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ABSTRACT

Disturbance and stand dynamics were compared for old-growth and partial cut forests 

with and without Inonotus tomentosus (Fr.) Teng caused root disease in wet, cool Sub- 

Boreal Spruce forests near Prince George, British Columbia, Canada. Two methodologies 

(a time since death model and tree ring growth rate criteria) were developed to support 

two studies -  a gap level analysis and a stand level analysis. The objectives of the studies 

were to; 1) Determine the spatial and temporal patterns of small-scale disturbance in old- 

growth and partial cut forests with and without the influence of I. tomentosus-, 2) 

Determine how stand composition and structure differ between I. tomentosus infected and 

non-infected old-growth forests; 3) Determine how I. tomentosus affects stand dynamics 

in partial cut forests and how its effects differ from its effects in old growth forests.

In the gap level analysis, four forest types were sampled in 10 meter fixed radius plots 

(Old-growth with I. tomentosus (GOT) (n=21), and partial cut with I. tomentosus (PCT) 

(n=22), Old-growth without /. tomentosus (OGNT) (n=23) and partial cut without /. 

tomentosus (PCNT) (n=23)). P. glauca x engelmannii mortality was 50% lower in partial 

cut forests than in old-growth forests regardless of infection status. The functional gap 

size caused by a single tree averaged 16.76 m .̂ Summed gap-size measures for all trees 

dying in a decade indicated that between 6.9 and 8.1% of stand area was made available 

to understory trees per decade. Due to high mortality rates and low recruitment rates to 

the canopy for P. glauca x engelmannii, old-growth forests are shifting to a canopy 

dominated by^L lasiocarpa. In the partial cut plots, higher relative P. glauca x 

engelmannii recruitment and lower mortality indicate that P. glauca x engelmannii 

populations may rise relative to present densities.



In old-growth forests, the spatio-temporal patterns of canopy disturbance and 

canopy patch structure were quantified from 0.49ha (n=6) stem-mapped plots using 

Moran’s I and Standard Normal Deviates. Canopy disturbance and canopy composition 

were similar for I. tomentosus infected and uninfected stands at low levels of incidence. 

For stand types pooled, average decadal canopy disturbance ranged from 5.09%-6.0%. 

Gaps size averaged < 7m in diameter and were irregularly distributed across the forests. 

Species patch structure analysis indicated that P. glauca x engelmannii is found in small 

patches which are probably remnants of a once nearly homogenous spruce canopy. These 

results show that small-scale disturbances are important successional mechanisms in old- 

growth Sub-Boreal Spruce forests because of their effects on stand structure and 

dynamics.
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PREFACE

“The outstanding scientific discovery of the twentieth century is not television, or radio, 
but rather the complexity of the land organism. Only those who know the most about it 
can appreciate how little is known about it. The last word in ignorance is the man who 
says of an animal or plant: ‘what good is it?’ If the land mechanism as a whole is good, 
then every part is good, whether we understand it or not. If the biota, in the course of 
æons, has built something we like but do not understand, then who but a fool would 
discard the seemingly useless parts? To keep every cog and wheel is the first precaution 
of intelligent tinkering.” Aldo Leopold, 1966.

The practice of forest management in British Columbia is evolving from 

traditional ideas of sustained yield management to ecosystem management approaches as 

suggested above by Aldo Leopold. With this paradigm shift, strategies are being 

developed to maintain the complexity of the land organism and thus maintain healthy 

ecosystems. It has been proposed that one way of maintaining healthy ecosystems is to 

use harvest patterns that mimic natural disturbance regimes so as to provide for more 

natural levels of stand and landscape level diversity.

Secondary succession in wet sub-boreal, spruce-fir forests in central British 

Columbia is thought to be initiated by catastrophic fire, with return intervals ranging 227- 

6, 250 years. Due to the relative infrequency of fire in this area compared to drier forest 

ecosystems, small-scale disturbance agents that cause mortality of individual or small 

groups of trees can be important processes affecting succession. In areas where small 

disturbances are known to be a predominant successional mechanism, partial cut 

harvesting is used to mimic the natural disturbance regime. However, little is known 

about small-scale disturbance regimes and associated forest dynamics in the sub-boreal, 

forests of western North America. Without precise information on these attributes, we 

may not be able to develop partial cut harvesting protocols that mimic the natural small- 

scale disturbance regime. An important small-scale disturbance agent in wet, sub-boreal.



spruce-fir forests is Inonotus tomentosus (Fr.) Teng. The root disease caused by this 

fungus can spread to adjacent trees and inoculum can remain active in stumps and roots 

for decades. These characteristics may create important differences in disturbance regime 

and stand development compared to other disturbance agents {e.g. bark beetles and 

windthrow). Moreover, L tomentosus caused mortality may be exacerbated by partial cut 

harvesting because inoculum could be transferred more readily from infected stumps to 

new regeneration and residual trees. Given the need for partial cut guidelines in wet, sub- 

boreal forests and the potential interaction of /. tomentosus with partial cutting, there is a 

need to quantify the disturbance regime and subsequent stand dynamics for forests 

infected by /. tomentosus and those uninfected by /. tomentosus.

This thesis addresses three main questions for wet-cool sub-boreal forests located east 

of Prince George, British Columbia:

1. What are the spatial and temporal patterns of small-scale disturbance for old-growth 
and partial cut forests with and without the influence of I. tomentosus!

2. How does stand composition and structure differ between 7. tomentosus infeeted and 
non-infected old-growth forests?

3. How does 7 tomentosus affect stand dynamics in partial cut forests and how does this 
differ from its affects in old-growth forests?

These questions are addressed at both the tree and stand level by combining 

information fi-om two investigative approaches that measure stand dynamics at different 

spatial scales. In combination, these approaches provide a multi-scale understanding of 

small-scale natural disturbance regimes, stand dynamics and succession in wet, sub- 

boreal forests. It is hoped that these studies will improve our understanding of small-scale 

disturbances in sub-boreal forests, particularly the ecology of 7. tomentosus, and provide 

a biological basis for 7. tomentosus management and partial cut silviculture.



CHAPTER 1. INTRODUCTION TO SUB-BOREAL STAND DYNAMICS: 
LITERATURE REVIEW

1.1 Species Associations, Range and Climate

The sub-boreal forest region of North America is composed of a variety of forest 

ecosystems transitional to the southern boundary of the boreal forest. The southern 

boundary of the sub-boreal zone varies from east to west. In eastern North America, the 

sub-boreal forest is bounded to the south by the deciduous forest region, beginning in 

south-central Ontario and ranging into the northeastern United States (Rowe 1972). In 

this area, sub-boreal forests are mixtures of eastern conifers (eastern white pine, red pine 

and eastern hemlock), eastern hardwoods (yellow birch, sugar maple, red maple, red oak, 

basswood, white elm, poplars, beech, white oak, butternut and white ash), and boreal 

species (white and black spruce, balsam fir, jack pine, poplars and white birch) (Rowe 

1972). In central North America, the sub-boreal forest is absent due to the abrupt 

boundary between the boreal forest in the north and the grassland region of the Great 

Plains to the south (Farrar 1995). In western North America the sub-boreal forest is 

comprised of mixtures o f Picea glauca x engelmannii Voss x Parry (hybrid spruce, 

hereafter referred to as spruce) and Picea mariana B.S.P. (black spruce), Abies 

lasiocarpa Nutt, (sub-alpine fir, hereafter referred to as fir), Pinus contorta Dougl. 

(lodgepole pine), Populus tremuloides Michx. (trembling aspen), Betula papyrifera 

Marsh (paper birch), Populus trichocarpa Torr. & Gray (black cottonwood) and 

Pseudotsuga menziesii Franco (Douglas-fir) (Pojar et al. 1982). Here, sub-boreal forests 

are transitional to higher elevation forests and the boreal forest northward.

The sub-boreal climate is slightly less continental than the boreal (Table 1). It has 

shorter winters, longer growing seasons, higher precipitation, and lower rates of



évapotranspiration. Generally, the average growth rates of trees are higher in sub-boreal 

than boreal forests due to the slightly more favorable macroclimate (Pojar et al. 1982). In 

British Columbia, large areas of the sub-boreal forest are classified as Sub-Boreal Spruce 

(SBS) forests. The SBS forest region is located in central interior British Columbia 

between 52° and 57° North latitude and 122° and 128° West longitude (Pojar et a/. 1982; 

Meidinger and Pojar 1991) (Figure 1). This diverse zone is transitional to higher 

elevation montane Douglas-fir and sub-alpine forests in the south and the boreal forests 

in the north (Pojar et a/. 1982; Meidinger and Pojar 1991). Generally, the SBS is 

dominated during late serai stages by spruce and fir. SBS forests typically occur at low to 

medium elevations (500 to 1300 meters above sea level) on the gently rolling terrain of 

the Fraser and Nechako plateaus and the Fraser basin (Pojar et a l 1982). The climate of 

the SBS is broadly continental with seasonal extremes of long, cold, snowy winters and 

short, warm, moist summers (DeLong et a l 1993). Mean annual temperature ranges from 

1.7°C to 5°C and average temperatures are below 0°C for 4-5 months and above 10°C for 

4-5 months of the year (Table 1) (Meidinger and Pojar 1991). The mean annual 

precipitation is widely variable, between 440 mm and 900 mm, but extremes in 

precipitation of 415 mm and 1650 mm have been recorded from short-term data (Table 1) 

(Meidinger and Pojar 1991). A second sub-boreal zone also found in British Columbia is 

the Sub-Boreal Pine-Spruce. This zones’ climate is slightly drier and cooler than the SBS 

(Table 1) and lodgepole pine-engelmann spruce {Picea engelmannii) mixtures dominate 

late serai ecosystems.



1.2 Succession 

Stand Initiation

SBS forests originate by fire and the stand initiation stage is characterized by the 

development of a single cohort of several tree species initially achieving high densities.

On most sites, shade intolerant species, generally faster growing and with regeneration 

strategies that are fire adapted: lodgepole pine, paper birch, trembling aspen, spruce and 

Douglas-fir, establish quickly while more shade tolerant species and those less fire 

adapted: fir, western hemlock {Tsuga heterophylla Sarg.) and western red cedar {Thuja 

plicata Dorm) fill in over time and gradually increase in abundance (Oliver and Larson 

1996). Spruce, due to its moderate shade tolerance is also found in the understory of these 

forests.

Stem Exclusion

Following stand initiation, the single cohort stand undergoes a period of density 

dependent mortality called stem exclusion (Oliver and Larson 1996). Canopy closure and 

limited resources prevent further understory initiation (germination) and vigorous 

individuals out-compete weaker and smaller individuals resulting in their mortality and/or 

suppression to subordinate canopy positions (Waring and Schlesinger 1985; Davis and 

Johnson 1987; Oliver and Larson 1996). More shade tolerant trees, such as fir and spruce, 

may survive in sub-canopy positions, however, this stage is characterized by high 

mortality rates for all species regardless of shade tolerance (Kneeshaw and Burton 1997). 

Understory reinitiation

Towards the end of the stem exclusion stage, mortality starts to occur in the 

overstory creating growing space for a second post-fire cohort. In the SBS a variety of 

shade tolerant trees: fir (especially), spruce, and occasionally western red-cedar, and



western hemlock undergo a second period of germination and/or growth from advanced 

regeneration (Oliver and Larson 1996). In some cases paper birch and Douglas-fir, 

relatively shade intolerant species, are able to regenerate successfully. The understory 

reinitiation stage continues to influence stand structure and composition in SBS forests 

due to competition induced mortality and mortality caused by small and medium scale 

disturbances mainly caused by Inonotus tomentosus, spruce beetle outbreaks 

{Dendroctonus rufipennis) (Humphreys and Saffanyik 1993), windthrow and snow or ice 

breakage.

Old-growth

Oliver and Larson (1996), define old-growth as the complete replacement of the 

initial fire-origin cohort. This is achieved by the absence of stand replacing disturbances 

and continued mortality of trees, due to small and intermediate scale disturbances 

(Kneeshaw and Bergeron 1998). Spruce, and fir mixtures with a wide representation of 

size and age classes typically characterize old-growth SBS forests. The time frame for 

old-growth development is variable and the definition of old-growth given above may 

only rarely be realized in the SBS. However, once a post-fire cohort begins to replace the 

fire-origin cohort in the canopy, the development of an old-growth forest has begun.

In particularly wet SBS forests, fire may be so infrequent that true old-growth 

forests are common place. Hawkes et a l (1997) reports that fire return intervals in very 

wet and cool SBS forests near the Rocky Mountains likely range 1200-6250 years. 

DeLong and Tanner (1996) reported intervals ranging 227-345 years in slightly drier SBS 

forests in the foothills of the Rocky Mountains. In between these long return intervals, 

small scale disturbances caused by root rot fungi (e.g. Inonotus tomentosus), wood 

feeding insects (e.g. Dendroctonus rufipennis), tree life spans, and abiotic factors such as



windthrow and snow loading, kill individual or small groups of trees. These small 

disturbances create old-growth forests and facilitate the maintenance and renewal of 

forest structure in forests with long fire return intervals. Furthermore, it is acknowledged 

that they are becoming important processes where fire suppression or climatic change has 

excluded or reduced fire’s influence on the ecosystem (Clark 1994; Frelich and Reich 

1995; Andison 1996; Kneeshaw and Bergeron 1998).

1.3 Small and Medium Scaled Disturbances in Sub-Boreal, Boreal and Sub-Alpine 
Forests

In wet SBS forests, and other similar forest regions such as sub-alpine and eastern 

North American and Asian (sub)-boreal forests, small scale disturbance agents are 

important processes to forest dynamics and succession during the inter-fire period 

(Veblen 1989; Lertzman 1992; Veblen et al. 1994; Frelich and Reich 1995; Kubota 1995; 

Yamamoto 1995; Kneeshaw and Burton 1997; Kneeshaw and Bergeron 1998; Yong et al. 

1998; Lewis and Lindgren 1999). However, knowledge about the patterns and processes 

created by these small disturbances is limited, especially in northern interior British 

Columbian forests. This is partly because of the previously held belief that SBS forests 

had short fire return intervals that minimized the importance of small and intermediate 

sized disturbances. However, a body of literature is beginning to demonstrate the 

importance of small to medium sized disturbances to stand dynamics in many sub-alpine, 

boreal and sub-boreal forest types.

In a Rocky Mountain sub-alpine fir forest in southern British Columbia, Veblen 

(1986) reported that spruce beetle outbreaks averaged 200 hectares in size and return 

intervals were 116.5 years. In a SBS forest near Smithers, British Columbia, Kneeshaw 

and Burton (1997) reported that spruce beetle caused 5 -  90% mortality over areas



ranging from 1-6, 200 hectares. Another key disturbance in sub-boreal forests is Inonotus 

tomentosus which reportedly caused 0-10% mortality in patches ranging in size from < 1 

hectare to 100 hectares (Van Groenewoud and Whitney 1969; Merler et al. 1988).

Kneeshaw and Bergeron (1998) characterized the percent area in recently formed 

gaps as a function of stand age for southeastern boreal forests in northwestern Quebec. 

For young forests (65 years), 7.1% of the study area was occupied by gaps whereas old 

forests (230 years) were found to have 40.4% of stand area in gaps. Mortality was mainly 

attributed to overstory tree senescence and spruce budworm.

In a sub-alpine forest in central Japan, Yamamoto (1995) reported that of the total 

stand area studied, 7.4% was oecupied by gaps, gap density equaled 17.2 ha and mean 

gap size was 43.3 m^, with the data highly skewed to smaller gap sizes. Of these gaps, 

65.3% were caused by single tree deaths, with about 55% of these attributed to wind. In a 

sub-boreal forest in northern Japan, Kubota (1995) reported different disturbance patterns 

in four similar systems dispersed widely across their study area. Some forests were 

affected by continuous small disturbances mainly due to wind, killing one to a few trees 

in isolated areas. Other forests were affected periodically by slightly larger disturbances 

such as typhoon.

A few studies have examined disturbanee across multiple scales (Veblen et al. 

1994; Frelich and Reich 1995). In a southern boreal forest in Minnesota, Frelich and 

Reich (1995) demonstrated the importance of scale in suceession. Five models of 

succession were tested in their study: 1) Cyclic Model, succession begins at stand A then 

evolves to stand B, then C, then D, and back to A (Figure 2a); 2) Convergent Model, two 

dissimilar forests suceeed towards the same stand composition (Figure 2b); 3) Divergent 

Model, stand A succeeds into two different stand compositions (Figure 2c); 4) Parallel



Model, stand A and stand B maintain their characteristics even after disturbance (Figure 

2d); 5) Individualistic Model, the stand begins at point A and is driven to an array of 

potential points depending on a variety of mechanisms and relationships (Figure 2e). At 

small spatial scales, they reported the divergence hypothesis best described successional 

patterns with small groups of trees (35 m^), of the same species, age, height, etc., 

developing from a homogeneous fire origin stand. At a larger scale (1-16 hectares) 

succession lead to a convergent model (Figure 2b) with one stand comprised of mixtures 

of several species with no patchiness pattern evident as in the small scale study (Frelich 

and Reich 1995). In both cases, succession was driven by openings in the canopy 10-30 

meters in diameter caused by wind, insects and disease, but the results clearly show how 

different interpretations can be made depending on the scale examined. It is important to 

realize that disturbance occurs across this hierarchy of scales, and single scale 

disturbance investigations do not explicitly take this approach. Thus, the combined 

interpretations of different studies will reveal the true outcome of disturbances operating 

at multiple scales.

1.4 Stand Development in Sub-Boreal, Boreal and Sub-Alpine Forests

Stand development following a disturbance is contingent upon the nature of the 

disturbance, the age of the stand, the health of the stand, abiotic factors such as soil 

texture, biotic factors such as herbivory, and chance. However, some simplifications of 

stand characteristics are possible even with generalizations regarding disturbance regime. 

Throughout the regions discussed above, Abies spp. and Picea spp. dominate late 

successional boreal and sub-boreal forests. Generally, Picea spp. has greater basal area 

due to a greater number of larger trees hut Abies spp., is generally found in higher total



densities (about %:\,Abies:Piced) (Veblen 1986; Veblen et al. 1994; Frelich and Reich 

1995; Yamamoto 1995; Kneeshaw and Burton 1997; Kneeshaw and Bergeron 1998; Jull 

and Famden unpublished data).

In Picea spp.-Abies spp. forests horizontal stand structure has been reported to be 

generally clumped with groups of individuals surrounded by open patches (Lewis and 

Lindgren 1999) and there is a high degree of vertical canopy stratification in old forests 

(Veblen 1986; Veblen et al. 1994; Frelich and Reich 1995; Yamamoto 1995; Kneeshaw 

and Burton 1997; Kneeshaw and Bergeron 1998; Jull and Famden unpublished data). 

Age class and diameter distributions range from uneven (exponential decay) (Kubota 

1995; Jull and Famden unpublished data) to bimodal or irregular in old forests (Johnson 

etal. 1994).

Mortality appears mainly in upper canopy positions in mature forests (Veblen 

1986; Frelich and Reich 1995; Kubota 1995; Kneeshaw and Burton 1997; Kneeshaw and 

Bergeron 1998; Jull and Famden unpublished data), and in most cases (but see Johnson 

et al. 1994), recmitment from the understory occurs reliably, replacing lost stems and 

maintaining canopy cover. There appears to be agreement that these ecosystems are self- 

maintaining in the absence of fire, with small scale disturbances being a key process 

allowing understory species to replace lost canopy trees. Generally, various mixtures of 

Abies spp. and Picea spp. maintain the canopy. In some cases, Betula spp. (Jull and 

Famden unpublished data', Frelich and Reich 1995; Kubota 1995; Yamamoto 1995; 

Kneeshaw and Bergeron 1998), Tsuga spp., and Thuja spp. (Frelich and Reich 1995; 

Yamamoto 1995) are maintained in small numbers due to the presence of suitable 

germination substrate, gap environments or chance.
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In most cases, it is thought that Picea spp. and Abies spp. are able to coexist 

indefinitely in these forests due to differences in their mortality schedules and recruitment 

strategies (Kneeshaw and Bergeron 1998). However, Johnson et al. (1994) inferred from 

his results that a long period of Picea glauca exclusion during stem exclusion will not 

allow it to be maintained without fire. Differences in shade tolerance and seed 

germination may be responsible for these apparent differences in recruitment strategies. 

Fir mortality rates reported by lull and Famden {unpublished data) from long-term 

permanent sample plot data, increase linearly with diameter or age of the tree. Spruce 

appears to have a U-shaped mortality curve, with slightly higher mortality rates for 

sapling to small pole sized trees than fir. Spruce mortality decreases from pole (7 cm 

diameter) to mature trees (55 cm diameter) then increases again as trees become 

susceptible to pests and reach old age (Jull and Famden unpublished data). Fir survival is 

higher than spmce for young trees while the opposite relationship holds for older trees. 

Furthermore, fir regenerates and subsists in the understory in higher densities than spmce 

due to greater shade tolerance and more successful germination on thick humus layers 

(Jull et al. 1996). These recmitment-mortality relationships appear to maintain Abies 

spp.- Picea spp. coexistence in many forests throughout the world.

1.5 Resource Dynamics in Gaps

The maintenance of these forests through understory establishment and 

recraitment to the canopy is due largely to the above and below ground resource 

dynamics resulting from recently dead or dying canopy trees. Light, nutrition, moisture 

and temperature regimes are all affected by disturbance and these resources and 

environments can become more abundant or favorable to potential recmits currently
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living in or germinating in the gaps. In this thesis, resource availability in gaps is not 

measured, thus the relationships between gap formation, resource availability and tree 

growth cannot be examined. Based on previous research (Walters and Reich 1997) 

understory trees are assumed to be limited by multiple resources, thus the increase in 

growth of understory trees is attributed to increases in several limiting resources, as 

described below.

Light

Canopy gaps change many physical ecosystem components, however the most 

obvious effect is on light regimes. Canham (1989), found that with the exception of 

forests with extreme canopy height to crown width ratios (common in Picea-Abies 

forests), single tree-fall gaps significantly increase the quantity and quality of light an 

understory tree receives. However, the actual duration of this increased light is short in 

northern latitudes even in large gaps (several trees), since increasing latitude results in 

decreasing overhead light duration throughout the day (Canham 1989). In addition to this 

effect, the light received falls north of the gap with increasing latitude. Therefore, the 

quantity and quality of light is higher a few meters north of the dead canopy tree 

(Canham 1989).

As mentioned, forests with extreme canopy height to crown width ratios tend to 

reduce the total impact of light regimes in gaps. Tall trees with narrow crowns 

characterize Ficea-Abies forests, but due to deep live crowns typical of spruce and sub­

alpine fir, the impact of increased light should be at least partially responsible for 

increased understory growth rates in these forests (Kneeshaw and Burton 1997).

A number of studies have linked increased light with increased plant productivity 

in the field and in vitro (Walters and Reich 1997). Regardless of variation in species
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shade tolerance, growth rates are higher with greater light levels. Many studies have also 

shown that trees will respond with increased height and diameter growth rates following 

release from shade (Canham 1989; Veblen 1989; Yong et al. 1998). Canham (1989) 

suggests that even single tree gaps increase light regimes as much as two-fold and that 

this additional light can trigger strong growth releases especially in shade tolerant 

species. Shade tolerant species are favored in these environments because they can 

regenerate under low light, closed canopy environments and out-survive less tolerant 

species at any given low light level. When a gap forms, they are able to respond quickly 

by increasing leaf area (Canham 1989). Shade intolerant species follow a different mode 

of establishment. These species colonize larger gaps germinating on mineral substrate in 

high light and grow quickly into the newly available space (Canham 1989). Thus, the size 

of a disturbance may favor a particular species of tree due to the gaps’ physical and 

environmental characteristics and the trees’ ecophysiological adaptations.

Nutrients, Temperature and Moisture

While increased light may be the most obvious change in resources caused by gap 

formation, nutrient availability, moisture, and temperature also increase in response to 

gap formation (Picket and White 1985, Pritchett and Fisher 1987, Schmidt et al. 1988, 

Walters and Coates, unpublished data). Thus increased seedling growth following gap 

formation in SBS forests may be due to increases in light, moisture, temperature and 

nutrient availability and not just increases in light alone

1.6 Inonotus tomentosus as a Cause of Small Scale Disturbance

One important cause of gap formation in wet SBS forests is Inonotus tomentosus 

(Fr.) Teng (Merler et al. 1988; Lewis and Hansen 1991a; Lewis et al. 1992; Lewis 1997).
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This root pathogen induces gradual decline in tree vigor and eventually mortality (Lewis 

and Hansen 1991b) due to dysfunctional roots, or windthrow due to weakened root 

systems (Lewis and Hansen 1991b; Lewis 1997). I. tomentosus generally produces 

pockets of infection and mortality that are distributed throughout the forest (Lewis et al. 

1992). Due to its slow colonization processes, mortality is particularly evident in older 

forests (Lewis et al. 1992). This disease has a wide host range but Picea spp. suffers the 

most damage (Lewis and Hansen 1991a; Meidinger and Pojar 1991; Hunt and Unger 

1994). Other tree species such as lodgepole pine and Douglas-fir are moderately affected 

by the disease and Abies spp. even less. Hardwoods appear to be immune (Whitney 

1993^

I. tomentosus can spread from host to host in two known ways. Root contact 

provides bridges for hyphae to move from infected to healthy trees (Lewis and Hansen 

1991b). Basidiospores also spread the disease, and are thought to cause new infection 

centers but the mechanism of this infection process is not known (Lewis and Hansen 

1991b). Once a new host is infected, possibly beginning in small feeder roots, the fungus 

accesses the root heartwood (Lewis et al. 1992). Its presence in the heartwood is 

indicated by reddish brown stain proceeding to darker and thicker bands of stain and 

finally to pockets of advanced decay characterized by longitudinal pitting (Lewis et al. 

1992). In roots smaller than 2 cm in diameter, the fungal mycelium can be located in the 

bark or the cambium. This difference may be due to the thinner bark and lack of defense 

mechanisms in these small roots and the lack of significant heartwood accumulation 

(Lewis eta/. 1992).

In large roots, the infection gradually weakens the trees’ support making it 

susceptible to windthrow (Lewis and Hansen 1991b). The disease can infect a significant
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portion of these large roots before reductions in growth occur, since the heartwood is not 

involved with the transport of resources (Hunt and Unger 1994; Lewis 1997). Mortality 

of the roots occurs when the sapwood becomes significantly decayed (Lewis et al. 1992) 

or when structural integrity is degraded to the point where tree fall occurs. Whitney 

(1980) speculates that mortality of the tree itself occurs when root mortality reaches 80%. 

However, mortality is probably more common due to weakened roots, resulting in 

windthrow (Whitney 1980). Following tree mortality, colonization of the root sapwood 

occurs rapidly due to the inactivity of active defense mechanisms. In the large roots, the 

decay will progress radially from the heartwood to the sapwood, thereby increasing 

probability that inoculum will contact a new host (Lewis et al. 1992).

Since the fungus spreads through root-to-root contact and prefers Picea spp. as a 

host, the gaps it forms may spread outward from the original infection center (Lewis et al. 

1992). Therefore it can be hypothesized that Picea spp. may be eliminated from these 

progressive gaps and resistant species, especially sub-alpine fir in SBS forests, may be 

the species that is favored in the colonization of these gaps. Therefore, the disturbance 

regime and subsequent stand development could potentially be quite different compared 

to gaps and forests without the disease because it may reduce mature and regenerating 

hybrid spruce in wet, cool SBS forests in central British Columbia.

This hypothesized effect of /. tomentosus may have important forest health 

implications in both managed and unmanaged forests. For example, the choice of harvest 

systems in British Columbia is guided by the principle of ecosystem management (British 

Columbia Ministry of Forests 1995). One of the central tenants of this management 

philosophy is that imitating natural disturbance patterns with harvesting patterns will aid 

in achieving sustainable forest development (British Columbia Ministry of Forests 1995).
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Due to the small scale disturbances that are common in wet SBS forests, partial eut 

silviculture systems might be appropriate tools for forest management because they may 

more closely mimic the natural disturbance process between long fire return intervals 

(Davis and Johnson 1987; Oliver and Larson 1996; Jull 1997). However, applying partial 

cut silviculture systems to sites where root disease is present may cause the disease to 

spread faster, due to a hypothesized increase in inoculum volume that may occur in the 

roots and stumps of harvested trees. This is known to occur with other root diseases such 

as Armillaria ostoyae and Heterobasidion annosum (Koening 1969; Cruickshank et al. 

1997; Garbelotto et al. 1997), but the effect of harvesting on inoculum volume for I. 

tomentosus is unknown. This result was not supported by Whitney (1993) who reported 

that partial cut forests of Picea glauca had a lower proportion of individuals infected with

I. tomentosus than unthinned forests. He proposed various reasons for this including 

discontinuity of spruce roots preventing root to root contact and increased due to more 

abundant resources following thinning.

It can be hypothesized that a combination of several factors may lead to increased 

infection and mortality of residual trees. The acceleration of disease-related mortality 

might be caused by harvesting infected trees, which when cut, lose the ability to actively 

limit root colonization, and therefore inter-tree spread. Furthermore larger trees are 

typically favored over smaller diameter trees in most partial cut or selective systems 

including diameter limit, stand improvement, seed tree, shelter wood, group selection, 

and single tree selection systems (Smith 1986). Since these larger trees are more likely to 

be infected with I. tomentosus (Lewis 1997) the effect of the cut may increase the 

probability of residual tree or regenerating tree contact with mycelium in an infected 

stump, and potentially, mortality rates and/or gap demography may be altered. Thus, it is
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critical to understand the impacts of partial cutting on the incidence of I. tomentosus 

caused spruce mortality and its implications for stand structure.

1.7 Research Questions

This research addresses two main questions associated with small scale 

disturbances in old-growth and partially cut forests. First, does small-scale disturbance 

and forest dynamics differ between Inonotus tomentosus infected and uninfected forests? 

The answers to this question will enhance our understanding of how old-growth SBS 

forests developed to their present condition and may help predict future forest conditions. 

This information would aid resource managers in understanding how well old-growth 

forests will continue to provide the values for which they were preserved. Furthermore, 

this study will provide quantitative information necessary for forest managers to design 

partial cut systems that mimic old-growth dynamics and provide information on the long­

term sustainability of small-scale forest dynamics in old-growth SBS forests. The second 

question is; Does partial cutting increase the incidence of /. tomentosus compared to 

uncut forests and if so, what implications does this have for differences in stand dynamics 

between infected and uninfected forests? This information could provide guidelines for 

partial cutting in I. tomentosus infected stands and predictions about future stand 

conditions where partial cutting is applied. Therefore, the objectives of this thesis are to 

quantify and compare fine and coarse spatial scale disturbance regimes and stand 

dynamics in 7. tomentosus infected and non-infected stands for both partial cut and old- 

growth SBS forests.

These objectives are addressed in the following chapters. Chapter 2 describes the 

development of a methodology used to help recreate a fine-scaled disturbance chronology
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for unmanaged and partially cut forests with and without I. tomentosus. This new method, 

called the Time Since Death model (TSD model) estimates when a tree died based on its 

state of decomposition.

Chapter 3 is a second methodology study developed to utilize tree ring growth 

rate patterns in canopy trees to determine the date a tree ascended to the canopy. Chapter 

4 summarizes the gap-scale disturbance regime of wet SBS forests. This study combines 

the methodologies developed in Chapters 2 and 3 to recreate the disturbance dynamics 

occurring in four forest stand types (/. tomentosus infected, and uninfected old-growth 

forests and I. tomentosus infected and uninfected partial cut forests). Basic stand 

composition and attribute data are also sampled to compare these data across forest stand 

types. Chapter 5 summarizes the stand scale study. This study uses spatial autocorrelation 

analysis of tree ring data and species association to determine differences in the canopy 

level disturbance regime and canopy patch structure for I. tomentosus infected and 

uninfected old-growth forests using six 0.49 ha plots with 7 meter resolution. Chapter 6 

integrates the results of the fixed radius plot and grid plot studies and draws conclusions 

regarding disturbance regimes, stand development, and implications for forest 

management.
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Table 1. Climatic comparisons for various sub-boreal, sub-alpiue and boreal forests 
present in British Columbia. Numbers in parenthesis denote extremes taken from short 
term weather data. Derived from Meidinger and Pojar (1991) and Sagar 1993.

Forest Mean Annual Average

Zone Temperature Months

Range (°C) Below 0 °C

Average Mean Annual Percent

Months Precipitation Precipitation

Above 10 (mm) as Snow

°C

Sub-Boreal 

Spruce 

Aleza Lake 

Research 

Forest

1 .7 -5

0 .9 -4 .9

4 - 5

N/A

2 - 5

N/A

440(415)-

900(1650)

682.4 -  

1315.3

2 5 -5 0

38%

Sub Boreal

Pine-

Spruce

Boreal

Sub-Alpine

0 .3 -2 .7

- 2.9  -  2

- 2 - 2

4 - 5

5 - 7

5 - 7

1 - 3

2 - 4

335 -  580

330-570

3 0 -5 0

3 5 -5 5

400 -  2000 50 -  70
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Figure 1. Location of Sub Boreal Spruce biogeoclimatic zone and the Aleza Lake 
Research Forest in central interior British Columbia (Government of British Columbia, 
Ministry of Environment Lands and Parks and Ministry of Forests 2001).
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Figure 2. a) Cyclic model of succession, b) Convergent model of succession, c) Divergent 
model of succession, d) Parallel model of succession, e) Individualistic model of 
succession. Each arrowed line represents a disturbance and the state the stand reaches due 
to succession (comes from Frelich and Reich 1995)
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CHAPTER 2. ESTIMATING TIME SINCE DEATH IN PICEA GLAUCA x  
ENGELMANNII NHO ABIES LASIOCARPA IN A WET-COOL SUB-BOREAL

SPRUCE FOREST

2.0 ABSTRACT

Age class analysis, direct gap measurements, and dendrochronology, are 

retrospective methods used to quantify disturbance regimes in forest ecosystems, but each 

method has limitations. This paper presents a new method that helps overcome some of 

the limitations current methods have in disturbance regime studies. The method is a set of 

multiple regression models that estimate the year of death for Picea glauca x 

engelmannii and Abies lasiocarpa from the tree characteristics: species, position 

(standing/down), decay class, proportion of decay, bark presence and integrity, primary 

branch presence and integrity, and fine branch presence and integrity.

The model was developed from a sample of 183 trees with known dates of death 

from 0-70 years before present (±2.5 for periods 1926-1963, 1988-1998 and ±12.5 yrs for 

period 1963-1988) determined from permanent sample plot data obtained from the Aleza 

Lake Research Forest, in east central British Columbia, in the wet-eool foothills of the 

Rocky Mountains. Four models were developed, two for each species based on their 

current position (standing or down). The P. glauca x engelmannii model explained 

87.3% and 75.3%, and the A. lasiocarpa model explained 76.8% and 84.7% of the 

variation in years since death for standing and down trees, respectively. On an 

independent sample of dead trees (N = 48), time since death was estimated with the 

parameterized model. These values were compared to year of release determined from 

tree ring cores in understory trees that were subordinate to the modeled dead trees. The 

two estimates were strongly related (R^= 92.4%), indicating that model estimates provide
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acceptable estimates for year of death in the two species. Other benefits the models 

provide are a quick (yet accurate) field approach for estimating year of death, and they 

can be used to determine year of death for small trees that fail to cause growth increases 

in understory trees and for trees that do not have subordinate individuals that release 

following overstory mortality.

In this study, P. glauca x engelmannii and A. lasiocarpa decayed at similar rates 

but these species were found to decay much faster than Thuja plicata in coastal 

rainforests and slower than Abies (spp.) and Pinus (spp.) in the Sierra Nevada. Climate, 

log size and species may be important sources of variation in these results.
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2.1 INTRODUCTION

The study and quantification of small-scale disturbance regimes is difficult 

without extensive long-term documentation of the scale and timing of these disturbances 

as they occur. Due to the paucity of these real time assessments, a variety of retrospective 

techniques have been developed. One technique, the interpretation of static age-class 

distributions, is generally not appropriate in forests of complex age structure because 

different species of trees have different recruitment and mortality schedules. These 

differences can lead to misconceptions about the disturbance regime (Johnson et al.

1994). Therefore, tree ring analysis or direct gap measurements are often used to quantify 

the patterns of canopy level disturbance (Veblen 1986; Lorimer and Frelich 1988; Frelich 

and Lorimer 1991; Lertzman 1992; Veblen et al. 1994; Abrams et al. 1995; Frelich and 

Reich 1995; Kubota 1995; Yamamoto 1995; Cherubini et al. 1996; Kneeshaw and 

Bergeron 1998; Yong et al. 1998).

Tree ring analysis uses dramatic and sustained increased radial growth patterns, 

minimum growth rate thresholds that indicate gap-origin probability, and other 

interpretive patterns about incremental diameter growth to indicate the temporal and 

spatial patterns of tree mortality. These techniques are useful in describing small to large- 

scale canopy level disturbances, but are limited to situations where canopy mortality 

causes an understory tree to increase markedly in growth rates. Since diameter growth is 

a more sensitive measure of stand competition than any other growth index (Assman 

1970), these techniques are considered reliable, but they require extensive local 

calibration of growth rate criteria in order to assign a year of death to tree release criteria. 

Furthermore, these methods may not be applicable where large increases in understory 

resources might not accompany overstory tree death. The tall, narrow crowned boreal and
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sub-boreal forests are one such example as are stands with low density such as might be 

found on water-logged or very dry sites.

For direct measures of gap size, the percent area of stand disturbance is 

calculated using geometric formulae. However, the resultant value must be restricted to 

recent gaps; about 30 years old (Veblen 1986; Lertzman 1992; Kubota 1995; Yamamoto 

1995; Kneeshaw and Bergeron 1998; Yong et al. 1998). Another problem with applying 

this method are that the sampled gap-makers are usually restricted to canopy trees. 

Therefore, the percent gap area is underestimated because it does not include sub-canopy 

trees, which also contribute to gap dynamics. There also is limited ability to quantify 

temporal and spatial gap dynamics with this approach. Therefore, it is unknown if the rate 

of gap formation is constant, variable over time, randomly distributed, or has some 

underlying spatial pattern. Perhaps the main limitation with this approach, at least in sub- 

boreal forests, is that gaps are not single definable features of the canopy or any other 

layer. Therefore, it is nearly, if not entirely impossible to determine where one gap starts 

and another one ends.

Due to limitations of these current methodologies, a study was initiated to develop 

an alternative method for reconstructing stand dynamics. The method is based on 

estimating time since death from a tree’s decomposition characteristics. To do this, decay 

characteristics of dead Picea glauca x engelmannii (Parry ex Engelm.) (hybrid spruce, 

hereafter referred to as spruce and Abies lasiocarpa (Hook.) Nutt, (sub-alpine fir, 

hereafter referred to as fir) trees of known dates of death were collected from permanent 

sample plots in central British Columbia. Then, multiple regression models using decay 

characteristics as predictor variables and time since death as the dependent variable were 

developed. Resultant Time Since Death models (TSD models) were then validated with
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an independent data set where time since death was estimated by tree ring release of 

suppressed trees subordinate to dead canopy trees.

Specifically the objectives of this study are to:

1. Construct a set of TSD models that accurately estimate the year of death for 

trees using variables that are easily measured in the field to indicate the degree 

of decomposition after death.

2. Assess the capabilities and limitations of the models.

3. Validate the models with independent samples of dead trees.

4. Compare the decay characteristics of spruce and fir, and species from other 

ecosystems.
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2.2 METHODS

2.21 Study Area

To develop a multiple regression model that estimates the time since death for 

trees, a known and reliable date of death is needed. The date of death data was provided 

for trees from long-term growth and yield sample plots at the Aleza Lake Research Forest 

(ALRF) (British Columbia Ministry of Forests, Inventory Branch). The ALRF is located 

at 54° 07’ N, 122° 04’ W, about 60 kilometers east of Prince George, British Columbia, 

Canada. It lies between 600 and 750 meters above sea level on the Nechako plain of the 

Fraser River Basin in the Interior Plateau physiographic region (Holland 1976). The 

ALRF is located in a wet, cool type of the Sub-Boreal Spruce (SBS) biogeoclimatic zone, 

and is classified as the SBSwkl according to a biogeoclimatic system in common usage 

in British Columbia (see Meidinger and Pojar, 1991, for details). The SBSwkl climate is 

characterized by cold, snowy winters and moist, cool summers. The climate is slightly 

less continental than typical for more westward SBS areas due to the orographic 

influence of the Northern Rocky Mountains to the east, resulting in higher precipitation 

than usual for the rest of the zone (Meidinger and Pojar 1991).

2.22 General Approach

In 1928, a series of growth and yield plots were established at the ALRF and trees 

greater than 10 cm diameter were stem-mapped and tagged for future identification. 

Diameter, species, and height were measured on the trees in these plots beginning in 

1928, and remeasured every 5 years until 1963. A shift in government policy prevented 

further remeasurements until 1988, with the most recent occurring in 1998. Observational 

data on the predictor variables were collected for model development on a sample of 192
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trees with known dates of death determined from ALRF growth and yield records in six 

Experimental Plots (106,107,112, 148,149, 150). These variables were chosen from a 

review of previous studies, which found relationships between certain components of tree 

morphology and decomposition rates (Henry and Swan 1974; Grier 1978; Graham and 

Cromack 1982; Sollins 1982; Raphael and Morrison 1987; Carpenter et al. 1988; Kelsey 

and Harmon 1989; Harmon et al. 1994; Daniels et al. 1997).

The final measurement of a tree in the permanent sample plot records at the 

ALFR indicates it died somewhere during the remeasurement interval, which is inferred 

to be the mid-point of the remeasurement interval. Therefore, there are records of when 

trees died ± 2.5 years for the 5 year remeasurement intervals and ± 12.5 years for the one 

interval between 1963 and 1988. Trees which died many years ago were difficult to 

locate. Old stem-maps and metal detectors were used to locate the metal tags that were 

used to identify trees in the permanent sample plots.

2.23 Explanatory Variables

Tree species: Studies have shown that species vary in decomposition rates and 

this variation is related to differences in phenol concentrations (Daniels et al. 1997), 

agents of mortality, and post-mortality decay organisms (Carpenter et al. 1988; Kelsey 

and Harmon 1989; Harmon et al. 1994). The dominant species at the ALRF are spruce 

and fir. All other species are uncommon in mature forests, usually representing less than 

5% of stand composition. Therefore, data were collected only for spruce and fir. Previous 

studies (Daniels et al. 1997) indicated that modeling should be species specific, so 

models were developed independently for spruce and fir.
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Tree position: Whether a tree remains standing or falls down after it dies and how 

long it has been in each position effects exposure to physical weathering and access to 

decay organisms, with downed trees decomposing faster (Carpenter et al. 1988). Trees 

were recorded as either standing (1) or down (2). It was not known how long the tree 

remained standing after it died because the permanent sample plot records have only 

recently included this attribute. Thus, only the current position of the tree was recorded 

and no attempt was made to project the length of time in each position.

Proportion o f Decay: Trees rot from both the bark towards the pith and from the 

pith towards the bark depending on species and presence of decay organisms (Daniels et 

al. 1997). However, dead sapwood is generally less resistant to decay than the heartwood 

and trees do not generally decay from the outside, until they die (Kelsey and Harmon 

1989). Therefore depth of decay on the outer bole is proportional to how long sapwood 

decay has been occurring. Using the methods of Daniels et al. (1997) the depth of decay 

from the bark towards the pith was recorded, using an axe to chop into the wood and a 

ruler to measure the depth to sound wood (cm). When the entire radius was decayed, it 

was recorded as half of the diameter of the tree. This was done at several points within 

the first two meters from the roots of the tree to develop an average depth of decay. 

Proportion of decay was calculated by dividing the average depth of decay by one-half of 

the tree’s diameter. Depth of decay varies with tree size, therefore proportion of decay 

was used instead of depth of decay because this variable incorporates the difference in 

decay rate due to tree size.

Decay Class: Decay class is a qualitative, categorical index based on cumulative 

decomposition of the main bole. The density of the bole was estimated at several points 

within the first 10 meters from the roots of the tree as suggested by Daniels et al. (1997).
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Decay Class (DC) I trees are solid with no deeay in the sap or heartwood. DC II trees are 

solid but have some preliminary signs of decay. DC 111 trees are in stages of advaneed 

decay but the wood still has structural integrity and can still support its own weight. DC 

IV trees are completely rotten, able to be kicked apart and cannot support their own 

weight. DC V trees are similar to DC IV trees in structure but are assimilated into the 

duff and have coniferous or deciduous vegetation well established and roots ramified 

throughout.

Primary Branches: Primary branches were assessed as two separate variables, 

branch presence and branch integrity. Branch presence had four categories: (1) all 

branches remaining; (2) partial branch remains; (3) only broken stubs and; (4) no primary 

branches. Branch integrity had 3 categories: (1) branches cannot be moved in the knot;

(2) branches are loose in the knot; and (3) no primary branches.

Fine Branches and Needles: Fine branches were also assessed as two variables: 

fine branch presence and fine branch integrity. Fine branch presence had three categories: 

(1) trees with 75-100% of original branches; (2) trees with 1-75%; and (3) no fine 

branches remaining. Fine branch flexibility had three categories (1) pliable, (2) brittle, or

(3) none. Needle abundance had the same categories as fine branch presence.

Bark: Bark is also important for estimating recent mortality (Raphael and 

Morrison 1987). Bark was assessed as two variables: Bark integrity: (1) tight, (2) 

variable, (3) loose and (4) missing; and bark presence (1) present, (2) variable, and (3) 

missing).
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2.24 Analysis and Modeling

Years since death and proportion of decay were treated as continuous variables. 

Tree species was treated as nominal and the remaining variables were treated as ordinal. 

For the two continuous variables, a Shapiro-Wilk W test was used to test for normality. 

The nominal and ordinal variables were assessed for normality using a Chi-square 

likelihood ratio test based on hypothesized probabilities totaling one with equal 

probability distributed across the categories. The distributions for the variables were non­

normal. Due to the large sample size; N = 69 for spruce and, N = 114 for fir, and because 

regression is robust to non-normality, parametric methods were used (Lewis -  Beck 

1980).

Outliers were examined by assessing residual plots of each independent variable 

against the predicted values of years since death and with normal quantile plots of the 

studentized residuals. Leverage values were calculated to determine overly influential 

data points. Nine trees out of 192 total trees were omitted from the analysis due to large 

residuals (1.5 * interquartile range), which are likely due to a measurement error or errors 

in the ALRF data set.

A number of variables included in the analysis had significant heteroscedasticity 

(unequal variance in error terms). For both models, heteroscedastic error terms were 

indicated by the Brown-Forsythe test (Fox 1991). For spruce, bark class, and bark 

integrity had significant heteroscedasticity. For fir, density, branch integrity, and bark 

integrity had significant heteroscedasticity (a  = 0.05). For heteroscedastic variables, 

attempts were made to improve the condition by creating new variable categories. None 

of these attempts decreased heteroscedasticity that was due to high variation in the final 

category relative to preceding categories, since the final category is applicable to infinite
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times since death. However, including variables with heteroscedastic error terms is 

justified since the goal was not to develop a parsimonious model but to develop a robust 

model for predicting time since death. Eliminating variables with not statistically 

significant partial slopes (resulting from the heteroscedasticity) or conducting best sub­

sets regression was not done because all explanatory variables are required to avoid 

specification error and maximize the coefficient of multiple determination. For example, 

eliminating all the variables in the down spruce model with not statistically significant 

partial slope coefficients would lower the from 0.753 to 0.680. An difference test 

comparing the two R  ̂values indicates this is a significant (p>0.05) loss in explanatory 

power.

The variables were initially screened using bivariate regressions and correlation 

matrices, to examine linearity and multicollinearity. Needle presence, fine branch 

presence, and primary branch presence were eliminated from analysis due to very poor 

correlation (R^ < 0.05) with years since death and high collinearity between them.

Interactions between the position of the tree and the remaining explanatory 

variables were tested. These analyses were performed by plotting each variable for each 

position and comparing the slopes using standard procedures (Fox 1991). Significant 

interactions were found and justified the splitting of each species into a positional model 

(standing and down).

Ordinary least squares regression was then used to develop each model. The 

models were then externally validated by estimating time since death on an independent 

sample (dates of death unknown) of previously dominant or co-dominant dead trees (n = 

48, 27 spruce, 21 fir). The decomposition variables were collected and increment cores 

were taken from one nearby understory tree for each dead tree. Estimated dates of death
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from the TSD model were regressed on dates of understory tree release (for trees 

releasing at least 50%) determined from the increment cores using ordinary least squares 

regression.

37



2.3 RESULTS

For both species, all variables had a significant linear relationship to years since 

death (Table 1) as determined by bivariate linear regression analysis. It appeared that 

proportion of decay had a non-linear relationship with years since death, however, no 

transformation improved the value. Therefore these data were considered to be best 

described by a linear model. For both species, years since death was most strongly related 

to decay class (Table 1). Since position is a binomial category, linearity cannot be 

evaluated, however, for both species the trend indicates that downed logs are older than 

standing logs.

A correlation matrix (Table 2) shows relationships among the independent 

variables. For both species, decay class is highly correlated with proportion of decay and 

bark class is highly correlated with bark integrity. This is because each pair of variables is 

measuring similar attributes; the degree of decomposition on a tree’s main bole and the 

bark retention on the tree, respectively.

To determine the degree of influence multicollinearity had on the models, variable 

inflation factor analysis was conducted. Variable inflation factors (VIF) are equal to 1/(1- 

R^), where the R  ̂is equal to the coefficient of determination for one explanatory variable 

regressed against the other explanatory variables. The higher the regression coefficients 

between some set of explanatory variables, the higher the VIF (StatSoft 1997). Thus, a 

high VIF (>9) indicates that collinearity is strongly affecting the precision of estimation 

(Fox 1991). For both spruce and fir, no VIF exceeds 9 for all possible combinations, 

therefore the multicollinearity is not extreme (StatSoft 1997) which justified keeping 

highly correlated predictor variables in the model.

38



Interactions between position and all the remaining explanatory variables were 

assessed independently for each species by plotting each predictor variable against years 

since death at the two levels of position. For spruce (p = 0.009) and fir (p = 0.047) a 

significant interaction between position and decay class was found indicating that for 

both species, decomposition rates of the main bole are faster in down trees. These 

interactions were justified by separating each species model into two models based on 

position.

Thus four models, ((2) species x (2) position) were generated, each using the 

following predictor variables: decay class, branch integrity, fine branch flexibility, bark 

class, bark integrity, and proportion of decay. The mixed model for each species (Table 

3a and 3b; Figures 1 and 2) indicates that the explanatory variables explain a significant 

proportion of the variation in years since death, and range from a low of = 75.30% for 

the down spruce model to a high of = 87.30% for the standing spruce model.

2.31 Model Validation:

Using an independent sample, the year of death for 48 dead trees (27 spruce and 

21 fir) was estimated with one of the four TSD models and then death dates were 

compared to year of tree ring release measured on near by understory trees with ordinary 

least squares regression (Figure 3). The two estimates of tree mortality were very close 

(R^ = 92.4%). Note the regression line does not intersect the x and y axis in a perfect 1:1 

relationship. For older mortality the regression line falls slightly above the x-y 

intersections and slightly below for recent mortality. This is likely because of continual 

increasing variance in the TSD model estimate with increasing values of the tree ring 

estimate as seen in the data (Figure 3).
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2.4 DISCUSSION

The TSD models developed from dead tree characteristics accurately predicted 

time since death for spruce and fir in the wet SBS forests of central interior British 

Columbia. The results suggest that the TSD models can be used to estimate the year of 

death for spruce and fir with a minimum diameter of 10 cm DBH up to about 70 years 

since death. These estimates can be applied towards describing disturbance history in the 

SBSwkl forests around Aleza Lake.

The relative importance of the explanatory variables can be attributed to their 

“longevity of measurability”. For instance, fine branches fall off the tree quickly 

following mortality. Thus, they are irrelevant in predicting mortality beyond the time they 

disappear yet, to remove them from the model would eliminate the most sensitive 

variables in estimating recent mortality. This suggests that variables which are sensitive 

to recent mortality as well as older mortality are most useful in terms of their predictive 

capability. With respect to the variables examined here, decay class, bark integrity, bark 

class and proportion of decay would be the most widely useful predictors of years since 

death because they blend the ability to be sensitive to recent as well as past mortality.

The heteroscedasticity present in these variables is caused by larger variance in 

the last category of each variable relative to the preceding categories. For example, the 

condition of no bark class had the widest variation relative to intact, variable and not- 

intact bark class. This is because once the condition of no bark is reached the tree is 

always described as a tree with no bark and therefore, a large variation in time since 

death arises. The same arguments could also be made for the all the other variables. This 

is a limitation in the measurement of these variables that cannot be adequately addressed 

due to the finite nature of the variables.
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Due to the range in years since death encountered in this study, as well as the 

increasing variance in the error term (heteroscedasticity) in the explanatory variables, this 

model must be restricted to estimating death to about 70 years before present, which was 

the approximate range in years since death encountered at the Aleza Lake Research 

Forest. However even if the records at the ALRF did go back 100 years (or more), none 

of the current predictor variables would be reliable for estimation since they all will 

experience severe heteroscedasticity with increasing time since death. Radiocarbon 

dating, bulk density and nutrient flux functions like those used by Grier (1978), Graham 

and Cromack (1982), and Sollins (1982), could be used to extend the estimate.

This study’s findings coincide with a few studies which have also examined 

morphological characteristics of decay and their relationship to years since death. It was 

found that about 97% of the trees sampled in the present study lose 99% of the fine 

branches and needles after 12 years. In the Sierra Nevada, Raphael and Morrison (1987) 

reported Abies (spp.) and Pinus (spp.) lose all needles and fine branches after 5 years. 

Graham and Cromack (1982) reported strong correlations between year o f death and 

decay rate using a similar classification as the decay class variable in the present study 

for Picea sitchensis (R^= 0.421) and Tsuga heterophylla (R^= 0.227) in Olympic National 

Park in Washington, USA. The present study showed a similar strong correlation for 

spruce (R^= 0.581) and fir (R^= 0.690) (Table 1) for the qualitative measure of decay 

class.

This study’s classification of decay class also corresponds to the decay class 

system of Daniels et al. (1997). The present study’s results show both fir and spruce 

decay much quicker than Thuja plicata studied by Daniels et al. (1997) (Table 4). Both 

the larger tree size of coastal Thuja plicata, the cold, relatively dry climate of the sub-
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boreal forest relative to coastal ecosystems and the acknowledged resistance of Thuja 

plicata to decay are likely responsible for these large discrepancies. For the present study 

it was noted that spruce seems to decay faster than fir (Table 4). The documented 

negative correlation for decay rate and tree size (Harmon et al. 1986) combined with the 

fact that larger snags usually stand longer than small snags (Raphael and Morrison 1987) 

suggests that fir should decay faster than spruce because spruce is generally a larger tree 

in this system and therefore should remain standing longer. Furthermore, published 

information about resistance to decay places both Picea spp. and Abies spp. as species 

with low resistance to decay. Therefore, it seems plausible that the faster decay rate of 

spruce could be attributed to different types of decay fungi rather than differences in the 

extractives found in the wood itself.
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2.5 CONCLUSIONS 

By accurately estimating the year of death for trees, the TSD models can be used 

as tools to quantify the date of tree mortality in forest stands. These data can then be used 

in disturbance studies to quantify spatiotemporal patterns of disturbance in wet-cool, 

SBSwkl forests. Given the limitations of the range of estimation, disturbance studies in 

wet sub-boreal forests using this method alone should be restricted to 70 years before 

present. Although this period will not span the time since stand establishment in old 

forests, it can provide fine detail on disturbance dynamics over a short time and be used 

in forests where other methodologies are relatively ineffective. Combined with indirect 

techniques like those developed by Lorimer and Frelich (1989), Frelich and Lorimer 

(1991), Frelich and Graumlich (1994), Abrams et al. (1995), Frelich and Reich (1995), 

and Cherubini (1996), the TSD results can be used to quantify medium and fine-scaled 

disturbances and their interactions.
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2.7 APPENDIX

Data are presented here to provide the reader with the primary data collected from the 

dead trees in the permanent sample plots. See section 2.2 METHODS for description of 

categories.

E.P.
Plot

#

Dead
Tree

Number

Species Position Density Depth
o f

Decay

Primary
Branch

Integrity

Primary
Branch

Presence

Fine
Branch

Flexibility

Fine
Branch

Presence

Bark
Presence

Bark
Integrity

Year
o f

Death
106 2 Spruce Down 5 14 3 4 3 3 3 4 1945
106 4 Fir Down 5 14 3 4 3 3 3 4 1932
106 261 Fir Down 1 0 1 3 3 3 3 2 1977
106 14 Spruce Down 2 10 2 3 3 3 3 4 1977
106 18 Fir Down 4 2 3 3 3 3 4 1932
106 22 Spruce Down 5 15 3 3 3 3 3 4 1932
106 25 Fir Down 4 11 3 4 3 3 3 4 1932
106 26 Spruce Down 4 12.05 3 4 3 3 3 4 1950
106 32 Spruce Down 2 10 2 3 3 3 3 2 1960
106 268 Fir Down 2 1.5 2 3 3 3 3 1 1977
106 70 Spruce Down 3 5.5 2 3 3 3 3 4 1977
106 498 Fir Standing 1 0 2 1 2 3 1 1 1995
106 72 Spruce Down 3 13^ 1 4 3 1 3 4 1955
106 71 Spruce Down 3 16 3 3 3 3 3 4 1950
106 497 Fir Down 1 0 2 1 2 3 1 1 1995
106 76 Spruce Down 2 1 1 3 3 1 3 4 1977
106 474 Fir Standing 1 0 2 1 1 3 1 1 1995
106 84 Spruce Standing 1 0 1 1 2 2 1 1 1995
106 48 Fir Down 3 15 1 3 3 1 3 4 1945
106 92 Spruce Down 3 12.5 2 3 3 3 3 4 1977
106 99 Spruce Down 2 9 1 3 3 3 3 4 1955
106 422 Fir Standing 1 0 1 1 1 3 1 1 1995
106 423 Fir Standing 1 0 1 1 1 3 1 1 1995
106 34 Spruce Standing 1 0 1 1 2 3 1 1 1995
106 30 Fir Standing 2 1 1 2 3 2 2 2 1977
106 29 Spruce Standing 2 24 1 4 3 3 2 2 1977
106 409 Fir Standing 1 0 3 1 1 3 1 1 1995
106 246 Spruce Standing 1 0 1 2 3 3 2 3 1977
106 278 Spruce Down 2 1 1 2 3 3 2 3 1990
106 45 Fir Down 2 1 1 2 3 3 2 3 1977
106 88 Spruce Down 1 1 1 2 3 3 2 3 1990
106 288 Spruce Down 2 5 1 4 3 3 3 4 1977
106 255 Fir Standing 1 1 3 4 3 3 2 2 1977
106 65 Fir Down 3 2 3 3 3 3 3 4 1955
106 79 Fir Down 3 12 2 3 3 3 3 4 1950
106 15 Spruce Standing 1 0 2 1 2 3 1 1 1995
106 5 Spruce Down 3 25 1 4 3 3 3 4 1977
106 1 Spruce Standing 1 0 1 2 2 1 1 1 1995
106 12 Spruce Standing 1 0 3 2 2 3 1 3 1990
106 20 Spruce Down 2 2 1 4 3 3 3 4 1960
106 24 Spruce Down 3 2 1 3 3 3 3 2 1977
106 23 Fir Down 1 0 3 1 1 3 2 2 1977
106 46 Spruce Standing 1 0 3 1 2 3 1 1 1995
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106 420 Fir Standing 1 0 1 1 2 3 1 1 1995
106 51 Fir Down 2 1 1 4 3 1 3 2 1977
106 423 Fir Down 1 0 1 1 1 1 1 1 1995
106 59 Spruce Down 2 1 1 3 3 3 2 2 1977
106 63 Fir Down 2 2 3 4 3 3 3 4 1960
106 60 Spruce Standing 1 0 1 1 2 3 1 1 1990
106 306 Spruce Standing 1 0 1 1 3 3 3 1 1977
106 61 Spruce Down 1 0 3 2 3 3 3 2 1977
106 73 Spruce Down 2 1 1 2 3 2 2 2 1977
106 74 Fir Down 2 2 1 2 3 3 2 2 1955
112 422 Fir Down 2 1 1 3 3 3 3 4 1977
112 7 Fir Down 3 17 1 3 3 3 3 4 1950
112 18 Spruce Standing 1 0 2 1 3 3 3 3 1977
112 22 Spruce Standing 2 1 1 3 3 3 3 4 1955
112 30 Fir Down 4 25.9 1 3 3 3 3 4 1935
112 48 Spruce Down 3 15 1 4 3 3 3 4 1977
112 430 Fir Down 1 0 2 3 3 3 3 2 1977
112 131 Spruce Down 2 1 1 1 2 3 1 2 1990
112 95 Spruce Down 5 4.7 2 4 3 3 3 4 1935
112 46 Fir Down 3 3.5 3 3 3 3 3 4 1977
112 45 Spruce Down 4 11 1 4 3 3 3 4 1950
112 50 Spruce Down 5 6 1 4 3 2 3 4 1945
112 55 Spruce Standing 2 2.5 3 2 3 3 3 2 1977
112 44 Spruce Down 3 15 2 3 3 3 3 4 1977
112 51 Spruce Down 3 26 3 3 3 3 3 4 1977
112 56 Fir Standing 2 1.5 3 3 3 3 3 2 1960
112 60 Fir Standing 2 0 2 3 3 3 3 2 I960
112 15 Spruce Standing 1 1 2 3 1 3 1 3 1977
112 36 Fir Down 2 5 2 3 1 3 3 4 1977
112 412 Fir Standing 2 1 2 2 3 3 3 4 1977
112 92 Spruce Down 2 4 1 1 1 3 3 2 1990
112 433 Spruce Down 2 2 1 2 2 3 3 2 1977
112 59 Fir Standing 3 4 2 3 3 3 4 1977
112 381 Fir Standing 1 0 1 3 3 3 2 2 1977
112 55 Spruce Down 2 3 1 2 3 3 2 2 1977
112 379 Spruce Standing 1 0 1 2 3 1 1 1990
112 62 Fir Standing 3 1 3 3 3 2 2 1977
112 384 Spruce Standing 1 0 1 3 1 3 1 1 1977
112 399 Spruce Standing 1 0 3 1 3 1 1 1977
112 67 Spruce Down 1 0 1 2 1 2 1 1 1990
107 1 Fir Standing 1 0 1 1 1 3 1 1 1995
107 27 Fir Standing 1 0 1 2 3 3 1 1 1984
107 28 Spruce Standing 1 0 1 1 2 3 3 1 1990
107 29 Spruce Standing 1 0 1 1 2 3 3 1 1990
107 10 Fir Standing 1 0 1 1 1 2 1 1 1990
107 19 Spruce Standing 1 0 1 2 3 1 1 1 1990
107 20 Fir Standing 2 13 1 3 3 3 3 2 1971
107 21 Spruce Standing 1 0 1 2 3 2 2 3 1971
107 22 Fir Down 1 0 1 2 2 3 1 1 1984
107 2 Fir Down 3 3.5 1 3 3 2 3 4 1940
107 8 Fir Down 2 1.5 1 3 3 3 3 2 1955
107 10 Fir Standing 1 0 2 2 3 1 2 1971
107 11 Fir Standing 2 1 1 2 3 3 1 3 1960
107 13 Fir Standing 1 0 1 2 2 2 1 1 1971
107 16 Spruce Standing 3 25 2 3 3 3 3 4 1930
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107 15 Fir Down 2 23 1 4 3 3 3 4 1930
107 273 Fir Down 1 0 1 1 1 3 1 1 1995
107 107 Spruce Standing 1 0 2 1 2 3 1 1 1995
107 288 Fir Standing 1 0 1 1 2 3 1 1 1990
107 549 Fir Standing 1 0 1 2 2 3 2 1 1995
107 81 Fir Standing 5 6 2 4 3 3 3 4 1930
107 18 Fir Standing 3 10 3 3 3 3 3 2 1971
107 536 Spruce Standing 1 0 1 2 2 1 3 1 1995
107 22 Fir Standing 2 1 1 3 2 3 1 2 1990
107 23 Fir Down 2 1 1 4 3 3 3 4 1971
107 326 Spruce Standing 1 0 1 2 3 3 3 4 1971
107 323 Fir Down 1 0 3 3 3 3 3 2 1971
107 286 Fir Standing ] 0 1 1 2 3 1 1 1990
107 29 Fir Down 5 14 2 4 3 3 3 4 1930
107 39 Fir Down 5 17 1 4 3 3 3 4 1930
107 31 Fir Down 3 12 3 4 3 3 3 4 1930
107 32 Fir Down 5 23 1 4 3 3 3 4 19.30
107 293 Spruce Standing 1 0 1 2 2 3 1 1 1971
107 45 Fir Down 5 16 1 4 3 3 3 4 1930
107 42 Fir Down 5 13 3 4 3 3 3 4 1935
150 2 Fir Standing 1 0 3 1 1 3 3 3 1990
150 340 Fir Standing 2 1 2 1 1 1 3 2 1984
150 9 Fir Down 2 1 3 3 3 3 3 2 1977
150 19 Fir Down 1 0 3 3 3 3 1 1 1977
150 21 Fir Down 1 0 1 3 3 3 3 2 1977
150 15 Fir Standing 1 0 3 2 3 3 1 1 1977
150 22 Fir Standing 1 0 3 1 1 3 1 1 1995
150 27 Fir Down 3 11 1 4 3 1 3 4 1936
150 28 Fir Down 4 10 1 4 3 2 3 4 19.36
150 45 Spruce Standing 1 0 1 2 2 3 1 1 1984
150 46 Fir Standing 2 2 1 2 2 3 1 2 1990
150 51 Fir Standing 1 0 1 2 2 3 1 1 1990
150 68 Spruce Down 3 2 1 3 3 3 3 2 1984
150 70 Spruce Down 2 2 1 2 2 1 1 2 1960
150 73 Fir Down 2 2 2 2 3 I 2 1977
150 75 Fir Down 2 2 3 3 3 1 2 1984
150 82 Fir Down 1 0 1 1 2 3 1 1 1977
150 88 Fir Down 1 0 1 1 2 3 3 2 1990
150 87 Spruce Standing 1 0 1 1 2 3 1 1 1984
150 95 Fir Standing 1 0 1 1 2 1 1 1 1990
150 106 Spruce Standing 1 0 1 1 2 3 1 1 1990
150 345 Fir Standing ] 0 1 1 2 1 1 1995
150 312 Fir Down 1 0 1 1 3 3 2 1995
150 331 Fir Down 1 0 1 3 1 3 3 4 1977
150 116 Fir Standing 1.5 1 1 1 3 1 1 1995
150 119 Fir Down 1 0 1 2 3 2 3 2 1990
150 118 Fir Down 1 0 1 2 1 3 3 2 1995
150 120 Fir Down 1 0 1 2 1 3 1 2 1990
150 122 Fir Down 1 0 2 3 3 1 1 1990
150 125 Spruce Down 17 1 3 3 3 3 4 1950
150 131 Fir Standing 1 0 1 1 2 3 1 1 1995
150 134 Fir Standing 1 0 1 1 2 2 1 1 1995
150 132 Fir Down 1 1 1 2 1 3 1 3 1990
150 328 Fir Down 1 0 1 2 2 1 1 3 1977
150 133 Fir Down 2 2.5 1 2 2 3 3 2 1984
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150 137 Fir Down 1 0 1 2 3 3 1 1 1977
150 138 Fir Down 1 0 1 2 3 3 1 1 1984
150 140 Fir Standing 2 1 1 3 3 3 3 3 1977
150 145 Spruce Down 2 1 2 3 3 3 3 3 1960
150 147 Fir Down 2 0 1 3 3 2 3 3 1955
150 149 Fir Down 2 1.5 1 3 3 1 3 4 1960
149 153 Fir Standing 2 0 1 1 1 3 3 1 1995
149 195 Spruce Down 1 0 1 3 2 3 3 4 1971
149 169 Fir Down 2 1 1 3 2 3 3 2 1960
149 198 Fir Standing 1 0 1 2 2 3 3 2 1971
149 285 Fir Standing 2 1.5 1 3 2 3 3 2 1984
149 255 Fir Down 2 1 1 2 2 3 3 2 1984
149 316 Fir Standing 1 0 1 1 1 3 1 1 1990
149 318 Fir Down 3 8 1 3 2 3 3 4 1971
149 409 Fir Standing 1 0 2 2 2 3 3 2 1984
149 385 Spruce Standing 1 0 1 1 2 2 1 2 1971
149 28 Fir Standing 1 0 1 2 2 3 1 1 1995
149 210 Fir Standing 1 0 1 2 2 3 1 1 1971
149 220 Fir Standing 3 4 1 2 2 3 3 2 1971
149 217 Fir Standing 1 0 2 3 2 3 3 1 1971
149 284 Fir Down 3 5 2 3 2 3 3 4 1971
149 258 Fir Standing 1 0 1 3 2 1 3 3 1984
149 279 Spruce Standing 1 0 2 1 2 3 1 1 1990
149 274 Fir Standing 1 0 2 1 2 3 3 2 1984
149 303 Spruce Standing 1 0 1 1 2 3 1 1 1990
149 302 Fir Standing ] 0 2 1 2 3 1 1 1995
149 372 Spruce Standing 1 0 1 1 2 3 1 1 1990
149 241 Fir Standing 1 0 1 2 2 3 3 3 1984
149 186 Fir Standing 2 1.5 1 2 2 3 3 3 1971
149 189 Fir Down 2 1 1 2 2 3 3 3 1971
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Table 1. Bivariate regression statistics for each explanatory variable regressed (bivariate 
regression analysis) against years since death used in preliminary analysis to detect for 
linearity for each species.

VARIABLE Spruce (n = 69) Fir (n = 114)

R" P R^ P

Decay Class 0.581 <0.001 0.690 <0.001

Proportion of Decay 0.495 <0.001 0.612 <0.001

Bark Integrity 0.516 <0.001 0.594 <0.001

Bark Class 0.469 <0.001 &582 <0.001

Branch Integrity 0.466 <0.001 0.639 <0.001

Fine Branch Flexibility 0.324 <0.001 0.424 <0.001

Position 0.179 <0.001 0.181 <&001
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Table 2. Correlation matrix for spruce and fir models. The number of correlations 
amongst explanatory variables that exceed r = 0.8 indicates the degree of 
multicollinearity in the overall model. Bold values indicate a combination of variables 
with significant multicollinearity.

Spruce POSITION DECAY
CLASS

BRANCH
INTEGRITY

FINE
BRANCH

FLEXIBILITY
BARK BARK 

CLASS INTEGRITY
PROPORTION 

OF DECAY

Position

D ecay  C iass 0.650

Branch Integrity 0.072 0.264

Fine Branch 
Flexibility

0.450 0.536 0.138

Bark C lass 0.605 0.684 0.179 0.671

Bark
Integrity

0.612 0.679 0.227 0.641 0 .8 3 2

Proportion of 
D ecay

0.562 0 .8 4 9 0.293 0.516 0.676 0.689

Fir POSITION Decay
Class

BRANCH
INTEGRITY

FINE
BRANCH

FLEXIBILITY
BARK BARK 

CLASS INTEGRITY
PROPORTION 

OF DECAY

Position

D ecay  C iass 0.324

Branch integrity 0.037 0.151

Fine Branch 
Flexibility

0.305 0.489 0.157

Bark C lass 0.417 0.671 0.107 0.454

Bark
Integrity

0.460 0.727 0.088 0.447 0 .8 4 0

Proportion of 
D ecay

0.327 0 .8 3 5 0.127 0.422 0.609 0.664
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Table 3a. Summary of regression statistics for the spruce models. For both standing and 
down trees, both models were significant (°c = 0.05), but many of the partial slope 
coefficients were not significant due to the heteroscedasticity and multicollinearity.

SUMMARY OF MODEL FIT; SPR U C E STAN D IN G D O W N

R Square 0.873 0.753
R Square Adjusted 0.800 0.588

Root Mean Square Error 6.147 10.414

Mean of R esponse 14.636 28.472
O bservations 33 36

ANALYSIS OF VARIANCE
DEGREES OF FREEDOM SUM OF SQUARES MEAN SQUARE F -  RATIO

Source Standing Down Standing Down Standing Down Standing Down
Model 12 14 5188.027 6945.666 432.336 496.119 11.443 4.575
Error 20 21 755.607 2277.306 37.780 108.443 <0.0001 0.0009

C Total 32 35 5943.634 9222.972

EFFECT TEST
DEGREES OF FREEDOM SUM OF SQUARES F -RATIO PROBABILITY > F

Source Standing Down Standing Down Standing Down Standing Down
Decay Class 2 4 638.881 2359.423 8.455 5.439 0.002 0.004

Branch Integrity 2 2 158.324 63.657 2.095 0.294 0.149 0.749
Fine Branch Flexibility 2 2 305.934 358.263 4.049 1.652 0.033 0.216

Bark Class 2 2 10.943 194.782 0.145 0.898 0.866 0.422
Bark Integrity 2 2 298.367 54.536 3.949 0.252 0.036 0.780

Proportion of Decay 1 1 117.380 114.371 3.107 1.331 0.093 0.262
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Table 3b. Summary of regression statistics for the fir models. For both standing and down 
trees, both models were significant (<% = 0.05), but many of the partial slope coefficients 
were not significant due to the heteroscedasticity and multicollinearity.

SUMMARY OF MODEL FIT; FIR STAN D IN G D O W N

R Square 0.768 0.847
R Square Adjusted 0.691 0.800

Root Mean Square Error 7.202 9.661

Mean of R esponse 14.302 31.230
O bservations 53 61

ANALYSIS OF VARIANCE
DEGREES OF FREEDOM SUM OF SQUARES MEAN SQUARE F -  RATIO

Source Standing Down Standing Down Standing Down Standing Down
Model 13 14 6704.430 23777.154 515.725 1693.370 9.444 18.196
Error 39 46 2022.734 4293.633 51.865 93.340 <0.0001 <0.0001

C Total 52 60 8727.167 28070.787

EFFECT TEST
DEGREES OF FREEDOM SUM OF SQUARES F -  RATIO PROBABILITY > F

Source Standing Down Standing Down Standing Down Standing Down
Decay Class 3 4 1349.623 798.058 8.674 2.138 0.0002 0.091

Brancti Integrity 2 2 9.642 263.915 0.093 1.414 0.911 0.254
Fine Branch Flexibility 2 2 1393.927 1015.112 13.430 5.438 <0.0001 0.008

Bark Class 2 2 345.451 208.686 3.331 1.118 0.040 0.336
Bark Integrity 2 2 378.869 271.540 2.435 0.9697 0.080 0.415

Proportion of Decay 1 1 64.156 792.044 1.237 8.486 0.273 0.006
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Table 4. Comparison of mean years since death and Decay Class for Thuja plicata 
(Cedar) reported by Daniels et al., (1997) and spruce and fir (this study).

Decay Cedar Spruce Fir

Class Standing Down Standing Down Standing Down

1 - 3.5 12 15 10 13

2 - 50 27 23 19 28

3 276 279 67 24 23 45

4 122 1200 - 47 67 63

5 150 - - 56 - 66
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mortality (x-axis). Linear regression line fitted to the data pairs indicates the two 
estimates are very close R^= 0.924.
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CHAPTER 3. A METHODLOLOGY FOR ESTIMATING YEAR OF DEATH IN SUB- 
BOREAL FORESTS USING TREE RING GROWTH RATES

3.0 ABSTRACT

Tree ring growth rate criteria have been widely used to quantify disturbance 

regimes in forests of complex age structure but the methodology requires local calibration 

of growth rate parameters. This chapter summarizes the development of tree ring growth 

rate criteria for understory trees used to assign a canopy ascension date to canopy trees. 

Canopy ascension dates correspond to overhead mortality and this information can be 

used to quantify disturbance regimes. The criteria were developed in a wet, cool Sub- 

Boreal Spruce forest near Prince George, British Columbia. Two sampling methods were 

used. First in eight 10-meter radius plots, all dead and live trees (>30 cm tall) were stem- 

mapped. Date of death in dead trees (n = 101) was estimated using a time since death 

model (Chapter 2). Increment cores or basal sections were then taken from all living trees 

in the plot and tree attributes were collected (species, diameter, crown class, live crown 

ratio). Year of death from the time since death model was then compared to year of death 

estimated from release patterns in nearby understory trees. When there was agreement 

between the two estimates of year of death (+/-10 yrs), the understory tree was classified 

as a released tree. Trees not showing release were eliminated. From the remaining trees it 

was determined that only trees > 20 cm dbh when they died caused release in understory 

trees. Furthermore, understory trees were typically <5 meters from the dead tree, they 

were at least 5cm dbh < than the dead tree and they were of vigorous growth. Next, the 

relationships described above were used as criteria for selecting an independent 

population of understory trees (n = 428) subtending dead trees located at random. From 

these data growth rate criteria were developed to determine canopy ascension dates. The
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criteria are as follows: 1) Gap origin growth rates is 1.50mm/yr, 1.72mm/yr and 

1.07mm/yr for Picea glauca X engelmannii, Abies lasiocarpa, and Betula papyrifera. 2) 

Release criteria (for all species) is a 65% increase in growth sustained for 15 yrs 

following a 15 yr period of slow growth. 3) Other criteria used to assign canopy 

ascension dates were constant declining, parabolic or ambiguous tree ring patterns, which 

indicated gap origin trees that were growing slower than the gap-origin growth rate 

criterion. Criteria were also developed to assign release from suppression from the 

interpretation of irregular growth patterns.
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3.1 INTRODUCTION

Analyses of tree ring growth patterns have been used to reconstruct disturbance 

regimes in forests of complex age structure (Frelich and Lorimer 1989). The method 

relies on the development of annual ring growth criteria that indicates the date a tree is 

released from suppression, or the date a seedling establishes in a gap, when a near-by 

canopy tree dies (i.e. canopy ascension dates). The location and timing of canopy 

ascension dates in a stand have to be analyzed to provide information on the spatial and 

temporal patterns of canopy level disturbance for eastern hardwood forests, eastern boreal 

forests, and western sub-alpine forests (Lorimer and Frelich 1989; Frelich and Lorimer 

1991; Frelich and Graumlich 1994; Abrams et al. 1995; Frelich and Reich 1995; 

Cherubini 1996). However, the methodology has not been developed for sub-boreal 

systems in western North America, which are inherently challenging for this 

methodology due to the tall, narrow tree crowns which may not cause as substantial 

increases in understory light regimes after death as broad crowned hardwood forests.

Furthermore, growth rate criteria need to be developed locally in order to avoid 

over or under estimating disturbance intensity. For example, climatic effects, ontogenetic 

patterns, and stand development factors (such as canopy thinning) could all potentially 

cause release in a tree and be misinterpreted as a canopy disturbance. Thus specific 

criteria need to be developed that take into account these effects as well as the inherent 

variation in tree response due to species, type of disturbance and stand (species 

composition, age, height, canopy structure), and site factors (nutrient availability, 

moisture status, soil temperature).
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The development of tree ring growth rate criteria in this study is assisted by 

multiple linear regression models that estimate the date of death for Picea glauca x 

engelmannii (Parry ex Engelm.) (hybrid spruce, hereafter referred to as spruce) and Abies 

lasiocarpa (Hook.) Nutt, (sub-alpine fir, hereafter referred to as fir) (Chapter 2). These 

models improved the process of developing tree ring growth rate criteria by providing an 

independent estimate of time since death for canopy trees. Therefore the objectives of this 

study are to determine the reliability of using tree ring release information to date tree 

mortality in SBS forests and develop criteria for estimating canopy ascension date using 

growth rate patterns contained within tree ring cores.
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3.2 METHODS

3.21 Study Area and Site Selection

The research was conducted in two old-growth forests at the Aleza Lake Research 

Forest which is located at 54° 07’ N, 122° 04’ W, about 60 kilometers east of Prince 

George, British Columbia, Canada. Stand 1 is located on the north side of the Bear Road 

approximately 1 km east of the Bear Road and Aleza Road junction. Stand Two is located 

on the west side of the Aleza Road approximately 2.5kms south of the Bear Road and 

Aleza Road Junction. The elevation of the research forest is between 600 and 750 meters 

above sea level on the Nechako Plain of the Fraser River Basin in the Interior Plateau 

physiographic region (Holland 1976). The Aleza Lake Research Forest is located in wet, 

cool, sub-boreal spruce-fir forest. The region is classified as the Sub-Boreal Spruce, wet- 

cool 1 (SBSwkl) biogeoclimatic zone according to a biogeoclimatic classification system 

in common usage in British Columbia (See Meidinger and Pojar (1991) for details). The 

SBS wkl climate is characterized by cold, snowy winters and moist, cool summers. The 

climate is slightly less continental than typical for the SBS due to the orographic 

influence of the Northern Rocky Mountains to the east, resulting in higher precipitation 

than usual for the rest of the zone (Meidinger and Pojar 1991). The old-growth forests are 

mixtures of Picea glauca x engelmannii (spruce) and Abies lasiocarpa (fir) with scattered 

Pseudotsuga menziesii var. glauca (Douglas-fir), Pinus conforta var. latifolia (lodgepole 

pine) and Betula papyrifera (birch). Old-growth forests at the Aleza Lake Research 

Forest are uneven aged (Decie 1957). Sampling was conducted in three old-growth stands 

located on medium to good sites with minimal variation in soils and topography.
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3.22 Sampling Design and Plot Measurements

Two sampling approaches were used in this study. First (Comprehensive 

Analysis), in eight 10 meter radius plots all dead trees (n = 1 0 1 ) ^ 0  em dbh were located 

and decay characteristics used as predictor variables in the TSD model were collected 

(Chapter 2). Ten cm dbh was used as a minimum diameter since preliminary 

investigations revealed that trees smaller than this rarely caused release in nearby trees. 

Decay data were entered into the TSD model to estimate the date of death for each tree. 

All live trees >1.3 meters tall were cut down at 1 .Cm and a basal section was collected or, 

in larger trees, an increment core was taken (also at 1.0m). Tree ring cores were stored in 

plastic straws, mounted on 1 inch thick grooved Styrofoam strips. The tree ring samples 

and the basal samples were dried, sanded and scanned using a flatbed scanner. The 

scanned images were analyzed using Windendro® (Regent Instruments, Blaine, Quebec) 

which measures and records annual ring width growth (mm). In the second sampling 

approach (Selective Analysis), dead trees were located unsystematically (n =

176).Variables required for the TSD model (Chapter 2) were collected from these trees 

and a minimum of one gap-filling tree was selected for an increment core sample (based 

on criteria developed in the Comprehensive Analysis, see results).

3.23 Analysis 

Comprehensive Analysis

In order to determine if a release (i.e. sustained increase in growth) event occurred 

following overstory mortality, ring width data for live trees was visually inspected for 

growth patterns that suggested release. Trees that did not show release were eliminated

64



{i.e. trees with constant declining growth or extremely flat incremental growth patterns). 

On the remaining trees, tree ring cores were inspected for growth increases that occurred 

within +/-10 years of the TSD model estimate for year of death. Release events were 

eliminated which did not correspond to the date of death estimated from the TSD model 

(+/- 10 years) or were unlikely due to unrealistic distances from gap-maker to gap-filler, 

or due to the size relationship of the gap-maker to gap-filler. On the rest of the trees, a 15- 

year mean growth rate before and after the release date was calculated. Percent release 

was then calculated for each event as: 15 year growth after release /15 year growth 

before release) x 100. The 15-year average was used to eliminate the influence of short­

term variations in growth rate on the chronology. Trees releasing after 1982 could not be 

averaged for a full 15 years. Releases after 1982 were only included if they were 

sustained until the year of sampling (1998). Trees releasing after 1990 were not included 

in the analysis because assumptions could not be made that the release would be 

sustained for 15 years.

Understory trees whose ‘released’ growth rates were 25% > than pre-release 

growth rates and within +!- 10 yrs of the TSD model estimates were used to examine 

several relationships. Dead-tree -  understory-tree size relationships were used to 

determine the relative size difference necessary to cause a release and the minimum size 

required to cause release in a subordinate tree of any size. The diameters of dead trees 

and estimated diameter of the live trees (estimated as: present diameter -  (2 x total ring 

width increment since release)) at the time of death provide evidence for how large a 

dead tree must be before it causes a growth increase in a given size of understory tree. 

Dead-tree -  understory distance relationships were also quantified. The distribution of
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distance data provided an estimate for the range in influence mortality has on the 

understory trees as measured from the base of the dead tree to the base of the released 

tree.

Selective Analysis 

Interpretation of Growth Patterns

In the Selective Analysis, detailed annual growth criteria (early growth rate 

criteria, percent release criteria, and overall growth criteria) were developed to be used in 

future studies (Chapter 4 and 5). The objectives here were to; 1) Determine a gap-origin 

growth rate threshold (i.e. high rates of early growth indicate a tree was growing in a gap 

created by canopy mortality when it reached the coring height). 2) Determine a release 

threshold where slow growth followed by sustained high growth indicates a tree was 

initially suppressed by overstory competition then released following a gap-making event 

(Figure la). 3) Determine criteria to deal with trees that do not show either 1) or 2) but 

may have some pattern that may indicate a tree originated in a gap or was released, even 

though it did not meet the early growth rate or release criteria (Figure Ib-e). This 

approach generally followed the methods of Lorimer et al. (1988) and Lorimer and 

Frelich (1989) with modifications for this study’s forests where necessary.

Early Growth Rate Criteria

Trees germinating in gaps should have faster annual radial growth rates than 

understory tree growth rates (Oliver and Larson 1996). Therefore, trees meeting a 

minimum growth rate threshold can then be used to judge the decade of an overhead 

mortality based on their total age at the coring height. Over 400 gap-filling trees were
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classified as either gap-origin or initially suppressed in the following manner. Open 

grown trees have sigmoidal increases in cumulative diameter growth that results in an 

incremental annual growth pattern that peaks early on, usually around 20-30 years, 

followed by a generally declining pattern. Thus, if a tree is in the canopy and the past 

growth rate is equal to or greater than current growth, it ean be assumed that the tree 

originated in a gap (Lorimer et al. 1988). A 10-year average growth rate was then 

determined for eaeh tree for the first 10 years of growth from the pith. In total, 319 fir, 

104 spruce, and five birch were sampled.

The growth rate data were then used to set the early growth rate criteria using 

Equation 1 (below) obtained from Lorimer et al. (1988). The formula was used in an 

iterative proeess until P^i = 95% was obtained. This assures that 95% of the time, the 

growth rate threshold selected, correctly distinguishes true gap-origin trees from fast- 

growing suppressed trees. However, this strict (high) criteria will also prevent slow 

growing gap-origin trees from passing the criteria. Lorimer et al. (1988) suggest that it is 

preferable to maintain this high confidenee in gap origin because other growth rate 

pattern criteria (see below) can be developed to “recover” gap-origin trees that fail to 

meet the threshold.

Probability of suppression (Lorimer et al. 1988):

Equal,on I Px, =  j

Where:

Pxi= probability of suppression for a sapling of size elass i with growth rate x,
Sxi = proportion of suppressed (understory) trees of size elass i exeeeding growth rate x, 
Gxi == proportion of gap saplings in size class i exceeding growth rate x,
Qsi = proportion of all saplings of size class i that are suppressed
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Qgi = proportion of all saplings of size class i that are growing in gaps, such that Qsi+Qgi 
= 1.0

Percent Release Criteria

Abrupt and sustained increases in incremental diameter growth (Figure la) may 

indicate that a tree was released from suppression by canopy mortality. In order to 

determine the growth response of understory trees to overhead tree mortality and evaluate 

these responses for release criteria, mortality dates of trees were estimated using a time 

since death model (Chapter 2). These dates of mortality were then compared to dates of 

release preserved in increment cores from the gap-filling trees. If the dates of release 

coincided within 10 years of the time since death model estimate, the tree was classified 

as a gap-filler and a percent release value was calculated from radial increment ((15-yr 

growth after release /15-year growth rate before release)x 100). The release criteria were 

then developed as follows.

To avoid classifying crown thinning responses and adjacent mortality as overhead 

canopy mortality a minimum release duration was implemented. Since trees already in 

the canopy fill in gaps through lateral expansion of the crown quickly, any growth 

increase in canopy trees will be short lived (Lorimer and Frelich 1991). Furthermore, 

since the gap will be quickly colonized, adjacent understory trees will also only receive 

short-term benefits. Therefore a 15-year sustained release criteria was selected.

To avoid classifying an increase in growth due to a period of slow growth caused 

by drought from being classified as a release, a minimum period of slow-growth before 

release was selected. Lorimer and Frelich (1989) found that the most severe drought of 

the 20'*’ century only moderately affected diameter growth on the most sensitive sites in
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eastern mixed forests. Decreases in growth due to drought occurred over 2-12 years and 

averaged 5.0 years. Therefore, a “15 year slow growth before release criteria” was 

proposed. The minimum slow growth criterion was used in this study to screen climatic 

variations, which are normally short lived from interpretation as release.

To avoid classifying crown thinning {i.e. trees in the canopy responding to the 

death of other trees in the canopy) and adjacent mortality as overhead mortality, two 

approaches were taken. First, threshold diameter limits, beyond which, trees would be too 

large to be candidates for understory release were established for each species. In this 

study < 5% of spruce were overtopped at greater than 40 cm dbh, while for fir and birch, 

< 5% were overtopped at greater than 30 cm dbh. Thus, trees greater than these diameters 

at the time of release were not counted as canopy ascensions even if they met the percent 

release criteria because a growth increase is likely due to canopy thinning and not a 

release from suppression. Secondly a relatively high percent release value was chosen 

(25%-quantile), since adjacent mortality usually cause weaker growth increases than 

overhead releases (Lorimer and Frelich 1989).
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3.3 RESULTS AND DISCUSSION

3.31 Comprehensive Analysis

Of lOI dead trees in the pilot study 51 release events occurred within 10 years of 

the time since death model estimate. However, 29 dead trees were less than 20 cm DBH 

when they died, and only two of these 29 trees had an associated release event. The total 

number of release events associated with mortality of the 72 trees greater than 20 cm was 

49 (68%). The rest of the mortalities either did not have any understory trees (n = II) or 

the understory trees did not respond for reasons that could not be determined (n -  12). 

Since dead trees smaller than 20 cm DBH did not cause consistent or substantial 

increases in the growth of nearby understory trees, time since death model estimates of 

death provide the only reliable estimate available for smaller trees. Therefore when 

sampling potential gap-fillers for dead trees in the Selective Analysis, and in further 

studies only dead trees greater than 20 cm DBH should be expected to cause release in 

understory trees.

The mean percent release for the 49 release events was 80% with 95% of the 

releases falling between 66% and 94%. The maximum release was 246% and the 

minimum was 13%. Only 6% of release events were less than 25%. The time since death 

model increased the certainty that each release event was associated with tree mortality 

therefore, a fairly liberal threshold of 50% for release was established as the release 

criterion for the Comprehensive Analysis. Trees showing <50% release were eliminated 

and were not analyzed in the remainder of the relationships.

The mean distance from gap-maker to gap-filler was 2.84 meters, the minimum 

was 0.51 meters and the maximum was 6.67 meters. Ninety-five percent of the release
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events occurred between 0.54 and 6.4 meters from the dead tree. There were no strong 

relationships, using linear or other functions between percent release (response) and 

distance from dead tree (p>0.05 in all cases). There was a weak trend for trees close to 

the dead tree (<1 meter) and far away (>5 meters) to exhibit less release than trees in the 

2 - 4  meter range. There was also no difference in percent release when I. tomentosus 

caused mortality (gradual mortality) was compared to other -  typically more punctuated 

gap-making events (p = 0.20).

There was no clear relationship between the percent release and the dead tree - 

live tree diameter ratio, or the diameter of the dead tree, although in all cases the dead 

tree was at least 5 cm (dbh) larger than the understory tree. This suggests that understory 

trees which are at least 5 cm dbh smaller than the dead tree and within 5 meters of its 

base, have the potential to release. Thus, distance appears to be more important than dead 

tree: live tree size relationships as a sampling guideline. Therefore, sampling criteria for 

gap-filling trees replacing dead canopy trees was based on the following guidelines: less 

than 5 meters from the dead canopy tree, at least 5 cm less than the diameter of the dead 

tree at time of release and if possible in the 5-15 cm DBH range, in intermediate or 

suppressed canopy positions.

3.32 Selective Analysis 

Gap-Origin Criteria

For birch the minimum gap-origin growth rate was 1.072mm/yr (n = 3) and the 

maximum suppressed growth rate was 0.552 mm/yr (n = 2) (Figure 2). Since the growth 

rate distributions were non-overlapping, the selection of the minimum growth rate
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indicating gap-origin status for birch was 1.072 mm/yr. Although this value is based on a 

very small sample, birch is typically associated with gaps in sub-boreal spruce-fir forests 

since it is a relatively shade intolerant species (Archibold 1980; Krajina et al. 1982) thus 

the gap-origin growth rate criteria can be relatively liberal.

For fir, the distribution of ring widths overlapped considerably between 

suppressed and gap-origin trees (Figure 2) (n = 319). Since there were two other growth 

criteria (Figure 3) used to independently estimate disturbance date, an early growth rate 

threshold was selected which yielded a high confidence (95%) of gap-origin or 

alternatively, a low probability of mistakenly identifying a fast-growing suppressed 

sapling as a gap origin tree. Using a formula to determine gap-origin thresholds with 95% 

confidence level given in Lorimer et al. (1988), the threshold for fir was set at 1.72 

mm/yr. The same guidelines were followed for spruce and the threshold was set at 1.5 

mm/yr (n = 104).

Percent Release Criteria

Fifty percent of the observations for percent release fell between 65% and 129% 

with the median being 92% and there was no significant difference in percent release 

between species (p = 0.194). The distribution of percent release was not normal, but a 

median test also did not detect significant differences in percent release between species 

(Chi Square = 1.34,p=0.50). Therefore, the same release criteria were used for all species. 

The percent release criterion was based on supporting evidence from other studies and on 

the percent release data distribution in the present study. In most studies it was been 

shown that the typical release from suppression for Picea spp. and Abies spp. is less than
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100%. For example, seventy-one year old Picea glauca in eastern Canada released about 

67% (in diameter growth ) following thinning (Fraser 1962). In a 16-year-old plantation 

Picea glauca diameter release was 37% following herbicide release (Balvinder et al. 

2001). Sutton (1995) reported a 50-100% increase in diameter growth in a 30 year old 

Picea glauca stand following a weeding treatment and Biring et al. (1999) reported an 

85% increase in growth in Picea glauca anà Abies balsamifera over twelve years 

following herbicide treatments. Based on the evidence provided from these studies, a 

65% increase in growth (which corresponds to the 25%-quantile in the percent release 

data distribution) was chosen. In comparison, Veblen (1986) used 150% as a release 

criterion for Picea glauca x engelmannii and Abies lasiocarpa, but only imposed a five- 

year sustainability requirement. In hemlock hardwood forests Lorimer and Frelich 

(1989), and Frelich and Graumlich (1994) used a minimum 50% growth increase for Acer 

saccharum and Betula allagheniensis sustained for a minimum of 10 years. Thus the 

criteria selected here is reasonable. The trees that do not pass the release threshold or the 

early growth rate threshold are recovered with overall growth rate interpretations (below) 

(Figure 3).

Overall Growth Rate Pattern Criteria

The relatively high thresholds for gap-origin and percent release were established 

in order to have high confidence in attributing a growth response to mortality and this 

inevitably results in some trees not passing the criteria. For these trees, lifetime 

incremental patterns were assigned to several groups and assumptions about these group 

patterns were used to assign the tree a date of canopy ascension (Figures lb,c,d,e). The
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first group was overall growth patterns that started out relatively high and remained 

consistent or had an increasing growth pattern followed by a flat or declining pattern 

(Figure lb) (Frelich and Graumlich 1994). These patterns of growth are characteristic of 

dominant trees in even-aged stands (Assman 1970; Oliver and Larson 1996; Frelich and 

Graumlich 1994) and accordingly it is reasonable to assume that a similar pattern would 

result in gap origin trees (Lorimer and Frelich 1989). Therefore, the date of canopy 

ascension for these trees is equal to the year that the tree reached the coring height of 

1.0m.

Another type of lifetime growth pattern used is a parabolic shape where tree 

growth increases gradually for a few decades, reaches a peak then gradually declines 

(Figure Ic). These patterns were considered indicative of gap-origin trees, growing at less 

than the gap-origin threshold if the peak growth rate was achieved within 25 years of the 

first ring in the chronology (Lorimer and Frelich 1989).

Ambiguous patterns are those that have a period of increasing growth lasting > 25 

years but do not pass the percent release criteria (Figure Id). An ambiguous zone was 

established beginning with the first ring of the increasing period to where 80% of the 

maximum growth rate was achieved (Lorimer and Frelich 1989). The decade of canopy 

ascension was determined to be the decade where the median growth rate was achieved 

during the ambiguous period. This interpretation is based on the assumption that 

ascension to the canopy in these trees would not coincide with a growth increase of less 

than 25% (Frelich and Lorimer 1989). Trees not meeting this criteria were treated as 

irregular patterns and the interpretations are described below.
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Trees that have alternating high and low growth cycles or other random patterns, 

but do not meet the growth criteria described so far are considered to have irregular 

growth patterns (Figure le). Trees that have a declining arrangement of successive peaks 

with the first peak having the largest growth rate achieved within the first 25 years of 

growth are interpreted as gap-origin. Trees that have a peak growth later than 25 years 

tfom the earliest ring are treated as ambiguous patterns as described earlier (Lorimer and 

Frelich 1989).
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3.4 CONCLUSIONS 

Tree ring growth rate criteria can be used to indicate the year of canopy ascension 

for trees in western sub-boreal forests. This method had been previously untested in these 

forests. The method developed here shows that the technique can be used in humid 

forests in northerly latitudes and in forests dominated by trees with tall narrow crowns. 

This study provides a guide for tree ring growth rate criteria in studies in similar 

environments and provides criteria locally developed and tested that can be applied to 

disturbance regime investigations.
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Figure 1. Demonstration of various incremental growth patterns used to assess date of 
canopy ascension. Y-Axis = tree growth in mm/yr. X-axis = year the growth rate was
recorded. ► Indicates the year of canopy ascension. ► Indicates the year of the
ambiguous zone.
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Figure 2. Box-plots showing the range (mean, standard deviation, minimum, maximum, 
and quartiles) in initial 10-year average growth rate for: gap-origin and suppressed Betula 
papyrifera (n = 3,2), Abies lasiocarpa (n = 104,215), and Picea glauca x engelmannii (n 
= 56,48).
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1.) H igh Early Growth Rate Analysis:

Indication: Tree Originated in  a Gap

Criteria:

Abies lasiocarpa =  1.72mm /yr

Picea glauca  x  engelmannii =  1.5mm/yr

Betula papyrifera =  1.072m m /yr

2 .) Rapid, Sustained Increases in Radial Growth Rates (R elease) A nalysis

Indication: Tree was suppressed for a period then, due to overhead mortality was released.

Criteria:

a) 160% R elease

b) Sustained for 20  years

c) <  40em  dbh for Abies lasiocarpa  and <  30 em  for Picea glauca  X engelmannii

3.) Overall Growth Pattern A nalysis

Indieation: 1) Tree Originated in a Gap

Criteria:

a) Consistently high or increasing growth fo llow ed  by a decline.

b) Parabolic growth pattern w ith peak growth oecurring within first 25-years.

c) D eclining peaks with first peak indicating highest growth within first 25- 
years.

II) Tree was released from suppression

Criteria:

a) Inereasing growth lasting >25-years but peak growth achieved after 25  
years.

b) Peak growth later than first 25 -years.

Figure 3. Decision set for determining year of canopy ascension. Each tree was assessed 
using each of the criteria. More than one year of canopy ascension per tree is possible.
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CHAPTER 4. SPATIOTEMPORAL PATTERNS OF SMALL-SCALE 
DISTURBANCES IN SUB-BOREAL SPRUCE FORESTS: IMPLICATIONS FOR 

PARTIAL CUT HARVESTING AND INONOTUS TOMENTOSUS ROOT DISEASE

4.0 ABSTRACT

In a wet-cool sub-boreal forest east of Prince George, British Columbia, Canada, 

fine-scale, 70-year disturbance chronologies were compared for four forest types: old- 

growth and partially cut forests with and without Inonotus tomentosus Fr. (Teng) 

infection and mortality. In both old-growth and partially cut forests 46, 10 meter radius 

plots (92 total) were centered on dead or cut formerly dominant or codominant Picea 

glauca X engelmannii trees. Twenty-three plots for both old-growth and partial cut forests 

were centered on dead trees that showed evidence of past Inonotus tomentosus infection 

and 23 were centered on uninfected dead trees. Total P. glauca x engelmannii mortality 

was approximately 50% lower in the partial cut category since the decade of harvest 

(1950-1960), regardless of infection status. In all four forest types decadal mortality 

increased from the 1930’s to the 1970’s and then decreased since the 1980’s. The 

functional gap size, averaged 16.76 m  ̂and was independent of dead tree diameter, 

species, crown class or agent of mortality. Summed gap-size measures for all trees dying 

in a decade indicated that between 6.9 and 8.1% of stand area was made available to 

understory trees per decade but was also highly variable among decades. Mean deeadal 

mortality was similar to estimates for similar forest ecosystems influenced by small-scale 

disturbances.

Due to high mortality rates of large individuals and low recruitment rates to the 

canopy for P. glauca x engelmannii, the population structure of the old-growth forests
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appears to be shifting from a P. glauca x engelmannii dominated canopy to an A. 

lasiocarpa dominated canopy, but Inonotus tomentosus does not appear to be the cause. 

Rather, higher^, lasiocarpa densities in the understory and more frequent A. lasiocarpa 

recruitment to the canopy combined with high rates o f f .  glauca x engelmannii mortality 

explain this shift. In partial cut plots, higher relative P. glauca x engelmannii recruitment 

and lower P. glauca x engelmannii mortality indicate that P. glauca x engelmannii 

populations may rise relative to its’ present density.
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4.1 INTRODUCTION

The Sub-Boreal Spruce (SBS) forest region of central interior British Columbia is 

a diverse forest region whose climax forests are mainly mixtures o f Picea glauca x 

engelmannii (Parry ex Engelm.) (hybrid spruce, hereafter referred to as spruce) m d Abies 

lasiocarpa (Hook.) Nutt, (sub-alpine fir, hereafter referred to as fir) (Meidinger and Pojar 

1991). Mean fire return interval estimates in dry and wet SBS forests range from 150-250 

years, and 227-6250 years, respectively (Parminter 1992; Hawkes et al. 1997). Long fire 

return intervals in wet areas of the SBS enable small-scale (i.e. gap) disturbances to 

become a predominant stand dynamics mechanism in these forests. Furthermore, small- 

scale disturbances may become increasingly important since fire suppression has 

excluded or reduced fire’s influence on the ecosystem (Clark 1994; Frelich and Reich 

1995; Andison 1996; Kneeshaw and Bergeron 1998).

Quantification of the patterns of small-scale disturbances and the stand dynamics 

they cause is important in both managed and unmanaged landscapes. The increasing 

scarcity of old-growth forests has inspired the preservation of their remnants (Welles et 

al. 1998) yet the long-range implications of gap dynamics on stand structure and 

composition are unknown. Secondly, in managed SBS landscapes, landscape ecology 

principles that suggest biodiversity can be maintained by mimicking natural disturbance 

patterns with harvesting patterns (DeLong and Tanner 1996). If this goal is to be met, 

partial cut harvesting systems that approximate small-scale natural disturbance patterns 

need to be designed for forests where small-scale disturbances are predominant. 

Ecologists are just beginning to realize that small-scale disturbance regimes are important
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ecological processes in wet SBS forests and quantitative information of these regimes and 

how forests respond to them are lacking.

Agents of gap formation in SBS forests include root and stem rot fungi, phloem 

feeding insects (e.g. Dendroctonus rufipennis), tree life spans, and abiotic factors such as 

windthrow and snow loading (Kneeshaw and Burton 1997; Kneeshaw and Bergeron 

1998; Lewis and Lindgren 1999). Among these is the root rot pathogen Inonotus 

tomentosus (Fr.) Teng, which is common in most Picea spp. dominated forests world­

wide (Whitney 1980; Merler et al. 1988; Lewis and Hansen 1991a; Lewis et al. 1992; 

Lewis 1997). In the SBS forests of central interior British Columbia, /. tomentosus 

primarily attacks spruce (Hunt and Unger 1994) and infected trees are subject to chronic 

declines in vigor. Eventually root dysfunction and structural weakening lead to standing 

mortality or windthrow of individual or small groups of trees (Lewis and Hansen 1991b; 

Lewis 1997). Following tree mortality, root colonization by the fungus increases due to 

the absence of active defense mechanisms in the sapwood and the fungal mycelium 

moves outward from the heartwood to the sapwood (Lewis et al. 1992).

The mycelium in the dead sapwood enables I. tomentosus to spread through root- 

to-root contact (Lewis et al. 1992). In this way the disease may spread from tree-to-tree 

(Lewis et al. 1992) potentially reducing spruce density in disease pockets. Due to the host 

preference of I. tomentosus and the ability to remain infectious for up to 40 years, gaps in 

the canopy formed by this pathogen may result in higher rates of spruce mortality and 

lower spruce populations in the gaps. Thus relative to some other small-scale disturbance 

agents I. tomentosus could lead to compositional shifts, due both to decreased density of

85



spruce in the overstory surrounding gaps, and a decreased probability that spruce recruits 

will fill the gaps.

It can be hypothesized that compared to the effects of /. tomentosus in old-growth 

forests, partial-cut silvicultural systems may exacerbate the effects of I. tomentosus on 

gap dynamics, and forest structure. Partial cutting may increase I. tomentosus virulence 

and this may increase spruce mortality as inoculum volumes are increased by harvesting 

relatively healthy infected spruce which, if  left uncut, would be able to confine the fungus 

to the heartwood for a much longer period. This could mean increased contact frequency 

with new hosts and ultimately, increased mortality rates for spruce in partial cut 

silviculture applications.

This research addresses four specific questions about small-scale disturbance regimes 

and associated stand dynamics in wet SBS forests.

1. What is the temporal pattern of small-scale disturbance in I. tomentosus infected 

and uninfected old-growth forests and how do these compare to infected and 

uninfected partially cut forests?

2. Does the rate of spruce mortality differ between /. tomentosus infected and 

uninfected old-growth forests and how does partial cutting affect these rates?

3. How has current stand composition been affected by harvesting and/or infeetion 

status?

4. Is the future stand composition likely to change due to infection and/or harvesting 

status?
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4.2 METHODS

4.21 Study Area

The research was conducted in two old-growth and two partially cut forests at the 

Aleza Lake Research Forest, located at 54° 07’ N, 122° 04’ W, about 60 kilometers east 

of Prince George, British Columbia, Canada. It lies between 600 and 750 meters above 

sea level on the Nechako Plain of the Fraser River Basin in the Interior Plateau 

physiographic region (Holland 1976). For the old growth forests, one stand was sampled 

on the north side of the Bear Road approximately 1 km east of the Bear Road and Aleza 

Road junction. A second stand was sampled on the west side of the Aleza Road 

approximately 2.5kms south of the Bear Road and Aleza Road Junction. For the partial 

cut forests one stand was sampled on the west side of the Aleza Road near the junction of 

the Aleza Road and the Upper Fraser Road. A second stand was sampled on the east side 

of the Aleza Road adjacent to the junction of the Aleza Road and the West Branch Road. 

The ALRF is located in the sub-boreal spruce, wet-cool 1 (SBSwkl) biogeoclimatic zone 

(See Meidinger and Pojar (1991) for details). The SBSwkl climate is characterized by 

cold, snowy winters and moist, cool summers. The climate is slightly wetter and more 

moderate than central SBS sub-zones due to the orographic influence of the Northern 

Rocky Mountains to the east, resulting in higher precipitation than usual for the rest of 

the zone (Meidinger and Pojar 1991). The old-growth forests are mixtures of spruce and 

fir with scattered Pseudotsuga menziesii var. glauca (Douglas-fir), Finns contorta var. 

latifolia (lodgepole pine) and Betula papyrifera (paper birch). Old-growth forests at the 

Aleza Lake Research Forest are thought to be uneven aged (Decie 1957). The dominant 

spruce, perhaps members of the initial fire origin cohort, are possibly 300 years old or
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more. The oldest fir are about 200 -  250 years and are probably members of a post-fire 

establishment cohort. The scattered Douglas-fir component can be as many as 500 years 

old (Decie 1957) and may be survivors of the last fire. A well-developed understory layer 

is mainly comprised of fir (80%) and spruce (20%). Spot fires, spruce beetle 

(Dendroctonus rufipennis), various diseases including I. tomentosus and timber 

harvesting in some stands have been the main disturbance agents at the Aleza Lake 

Research Forest since the last wildfire (Decie 1957).

The partial cut forests at the Aleza Lake Research Forest have the same site 

characteristics as those described for old-growth forests. Partial cutting was designed to 

improve spruce regeneration success and overall stand structure and quality through 

selective harvests conducted during the winters of 1952-1956 (TSX 42765, 774118). 

These systems implemented forest management concepts typical of uneven aged 

selection systems (e.g. management of species composition, stand structure, and residual 

growing-stock) (Jull and Famden unpublished data). The following guidelines were 

followed by trained crews prior to harvesting: defective trees were identified for felling; 

larger trees were removed where possible; vigorous trees were left; uniform spacing of 

residual spruce was attempted with removal of fir where possible; and sufficient volume 

was removed to insure an economic operation (DeGrace et al. 1952). The residual basal 

area was approximately 50% of initial basal area.

4.22 Site Selection

Forest cover and contour maps were initially used to locate 30 candidate stands 

(15 old-growth and 15 partial cut) that were relatively uniform in composition on
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medium to good sites with minimal variation in soils and topography. The old-growth 

stands were undisturbed by human activities and the partial eut sites were selectively 

logged between 1952 and 1954. Each of the 30 candidate stands were ground checked for 

appropriate characteristics and a number were eliminated because they didn’t meet the 

initial criteria. Each stand was also checked for the presence of I. tomentosus using 

standard field techniques (Finck et al. 1989). From the original 30 stands, four were 

selected (two old-growth and two partial cut) that were most similar amongst themselves, 

and best met the criteria above. The stands selected also had low to moderate (5-10%) 

incidence of I. tomentosus infection.

4.23 Sampling Design and Measurements

Plots were established in the four selected stands systematically with a 50x50  

meter spaced grid. Four forest types were sampled. Old-growth without tomentosus 

(OGNT), and partial cut without tomentosus (PCNT) plots were free of any evidence of I. 

tomentosus mortality or infection in living or dead trees. OGNT and old-growth with I. 

tomentosus (OGT) plots were centered on the nearest dead tree (dead for approximately 

40 years) that was a canopy dominant or codominant tree at the time of its death. This 

was done to provide similar mortality rate estimates between the old-growth plots and the 

partial cut plots which were logged about 40 years before sampling. PCNT plots were 

centered on the nearest cut stump to the grid point with no evidence of I. tomentosus 

infection or mortality with in the plot boundary. OGT plots were centered on a canopy 

tree that died approximately 40 years ago and had I. tomentosus. PCT plots were 

established on a cut stump that had evidence of past infection by I. tomentosus in the 

roots or the stump surface. In the OGT and PCT forest types all living trees were
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inspected for I. tomentosus infection and this information was used to determine the 

incidence of infection in these forest types. For each forest type, 23, 10 meter radius 

(0.314 ha), plots were established.

To quantify the disturbance regime, the location of all dead trees in the plot (> 10 

cm dbh), the tree decomposition characteristics required as input for the time since death 

model (TSD model) (Chapter 2) and, if possible, the cause of death were collected. For 

most disturbance agents, post-hoc classification of mortality is difficult beyond a few 

years. However, /. tomentosus causes diagnostic pitting in large roots and stem bases that 

can be identified with confidence for at least 40 years after mortality occurs (Lewis and 

Hansen 1991a). For several trees it was impossible to determine either the species or the 

cause of death. In these cases “unknown” was recorded and time since death was 

determined using canopy ascension date (Chapter 3).

Two potential gap-fillers were selected from among the trees subtending each 

dead canopy tree and one increment core was taken from each at 1.0 m. These trees were 

stem-mapped, assessed for crown class, live crown ratio, diameter, and species. Tree ring 

cores were stored in plastic straws, and later mounted on 1 inch thick grooved Styrofoam 

strips, dried, sanded and scanned using a flatbed scanner. The scanned images were 

analyzed using Windendro® (Regent Instruments, Blaine, Quebec) which measures and 

records annual ring width growth (mm). Canopy ascension criteria and the TSD model 

were used in combination to estimate a date of death for each dead tree (below).
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4.24 Data Analysis 
Disturbance Chronology

Disturbance chronologies (mortality by decade) were prepared for each forest 

type. Chronologies are only presented since 1930, which is the limit of the TSD model 

capability and is approximately the limit for including smaller trees due to tree 

decomposition. The disturbance chronologies were developed by averaging year of death 

estimates from the TSD model (Chapter 2) and canopy ascension dates (Chapter 3), in 

potential gap-fillers. When there were no adequate gap-filling trees for the dead canopy 

tree only the TSD model was used. When the species of the dead tree could not be 

determined or was of a species that could not be modeled by the TSD model, only tree 

ring cores were used to date the mortality. Disturbance chronologies were divided into 

10-year intervals from the beginning to end of each decade (Frelich and Graumlich 

1994). For the partial cut plots, all cut stems were included in the disturbance chronology 

and mortality dates for these coincide with the 1950-1960 decade.

Functional Gap Size

Functional gap size is an estimate of the growing space (m^) that a canopy tree’s 

mortality {i.e. gap-maker) makes available to the understory trees most likely to attain 

canopy status after it dies {i.e. gap-filler). The mean of the distance from gap-maker to 

gap-filler data was used as a proxy for the radius of a circle to calculate the average area a 

dead tree makes available to understory trees when it dies. Gap size estimates for each 

tree dying in a given decade were summed to determine the area made available to 

understory trees per decade. This data was then transformed to a percentage of stand area 

converted to gaps per decade (sensu Frelich and Graumlich 1994; Yamamoto 1995).
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Accumulated mortality (stems/ha and basal area)

The total mortality since 1930 for all plots in each forest type was used to 

compare differences in accumulated mortality and spruce mortality. Plot level 

accumulated mortality was converted to aecumulated basal area mortality because basal 

area comparisons may show differences in stand mortality dynamics beyond the 

population level (i.e. growth effects). The proportion of spruce basal area mortality over 

total basal area mortality and the proportion of spruce mortality caused by I. tomentosus 

in infected forests were also determined and compared using the Tukey-Kramer,

Honestly Significant Difference test (Toothaker 1993) (a  = 0.05).

Stand Composition

The species tally by diameter class was used to compare compositional 

differences in regeneration (trees <10 cm diameter at breast height), and canopy layers 

(trees > 10 cm diameter at breast height). Density by species were calculated as both a 

proportion of and as a total stems/ha and basal area (m^/ha). Mean treatment (i.e. OGT, 

OGNT, PCT, PCNT) values were compared using the Tukey-Kramer HSD test.

Transition Probabilities

Potential gap-fillers are defined as the two chosen trees subtending each dead 

canopy tree that showed the best potential of replacing the dead tree in the canopy 

relative to the total pool of regenerating trees (Lertzman 1992). Criteria for selection 

included a marked release in annual radial growth, vigorous with a good live crown, 

subordinate to the dead tree in the canopy at the time of death, and within close proximity 

to the dead tree (<5m) (Chapter 3). One most likely gap-filler was selected from the two
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potential gap-fillers based on their ability to assert dominance over potential gap-fillers 

due to their vigor, growth response and proximity to the dead tree. In cases where no 

single tree showed clear dominance over other potential gap-fillers, both were taken.

The sum of the gap-maker/gap-filler transitions was used to develop transition 

probabilities for each species in the four forest types. Dead trees without any gap-fillers 

(e.g. recent mortality or microsite limitations) were not included in the matrix 

(approximately 9% of all dead trees). Gap-fillers associated with more than one gap- 

maker were assigned a fractional probability of transition based on the number of gap- 

makers it was replacing (Lertzman 1992). Gap-makers that could not be identified to 

species were recorded as ‘other’. Transition probabilities were determined from 1930- 

1950, 1950-1970, and 1970-1997 to examine variation in transition probabilities with 

time and due to harvest operations.

Simulation of Future Stand Composition

Predicted future stand composition was modeled using the 1970-1997 transition 

matrix and the average annual rates of mortality for each species for the same period. A 

constant annual mortality rate, constant transition probability, constant stand density, and 

the absence of catastrophic or wide-spread canopy level disturbance were assumed for the 

model. The current species composition for each forest type for trees >10 cm DBH was 

taken, then the annual mortality from the current density for each species was subtracted. 

Each annual mortality was then multiplied by the transition probability for each gap- 

filling species. These results were added to a running total of density for each species to 

provide estimates of population dynamics for a period of 200 years.
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4.3 RESULTS

4.31 Stand Composition

Eighty-five % of the I. tomentosus infected forest types had less than 6% infection 

incidence in living trees. The remaining 15% had between 6% and 15% infection 

incidence. Average understory density (trees >30 cm tall and <10em dbh) for the four 

forest types was 3305 stems per hectare (p>0.05) (Table 1). Spruce density was 

significantly lower in both old-growth forest types than the PCNT forest type and in the 

OGT forest type than the PCT forest (Tukey-Kramer HSD, p = 0.0006) (Table 1). In the 

canopy layer (trees >10cm dbh), average stand density was 765, 813, 641 and 760 

stems/ha for the OGNT, OGT, PCNT, and PCT forest types, respectively (Table 1). The 

canopy density for the PCNT forest type was significantly lower than all other forest 

types (p = 0.011) but there were no other significant differences between any other forest 

type. This may indicate more intense partial cutting in this forest type relative to the other 

PCT forest type. Spruce density in the canopy layer was significantly lower in both the 

OGT, OGNT and PCT forest types relative to the PCNT forest type (p = 0.027) (Table 1), 

suggesting that spruce density may be increased in partial cut forest types, but only when 

/. tomentosus is not present.

Average basal area was similar for the four forest types (p = 0.825) (Table 1). 

However, the percent spruce basal area of total basal area was highest in the OGNT forest 

type compared to the OGT and PCT forest types (p = 0.0132) (Table 1). The PCT forest 

type also had a significantly lower percent spruce basal area than in the OGT forest type. 

These results indicate that spruce basal area is higher in forest types not infected by I.

94



tomentosus and is higher in old-growth than partial cut forests. The latter result is likely 

due to the removal of large diameter-high basal area trees in partial cut stands.

4.32 Disturbance 

Disturbance Chronology

Since 1930, mortality has occurred in all decades in all four forest types (Figure 

1). Average decadal mortality by decade since 1930 for the OGT, OGNT, PCT and 

PCNT forests was 48.07, 44.40, 32.91, 35.25 stems>10cm dbh/ha/decade (not shown). 

Average decadal spruce mortality in the 1960’s was 30.12, 28.73, 11.22, and 11.42 

stems/decade for the OGT, OGNT, PCT and PCNT forests, respectively. Thus spruce 

mortality was more than halved following the harvest in both uninfected and infected 

partial cut forests relative to the old-growth forests. In contrast, fir mortality increased 

since the harvest in the partial cut forest types but not in the old-growth forest types 

(Figure 1). For the partial cut sites and the old-growth sites, spruce mortality, not 

including cut trees, was highest in all forests during the 1970’s. Fir mortality was highest 

during the 1960’s for the old-growth forests and highest during the 1980’s for the partial 

cut forests. All forest types were characterized by increasing total mortality from 1930 to 

1970. In the 1980’s and 1990’s the old-growth forests had declining total mortality rates 

and the same trend was evident during the 1990’s for the partial cut forests.

4.33 Accumulated Mortality

Mean accumulated mortality (less cut trees) was significantly higher in the OGT 

forest type compared to both partial cut types (p = 0.0068) (Table 1). Mean accumulated 

spruce mortality was also significantly higher for both old-growth forest types compared
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to both partial cut forest types (p<0.0001). Average accumulated basal area mortality was 

similarly significantly higher for both old-growth forest types compared to both partial 

cut forest types (p<0.0001), as was the proportion of spruce mortality of total basal area 

mortality (p<0.0001). The proportion of spruce basal area mortality killed by/. 

tomentosus was 0.312, and 0.150 in the OGT and PCT forest types, respectively (p =

0.025). Total mortality, total spruce mortality, total basal area mortality, and total and 

proportional spruce basal area mortality were all therefore generally reduced by partial 

cutting but there is no evidence to suggest that I. tomentosus caused significantly higher 

spruce mortality in this study.

4.34 Functional Gap Size

Most likely gap fillers averaged 2.35 m from dead spruce (N = 380) and 2.29 m 

from dead fir (N = 490) and species differences were only marginally significant (p 

=0.052). Since gap fillers respond to the two gap making species similarly, analyses 

presented hereafter are for species pooled. The maximum distance from a gap-maker to a 

gap-filler was 5.6 meters and the minimum was 0.05 meters. Ninety-five % of the 

releases occurred between 0.55m and 4.44m. There was no significant relationship 

between the distance of gap-maker to gap-filler and the diameter of the gap-maker (p = 

0 .068).

The average gap size was 16.76m^. The 97.5*’’ quantile (r = 4.44m) gap area was 

61.90m^ indicating that only 2.5% of the single tree gaps have a functional gap size larger 

than 62 m .̂ The product of mortality rate estimates and mean gap size, indicates that the
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percentage of stand area made available to new recruits per decade is 8.1%, 7.4%, 7% 

and 6.9% for the OGT, OGNT, PCT, and PCNT forest types, respectively.

4.35 Transition Probabilities

In general, transition probabilities indicate that fir gap-fillers outnumber all other 

gap-filler species by about 2:1 except in cases where the sample size of a particular gap 

maker is small. In old-growth forest types, spruce recruitment does not appear to be 

strongly affected by infection status since, in some cases spruce recruitment was greater 

in the OGT forest types than in the OGNT forest types (Figures 2,3,4). Furthermore there 

were no temporal changes in transition probability over the last 70 years in either old- 

growth or partial cut forest types. In general partial cut forest types had higher spruce 

recruitment than old-growth forest types in all cases but the fir to spruce transition in 

1970-1997. Furthermore, the spruce recruitment was not predictably higher in the PCNT 

forest type relative to the PCT forest type. Therefore spruce recruitment was increased by 

partial cutting but was unaffected by I. tomentosus. No interaction of partial cutting and 7. 

tomentosus was found.

4.36 Simulations of Future Stand Compositions

Two hundred year stand composition projections indicate that fir density may 

increase from its current proportion of 65-70% to about 80% while spruce density may 

decline from 28-30% to about 15% (Table 2). These projections also suggest that birch, 

Douglas-fir and western hemlock will continue to be maintained in low densities in these 

forests.
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Assuming no further harvests in the partial cut forest types in the next 200 years 

in the PCNT forest type (Table 2), spruce may increase from current relative density of 

approximately 33% to 38% and fir may decline from 63% to 57%. Other species should 

also be maintained as minor components. In the PCT treatment spruce density will not 

rise as it did in the PCNT forest types but will be 7-10% higher than in the old-growth 

forest types.
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4.4 DISCUSSION

Disturbance Chronology

Disturbance chronologies indicate that old-growth, sub-boreal forests are 

influenced by continuous low intensity disturbances. It also appears that I. tomentosus 

infected and uninfected forests have similar disturbance dynamics. Therefore, at the low 

infection levels observed in these stands (typically <6%) (British Columbia Ministry of 

Forests 1995), I. tomentosus appears to contribute to the general pattern of low intensity 

disturbance by working in concert with other agents to cause single tree to small group 

tree mortality. However, it does not increase spruce mortality compared to uninfected 

forests. Partial cut forests generally have lower rates of disturbance than old-growth 

forests and spruce mortality has been reduced. The effect of higher disease incidence, and 

therefore more inoculum, was not tested in this study. However, spruce mortality due to /. 

tomentosus could increase with moderate to high infection incidence which may explain 

the apparent species shifts observed in stands with higher infection rates (Lewis and 

Trammer 2000).

Estimates of disturbance intensity (-7-8% of stand area) by deeade in these old- 

growth sprace-fir forests are similar to several other forest types dominated by small 

disturbances. In an old-growth hemlock-hardwood forest in western upper Michigan, 

Frelich and Graumlich (1994) reported mean decadal disturbance rates of 5.4%. They 

noted many small gaps created in each decade contributed to the low disturbance rate, 

which is indicative of individual to small group tree mortality. Yamamoto (1995) 

reported that current stand area in gaps for an old-growth sub-alpine coniferous forest in
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central Japan was 7.3%. Frelich and Lorimer (1991) reported 5.7 to 6.9% mortality in a 

hemlock-hardwood forest moderated by light intensity disturbances.

Disturbance rates were highly variable over time ranging from virtually no 

disturbance to nearly 15% of stand area. For example, the 1970’s and 1980’s were the 

decades of peak disturbance for all forest types. During these decades disturbance was 

approximately 13.5%, 14.2%, 7.8% and 9.7% for the OGT, OGNT, PCT, and PCNT 

forests respectively. Even these upper estimates of disturbance intensity for the study area 

do not approach the levels of disturbance reported for medium to heavy intensity 

disturbances caused by wide-spread canopy level mortality caused by insects or 

catastrophic windthrow (Frelich and Graumlich 1994; Veblen et al. 1994; Kneeshaw and 

Bergeron 1998). Therefore the timing and intensity of gap formation at the Aleza Lake 

Research Forest corresponds to continuous, small-scale gap formation consisting of 

individual trees or small groups of trees.

Accumulated Mortality

Total accumulated mortality, total spruce mortality and the proportion of spruce 

mortality were all significantly lower in partial cut forest types compared to old-growth 

forest types. Thus, the partial cut harvest probably captured potential mortality that would 

have occurred if the stands were not cut and also has subsequently improved resource 

availability for residual trees and improved survivorship. If spmce mortality was lower in 

OGT forest types compared to PCT or PCT and PCNT forest types, there may have been 

evidence for an interaction with partial cutting and I. tomentosus. The results here are 

opposite, with spruce mortality lower in PCT forest types relative to OGT forest types.
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and no difference between PCT and PCNT forest types. Therefore it can be concluded 

that partial cutting in I. tomentosus infected areas does not increase the spread rate of the 

root disease. Further, the evidence shows that spruce mortality can actually he lowered 

(-15%) by partial cutting in infected forest types (Table 1). The results of thinning in a 

Picea glauca plantation affected by I. tomentosus by Whitney (1993) indicated lower 

mortality of Picea glauca in the thinned plantations relative to unthinned controls. 

Whitney suggested that thinning increased discontinuity of roots leading to fewer 

subsequent infections, and to increased vigor in residual trees that would prolong a trees’ 

life even if infected by I. tomentosus. In a detailed study on changes in inoculum volume 

following harvest, Lewis (unpublished data) did not find a significant increase in total 

inoculum volume with age of stump although the root disease did appear to move radially 

from the heartwood into the sapwood following harvest.

Stand Composition

Documented understory tree recruitment to the canopy began as early as 1930, but 

many gap-filling trees indicated releases occurring much earlier than this. The evidence 

of recruitment in this study supports DeGrace (1952), who using permanent sample plot 

data, reported that the forests at the Aleza Lake Research Forest were changing from 

even to uneven aged during the 1940’s and 1950’s. In a similar spruce-fir forest type near 

Smithers and Houston, British Columbia, Kneeshaw and Burton (1997) reported that 

older forests also appeared to be successfully maintaining themselves through understory 

recruitment in the absence of fire.

1 0 1



Stand composition analyses indicate that spruce populations in the understory are 

similar for the two old-growth forest types and for the two partial cut forest types (Table 

1). These comparisons suggest that I. tomentosus does not affect understory spruce 

populations in either old-growth or partial cut stands. In general, partial cutting increased 

spruce populations by creating an understory environment more suitable for spruce 

colonization and survivorship. This more suitable environment appears to benefit spruce 

germination even in I. tomentosus infected forest types.

In the canopy layer, it was evident that I. tomentosus had no effect on spruce 

populations for old-growth stands. However, when spruce basal area was considered it 

was noted that the OGT forest types had lower spruce basal area than the OGNT forest 

types. Similarly, spruce densities in OGT and PCT forest types were not significantly 

different but spruce basal area was higher in OGT forest types compared to PCT forest 

types (Table 1). Since mortality rates were not substantially different between these 

forests and populations were similar, the result may be due to decreased growth rates in 

residual P. glauca x engelmannii. Thus there does not appear to be an impact of applying 

partial cutting to infected stands on spruce populations but there may be an effect on 

spruce volumes. Other studies have reported decreased growth rates of Picea spp. due to

I. tomentosus infections (e.g. Whitney 1980, Merler 1984, Lewis 1997).

Transition Probability and Simulations of Future Stand Composition

Based on the assumptions in the model used here, in the old-growth forests, 

spruce density may decline from its current abundance of about 28-30% to around 10% 

after 200 years (Table 2). This is due to lower current mortality rates for fir and its high
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success as a transition species. This projection corresponds with Kneeshaw and Burton 

(1997) who noted mixed spruce-fir forests may beeome dominated by fir. In these forests 

as well as the forests of the present study, a period of low spruce regeneration, high 

spruce mortality and redueed spruce recruitment to the canopy contribute to the eventual 

dominance of fir. However since spruce is a longer lived species than fir, the long-term 

decline in spruce populations may not be as significant as modeled here. Furthermore 

other undefined terms in the model may effect the predictions presented. For example, 

higher than modeled sub-alpine fir mortality due to abiotic or biotic factors would open 

the canopy and potentially inerease spruee regeneration and reeruitment to the canopy. 

However the model does provide a base-line estimate of stand development based on a 70 

year average of mortality/recruitment dynamics and is useful as a point-of-eomparison.

In the old-growth forest types recent spruce mortality has been higher than fir 

mortality. Given this result and the high rate of fir recruitment over time (Figures 2,3,4) it 

is reasonable to assume that fir density has been on the rise over the last 70 years in the 

old-growth forests and spruce density has been decreasing. These stand dynamics may 

characterize the current serai stage of these old-growth forests where the fire-origin 

cohort of spruce has experieneed high mortality rates as they approach the end of their 

life-span and are replaced by prolific fir regeneration.

In the partial cut forests the combination of lower spruce mortality, following the 

harvest, and generally higher spruce canopy recruitment rates relative to the old-growth 

forests should mean that current spruce density is markedly higher in the partial cut 

forests relative to the old-growth forests. This is clearly the case for the regeneration
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layer (Table 1) but not for the canopy layer where spruce density was similar for both 

old-growth and partial cut forest types.

However, since the stand improvement harvest specifications were to cut large 

diameter stems, spruce density in the canopy would have been dramatically reduced 

immediately following the harvest. Even moderate annual diameter growth rates of 2.0 to

3.0 mm/yr (Newbery, unpublished data), in advanced spruce regeneration would take 

between 20-25 yrs to reach 10 cm dbh if they were 5 cm dbh at the time of harvest. If the 

current old-growth stand composition is indicative of pre-harvest partial cut stand 

composition, relative regeneration layer spruce density would only have been around 8- 

13% (Table 3). Since current relative regeneration spruce density in the partial cut forests 

is 18-21% (Table 3) many of the existing spruce in these forests have germinated since 

the harvest. At the same moderate growth rate mentioned above they would take at least 

50 years to reach 10 cm dbh and thus were still not counted in the canopy layer tally 

conducted in 1997 (about 42 years after harvest). Therefore, there is biological evidence 

that suggests spruce density in this layer will also rise because of the harvest over the 

long term as modeled by the simulations.

104



4.5 CONCLUSIONS

Overall, the disturbance regime in old-growth forests is one of low intensity 

single tree to small group tree mortality which does not differ between /. tomentosus 

infected and uninfected gaps. The application of partial cutting to mixed spruce-fir forests 

has decreased mortality rates in general and of particular importance, spruce mortality 

rates have been decreased in partial cut forests regardless of infection status. However 

growth rates of spruce may be reduced in I. tomentosus infected forests. Transition 

matrices indicate increasing dominance of fir at the expense of spruce assuming 

disturbance regimes and transition success remain consistent in the old-growth forests. In 

partial cut forests, spruce populations will generally increase in density.

105



4.6 LITERATURE CITED

Andison, D. 1996. Managing for landscape patterns in the sub-boreal spruce forests of
British Columbia. Ph.D. dissertation. Faculty of Forestry, University of British 
Columbia. Vancouver, BC. 178 pp.

British Columbia Ministry of Forests. 1995. Root Disease Management Guidebook. 
British Columbia Ministry of Forests and British Columbia Ministry of 
Environment. Victoria, British Columbia.

Clark, D.F. 1994. Post-fire succession in the sub-boreal spruce forests if the Nechako 
Plateau, central British Columbia. M.Sc. thesis. Department of Biology, 
University of Victoria. 198 pp.

Decie, T. 1957. Working plan for the forest experiment station Aleza Lake: for the period 
April U*, 1957 to March 3U‘, 1967. British Columbia Forest Service. Prince 
George, BC.

DeGrace, L.A., Robinson, E.W. and Smith, J.H.G. 1952. Marking of spruce in the Fort 
George Forest District. British Columbia Forest Service, Dept, of Lands and 
Forests, Victoria, B.C. Research Note No. 20. 13 pp.

DeLong, S.C. and Tanner, D. 1996. Managing the pattern of forest harvest: lesson from 
wildfire. Biodiversity and Conservation 51:191-1205.

Finck, K.E., Humphreys, P. and Hawkins, G.V. 1989. Field guide to pests of managed 
forests in British Columbia. Forestry Canada, Pacific and Yukon Region.
Victoria, BC.

Frelich, L.E. and Lorimer, C.G. 1991. Natural disturbance regimes in hemlock-
hardwood forests of the Upper Great Lakes Region. Ecological Monographs 61 : 
145-164.

Frelich, L. E. and Graumlich, L.J. 1994. Age-class distribution and spatial patterns in 
an old-growth hemlock hardwood forest. Can. J. For. Res. 24:1939-1947.

Frelich, L.E. and Reich, P.B. 1995. Spatial patterns and succession in a Minnesota 
southern-boreal forest. Ecological Monographs. 65:325-346.

Hawkes, B., Vasbinder, W. and DeLong. 1997. Retrospective fire study: fire regimes 
in the SBSvk & ESSFwk2/wc3 biogeoclimatic units of northeastern British 
Columbia. McGregor Model Forest Association. Prince George, BC. 34 pp.

Holland, S.S. 1976. Landforms of British Columbia: a physiographic outline. Bulletin 
48, British Columbia Department of Mines and Petroleum Resources. Victoria, 
British Columbia.

106



Hunt, R.S. and Unger, L. 1994. Forest pest leaflet: Tomentosus root disease. Forestry
Canada, Forest Insect and Disease Survey. Pacific forestry Center, Victoria, B.C.

Kneeshaw, D.D. and Burton, P.J. 1997. Canopy and age structures of some old
sub-boreal Picea forests in British Columbia. Journal of Vegetation Science 
8:615-626.

Kneeshaw, D.D. and Bergeron, Y. 1998. Canopy gap characteristics and tree 
replacement in the southeastern boreal forest. Ecology 4(3):783-794.

Lertzman, K.P. 1992. Patterns of gap-phase replacement in a sub alpine, old-growth 
forest. Ecology 78(2):657-669.

Lewis, K.J. and Hansen, E.M. 1991a. Survival of Inonotus tomentosus in stumps and 
subsequent infection of young forests in north central British Columbia. Can.
Jour.For. Res. 21:1049-1057.

Lewis, K.J. and Hansen, E.M. 1991b. Vegetative compatibility groups and protein
electrophoresis indicate a role for basidiospores in spread on Inonotus tomentosus 
in spruce forests of British Columbia. Can. J. Bot. 69:1756-1763.

Lewis, K.J., Morrison, D.J. and Hansen, E.M. 1992. Spread o f Inonotus tomentosus from 
infection centers in spruce forests in British Columbia. Can. J. For. Res. 22:68-72.

Lewis, K.J. 1997. Growth reduction in spruce infected by Inonotus tomentosus in central 
British Columbia. Can. J. For. Res. 27:1669-1674.

Lewis, K.J. and Lindgren, B.S. 1999. Influence of decay fungi on species composition 
and size class structure in mature Picea glauca x engelmannii and Abies 
lasiocarpa in mature sub-boreal forests of central British Columbia. Ecology and 
Management 123:135-143.

Meidinger, D. and Pojar, J. 1991. Ecosystems of British Columbia. Research Branch, 
Ministry of Forests. Crown Publications Inc. 330 pp.

Merler, H.A. 1984. Tomentosus root rot of white spruce in central B.C. Masters Thesis, 
University of British Columbia, Vancouver.

Merler, H.A., Shulting, P.J, and VanderKamp, B. 1988. Inonotus tomentosus (Fr.) Teng 
in central British Columbia. In Proceedings of the 7th International Conference 
on Root and But Rots, Vernon and Victoria, B.C., August 9-16, 1988. lUFRO 
working party s2.G6.Gl. Edited hy D. Morrison. Forestry Canada, Pacific 
Forestry Center, Victoria, B.C. 985 pp.

107



Parminter, J.V. 1992. Typical historic patterns of wildfire disturbance by biogeoclimatic 
zone. Protection Branch, BC, Ministry of Forests.

Toothaker, L.E. 1993. Multiple Comparison Procedures. Sage University Papers. 
London, England.

Veblen, T.T., Hadley, K.S., Nel, E.M., Kitzberger, T., Reid, M., and Villalba, R. 1994. 
Disturbance regime and disturbance interactions in a Rocky Mountain sub-alpine 
forest. Journal of Ecology 82:125-135.

Welles, R.W., Lertzman, K.P. and Saunders, S.C.. 1998. Old-growth definitions for the 
forests of British Columbia, Canada. Natural Areas Journal 18:279-292.

Whitney, R.D. 1980. Polyporous tomentosus root and butt rot of trees in Canada.
Proceedings of the 5 th International Conference on Problems of Root and Butt 
Rot in Conifers, Aug. 1978, Kassel, Germany. Edited by L. Pimitri.

Whitney, R.D. 1993. Inonotus tomentosus in Ontario, and the effects of thinning on the 
disease. For. Chron, 69(4):445-449.

Yamamoto, S. 1995. Gap characteristics and gap regeneration in sub-alpine old-growth 
coniferous forests, central Japan. Ecological Research 10:31-39.

108



Table 1. Summary of stand composition and mortality data. For the partial cut forest 
types, the mortality data do not include cut stems.

Layer Stand Attribute OGT (n = 
21)

OGNT (n 
= 23)

PCT (n = 
22)

PCNT (n 
= 23)

A verage Density  
(stem s/ha; M ean/SD )

3 7 0 4 /
782 .51

3236 /
9 43 .98

3 3 1 7 /
8 5 9 .1 0

2 9 9 7 /
1 1 4 1 .8 6

R egeneration Layer Percent Spruce  
Density: M ean/SD

12/
5 .8 4

17/
6 .93

21 /
11 .42

23 /
10 .04

Percent Fir Density: 
M ean/SD

92/
6 .4 9

86/
7 .93

78 /
12 .02

77 /
10 .78

A verage D ensity  
(stem s/ha): M ean/SD

81 3 /
2 1 0 .4 9

765/
147 .57

7 6 0 /
195 .47

6 4 1 /
131 .87

Percent Spruce  
Density: M ean/SD

26/
11 .14

30/
8 .26

23 /
11 .27

33 /
13 .85

A verage B asal Area 
(m^/ha): M ean/SD

3 6 .2 3 /
2.21

3 6 .5 3 /
2 .10

3 8 .2 5 /
2 .1 0

3 8 .5 1 /
2 .0 6

P ercent Spruce Basal 
Area: M ean/SD

4 7 /
0 .16

57/
0.06

41
/0 .1 6

50/
0 .1 8

C anopy Layer
A verage Total Mortality 

(stem s/ha): M ean/SD
3 5 5 .9 /
114 .7

34 0 .7 0 /
96 .72

2 5 3 .4 1 /
1 00 .48

2 9 2 .4 4 /
117 .39

A verage Spruce  
Mortality (stem s/ha): 

M ean/SD

1 48 .17 /
7 2 .8 9

142 .63 /
71 .87

5 9 .5 5 /
5 0 .1 8

5 5 .0 1 /
4 0 .7 4

A verage B asal Area 
Mortality (m2/ha): 

M ean/SD

2 6 .5 2 /
9 .8 0

2 9 .3 3 /
9 .80

17 .16 /
8 .9 9

18 .28 /
9 .18

Percent Spruce  
Mortality of Total 

Mortality: M ean/SD

5 1/
0 .1 9

56/
0.19

3 1 /
0 .2 6

2 7 /
0 .29

P ercent Spruce  
Mortality C au sed  by 

Inonotus tomentosus: 
M ean/SD

3 1 /
0 .2 8

N/A
15/

0 .1 9
N/A
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Table 2. Species composition dynamic over the next 200 years for each forest type based 
on the average annual mortality rates for each species since 1930 and the transition 
probability for each gap-maker obtained from the transition matrices since 1970. The 
illustrations assume no catastrophic or high intensity disturbance occurs during the 
modeling horizon. OGNT = old-growth without 7. tomentosus caused mortality, OGT = 
old with 7. tomentosus caused mortality, PCNT = partial cut forests without 7. tomentosus 
caused mortality, PCT = partial cut forests with 7. tomentosus caused mortality.

Treat­ Current Composition + 50 years + 100 years + 200 years
ment

Spruce Fir Other Spruce Fir Other Spruce Fir Other Spruce Fir Other
OGNT 0.30 0.65 0,05 0.27 0.68 0.05 0.24 0.71 0.05 0.17 0.77 0.06
OGT 0.26 0.70 0.04 0.23 0.73 0.04 0.20 0.76 0.04 0.14 0.81 0.05
PCNT 0J3 0.63 0.04 0.34 0.62 0.04 0.36 0.60 0.04 0.38 0.57 0.05
PCT 0.23 0.72 0.05 0.23 0.73 0.04 0.23 0.73 0.04 0.24 0.74 0.02
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Figure 1. Disturbance chronologies for the four forest types. Each bar represents the 
average mortality (stems/ha) occurring in each decade for spruce and fir species and total 
mortality which includes other species (never exceeds more than 22 stems/ha).
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1930-1950

Figure 2. Transition probability data from 1930-1950 for: OGNT = old-growth without /. tomentosus caused mortality, OGT = old 
with I. tomentosus caused mortality, PCNT = partial cut forests without I. tomentosus caused mortality, PCT = partial cut forests with 
/. tomentosus caused mortality. In all cases the transitions are in the form of gap-maker : gap-filler. For example the Spruce:Fir 
transition indicates a Spruce mortality being replaced by an Fir gap-filler. Data are presented in triads such that each gap-making 
species has three possible transition outcomes and there are three possible gap-making species. Thus, for each forest type, transition 
probabilities total one for each species of gap-maker. (N < 5 for Spruce gap makers in the PCNT forest type).
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Figure 3. Transition probability data from 1950-1970 for: OGNT = old-growth without/. caused mortality, OGT = old
with I. tomentosus caused mortality, PCNT = partial cut forests without /. tomentosus eaused mortality, PCT = partial cut forests with 
I. tomentosus caused mortality. In all cases the transitions are in the form of gap-maker : gap-filler. For example the Spruce:Fir 
transition indicates a Spruce mortality being replaced by an Fir gap-filler. Data are presented in triads such that each gap-making 
species has three possible transition outcomes and there are three possible gap-making species. Thus, for each forest type, transition 
probabilities total one for each species of gap-maker. (N < 5 for Other gap makers in the PCNT forest type).
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Figure 4. Transition probability data from 1970-1997 for: OGNT = old-growth without I. tomentosus caused mortality, OGT = old 
with I. tomentosus caused mortality, PCNT = partial cut forests without I. tomentosus caused mortality, PCT = partial cut forests with 
/. tomentosus caused mortality. In all cases the transitions are in the form of gap-maker : gap-filler. For example the SpruceiFir 
transition indicates a Spruce mortality being replaced by an Fir gap-filler. Data are presented in triads such that each gap-making 
species has three possible transition outcomes and there are three possible gap-making species. Thus, for each forest type, transition 
probabilities total one for each species of gap-maker. (N < 5 for Other gap makers in all forest types).
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CHAPTER 5. STAND LEVEL SPATIO-TEMPORAL DISTURBANCE 
PATTERNS CAUSED BY INONOTUS TOMENTOSUS AND OTHER AGENTS IN 

SUB-BOREAL SPRUCE-FIR FORESTS

5.0 ABSTRACT

The small-scale canopy level disturbance regime in old-growth sub-boreal forests 

was compared for three stands with Inonotus tomentosus (Fr.) Teng caused mortality (5- 

10% infection incidence of infection) and three stands without any evidence of the root 

pathogen. The spatial and temporal patterns of canopy disturbance and the patch structure 

of trees were quantified from 0.49ha stem-mapped plots using spatial autocorrelation 

analysis (Moran’s 1 and Standard Normal Deviates). Spatio-temporal patterns of canopy 

disturbance and canopy composition were similar for I. tomentosus infected and 

uninfected stands. For infected and uninfected stand types pooled, canopy disturbance per 

decade ranged from a maximum of 6.0% to a minimum of 5.09%. Canopy gaps averaged 

<7m in diameter but larger gaps up to about 28m in diameter also were found. Gaps were 

irregularly distributed throughout the plots over the last 250 years. Species patch structure 

analysis indicated that Picea glauca x engelmannii (Parry ex Engelm.) was more likely to 

be spatially associated with itself than with other species, whereas Abies lasiocarpa 

(hook.) Nutt, had neither positive nor negative spatial associations with itself or with 

Picea glauca x engelmannii. These results show that small-scale disturbances are 

important successional mechanisms in sub-boreal spruce forests and that small scale- 

disturbance characteristics do not differ between forests with and without I. tomentosus 

infection.
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5.1 INTRODUCTION 

Across the landscape of British Columbia’s central interior, sub-boreal forest 

regions were historically characterized by mature forests dominated by Picea glauca x 

engelmannii (Parry ex Engelm.) (hybrid spruce, hereafter referred to as spruce), Abies 

lasiocarpa (Hook.) Nutt, (sub-alpine fir hereafter referred to as fir), and Pinus contorta 

(Hawkes et al 1997). The prevailing disturbance regime notion is that catastrophic fire 

came at intervals about equal to tree longevity (80-200 years) in this forest type, resetting 

succession over large areas before small disturbances had much effect on stand structure 

(Johnson 1992). This view of historical disturbance frequency maintains that forests were 

dominated by even aged, single storied stands, and had few uneven-aged, old-growth 

forests (Oliver and Larson 1996).

However, the sub-boreal forest region in central British Columbia is climatically 

and topographically diverse and this diversity strongly affects disturbance regimes. For 

example, in wet montane, sub-boreal and sub-alpine spruce-fir forests, catastrophic stand 

replacing disturbances occur between 227-6250 years whereas in dry forests of the same 

types, mean fire return intervals are about 200 years (Hawkes et al. 1997; DeLong and 

Tanner 1996). Small-scale disturbances may be major factors influencing succession and 

stand development in areas with long fire return intervals.

The contemporary dominance of clear-cut silviculture systems in both dry and 

wet spruce-fir forests in British Columbia has caused an increase in early serai, even aged 

stands across the landscape over the last 60 years. In many managed landscapes, these 

young forest types are overwhelmingly abundant relative to their pre-settlement 

occurrence (Alverson et al. 1988; Mladenoff et al. 1993; Parminter and Daigle 1997).
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Concern over this alteration of natural landscape characteristics and stand level structure 

has lead to the demand for silvicultural approaches that maintain the natural landscape 

mosaic of stand types and structures whilst maintaining timber supplies in resource 

dependent communities. Therefore ecologists have been challenged to characterize the 

small-scale disturbance regime as a prerequisite for the development of appropriate 

silvicultural methods.

In sub-boreal spruce forests, several agents are responsible for small to medium­

sized disturbances including: root diseases, phloem-feeding insects, wind, snow, ice and 

edaphic conditions. Inonotus tomentosus (Fr.) Teng is a common and economically 

significant root disease pathogen in these forests (Lewis 1997). I. tomentosus primarily 

attacks spruce, and infected trees are subject to chronic declines in vigor (Hunt and Unger

1994). Eventually tree mortality occurs due to dysfunctional roots, or windthrow due to 

weakened root systems (Lewis and Hansen 1991; Lewis 1997).

Due to its ability to spread from tree to tree via root-to-root contact, its preference 

for spruce as a host, and a high rate of blow-down in trees infected with /. tomentosus, the 

disease may cause aggregated disturbance patterns rather than randomly dispersed 

patterns in a stand. This aggregated pattern of disturbance may have implications for gap 

arrangement and demography (Qi and Wu 1996; Bellehumeur et al. 1997). For example, 

aggregation of I. tomentosus disease pockets may allow species of trees to occupy the 

gaps that are resistant to infection {i.e. fir). Thus the spatial pattern of I. tomentosus 

caused disturbance may lead to clusters of fir forming the canopy in I. tomentosus 

infection centers, and spruce persisting only outside the centers. Over time as the
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infection centers eoalesce, spruce populations may be diminished significantly compared 

to uninfected forests.

In a companion study (Chapter 4), 10 meter fixed radius plots were established in 

both infected and uninfected old-growth forests in order to assess fine-scale patterns of 

tree mortality and subsequent tree replacement tendencies. Disturbance affected an 

average of approximately 8.1% and 7.4% of stand area per decade for/, tomentosus 

infected and uninfected old-growth stands, respectively. This study found that I. 

tomentosus, at low (<6%) incidence, did not affect spruce mortality rates or subsequent 

gap-maker - gap-filler transition probabilities relative to the remaining array of 

disturbance agents affecting the stands at Aleza Lake. However, this gap-level study did 

not address the spatial pattern {i.e. gap dispersion) of the gaps themselves or subsequent 

species patch structure at larger scales. Therefore the objectives of this paper are to 

describe and compare the spatial and temporal patterns of natural disturbance and species 

patch structure for three, 0.49 hectare /. tomentosus infected stands and three uninfected 

old-growth spruce-fir stands located in wet-cool, sub-boreal forests in east central British 

Columbia. These objectives are addressed by developing canopy tree stem-maps and then 

analyzing spatio-temporal patterns of disturbance and species spatial patterns with 

Moran’s I and Standard Normal Deviates. This approach focuses on the cumulative 

effects of gap formation at the stand level. Therefore this approach provides information 

on the small-scale disturbance regime at a higher scale than in gap-phase studies but at 

lower scale than in landscape studies.
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5.2 METHODS

5.21 Study Area

The research was conducted in old-growth stands at the 10 235 hectare Aleza 

Lake Research Forest, located at 54° 07’ N, 122° 04’ W, about 60 kilometers east of 

Prince George, British Columbia, Canada. It lies between 600 and 750 meters above sea 

level on the Nechako Plain of the Fraser River basin in the Interior Plateau physiographic 

region (Holland 1976). The Aleza Lake Research Forest is located in a wet, cool sub­

zone of the sub-boreal forest and is classified as the Sub-Boreal Spruce, wet-cool sub­

zone (SBSwkl) according to a biogeoclimatic system commonly used in British 

Columbia (Meidinger and Pojar 1991). The sub-zone is characterized by cold, snowy 

winters and moist, cool summers. The climate is slightly wetter and more moderate than 

typical for other sub-boreal spruce sub-zones due to the orographic influence of the 

Northern Rocky Mountains to the east, resulting in higher precipitation than usual for the 

rest of the zone (Meidinger and Pojar 1991).

The old forests are mixtures of spruce and fir with scattered Pseudotsuga 

menziesii var. glauca, Pinus contorta var. latifolia and Betula papyri/era. Old forests at 

the Aleza Lake Research Forest are thought to be uneven aged (Decie 1957). The 

dominant spruce, perhaps members of an initial fire origin cohort, are as many as 300 

years old. The oldest fir are about 200 -  250 years old and are probably members of a 

post-fire establishment cohort. The scattered P. menziesii component can be as many as 

500 years old (Decie 1957) and may be survivors of the last fire as well as some younger 

individuals which successfully regenerated in the understory. The well developed
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understory layer is mainly comprised of fir (80%) and spruce (20%) (Chapter 4). Spot 

fires, insects {Dendroctonus rufipennis), various diseases, (including I. tomentosus), 

timber harvesting, windthrow, and snow or ice damage have been the main disturbance 

agents at the Aleza Lake Research Forest since the last wildfire (Decie 1957).

5.22 Site Selection

Forest cover stratification: Forest cover maps were initially used to locate 12 

stands that were large {i.e. > Vi hectare) and relatively homogeneous mixtures of spruce 

and fir on medium to good sites, undisturbed by human activities, with minimal variation 

in soils and topography. Each of the 12 stands was ground checked for appropriate 

characteristics and a number were dropped because they didn’t meet the initial criteria. 

Each stand was checked for the presence of I. tomentosus using standard field techniques 

(Finck et al. 1989). In living trees, the primary diagnostic of I. tomentosus are large, 

longitudinal pits formed in roots with advanced decay and the presence of dark reddish- 

brown stain in the roots with relatively recent infection (Finck et al. 1989). After a tree 

dies, the longitudinal pits can be used to confirm I. tomentosus for 30-40 years before 

decomposition makes diagnosis less reliable.

Three stands were selected with relatively abundant I. tomentosus infection (5- 

10%) and mortality throughout and three stands were selected without any apparent I. 

tomentosus infection. Plot 1 was located in a stand on the west side of the Aleza Road 

approximately 2.5kms south of the junction of the Bear Road and the Aleza Road. Plot 2 

was located in a stand on the north side of the Bear Road approximately 1km east of the 

junction of the Bear Road and the Aleza Road. Plot 3 was located on the south side of the
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East Loop Road approximately 500m east of the junction of the Old Ranger Road and the 

East Loop Road. Plot 4 was located in a stand on the East side of the Aleza Road about 

l.Skms south of the switchback approaching Camp Creek. Plot 5 was located in a stand 

on the south east side of the Bear Road (near an secondary access road) about 3.5kms 

south-west of the Aleza Road and Bear Road junction. Plot 6 was located in a stand on 

the east side of the Aleza Road about 700m south of the Aleza Road and Upper Fraser 

Road junction.

In all cases, the plots were established on flat areas, with well-drained loamy 

soils. Indicator plant species present on the plots suggested that the sites were broadly 

mesic in moisture status and medium to rich in nutrient status (DeLong 1996). Soil 

moisture and nutrient status were not determined quantitatively because qualitative 

assessments of edaphic characteristics provide acceptable means of characterizing 

relative soil moisture and nutrient status within the same biogeoclimatic sub-zone (Klinka 

et al. 1989).

5.23 Sampling design and plot measurements

Within each of the six identified stands, one 70 x 70 meter plot (0.49 ha) was 

established. This plot size was selected because it was large enough to include many 

gaps. Each plot was sub-divided into a grid network with 7 x 7 meter spacing along each 

axis using a laser-surveying instrument (Criterion 400, Laser Technology Inc.). The 

seven meter spacing was chosen to sample at least 100 trees in each plot. There were 11 

lines along each axis for a total of 121 grid points located at the intersection of each line.
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At each grid point a wooden stake was labeled according to its location on the grid {i.e. 

x,y coordinates) and driven into the ground.

The canopy tree (defined as any tree whose crown receives direct sunlight from 

above) whose stem was closest to each grid point was then mapped relative to the grid 

point and was coded according to species, diameter, and live crown ratio (Frelich and 

Graumlich 1994). This canopy criteria was used because trees whose crowns receive 

direct light from above may have been released due to a gap-making event. Trees whose 

crowns do not receive direct light from above are assumed to be suppressed by the crown 

of neighboring trees. Selection of the nearest stem, rather than using the nearest crown 

results in the best estimate of original gap area before lateral crown expansion of 

bordering trees into the gap (Frelich and Martin 1988; Lorimer and Frelich 1989). From 

each canopy tree, one increment core was taken at 1.0 m to avoid, as much as possible, 

losses in core information due to butt rot. Cores terminating within 2 cm of the estimated 

location of the pith were considered complete and the total age was extrapolated from the 

earliest five years growth to the pith (Frelich and Graumlich 1994; Frelich and Reich

1995). If a complete core could not be taken from a tree after several attempts, the next 

closest tree was selected. The cores were labeled according to the grid point location, 

stored in plastic straws, dried, mounted on grooved rigid foam strips, sanded, and 

scanned. Ring width increments were digitally scanned and analyzed with Windendro® 

(Regent Instruments, Blaine, Quebec). Increment data was graphed for visual inspection 

of radial growth patterns.
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5.24 Interpretation of Growth Patterns

Three general criteria were used to relate growth rate patterns to canopy mortality 

(Chapter 3). The tree criteria were: 1) High rates of early growth (1.5mm/yr for spruce,

1.7mm/yr for fir, and 1.07mm/yr for birch) indicate a tree was growing in a gap (created 

by a disturbance) when it was very young. 2) Tree release (>65%, sustained for 15 years, 

preceded by 15yrs of slow growth, for spruce <40cm dbh and for fir and birch <3 0cm 

dbh) indicates a tree was suppressed in the understory and then released by an overhead 

mortality. 3) Interpretations of overall growth patterns (see Chapter 3) indicating either 

gap origin status or release were used to determine the decade of canopy ascension for 

canopy trees not meeting gap-origin or release criteria.

5.25 Analysis for Spatial Patterns of Disturbance

The spatial patterns of canopy ascension dates were used to describe the spatial 

patterns of small-scale disturbance in the 70x70 meter grid plots. This approach does not 

require knowledge of locations of canopy trees when they died, but rather assumes that 

canopy ascension dates coincide with overhead mortalities in the vicinity. Spatial 

autocorrelation analysis using Moran’s 1 is used to test for spatial independence in canopy 

ascension date at one locality relative to adjacent localities. Adjacency is specified for the 

analysis depending on the inter-tree distance and the lag distance set for the analysis 

(Sokal and Oden 1978a; Sokal and Oden 1978b; Legendre and Fortin 1989; Frelich et al. 

1993; Frelich and Reich 1995). Thus, trees within the set distance lag are considered 

adjacent and those outside the lag are ignored. For this analysis a cumulative distance lag 

is employed and the analysis determines the Moran’s 1 statistic for the decade of canopy
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ascension for any tree within 7 meters of another. Each additional lag includes the 

previous lag distance plus 7 meters.

Interpreting Moran’s I is similar to interpretations for the standard correlation 

coefficient (Sokal and Oden 1978a; Sokal and Rohlf 1995; Frelich et al. 1993; Frelich 

and Reich 1995). This statistic represents the strength of spatial association for canopy 

ascension dates for a defined distance lag (Frelich and Graumlich 1994). Moran’s I was 

determined for each distance lag (i.e. 0-7m 0-14m, 0-2Im, etc.) and a correlogram was 

construeted for each plot up to 70 meters. Each correlogram plots the Moran’s I statistic 

for each distance lag on the ordinate axis and the distance lag on the abscissa. High 

positive values of Moran’s I at short distances indicate that canopy ascension date is 

strongly correlated with canopy ascension dates in neighboring trees. Values of Moran’s I 

will gradually decrease as distance increases in uneven-aged forests because date of 

release will not be reliably predicted by a neighbor’s date of release. Significance testing 

of the correlograms was done first at the global level by determining if at least one p- 

value for individual Moran’s I coefficients was significant at the global level. This was 

done by using the Bonferroni correction method for multiple tests (e.g. a  = 0.05/number 

of distance lags (11)) (Sokal and Oden 1978a). If the global test is has at least one 

significant Moran’s I coefficient then the point at which Moran’s I becomes no longer 

significant (a  = 0.05) can be interpreted as the average patch size diameter created by 

disturbance (Frelich et al. 1993; Frelich and Reich 1995). Globally insignificant 

correlograms are interpreted that average patch size diameter is less than the distance lag.
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spatial autocorrelation analysis was also used to determine the tendency towards 

association or disassociation between pairs of unlike or like species. (Sokal and Oden 

1978a; Frelich et al. 1993; Frelich and Reich 1995). With species data, a join-counts 

statistic was calculated for spruce-fir joins, spruce -  spruce joins, and fir-fir joins. The 

join-counts calculation is done between one sampled canopy tree at a given location and 

each remaining canopy tree immediately surrounding it on the grid in all directions within 

7 meters. This connection scheme is a queens connection matrix (Sokal and Oden 1978a). 

Significance testing (a = 0.05) is performed by calculating a standard normal deviate 

(S.N.D) for each join possibility. Significant positive spatial autocorrelation for a join- 

pair is indicated by S.N.D’s > 2.0. Significant negative spatial autocorrelation for ajoin- 

pair is indicated by S.N.D’s < -2.0. No significant autocorrelation (p>0.05) of species is 

indicated by S.N.D’s between -2.0 and 2.0 (Moran 1948; Sokal and Oden 1978a; Reed 

and Burkhart 1985; Frelich and Reich 1995).
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5.30 RESULTS

5.31 Canopy Composition

Spruce canopy composition averaged 29.9% for the three I. tomentosus infected 

plots (n = 345), while fir canopy composition was 66.1%. I. tomentosus incidence was 

estimated at between 5-10%. For the three uninfected plots (n = 344), spruee density was 

32.6%, while fir density was 58.7%. No significant difference (1,634) = 0.0957) (a  = 

0.05) was found for the proportion of spruce in the canopy between the two forest types.

5.32 Canopy Ascension Type by Species

From the 334 canopy trees sampled in the I. tomentosus plots, there were 369 

canopy ascensions and for the uninfected plots there were 401 canopy ascensions 

recorded from 336 increment cores (Table 1). No significant difference (%̂ (1,243) = 

0.1523) was found between infeeted and uninfected forest types in the proportion of gap 

origin verses release events for spruce or fir (Table 1).

5.33 Canopy Ascension by Decade

In each forest type, canopy ascensions were recorded as early as 1675 (Figure 1 

and 2). For plot one (Figure 1) the species ascending to the canopy between 1670 and 

1680 was a spruce and for plot four (Figure 2) the species was a Douglas-fir. Very little 

mortality was recorded before 1795, which is likely because trees which would have 

responded to the mortality prior to that have died and because the criteria used for canopy 

ascension are vigorous enough to avoid detecting canopy thinning events in when the 

stand was younger.

126



With the exception of plot 2 and 6 (Figure 1), the highest rate of canopy ascension 

occurred between 1960 and 1970. For plots and 6 the highest rate of canopy ascension 

occurred between 1970 and 1980. The maximum canopy ascension in these decades 

ranged from a high of 52.50% of stand area in plot 3 to a low of 14.05% in plot one.

Since the canopy ascensions recorded before 1800 were sporadic, average estimates of 

stand area converted to gaps in each decade (canopy turnover) were calculated from 1800 

to 1998. Average canopy turnover rates were fairly consistent for all six plots, ranging 

from a maximum of 6.00% in plot 3 to a minimum of 5.09% in plots 2,5 and 6.

5.34 Spatial Patterns of Canopy Disturbance

Figures 3 and 4 show some degree of clumping in ascension cohorts. The spatial 

pattern of canopy ascension since about 1750 is generally characterized by small gaps 

created in a given decade or couple of decades interspersed with canopy ascension dates 

separated by a few decades or more. A global significance test for the correlograms using 

the Bonferroni correction method indicted that at least one p-value for a Moran’s I 

coefficient in a correlogram must be <0.005. Only Plot 3 (Figure 6) had any significant 

Moran’s I coefficients at the global level. However, the significant Moran’s I coefficients 

were close to zero which indicate there was no similarity in disturbance date. Therefore, 

all six correlograms indicate that average gap size caused by disturbance is less than 7 

meters in diameter. No differences in correlogram structure between I. tomentosus plots 

and uninfected plots were evident indicating that the pattern of disturbance in /. 

tomentosus stands is similar to uninfected stands.
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5.35 Spatial Patterns of Species Patches

Standard normal deviates (S.N.D’s) (Table 2) indicate that: 1) positive spatial 

autocorrelation {i.e. clumping) generally exists for spruce; 2) Fir-spruce spatial patterns 

are random and; 3) there is a weak trend for fir to be negatively associated with itself. 

There does not appear to be an effect of I. tomentosus on the species patch structure since 

fir has a random arrangement, as evidenced by the not statistically significant (a>0.05), 

low-order negative values of the indicated S.N.D’s (Table 2).
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5.4 DISCUSSION

5.41 Spatial Patterns of Disturbance

Fir was the most frequent species entering the canopy in all six plots since canopy 

replacement began at about 1750. However, fir was associated with canopy ascensions 

occurring in more recent decades than in earlier decades where spruce was more 

common. The same trend was reported in Chapter 4 where transition probability data 

suggested that fir has become the dominant species of understory tree currently replacing 

canopy trees (regardless of species) for the last 50 years. It is evident then that canopy 

composition of fir has been increasing in recent decades. It can be speculated that 

ultimately a shift from a spruce and fir mixed forest to a fir dominated forest is likely. 

Since the incidence of infection in these stands was low to moderate (5-10%), small 

patches of disturbance irregularly distributed were noted. Given a higher (>15%) 

incidence of infection it is possible that gaps created would be larger due to coalescence 

of infection centers (Lewis et al. 1992).

Gap size averages <7m in diameter but varies from small (<7m diameter) to fairly 

large (28m diameter) openings created in the canopy (Figures 3, 4, 5, and 6). The 

openings are irregularly distributed over the stands. This type of spatio-temporal pattern 

of disturbance suggests that windthrow or windsnap, ice and snow damage, root diseases, 

senescence and endemic populations of spruce bark beetle have been the predominant 

disturbances in these stands since the last catastrophic disturbance. The result is a patch­

work pattern of disturbance which has enabled understory recruitment to the canopy. 

Note that the locations of canopy ascension dates (Figures 3 and 4) clearly show larger 

gaps than the Moran’s I analysis indicates. Moran’s I analysis only interprets average gap
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size. Thus, the larger patches of disturbance especially during the 1960-1980 (Figures 3 

and 4) period represent variation in the disturbance regime, but the higher frequency of 

smaller gaps than larger gaps in these forests bring average gap-size diameter below 7m. 

The discrepancy between correlogram structures (Figures 5 and 6) and the physical 

representation of the data (Figures 3 and 4) suggests that larger scale disturbances, 

possibly caused by more wide spread bark beetle, snow, ice or windthrow occasionally 

influenced stands but overall the disturbance regime is one of single tree mortality 

dispersed irregularly throughout the forests.

5.42 Species Patch Structure

Spruce was 28.4% and 32.6% of canopy density (stems/hectare) for the infeeted 

and uninfected stands respectively, was significantly positively correlated with itself. 

Therefore spruce is more likely to be associated with itself than other species. Fir:Fir 

joins were not statistically significant as were Spruce:Fir joins. Several ecological 

explanations are plausible for the statistical grouping of spruce as shown. Spruce 

grouping may be linked to a combination of the following: 1) the establishment of spruce 

regeneration on nurse logs, 2) exposed mineral soil caused by root tip-ups due to 

windthrow, or 3) the grouping of a residual old spruce cohort.
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5.5 CONCLUSIONS 

Based on spatial-autocorrelation analysis of release dates in understory trees, 

canopy gaps are small and irregularly located in the wet Sub-Boreal Spruce forests at 

Aleza Lake. These forests are affected by a variety of disturbance agents. While I. 

tomentosus is a significant cause of tree mortality in some stands, its pattern of 

disturbance was not found to be unlike other disturbance patterns based on this analysis.

The combined impacts of all the disturbances have enabled understory 

recruitment to the canopy as early as the late 1600’s. In recent decades significant 

mortality (as high as 52.5%) has occurred and although this rate happened in only one 

plot, disturbances over 10% of stand area occurred quite often. This rate of canopy 

mortality suggests that the forests may be changing from a multi-aged old-growth stand 

to an uneven-aged old-growth forest, defined here as a forest in which all of the original 

cohort has died and has since been replaced by understory species.

Current fir canopy composition is 66% in /. tomentosus infected stands versus 

59% in uninfected stands. However, much of the replacement that has been occurring 

over the last 50 years, consists of fir. Therefore spruce composition in the canopy has 

been declining and will likely continue to decline due to the small gap disturbance regime 

which suites fir shade tolerance and seed germination strategies better than spruce. 

However greater life-spans for spruce will help to maintain it in the canopy (Lewis and 

Lindgren 1999), particularly in these stands with low I. tomentosus incidence. Species 

patch analysis indicated that spruce was positively associated with itself which is 

probably due to clumping of spruce on nurse logs or exposed mineral soil cause by root 

tip-ups and the grouping of a residual old spruce cohort. The decline of spruce due to a
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variety of disturbance mechanisms suggests that over time the old-growth forests will be 

dominated by fir in canopy composition and spruce may decline to about 10% of stand 

composition (Chapter 4).
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Table 1. Proportion of canopy ascension types by treatment type, and species.

Type of a sc en sio n
Treatm ent S p e c ie s R e le a se Gap Total

Infected Spruce 0 .44 0 .56 113
Infected Fir 0 .59 0.41 242
Infected Birch 0 .38 0 .62 13
Infected Hem lock 0.00 0 .00 0
Infected Douglas-fir 0 .00 1.00 1
Uninfected Spruce 0 .53 0 .4 7 131
Uninfected Fir 0 .54 0 .46 235
Uninfected Birch 0.57 0 .43 21
Uninfected Hem lock 0.55 0 .4 5 11
Uninfected Douglas-fir 0 .33 0 .67 3

Total 4 1 4 356 770
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Table 2. Summary of spatial autocorrelation of species association using joins-count 
statistics. Standard Normal Deviates greater than 2.0 indicate a higher than expected 
number of like joins which is interpreted as significant spatial autocorrelation.

Treatm ent Plot Fir-Spruce
Joins

S.N.D. Fir-Fir
Joins

S.N.D. Spruce-
Spruce
Joins

S.N.D.

Infected 1 59 1.0520 59 -1 .2 3 1 0 12 1 .7860
Infected 2 61 1.1137 60 -1 .3 2 2 7 13 2 .0 2 5 6
Infected 6 43 0 .7 4 5 0 74 -1 .0 7 0 3 13 2 .9 0 0 2

Not
Infected

3 42 0 .5 9 4 9 46 -1 .0 8 7 9 21 3 .2 1 4 0

Not
Infected

4 56 0 .8433 36 -1.3081 24 2 .7 7 7 5

Not
Infected

5 49 1.0009 78 -1 .2 2 4 8 10 2 .4 5 5 7
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Figure 1. Canopy ascension by decade and by species for Inonotus tomentosus 
infected plots (Plots 1,2, and 6). The ordinal axis shows the percentage of stand area 
affected by disturbance in each decade.
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Figure 2. Canopy ascension by decade and by species for Inonotus tomentosus uninfected 
plots (Plots 3,4, and 5).
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Plot 1 Plot 2

0 7 14 21 28 35 42 56 63 70 77 0 7 14 21 28 35 42 49 56 63 70 77

Plot 6

> 1 8 0 0
180 0 -1 8 2 0
1 8 2 0 -1 8 4 0
18 4 0 -1 8 6 0
18 6 0 -1 8 8 0
18 8 0 -1 9 0 0
1 9 0 0 -1 9 2 0
1 9 2 0 -1 9 4 0
19 4 0 -1 9 6 0
1 9 6 0 -1 9 8 0
1980+

0 7 14 21 28 35 42 49 56 63 70 77

Figure 3. Locations of canopy ascension dates for trees in the three infected plots. 
Numbers on the axis are in meters. Blank squares indicate that no canopy tree was found 
within seven meters of the sampling location on the 7 by 7 meter grid.
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Figure 4. Locations o f canopy ascension dates for trees in the three uninfected plots. 
Numbers on the axis are in meters. Blank squares indicate that no canopy tree was found 
within seven meters of the sampling location on the 7 by 7 meter grid.
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Figure 5. Correlogram showing Moran’s I statistic on the ordinate axis and distance lag 
on the abscissa for plots 1,2 and 6 (plots with Inonotus tomentosus). Open symbols 
represent statistically significant Moran’s I coefficients.
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Figure 6. Correlogram showing Moran’s I statistic on the ordinate axis and distance lag 
on the abscissa for plots 3,4, and 5 (plots free of Inonotus tomentosus). Open symbols 
represent statistically significant Moran’s 1 coefficients.
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CHAPTER 6. SUMMARY OF FINDINGS, MANAGEMENT RECOMMENDATIONS
AND CONCLUSIONS

6.0 STUDY RATIONALE 

Ecosystems cross a hierarchy of scales. A downed log on the forest floor is an 

ecosystem with its own biophysical attributes. This log is part of a larger ecosystem, 

perhaps an old spruce-fir stand. The spruce-fir stand is part of a watershed or a landscape 

ecosystem, and the landscape part of a regional ecosystem. The large regional ecosystem 

fits into an even larger biome such as the boreal forest in this example. At each 

successive level in the hierarchy, more species are involved; there is more variation in 

physical characteristics; and, the interactions, function, structure, and dynamics become 

more complex and variable. At each stage in the hierarchy forest ecosystems have unique 

structure, specialized functions, complex interactions and are continually changing. 

Individual ecosystems vary in their own complexity over time and the level of 

complexity between ecosystems also varies. However, the resiliency and stability of 

ecosystems are greatest when their complexity is maximized (Kimmins 1997).

Human influence on ecosystems has generally caused a decrease in complexity 

and therefore a reduction in their resilience and stability. Forests have been cleared 

throughout the world and are replaced with agricultural ecosystems. The orehard, com or 

wheat field is managed for one species and increasingly genetically identical individuals. 

Wetlands have been drained to support agriculture or urban development. Natural forests 

are being cleared to make way for managed forests, converting a landscape with 

astonishing biological diversity to a landscape where only a few species are managed to 

optimize timber produetion on short economic rotations.
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Knowledge about ecosystem structure, function, complexity, interactions and 

change is crucial in order to understand the impact of human influence on the 

environment. This knowledge may be critical for the survival of our species because 

accumulated effects of ecosystem degradation may affect the entire biosphere, the 

atmosphere and the hydrosphere. Together these define the biophysical characteristics of 

the ultimate ecosystem. Earth. Evidence of these global consequences of ecosystem 

mismanagement are already evident: global warming, desertification, extinctions, soil 

erosion, and stream siltation.

As natural ecosystems are lost and the integrity of remaining ones compromised, 

the concept of ecosystem management has crept into the dialogue of land and resource 

management. Ecosystem management adopts principles that are entrenched in ‘landscape 

ecology’ and ‘natural disturbance ecology’ (Parminter and Daigle 1997). One of the 

concepts of landscape ecology in the forestry context is that if forest management mimics 

natural disturbances, inherent ecosystem attributes will be preserved and important 

ecological processes will be maintained (Parminter and Daigle 1997). It follows from this 

principle that if natural disturbances are large and catastrophic then large clearcuts of the 

same size, pattern and concentration would be the appropriate harvesting method to 

mimic this disturbance. Similarly if small-scale disturbances are predominant then, partial 

cut harvesting methods would be most appropriate. Most often landscapes are not 

dominated by one disturbance pattern or type. Landscapes are shaped due to a variety of 

disturbances operating at a variety of scales and intensities (White 1987; Engelmark et al. 

1993). Forest management should therefore employ variation when planning land-use 

activities to reflect the variation in pattern caused by natural processes.
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In boreal forests considerable effort has been directed towards studying landscape 

level disturbance patterns and stand dynamics. Much of the work has concentrated on 

characterizing the fire return interval, patch size of fire disturbances and the resultant 

landscape level age-class mosaic (Bergeron et al. 1993). For example, much of the sub- 

boreal, montane forests in central interior of British Columbia are composed of fire- 

origin forests whose climax species composition on upland sites are dominated by spruce 

(Picea glauca, Picea engelmannii or Picea glauca x engelmannii), Abies lasiocarpa, 

Pinus conforta, Populus tremuloides, Pseudotsuga menziesii, and Betula papyrifera. 

Although dryer parts of the region were burned by wildfire at intervals ranging from 150- 

250 years (British Columbia Ministry of Forests and B.C. Ministry of Environment, 

Lands, and Parks 1995), wetter parts, particularly those in the foot-hills and sub-alpine 

elevations historically had fire return intervals ranging from 227-6250 years (Hawkes et. 

al. 1997). Within these wet, mountainous areas, information is lacking about the spatio- 

temporal pattern of small-scale disturbances and on subsequent stand dynamics 

(succession).

Small-scale disturbances have been shown to be important processes in many 

forested ecosystems including boreal forest ecosystems. However, studying the patterns 

and processes of small-scale disturbances have typically been neglected in boreal forests 

simply because fire was conventionally thought to be the main disturbance agent in this 

forest type (Bergeron et. al. 1993). In wet boreal and sub-boreal forests, fire return 

intervals have been shown to be quite long, often approaching intervals that are 

characteristic of more humid environments such as west-coast temperate rainforests, and 

sub-alpine forests. Given the long fire return intervals that are possible in these wet, cool
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boreal forests, small-scale disturbances have been identified as a factor in modifying the 

forest community (population structure and demographics) and the physical environment 

(light regimes, temperature, moisture regimes and nutrient availability and dynamics) 

(Bergeron et al. 1993). The extent of their influence is related to the length of time 

between catastrophic disturbances.

Windthrow, insect attacks, and root diseases, are important types of small-scale 

disturbance agents in these forests (Hofgaard 1993; Kneeshaw and Burton; 1997; 

Kneeshaw and Bergeron 1998). One of the most important small-scale disturbances in 

boreal forests is Inonotus tomentosus. This root disease pathogen is ubiquitous in Picea 

spp. forests and is responsible for significant mortality especially in mature forest 

ecosystems dominated by Picea spp. (Lewis 1997). Therefore understanding the role of I. 

tomentosus in stand disturbances is necessary in order to understand its impact on Picea 

spp. forest communities which make up a significant component of boreal and sub-boreal 

forest landscapes. Secondly, the patterns of disturbance in general are useful in designing 

forest harvesting activities that mimic natural disturbance patterns. And, lastly in order to 

confidently prescribe partial cut harvesting systems, potentially adverse or undesirable 

impacts on stand composition and structure that occur because of potential interactions 

between partial cutting and I. tomentosus need to be understood or ruled out.

In order to contribute to the knowledge and understanding of disturbance ecology 

and stand dynamics of wet, natural and unmanaged sub-boreal spruce forests in central 

British Columbia, this thesis raised three basic questions:

1. What are the spatial and temporal patterns of disturbance for old-growth forests with 
and without the influence of /. tomentosus!
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2. How does stand composition and structure differ between I. tomentosus infected and 
non-infected old-growth forests?

3. How does partial cutting influence stand development in I. tomentosus infected and 
non-infected forests?

The remainder of this chapter summarizes the findings of the thesis research, discusses 

potential applications of the methodology developed for this research and discusses 

future research needs.
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6.1 SUMMARY OF RESEARCH

6.11 Canopy Disturbance

1) Disturbance History: Mortality of canopy trees was indicated by tree ring 

information sporadically as early as the 1670’s and was consistently evident since the late 

1700’s. The oldest individuals in the stands were well over 300 years old and did not 

appear to have fire scars. Therefore, these indirect results show it has been at least 300 

years since the last stand-replacing disturbance at Aleza Lake. If the last large scale fire 

occurred roughly 300 years ago, then mortality evident in the late 1700’s began 

approximately 100 after the fire. This would correspond to the timing of the understory 

re-initiation stage where mortality of canopy trees creates canopy gaps that allow 

understory species to regenerate and recruit to canopy positions.

2) Canopy Disturbance Rates: Two independent studies (Chapter 4 and Chapter 

5) indicated similar levels of canopy mortality in natural forests (un-harvested forests) as 

expressed by the percentage of canopy disturbance per decade. In a fine scale study 

(fixed radius plots. Chapter 4), average percent canopy disturbance was between 6.9% 

and 8.1% per decade. In a coarser-scale study (grid plots. Chapter 5), canopy disturbance 

averaged 5.09% and 6.0% per decade. Therefore based on widespread sampling in four 

different stands, using two independent approaches, canopy disturbance at Aleza Lake 

ranges on average from 5% to 8% per decade.
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6.12 Gap Size

Gap size was also determined using two independent and distinct methodologies 

developed in Chapter 4 and Chapter 5. In Chapter 4, the estimate of average singe-tree 

gap-size was 16.76m^. In Chapter 5, it was determined that patch diameter averaged <7m 

which corresponds to an gap area of about 38.5m .̂ Note that the 38.5m^ gap size estimate 

was limited to the lag distance specified in the spatial autocorrelation analysis (7m). 

Based on these two approaches, it is evident that average gap size is typically <38.5m  ̂

indicating that the vast majority of gaps are due to single tree mortality. Larger gaps do 

form in these forests but with lower frequency than single tree gaps.

6.13 Canopy Mortality by Species

In Chapter 3 it was determined that spruce accounted for 42% of total 

accumulated mortality and (because of its generally larger size) over 50% of accumulated 

basal area mortality. This high percentage of total mortality in old forests is likely due to 

the fact that a uniform cohort predominately composed of spruce, has been suffering high 

rates of mortality due to a variety of mechanisms.

6.14 Stand Composition, Canopy Replacement and Future Stand Composition

Results from Chapter 4 and Chapter 5 indicate that canopy composition is 

dominated by fir at about 65-70% of canopy by stems per hectare for all size classes 

combined. Spruce represents about 25-30% of stand density and about 47-57% of basal 

area. Understory composition was also dominated by fir at 86%-92% of stand density.
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Due to the high density of fir in the understory, canopy tree replacement by this 

species outnumbers all other understory species by at least 2:1. Due to high rates of 

spruce mortality over the last 50 years or more, and high proportion of fir replacing dead 

canopy trees of any species, the spruce component of the canopy has been on the decline 

for the past several decades. Fir composition has been increasing over the same period. 

Given the current combination of high canopy recruitment rates of fir, high spruce 

mortality and the overwhelming abundance of fir in the understory layer, fir populations 

will continue to increase over the next 200 years.

6.15 Impacts of Inonotus tomentosus and Partial Cutting on Disturbance and Stand 
Composition

In old-growth forests with low to moderate infection incidence (<I5%), specific 

differences in disturbance regime caused by Inonotus tomentosus are not apparent. 

Disturbance history, disturbance rates, gap size, spatial patterns of disturbance and 

accumulated spruce mortality are not significantly different in old-growth stands with I. 

tomentosus compared to old-growth stands without the root disease.

Partial cutting has increased the density of spruce in the understory, and decreased 

subsequent mortality rates in both infected and uninfected stands relative to old-growth 

forests. Since most of the understory spruce has regenerated post-harvest they have not 

yet moved into the canopy layer. Given time, canopy layer spruce populations should 

also rise. Reductions in mortality are most likely due to captured mortality of older and 

larger individuals and upgrading the vigor of remaining spruce.
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Although spruce populations were not significantly lower in I. tomentosus 

infected stands compared to uninfected old-growth and partially cut stands, spruce 

volumes are significantly lower (6-10%).
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6.2 MANAGEMENT APPLICATIONS

6.21 Prescribed Harvest Intensity for Partial Cut Harvesting in Wet-Cool SBS Forests

Disturbance chronologies presented in this thesis indicated that over a period of 

70 years (Chapter 4) and 200+ years (Chapter 5), average canopy disturbance averaged 

between 7.4 and 8.1% per decade. From the accumulated mortality data (Chapter 4), this 

level of canopy disturbance corresponds to approximately 44-48 mortalities/hectare/ 

decade. Diameter class distributions of dead trees (Figure 1) indicates that the average 

diameter of trees dying is 29.9cm dbh. Species composition of dead trees is 41-42% 

spruce (stems/ha) and 51-56% (basal area). All of this evidence suggests that partial-cut 

harvesting if conducted every 10 years in these old spruce-fir forests should remove 44- 

48 stems/ha/decade with an average diameter of 29.9cm and approximately 51-56% of 

the basal area should be spruce.

6.22 Harvest Dispersion

Harvests should create a variety of gap sizes but the average gap diameter should 

be 7m or less. This suggests that single tree selection silviculture systems combined with 

small group tree selection systems would be the most appropriate combination of 

silviculture systems for these forests to maintain natural forest structure. The gaps 

themselves should be irregularly distributed across a landscape or stand.

6.23 Harvest Timing

Due to the continuous low intensity disturbance that prevails in these forests, it 

would not be advisable to “bank” harvests for 3 or more decades and then triple or more
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harvest intensity, especially if the objective is to maintain “old-forest” values {i.e. more 

intense harvests may increase spruce regeneration -  as it did in the partial cut forests -  

which is contrary to natural stand-dynamics where fir recruits to the canopy). However if 

the objectives are to maintain spruce as a component in the stands for timber supply, 

more intense harvests on less frequent intervals would provide conditions necessary for 

spruce recruitment and survival.

6.24 Development of Methodology

This research has advanced two important retrospective methodologies that have 

made possible the quantification of disturbance regimes for this area: The Time Since 

Death model (TSD model) (Chapter 2), and the Growth Rate/Percent Release criteria 

(Chapter 3). Both methodologies could be used in similar studies so long as regional 

climate and latitude are similar. The methods should be tested and calibrated for local 

conditions before studies begin.

The TSD model probably has the most potential for widespread immediate use 

with only minor calibrations necessary so long as the species are limited to spruce and fir. 

This model allows for very quick and accurate estimates of year of mortality which 

allows for large areas to be sampled and many tree deaths to be calculated. Climate has 

been shown to play a major role in tree decomposition, therefore calibration of this model 

should be performed before studies begin.

The simplest and most efficient means of calibrating the TSD model would be to 

compare death estimates from the TSD model to year of death estimates calculated from 

increment cores in understory trees. An error factor built into the time since death
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prediction from the TSD model developed in the present study could be either added (for 

slower rates of decomposition) or subtracted (for faster rates of decomposition) by 

comparing the two dates. For example, if the TSD model consistently indicates mortality 

dates 10 years earlier than tree ring core estimates then an error factor of + 10 years 

would need to be added to the TSD model estimate.

The TSD model allows research of the mortality dynamics for forests of any age 

as long as tree diameters exceed 10cm dbh. Furthermore, because it is efficient and 

accurate the disturbance regime over a very large area or in many areas can be 

determined. The main disadvantage of the TSD model is that it is only accurate in 

predicting time since death up to about 70 years. Therefore when a longer term in 

disturbance regime study is needed, tree growth pattern analysis is the still the best 

method.

Until now, growth/release criteria of understory trees that enable the interpretation 

of the disturbance regime has been lacking in the sub-boreal and boreal forests of British 

Columbia. This thesis developed release and growth rate criteria for understory spruce, 

fir, and B. papyrifera responding to the death of an overstory tree. Although this 

information may not be precisely applied to other ecosystems in the boreal and sub- 

boreal forests, it should provide a guide for ecosystems with similar physical (latitude, 

soils, temperature, and moisture) and biological characteristics (species composition, 

crown shape/form, and tree height).
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6.25 Future Research

Research concerned with the role of small-scale disturbances in boreal and sub- 

boreal forests has only just begun. Furthermore, disturbances operate at many different 

scales, they interact with physical and biological ecosystem components and with other 

disturbance agents, and disturbances are stochastic. All this variation combined with the 

developing understanding means that research into small scale disturbance regimes must 

continue over large areas, and in many different stands before adequate information is 

gained. Thus, an efficient yet comprehensive approach needs to be adopted in order to 

characterize the natural disturbance regime before too much of the landscape is managed 

using harvest patterns that are not compatible with the natural disturbance regime.

A general approach is suggested here to expedite the investigation:

1) Stratify the land base: The boreal and sub-boreal forests in British Columbia should 

be stratified into units that tend to have the longest stand replacing disturbance 

interval. This work has already been done by the biogeoclimatic ecosystem 

classification (Meidinger and Pojar 1991) and the natural disturbance type 

classification system (British Columbia Ministry of Forests and British Columbia 

Ministry of Environment, Lands and Parks 1995).

2) Prioritize the land base: Determine where partial cut harvesting systems should be 

implemented based on ecological, or social values. Much of this work has also been 

done in the Land and Resource Management Planning Process or the Timber Supply 

Review.

3) Develop methodology and sample the land base: Using the TSD model developed in 

this thesis, calibrating the model for climactic conditions, and linking time since death
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estimates to the wildlife tree class system (British Columbia Ministry of Forests and 

British Columbia Ministry of Environment, Lands, and Parks 1995) would provide 

for a easily developed, widely applicable and easily used tool for determining time 

since death. Sampling could be done in conjunction with operational timber cruising. 

This could make the sampling quite inexpensive and cover many stands.

4) Compile information and develop harvesting patterns: The data from the sampling 

should then complied and compared. Broadly similar disturbance regimes should be 

identified at this point and incorporated into specific management guidelines.

5) Apply and monitor: once the guidelines are in place and operational harvests are 

using the guidelines, a monitoring program should be followed. Monitoring should 

include an assessment of whether the system is providing similar stand structure, and 

composition and dynamics compared to natural stands.
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6.3 CONCLUSIONS 

This thesis has indicated that small-scale disturbances are important ecological 

processes in sub-boreal forest ecosystems. The information presented in this thesis can 

now be added to a small but growing body of literature concerned with investigating the 

patterns and processes of small-scale disturbance across the circumpolar boreal forest. In 

such a large biome, and in a relatively new discipline much work still needs to be done. It 

is hoped that this thesis will play a small but significant role in supporting related 

research and in advancing management applications related to disturbance ecology.
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Figure 1. Diameter class distribution (dbh) of dead trees in old-growth forests ( n = 509). 
Mean dbh = 29.9cm.
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