0.11 0.9±0.13 T(9)=2.78 P=0.027

Germansen Lake 1.46±0.22 1.30±0.41 T(9)=0.81 P=0.46

Manson 1.69±0.16 1.38±0.26 T(9)=2.21 P=0.069
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different at only two of the three sites. Consistent trends were observed between stand structural 

variables and the presence or absence of moss within each of the sampling locations. However, 

structural variables for both plot types (moss and lichen) were lower at the West Germansen site.

Leaf area index values (direct measurements) showed the same trends as crown area 

estimates (derived from stand structural values), with higher values in both cases for moss plots 

(Tables 2.4 and 2.5). Significant relationships, as determined by Pearson correlation coefficients 

(r), existed between LAI and each of the three stand characterization variables; basal area (r = 

0.738), tree volume (r = 0.686), and total tree biomass (r = 0.735). T-tests supported the 

significance of all three correlation coefficients. A significant relationship between the presence 

of moss and leaf area index values was also found, as represented by a Pearson correlation 

coefficient of 0.511.

Isopleth plots provided a visual representation of these trends towards higher leaf area 

index values in moss-dominated quadrats (Figure 2.3). Feather moss quadrats were most 

abundant in portions of the plot openings protected from solar exposure. In this example, the 

south portion of the plot was provided greater cover by the adjacent stand than the north half of 

the plot. This pattern was supported by the LAI contour plot. In general, the location of the 

feather moss morphological group was found in microsite plots with greatest LAI values.

The assessment of biomass on a subset of intensively sampled quadrats revealed trends 

similar to the percent cover data. The only statistically significant finding was noted when 

comparing cover groups that form unfavorable substrates for feather moss establishment, such as 

rock and coarse woody debris. The biomass of lichens, acrocarpous mosses (i.e. mosses with the 

sporophyte at the apex of the main stem) and litter was significantly greater for lichen quadrats
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Table 2.5. Mean microplot values (± 1 SD) for leaf area index and organic matter accumulation, 

the latter separated by above-ground components (the cumulative biomass of lichens, 
acrocarpous moss and litter) and below-ground components (humus accumulation). 
Significance values are shown for T-test comparisons between ‘Moss’ and ‘Lichen’ 
plots; numbers in parenthesis are n-1 values for indicated microplot conditions.

Plot Variable Site Moss Quadrats Lichen Quadrats Significance

Leaf Area Index (m̂ /m̂ )

West 1.617±0.267 1.551±0.235 T(254)=4.62 P<0.0001

Germansen 1.700±0.259 1.637±0.136 T(113)=3.75 P=0.0004

Manson 1.961±0.418 1.787±0.281 T(183)=3.67P=0.0003

Sum of lichens, acrocarpous 
mosses and litter (kg/m )̂

West 0.84±0.40 1.26±0.26 T(45)=4.36 P=0.0001

Germansen 0.95±0.37 1.18±0.30 T(28)=2.29 P=0.03

Manson 1.09±0.25 1.27±0.29 T(44)=2.28 P=0.028

Humus (kg/m )̂

West 0.91±0.48 0.77±0.36 T(48)=1.17P=0.25

Germansen 1.11±0.82 0.85±0.67 T(49)=0.98 P=0.34

Manson 1.00±0.42 0.83±0.40 T(48)=1.34P=0.19
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Figure 2.3. Isopleth plot of forest floor in representative canopy gap in pine-lichen woodlands. 
From top: Leaf Area Index, Percent Cover of Cladina spp., and Percent Cover of Feather 
moss mats.
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compared to moss quadrats at all three sites (Table 2.5). Organic matter content over surface soil 

horizons indicated an opposite trend to the assessment of unfavourable moss substrates. 

Although not statistically significant, there was a trend at all three sites towards greater organic 

matter content at quadrats with a moss component versus those without it (Table 2.5).

DISCUSSION

The distribution of bryophytes and lichens at any given site reflects the combined 

interactions of past and present propagule availability and site characteristics, both of which 

interact to determine subsequent establishment and growth of plant communities. In general, for 

lichens to be successful, these factors must interact to create environments that preclude 

competitive displacement by other plants, due to the more “stress-tolerant” life history strategy 

adopted by many lichens (Grime 1977).

When considering site characteristics, features of the mineral soil (i.e. soil horizons 

below the surface organic layers and that contain <20% organics) are typically among the most 

influential in changing the nature and distribution of the overstorey plant canopy in lichen 

woodlands. Of particular importance is the effect of edaphic factors on growth rates and live 

biomass of the dominant trees species on a site. On lichen sites that succeed to a moss woodland 

state, succession is considered to he a function of the forest overstorey development (Carroll and 

Bliss 1982, Maikawa and Kershaw 1976). These factors interact through time, with periodic 

stand destroying fires “resetting” both edaphic and successional factors.

The influence of the forest canopy on non-vascular plant communities at the forest floor 

surface may be expressed through several mechanisms. The more well-developed the canopy



30
structure is, the greater will be the direct interception of precipitation, reducing available water 

at the forest floor surface (Rutter 1975). Although this factor is important at a watershed level in 

changing patterns of runoff and total streamflow, the impact on moss and lichen communities 

may be small, expressed mainly in a reduced magnitude of wetting during small precipitation 

events, when the canopy intercepts most of the throughflow precipitation. More importantly, 

exposure to direct solar radiation after precipitation events can result in transient high rates of 

photosynthetic uptake, but leads to rapid dessication of non-vascular cryptogams at the forest 

floor surface in pine stands (Coxson 1987).

In pine-liehen woodlands, the nature of stand initiation can also play an important part in 

contributing towards the legacy of residual canopy structure and the early initiation of more 

shaded conditions at the forest floor surface. On sites where stand destroying fires are less severe 

in nature, the greater retention of organic soils and seed/propagule pools may result in a 

community structure that contains more elements from previous serai stages. This was evident 

while selecting sites in this study. In pine stands that had many fire-searred trees (evidence of 

canopy retention after the last major fire), there tended to be a greater abundance of moss in the 

understorey, compared to stands that did not contain trees with fire scars (and presumably had a 

total loss of canopy structure during the last fire).

Overstorey canopy development can also influence surface cryptogams through the 

deposition of litter on potentially slow growing lichen mats and through the buildup of surface 

organic horizons. A trend of greater soil organic matter development on mierosites dominated 

by moss was evident in our study area, although it cannot be stated whether this is a causal 

factor or merely the result of greater litter accumulation after moss establishment. This effect is
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consistent with the findings of Steijlen et al. (1994), who found that microsites dominated by 

moss had significantly higher organic biomass compared to sites with just lichen.

The overall success of feather moss mats at the forest floor surface, however, may be 

determined most by changes in overstorey architecture. On all sites studied, the biomass of the 

forest overstorey was greater where feather moss was present. One method used to assess this 

was by evaluating leaf area index. In the Omineea region, LAI in pine-lichen woodlands was 

highly correlated with stand overstorey variables. In stands that have both a greater biomass of 

trees, and large tree sizes, LAI was higher. Larger trees, and thus higher leaf area index values, 

corroborate with lower levels of available solar radiation and the greater likelihood of mierosites 

having feather moss present.

Although changes in canopy structure are eovariate with time since stand initiation, 

recent findings of Coxson and Marsh (2001) indicate that low-impact (winter-harvest) removal 

of overstory canopy can result in the short-term return (at 30 years after harvest) of sites to a 

lichen-dominated status. This supports arguments that the development of moss- or lichen- 

dominated mierosites within a stand reflects small-scale differences in the immediately 

subtending canopy structure. The development of these small-scale variations in canopy 

structure is time-dependant, reflecting previous stages of stand development and disturbance 

history.

Stochastic events early in stand development also will play a role in determining the 

nature of initial propagule establishment. Pharo and Vitt (2000), for instance, did not find a 

strong correlation between canopy density and local variations in moss and lichen eover in 

montane forests of Alberta and speculated that early establishment events may be more
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important than we have previously thought. The burial of existing lichen mats through infilling 

by feather moss mats on our sites strongly suggests that the balance of competitive interactions 

between these species changes in localized mierosites late in stand development. It is interesting 

in this regard that we observed small stems of Pleurozium schreberi (Brid.) Mitt, widely co­

existent within terrestrial lichen mats in younger pine-lichen woodland stands near our sites 

(Coxson and Marsh 2001), suggesting a common point of initiation early in stand life for both 

functional groups. However, as in the case of epiphytic lichen communities (McCune and Antos 

1982), competitive interactions are ultimately linked to environmental gradients involving both 

stand age, and available light and moisture at specific mierosites. What is uncertain is whether 

the nature of these interactions may change within managed stands (Esseen et al. 1996).

The data set developed for this project does not provide critical thresholds for stand 

characterisation variables that can be used to differentiate moss versus lichen areas. Stand 

characterisation data express variation between the three sites. In particular, lower values for all 

characterisation variables were found at the West Germansen site, which is the highest elevation 

of all three in this study. Based on elevation alone, the West Germansen site could be classed as 

being in the Engelmann Spruce - Subalpine Fir (ESSE) biogeoclimatic zone and have a slightly 

different microclimate. Because the vegetation community and soils were not different from the 

other two sites, it was considered to be within the BWBS.

The notion of microclimatic variation is supported by anecdotal information from 

residents in the study area. They indicated that snow depths in the vicinity of the West 

Germansen site can be deeper than those found at the other two sites. It is probable that the West 

Germansen site is transitional to the higher elevation sites in the ESSF and could be considered
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a slightly different phase from the other two sites that are truly in the BWBS. The interaction of 

stand structure and surface microsite development, however, was similar in all three sites, 

despite these elevational differences.

The values determined for LAI within this study represent two-dimensional relative 

measures from microsite sampling plots, each representing the portion of the sky that is blocked 

out of view by foliage (Welles and Norman 1991). High LAI measures therefore correspond to 

high foliage biomass of trees and subsequent greater interception of solar radiation (Cable 1958, 

Cade 1997). The structure of trees is also an important factor in determining light and wind 

penetration to the forest floor (Korzukhin and Ter-Mikaelian 1995). Taller trees with greater 

vertical structure of the crown expose more leaves to incoming radiation than do shorter trees. 

This results in an improved efficiency of the absorption of solar radiation. Using equations 

derived by Standish et al. (1985), the calculated biomass of the crowns at each site was greater at 

the plots selected for moss presence than those selected for its absence.

Another important factor associated with the presence of larger trees is a decrease in the 

ventilation through a stand. Ventilation is a critical factor impacting growth rates for many 

lichen species. Reducing the air flow through a stand reduces the amount of moisture drawn 

away from a microsite. This increases the availability of atmospheric moisture (humidity) to 

plants, which is an important precondition for the establishment of feather moss mats (Tamm 

1964). Although both lichens and moss, in general, respond favourably to longer hydration 

episodes, which increase the duration of physiological activity, in practice, many lichen species 

seem to be excluded from sites with prolonged duration of hydration (Goward 1998). This may 

reflect the sensitivity of lichen symbiosis to prolonged wetting (Tysiaczny and Kershaw 1979).
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Additionally, under conditions of slow drying, respiratory carbon loss from fungal symbionts 

may have an adverse effect on long-term growth of Cladina (Tegler and Kershaw 1980). This 

constraint is not as severe in feather mosses such as Hylocomium splendens (Hedw.) B.S.G., 

where respiratory carbon loss at low water contents does not represent as high a proportion of 

overall carbon budgets (Sonesson et al. 1992).

A final constraint on the future development of pine-lichen woodlands is the widespread 

adoption of fire-suppression as a management policy in the past several decades. Future 

development of managed stands may differ greatly from those of historical fire-origin ones 

(Coxson and Marsh 2001). Factors such as tree stocking, density at planting, stand tending, and 

rotation length to harvest each influence the development of understorey plant communities. Our 

research findings indicate that stand structure is an important variable in retaining or enhancing 

the growth of reindeer lichens. Once overstorey forest biomass and resultant LAI values exceed 

threshold values, the transition of forest floor cryptogamie communities to a feather-moss- 

dominated stage may occur quite rapidly.

Understanding the relationship between stand structure and lichen presence will provide 

resource managers with greater ability to retain a diversity of lichen communities in managed 

forests. However, care must he taken so that the effects of stand level manipulations are 

considered in context of landscape level trends in lichen diversity and abundance (Dettki and 

Esseen 1998). In the Omineca region of north-central British Columbia, integrating information 

on stand structure and lichen development provides additional means towards insuring future 

availability of terrestrial lichen mats and the maintenance of related habitat values, such as 

forage for northern caribou.
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CHAPTER 3 - CHANGES IN TERRESTRIAL LICHEN AVAILABILITY AND 

WOODLAND CARIBOU HABITAT IN NORTH-CENTRAL BRITISH COLUMBIA:
A GIS-BASED QUERY^

SUMMARY

The age elass distribution of pine-lichen woodlands in the Omineca region of north- 

central British Columbia reflects extensive fires that occurred in the late 1800's. Terrestrial 

lichen mats in these mid-seral woodlands provide critical winter forage for caribou populations. 

In land use plans throughout British Columbia, a reoccurring recommendation is to preserve 

tracts of land containing terrestrial lichens. Using a GIS-based query focussing on forest 

inventory variables such as site index and leading tree composition, we categorized the 

availability and age class distribution of pine-liehen woodlands within an area bounded by the 

Nation Lakes and the Omineea River. Using a static landscape model (applied to a subset of the 

area), the approach allows for natural stand aging, but excludes large scale disturbances such as 

fire. GIS simulations of this model indicated that successional changes associated with late- 

seral replacement of terrestrial lichens by feather moss mats will greatly reduce caribou habitat 

over the next 30 to 60 years. A disturbance-based landscape model, with evenly dispersed (time 

and space) regeneration of woodlands (on a 140-year return interval), showed the same shortfall 

of terrestrial liehen availability after 30 years, although caribou habitat values rebuild into the 

next century. These findings indicate that for a period from 30 to 60 years hence, the availability 

o f caribou habitat will be a critical concern in the Omineca region. Our ground truthing 

indicated that changes in forest structural variables, especially basal area of pine, accompany this 

late serai loss of caribou habitat. These findings support the recommendations that alternative

^Chapter has been submitted for publication with the following authorship: R. Sulyma and D.S. Coxson
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forest harvesting techniques can be utilized to bridge the shortfall of terrestrial lichen 

availability, and point to the importance of landscape level planning when considering habitat 

availability.

INTRODUCTION

Lichen-dominated woodlands occur throughout northern Canada, typically on well 

drained glacially modified sites (Kershaw 1978). In western Canada, the regeneration of pine- 

lichen woodlands and the subsequent development of forest floor plant communities is 

intimately tied to the frequency and intensity of prior fire events, which act as a landscape level 

disturbance agent. General patterns that have been documented contain three or four interim 

phases of succession (Brulisauer et al. 1996, Carroll & Bliss 1982, Johnson 1981, Maikawa & 

Kershaw 1976, Momeau & Payette 1988, Payette et al. 2000, Rowe 1984, Thomas & Alaie 

1996). Common late-seral plant communities are dominated by one of Stereocaulon spp., 

Cladina spp. or feather mosses such as Pleurozium schreberi (Brid.) Mitt.

Terrestrial lichens provide an important forage source for northern caribou {Rangifer 

tarandus Linnaeus). The sustained availability of this forage requires a landscape mosaic 

containing a range of age classes, particularly in areas where lichen mats are replaced in late 

successional stages by leather moss mats. In pre-industrial landscapes, fire was the main agent 

of stand initiation. In modem landscapes, however, forest management practices and fire 

suppression can change the serai stage distribution of lichen woodlands and the ecological 

processes that regulate the development of forest floor lichen communities.

In recognition of these changing landscapes, many jurisdictions have implemented



37
caribou management strategies. This has resulted in management paradigms that focus on 

providing maximum lichen availability for foraging while reducing predation pressure and 

human disturbance (Bergerud & Elliot 1998, Seip 1998). These management strategies have 

been given additional impetus because of the recent consideration of caribou as a threatened 

species in Canada by the Committee on the Status of Endangered Wildlife in Canada 

(COSEWIC 2000). In British Columbia, land use plans for most areas with caribou populations 

recommend special strategies for caribou management (Anonymous 1995a, 1997,1999).

A critical aspect towards the management of caribou populations requires, as a starting 

point, detailed information on the extent of pine-lichen woodlands, their stage of serai 

development, and the degree to which forest harvesting practices have changed serai stage 

development. In the past, this was often accomplished through manual searches of hard copy 

maps and images for desired features. More recently, geographic information systems (GIS) 

have been used as a tool to perform the desired queries. This process has been aided by 

improvements in software development, which bring GIS tools within the reach of resource 

managers.

Common attributes of pine-lichen woodlands in westem-Canada are well-drained sites 

with a poor nutrient regime (Johnson 1981, Rowe 1984, Stevenson 1991). We have therefore 

focussed on determining if measures of forest productivity, specifically site index measures 

(defined as the height of the average dominant trees at a given age, e.g., 50 years), can be used to 

differentiate pine sites that contain terrestrial lichens from those that do not. Site index is a 

value that is easy to determine and is an attribute within the British Columbia Government 

Survey (BCGS) forest cover data base.
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Our sampling procedures were developed to assess a range of sites stratified by site 

index classes. This stratification allows for the recognition of site and stand features between 

pine-lichen woodlands and pine forests with other (non-lichen) ground covers. We used this 

information, along with an assessment of the physical features associated with pine-lichen 

woodlands, to develop a GIS-based query of a digital map database for the Omineca region of 

north-central British Columbia.

This query identifies sites that have a high likelihood of containing pine-lichen 

woodlands and allows for the examination of future availability of caribou habitat under 

different management conditions using a simple time-step modelling procedure. The two 

management strategies examined were a “Static Landscape Model” (SLM) and a “Disturbance 

Landscape Model” (DLM). The SLM strategy focuses on minimizing the disturbance that 

occurs to lichen woodlands in any time period, whereas the DLM strategy allows ongoing 

landscape level disturbance, which over the course of several decades creates a more even-aged 

distribution of pine-lichen woodlands.

MATERIALS AND METHODS 

Study Area

Pine-lichen woodlands were located in the Omineca region, approximately 350-km 

northwest of Prince George (Figure 3.1). This area is bounded by the Nation Lakes to the south, 

the Omineca River to the north, the Germansen Range to the east and Takla Lake to the west. 

Fieldwork was concentrated in the vicinities of the Kwanika Creek, Silver Creek, Indata Lake, 

Valleau Creek and Ominicetla Creek (Table 3.1).
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Figure 3.1. Location of the “GIS project” study area within the Omineca region of north-central 
British Columbia.
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Table 3.1. Geographic location of field sampling areas.

Field Site General Location Notes

Kwanika Creek N 55° 34' 22" 11 plots in the ESSF’ mv3
W 125° 15' 52" 5 plots in the SBS^ mkl

Silver Creek N 55° 42' 50" 4 plots in the SBS mkl
W 125° 28' 24" 6 plots in the BWBS^ dkl

Indata Lake N 55° 22'38" 
W 125° 15" 55" 10 plots in the SBS mkl

Valleau Creek N 55°22 ' 50" 
W 124° 54' 25" 14 plots in the ESSF mv3

Ominicetla Creek N 55° 54'37" 
W 125° 45' 02" 26 plots in the BWBS dkl

1. Engelmann spruce sub-alpine fir biogeoclimatic zone
2. Sub-boreal spruce biogeoclimatic zone
3. Boreal white and black spruce biogeoclimatic zone
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The large geographic extent of the area assessed falls under three biogeoclimatic zones, 

the boreal white and black spruce zone (dry cool variant - BWBS dkl), the Engelmann spruce 

sub-alpine fir zone (moist very cool variant - ESSF mv3) and the sub-boreal spruce zone (moist 

cool variant - SBS m kl) (Meidinger and Pojar 1991). In general, pine types are found on sites 

that are drier and more nutrient poor than sites expressing climatic climax vegetation 

communities (zonal sites) for these zones (Meidinger and Pojar 1991).

Map Attributes

GIS queries were run on the BCGS forest cover map-base (BC Ministry of Forests 1994) 

and terrain resource inventory mapping (TRIM) (BC Ministry of Environment, Lands, and Parks 

1996). Safe Software Inc.’s (Surrey, BC) Feature Manipulation Engine was used to prepare the 

digital files for analysis. All GIS activities were done using Arc View 3.2 (Environmental 

Systems Research Institute Inc., Redlands, CA). To prepare maps for field activities, a query 

was applied to select mapped strata (polygons) that contained a predominant cover of lodgepole 

pine. “Predominant” was defined as >90% composition by basal area of the total tree cover.

The pine sites were further stratified by site index (SIjq) (Table 3.2) to ensure a sampling plan 

that would assess a range of site productivities.

Ground Truthing

Seventy-six plots were sampled in five areas of the Omineca region in north-central 

British Columbia (Table 3.1). Transects ranging from 0.2 to 6-km long were established 

throughout the study area. Plots were located along the transect based on the polygon 

boundaries determined by the GIS query. In some instances, where extreme variation in the
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Table 3.2. The breakdown of site index classes used in the field evaluation procedures to ensure 
sampling over a range of productivity classes.

Group Site Index at Age 50

1 <10

2 10.1 - 12.0

3 12.1 -13.0

4 13.1 -14.0

5 14.1 -15.0

6 15.0-16.5

7 >16.5
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dominant forest floor cover occurred within a single polygon, multiple plots were established. 

Plot measurements were taken in 0.02-ha fixed area circular plots (7.98-m radius). 

Measurements within these plots established the % cover of dominant plant species (visual 

estimation), and information on tree characteristics (species, diameter and height) (Husch et al. 

1982). Physical features of each site were also assessed, including hand texturing of soils and 

visual estimates of coarse fragments. Aspect and slope were evaluated for each plot location 

and a lichen woodland class was derived (Table 3.3).

The lichen woodland class was determined according to a process developed by Lance 

and Eastland (1999, 2000). The system uses a combination of ecological information, visual 

estimates of the % ground cover of four forage categories, and data from a “step-point” transect 

to determine a woodland class (see Table 3.3- Footnote 2 for the description of a step-point 

transect). The class value is the result of navigating through a dichotomy of decision nodes that 

result in an index value ranging from 0 to 4. With this system, 0 identifies a site with no forage 

(or no value as northern caribou winter range) and a 4 indicates a site with abundant forage .

To analyse field data, sites were grouped into 2 categories based on the Lance and 

Eastland classification scheme. Sites with moderate or high value as caribou winter range 

because of forage potential (classes 3 and 4) were combined into a category called “lichen 

plots”. Sites with little value for caribou, due to little or no forage being available (classes 0, 1 

and 2) were combined into a category labelled “moss plots.” Comparisons of site attributes 

between plot groups utilized T-tests to assess significance levels, based on tests meeting or 

exceeding a threshold of p = 0.05.
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Table 3.3. A generalisation of the Lance and Eastland (1999) terrestrial lichen woodland 

classification scheme developed for the Omineca region of north-central British 
Columbia.

Description Lichen Woodland Class

No terrestrial lichens present at the site. Class 0 - no value as caribou winter range.

There is at least 25% cover of preferred 
forage lichens plus an additional 25% 
cover of lichens regardless the forage

Class 4 - high value as caribou winter range.

If the above 2 points are not met, a step- 
point survey is conducted^ .

Greater than 50% of the tally Class 4 - high value as caribou winter range.points are preferred forage.

Between 26% and 50% of the tally 
points are preferred forage.

Class 3 - moderate value as caribou winter 
range.

Between 11% and 25% of the tally Class 2 - low value as caribou winter range.points are preferred forage.

Less than 10% of the tally points 
are preferred forage and lichen is 
present at the site.

Class 1 - minimum value as caribou winter 
range.

1. Forage categories: 0) No lichens; 1) Preferred forage species: Cladina spp., Cetraria spp., and 
Stereocaulon spp.; 2) Less preferred forage species: Cladonia spp., Peltigera spp.; 3) All other 
terrestrial lichens (from Lance and Eastland 1999).

2. The step-point survey involved taking two-paces (approximate distance of 1-m) and tallying the 
presence of the dominant forage category at the toe of one boot. Thirty tally points were evaluated in 
each step-point survey (Lance and Eastland 1999).
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Lichen Availability in Future Landscapes

The GIS query of stand characteristics was used to develop a simple lichen forecast 

model by modifying the results of the query by serai stage development. This was the basis for 

scenario generation under different management regimes. The area assessed was located in the 

Kwanika Creek area and is located between 124° 48' 00" and 125° 12' 00' longitude and 55° 42' 

00" and 55°54' 00" latitude. This area covers >1200 km^ and is representative of the landscape 

trends within the surrounding region. Using two strategies, a Static Landscape Model, where 

natural processes were limited to aging of existing stands, and a Disturbance Landscape Model, 

where stands were presumed to regenerate (by either natural or man-made events, see below) 

every 140 years, serai stage conditions were forecast for pine-lichen woodlands over a time 

period of the next 160 years. The process incorporated a GIS query, based on our evaluation of 

maps and ground truthing activities, with the following parameters: leading species of lodgepole 

pine, % composition of leading species >90%, a site index (at age 50) <14.5 and an aspect 

between 45 and 315 degrees. The GIS query then used one of two assumptions on lichen 

succession to forecast future lichen conditions.

In the SLM model, an assumption was made that as the stands age, the forest overstorey 

characteristics and lichen habitat ultimately change to a feather moss serai stage, as described by 

Coxson et al. (1999) for woodlands of the Germansen-Omineca region, and as described by 

Carroll & Bliss (1982), Maikawa & Kershaw (1976), and Payette et al. (2000) in other regions. 

In the DLM approach, we assumed that a natural, i.e., similar to that of a fire-origin stand, 

pattern of succession was reset. The disturbance interval for the DLM approach was set at 140
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years. This value represents an ecologieal time frame representative of fire-retum intervals for 

interior boreal forests in BC (DeLong 1998), and provides for the maximum development of 

terrestrial lichen mats (Stevenson 1991). A similar time scale is also suitable as the target 

rotation length for logging within these dry pine sites (British Columbia Ministry of Forests 

2000).

To organize the analysis output, most sites were categorized by the age class distribution 

utilized by the BC Ministry of Forests (Anonymous 1986). The one exception was age class 

eight, which was broken into two classes to allow for a secondary classification by succession 

phase as reported by Coxson et al. (1999) for the Omineca Region of BC. The lower portion of 

age class eight (8-) incorporates all sites between 141 years and 155 years. Age class 8+ 

incorporates all sites between 156 years and 250 years. A detailed breakdown of age range and 

succession phase (Coxson et al. 1999) for each age class category is identified in Table 3.4.

To model the SLM approach, sites were aged in 10-year increments. The area in each 

age class/succession phase was tallied. For the DLM approach, aging in 10-year increments was 

also conducted; however, a set of sites totalling an area of approximately 340-ha per decade was 

chosen as the area to be reset to year 0 after disturbance. This area was determined for the study 

area by dividing the total area of pine-lichen woodlands identified with our GIS query by the 

disturbance return interval of 140 years and then summing the value per decade. Preference for 

the selection of polygons to be disturbed was given to the oldest sites. Where there were >340- 

ha in the oldest age class, polygons were selected on a random basis.
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Table 3.4. Definition of age ranges and succession phase for each age class.

BC Ministry of 
Forests Age Class

Age Range 
(years)

Succession Phase

1 1 - 2 0 Polytrichum

2 21-40 Cladonia

3 41-60 Cladonia

4 61-80 Cladonia

5 80-100 Cladina/Stereocaulon

6 101 -120 Cladina/Stereocaulon

7 121 - 141 Cladina/Stereocaulon

8- 141 -155 Cladina/Stereocaulon

8+ 156-250 Feather Moss

9 251+ Feather Moss
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RESULTS

Ground Truthing for Site Productivity Values

The query procedure run on the forest cover attribute information had an accuracy rate of 

68 %. Of the 76 plots established in the field, 52 were correctly classified by the GIS query. 

Table 3.5 presents a summary of the classification results for both woodland class and plot type.

Sites assessed all had flat to gently rolling terrain. All but one had a dominant cover of 

lodgepole pine. The ages (after fire origin) of the stands sampled were variable, with the 

youngest stand being 42 years in age and the oldest 359 years in age.

The aspect of all but 2 lichen plots fell between 45 and 315 degrees, and both of these 

had a slope < 10%. The average slope of lichen plots was 3.6±Q.6%. They all had coarse 

textured soils dominated by sand. The coarse fi-agment content was variable. Seven plots had 

pure sands for mineral soil with no coarse fragments. When coarse fragments were present, 

however, the average content was 56.2±3.6%. Average coarse fragment content of all lichen 

plots combined was 52.3±4.0%.

The average slope of all moss plots was 6.2±1.08%. The soil texture of these plots was 

more variable than in the lichen plots. A range from silt-clay-loam to sand occurred. The coarse 

fragment content of all moss plots averaged of 40.3±4.77%.

The mean values for the forest structure variables assessed are summarised by plot in 

Table 3.6. Site index values derived from the GIS map-based query were significantly different 

(T(57)=2.69, P=0.0092) for moss and lichen plots. The upper confidence limit for site index 

was 14.49 (a = 0.05), calculated from the digital attribute information for the lichen plots. Site 

index values for moss and lichen plots from field data were also significantly different
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Table 3.5. Summary of the number of correctly classified plots for “woodland class” and “plot 

type”.

Lichen Woodland Class/ 
Plot Type

Total Number of Plots Correctly Classified Plots 
Using GIS Query

0 22 13

1 6 5

2 5 4

Total “moss plots” 33 22

3 17 12

4 26 18

Total “lichen plots” 43 30

Total plots 76 52



Table 3.6 Summary of forest structure variables.
50

Variable Average (x ±1 SD)

Lichen Plots (n=43) Moss Plots (n=33)

Site Index' 13.8±0.3 15.4±0.5
Site Index^ 1I.8±0.4 13.6±0.7

Total Basal Area^ (m^) 24.4±1.0 33.4±1.6

Tree Height^ (m) 16.2±0.5 18.8±0.9

% Composition of Pine in Stand^ 96.6±1.1 87.4±3.4
1 Measurements derived from BCGS map base using GIS query.
2 Measurements based on field plot ground truthing.
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(T(54)=2.16, P<0.035). A site index upper confidence limit of 12.66 (a = 0.05) was calculated 

from the field data for the lichen plots. On average, site index values determined from the field 

data were lower than the values identified in the forest attribute information. This trend was 

most notable with the lichen plots, which showed a significant difference (T(77)=3.76, 

P=0.0003). The trend was also evident with moss plots, although, it was not significant.

The structure of the forest overstorey also differed between lichen and moss plots.

Lichen plots had a significantly lower total basal area (T(53)=4.88, P<0.0001), shorter trees 

(T(50)=2.43, P=0.019) and a higher percent composition of lodgepole pine (based on basal area) 

(T(39)=2.57, P-0.014) (Table 3.6). The percent composition of the leading species is used as a 

threshold value in the GIS query. Evaluating the field data, the lichen plots had a lower 

confidence limit (a = 0.05) of the percent composition of the leading species (pine) equal to 

94.3%.

GIS Map Query and Landscape Simulation

The digital query of forest cover maps identified a total of 4728-ha of pine-lichen 

woodlands from a possible 122,884-ha of terrestrial area amounting to <4% of the land base.

The existing age class distribution of pine-lichen woodlands in this area is heavily skewed 

towards age class 6 (Figure 3.2). The results of the SLM strategy (Figures 3.3, 3.4 and 3.5) 

showed that the amount of available lichen woodland suitable for foraging would decline from 

3972 ha at year 0, to 156 ha by year 90. One hundred and fifty-six hectares are equivalent to 

3.3% of the total area under pine-lichen woodlands.

Applying the DLM approach, the same decline of area in the Cladina/ Stereocaulon 

phase (age classes 5 - 8 ) was seen up to year 90, as noted in the SLM scenario. Rather than a



Figure 3.2. Area by age class and lichen succession phase for
the Kwanika Creek portion of the study area:
Current Situation -Year 0

4300 

3BOO 

3000 

3  300

"0 3000 
(U

C  BOO

mo
300

0 ___
A g e  C l a s s  ( s e e  l e g e n d  b e l o w )

_J W a t e r  F e a t u r e s

L rh en  Sucœ ssion 
Age C i s s  Phase A œ a (ha)

1
2
3
4
5
6 
7 
8-  

8+ 
9

P o ly tr ic h u m  

- C la d o n ia

C la d in a /
S te r e o c a u lo n

Moss Woodland

5

0

0
60

122

976

2415
394

190
571

0

10km

ermansen Lk



Figure 3.3. Area by age class and lichen succession phase for
the Kwanika Creek portion of the study area:
Static Landscape Model - Year 60
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Figure 3.4. Area by age class and lichen succession phase for
the Kwanika Creek portion of the study area :
Static Landscape Model - Year 90
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Figure 3.5. Area by age class and lichen succession phase for
the Kwanika Creek portion of the study area:
Static Landscape Model - Year 140
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decline after 90 years, however, an increase to steady-state levels occurs. At year 140, there was 

1800 ha in the Cladina/Stereocaulon phase, equivalent to 38% of the total area under pine- 

liehen woodlands (Figures 3.6, 3.7 and 3.8).

DISCUSSION

The age class distribution of pine lichen woodlands in the Omineca region of north-central 

British Columbia was heavily skewed towards older age classes. Applying successional trends 

documented across northern Canada (Coxson and Marsh 2001, Carroll & Bliss 1982, Maikawa 

& Kershaw 1976, Payette et al. 2000), the lichen cover in these forests will soon be replaced by 

moss mats. Thus, future lichen availability may soon be a constraint on caribou populations that 

require terrestrial lichens as a forage source (Johnson et al. 2000). For example, the static 

landscape model suggests that in 60 years, many of the present-day pine-lichen woodlands will 

have converted, or be in the process of converting into a feather moss phase of succession. 

Unresolved is the question of whether these same serai sequences, observed in fire-origin stands, 

will happen in harvest-origin stands.

Several issues arise from our utilization of a GlS-based query on forest inventory 

information to predict future caribou habitat availability. Although this approach identifies 

stands with a high likelihood of containing terrestrial lichen mats (> 68% accuracy rate), errors 

in the assignment of polygon attributes must be considered carefully.

Among these errors, based on our observations of stand characteristics, is the assessment 

of the polygon size and uniformity in the map database. Where areas were incorrectly classed as 

pine-lichen woodlands, they often still had patches of lichen available for foraging. Commonly,



Figure 3.6. Area by age class and lichen succession phase for
the Kwanika Creek portion of the study area:
Disturbance Landscape Model - Year 60
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Figure 3.7. Area by age class and lichen succession phase for
the Kwanika Creek portion of the study area:
Disturbance Landscape Model - Year 90

2BC0

3000

200

nJ 2000

BOO

300

A g e  C l a s s  ( s e e  l e g e n d  b e l o w )

W a t e r  F e a t u r e s

L rh en  S u c œ ssh n
A ge C ibss Phase A œ a Jia)

1
2
3
4
5

8+
9

P o ly tr ic h u m

C lad o n ia

C la d in a /
S te r e o c a u lo n

Moss Woodland

5

1130
687

693
761

0

0

0

156
1301

0

10km

sen  Lk

LA
00



Figure 3.8. Area by age class and lichen succession phase for
the Kwanika Creek portion of the study area:
Disturbance Landscape Model - Year 140
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polygons that showed this discrepancy were found within the SBS biogeoclimatic zone. We 

found in some instances that adjacent plots (within 100-m of each other) within a single polygon 

in the SBS expressed different conditions (moss dominance versus lichen dominance), thus 

attesting to the variability within these types. Though the data was not coded to tally for 

variation at the polygon level (only at the plot level), it was estimated that 15 to 20% of errors in 

identifying stand attributes could be accounted for by considering this variation. Despite this fact 

that some areas may not be considered large homogenous pine lichen-woodlands, they do 

contain a component of lichen range which is suitable for use as early winter caribou habitat.

The other significant factor contributing to errors in identifying stand attributes in map 

calls was the large range of ages in the stands sampled. Coxson and Marsh (2001) reported that 

succession to a feather moss climax exists in the Omineca. In the Ominicetla Creek area, nine 

plots were located in stands >200 years old. Of these, 4 were classified as lichen sites, but 5 

were not. Of the 5, at least 3 were considered to be late succession pine-lichen types. The error 

associated with incorrect classification due to succession could account for a further 10 to 15% 

of the incorrect calls made by this study. Considering >25% of the error calls can be accounted 

for through variation of lichen development, both spatially and temporally, with more reliable 

inventory information, the accuracy of this classification system could be improved to > 75%.

In general, terrestrial lichen sites in western Canada are associated with a pine overstorey 

and xeric, nutrient poor growing conditions (Johnson 1981, Rowe 1984, Stevenson 1991). Our 

stand characterization variables (basal area, tree height, site index, and tree species composition) 

support these trends.

In the biogeoclimatic zones assessed under this study lodgepole pine leading stands are
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associated with the driest and most nutrient poor site series, or plant associations (DeLong et al. 

1993). It was for this reason we used lodgepole pine as a predictive factor for identifying lichen 

sites. In the GIS query, we applied a threshold of 90% composition of lodgepole pine, however, 

upon evaluating field data, a more accurate threshold would have been 94%.

Unfortunately, the quality of the digital forest inventory attribute information is not to the 

same level of aecuraey as the field information. In the digital files, values for the speeies 

eomposition are rounded to the nearest ten percent. Thus, sites with 94% for example, are 

presented as 90% . Though more accurate thresholds have been defined by our data, the quality 

of the current digital attribute information does not permit further refining of our GIS query.

This variation between the field information and digital attribute data provides a further souree 

of error when assessing the overall aeeuraey of our GIS query.

Understanding the spatial and temporal relationships between forest attributes and the 

presenee of terrestrial liehens allows managers an avenue to forecast what the eonditions of 

terrestrial lichen sites may be under different treatment regimes. A simple time-step model ean 

then be used to express these trends without the use of complex algorithms. This information is 

vital in determining land use strategies that foeus on maintaining low elevation winter forage 

opportunities for northern caribou.

The limited availability of management tools that are speeifie to northern earibou and 

forestry issues has been a major obstaele in the development of sueeessful integrated resouree 

management plans for these resources. Site level tools available eonsist of liehen abundance 

identification schemes such as the Lanee and Eastland (1999, 2000) liehen assessment proeedure 

and lichen presence predietion tools such as developed byBrown et al. (2000). Landscape level
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tools consist of GIS applications such as the query developed under this project. The application 

of models that incorporate GIS queries closes the gap between site and landscape level tools by 

providing a means to evaluate the cumulative effects of site level actions over a large area.

Within the Omineca region specifically, our findings raise concerns about the future 

availability of pine-lichen woodland serai stages that will support terrestrial lichens, and by 

extension caribou habitat. This future shortfall of caribou habitat will be particularly severe in 

the next 30 to 60 years. Large scale fires of the late 1800's, combined with fire suppression 

practices of the last several decades, have dramatically reduced the availability on the landscape 

of younger serai stages that can provide future caribou habitat. Recent policy decisions to place 

high-quality caribou habitat in protected areas will not resolve this dilemma, in absence of the 

réintroduction of landscape level disturbance events. Even with immediate réintroduction of fire 

(or comparable logging practices) as a landscape disturbance event, our findings indicate that a 

severe shortfall of caribou habitat will persist for several decades.

Unresolved at the present time is whether or not stands initiated through forest 

harvesting will follow a serai sequence similar to that found in fire-origin stands. A growing 

body of evidence points to different ecological processes in harvest plots compared to fire-origin 

stands (Nguyen-Xuan et al. 2000, Webb 1998). Nonetheless, current landscape management will 

dictate that forestry practices be used as much as possible to promote the regeneration of lichen- 

dominated communities upon which caribou depend (DeLong 1998, Harris 1996). The 

increasing accessibility of GIS to foresters and biologists provides a mechanism to simplify the 

expression of spatial relationships between these two resources, thus, providing a tool to 

integrate the management of them at the landscape scale.
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CHAPTER 4 - A RETROSPECTIVE STUDY OF TERRESTRIAL LICHEN 

DEVELOPMENT IN HARVESTED STANDS LOCATED IN THE OMINECA REGION 
OF NORTH-CENTRAL BRITISH COLUMBIA* 

SUMMARY
The availability of terrestrial lichen mats in pine woodlands of north-central British 

Columbia has historically required fire as an agent of stand development to initiate lichen 

growth. In face of recent timber harvesting pressures, this has led to concerns about the future 

availability of terrestrial lichen mats that provide important forage for northern caribou 

populations. We assessed post-harvest development of terrestrial lichen mats in pine-lichen 

woodlands of the Omineca region, examining three age classes and two soil classes in the Pine- 

Feathermoss-C/Wma plant association (03 site series) of the SBS mkl biogeoclimatic zone. On 

sites where soils were well drained and the mineral component comprised predominantly sand, 

the mean cover of Cladina spp. was greater than 40% 20 years after harvesting. On pine-lichen 

sites where mineral soils contained additional silt and/or clay components, the mean cover of 

terrestrial lichen mats after the same time period was only 14%. In both cases, lichen cover was 

slow to reestablish, with mean cover values remaining below 15% in the first decade after 

harvesting. On sites with well-drained soils, however, the redevelopment of lichen mats did not 

appear to be affected by post-harvest stand regeneration. Conversely, our findings suggest that 

the redevelopment of terrestrial lichen mats may be delayed or diminished in pine stands where 

mineral soils contain greater amounts of silt and/or clay and where stand regeneration does not 

include fire as a disturbance agent.

* Chapter has been submitted for publication with the following authorship: R. Sulyma and D.S. Coxson.
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INTRODUCTION

Wildfires are a critical component of disturbance regimes associated with the 

development of terrestrial lichens in pine-lichen woodlands of western Canada (Klein 1982). 

They reset site characteristics, creating conditions suitable for initiating succession processes, 

and ensure the perpetuation of terrestrial lichens during later stages of stand development.

Where the frequency of stand initiating fires is reduced, the subsequent development of late- 

seral closed canopy conditions can trigger the replacement of terrestrial lichen mats by feather 

moss mats (Carroll & Bliss 1982, Maikawa and Kershaw 1976, Payette et al. 2000), reducing 

habitat values for caribou populations that rely on terrestrial lichen mats. Johnson et al. (2000) 

identified lichens commonly consumed by caribou in the Omineca region of north central BC as 

Cladina spp, Cladonia spp. and Stereocaulon spp. Based on species presence in the young 

stands that we assessed, the species tallied in our reindeer lichen functional group consisted of 

Cladina mitis (Sandst.) Hustich, C. rangiferina (L.) Nyl., Cladonia uncialis (L.) Wigg., C. 

ecmocyna height., and Stereocaulon spp.

Ecological processes that govern the regeneration of pine-lichen woodlands after 

harvesting may differ in several ways from those initiated by wildfire. The abundance of forbs 

and shrubs may increase more rapidly in post-harvest sites than in fire-origin stands. Forest 

harvesting and associated silviculture treatments have traditionally been considered detrimental 

to terrestrial lichens, due to overexposure, fragmentation and burial of existing lichen mats 

(Kranrod 1996, Harris 1996). Finally, lichen communities that have developed under a closed 

canopy may not be able to withstand abrupt changes in insolation exposure that accompany loss 

of the canopy overstorey at time of harvest.
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These limitations have led forest managers to consider ways in which silvicultural and 

harvesting practices can emulate ecological processes in fire-origin stands. If management 

regimes can be developed to recognize these factors, detrimental impacts upon terrestrial lichen 

mats may be reduced. Current forestry trials, for instance, in the Itcha-Ilgatchuz region of central 

British Columbia, are assessing the impacts of alternative silviculture systems on the retention of 

terrestrial lichens (Anonymous 1996, Miège et al. 2001a).

The extent, or duration, of changes in lichen successional trajectories after forest 

harvesting is additionally dependant on regional climate and other environmental factors 

(Brulisauer et al. 1996, Lesica et al. 1991). Regional variation in the climate has been proposed 

as one of the primary factors influencing the development of lichen communities (Johnson 1981, 

Momeau & Payette 1988). Microsite variations also play an integral role in the distribution of 

lichens. The environmental requirements of terrestrial lichens are similar to those of many of 

the species of feather moss with which they compete. In the absence of competition, reindeer 

lichens may do well under late-seral canopy conditions. However, because they are poor 

competitors, they may be limited to microsites that have more severe growing conditions.

This study reports our assessment of the rate and extent of the recovery of reindeer 

lichens in the first 30 years after harvest in pine-lichen woodlands of the Omineca region in BC. 

This information is an important component in developing resource management strategies for 

forestry activities in caribou winter ranges and will assist in developing strategies for an adaptive 

management trial focussing harvesting of pine-lichen woodlands in the Omineca.
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MATERIALS AND METHODS 

Study Area

The areas assessed under this study are located approximately 50 km west of the town of 

Mackenzie in the Mackenzie Forest District (Figure 4.1) and are located between 123 °00' to 

125° 30' longitude and 55°00' to 55°35' latitude. The plots fall within the Phillips, Tudyah and 

Manson operating areas of Slocan Forest Products. Plot locations were selected from cutblocks 

that contained the 03 site series of the Mossvale moist, cool subzone (mkl) of the Sub-Boreal 

Spruce (SBS) biogeoclimatic zone.

The SBS is “characterised by seasonal extremes of temperature; with cold snowy 

winters; relatively warm, moist, and short summers; and moderate annual precipitation” 

(Meidinger & Pojar 1991). The primary difference between boreal and sub-boreal 

biogeoclimatic zones is that the climate is slightly moderated in the sub-boreal zone.

The area of interest falls within Natural Disturbance Type 3 as classified in the Forest 

Practices Code of BC, Biodiversity Guidebook (British Columbia Ministry of Forests 1995). A 

mosaic of even-aged stands of different ages characterizes this disturbance type. The most 

common form of natural disturbance is wildfire, with a mean event interval of 125 years. 

Wildfires in this disturbance type can vary in size from a few to several thousand hectares, 

leaving an intricate patchwork of different age classes across the landscape.

The field sites assessed had flat to rolling terrain and moderately coarse to coarse 

textured soils. The coarse fragment content of the soils varied between 0 and 70% and was 

dominated by gravel-sized material. The aspect of all of the sites was either southerly or flat.
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Figure 4.1. Location of the “retrospective project” study area within the Omineca region of north-central British Columbia
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All sites were harvested within the past 30 years and had a dominant tree cover of lodgepole 

pine {Pirns Conforta Dougl. ex Loud.). Other tree species present in minor amounts were white 

spruce (Picea glauca (Moench) Voss), black spruce (P. mariana (P. Mill.) B.S.P.), sub-alpine fir 

{Abies lasiocarpa (Hook.) Nutt.) and trembling aspen {Populus tremuloides Michx.). In the 

SBS, lodgepole pine is recognised as a serai species; it is however, common as a leading species 

in mature forests in the drier portions of the zone (Meidinger & Pojar, 1991).

Methods

A GIS layer was prepared using forest cover information for the southern third of the 

Mackenzie Forest District (BC Ministry of Forests 1994). A query was applied to these data to 

identify cutblocks with lodgepole pine as the leading tree species in the inventory label. The 

blocks from the query were categorised by site index. Those with a site index value (SI50) below 

14.5 were considered likely candidates for containing features representative of pine lichen 

woodlands, and that would also be within the 03 site series of the SBS mkl. The level of 

certainty associated with this query was low and a field reconnaissance was required to confirm 

the classification.

A walk-through assessment was conducted for the cutblocks identified by the query, 

regardless of site index. Observations of the soil conditions, vegetation community and tree 

species composition were used to determine the ecological association of polygons within the 

cutblocks. For those polygons that appeared to have the characteristics of the 03 site series of 

the SBS mkl, a plot was established in a representative location. Sample data were collected on 

stand characteristics, vegetation ground cover, soil texture, and ecological association.

The reconnaissance phase resulted in the identification of 40 cutblocks that contained
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polygons with the required ecological criteria. The ages of these varied from 2 to 30 years. An 

assessment of the recormaissance information revealed thresholds for three age-classes (0-5 

years, 6-12 years, and 13-30 years). Based on hand texturing (DeLong et al. 1993), polygons 

were stratified into two groups, those with pure sand or loamy sand and all others. A 3x2 

sampling matrix was developed separating the polygons based on age and soil class. In each 

grouping within the matrix, a minimum of three plots were randomly selected within which 

detailed measures were conducted.

At each of the selected polygons, assessments were conducted using a modified 

Daubenmire quadrat-transect methodology (Daubenmire 1959, Habitat Monitoring Committee 

1996). A 100-m long transect was established through the polygon. Assessments of species 

composition and the percent cover of ground vegetation were made using ten randomly selected 

0.5 m  ̂quadrats. At each site, a soil pit with approximate dimensions of 10 x 10 x 20 cm, was 

dug within a randomly selected quadrat location. Five 3.99-m fixed-radius sub-plots were 

established at 20-m intervals along the transect. At each sub-plot, all tree stems were tallied by 

speeies and diameter elass. The two largest diameter trees were measured to assess site index 

(Anonymous, 1995b). The age and height of the first 10 trees loeated in a eounter cloekwise 

direction from a line due north of the sub-plot centre were also recorded.

Analysis

A total of 20 sites were intensively sampled for this project. A two digit “Plot Code” 

was created to separate the sites into six categories. The first digit was assigned to separate the 

types by age class (coded as a 1,2 or 3) and the seeond digit of the eode was used to separate the 

sites by soil texture. Sites were coded with a 0 if they eontained pure sand or loamy sand
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(referred to as sand soils) and a 1 if the soils were classed as having a slightly finer texture 

(referred to as sandy-loam soils). Analysis utilized ANOVA to support the significance of 

relationships between variables in the Plot Code groupings. Values presented within this 

chapter are means plus or minus one standard error (x ± 1 SE).

RESULTS

A number of trends were exhibited by the various species and reindeer lichen group 

assessed in this study. One of the more notable trends was with the development of the 

dominant ground-cover reindeer lichens. With the exception of Cladonia ecmocyna height, 

which did not follow any consistent trend for the age and soil texture variables assessed, a 

common trend was seen with all of the other reindeer lichens, where cover decreased over the 

first 12 years of stand development after harvest. After 12 to 30 years of stand development, 

reindeer lichen abundance on sites with sand soils (Plot Code 30 sites) recovered to a point 

where cover values were significantly higher than all other Plot Code groups (F(5,14)=12.9, 

P<0.001) (Figure 4.2).

A similar trend was seen between early post-harvest comparisons on sites with finer soil 

texture classes (Plot Code 11,21 and 31 sites). However, unlike sites with predominantly sandy 

soils, lichen recovery in the older-age classes in sites with small amounts of clay and/or silt 

showed little appreciable further development over younger stands. Changes in abundance of 

Cladonia deformis (L.) Hoffm. and C. sulphurina (Michx.) Fr. were similar to those seen for 

other reindeer lichens (Table 4.1 and Figure 4.3), although, the abundance of these two species 

did not appear to be restricted by soil texture. C. deformis (L.) Hoffm. had a significantly higher
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Figure 4.2. Percent cover of the reindeer lichen functional groups in post-harvest pine-lichen
woodlands of the Omineca region of north-central BC, grouped by soil texture class and 
age class. The 75* quartile, median, and 25* quartile are shown respectively in each 
whisker box plot, with the upper and lower lines indicating data that are beyond the 
range of the quartiles but not considered outliers.
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Figure 4.3. Percent cover of Cladonia deformis (L.) Hoffm. (cross hatched) and C. sulphurina 
(Michx.) Fr. (no hatching) in post-harvest pine-lichen woodlands of the Omineca region 
of north-central BC, grouped by soil texture class and age class. The 75“’ quartile, 
median, and 25^ quartile are shown respectively in each whisker box plot, with the upper 
and lower lines indicating data that are beyond the range of the quartiles but not 
considered outliers.
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Table 4.1. Percent cover (x ± 1 SE) of primary lichen and forb species in post-harvest pine-

lichen woodland sites in the Omineca Region of north-central British Columbia. Sample 
size (n) for all plot codes groups is 3 except plot code 20 and 31 (n=4).

Species/ 
Functional Group

Plot Code 
(n)

Mean Percent 
Cover (%)

Standard Error 
(%)

Minimum 
Value (%)

Maximum 
Value (%)

Reindeer Lichen lO P ) 14.6 5.8 4.2 24.1
11(3) 8.9 2.3 6.2 13.4
20 (4) 11.1 2.2 4.8 14.4
21 (3 ) 6.8 5.0 0.8 16.7
30 (3 ) 44.3 3.3 37.7 48.6

......3L(4j...... 13.9 3.3 8.9 23.5
Cladina mitis (Sandst.) Hustich 10 7.4 3.4 2.1 13.6

11 5.4 1.5 3.7 8.5
20 6.0 1.1 2.9 8.1
21 2.7 1.8 0.4 6.2
30 26.3 5.5 15.7 33.9
31 8.5 1.5 6.6 12.8

Cladina rangiferina (L.) Nyl. 10 3.3 1.2 1.1 4.9
11 1.8 0.5 1.2 2.8
20 3.0 1.4 0.6 6.7
21 1.2 0.9 0.1 3.1
30 10.7 3.9 4.7 17.9
31 2.5 0.8 1.0 4.8

Cladonia uncialis (L.) Wigg. 10 1.0 0.5 0.1 1.6
11 0.7 0.3 0.1 1.1
20 0.8 0.4 0.1 1.9
21 2.3 2.0 0.0 6.3
30 2.7 0.4 2.0 3.4
31 0.9 0.6 0.2 2.6

Cladonia deformis (1.) Hoffin. 10 0.1 0.1 0.1 0.2
11 0.0 0.0 0.0 0.1
20 0.1 0.0 0.0 0.2
21 0.0 0.0 0.0 0.0
30 0.9 0.2 0.6 1.3
31 1.2 0.1 0.9 1.4

Cladonia sulphurina (Michx.) Fr. 10 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.1
20 0.0 0.0 0.0 0.1
21 0.0 0.0 0.0 0.0
30 0.4 0.1 0.2 0.6
31 0.2 0.2 0.0 0.8

Vaccinium caespitosum Michx. 10 2.5 1.3 0.0 4.2
11 2.3 1.0 0.6 4.2
20 4.9 3.7 0.3 15.9
21 1.1 1.0 0.1 3.2
30 8.6 4.4 1.2 16.4
31 0.8 0.6 0.0 2.5

Arctostaphylos 10 0.0 0.0 0.0 0.0
uva-ursi (L.) Spreng 11 0.2 0.2 0.0 0.5

20 2.3 2.0 0.0 8.3
21 0.1 0.1 0.0 0.4
30 2.8 0.9 1.0 4.0
31 0.3 0.3 0.0 1.0

Comus canadensis L. 10 1.0 0.5 0.2 2.0
11 6.5 2.7 2.0 11.2
20 0.6 0.4 0.0 1.7
21 1.6 0.9 0.1 3.3
30 0.9 0.8 0.0 2.6
31 2.1 0.4 0.9 2.8
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cover on age elass 3 sites, eompared to younger ones (F(5,14)=32.97, P<0.001).

Two trends were indicated by presence (and abundance) of low shrubs and forbs. 

Vaccinium caespitosum Michx. and Arctostaphylos uva-ursi (L.) Spreng had a low percent cover 

for the first five years of stand development. In stands that were at least six years old and had 

pure sand soils (Plot Code 20 and 30 sites), both of these shrubs increased slightly in abundance 

(Table 4.1). In contrast, Cornus canadensis L. was more common on sites that had finer 

textured soils. The abundance of C. canadensis L. on Plot Code 10 sites was significantly 

greater than the other age and soil classes (F(5,14)=3.71, P=0.024) (Table 4.1). It is evident that 

as sites aged beyond six years, the presence of C. canadensis L. declined to a relatively stable 

level. It did not show signs of rebounding to higher levels during the time frame of the 

chronosequence assessed by this study.

The slight variations in soil texture did not appear to impact the development of 

regenerating trees. Comparison of plots within the same age class did not reveal significant 

differences in density, height, and age. Along the age class gradient, however, height and 

average age of the trees fit the expected trend of increasing values over time. There was no 

apparent ehange in the density of trees over the age class gradient assessed (Table 4.2). A tally 

of total stems by diameter class for each age class is presented in Table 4.3.

The assessment of various site factors such as the percent cover of exposed rock and soil, 

or the cover of coarse woody debris did not reveal any significant trends. The presence of 

surface organic litter, however, did change significantly through the different age classes 

(F(2,17)= 16.24, P<0.001). Accumulations were greater in age class 1 sites as compared to the 

other two age classes. Average percent cover values by age class were 54.6+6.3%, 15.5±2.8%,



Table 4.2. Tree characteristics for post-harvest pine-lichen woodlands in the Omineca Region of north-central BC. All values are 
expressed as x ± 1 SE.

Plot Code n Average Number 
of Years From 

Disturbance Date

Average Tree 
Age (yrs)

Average Tree 
Height (cm)

Growth Intercept 
SI50

Stand Density 
(Stems/ha)

10 3 3.3 ±0.3 3.9 ± 1.3 37.6 ± 13.4 — 4987± 1575

11 3 4.7± 0.3 3.9 ±0.3 60.0 ± 6.7 — 4053 ± 376

20 4 11.0 ±0.4 6.5 ± 0.5 137.0 ± 19.5 23.1 ±0.8 10580 ±2402

21 3 10.7±0.7 5.3 ± 1.0 129.2 ±36.2 22.9 ±3.6 7373 ± 338

30 3 18.3 ±3.5 12.0 ±0.5 250.5 ± 24.2 20.2 ± 0.6 9627 ±3038

31 4 16.0 ± 1.8 10.1 ± 1.5 315.6 ±60.1 23.7 ±0.5 4250 ± 507

V i



Plot Code n
Diameter Class

< 1.3 m tall 0 cm - 5 cm 5.1 cm - 10 cm > 10 cm Total Stems

10 3 4507±1133 4806480 0 0 498761575

11 3 39736416 80640 0 0 40536376

20 4 53106783 527061722 0 0 1058062402

21 3 52006991 217361257 0 0 73736338

30 3 281361462 669361707 1206120 0 962763038

31 4 11306149 28906480 2106151 20620 42506507

CT\
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and 26.8+5.3% for age class 1, 2 and 3 sites respectively.

A significant relationship (F(2,17)=18.40, P<0.001) was found between site 

characterization variables (average tree height and age, and soil texture) and the cover of 

reindeer lichen. The relationship is expressed in Equation 1 (r^=0.775). This relationship is 

only for sites within the SBS mkl 03 that have a dominant cover of lodgepole pine.

Equation 1.

Cover of
Reindeer = - 4.95 - 0.012 Av Tree Ht + 6.39 Av Tree Age - 3.07 Soil Texture^
Lichens

DISCUSSION

The development of terrestrial lichen mats after forest harvesting in the Omineca region 

was surprisingly rapid on sites with well drained sandy soils. Over a period of 17 years after 

harvest, or the three age classes assessed under this study, a clear trend of inereasing lichen 

cover was evident, with lichen cover recovering to levels normally associated with 70 to 100- 

year-old fire-origin stands (Coxson et al. 1999). This rapid recovery is speculated to be the 

result of creating favourable conditions for lichens by removing the mature forest overstorey, 

while providing abundant lichen fragments for site recolonization.

During harvesting, mechanical disturbance reduces the cover of most understorey

'Soil texture is based on an ordinal coding of soil texture classes as identified in DeLong et al. (1993) with 
1 representing fine textures soils and 5 representing coarse textured soils.
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vegetation, resulting in patches of exposed mineral soil and organic debris accumulations. A 

further reduction in vegetative cover occurs with high levels of insolation exposure. For 

example, cover values of Cornus canadensis L. in Plot Code 11 sites indicated that it was a 

dominant plant in the understorey of the mature stands prior to the removal of the overstorey. 

However, cover was significantly reduced in the older post-harvest age classes. Two other 

species that showed signs of physical damage from overexposure were Cladonia ecmocyna 

Leight. and Pleurozium schreberi (Brid.) Mitt. Declines in vegetative cover of forest floor 

shrubs and forbs were largely confined to the first five-years after harvesting.

Disturbance regimes ereated by forest harvesting may favour the establishment of lichens 

that propagate via fragmentation rather than spore dispersal. Cladina mitis (Sandst.) Hustich 

was the most prevalent terrestrial lichen to take advantage of the newly created microsites. In 

young stands, thallus fragments were often scattered across the unit. The dispersal of these 

fragments was a function of mechanical crushing during harvesting, with subsequent spread 

facilitated by both mechanical means and wind (Webb 1998). As stands age, young trees start to 

provide some shade and reduce the severity of drying events, yet, they do not create an 

environment that is suitable for feather moss to flourish. This allows growth of established 

thallus fragments, particularly in sites where sandy soils limit the establishment of higher plants. 

The development and persistence of lichen mats after harvesting is therefore closely related to 

mineral soil texture. In this study, lichens were prevalent on coarse textured soils that limit 

growth of other vegetation. Where soils were characterised by finer textures, higher plant 

establishment appeared to preclude substantive redevelopment of lichen mats.

Interestingly, direct correlations between soil texture and the structure of higher plant
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communities were not immediately evident in our data set. However, regression analysis 

considering average tree age and height in association with the soil texture code revealed a 

significant relationship with the cover of reindeer lichens on the 03 site series of the SBS m k l. 

The equation suggests that as stands age, reindeer lichen cover increases where the trees are 

shorter and the soils are a coarser texture. This relationship is consistent with the estimation of 

site productivity and the conjecture that lower productivity sites support better lichen 

communities.

The information on tree density did not provide significant insight towards the 

development of lichen communities. High density stands are often considered to be detrimental 

to the success of terrestrial lichens. With the data set assessed, however, no significant 

differences of stand densities were noted between the plot code groupings. In fact, some of the 

most well developed carpets of lichen were associated with individual stands that had high tree 

densities. Where lichens persist in an abundant state they do so because of the extreme sites 

they are on, not because they exclude other species. This ability to function on extreme sites has 

lead to the classification of lichens as being stress tolerators (Grime 1977). Their inability to 

compete with other vegetation, such as feather mosses, is an important factor associated with 

their lack of presence on zonal sites in the SBS.

Site history records indicated that a wide variety of site treatments were used across the 

sampling matrix with little consistency being found in any single age and soil grouping. The 

most notable trend was that many of the age class one sites were harvested using a cut-to-length 

harvesting system, whereas full tree harvesting systems were used on the older sites. Based on 

the field samples alone, no trends of ground surface disturbance were evident, however, the
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different systems could impact terrestrial lichen distribution in two manners. First, forwarding 

systems used in cut-to-length harvesting may not distribute lichen fragments across a unit as 

ground skidding (used in fiill-tree harvesting) does. Cut-to-length systems may also result in a 

higher accumulation of organic litter and debris that is scattered across a setting (Miège et al. 

2001b).

Litter accumulation after harvesting may also degrade lichen sites. When considering the 

removal of organic biomass during a disturbance event, litter accumulation from harvesting 

accounts for one of the greatest differences between wildfires and harvesting systems. On sites 

with coarse textured soils, wildfires create growing conditions that are not suitable for many 

plant species to grow. Forest harvesting does not create equally severe conditions and may 

allow for many species that would normally be eliminated from early serai stages to be present 

sooner in the life history of a stand. The impact of accumulating organic debris is important in 

considering both the short- and long-term effects of lichen development. In the short-term, 

lichen mortality can be caused when communities are covered with organic litter (Webb 1998, 

Miège et al. 2001b). In the long-term, soil nutrient properties at a site may be modified to 

provide a more suitable growing medium for competitor species (Klein 1982).

Summary

Most concerns regarding caribou and forestry interactions involve the possible impacts 

of logging on terrestrial lichen sites (Gumming 1992). In the Omineca, forestry activities do not 

necessarily destroy lichen sites, however, they do set them up for a different pattern of 

community development than sites disturbed by wildfire. Understanding the ecological 

differences of sites that have been harvested is important towards developing strategies for
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managing lichen as a source of forage on caribou winter ranges. This can only be conducted by 

establishing a database containing both pre- and post-barvest measurements related to the 

ecology of these sites. Three key elements that future research projects must address are an 

assessment of lichen response to different levels of overstorey removal, lichen response to 

disturbance to the forest floor, and lichen response to varying levels of organic litter 

accumulations.

The abundance of terrestrial lichens varies as a function of successional stage. Forestry 

activities in the Omineca tend not to concentrate on the best lichen producing sites because these 

are often the poorest for forest production. Sites targeted for harvesting are often characteristic 

of late successional lichen types. The abundance of lichen in these can vary from plentiful to 

very scarce. On sites with plentiful lichen, minimizing the impacts of overexposure from solar 

radiation and disturbance to the forest floor may prove to be an optimal strategy for caribou 

forage management. Conversely, on sites where lichen is scarce, optimizing exposure and 

disturbance may promote the most productive lichen community for the site. Future research 

must address the question of how much exposure to solar radiation is required to have a positive 

response from lichen communities that are in different states of development at the time of 

harvesting. Likewise, information must also he collected regarding the levels and types of 

disturbance to the forest floor that are appropriate for the success of terrestrial lichen 

communities.

The accumulation of organic litter on a site is considered detrimental towards the long­

term success of terrestrial lichen communities. To confirm this speculation, research activities 

must be coordinated to assess the impacts of litter accumulations. Documenting the relationship
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of litter buildup will provide insight into the long-term productivity of sites for terrestrial 

lichens. In addition, an assessment of areas that have undergone prescribed burning (as a means 

of promoting long-term regeneration of lichen) would also provide valuable insight towards 

understanding the ecology of these sites.

Finally, in sites within the Omineca region, greater consideration will have to be placed 

on reintroducing fire as a natural agent associated with stand regeneration, especially in areas 

where present day pine-lichen woodlands occur on finer textured soils. These areas may 

otherwise be lost as future caribou habitat, as vascular plants replace understorey terrestrial 

lichen mats.
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CHAPTER 5 - CONCLUSION

The factors influencing how terrestrial lichen communities develop are not well 

documented. Most previous research has focussed on identifying the temporal changes on sites 

influenced by wildfire (Brulisauer et al. 1996, Carroll & Bliss 1982, Coxson et al. 1999, Johnson 

1981, Maikawa & Kershaw 1976, Momeau & Payette 1988). Generalisations have been made 

regarding the mechanisms resulting in succession. For instance, it has been identified that 

succession is associated with changes in the wetting and drying events that occur at the forest 

floor (Bmlisauer et al. 1996, Lesica et al. 1990), the cause of which has been generalised as an 

effect of crown closure occurring (Carroll & Bliss 1982, Maikawa & Kershaw 1976). This 

concept, however, is too simplified because the reference to crown closure does not provide an 

accurate description of stand architecture, or of the resulting functional attributes that are related 

to the interception of solar radiation. Crown closure is a two-dimensional measurement that does 

not take the depth of the crown into consideration. The distance that incoming radiation must 

pass through vegetation has a strong influence on the potency or harshness of the resulting 

microclimate that is created at the forest floor.

More appropriate measures of stand stmeture involve indirect assessments that consider 

the growth and total size of the trees in relation to their impacts on the microclimate at the forest 

floor. Examples of suitable variables are volume and biomass. Basal area, an area measure of 

the cross section of tree stems on an area of land, also provides for a suitable assessment. In this 

project, I assessed the development of the forest overstorey as it relates to the interception of 

incoming solar radiation and the influence that changes have on the severity of drying events at
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the forest floor. Assessing stand characterisation variables such as tree basal area, tree volume 

and tree biomass, I found that as stands age, sites succeeding to a feather moss phase had larger 

trees that were more eapable of intercepting solar radiation. The influence of larger trees results 

in a moderation of the severity of drying events, thus, allowing feather mosses to become 

established on suitable microsites.

In Chapter 2 of this thesis, I identified that the severity and frequency of the drying 

events appears to be the ultimate limiting factor regarding the succession of lichen sites. This 

premise is based on the reasoning that under the appropriate stand conditions, feather moss will 

occupy the same site that was once occupied by lichen. Thus, assuming moisture input levels 

(i.e., the severity and frequency of wetting events) remain constant during the life of a stand, if 

they are suitable for feather moss to proliferate in stands greater than 150 years of age, then they 

should also be suitable during any other time in the development of the stand, given that other 

conditions are acceptable.

Developing management strategies to maintain reindeer lichens will involve the 

manipulation of the tree cover to create a microclimate that is not favourable for bryophytes and 

vascular plants. The natural mechanism that creates the desirable conditions is wildfire. 

However, wildfires do not appear as prevalent on the landscape as they once were. This means 

resource managers must determine methods to create the desired conditions via mechanical 

means. From a forestry perspective, technology is available to support the manipulation of the 

forest overstorey to create the desired microclimate conditions with little difficulty in the 

management of stands. Uncertainties at the forest floor considering damage to potential lichen 

communities and organic mats, however, raise concerns associated with the impacts of
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treatments.

One of the assessments in Chapter 2 looked at the accumulations of organic biomass and 

the potential influence on the composition of species in the forest floor plant community. I 

found a trend consistent with Steijlen et al. (1994) that microsites supporting moss communities 

had a greater accumulation of organic biomass than adjacent lichen-dominated microsites. An 

intact organic mat moderates the drying that occurs from the surface mineral soil, thus, lessening 

the impact of severe drying events. The moderation of the drying events permits feather moss to 

establish on a site. Once established, there is an accelerated level of organic matter 

accumulation. This creates a positive feedback response which further supports the growth of 

feather moss. It is expected that increased litter inputs, whether from overstorey leaf litterfall or 

feather moss accumulation, will alter the forest floor surface environment.

The response of lichen communities to mechanical disturbance regimes is poorly 

understood. The development of the lichen communities on sites that have been harvested 

appears very different from ones that have undergone wildfires. On lichen sites that are logged, 

the lichen communities present in 20-year-old re-establishing stands are similar in species 

composition and structure to the communities that are found in 100-year-old stands that develop 

after wildfires. The long-term implications of this temporal shift in vegetation community 

structure are unknown. In the short term, however, it is clearly evident that we may be able to 

simultaneously manage for both forestry and caribou and provide mutual benefits for both 

resources.

Succession of pine-lichen sites is a function of the availability of moisture and nutrients 

for bryophytes and vascular plants. As a result, pine-lichen woodlands have distinct
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characteristics that can be used to identity their presenee on the landscape. The expressions of 

these attributes are present as variables in different inventory databases. In Chapter 3, forest 

inventory information was used to key out lichen sites. Specific factors assessed were the 

percent composition and species of the dominant tree cover, site index and aspect. In the 

Omineca region, typical characteristics associated with pine-lichen woodlands were sites that 

have well drained, nutrient poor, coarse textured soils, a south aspect and a forest overstorey 

dominated by lodgepole pine.

Site index was used to differentiate the eeological regimes associated with moisture, 

nutrient and soil textures. If terrestrial-ecosystem, or predictive-ecosystem mapping were 

available, results may be more aecurate than in this study beeause the eeosystem assoeiation 

label within these databases provides a more direct assessment of the eeologieal faetors that are 

assessed. Site index is a surrogate representing the produetivity of the site which indirectly 

expresses the moisture and nutrient regime of a site. It is, however, a variable in the BC forest 

inventory database, thus is available for the entire province. Both terrestrial ecosystem and 

predictive eeosystem mapping are limited in their availability.

Within this thesis, I have begun to address several questions associated with the 

management of terrestrial lichens. I have reeognised stand eharacteristies as factors associated 

with the succession of lichen sites and thus propose the manipulation of them to create desirable 

attributes for maintaining terrestrial liehens. Uncertainties associated with mechanieal 

disturbance to the forest floor, however, confound the outlooks regarding the results of 

treatments on these sites. Ineomplete doeumentation of cut-block history for those units 

assessed in the retrospective study in Chapter 4 further clouds the image of what may or may not
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be acceptable.

The ecological system of pine-lichen woodlands is based on a wildfire natural 

disturbance regime. Whether resource managers have the ability to create the environment that 

results from wildfire via mechanical means has yet to be seen. Indications from the 

retrospective study of this thesis, as well as studies in Alberta and Ontario, are that an alternative 

forest floor plant community dominated the early years of a stand after forest harvesting 

compared to those that were burned. The predominant lichens found in young stands that have 

been mechanically treated were Cladina species. In natural stands of equal age. Polytrichum 

and Cladonia species are more dominant (Coxson et al. 1999). If caribou will forage in stands 

that are 30 to 50 years old, the temporal shift in species presence and distribution may not cause 

problems, rather, the result may be a favourable outcome for managing caribou and forestry 

interactions. Until managers can say with confidence that this is the case, however, strategies 

must be used to keep all options open.
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