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Abstract 

Abstract 

The objectives of this study were to evaluate nutrient delivery, storage, and trophic 

transfer between the Horsefly River spawning channel and its riparian zone during 

the 2011 sockeye salmon run and subsequent 2012 spring. The hyporheic zone was 

investigated as a pathway for nutrient exchange, transformation, and storage by 

analyzing water movement and ammonium (NH4 ) concentration. Using stable 

isotopic analysis, the assimilation and storage of marine-derived nutrients (MDN) 

were evaluated through multiple trophic levels. Results identified lateral hyporheic 

flow as a dominant pathway for MDN delivery to deep-rooted vegetation, 

specifically willow trees <7-m from the streambank. Amphipods and chironomids 

appeared to assimilate MDN in the fall and maintained high spring biomass, 

indicating an important nutrient linkage in the salmon feedback loop. Finally, a 

temporal reversal in NH4 + concentration across the stream-riparian interface and a 

seasonal shift in nutrient fluxes revealed reciprocal subsidies that highlight the 

interconnectedness of these adjacent systems. 
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Chapter 1. Literature Review 

Chapter 1 

Ecotone , almon, and Marine-Derived Nutrients: A Literature Review 

1.1 Zone Ecology 

1.1.1 Ecotones 

1 

An ecotone represents the boundary or transitional zone between adjacent 

ecosystems. The concept of ecotones has evolved greatly since the beginning of the 

1900s when it first appeared in environmental literature as "edge habitats" or "zones 

of tension" (Decamps & Naiman 1990). Originally, ecotones were viewed as static 

boundaries where dominant ecological systems reached their limit and were notably 

important as areas of habitat, cover, and food for wildlife species. Now, they are 

widely recognized to have a much richer function (Decamps & Naiman 1990, Risser 

1995, Clary & Medin 1999). Ecotones act as a connection between distinct 

ecosystems, providing a delicate balance that allows energy and matter to flow in a 

manner which supports and links the adjoining areas (Naiman et al. 1988, Gosz 

1993, Naiman & Decamps 1997, Febria et al. 2011). These interfaces provide critical 

ecosystem services including buffering pollutants, attenuating and transforming 

nutrients, and providing refuge for prey and a source area for predators and pests 

(Evans 1956, Krause et al. 2011). As a result of their narrow spatial extent and steep 

ecological gradient, ecotones offer high species richness and unique genetic diversity 

(Risser 1993). When this biodiversity coincides with a high number of endemic or 

taxonomically unusual species, ecotones can be considered biodiversity hot spots, 

which are often areas of priority for conservation efforts (Myers et al. 2000). Ecotone 

boundaries are difficult to define, as their temporal and spatial characteristics are 



Chapter 1. Literature Review 2 

perpetually transitory. This indistinct framework emphasizes flow across three­

dimensional boundaries (Pinay et al. 1990, Bretschko 1995, Kerne 2002, Febria et al. 

2011). The processes that control energy and material flux are intricately connected 

to the biological activities that comprise an ecotone's structure and organization; 

therefore, both qualitative and quantitative attributes need to be described in order 

to understand an individual ecotone (Evans 1956). 

Areas in proximity to waterbodies contain numerous aquatic-terrestrial 

interfaces, including riparian zones, hyporheic zones, aquatic marginal wetlands, 

and lake littoral zones. These areas are of particular interest due to their sensitivity, 

and reactivity, to environmental change and therefore, provide a primary landscape 

to observe and understand effects of local and global change (Naiman & Decamps 

1990). They are considered indicators of change and can provide early warning signs 

for analogous regions (Risser 1993). Terrestrial-aquatic ecotones guide the principles 

of the river continuum concept, which does not treat rivers and streams as bounded 

systems, but as systems which are integrally linked to downstream, upstream, and 

adjacent environmental inputs and properties (Hynes 1974, Vannote et al. 1980, 

Naiman et al1998, Bo et al. 2006). 

1.1.2 Riparian Zone Ecology 

The land that borders a river, the riparian zone, provides an essential 

connection to maintain ecological functions in these adjacent and connected habitats 

(Ward & Stanford 1995, Ward et al. 1999, Allan & Castillo 2007). Riparian zones are 

some of the most diverse, dynamic, and ecologically productive habitats of all 

terrestrial ecosystems (Naiman & Decamps 1997, Clary & Medin 1999). Exhibiting 

high moisture gradients, contrasting vegetation species, and a mosaic of habitats 
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along a river corridor, riparian zones often contain high flora and fauna biomass, 

especially in arid regions (Clary & Medin 1999). As in all ecotones, riparian zones 

perform functions that drive ecological connections, such as filtering pollutants and 

trapping suspended particles (Peterjohn and Corre111984) and mediating 

biogeochemical transformation (Carlyle and Hi112001). 

1.1.3 Hyporheic Zone Ecology 

Water in rivers and streams passes between the channel bed surface and 

subsurface along discrete flow paths. This interstitial area of mixing, the hyporheic 

zone (Figure 1.1), regulates the exchange of nutrients and gases between 

groundwater and surface water (Triska et al. 1989, Valett et al. 1993, Fisher 1997, 

Malard et al. 2002). The hyporheic zone represents a hydrologic continuum between 

river water and groundwater and cannot be precisely separated (Alley et al. 2002, 

Plummer et al. 2013). The hyporheic zone provides a medium in which these two 

inherently different, but coupled ecosystems can interact. 

Many critical functions are provided by the hyporheic zone: nutrient 

transformation (Ward et al. 1998, Hancock 2002), pollution attenuation (Wagner & 

Bretescko 2002), refuge during low flow events (Grimm et al. 1991, Boulton & 

Stanley 1995, Robertson & Wood 2010), habitat for salmonid embryo survival (Geist 

& Dauble 1998, Kondolf 2000, Robertson & Wood 2010), and post-disturbance 

stream recovery (Valett et al. 1994, Gardner et al. 1999, Hancock 2002). The 

hyporheic zone also acts as a transient storage area, where a portion of the water 

moving downstream is temporarily retained in regions of stagnant or slow moving 

water. Intense biogeochemical transformations occur in storage zones (Packman & 

Bencala 2000). 
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The hyporheic zone relies on surface water to supply crucial resources to 

hypogean fauna, such as food, nutrients, and dissolved gases (Wagner & Bretescko 

2002). The subsurface environm~nt has habitat limitations (permanent darkness and 

space restrictions) that tvpicallv support a loY\ er biodiversity than the stream's 

surface water (Gilbert 1990, Ward et al. 1998, llancock 2002). l lypogean fauna are 

often rare, niche organisms that act as bio-indicators for groundwater contamination 

and facilitate intense biogeochemical activity that supports the entire aquatic-

terrestrial interface (Boulton & Stanley 1996, llancock 2002). 

water table 

water table 

Figure 1.1. Diagram depicting the location of the hyporheic zone as an interstitial area 
between stream water and groundwater. Local geomorphic features, such as the 
meander bend pictured here, can form localized flow features withm stream and banks. 
(From Alley et al. 2002.) 

1.1.4 Interstitial Zone Overlap 

Traditionally, streams and rivers were viewed as discrete systems vvithin the 

bounds of the surface water and the riverbed that encapsulated this flow. We now 
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know that lotic environments are some of the most dynamic and complex 

ecosystems on this planet. Streams are intricately connected to the land and water 

that immediately surround it and, especially, to the interfacing systems that join the 

land to the stream and the stream to the groundwater (Figure 1.2; Triska et al. 1993, 

Boulton et al. 1998). The hyporheic zone and riparian zone have dynamic, shifting 

boundaries that are controlled by surface stream direction and velocity overall. 

Investigating the biological, physical, and chemical processes in these overlapping 

and inherently difficult to define ecotones produces complicated questions. 

Processes, rather than discrete products, tend to be the focus when interpreting 

hydrologic and biogeochemical interactions within the hyporheic I riparian interface. 

SURFACE W ATER 

~- ------ - ---

TERRESTRIAL lANDSCAPE 

---------------, 
-----, RIPARIAN 

\ 

I 
I 
I 

I I 
---~~----------- I ZONE I 

\ I I 

: HYPORHEIC ZONE "-----~--------- ... 
I I 

I 
\ , 
'---------------- ~ 

GROUNDWATER 

Figure 1.2. Schematic diagram showing the hydrological ecosystems and ecotones that can 
interact with the hyporheic zone and their relative location to the hyporheic zone (adapted 
from Boulton et al. 1998). 

1.2 Pacific Salmon 

Every year, millions of Pacific salmon (Oncorhynchus spp.) migrate hundreds 

of kilometers from the Pacific Ocean to their natal spawning grounds (Hobbs & 

Wolfe 2008). They gain about 95-99% of their biomass while at sea and deliver 
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substantial quantities of marine-derived nutrients (MDN) to the nutrient-poor 

freshwater systems in which they spawn (Naiman et al. 2002). This annual event 

provides an important source of nutrients and energy to enhance fish and aquatic 

productivity, as well as terrestrial wildlife and plant species (Bilby et al. 1996, 

Willson et al. 1998, Helfield & Naiman 2001, Wipfli et al. 2003, Albers & Petticrew 

2012). 

6 

Decreasing salmon abundance has been well documented in California, 

Idaho, Washington, and Oregon (Nehlsen et al. 1991, Brown et al. 1994). In one 

century, the average number of salmon returning to these rivers has declined from 

45 million to less than 2 million (Naiman et al. 2002). These declines cannot be 

attributed a single cause, but instead are an outcome of many factors, including 

reduced ocean productivity, overfishing, freshwater and estuarine habitat loss, 

exotic species introduction, and unsustainable hatchery practices (Miller et al. 2014). 

Salmon stocks north of the United States-Canada border are also experiencing 

declines Qacob et al. 2010, McDaniels et al. 2010, Peterman & Dorner 2011 ). 

Decreases in productivity have been rapid and consistent since the 1990s across a 

large geographical range, spanning from Washington and British Columbia to 

southeast and southern Alaska (Beamish et al. 2012, Peterman & Domer 2012). The 

Canadian government-sanctioned Commission of Inquiry into the Decline of 

Sockeye Salmon in the Fraser River, the Cohen Commission, has investigated this 

issue due to poor returns and low biological productivity. British Columbia's Fraser 

River basin, the second most productive sockeye salmon (0. nerka) fishery in the 

world, is currently experiencing problems threatening the stability of salmon stocks 

(Cohen 2012). Mean summer water temperature has increased by -1.5°C since 1950 



Chapter 1. Literature Review 7 

and, recently, spawning salmon have encountered record high temperatures that 

have been associated with high levels of migration mortality (Martins et al. 2011 ). 

Lately, there has been extreme variability in Fraser River fish stocks and dramatic 

shifts in migration behavior, which indicates that ecological dynamics in interior 

watershed systems are under stress (Hague et al. 2011). This unpredictabi1ity raises 

concern because habitat degradation continues due to land-use activities that 

negatively alter salmon habitat and prevent their passage upstream (Baldwin et al. 

2003, Ficke et al. 2007, Lohse et al. 2008, Jacob et al. 2010). Reduced salmon runs will 

result in a smaller MDN pool and may inhibit the ability of river systems to support 

current resident and anadromous fish populations (Bilby et al. 1996, Scheuerell et al. 

2005). A more complete ecological picture of freshwater salmon habitats will aid 

restoration and management of both disappearing and thriving salmon streams. 

1.2.1. Marine-Derived Nutrients 

MDN are characterized as the nutrients released from salmon throughout 

their migration and spawn, such as waste products, eggs, sperm, and decomposing 

salmon carcasses (Naiman et al. 2002, Lessard & Merritt 2006). The upstream 

delivery of MDN by anadromous salmon goes against ordinary nutrient flow, which 

tends to favor downstream delivery (Murata 2003, Mitchell & Lamberti 2005). This 

nutrient pulse provides a significant nutrient subsidy to enhance primary and 

secondary productivity in oligotrophic, interior systems (Bilby et al. 1996 ). The post­

spawn die-off leaves thousands of salmon to decay on the river bed and the riverine 

community metabolizes the flesh in several ways (Kline et al. 1997). Biofilms, the 

primary benthic producers, quickly remove nutrients from the water column 

through uptake and retention (Costerton et al. 1995, Reisinger et al. 2013). Aquatic 
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macroinvertebrates and resident fish in the river obtain MDN through direct salmon 

consumption (Wipfli et al. 1998, 1999, 2003). Terrestrial animals and birds also take 

advantage of the salmon surplus by predation and scavenging of carcasses 

(Woodward et al. 2005, bermeyer et al. 2006). Partially eaten fish that have been 

carried across the landscape and salmon-enriched waste products from 

predators/ scavengers provide MDN to riparian vegetation (Helfield & Naiman 

2006, Hocking & Reimchen 2009). Biota that do not directly consume salmon 

carcasses or eggs still benefit from the nutrient pulse because MDN are accumulated 

through higher trophic levels (Bilby et al. 1996). Salmon runs not only enrich the 

local biotic community, they drive a positive feedback loop that increases 

survivorship and reproduction to elevate their own populations (Schindler et al. 

2003, Wipfli et al. 2003, Koyama et al. 2005). 

1.2.2 Horsefly River in the Fraser River Watershed 

British Columbia's Fraser River is utilized as a transportation corridor and 

spawning grounds for five types of Pacific Salmon. Some of these fish, such as Pink 

salmon (0. gorbuscha), will travel a very short distance from the mouth of the Fraser 

River to reach their spawning grounds, but the hardiest of salmon, the Chinook 

salmon (0. tshawytscha), will migrate over 1000 kilometers to the river's headwaters 

near Mount Robson (Benke & Cushing 2005). The entirety of the Fraser River main 

channel is undammed, allowing for natural fish passage along much of its' length 

(Evenden 2007). This is a rather unprecedented feature for large rivers in populated 

regions, and the Fraser River is ranked as the third largest undammed river in North 

America. However, this river and its' salmon populations are not exempt from other 

damaging environmental challenges that hinder salmon and ecosystem resiliency, 
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including warming water (Ficke et al. 2007, Jacob et al. 2010, McDaniels et al. 2010, 

Hauge et al. 2011, Martins et al. 2011), sea lice (Lepeophtheirus salmonis) (Krkosek et 

al. 2007), oceanic conditions (Worm et al. 2006, Thomson & Hourston 2011), and 

agricultural and urban run-off (Baldwin et al. 2003, Smith et al. 2007, Lohse et al. 

2008). 

Sockeye salmon are prized as a valuable commercial fishery, a cultural 

necessity, and a superior food source in Canada. Therefore, much of the research on 

salmon is focused on monitoring sockeye populations (Cohen 2012). The 

International Union for the Conservation of Nature (IUCN) conducted an 

endangerment assessment on subpopulations of sockeye salmon in the North 

Pacific. This assessment categorized five of eleven Fraser River sockeye salmon 

stocks as threatened: one as Critically Endangered, three as Endangered, and one as 

Vulnerable. Out of the 22 subpopulations of sockeye on the Fraser River, seven were 

classified as "endangered" (IUCN-SSG 2013). 

Sockeye salmon return to the Fraser River in relatively predictable 4-year 

cycles of abundance and decline, characterized by a dominant year with very large 

returns, followed by a sub-dominant year with approximately half of the dominant 

year's returns, and then two years of very low returns (Henderson & Graham 1998, 

Guill et al. 2012). Since the late 1970s, salmon escapement to the Horsefly River 

steadily increased, with a peak occurring in 2001 of over 1.5 million returning 

sockeye (Figure 1.3). This cyclical predictability was disrupted in 2009 when what 

was supposed to be a peak year had returns similar to a low sub-dominant year, 

with only a little over 80,000 returning. The Quesnel subpopulation, which includes 

Horsefly River, remains as "least concern" (IUCN-SSG 2013). However, when 
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performing a three-generation nonparametric escapement calculation (from Geiger & 

Zhang 2002), salmon escapement on the Horsefly River has declined 5.3% per year 

between 1998-2013, which is judged as a biologically meaningful decline. 
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Figure 1.3. Sockeye salmon populations in the Horsefly River from 1960 to 2013. Note: 2013 
data are preliminary and could change. Source: Dept. of Fisheries and Oceans Canada. 

1.3 Nitrogen 

1.3.1 The Nitrogen Cycle 

Nitrogen, occurring in 78% of the Earth's atmosphere, is one of the most 

common elements in the natural world. However, nitrogen in its most abundant 

form, gaseous N-u is not readily available for biological uptake (Chapin et al. 2011). 

In river ecosystems, particularly small streams, primary producers are of greatest 

significance in providing energy to consumers (Allan & Castillo 2007). Nitrogen­

fixing organisms, typically located freely in soil organic matter or symbiotically­

bonded to plant species, must first alter the state of nitrogen into the bioavailable 
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forms of (mainly) ammonium (NH4 ) and nitrate (N03-), also known as dissolved or 

inorganic nitrogen (Vitousek et al. 1997, Ashkensas et al. 2004). The process of 

nitrification utilizes nitrifying organisms and partially decomposed organic matter 

to convert NH4 ' to N03· (Richey et al. 1984, Williams 2000). Certain environmental 

conditions help facilitate this conversion, including an aerobic environment, a soil 

pH between 7 and 9, and an approximate soil temperature of 25°C (Chapin et al. 

2011). Denitrification, on the other hand, is the reduction of N03· to gaseous forms of 

N (NO, N20, N2) by denitrifying bacteria, which is typically facilitated by anaerobic 

environments (Payne 1973, Betlach & Tiedje 1981, Kaushal 2008). Nitrification favors 

the oxygen-rich hyporheic zone, whereas the riparian zone has high potential for 

denitrification due to its anoxic environment (Casey et al. 2001, Kaushal2008). The 

hyporheic I riparian interface may provide a positive feedback loop whereby 

nitrogen can continuously cycle between its forms and support an even greater 

diversity of organisms and habitat. 

1.3.2 Marine-Derived Nitrogen (b15N) 

There are two stable isotopes of nitrogen, b14N and b15N, which differ from an 

ordinary nitrogen atom by the number of neutrons contained in the nuclei. b14N is 

significantly more abundant, comprising 99.634% of the available forms of nitrogen 

isotopes Ounk & Svec 1958). However, the marine nitrogen pool has a high ratio of 

b15N compared to freshwater ecosystems. The b15N composition of a spawning 

Pacific salmon ranges from 10 to 15%o (Welch and Parsons 1993), while other 

available sources of nitrogen in rivers and streams tend to be closer to the O%o b15N 

composition of atmospheric nitrogen (Kendall1998). The isotopic disparities 
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between these nutrient pools offer a technique for measuring the assimilation of 

MDN by freshwater organisms, where isotopic enrichment corresponds to increased 

MDN assimilation (Kline et al. 1990, Bilby et al. 1996, Chaloner et al. 2002, Hicks et 

al. 2005, Scheuereii et al. 2007). The trophic position of a consumer is indicated by an 

increasingly positive enrichment value on the trophic food chain (Minigawa & 

Wada 1984). This occurs because b15N is not as readily excreted as a nitrogen waste 

product (Robinson 2001) and accumulates within the organism. 

During the process of nitrogen-fixation, many soil microbes discriminate 

against using marine-derived nitrogen (b15N), as this has a stronger nitrogen-oxygen 

bond than terrestrial nitrogen (b14N) (Stevenson & Cole 1999). Consequently, the 

products of activities like decomposition, nitrification, and denitrification are less 

enriched with b15N, leaving the original substance with higher enrichment (Templer 

et al. 2007). 

Studies have shown that when salmon enter streams, NH/ is the initial 

product of salmon carcass decay and surface water concentration increases rapidly 

(O'Keefe & Edwards 2002, Drake et al. 2006, Pinay et al. 2009, Kiernan et al. 2010). 

Ammonium values will be used as a substitute for stable isotopic concentrations 

when analyzing su rface and hyporheic water samples. 

1.4 Carbon 

1.4.1. The Carbon Cycle 

Some 3.5 billion years ago in the Precambrian period, cyanobacteria began to 

bind with sediments forming stromatolites, the most ancient records of life on Earth. 

Stromatolites are the pioneers of oxygenic photosynthesis, which radically 
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transformed the atmosphere into an oxic environment and initiated the dominance 

of oxygen-requiring organisms (Des Marais 2000, Kopp et al. 2005). Organic carbon, 

the other byproduct of photosynthesis, is the structural building material for all of 

life, as we know it, and flows freely through the biosphere as decomposable organic 

matter (Pace 2001). When plants and animals die, shed, or excrete waste, the organic 

carbon material undergoes a microbial-mediated transformation to inorganic 

carbon, primarily carbon dioxide (C02). C02 is transported through interstices, or 

the gaps between matter (i.e. soil, surface water, groundwater, and air), until it is 

picked-up and utilized by another living organism (Fry 2006). Decomposition in a 

biotic community is incredibly efficient; a long-term study of mineral soils found 

relatively minor changes in total organic C content 40-years after reforestation 

(Billings & Richter 2006). 

Photosynthesizing cyanobacteria and stromatolites created local oxygen-rich 

environments, which facilitated the colonization of other microorganisms (Kopp et 

al. 2005). These highly productive and energetic colonies of autotrophic and 

heterotrophic organisms, called biofilms, remain as primary producers across almost 

every ecosystem. In a salmon-bearing stream, a substantial amount of organic 

carbon is delivered by the annual inland salmon migration. Microbial biofilms 

mediate marine-derived nutrient assimilation from the water column into aquatic 

and terrestrial food webs (Cummins 1974, Hoellein et al. 2007). 

1.4.2. Marine-Derived Carbon {l)13C) 

As with marine-derived nitrogen, marine carbon isotopes are distinctly 

enriched compared to freshwater or terrestrial values. Marine b13C signatures are 

enriched relative to the atmosphere, whereas freshwater b13C signatures are derived 
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from sources of dissolved carbon dioxide in the water (Fry 2006). The stable isotopic 

ratio of 13C/ 12C allows for the identification of important primary food sources, as 

these stable isotopes pass through the food chain relatively unchanged (Doucett et 

al. 1996). Salmon predominately possess a marine carbon signature because their life 

strategy shifts from feeding to reproduction as they enter freshwater. Animal tissues 

reflect the b13C of their assimilated food within about 1roo. In isotopic terms, the 

expression "You are what you eat" is quite accurate and provides the basis for 

studying trophic food chains (DeNiro & Epstein 1978, Rounick & Winterboume 

1986, Michener & Schell1994, Fry 2006). 

1.5 Stream-Riparian Ecosystem Response 

The input of marine-derived nutrients to salmon-bearing freshwater 

ecosystems can be seen throughout all trophic levels of a food web. Major 

freshwater and terrestrial components of these food webs are outlined in this section 

(Figure 1.4). 

1.5.1 Aquatic 

1.5.1.1 Biofilms 

In the presence of spawning salmon, biofilms become enriched with marine 

isotopes (Kline et al. 1990, Holtgrieve et al. 2010). Since they are primary producers, 

utilization and trapping of MDN at this level will aid increased accumulation in 

species occupying higher tropic levels (Lamberti 1996, Wipfli et al. 1998). Their 

growth rate varies between streams due to specific environmental conditions, such 

as temperature and timber harvest, and salmon legacy effects (Rex & Petticrew 2008, 
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Ruegg et al. 2011, Reisinger et al. 2013). Albers & Petticrew (2012) found that biofilm 

density decreased during the active-spawn period due to spawning disturbance, 

whereas during the post-spawn period, biofilm abundance increased to above pre­

spawn values and utilization of marine-derived nutrients was observed. 

1.5.1.2 Macroinvertebrates 

Consumption of salmon carcasses and eggs by aquatic macroinvertebrates 

represents an important bottom-up uptake of MDN into the food web (Lessard & 

Merritt 2006, Kiernan et al. 2010). Current research has found that aquatic 

invertebrates respond both positively and negatively to the MDN pulse. Reduced 

invertebrate densities and altered community structure in streams with actively 

spawning salmon have been observed due to disturbances from particularly high 

salmon densities and redd construction (Peterson & Foote 2000, Minakawa & Gara 

2003, Moore & Schindler 2008, Honea & Gara 2009). However, other studies have 

discovered increased macroinvertebrate density due to MDN (Bilby et al. 1996, 

Claeson et al. 2006}. Wipfli et al. (1998) documented an increase in invertebrate 

densities by 8 to 25 times when adding salmon carcasses to an artificial flume. 

Lessard & Merritt (2006) discovered that only certain taxa responded positively to 

MDN enrichment, particularly chironomid midges and shredders. 

Macroinvertebrates encompass a diverse community of feeding groups and Jife 

cycle structures. The timing of spawning season within an insect's life cycle, as well 

as salmon nutrient legacy, will contribute to species and location-specific enrichment 

(Honea & Gara 2009, Guyette et al. 2014). 

1.5.1.3 Fish 
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Marine stable isotope enrichment is evident in anadromous and resident 

fishes (Bilby et al. 1996, Wipfli et al. 2003). Increased growth rates of cutthroat trout 

(0. clarki), Dolly Varden (Salvelinus malma), and anadromous salmon (Oncorhynchus 

spp.) suggest a transfer of nutrients and energy from decaying salmon to subsequent 

fish populations (Wipfli et al. 2003). Salmon carcasses, eggs, and fry provide a rich 

food source for fish populations (Schindler et al. 2003), and also initiate a positive 

feedback effect that benefits the next generation of salmon by increasing primary 

food resources and juvenile salmon growth rate and energy density (Wipfli et al. 

1998, Adkison 2010, Rinella et al. 2012). 

1.5.2 Terrestrial 

1.5.2.1 Riparian Vegetation 

Several studies have recognized that b15N and b13C are incorporated into terrestrial 

vegetation adjacent to salmon spawning streams (Bilby et al. 1996, Ben-David et al. 

1998, Bilby et al. 2003, Reimchen et al. 2003, Hocking & Reimchem 2009). On 

Chichagof Island in southeast Alaska, the trees and shrubs surrounding salmon 

streams derive -22-24% of foliar nitrogen (N) from nitrogen stable isotopes (Helfield 

& Naiman 2001). MDN enrichment of vegetation has been observed to extend 

throughout a 200-m riparian zone (Ben-David et al. 1998) and at a distance of 800-m 

from the stream, p resumably due to the displacement of salmon by bears 

(Hilderbrand et al. 1999a). An established, mature riparian forest is able to retain 

nutrients better than a small, young forest (Milner et al. 2008, DeVries 2012). Once 

MDN has been established in a population of trees, they may preserve MDN within 

the ecosystem for 30 or more years following declines in salmon population 
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(Koyama et al. 2005). Evidence exists that MDN are associated with increased 

growth rates of riparian vegetation (Gende et al. 2002). In southeast Alaska, the 

growth rate of Sitka spruce within 25-m of spawning streams were found to be triple 

that of trees in reference sites (Helfield & Naiman 2001). 

The fertilization of riparian vegetation by spawning salmon initiates a positive 

feedback loop, in which vegetation growth and production benefits from the influx 

of salmon nutrients, and salmon spawning and rearing habitat is improved because 

of streamside vegetation (Helfield & Naiman 2001). The shading of streams by 

vegetation helps to moderate in-stream temperature, which influences 

developmental rates of young salmon by directing optimal timing of life history 

events and controlling embryo development. Riparian root systems help to stabilize 

banks and filter sediments to minimize siltation and erosion, thus providing well 

oxygenated redd conditions that are ideal for salmon production (Nakano & 

Murakami 2001). Terrestrial inputs of organic matter support the production of 

aquatic insects, which are a basic source of food for juvenile salmon (Helfield & 

Naiman 2001). Large woody debris, which accumulates in streams with riparian 

vegetation, plays an essential role in providing rearing habitat for salmonids (Fausch 

& Northcote 1992). Large wood also enhances hyporheic exchange (Hester & 

Gooseff 2010), which may influence the riparian-hyporheic interactions that are 

being investigated in this study. 

1.5.2.2 Terrestrial Animals 

Many studies have investigated the effect of salmon abundance in stream 

ecosystems on black and brown bear diet (Hilderbrand et al. 1999b, Weaver & 

Zammuto 2004, Helfield & Naiman 2006). Nitrogen stable isotope analysis from hair 
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samples of grizzly bears in the Columbia River basin and from coastal brown bears 

in Alaska have documented, respectively, 33% to more than 90% of N in their diet 

from salmon-derived nutrients (Naiman et al. 2002). Grizzly bears living in areas 

with easy access to salmon streams also exhibit greater productivity and population 

density (Darimont et al. 2010). 

Although bears are the prevailing animals associated with salmon 

consumption, many other terrestrial animals prey on spawning salmon and 

decaying carcasses. On the Olympic Peninsula of Washington, 14 mammals, 

primarily black bears, raccoons, and otters, were found consuming salmon carcasses. 

In the same study, eight species of birds, varying from winter wrens to bald eagles, 

were noted scavenging decaying salmon (Cedarholm et al. 1989). American dippers 

(Cinclus mexicanus) nesting along southeast Alaska streams have higher reproductive 

performance associated with their diet of salmonids (Obermeyer et al. 2006). It is 

feasible that all terrestrial animals feeding on salmon carcasses increase MDN 

enrichment around a spawning stream by physically moving salmon across the 

riparian and through excretion of waste products. 
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Figure 1.4. MDN transfer, assimilation, and trophic transport in a stream-riparian 
ecosystem is complex in nature and influential in several interacting ecosystems. 

1.6 Research Objectives and Hypotheses 

19 

This study aims to describe nutrient delivery, seasonal storage and trophic 

transfer within a stream-riparian ecotone. Marine-derived nutrients transported by 

sockeye salmon during the 2011 salmon run will be analyzed to determine if these 

nutrients are being utilized by stream macroinvertebrates and riparian vegetation, 

and to determine if MDN are delivered by and stored in the hyporheic zone. 

Nutrients can be removed from the water column quickly from 1nultiple trophic 

levels (Naiman et al. 2002), which is why several sources will be used to quantify 

nutrient storage. These observations will be rnade before and during the salmon 
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spawn, during and after the salmon die-off, and the following spring. The Horsefly 

River spawning channel is a representative sample of other similar systems, 

particularly spawning channels in interior British Columbia. 

1.6.1 Delivery and Storage of Ammonium in the Hyporheic Zone 

The aim of the research described in Chapter 2 was to determine if 

ammonium (NH4 ), presumably from spawning salmon, was being delivered to, 

transported through and/ or stored within the hyporheic zone. MDN transport to 

the riparian zone through nutrient deposition by bears has been well documented 

(Hilderbrand et al. 1999, Helfeld & Naiman 2006), however, the delivery of salmon 

nutrients via the hyporheic zone and the potential for overwinter storage may also 

be a critical pathway for MDN to transfer to riparian vegetation (O'Keefe & Edwards 

2002, Pinay et al. 2009). The following hypotheses were developed to evaluate the 

research aim described above. 

Null Hypothesis I: NH4 +concentration of surface water will not be correlated with 
the number of spawning salmon in the HFC. 

Null Hypothesis II: There will be no difference between NH4 +concentrations of 
surface and hyporheic water. 

Null Hypothesis III: NH/ concentration of hyporheic water will not be correlated 
with distance from the streambank. 

Null Hypothesis IV: There will be no difference between the mean NH4 + 

concentration of surface and hyporheic water between fall and 
spnng. 

These hypotheses help to inform the following questions about the system: 

Question One- What is the extent of the hyporheic zone at this site? 

Question Two -Is NH/ being retained in the hyporheic zone during the course of 
the salmon spawn? 
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Question Three - Is NH4 
1 stored in the hyporheic zone over the winter? 

Question Four- Does NH4 • concentration change as hyporheic water moves 
further from the stream? 

21 

1.6.2 Storage and Trophic Transport of MDN in a the Stream-Riparian Ecosystem 

The aim of the research presented in Chapter 3 was to investigate MDN 

assimilation, trophic transport, and storage in a stream-riparian food web by tracing 

b13C and b15N in stream macroinvertebrates and riparian vegetation and soil during 

the 2011 sockeye salmon spawn and subsequent spring. In British Columbia, salmon 

spawn occurs in the fall when many plants are senescing or becoming dormant. 

Despite an apparent contrast in run timing and plant growth, biological uptake of 

MDN can occur quickly and be stored within riparian soil and plants (Drake et al. 

2006) and stream organisms (Bilby et al. 1996 ). There are still questions, however, 

especially in regard to the environmental factors that limit uptake and persistence of 

MDN in individual species and in the riparian forest as a whole (Drake et al. 2011, 

Devries 2012, Rinella et al. 2013). 

For this study, macroinvertebrates were evaluated according to their 

functional feeding group (FFG) to determine if species type, abundance, and stable 

isotopic concentration changes during the MDN pulse and between seasons. Three 

riparian plant species with differing life strategies were also investigated to 

determine the pathway, uptake, and retention of MDN in the riparian zone adjacent 

to the salmon spawning channel. The following hypotheses were developed to 

evaluate the aim listed above: 

Null Hypothesis V: There will be no difference between stable isotopic signatures 
(b13C and b15N) of macroinvertebrate taxa throughout salmon 
spawn and between fall and spring. 
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Null Hypothesis VI: Macroinvertebrate b15N signatures will not be correlated with 
NH4 concentration of surface and hyporheic water. 

Null Hypothesis VII: There will be no difference between stable isotopic signatures 
(b13C and b15N) of riparian vegetation between seasons. 

Null Hypothesis VIII: Stable isotopic signatures {b13C and b15N) of riparian 
vegetation and soil will not be correlated with distance from the 
streambank. 

Null Hypothesis IX: Riparian vegetation b15N signatures will not be correlated with 
NH4 concentration of riparian hyporheic water. 

These hypothe es help supply information about the following research 

questions: 

Question One- Is the MDN signal retained by macroinvertebrates and riparian 
vegetation? 

Question Two - Do macroinvertebrate functional feeding groups show temporal 
differences to the MDN pulse? 

Question Three - Does macroinvertebrate species type and abundance change 
throughout the salmon spawn and between fall and spring? 

Question Four- Does rooting depth of vegetation have an effect on MDN 
concentration? 
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Chapter 2 

Temporal and patial spect of N itrogen Cycling in the Hyporheic Zone 

2.1 Hyporheic Zone as Vector for Nutrient Transport 

The upstream delivery of marine-derived nutrients (MDN) by salmon to their 

freshwater spawning grounds is evident within the water, organisms, and materials 

of the surrounding watershed (Allan & Castillo 2007). MDN signatures are found 

within terrestrial vegetation bordering salmon streams, as well as within nearly any 

animal that permanently or temporally occupies that area (Kline et al. 1990, Naiman 

et al. 2002). For example, MDN transport from the streambed to the riparian zone 

through MDN nutrient deposition by bears has been well documented (Hilderbrand 

et al. 1999, Helfield & Naiman 2006). The transfer of nutrients through the hyporheic 

zone has also been investigated as a critical pathway to promote this nutrient 

exchange (O'Keefe & Edwards 2002, Pinay et al. 2009). The hyporheic zone acts as a 

transient storage area by transporting and transforming essential nutrients. The 

rooting zone of riparian vegetation also can extend into hyporheic flow paths 

(Helfield & Naiman 2006) potentially explaining the MDN signal observed in this 

vegetation (Bilby et al. 1996, Ben-David et al. 1998, Reimchen et al. 2002, Bilby et al. 

2003). 

2.1.1 Defining the Hyporheic Zone 

Water in rivers and streams passes between the channel bed surface and 

subsurface along discrete flow paths. Groundwater and surface water exchange is 

regulated in an interstitial mixing area known as the hyporheic zone. Rapid and 

frequent hydrologic exchange occurs allowing for the renewal of nutrients and 
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oxygen (Hancock 2002). Often the extent is only a few meters beneath the 

streambed, but the hyporheic zone can be considerably large, extending several 

kilometers inland (Stanford & Ward 1988). The water table, or the boundary of 

saturated / unsaturated soils, is not easily delineated because it is spatially and 

temporally dynamic (Triska et al. 1989, Vervier et al. 1992, Boulton et al. 1998). The 

hyporheic zone is now thought to be an essential component of stream function, 

with the definition of streams expanding to not just what is above the streambed, 

but integrally related to what is below (Fisher 1997, Malard et al. 2002). 

The hyporheic zone can be delineated using three primary components­

biological, geochemical, and hydrologic. 

2.1.1.1 Biological 

The biological method for defining the hyporheic zone is the presence of 

organisms living in this region of mixed waters. Observations of stream organisms 

deep within the streambed gravels were used for preliminary studies in identifying 

the hyporheic zone (Coleman & Hynes 1970). The idea of organisms living below the 

streambed was criticized heavily at first, but continued discoveries of 

macroinvertebrates beneath the streambed confirmed its existence (Hynes 1974). 

When Stanford & Ward (1988) identified riverine invertebrates 2-km from the main 

channel of the Flathead River in Montana, the extent of the hyporheic zone 

expanded to include subsurface areas adjacent to rivers and across floodplains. The 

main objectives of hyporheic biological methods are to understand species type and 

habitat and to identify if species are either epigean (periodic users of the hyporheic) 

or hypogean (permanent residents of the hyporheic). When defining the hyporheic 

zone in this way, it is important to recognize that taxa composition and abundance 
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can change between seasons, meaning that one-time sampling does not necessarily 

produce a representative sample (Hancock & Boulton 2009). 

2.1.1.2 Geochemical 

Geochemical methods define the hyporheic zone as a volume of sediment that 

contains a certain proportion of surface water. This volume of water varies between 

stream reaches and microhabitats, and is defined by Triska et al. (1989) as being 

anywhere from greater than 10% to less than 98% channel water. For example, the 

hyporheic zone may be quite expansive in unconfined floodplains or may be small 

due to confining hillslopes around a river. Additionally, stream microhabitats can 

control hyporheic exchange, with some areas, such as riffles with high stream 

discharge, reducing the proportion of surface water infiltrating the hyporheic zone 

(Tonina & Buffington 2009). Many different geochemical methods can be used to 

identify hyporheic flow paths including the use of natural tracers (i.e. temperature, 

pH, and electrical conductivity) or injection of conservative tracers (e.g. NaCl or 

dye) (Malard et al. 2002). 

2.1.1.3 Hydrologic 

Hydrologic methods define the hyporheic zone by using groundwater flow 

models to describe the volume and magnitude of water moving through a medium. 

Physical parameters of groundwater level and soil characteristics are needed to 

describe hyporheic flow (McDonald & Harbaugh 1988, Wondzell 2006 ). Water levels 

are measured at a point-in-time, either occasionally using manual methods of 

measurement or continuously using a water level data logger, and typically describe 

hyporheic flow over a period of time (Dearden & Palumbo-Roe 2010). 
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For this study, geochemical methods were used to find hyporheic locations 

influenced by surface water, and hydrologic variables of groundwater level, 

hydraulic conductivity, and soil porosity were used to define hyporheic flow. 

2.1.2 Physical Characteristics of Hyporheic Flow 

2.1 .2.1. Piezometers and Wells 
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Piezometers and monitoring wells are used to access water beneath the 

surface. They can be comprised of a variety of materials (e.g. plastic tubing, PVC, 

aluminum) and span a range of lengths and widths, depending on the application. 

Wells are perforated along the length of the pipe to capture the height of the water 

table. Piezometers are perforated only around the lower section of the pipe, which 

measures pore water pressure at the intake location. For this study, piezometers 

were used and functioned as perforated pipes fixed vertically in the ground to 

passively intercept groundwater (Sprecher 2000). Their function is to facilitate 

groundwater level measurements, water sampling, and tracer introductions (Tonina 

& Buffington 2009). 

2.1.2.2 Hydraulic Head and Hydraulic Conductivity 

Groundwater is always moving from high to low potential energy; therefore 

the distribution of hydraulic head throughout an area indicates where groundwater 

will flow. The hydraulic head at a particular location represents the total potential 

energy of subsurface water and is measured in units of length above a fixed datum 

Oones & Holmes 1996). The relative rate of movement is described by the vertical 

hydraulic gradient (VHG, m · m·1) and horizontal hydraulic gradient (HHG, m · m·1) 

between two piezometers. Both measurements can be calculated with the following 
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equation: 

VHG or HHG- till/ ~I Eqn (2.1) 

where: 
till = difference in height between two hydraulic heads; and, 
M =flow path length between two piezometers (vertical distance for VHG and 

horizontal distance for HHG). 

Hydraulic conductivity (K) describes the ease with which groundwater 
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moves through pore spaces in the alluvium or soil, and is a measurement of distance 

traveled over time (with units L · T-1). The obtained values depend on sediment 

porosity and connectivity of these pore spaces, which are functions of the type and 

condition of sediments (Tonina & Buffington 2009). The simplest method to obtain 

hydraulic conductivity values is through a bail or slug test (Freeze & Cherry 1979). 

Water is either introduced to or removed from a piezometer and the water level is 

then monitored until it returns to quasi-equilibrium conditions. Many methods have 

been developed to calculate hydraulic conductivity for specific subsurface 

conditions; this study will use the Hvorslev Method which calculates the time it 

takes for the water level to rise to 37% of the initial maximum (Hvorslev 1951, 

Campbell et al. 1990). The equation is as follows: 

where: 
K = hydraulic conductivity; 
r = radius of well casing; 
R = radius of well screen; 

K = rLn(L/R) I [2LTo] 

L = length of well screen; and, 
To= time require for the water level to rise to 37% of the initial change. 

Eqn (2.2) 

Within the channel, VHG measurements are used to determine if water is 
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moving into the ground from the river (downwelling or groundwater recharge) or 

from the ground to the surface water (upwelling or groundwater discharge). These 

conditions may change temporally, such as during high water events where 

groundwater is recharged due to the downwelling of excess surface water (Mouw et 

al. 2009) or conditions may remain steady where upwelling water is constantly 

delivering limiting nutrients to the surface water and producing localized zones of 

productivity {Valett et al. 1994). By observing hyporheic and surface water data, 

areas of groundwater discharge and recharge can be identified. These "charged" 

zones exhibit particularly active hyporheic exchange that may alter water chemistry 

and redirect groundwater flow patterns Oanzen 2008). 

Typically, a patchy matrix of bidirectional water exchange exists at the reach 

and segment scale and creates a variety of habitats for a diverse assemblage of 

organisms. Site specific characteristics, such as soil type, water inflow, and intruding 

vegetation, contribute to this variable matrix (Dent et al. 2001, Poole et al. 2008, 

Tonina & Buffington 2009). Localized zones around tree roots, for example, can 

cause disparate conditions that depend on specific spatial and temporal variables. In 

some locations, tree roots may cause upwelling by drawing water and nutrients 

from the hyporheic zone (Constantz et al. 1994). However, exactly the opposite 

process commonly occurs when plant roots transpire water directly from 

groundwater, resulting in a drawdown and localized depression of the water table 

(Winter 2000). Changes in the local water table could be a likely cause of this 

disparity. 
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2.1.2.3 Residence Time 

The hyporheic zone acts as a storage site, which traps water and solutes and 

then releases them over time. Water may exchange between the stream and 

hyporheic zone in short increments many times along its flow path, transferring 

heat, oxygen, solutes, and biota. Increased water residence time occurs when stream 

water enters deeper into the alluvium or flows across riparian or floodplain soils 

before entering the stream again (Harvey & Wagner 2000, Boa no et al. 2006, Hester 

& Gooseff 2010). Hyporheic exchange can regulate the biogeochemical 

transformations or release of essential nutrients to a stream, such as inorganic 

nitrogen. Where residence time is short, nitrogen is exported downstream at a 

greater rate. Increased residence time facilitates internal denitrification which 

removes inorganic nitrogen from the system (Triska et al. 1989, Wondzell & 

Swanson 1996b). 

Zarnetske et al. (2011) performed a hyporheic residence time experiment to 

investigate the spatial and temporal physiochemical conditions that control nutrient 

transformation in a drainage dominated by agriculture and forestry. They 

discovered that short water residence times (<6.9 hours) were associated with 

biogeochemical processes of ammonification, nitrification, and rapid utilization of 

DO and DOC. Residence times beyond 6.9 hours resulted in denitrification and net 

removal of nitrate from the stream. Although every hyporheic location studied will 

yield different outcomes, shorter residence times prompting aerobic metabolic 

process and longer residence times facilitating anaerobic metabolic processes is a 

commonly agreed upon response (Triska et al. 1993, Peyrard et al. 2011, Binley et al. 

2013). 
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2.1.3. Modeling Hyporheic Flow 
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The primary methods used to trace water flow paths in the hyporheic zone 

include water temperature differences, tracer tests, and groundwater level loggers. 

These methods can be used alone or in combination and may be incorporated into 

predictive hydrologic models. The USGS program MODPA THis commonly used to 

simulate particle tracking in groundwater transport and to calculate water residence 

time (Pollock 1994). The mapping and spatial analysis software ArcGIS has 

groundwater tools for advection-dispersion modeling of groundwater flow, particle 

tracking, and chemical dispersion (ESRI 2013). For this study, ArcGIS groundwater 

software was used to model hyporheic flow. 

A geographic information system (GIS) groundwater model was used in this 

study because of its distinct spatial and visual advantages. By utilizing technology in 

ArcGIS, data management and tools for modeling are integrated into a single 

predictive working environment, from which results of a groundwater flow model 

can be seen directly in a presentable output. The ArcGIS groundwater analysis tool 

Darcy Flow models two-dimensional flow by utilizing variables of groundwater 

head elevation, porosity, saturated thickness, and transmissivity (defined partially 

by hydraulic conductivity). Local flow velocity and direction are defined for each 

cell in the grid, and Darcy's Law is applied to the cells adjacent to the center cell in 

order to generate a flow field (Tauxe 1994). Water that flows through the ground is 

governed by Darcy's Law, which states that flux rates are a direct function of 

hydraulic conductivity and hydraulic gradient (Freeze & Cherry 1979). A precursor 

to Darcy Flow is the Flow Direction function, which confines flow direction towards 

one of eight adjacent cells Oenson & Domingue 1988). 
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2.1.4 H potheses 

The aim of this study is to determine if the hyporheic zone acts as a delivery 

corridor and storage zone for ammonium (NH4 ) that is delivered to the stream by 

spawning salmon. The concentration of NH4 between stream and hyporheic water 

samples will be evaluated, as well as the spatial variables that control nutrient 

exchange. Over-winter storage of NH4 ' will be assessed by sampling throughout the 

2011 sockeye salmon spawn and the subsequent spring. The following hypotheses 

will be tested: 

Null Hypothesis I: H4' concentration of surface water will not be correlated with 
the number of spawning salmon in the HFC. 

Null Hypothesis II: There will be no difference between NH4 + concentrations of 
surface and hyporheic water. 

Null Hypothesis III: NH4 +concentration of hyporheic water will not be correlated 
with distance from the streambank. 

Null Hypothesis IV: There will be no difference between the mean NH4 + 

concentration of surface and hyporheic water between fall and 
spnng. 

2.2 Method s 

2.2.1 Stu dy Site 

Fieldwork was performed in Horsefly, BC (52° 19'N, 121 o 1'W) located in the 

Cariboo region of British Columbia (Figure 2.1). The 131-km long Horsefly River is 

the largest tributary of Quesnel Lake in the Fraser Basin of the Quesnel watershed. 

This river provides important spawning grounds for sockeye salmon (Oncorhynchus 

nerka) and, to a lesser degree, Ch inook salmon (0. tshawytscha). Historically, the 

Horsefly River has supported large sockeye salmon populations; however, recent 
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salmon spawning cycles have produced lower than average numbers (Albers 2010). 

0 Horsefly, BC 

lob 

BRITISH COLUMBIA -,.., 
Figure 2.1. Map of British Columbia displaying the town of Horsefly, the location where 
this study was conducted. 

2.2.1.1 Horsefly River Spawning Channel 

The Horsefly River spawning channel (HFC) is an artificial channel managed 

by the Department of Fisheries and Oceans Canada (DFO) that was designed and 

constructed as part of a salmon enhancement program to improve salmon 

production and facilitate fisheries management by creating an optimal spawning 

environment for salmon (Figure 2.2). The channel is approximately 1.6 km in length 

and 10m wide with a designed slope of 1%. Maximum salmon capacity in the 

channel is 23,000 adults (Holmes 2008). The approximately 1-m deep gravel layer 

lining the channel surface is relatively uniform in particle size and shape, and was 

designed for ideal spawning conditions. Additionally, the alluvium and soil 



Chapter 2. Nitrogen Cycling in the Hyporheic Zone 33 

surrounding this gravel layer may have an irregular development due to channel 

engineering. Water inflow is regulated by a large pump that siphons water from a 

settling pond, which is connected to the Horsefly River at the upstream end of the 

channel. At the start of the salmon run, a fence is installed in the Horsefly River 

directly upstream of the channel mouth to restrict upstream migration and allow a 

selected number of salmon to enter the HFC. The confined salmon then spawn in the 

channel. There are two salmon gates within the channel that restrict movement but 

also become temporary dams once the salmon spawn-out (Figure 2.1). Carcasses 

become lodged against the gates, increasing the water level and creating a reservoir 

that is released mid-day when the dead salmon are sampled, marked, and released 

into the main channel. 
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Figure 2.2. Aerial view of the Horsefly River spawning channel in Horsefly, BC. The 
Horsefly River is depicted with flow direction arrows. 

In the summer and fall of 2011, in addition to regular DFO enhancement 

activities, a 900-m2 area of the channel and adjacent riparian zone was converted 
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into an experimental site. The average wetted width of the experimental channel in 

this reach is 12.3 m, with bankfull width being only 0.1 to 0.2 m wider due to the 

incised channel. The maximum water height at the channel's riparian edge is 1.4 m. 

The average of three measurements were taken prior to sampling events to define 

channel width and height using methods outlined by Leopold (1994). Vegetation 

composition resembles other riparian zones along the Horsefly River, consisting 
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primarily of deciduous trees with a diameter at breast height (DBH) of less than 0.3 

m. Predominant tree species include willows (Sallx sp.) and Black cottonwood 

(Populus triclzocarpa), and dominant shrub species are Red-osier dogwood (Corn us 

sericea) and Twin-berry (LonZtera mvolzurat ). Oth12r prevalent vegetation includes 

Mountain alder (Alnus ten wfi.>lla ), Saskatoons (Am. la1ulzz r alnifolza ), Cow parsnip 

(Heradeunz maxmzum ), and Pnckh rose (Rosa aL n ularzs ). The riparian zone upstream 

of the study site is composed mainly of smaller shrubs and grasses, with a dense 

riparian forest forming at the beginning of the meandt:)r bend (Figure 2.3). The 

reason for this difference in forest maturitv is unknown, but is likely due to tree 

clearing during the con~truction of th• · channel. 

Figure 2.3. The study site in June 2011, showing meander bend in spawning channel and 
adjacent riparian zone. Piezometers F and Care located upstream (right side in this 
photo) of the riparian forest and are located in the un-forested section. 
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Before the introduction of salmon, the top 30 em of the channel bed gravels 

were mechanically cleaned to resuspend stored fine sediment and, subsequently, 

increase the flow of dissolved oxygen (DO) within the streambed. This was 

undertaken by the DFO and was accomplished using a rake mounted on a 

bulldozer, followed by a managed increase in water flow to flush out suspended 

solids. A temporary sandbag dam was constructed about 200m upstream from the 

experimental site where mechanical cleaning ceased and the turbid water was 

pumped from the channel into an isolated settling pond adjacent to the channel. This 

was done in order to minimize the impact of fine sediment resuspension in the 

Horsefly River preceding the salmon run. Due to the location of this downstream 

settling pond, the final250 m of the channel is not cleaned. The experimental site is 

located within this section where the streambed has not been disturbed (Figure 2.2). 

Although the HFC was created to optimize salmon spawning habitat, the 

artificial construction and environmental manipulation of the channel results in 

underlying differences when compared to natural systems on the Horsefly River 

and the broader Pacific West Coast. Notably, the water in the channel is pumped 

from a settling pond. Although water in the settling pond originates in the Horsefly 

River, chemical and biological attributes of this water will be altered from being held 

in an environment that is more stagnant than the free-flowing river. Some of these 

changes may include reduced DO, increased dissolved nutrient concentration, and 

an altered aquatic plant and animal community. Channel bed cleaning prior to the 

introduction of salmon is an obvious, unnatural disturbance, which likely results in 

a mass export of macroinvertebrates, biofilms, and dissolved nutrients. While the 

cleaning promotes the flow of DO to benefit salmon eggs, it may unintentionally 
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alter the ecology of the spawning habitat in undesirable ways (e.g. decrease food 

reserves for salmon fry). Also, the Horsefly River is characterized by annual spring 

flooding events that create large floodplains throughout the region. The HFC is 

protected from floods, which does create a safe haven for eggs and juvenile salmon 

(Holmes 2008). However, it results in a geomorphology that is different from the 

sandy substrate and wide, meandering gravel bars created by the floods. 

2.2.2 Study Design 

The experimental site was chosen at a meander bend 50 m from the mouth of 

the channel (Figure 2.4). Twenty-five piezometers were installed in a grid, 

comprising five instream piezometers and 20 piezometers located on the riparian 

zone adjacent to the channel. Each piezometer was spaced 1 to 2m apart, with 

variability due to physical barriers, such as trees and boulders. Piezometers were 

constructed of l-in (2.54-cm) inner diameter electrical metallic tubing (EMT) and 

were 10ft (3.048 m) in length. Forty-four, lA-inch diameter holes were drilled near 

the bottom of the pipe to allow for passive hyporheic water inflow. A pointed, steel 

tip was welded to the bottom in order to drive them into the ground (Figure 2.5). 

Riparian piezometers were all installed to approximately the same depth, 2.4 m 

below the ground surface. Instream piezometers were installed approximately 1 to 

1.5 m below the streambed . 
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Figure 2.4. Map of the experimental study site on the Horsefl) Rher spa\\ ning channel. 
Contours display 0.1-m changes in land elevation (NAD83). 
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Figure 2.5. Diagram of piezometer marking levels of elevation used in the study. 
Measurements of piezometer holes are displayed in the inset diagram. The variable 
length of well screen (L) is described in the Hvorslov equation. 

2.2.2.1 Rhodamine Tracer Test 

In order to select a subset of hyporheic sampling locations for this study, a 

tracer experiment using a slug injection of a fluorometric dye tracer, Rhodamine­

WT, was executed. Subsequent samples were collected to track the breakthrough 

curves of fluorescence concentration versus time throughout the study site. This 
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fluorescent dye was chosen for its excellent detectability, use in low concentrations, 

and low potential for sorption (Harvey & Wagner 2000). Using methods adapted 
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from Kilpatrick & Cobb (1985), the volume of Rhodamine-WT required for the tracer 

injection was determined by the following equation: 

V = (3.79x10-5
) * (QL/v) * C 

s p 

where: 
C =peak concentration at the sampling site, in micrograms per liter; 
L P length of the measurement reach, in meters; 
Q =stream discharge, in cubic meters per second; 
V =volume of Rhodamine-WT 20-percent dye, in miiiiliters; and, 

s 
v =mean stream velocity, in meters per second. 

Eqn (2.3) 

The peak concentration (C ) at the sampling site was l~J.g/L, foiiowing Kilpatrick & 
p 

Cobb (1985). A location 120-m upstream from the study site was chosen as the 

injection site (Figure 2.2). The length of the reach (L) was a uniform glide, with no 

obvious pools or back channel storage areas, to allow for uniform dispersion across 

the channel (Turner Designs 1995). To achieve the desired concentration of 

Rhodamine-WT (V ), three serial dilutions were performed using stream water to 
s 

obtain a 100 11g/L working solution. 

On July 15, 2011, water samples were extracted from 24 piezometers to record 

background fluorescence prior to the tracer test. (One dry piezometer located in the 

northwest corner of the site was eliminated from the test.) The following day, 100 L 

of Rhodamine-WT working solution, comprised of five 20-L buckets, was released as 

a bulk slug into the thalweg at the injection site. To enable rapid water collection 

post-release and capture a representation of the entire study area, a subset of nine 

piezometers was selected from every 3-m2 area of the study site (piezometers A, C, 

E, G, J, 0, Y, V, R). Water sampling commenced once the dye plume reached the top 

of the study site and continued every half-hour for two hours, at which point we 
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exhausted all the sterilized sample containers. A1124 piezometers were again 

sampled that evening and the next morning. 
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Water samples were analyzed for fluorescence (~Jg/ dl) within 24 hours of 

collection using a desktop fluorometer (Turner Quantech Digital Filter Fluorometer 

Model FM109515, Barnstead I Thermolyne, Iowa, USA) equipped with a narrow 

band filter of 540 nm and a sharp-cut filter of 585 nm. 

This dye tracer test was performed under the premise that it would be 

possible to sample all 25 of the piezometers at a frequency and length of time that 

allowed for concurrent analysis and detection of breakthrough curves throughout 

the study site. However, manual sampling with two people did not allow sufficient 

intervals or quantity of data to determine the precise path of Rhodamine-WT tracer. 

Consequently, this test only partially helped to define which piezometers to use for 

the study. Individual trends in fluorescence and location were examined to 

determine the subset of 10 study piezometers. One qualifier, as determined by the 

tracer test, was that the location must have displayed an increase in fluorescence, 

followed by a decrease (piezometers G, J, 0, V). The second qualifier, location, was 

chosen to select piezometers that were positioned along a hypothetical path flowing 

across the meander bend (piezometers F, G, I, J, K, 0), beneath the stream 

(piezometers C, D), or at an increment extending into the riparian forest adjacent 

from the top of the meander bend (piezometers G, I, V, W). Overall, dye attenuation 

was highest at instream piezometers and riparian sites located near the upstream 

bank. 
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2.2.2.2 Sampling Scheme 

Sampling occurred during the 2011 sockeye salmon run and the subsequent 

spring of 2012. Seven sampling periods were timed to characterize varying delivery 

and biochemical activity of MON. The fall period (August 23 to October 6) consisted 

of one pre-salmon spawn sampling week, three weeks during active salmon 

spawning, and a final post-spawn week once all salmon had spawned-out. There 

were two sampling periods in the spring, one before and one after spring break-up 

(Figure 2.6). Each sampling week consisted of 3 consecutive days in which water 

samples were collected. 

Aug 

Week 1: 

Pre-spawn 

Oct 

Week6 
PoS't-spawn 

Weeks 3, 4, & 5 
During spawn 

Nov Dec Jan Feb March April May 

Week 30 Week 34 
Before spnng break up After spnng break up 

Figure 2.6. Sampling periods timed to characterize the temporal nutrient delivery and 
retention during the 2011 sockeye salmon run and the subsequent spring. 

2.2.3 Site Characteristics and Aquifer Variables 

Daily precipitation and air temperature measurements were recorded at an 

Environment Canada hydrometeorological station located next to Gruhs Lake, 

Horsefly, BC (52° 21' 56" N, 121 o 21' 19" W, el. 777 m). Horsefly River hydrometric 

data was obtained from two Environment Canada discharge measurement sites on 

the Horsefly River: Horsefly River above McKinley Creek (52° 17' 23" N, 121 o 3' 37" 

W) and Horsefly River above Quesnel Lake (52° 26' 46" N, 121 o 25' 7" W). The 

McKinley Creek station is located about 30 km upstream from the study site and the 

Quesnel Lake station is approximately 20 km downstream. 
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A land survey was conducted to map sampling locations, piezometers and 

topography of the study site using an electronic theodolite survey station (Leica 

Flexline TS06 Total Station, Heerbrugg, Switzerland). Over 100 survey points were 

loaded into the geospatial processing program ArcMap (ArcGIS, Esri, California) to 

build a contour map of the study site (Figure 2.4). 

A subset of ten piezometers, chosen to represent hyporheic flow paths, 

contained capacitance water level probes (Odyssey Capacitance Water Level Logger, 

Christchurch, NZ) that recorded water level in the piezometers at 15-minute 

intervals between August 22- October 8, 2011 and at 5-minute intervals between 

March 30- May 7, 2012. Surface water staff gauge readings were recorded at mid­

day during each sampling day. 

Two pressure transducers (HOBO Water Level Logger U20-001-04, 

Massachusetts, USA) were installed at the study site from March 30- May 7, 2012 to 

measure surface water level during spring melt. The logger recorded absolute 

pressure (kPa) and temperature (°C) every 15 minutes. HOBOware Pro software was 

then used to convert pressure readings into surface water level readings by means of 

barometric pressure compensation. 

Hydraulic conductivity (K) was measured on April1, 2012 during baseflow 

conditions using a falling-head slug test (Bouwer 1989, Wondzell & Swanson 1996a). 

For this test, the time interval on all capacitance water level loggers was increased to 

1-minute. Then, a known amount of water was withdrawn from each piezometer. 

After 3 hours, the recorded data for the slug test were downloaded and then the 

instruments were reset to 5-minute intervals to continue ongoing groundwater level 

data collection. Hydraulic conductivity was calculated according to the Hvorslev 
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equation (Equation 2.2). 
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Porosity refers to the fraction of the soil's volume that is composed of pore 

space which can be filled by water and/ or air (Flint & Flint 2002). In sandy 

substrates, porosity has an inferred proportional relationship with hydraulic 

conductivity. However, this relationship does not exist for all substrate types. For 

example, clay typically has very low hydraulic conductivity, yet high porosity due 

to its structure. Soil pits were dug to extract samples from hyporheic-influenced soils 

and porosity measurements of three samples, located -777.8-778.0 mASL, were 

performed in the laboratory. To calculate porosity, samples were first oven dried at 

75°C for at least 12-h. Then water was added to a known volume of soil (VtotaJ) in a 

beaker until the water covered the top surface of the soil. The volume of water 

added, which can also be referred to as pore space (V void), was determined by 

subtracting the water left in the beaker from the original total volume. The unit-less 

measurement of porosity is the ratio of volume of pore space in soils to the volume 

of material, with more porous substances closer to 1.0 or 100% saturation: 

Porosity = V void/Vtotal Eqn (2.4) 

2.2.4 Groundwater Modeling 

The water level inside the piezometers, presented as a height in meters above 

sea level (mASL), indicates the hydraulic head of sediments surrounding the 

piezometer opening. However, for hyporheic flow analysis, this study treats treats 

these measurements as water table elevations and are used to interpret the lateral 

flow direction, while assuming that vertical flow is negligible. Since there were no 

wells installed on the study site to directly measure the water table and determine 
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the VHG of riparian piezometers, negligible VHG remains an underlying 

assumption of hyporheic flow analysis. 
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Water levels inside the piezometers exhibited natural temporal fluctuations, 

with some locations experiencing as much as a 1-m rise between late fall and spring 

break-up. Changes in channel surface water level occurred daily during peak spawn 

as a result of the build up and release of a "salmon dam" caused by carcasses 

becoming lodged against gates separating sections of the spawning channe I (Figure 

2.2). Hyporheic water levels changed as surface water fluctuated, which indicates 

that this riparian zone is hydrologically connected to the surface water. During the 

spring monitoring period, natural rises in water level were observed during 

snowmelt and two large precipitation events that initiated spring break-up in 2012. 

To better visualize the fluctuation in water level across the study site, ArcGIS 10.1 

technology was used to create rasters that display hydraulic head at one point-in­

time. These rasters were then compiled into separate movies during three peak 

water events in the spring of 2012: 1) A snowmelt event of 6-days between April7 

and April13, in which the snowpack decreased from 23-cm to 0-cm; 2) A two-day 

period between April26 and 28 after 27.4-mm of precipitation, initiating the start of 

spring freshet; 3) A 24-hour period on May 1 where surface water rose considerably 

after precipitation and in conjunction with the start of the spring break-up cycle. 

Hyporheic flow path maps were generated to compare water movement at a 

point-in-time at midnight during each month of the study. The day of the month 

was chosen to reflect a steady state condition by eliminating outside influences of 

water level change, i.e. salmon dam or precipitation. Two different techniques were 

used to analyze and validate results of flow direction and magnitude in ArcGIS, one 
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with and the other without the Darcy Flow function. However, due to limited 

sampling of aquifer properties, the Darcy Flow model did not produce realistic 

results. onsequently, this study will only describe the hyporheic flow analysis that 

did not use the Darcy Flow function. 

To generate the flow path maps (Figure 2.7), a hydraulic head raster was 

created using thin plate spline interpolation. The Spline tool in ArcGIS uses an 

algorithm that minimizes surface curvature and generates a smooth surface that 

passes through the input points (DeMarsily 1986). From this hydraulic head raster, 

two new rasters were created to represent direction and magnitude, or relative 

speed, of flow. The Flow Direction function, located in the Spatial Analysis 

hydrology toolbox, was executed to determine direction by locating the steepest 

descent in hydraulic head from each cell (l.O-m2 area) of the raster Genson & 

Domingue 1988). By using the percent rise in slope from the hydraulic head raster, a 

proxy for magnitude of flow was determined. Points from these new rasters were 

symbolized as arrows that depict the flow direction and magnitude of flow. 

Utilizing ArcGIS technology to generate computed flow patterns can be a 

useful tool when modeling spatial environments; however, there are several sources 

of potential error in the models generated by this study. Particularly, the low 

number of sample data points (n=10 or 0.01 points per m2) may result in errors 

during the interpolation routine. Although interpolation is a valid method for 

predicting values of an area when data points are limited (DeMarsily 1986 ), error is 

reduced with greater sampling density (Ke1m edy et al. 2008). Some uncertainty also 

exists in hydraulic head values because, in low permeable substrates, piezometers 

may produce a lagged response (Hvorslev 1951). Also, this study's assumption that 



Chapter 2. Nitrogen Cycling in the Hyporheic Zone 47 

VHG of riparian piezometers is negligible may not be accurate. If strong vertical 

hydraulic gradients do exist in riparian piezometers, then the models will produce 

an unrealistic representation of groundwater level and flow Oones & Holmes 1996). 
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Figure 2.7. Workflow chart showing steps for hyporheic water flow analysis using 
Spatial Analysis tools in ArcGIS. 

2.2.5 Water Chemistry 

2.2.5.1 Field Sampling 

Hyporheic water samples were collected from the chosen ten piezometers 

around mid-day for three consecutive days during each week of the sampling 

period. Water was extracted using a hand-operated vacuum pump with an attached 

food-grade silicon hose and collected into separate 125-ml Erlenmeyer flasks. 

Surface water samples were taken 5 m upstream, 5 m downstream, and at the 

midpoint of the study site using a 60-ml syringe with Luer-Lok tip. Samples were 

then filtered with 0.2-#Jm syringe filters. Approximately 12 to 15 ml of filtered water 

was collected in sterile plastic centrifuge tubes and placed imtnediately on ice. The 

samples were transferred to a freezer within 4 hours of collection and kept frozen 



Chapter 2. Nitrogen Cycling in the Hyporheic Zone 48 

until laboratory analysis. All water extraction materials that made contact with 

water were acid-washed in a 10% hydrochloric acid bath for a 2 hour minimum soak 

time and triple-rinsed with deionized water (DI). 

2.2.5.2 Laboratory Analysis 

At the University of Northern British Columbia's Central Equipment 

Laboratory, water samples were analyzed for ammonium (NH4 ) concentration 

using an AutoAnalyzer (Bran+Luebbe AutoAnalyzer 3, Norderstedt, Germany). The 

method used is a modification of the Berthelot reaction, using salicylate reagents and 

a measurement of 660 nm (Rowland 1983). Before analysis of the samples, a 

calibration was performed using standards of 0, 10, 25, 100, and 1000 ~g/L N. Two 

quality control samples of 0 and 100 ~g/L N were inserted after every tenth sample. 

About 10% of the samples were re-analyzed the following day for quality assurance. 

Samples that exceeded 1000 ~g/L N were diluted and re-analyzed to achieve results 

within the calibrated range. 

2.2.6 Statistical Analysis 

All statistical computations and graphs were conducted using the program R 

(R Core Team 2013), as well as the R packages" AICcmodavg", "car", "ggplot2", 

"gridExtra", "lattice", "mgcv", "plyr", and "scales". For each sampling week, the 

three observations from each site were averaged to obtain mean NH/ concentration. 

To confi rm statistical independence, temporal autocorrelation tests were conducted 

using R's built-in autocorrelation function [ad()] to determine if NI--l/ displayed 

"persistence" between sampling weeks (Chatfield 2004). Ammonium concentration 

of three locational groupings (su rface water, instream piezometers (C and D), and 
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riparian piezometers) were averaged as a whole and between seasons, square-root 

transformed for normality, and regressed through linear modeling to determine 

statistical differences between locations and seasons. Pearson's product-moment 

correlations were also performed to test the relationship between the arrival of 

salmon and presence of NH4 • For all analyses, the confidence level for statistical 

significance was set tops; 0.05. Additionally, highly significant results were 

identified if p s; 0.001. 

Several site specific variables were chosen to be analyzed as predictors of 

NH4 +concentration. Spatial variables included distance from stream bank, distance from 

top of meander bend, withdrawal depth, and hydraulic conductivity. The temporal 

variables used were precipitation and staff gauge reading. Before statistical analysis, all 

variables were standardized to eliminate discrepancies between units of 

measurement and enable direct interpretation (Schielzeth 2010). The following 

calculation was used to standardize variables: 

standardized parameter = {x,- x) I a Eqn (2.5) 

where: 
Xi= observation i; 
:X = mean of all observations; and, 
a= standard deviation of all observations. 

Hyporheic sites were separated into two groups for statistical analysis of 

NH/: 1) all hyporheic samples (n=10) and 2) riparian hyporheic samples (n=8). 

Correlation between predictor variables, known as multicollinearity, was evaluated 

with variance inflation factors (VIF) using the vif() function in R. Lower VIF values 

indicate less correlation, thus increasing the strength of multiple regression analysis 
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because the variables are more independent (O'Brien 2007). Linear and multiple 

regressions tested the relationships between mean NH4 · concentration and one or 

two predictor variables. The temporal variables precipitation and staff gauge reading 

were tested separately from spatial variables. Multiple regression analysis included 

the interaction term and was performed using variables with low or moderate 

correlation (1 < VIF < 5). Mean NH4 • concentrations were log-transformed for 

normality. An information theoretic approach, specifically Akaike's 'An Information 

Criterion (AIC)', was used to identify the most parsimonious models. AIC provides 

a means for selecting the model that is as simple as possible, but no simpler 

(Burnham & Anderson 2002). Second-order AIC (AICc), which is adjusted for small 

sample size, was used and has the following equation: 

AICc= (2k * (n / {n-k-1))-2ln(L) 

where: 
k = number of predictors; 
n =sample size, and; 
L =maximized value of the likelihood function. 

Eqn (2.6) 

For the spatial analysis, two linear regressions and three multiple regressions with 

the lowest AIC values were retained as a candidate set to further rank these models 

according to Akaike weights (w~). Akaike weights represent relative likelihoods, or 

probabilities, for each model in the candidate set (Mazerolle 2015). For the temporal 

analysis, the best linear and multiple regression were retained as a candidate set. 

Lastly, the resulting effect size from regression equations was analyzed to interpret 

the meaning of the best models. 

In ArcGIS, exploratory statistics were analyzed for normality and volume 
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balance residuals were analyzed for steady and constant field flow during spatial 

interpolation. 

2.3 Results 

2.3.1 Precipitation and Discharge 

51 

Throughout the fall sampling period, the Horsefly region experienced 

relatively little precipitation, with an average of 0.5 mm I day and 2 out of 3 rain-free 

days. Compared to long-term climate normals recorded by Environment Canada, 

the total rainfall was low during this season. Through the month of September, 15.9 

mm of rain was recorded, compared to the long-term September average of 43.9 mm 

of rain. Horsefly River discharge, calculated from the McKinley Creek and Quesnel 

Lake stations, remained relatively constant, but decreased slightly as the fall 

progressed (Figure 2.8). The spawning channel is located approximately halfway 

between these two discharge stations. Although discharge at the spawning channel 

was not measured in the fall, it was likely very similar to measurements obtained 

during a study conducted in 2010 because water inflow at the channel is regulated 

by a siphon. Using Albers (2010)'s calculations, maximum ( -3 m3 Is) and minimum 

(-1.5 m3ls) discharge was much lower at the channel during salmon spawn than at 

the Horsefly River stations (McKinley Creek max: -12m3 Is, min: -6 m3 Is; Quesnel 

Lake max: -19m3 Is, min: -14m3 Is). 

During the spring, water levels in the Horsefly River and spawning channel 

were more variable due to snowmelt, precipitation events, and the onset of spring 

break-up (Figure 2.9). The largest precipitation event of the spring season occurred 

on Apri1 26, 2012 with 27.4 mm of precipitation falling in a 24-hour period. A peak in 
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discharge at McKinley Creek station was observed the next day. This rise in 

discharge and continuing rain carried downstream to the Quesnel Station when a 

peak in discharge was observed on May 3, 2012. As compared to Intensity-Duration­

Frequency (IDF) curves provided by Environment Canada, no rare or large-scale 

rainfall events occurred during this study. 
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Figure 2.8. Characterization of stream conditions at the Horsefly River spawning channel 
in the fall of 2011. The top graph displays precipitation and the bottom graph displays 
Horsefly River discharge at two measuring sites. 
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Figure 2.9. Characterization of stream conditions at the Horsefly River spawning channel 
in the spring of 2012. Precipitation is displayed on the top graph and the bottom graph 
displays discharge measurements from two sites on the Horsefly River. 

2.3.2 Aquifer Variables 

The substrate and soil material in which hyporheic water flowed was mostly 

comprised of "silt, sandy silts, clayey sands, and till" throughout the study site, as 

defined by common hydraulic conductivity values listed in Freeze & Cherry (1979) 

(Table 2.1). Piezometer 0, located deepest in the substratum and beneath the 

spawning channel, displayed the highest conductivity and consisted of silty and fine 

sands. 

Porosity values from hyporheic-influenced soil from the C horizon ranged 

from 0.30 total porosity at soil pit 1 to 0.62 and 0.65 at soil pits 2 and 3, respectively 

(Figure 2.10). These samples were all extracted within a depth of 20-cm from each 

other, or between -777.8 and 778.0 mASL. Soil pits 2 and 3 displayed a greater 
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occurrence of clay mottling, especially soil pit 3 which had a C horizon characterized 

by gley, or waterlogged, soils. During sampling, hyporheic water began to infi ltrate 

soil pits 2 and 3, whereas the water table was not hit while digging soil pit 1. 

Overall, soil pits 2 and 3 were considerably sandier than the coarse material at soil 

pit 1. These porosity measurements and observations support representative 

porosity values of geologic material from Freeze & Cherry (1979), which states that 

the 0.30 value at soil pit 1 is comparable to course sand or gravel, and the porosity 

values at soil pit 2 and 3 are indicative of clay. 

VHG at the instream piezometers, C and D, indicated downwelling flow 

throughout all sampling periods. There were three days in the fall (of a total of 

fifteen observations) at site 0 where water was slightly upwelling, but still nearly 

level with stream surface water (Figure 2.11a). Piezometer C consistently displayed a 

stronger downwelling gradient. In the spring, two sharp decreases in VHG mirror 

surface water level changes during peak flow events (see Figure 2.11 b) indicating 

that groundwater recharge is greater during precipitation and break-up events. 

Table 2.1. Hydraulic conductivity (K) measurements from each study piezometer on 
April 1, 2012. The soil material type, which is associated with standard K values, is 
adapted from Freeze & Cherry (1979). 

Location K (cm/s) Category K Material 
c 0.000062 10 E -OS Silt. sandy silts, clayey sands, t ill 
D 0.000631 10 E -04 Silty sands, fine sands 
F 0.000111 10 E -04 Silt. sandy silts, clayey sands, ti ll 
G 0.000021 10 E -OS Silt, sandy silts, clayey sands, till 
I 0.000066 10 E -OS Silt. sandy silts, clayey sands, till 

J 0.000036 10 E -OS Silt. sandy silts, clayey sands, till 
K 0.000026 10 E -OS Silt. sandy silts, clayey sands, till 
0 0.000166 10 E -04 Silt. sandy silts, clayey sands, t ill 
v 0.000083 10 E -OS Silt. sandy silts, clayey sands, ti ll 
w 0.000064 10 E -OS Silt. sandy silts, clayey sands, ti ll 
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Figure 2.10. Description of three soil profiles from the riparian zone. The diagram depicts relative heights (mASL) and distances 
from the streambank for each soil pit, i.e. soil pit 1 and 3 were located closest to the streambank and soil pit 1 was highest in 
elevation. Soil structure and color are described from the Munsell Soil Color Book. 
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Figure 2.11. Vertical hydraulic gradient in the fall (a) and spring (b) at instream 
piezometers C and D. Fall data (a) were only collected on days for which data are 
displayed. 

2.3.3 Geographic Information Systems (GIS) 

56 

.... 

In order to visualize the spatial and temporal fluctuations of hyporheic water 

at the study site, hydraulic head and flow direction maps were created in ArcGIS 

10.1 to observe reoccurring and unique patterns during each month included in the 

study. 

2.3.3.1 Hydraulic Head Contour Maps 

Figure 2.12 shows variation in hydraulic head during each study month. 

Hydraulic head is consistently higher further away from the stream, and generally 

depicts a gradual, one-directional flow towards the surface stream. Note that each 

map has a unique scale, as hydraulic head changed as much as 1-m between seasons 

at some locations. 
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Figure 2.12. Hydraulic head (mASL) at the Horseflv River spawning channel during each 
month of the study. Note that each map has a umque scale. 

Movies were created to illustrate patterns in hydraulic head fluctuations 

during three peak flow events in the spring of 2012 (Figure 2.13). These movies can 

be viewed online at YouTube by typing in the links below or searching with the 

keywords "horsefly river spawning channel": 

Snowmelt, April8-13- http: I I youtu.be I zeOw7XueWV c 

Spring break-up, April26-28- http:/ /youtu.be/DObVT9CvGZk 

Spring break-up, May 1 - http: I I youtu.be I zP1SkxSKNRM 

Each movie represents a different time interval and magnitude of change, but the 

overall pattern of water movement remains the same. Water level is highest and 

responds the quickest at piezometers W & I during all events. Piezotneter K 

consistently shows a depression in the water table and has a slower response time. 

All locations were responsive to changes in surface water level indicdting that the 
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hyporheic zone is well connected to the channel and there is a high rate of 

groundwater recharge in the spring. 
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Figure 2.13. Surface\-\ ater h) drograph between Apnl 1 and May 8, 2012. Crey rectangles 
encompass the dates used for mo\ ies depicting hvdraulic head fluctuations. 

2.3.3.2 Hyporheic Flow Maps 

60 

A synthesis of geospatial and temporal information was used to characterize 

subsurface flow direction and the magnitude, or relative speed, of water movement 

during each study month. Hyporheic flow path maps show groundwater generally 

flowing towards the stream, or from a position with higher hydraulic head to a 

lower one (Figure 2.14). In the fall months, the greatest relative speed of riparian 

hyporheic water is typically flowing from piezometer W to V, where the hydraulic 

gradient between these points was large. In the spring, the magnitude of flow is 

greatest between piezometers F, G, & I, vvhere the land surface had the highest 

slope. 
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Figure 2.14. Hyporheic water flow direction and relative speed, represented by arrow 
direction and size, as modeled b} spatial analysi of hydraulic head contours in ArcGIS 
during each month of the study. Land surface ele\ ation is depicted by the contour lines 
(0.1-m intervals). 

2.3.4 Ammonium 

Wide variation in NH4 concentration was observed both temporally over the 

period of study and spatially within the experimental site. Values ranged from <5 

~g/L Nat surface water sites to >500 ~g/L Nat hyporheic water sites near the 

spawning channel (Figure 2.15). Surface water samples ranged from < 5 to 80 ~g / L 

N, with mean, median, and mode values of 12.5, 8.5, and 14.0 ~tg / L N, respectively. 

Ammonium concentration at hyporheic sites ranged fro1n a lc'"'-' of 25 ~tg / L Nat thL 

site furthest from the streambank (site W) to a high of 606 ~tg / L N belo\-\' the 
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streambed (site D). The overall average value of hyporheic NH/ was 160 11g/L N, 

with both median and mode values of 119 11g / L N (Figure 2.16). Surface water NH/ 

concentration was found to be highly significantly different from hyporheic water (p 

< 0.001) throughout the study. 
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Figure 2.15. Box plots displaying all ammonium (NH4) concentration data at each 
sampling location. "Up," "Mid," and "Down" represent surface water samples. 
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Figure 2.16. Mean ammonium (N~ ) concentration, represented by symbol size, of all 
sampling weeks at the hyporheic sampling locations. Withdrawal depth is measured as 
meters above sea level (m.ASL). 

2.3.4.1 Seasonality of Ammonium 

65 

Ammonium was present in surface and hyporheic water during all sampling 

periods. Linear regressions evaluating the change in NH4 + concentration between 

Fall 2011 and Spring 2012 indicate that not only is NH4 + still present after the winter, 

but there is a statistically significant overall increase in NH4 + concentration in surface 

water (p < 0.001) and hyporheic water (p < 0.05) during the spring season (Table 2.2). 

The only sites exhibiting a decrease in spring NH4 + concentration are at instream 

piezometers C and D, which were drawing hyporheic water from below the 

streambed (Figure 2.17). In fact, a highly significant decrease from fall to spring 
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values was identified at instream piezometers (p < 0.001 ). 

A trend of decreasing NH4 ' concentration is evident as the fa ll spawning 

season progresses (Figure 2.17). There were six water sampling days (during Active 

spawn I and Active spawn II) in which salmon were entering the spawning channel 

and correlations between salmon number and NH4' could be analyzed (Table 2.3). 

The results display a statistically significant (p < 0.05) negative correlation between 

number of salmon and surface water NH4 • concentration (correlation coefficient of 

-0.919). This outcome is contrary to the hypothesis that more salmon will result in an 

increase of NH4 in the water column. 

Table 2.2. The change in ammonium (NH4 ) concentration at each sampling location 
between Fall 2011 and Spring 2012 sampling periods. "Up," "Mid," and "Down" 
represent surface water samples. 

Change in 

Site spring NH + 
4 p-value Effect size R-squared 

c Decrease 2e-04 - 1.23 0.53 
D Decrease 2.8e-06 -0.651 0.694 
F None 
G Increase 7.3e-05 1.1 0.572 
I Increase 0.004 0.838 0.361 

J Increase 0.013 0.628 0.282 
K Increase 2.3e-04 0.554 0.504 
0 None 
v Increase 4.7e-05 0.708 0.591 
w None 
Up Increase 0.008 0.58 0.319 
Mid Increase 0.006 0.631 0.339 
Down None 
All hyporheic 
water Increase 0.045 0.228 0.019 
All surface 
water Increase 2.4e-04 0.613 0.2 
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Figure 2.17. Mean ammonium concentration (JJg/L N) at water sampling locations 
during each sampling period, with error bars showing standard error. The "InslTeam" 
group represents piezometers located in the stream (n=2); "Riparian" represents the 
riparian hyporheic piezometers (n=8); "Surface" represents the surface water sampling 
locations (n=3 ). 

Table 2.3. Sockeye salmon (0. nerka) spawning escapement at the Horsefly River 
spawning channel and mean NH4+ concentration for surface water samples during 
Active Spawn I and II. 

Date 
Number of Mean NH4 

Salmon (ug/L N) 
Sept.12 2131 27.8 
Sept.13 2243 24.8 
Sept.14 2244 23.0 
Sept.20 2339 14.7 
Sept.21 2341 19.3 
Sept.22 2346 19.0 

67 



Chapter 2. Nitrogen Cycling in the Hyporheic Zone 68 

2.3.4.2 Variables Affecting Hyporheic Ammonium 

Predictor variables describing spatial and temporal attributes were used to 

assess NH/ concentration for two groups: 1) a11 hyporheic sites (n=10) and 2) 

riparian hyporheic sites (n=8). For group 1, the variables distance from streambank, 

withdrawal depth, hydraulic conductivzty, precipitation, and staff gauge reading were 

analyzed. Group 2 additiona11y considered the variable distance from top of meander 

bend. Variance inflation factors (VIF) of group 1 and group 2 variables were a111ow 

to moderate, meaning that each variable is reasonably independent of the other 

variables (Table 2.4). Therefore, all variables were considered for regression analysis. 

Table 2.4. Variance inflation factors (VIF) used to describe multicollinearity for predictor 
variables used in multiple regression analyses 

Group I Group 2 
Variable Type VIF VIF 
distance from streambank Spatial 1.54 2.09 
distance from top of meander bend Spatial n/a 1.76 
hydraulic conductivity Spatial 4.61 1.80 
withdrawal depth Spatial 4.82 2.70 
precipitation Temporal 1.09 1.22 
staff gauge reading Temporal 1.04 1.22 

Linear regressions were used to analyze the statistical significance between 

each variable and NH4 +concentration. For group 1, the variables distance from 

streambank, withdrawal depth, and hydraulic conductivity were considered statistically 

significant to predict NH4 +concentration (p < 0.05). The group 2 variables that were 

statistically significant (p < 0.05) included distance from streambank, distance from top of 

meander bend, and precipitation. 

AICc values from linear and multiple regressions of spatial variables were 
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analyzed to determine a candidate set of the most robust models, which induded 

the two best linear regressions and three best multiple regressions (Table 2.5). The 

most effective spatial variables in predicting NH4 concentration varied between 

groups, but multiple regressions were consistently stronger models than linear 

regressions. For all hyporheic samples (group 1), the predictor variables distance 

from streambank, withdrawal depth, and their interaction term produced the most 
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robust regression with an Akaike weight (wr) of 0.58, which describes the probability 

of this model being the best model in the candidate set. When analyzing the riparian 

hyporheic samples (group 2), the multiple regression of distance from top of meander 

bend, hydraulic conductivity, and their interaction term had the lowest AICc and W;= 

0.62. The strongest singular spatial variables to predict NH4' concentration were 

hydraulic conductivity for group 1 and distance from stream bank for group 2. 

The effect sizes associated with the regression results aid in understanding 

the real world application of these models (Table 2.5). The interpretation of group l's 

best model explains that, independently, an increase in distance from streambank 

(effect size= -0.20) and withdrawal depth (effect size= -0.20) tend to result in lower 

NH4 + concentrations. However, when distance from stream bank and withdrawal 

depth increase together (effect size= 0.36), this will cause NH4 +concentration to 

decrease less. The multiple regression of distance from streambank and withdrawal 

depth had similar results for both groups. The interpretation of this model for group 

2 explains that when controlling for withdrawal depth, a 1-m increase in distance from 

streambank will cause NH/ concentration to decrease by 0.27 ~gIL N (effect size= 

-0.27). 
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Table 2.5. Model selection results of spatial variables for all hyporheic (group 1) and 
riparian hyporheic (group 2) models The effect size is written in parenthesis after each 
predictor variable. The most parsimonious linear and multiple regressions are ranked by 
second-order Akaike's Information Criterion (AIC,) scores. SB streambank, TMB -= top 
of meander bend, df - degrees of freedom, w, Aka ike weights. 
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Group Model variables (effect size) df AIC MIC 
< w, 

< 

I distance from SB (-0.20) +withdrawal depth (-0.20) +Interaction term (0.36) 5 127.-45 0.00 0.58 
distance from SB (-0.18) +hydraulic conductivity (0.33) 

"" 
129.29 1.83 0.23 

distance from SB (-0.29) +withdrawal depth (-0. 33) 
"" 

130.01 2.56 0.16 
hydraulic conductivity (0.36) 3 133.-43 5.98 0.03 
withdrawal depth (-0.27) 3 143.17 15.72 0.00 

2 distance from TMB (-0.32) +hydraulic conductivity (0.06) +interaction term (0.20) 5 100.89 0.00 0.62 
2 distance from SB (-0.08) +withdrawal depth (-0.07) + interaction term (0.25) 5 103.66 2.78 0.16 
2 distance from SB (-0.1)4) 3 10-4.71 3.83 0.09 
2 distance from SB (·0.27) + withdrawal depth (-0.12) 

"" 
105.38 -4.-49 0.07 

2 distance from TMB (-0.03) 3 105.54 4.65 0.06 

When analyzing the temporal variables, AICc results demonstrated that, for 

both groups, the linear regression using precipitation was the strongest model, 

followed by the multiple regression of precipitation and staff gauge reading (Table 2.6). 

The results state that for each incremental increase in precipitation, NH4 + 

concentration will increase by 0.03 ~g/L N (group 1) or 0.05 ~g/L N (group 2). 

When controlling for staff gauge reading, each incremental increase in precipitation will 

cause an even greater increase in NH4+ concentration (0.20 ~g /L N for group 1 and 

0.27 ~g/L N for group 2). However, when the stream channel level rises, as signified 

by a higher staff gauge reading, N~+ concentration will decrease by 0.10 ~g / L N 

(group 1) or 0.12 ~g/L N (group 2) when controlling for precipitation. 
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Table 2.6. Model selection results of temporal variables for all hyporheic (group 1) and 
riparian hyporheic (group 2) regression models The effect size is written in parenthesis 
after each predictor variable. The most parsimonious lmear and multiple regressions are 
ranked by second-order Akaike's Information Criterion (AICc) scores. df degrees of 
freedom, w, = Aka ike weights 

Group Model variables (effect size) df AICC MICe w, 

I predphatlon (0.03) 3 150.71 0.00 0.63 
I precipitation (0.20) + staff gauge reading (-0.1 0) 4 I 51.75 1.04 0.37 

2 pre<:ipitation (0.05) 3 103.50 0.00 0.53 
2 precipitation (0.27) + staff gauge reading (-0.12) 4 103.76 0.25 0.47 

2.4 Discussion 

2.4.1. Defining the Hyporheic Zone of the Horsefly River Spawning Channel 

Hyporheic zones respond to changes in surface water levels and stream 

discharge (Valett et al. 1994), and this concept is substantiated by our study. The 
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hypothesis that a hyporheic zone is present beneath the stream and below the 

riparian zone was confirmed through hydraulic head contour and flow mapping, as 

well as perceptible changes in hydraulic head that corresponded with surface water 

level fluctuations. Hydraulic head beneath the riparian zone varied between a lower 

limit of 80-cm and 164-cm deep during low flow in the fall and from an upper limit 

of 10-cm to 56-cm below the surface at the peak of spring break-up. Directly beneath 

the stream, the saturated thickness of the hyporheic zone extended from the 

streambed to at least 155-cm deep and possibly deeper, but this is unknown as 155 

em was the deepest point sampled. During specific times at particular study sites, 

hydrologic and chemical characteristics implied the presence of a boundary between 

saturated and unsaturated soils. 

Hyporheic flow is controlled primarily by factors of sediment characteristics 
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(grain size, type, and connectivity), groundwater and surface water discharge rates, 

and hydraulic conductivity (Valett et al. 1994, Dent et al. 2001, Tonina & Buffington 

2009). The degree to which these variables exert control over hyporheic exchange 

depends upon scale, time, and place. Attributes of this aquifer were evaluated 

according to hydraulic head, hydraulic conductivity, and soil characteristics. 

2.4.1.1. Aquzfer Properties 

Negative VHG at instream piezometers (C and D) affirm that the 

experimental site is a location of groundwater recharge. Slight upwelling and 

neutral VHG occurred infrequently at piezometer D during low flow (Figure 2.11a), 

suggesting that the upper limit of the hyporheic / groundwater boundary is around 

155-cm below the streambed (or 775.943 mASL). High flow events had a discernible 

effect on groundwater recharge; for example, VHG dropped from -0.37 to -1.29 m · 

m-1 at C and -0.27 to -0.84 m · m-1 at D during a rain event on April 26, 2012. 

Hydraulic conductivity (K) values were relatively consistent throughout the 

study site (K- 104 to l0-5
), indicating a fairly homogeneous soil type of silt / clayey 

sands at lower K and silty / fine sands at higher K (Table 2.1; Freeze & Cherry 1979). 

The lowest K was observed at riparian site G and coincides with personal 

observations of slow-refilling and particulate-rich water. During low water events, 

piezometer G contained only enough water to fill one 12-ml sample, which suggests 

that the water table was occasionally situated just above the piezometer openings 

located 164 em below the land surface (or 777.292 mASL). 

During soil sampling, evidence of clay mottling was observed in the B 

horizon of all soil pits, which marks the perched height of the water table 

(specifically between 778.2 and 778.5 mASL). Gley and blue/ green soils, which 
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characterize a persistent water table, were identified in the C horizon of the soil pit 

located furthest frmn the streambank (soil pit 2). 

Since hydraulic conductivity defines the ease of water movement in soil, it 

seems to infer that a location with high porosity will also exhibit high hydraulic 

conductivity. However, the resistance of water movement in soil depends on the 

size and connectivity of pore spaces. As sediment particle size decreases, the 

proportion between porosity and K fails because the actual correlation is between K 

and pore throat radii (Soil Survey Manual 1993). Clay, being the typical example of 

this, consists of ultra-fine grained minerals and displays a strong apparent cohesion 

due to electrostatic forces between ions of minerals and oxygen atoms. This 

structure is highly porous, and often supersaturated, but exhibits low hydraulic 

conductivity because the many pore spaces are not well connected (Barnes 1995). 

2.4.1.2. Hyporheic Flow Paths 

Elevated hydraulic head values at locations furthest from the stream indicate 

one-directional flow of groundwater toward the stream channel (Figure 2.12), which 

is an expected result and typical of both surface and groundwater flow direction 

(Triska et al. 1993, Chestnut & McDowell 2000). The flow maps suggest there was a 

greater opportunity for hyporheic flow through the riparian meander bend in the 

fall because of the variable flow directions and a small magnitude of flow toward the 

stream. In the spring, the pattern of flow was strongly one-directional toward the 

channel, indicating that hyporheic flow at this time was likely limited (Figure 2.14). 

Although water is generally flowing into the channel, hyporheic exchange between 

the stream and streambank still occur on a smaller scale (Duval & Hill2007). 

Evidence of this exchange from the stream to riparian zone occurred during the 
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Rhodamine-WT tracer test when fluorescence of hyporheic water increased after the 

slug injection. Hyporheic exchange between the stream and streambed was 

confirmed from VHG measurements. 

Although VHG indicated a dominantly downward flow of water into the 

streambed, the flow of riparian groundwater towards the stream is known to 

promote upwelling conditions (Hill et al. 1998). This discrepancy could be the result 

of a localized influence associated with bedforms and also the artificial construction 

of the channel (Kasahara & Wondzell 2003). The streambank at the HFC is relatively 

steep compared to natural meander bends on the Horsefly River, where there is a 

gradual transition between the stream and riparian zone. Perhaps there is a limited 

connection between the flow of water from the riparian zone and the flow of water 

into the streambed at this site. To improve on the interpretation of hyporheic flow 

across the riparian and beneath the stream, piezometers installed upstream of the 

meander bend may have resulted in hydraulic head values that inferred different 

flow directions and magnitudes. 

2.4.2. Sources and Uptake of Ammonium in Surface Water 

Contrary to other experiments of natural or artificial salmon additions 

(Minakawa & Gara 1999, O'Keefe & Edwards 2002, Johnston et al. 2004, Chaloner et 

al. 2004, Mitchell & Lamberti 2005, Claeson et al. 2006, Janetski et al. 2009, Levi et al. 

2011), NH/ concentration of surface water did not increase upon the arrival of 

salmon and, thus, this study fails to reject the null hypothesis (I). Average values 

decreased from 27 11g/L N before the arrival of salmon to post-spawn values of 5 

/lg/L N. In fact, a strong negative correlation (r = 0.91, p < 0.05) between salmon 



Chapter 2. Nitrogen Cycling in the Hyporheic Zone 75 

abundance and H4 concentration was calculated during active salmon spawn, 

which infers that the presence of salmon significantly reduced surface water NH4 + 

concentration (Table 2.3). Ammonium concentration naturaJJy varies between rivers, 

and some examples of systems which gain NH4 in the presence of salmon are listed 

in Table 2.7. In a Washington stream, NH4 ' level remained unchanged during 

salmon spawn and this was attributed to the rapid removal of NH4 ' from solution 

due to biological uptake (Bilby et aJ. 1996 ). 

Table 2.7. Examples of streams with increased NH4 concentration during salmon runs, 
as compared to the present study. Most values were estimated from published graphs. 

NH +with 4 NH4 + without 

Authors Location Species salmon {"giL) salmon (}lg/L) 

Present stU Horsefly channel, BC Sockeye s 27 
Minakawa & Gara 1999 Uttle Kennedy Creek, WA Chum -2SO -so 
O'Keefe & Edwards 2002 Lynx Creek, AK Sockeye 147 2 

Peterson Creek, AK Pink, Chinook, Coho -IS -o 
Chaloner et at. 2004 Salmon Creek, AK Pink, Chinook, Coho -12 -s 

Chum, Pink. Coho, 
Mitchell & Lamberti 2005 Fish Creek, AK Chinook 40-60 <S 

Levi et al. 20 I I Prince of Wales Island, AK Pink, Chum -160 -10 

Certainly ammonia was delivered to the spawning channel by salmon 

(Mitchell & Lamberti 2005), but since we cannot attribute NH4+ concentration in 

water samples to salmon, a new question arose. Where is NH/ coming from? 

Possibly the most influential local source was the resuspension of sediment and 

bacteria during the channel cleaning that occurred between August 8-12 and 15-18, 

2011, ending 5 days prior to pre-spawn sampling. Over a 10-day cleaning period, a 

year's worth of accumulated streambed nutrients were released, potentially causing 

a dissolved nutrient spike which mostly attenuated before sampling commenced. 
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When N availability increases, microbes absorb, or mineralize, dissolved organic N 

(DON) as energy for growth and excess N is excreted as NH4 +in a process called 

ammonification. Nitrifying bacteria then absorb, or immobilize, this additional NH4 + 

and nitrification becomes the predominant transformation mechanism (Figure 2.18; 

Peterson et al. 2001, Chapin et al. 2011 ). This process of peak NH4 ' attenuation 

followed by a decline has been observed in other salmon-bearing rivers Oohnston et 

al. 2004, Claeson et al. 2006, Rinella et al. 2013). Furthermore, 2011 was a weak year 

for Horsefly River sockeye returns and the spawning channel was filled to less than 

10% of capacity. In contrast, the sub-dominant 2010 salmon escapement surpassed 

the total 2011 escapement on only the second day of spawning channel operation, 

and was eventually filled to 100% capacity. In another northern BC stream, Johnston 

et al. (2004) found that NH4 +concentrations exceeded N03- during a year of high 

salmon abundance, but the reverse was true the following year during low salmon 

abundance. At the HFC, low spawner density in conjunction with resuspension of 

the previous year's dissolved nutrients likely overshadowed NH4+ delivery by 2011's 

spawners. 
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Figure 2.18. A conceptual model of the mtrogen cvcle at the mterface of surface and 
hyporheic "'ater. (From Peterson et al 2001. Repnnted "'ith perm1ssion from AAAS.) 

InN-limiting ecosystems, actinorhizal plants, such as alder (Alnus spp.), 
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provide an important source of N to forested ecosystems through symbiotic nitrogen 

fixation. Alder-fixed nitrogen (AFN) can be transported to the stream by advection 

of water through the soil and direct leaf litterfall and, similar to MDN enrichment, is 

utilized by surrounding microbes and vegetation (Helfield & Naiman 2002, 

Compton et al. 2003). TheN supplied by alders is transferred to riparian soils 

primarily through root secretions and leaf litter, and has been shown to increase soil 

Nlf4 and N03- concentrations (Shaftel et al. 2012). Alders cotntnonly grow near 

water throughout the Cariboo region, which encompasses the Horsefly watershed (J. 

Holmes, pers. comm.), and Mountain alders (A. tenuifolia) were present in the 

riparian forest of our study site. In 1nature forests, AFN may be a more important 

contributor of soluble nutrients than MDN, perhaps, in part, because the timing of 
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maximum stream N from alder occurs in both the spring and the fall (Wondzell & 

Swanson 1996b, Helfield & Naiman 2002, Shaftel et al. 2012). 
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Land-use activities in the Horsefly River watershed include mainly logging, 

agriculture, mining, and urbanization (Holmes 2008, Smith & Owens 2014), which 

all can deliver substantial amounts of N to the stream. Small to medium sized beef 

cattle and hay production farms border much of the river upstream from the 

spawning channel. Further upstream, logging has been active in the past and 

present. Paved and gravel roads run adjacent to and over the spawning channel 

within the 1000 person town of Horsefly. However, these anthropogenic activities 

appear to be a minor source of dissolved nutrients. Surface water samples from the 

Horsefly River, taken directly upstream of the spawning channel in March 2008, 

displayed concentrations of dissolved inorganic N (DIN; nitrite +nitrate + 

ammonia) at 99 JJg/L and soluble reactive phosphorus (SRP; orthophosphate) at 3.3 

JJg/L (Holmes 2008). Concentrations at these levels are considered low (Meybeck 

1982, Tank & Dodds 2003) and are an order of magnitude or more lower than 

studies from N-rich agricultural streams by Hill et al. 1998 (>1000 JJg/L N) and 

Bohlke et al. 2009 (1400- 14,000 JJg/L N). However, DIN and SRP values during the 

summer and fall would provide a better picture of the effect of land-use activities. 

All of these sources (nutrient resuspension during channel cleaning, N­

fixation by alder, and anthropogenic land-use activities) likely contributed DIN to 

the stream to varying degrees, but the fate of NH4 +still remains unclear due to its 

rapid immobilization from the water column. Peterson et al. (2001) compared long­

term ammonium-15N additions in 11 streams from varying biomes and found that on 

average 20-30% of NH4+ was removed by nitrifying bacteria, while 70-80% was 
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assimilated by benthic organisms. Since discharge in the channel is relatively slow 

(-2 m3 /s), it can be assumed that the NH4 ' uptake length is short (Peterson et al. 

2001, Albers 2010) and that NH4 · was utilized directly in the stream by micro- and 

macro-organisms (Bilby et al. 1996, Webster et al. 2003, Levi et al. 2013). Desirable 

nitrification conditions of high dissolved oxygen (DO) and plentiful DON and/ or 

NH4 +can contribute to the rapid uptake of NH4 ' and low surface water NH4 + 

concentrations (Chapin et al. 2011, Levi et al. 2011). However, some streams, 

particularly oligotrophic streams, seem to have a fixed capacity for nitrification 

(Newbold et al. 1983). AnN overload event was documented in other northern 

watersheds of the Fraser River basin by Johnson et al. (2004), when years of high 

salmon abundance and high NH4' were followed by a year of low salmon and NH4 + 

abundance. In theory, a profusion of instantaneously immobilized NH4 +would 

remain mostly undetected in the spawning channel, until nitrifying bacteria and 

benthic organisms reached their N-uptake limit, at which point NH4 +concentration 

would begin to increase (Chapin et al. 2011 ). 

2.4.3. Sources and Uptake of Ammonium in the Hyporheic Zone 

Hyporheic water samples had significantly higher NH4 + concentrations 

compared to surface water values, both spatially and temporally, with an overall 

average enrichment of 1380% in the fall and 1035% in the spring. Therefore, this 

study rejects the null hypothesis (II) that there would be no difference between NH4 + 

concentration in surface and hyporheic water. This observation is supported by 

other studies in which hyporheic water was distinctly enriched in NH4 +compared to 

surface water (Valett et al. 1990, 1994, McClain et al. 1994, Fiebig 1995, Chestnut & 
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McDowell 2000, Greenwald et al. 2008). Riparian and hyporheic environments are 

known to be a net source of N to streams (Wondzell & Swanson 1996b, Shibata et al. 

2004). Aerobic surface water is capable of rapidly removing NH4 + from solution 

through nitrification, whereas anaerobic subsurface environments facilitate 

denitrification (Peterson et al. 2001, Seitzinger et al. 2006). Advective transport of 

water through the hyporheic zone leads to longer contact time with sediments and 

associated microbes, increasing opportunities for biogeochemical transformation of 

N (Triska et al. 1990). These conditions complicate our ability to track the flux of 

NH4 + from salmon because the transformation of NH4 ' to other forms of DIN or 

assimilation by organisms can occur both quickly and repeatedly. 

2.4.3.1. Temporal Controls of NH4 

A major aim of this study was to determine if hyporheic storage of salmon­

derived NH4+ occurred over the winter. Although NH4+ present in the hyporheic 

zone cannot be directly attributed to salmon, temporal trends of NH4 + concentration 

were observed, as well as a marked difference between instream and riparian 

hyporheic locations (Figure 2.17). Overall, the riparian zone displayed a significant 

increase in NH/ concentration from fall to spring. Conversely, a significant decrease 

in NH4 +was observed in hyporheic water directly below the streambed (Table 2.2). 

Apparently these adjacent hyporheic systems have differing sources of Nor 

disparate subsurface attributes that control biogeochemical processing. These results 

reject the null hypothesis (IV) that NH4 + concentration will not differ between 

seasons. 

The riparian hyporheic zone may beN-limited in the fall and less limited in 

the spring when N becomes more available. From the regression analysis, it was 
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found that precipitation was a strong predictor of riparian NH4 +concentration, 

indicating that NH/ increases by 0.05 J.Jg/L N with every millimeter of precipitation 

{Table 2.6). Past research has suggested that spring precipitation events induce 

lateral N inputs from the hill slope (Wondzell & Swanson 1996b, Shibata et al. 2004, 

Wondzell & Gooseff 2013), and that snowmelt and rain can aid N percolation from 

the overlying organic soil layers and leaf litter (Chafiq et al. 1999). Also, an 

interesting phenomenon of freeze-thaw in the spring bursts a multitude of microbial 

cells, releasing pulses of nutrients and inducing rapid accumulation of NH4 +and 

N03- (Chapin et al. 2011 ). Triska et al. (1994) found riparian hyporheic locations to 

have lower NH4 + in the winter, except at sites with alders. During the anoxic winter 

months, alders may continue to fix N, thus contributing to the accumulation of NH/. 

In the spring, the higher water table is capable of reaching the shallow rooting zone 

of alders. 

Peak streamflow conditions in the spring induced strong downwelling 

gradients into the hyporheic zone beneath the streambed, which likely facilitated 

better nitrification conditions by delivering DO and lowering NH4 + (Wondzell & 

Swanson 1996b, Zarnetske et al. 2011 ). During the salmon spawn, leaf litter, biofilms, 

and streambed sediments continue to assimilate N from the surface water (Albers & 

Petticrew 2012). This storage and accumulation of nutrients and organic matter may 

have contributed to an increase in water residence time and decrease in DO, thereby 

increasing NH4 + concentrations beneath the streambed in the fall (Hinkle et al. 2001, 

Argerich et al. 2008, Heppell et al. 2014). 

Flow direction maps provide evidence to a seasonal shift of nutrient 

exchanges between the channel and riparian zone (Figure 2.14). In the fall, weaker 
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and more variable flows suggest that hyporheic water could be delivering NH4 +and 

other nutrients to the riparian zone. During the spring, break-up events (e.g. 

snowmelt and precipitation) promote strong subsurface flows toward the channel, 

resulting in a lateral flux of nutrients to the stream. The observed increase of surface 

water NH4 +concentration in the spring, alongside increased riparian hyporheic 

NH/, substantiates this flow direction (Figure 2.17). Seasonally shifting nutrient 

flow between adjacent ecosystems is known as reciprocal subsidies. This interaction 

typically occurs when terrestrial and aquatic productivity peaks at different times of 

the year (Nakano & Murakami 2001). Temporally shifting hyporheic flow at the 

HFC may be evidence of another pathway for the exchange of reciprocal subsides in 

stream-riparian ecosystems. 

2.4.3.2. Spatial Controls of NH4 

Ammonium content varied greatly between hyporheic locations, but 

statistical regressions confirmed a few spatial variables that can predict NH/ 

concentration at this site. Distance from streambank continually ranked as a strong 

predictor of NH/ in the hyporheic and riparian zones, demonstrating that NH4+ 

concentration decreased as distance from the streambank increased. This result 

supports the rejection of the null hypothesis (III) that the spatial variable, distance 

from the streambank, does not correlate with NH4 +concentration. While controlling 

for other variables, NH/ has the potential to decrease between 0.20 and 0.29 J.lg / L N 

with every meter further from the streambank (Table 2.5). Although some research 

has shown that anaerobic conditions conducive to denitrification result in more 

NH4 + with distance from streambank (Triska et al. 1993, Hinkle et al. 2001, Duval & 

Hill2007), lateral distance from the stream is not always this straightforward. 
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Hidden beneath the surface are dominant patterns of hyporheic flow and micro-sites 

of accumulated organic matter, plant roots, and limited nutrients (McClain et al. 

2003, Poole et al. 2004, Claret & Boulton 2009). Other studies also agree with our 

results of decreasing NH4 ' with distance from the stream (Chestnut & McDowell 

2000, O'Keefe & Edwards 2002). Since the hydraulic head maps indicate that 

subsurface water flow is generally toward the stream, it may be inferred that 

nutrients, sediment, and organic matter accumulate more readily in soils close to the 

streambank. Certain biogeochemical reactions may be occuning in these soils 

because of either increased N or C availability. Where N is not limiting, soil 

microbes will mineralize more DON as energy for growth and excrete excess NH4 + 

(Wondzell & Swanson 1996b, Chapin et al. 2011). Organically-rich subsurface 

sediments can induce a microbially-mediated reaction known as the dissimilatory 

reduction of nitrate to ammonium (DNRA). During this reaction, NH4 +availability 

increases in the absence of oxygen (Hill et al. 1998, Lewandowski & Niitzmann 

2010). 

Hydraulic conductivity was the strongest singular predictor of NH/ 

concentration when considering all hyporheic locations (group 1 ), indicating that as 

K increased, NH4 +also increased. This positive relationship conflicts with the 

assumption that higher K typically resu lts in shorter water residence time, higher 

DO, and, therefore, a nitrification environment characterized by less NH4 + (Pinay et 

al. 1995, Chestnut & McDowell2000). However, K values were only measured once 

in the spring, so interpretation of this variable would have been improved by 

conducting several K tests per study month and log averaging the values (U.S. Dept. 

of Agriculture 1993, Genereux et al. 2008, Hester 2008, Claret & Boulton 2009). In 
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addition, slug tests themselves are a source of significant uncertainty when 

estimating K (Cardiff et al. 2011). Post-hoc reanalysis revealed that the significantly 

positive relationship between K and NH4 occurred only during the fall sampling 

period. It is possible that soils around the piezometers settled during the winter and 

altered K of the sampling area. Also, when removing piezometer 0 from the 

analysis, which appears to be an outlier, the relationship between K and NH/ 

weakens. Without piezometer 0, the linear regression of distance from streambank 

becomes the most robust model (effect size = -0.02). However, if hyporheic water is 

well oxygenated, then a positive relationship between K and NH4 may hold true. 

Past studies have demonstrated that N03- concentrations can increase along a flow 

path, despite increased residence times, if there is enough DO and NH4 + available 

for nitrification to occur (Triska et al. 1990, Claret & Boulton 2009, Argerich et al. 

2011). 

The interaction of distance from streambank along with withdrawal depth 

was found to be a good predictor of NH4 +in the hyporheic zone (Table 2.5). Multiple 

regression results indicate that for every increase in withdrawal elevation at a given 

distance from the stream, there will be more NH4 + than if water was being drawn 

from a lower depth (Figure 2.19). However, this result contradicts the theory that 

deep hyporheic water is characterized by denitrifying anaerobic environments and 

higher NH/ concentrations (Hill et al. 1998, Hinkle et al. 2001). By scrutinizing 

Figure 2.15, it appears that statistical significance may be an artifact of the 

positioning of these piezometers. When piezometer 0, located about 0.5 m deeper 

than the next deepest location, is removed from multiple regression analyses, this 

interaction is no longer significant. However, without piezometer 0, the only 
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difference between the two groups is piezometer C. A better way to explore the 

effect of withdrawal depth on NH4 +concentration would have been to position 

piezometers in a nested design, where water would be extracted from three depths 

at approximately the same location. 

RIPARIAN 

STREAM 

Figure 2.19. A profile of a stream and adjacent riparian zone displaying the subsurface 
zones that may have higher ammonium (NH4 ) concentrations. 

To better understand the fate of NH4 + at this meander bend, variables of DO 

and N03- would have been advantageous. The presence or absence of oxygen 

controls the mechanisms behind subsurface N cycling (Argerich et al. 2011, Peyrard 

et al. 2011 ), so sufficient spatial and temporal density of DO values could have acted 

as a proxy for N concentration and transformation. For similar reasons, 

concentrations of N03-would have been desirable. Since NH4 + additions from 

spawning salmon were likely rapidly converted to N03-, knowing these values could 

address this assumption and, if confirmed, increased my ability to address N in 

terms of salmon input Oohnston et al. 2004). Nitrate values would have also helped 

discern the nutrient cycling relationship between NH4 + and N03- in the hyporheic 

zone. The fate of most N03- is assimilation and mineralization by primary 
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producers, but N03• can also be assimilated and stored for an extended period of 

time or denitrified to atmospheric N (Ashkenas et al. 2004, Hall et al. 2009). Nitrate 

assimilation is related to seasonal and die] availability of sunlight, with greater 

uptake and overall gross primary production during light hours (Mulholland et al. 

2006). The relationship between values of N03 and NH4 ;, as well as DO values, 

would help identify the subsurface mechanisms behind spatial and temporal N 

cycling. 

2.4.4. Limitations and Lessons 

Subsurface environments are inherently difficult to study because of the 

challenges involved with collecting data from an environment in which we have 

limited access. To compensate for this complication, averages, interpolation, and 

modeling are used to represent attributes of the many locations that cannot be 

examined directly. The present study was based on others that utilize an array of 

point measurements from which spatial variability for an entire study area is 

partially defined, particularly O'Keefe & Edwards (2002) and Pinay et al. (2009). 

Kennedy et al. (2008) explored the underlying question of error when averaging or 

interpolating spatial distribution of subsurface attributes. Their results indicate that 

a sampling density of 0.05 points per m2 was sufficient to reduce error in reach­

average values. To produce a realistic image of spatial distribution, sampling 

density of 0.08 to 0.09 points per m2 was needed. Much of the uncertainty when 

answering our study questions arises from limited spatial resolution, as the 

sampling density for values of hydraulic head and conductivity were 0.011 points 

per m2
• Using Kennedy et al. (2008) as a guideline, 45 piezometers (0.05 points per 

m2
) would be needed at our study site to obtain enough values for reach-average 



Chapter 2. Nitrogen Cycling in the Hyporheic Zone 87 

estimates of subsurface properties and 72 piezometers (0.08 points per m2) would be 

required to map a realistic image of hyporheic flow. 

Consequently, the Rhodamine-WT tracer test, which had a sampling density 

of 0.028 points per m2, only partially helped in designating the subset of study 

piezometers. To improve on this design, I would have first and foremost performed 

the topographic land survey and generated a contour map to identify likely 

subsurface flow paths, which can be estimated by subtle changes in the surface 

topography (Gordon et al. 1992, Hutchinson & Moore 2000). An in situ analysis of 

hydraulic conductivity and porosity would have been helpful in estimating the time 

required for the tracer to fall below detection limits. The temporal resolution is also 

an important consideration and the shortage of sample containers during this 

study's tracer test restricted the power of reliably detecting a breakthrough curve. 

The most ideal experiment would involve data loggers capable of continuously 

logging fluorescence. 

The literature repeatedly reports "high variability" in describing the 

heterogeneity of streambed and soil properties (Chestnut & McDowell2000, Hinkle 

et al. 2001, Malard et al. 2002, Saunders et al. 2006, Zhang 2007, Claret & Boulton 

2009, Chapin et al. 2011, Wondzell & Gooseff 2013), and this site is no different. 

Johnson et al. (2014) points out that the residence time and removal of solutes in 

transient storage zones is still being debated, largely due to the spatial and temporal 

heterogeneity of hydraulic and biogeochemical processes in these storage zones. 

Therefore, it is crucial for any researcher undertaking a study of the hyporheic zone 

to design an experimental site with a high enough sampling density to reliably 

address the study questions. 
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The characterization of subsurface flows using hydraulic head measurements 

from piezometers is not strictly correct (Hutchinson & Moore 2000). Hydraulic head 

is a measure of pressure that varies with both horizontal location and vertical 

position. Whereas, water table elevation, which can be evaluated using wells, 

provides a more robust indicator of lateral flow direction Oones & Holmes 1996). To 

improve on this design and produce a more accurate representation of subsurface 

flows, a well could be installed next to each sample piezometer to quantify both 

lateral and vertical hydraulic gradients. 

Since the HFC was artificially-constructed, this site is an imperfect 

comparison to a meander bend on the Horsefly River. In particular, riparian zone 

flooding at the experimental site is uncommon, whereas flooding is an annual spring 

event throughout much of the Horsefly River floodplain (Clark 2013). Flood events 

cause the deposition of fine sediments, which would result in sandier substrates 

along the Horsefly River. Aquifer variables would likely be characterized with 

higher hydraulic conductivity and porosity when compared to the well-developed 

riparian soils of the HFC. Accordingly, salmon nutrients may exhibit longer 

hyporheic travel times and infiltrate to greater distances in the floodplain. However, 

due to the large number of variables and interactions that influence nutrient flow 

and transformation, this conclusion is merely speculation. For example, floodplains 

can store considerable amounts of sediment and dissolved nutrients (Smith & 

Owens 2014), so an influx of ammonium from salmon may be undetectable if the 

floodplains are not N-limited. 
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2.5. Conclusions 

A hydraulically responsive hyporheic zone was discovered beneath the 

streambed and across a riparian meander bend at the Horsefly River spawning 

channel. This zone was we11-connected, even during periods of low flow, and 

responded quickly to changes in surface water level. Although NH4 +was present in 

surface and hyporheic water samples throughout the study, we were unable to 

correlate NH4' concentration with the arrival of spawning salmon. This outcome 

was likely the result of nutrient resuspension during channel cleaning, which 

occurred prior to the first sampling event and created a profuse export of inorganic 

N from the water column. Ammonium concentration in surface water samples were 

significantly lower than hyporheic water samples, with mean concentrations of 12.5 

1-1g / L Nand 160 1-1g / L N, respectively. This study also found that hyporheic NH4 + 

concentration decreased with increased distance from the streambank. 

Overall, mean NH4 +concentration of surface and hyporheic water displayed a 

significant increase from fall to spring. However, a significant decrease was 

observed in the hyporheic water samples beneath the streambed. Ammonium 

appears to accumulate beneath the streambed during salmon spawn and / or 

throughout the summer, whereas NH4 +in the riparian hyporheic zone accumulates 

and stores over the winter. This reversal of NH4 + concentration between seasons 

could indicate reciprocal subsidies and the presence of a nitrification-denitrification 

coupling system on a larger time and spatial scale. During spring break-up, 

hydraulic head in the riparian to rose up to 10 em beneath the land surface, 

providing water and nutrients to shallow-rooting plants at the onset of the growing 

season. This combination of snowmelt and precipitation coincided with greater 
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riparian NI-14 +concentration and a diffuse export of hyporheic water into the surface 

stream. These events occur around the time salmon fry emerge from the gravels, 

delivering a pulse of limiting nutrients and organic matter to activate stream 

microbial activity and supply energy for growth. 

Anthropogenic sources of N from fertilizers and fossil fuel combustion persist 

and downstream eutrophication is an ever-growing global problem (Seitzinger et al. 

2006), which has the potential to harm salmon at all life stages. The primary 

mechanism that permanently removes inorganic N is denitrification (Zametske et al. 

2011 ). Since riparian and hyporheic zones are especially proficient at this process, 

understanding the diverse interaction of conditions that facilitate denitrification is 

critical to improving and protecting freshwater and marine environmental health. 
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Chapter 3 

Uptake, Storage, and Trophic Transfer of Marine-Derived Nutrients in the 

Stream-Riparian Ecosystem 

"When one tugs at a single thing in nature, 
he finds it attached to the rest of the world." -John Muir 

3.1 Stream-Riparian Food Webs 

Salmon provide an isotopically-enriched marine-derived nutrient (MDN) 

signature when they migrate to freshwater rivers and lakes, which can be traced 

using stable isotopes of carbon and nitrogen (b 13C and b15N) (Mathisen et al. 1988, 

Kline et al. 1990, 1993, France 1994, 1995). Previous studies have estimated MDN 

incorporation in freshwater and terrestrial organisms to be as much as nearly 75% 

total N and over SO% total C (Bilby et al. 1996, Chaloner et al. 2002, Honea & Gara 

2009). In interior British Columbia, this annual pulse of salmon nutrients occurs in 

the fall (Albers & Petticrew 2012), providing a significant nutrient subsidy to 

enhance stream productivity (Cedarholm et al. 1999, Gende et al. 2002, Naiman et al. 

2002, Schindler et al. 2003, Janetski et al. 2009). However, certain types of organisms 

may have a better advantage to benefit from MDN because of their trophic role, the 

local ecology, and the timing of salmon spawn (Hicks et al. 2005, Lessard et al. 2009, 

Wipfli & Baxter 2010, Rinella et al. 2012, 2013). Additionally, nutrient pulses are 

carried through aquatic systems more quickly than terrestrial, so location within or 

proximity to a stream may affect nutrient assimilation and retention (Ben-David et 

al. 1998, Bilby et al. 2003, Nowlin et al. 2008). 
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At the base of a stream food web, primary producers (i.e. algae, diatoms, and 

microscopic phytoplankton) extract MDN from sediments and the water column 

(Fischer 2003, Foreman & Covert 2003, Tiegs et al. 2011 ). Bacteria and fungi colonize 

streambed substrates and salmon carcasses, and eventually entrap sediments and 

other primary producers, such as algae, to form a nutritious mass of biofilms (Figure 

3.1; Costerton et al. 1995, Wipfli et al. 1998, Schindler et al. 2003). Consumers, 

including zooplankton and macroinvertebrates, obtain most of their energy from 

primary producers and biofilms, and some may incorporate MDN through direct 

consumption (Kline et al. 1997, Bilby et al. 1998, Minakawa & Gara 1999, Wipfli et al. 

1999). Smaller consumers provide a rich and abundant food source for larger 

consumers, such as fish and aquatic, or semi-aquatic, mammals, which also may 

predate on spawning salmon or scavenge salmon carcasses (Cedarholm et al. 1989, 

Wipfli et al. 1998, Woodward et al. 2005). Stream food webs, however, exhibit even 

great complexity because they are imbedded within the surrounding terrestrial 

landscape (Cummins 1974, Vannote et al. 1980, Ward et al. 1998, Piccolo & Wipfli 

2002). Soil, leaf litter, terrestrial insects, birds, and predacious mammals may either 

consume or be consumed by aquatic organisms (Nakano & Murakami 2001, Allan et 

al. 2003, Foreman & Covert 2003, Allan & Castillo 2007, Christie et al. 2008). 
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Figure 3.1. A decaving sockeve salmon (0 nt rka) m the Horsefly River spawning 
channel. Biofilms, filamentous algae, and leaf htter can be seen on the surface substrate. 

The interconnectivity of stream-riparian food webs can be observed through 

stable isotopic analysis of carbon and nitrogen, which is measured by the ratio of the 

heavy to light isotope (13C: 12C and 1sN: 14N) and expressed as a b-value in units of 

parts per thousand ((,oo). Stable nitrogen isotopes (b 1"N) can indicate trophic position, 

as consuming organisms accumulate approximately 3-4coo of the heavier isotope 

with each successive trophic transfer (DeNiro & Epstein 1981, Minagawa & Wada 

1984). Since stable carbon isotopes (b13C) change relatively little with movement 

through the food web, this ratio reflects an organism's diet and can be used to 

identify basal energy sources, including salmon (DeNiro & Epstein 1978, Staal et al. 

2007). Although not used in this study, stable sulfur isotopes (b34S) can also be used 

to track MDN assimilation in aquatic and riparian organisms. Sulfur isotopes can 

provide useful insight into MDN enrichment because they are a conservative diet 

tracer unaffected by confounding variations in trophic position (llesslein et al. 1991, 

Barnes & Jennings 2007). 
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The annual resource pulse of salmon nutrients can help support 

macroinvertebrate populations (Minakawa et al. 2002, Lessard & Merritt 2006, 

Verspoor et al. 2011), enrich resident fish populations and increase juvenile salmon 

survivorship (Bilby et al. 1996, 1998, Wipfli et al. 2003, Rinella et al. 2012, Guyette et 

al. 2014), increase nutrient storage in basal resources, like biofilms (Albers 2010, 

Ruegg et al. 2011, Reisinger et al. 2013), and promote terrestrial plant growth 

(Helfield & Naiman 2001, Koyama et al. 2005, Drake et al. 2006, Hocking & 

Reimchen 2009). Evidence of MDN enrichment may even persist in streamside 

vegetation and soils for years after salmon have left an area, known as a salmon 

legacy effect (Naiman et al. 2002, Schindler et al. 2003, Koyama et al. 2005, Reisinger 

et al. 2013). 

3.1.1 Aquatic Food Webs 

Macroinvertebrates, also referred to as aquatic insects or simply invertebrates 

throughout this chapter, are good indicators of the function and health of a stream 

ecosystem (Cummins 1974, Vannote et al. 1980). Each organism fulfills a particular 

ecological role and provides a crucial intermediate link that aids the flow of energy 

and nutrients between primary food sources and higher consumers (Malmqvist 

2002, Woodward & Hildrew 2002). They are often categorized into the following 

functional feeding groups (FFG) based on their mechanism for obtaining food and 

the particle size of the food they consume: 1) shredders, 2) collector-gatherers, 3) 

collector-filterers, 4) scrapers, and 5) predators (Thorp & Covich 1991, Merritt & 

Cummins 1996). FFGs simplify the study of stream ecosystems by reducing a large 

number of taxa into a few collective groups; however, it must be recognized that 

most invertebrates feed opportunistically and cannot always be placed in a fixed 
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FFG (Anderson & Sedell 1979, Ward et al. 1998). Additionally, some food sources 

contribute directly to all consumers, particularly biofilms which are a ubiquitous 

assemblage of autotrophic and heterotrophic food sources (Allan & Castillo 2007, 

Allen et al. 2009). Detritus represents another ubiquitous food source in a stream 

that is composed of all non-living organic materials from terrestrial and aquatic 

origins (Flecker 1984). 

3.1.1.1 Shredders 

Shredders are the dominant FFG in low-order, headwater streams and in 

depositional microhabitats, such as pools, where the main food source is coarse 

particulate organic matter (CPOM) (Vannote et al. 1980, Honea & Gara 2009). Their 

functional significance is fundamental to freshwater food webs as they initiate 

nutrient cycling processes by breaking down, or shredding, CPOM (Gra«;a 2001 ). 

Shredders are thought to preferentially consume terrestrial leaf litter (Vannote et al. 

1980, Cummins et al. 1989, Bilby et al. 1996), and studies often report the highest 

abundance of shredders during fall (Hawkins & Sedell1981, Reece & Richardson 

1998, Thompson 2007). However, they will supplement their diet with other 

nutritious and available materials (Anderson & Sedell1979, Gra«;a 2001). 

Amphipods, which were abundant in the HFC, are versatile and omnivorous 

shredders that can adapt to seasonally shifting food sources, including terrestrial 

detritus, algae, biofilms, macrophytes, other invertebrates, fish, salmon roe, and 

carcasses (Brown & Diamond 1984, Mihuc & Mihuc 1995, MacNeil et al. 1997, 

Friberg & Jacobsen 1999, Thompson 2007). 



Chapter 3. Marine-Derived Nutrient Dynamics in the Stream-Riparian Ecosystem 96 

3 .1.1. 2 Collectors 

By converting CPOM to fine particulate organic matter (FPOM), shredders 

create a niche for collector-gatherers, which gather FPOM from the substrate, and 

collector-filterers, which filter FPOM from the water column (Short & Maslin 1977). 

As rivers grow larger and particles reduce in size, collecting organisms increasingly 

become the dominant macroinvertebrate groups (Vannote et al. 1980). Their precise 

diet is difficult to discern because they consume particles of everything that was 

once living, whether from terrestrial, aquatic, or marine origins (Allan & Castillo 

2007). 

3.1.1.3 Scrapers 

Scrapers, also known as grazers, are adapted to shear or scrape algae from the 

surface of substrates and macrophytes (Lamberti et al. 1995). These organisms 

become more prevalent in mid-sized rivers where community consumption and 

respiration exceeds production via photosynthesis (Vannote et al. 1990). Due to their 

mechanism of feeding, scrapers consume primary producers and typically hold the 

lowest trophic position of macroinvertebrates (Anderson & Cabana 2007, Rinella et 

al. 2013). However, their food source is highly abundant and scraper populations 

can often coexist even though they have been known to consume over 90% of the 

plant biomass (Feminella & Resh 1991, Lamberti et al. 1995). 

3.1.1.4 Predators 

Predatory invertebrates derive their energy from live animal tissue and are 

often size selective, choosing prey smaller than themselves to consume (Hawkins & 

Sedell1981, Gra~a 2001). The density of predators is not altered according to stream 



Chapter 3. Marine-Derived Nutrient Dynamics in the Stream-Riparian Ecosystem 97 

order, but instead is limited by prey availability (Vannote et al. 1990, Honea & Gara 

2009). 

3.1.2 Terrestrial Food Webs 

In a stream-riparian ecosystem, allochthonous nutrient transfer to streams 

from the surrounding terrestrial environment has been well established (Vannote et 

al. 1980, Bilby & Bisson 1992, Polis & Hurd 1996, Naiman & Decamps 1997). 

However, nutrient fluxes also move in the opposite direction, from the stream to 

riparian, through flooding, advective hyporheic water transport, faunal delivery, 

and as emergent aquatic insects (Kennedy 1950, Cederholm et al. 1989, Kielland et 

al. 1997, O'Keefe & Edwards 2002, Ballinger & Lake 2006, Drake et al. 2006). The 

presence and ecological importance of nutrients transported from anadromous 

salmon to the riparian zone has been demonstrated through stable isotope anaysis of 

riparian biota (Bilby et al. 1996, Helfield & Naiman 2001, Naiman et al. 2002, Willson 

et al. 2004, Hicks et al. 2005, and see Chapter 1 ). 

3.1.2.1 Willows 

Willow trees, Salix sp., are common annual species in riparian zones, with 

deep roots that can penetrate the water table (Pinay et al. 2009). They rely mostly on 

groundwater during the growing season and are significantly limited by N 

availability (Menezes 2009). Their roots tend to exhibit increased growth toward the 

water table (Peter et al. 2012), with an average maximum rooting depth of 90 em. 

Isotopic enrichment of Salix sp. is variable between studies, with some citing 

enrichment due to spawning salmon (Bartz & Naiman 2005, Koshino et al. 2013) and 

others documenting a lack of MDN assimilation (Hicks et al. 2005). 
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3.1.2.2 Horsetail 

Horsetail, or Equisetum sp., has a lineage dating back to the 20-m tall 

Pseudobornia of the Triassic period, which also colonized streamside habitats, and 

may be the oldest living genus of vascular plants (Hauke 1963, Husby 2013). They 

have remained genetically isolated since the Jurassic period and retain ancient 

features of rhizomatous colonial growth and silicon-dependence (Channing et al. 

2011). Today, horsetails have subsurface rhizomes that extend horizontally for long 

distances and can penetrate more than 1 m below the surface (Mitich 1992, Hodson 

et al. 2009). Marsh et al. (2000) found that the roots and rhizomes of Equisetum sp. 

concentrate in the upper soil C horizon, suggesting that this is where most of its 

nutrients are acquired. Their extensive rhizome system allows them to assimilate 

nutrients and sunlight from a wide-reaching area. 

3.1.2.3 Dandelions 

The common dandelion, Taraxacum officinale, has been a pervasive invasive 

species in North America for around 1000 years and colonizes a wide range of 

habitats, particularly wet, disturbed areas (Vavrek et al. 1997). They possess a 

highly-regenerative tap root that penetrates deep into the soil to reach moisture and 

nutrients beyond the limit of many other herbaceous species Oackson 1982). Tap 

roots of 10 to 15 em in length are common, but they are capable of growing up to 1 

or 2m (Stewart-Wade et al. 2002). Taraxacum sp. are commonly used in ecological 

studies due to their ubiquitous distribution across temperate climates. They possess 

an ability to concentrate a wide array of anthropogenic pollutants from the soil and 

are often utilized to monitor metal contamination in an area (Kabata-Pendias & 

Dudka 1991, Collier et al. 2010, Gworek et al. 2011, Maleci et al. 2014). 
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3.1.2.4 Soil 

Hyporheic and riparian soil is a porous medium through which water can 

flow (Triska et al. 1989, Harvey & Wagner 2000). Surface water enters and moves 

through these soils, delivering nutrients, dissolved organic matter (DOM), and 

oxygen that have traveled downstream or have been laterally displaced from the 

surrounding land (Allan & Castillo 2007). This infiltration supports a diverse 

population of millions of microorganisms that live within soil, perpetually 

transforming organic and inorganic compounds (Lowell et al. 2009, Febria et al. 

2011 ). Numerous combinations of sources, processes, and products makes 

understanding the mechanisms behind Nand C cycling challenging, but large scale 

patterns exist among the variation (Foreman & Covert 2003, Billings & Richter 2006, 

Borch et al. 2010). Richter et al. (2000) conducted a 40-year forest development 

assessment and discovered two overwhelming conclusions about soil Nand C 

budgets of anN-limiting system. First, there was a massive net transfer of N from 

mineral soils to the top organic soil layer and forest biomass, meanwhile N loss from 

the ecosystem was negligible. Second, total organic C content in mineral soils 

remained relatively unchanged, whereas the organic soil layer accumulated 

substantial amounts of C each year. 

3.1.2. Hypotheses 

This study aims to investigate MDN assimilation, trophic transport, and 

storage in a stream-riparian food web by tracing b13C and b15N in stream 

macroinvertebrates and riparian vegetation and soil during the 2011 sockeye salmon 

spawn and subsequent spring. In British Columbia, salmon spawn occurs in the fall 
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when many plants are senescing or becoming dormant. Despite an apparent contrast 

in run timing and tree growth, biological uptake of MDN can occur quickly and be 

stored within riparian soil and plants (Drake et al. 2006) and streams (Bilby et al. 

1996). There are still questions, however, especially in regard to the environmental 

factors that limit uptake and persistence of MDN in individual species and as the 

riparian forest as a whole (Drake et al. 2011, Devries 2012, Rinella et al. 2013). 

For this study, macroinvertebrates were evaluated according to their 

functional feeding group to determine if species type, abundance, and stable isotopic 

concentration changes during the MDN pulse and between seasons. Three riparian 

plant species with differing life strategies were investigated to determine the 

pathway, uptake, and retention of MDN in the riparian zone adjacent to the salmon 

spawning channel. The following hypotheses were developed to evaluate the aim 

listed above: 

Null Hypothesis V: There will be no difference between stable isotopic signatures 
(b13C and b15N) of rnacroinvertebrate taxa throughout salmon 
spawn and between fall and spring. 

Null Hypothesis VI: Macroinvertebrate b15N signatures will not be correlated with 
NH4 +concentration of surface and hyporheic water. 

Null Hypothesis VII: There will be no difference between stable isotopic signatures 
(b13C and b15N) of riparian vegetation between seasons. 

Null Hypothesis VIII: Stable isotopic signatures (b13C and b15N) of riparian 
vegetation and soil will not be correlated with distance from 
the streambank. 

Null Hypothesis IX: Riparian vegetation b15N signatures will not be correlated with 
NH4 + concentration of riparian hyporheic water. 



Chapter 3. Marine-Derived Nutrient Dynamics in the Stream-Riparian Ecosystem 101 

3.2 Methods 

3.2.1 Field Sampling and Laboratory Analysi 

Macroinvertebrates and salmon carcasses were sampled from the Horsefly 

River spawning channel (HFC) in Horsefly, British Columbia (Figure 2.1). 

Vegetation and soil were sampled from a riparian meander bend adjacent to the 

channel. The spawning channel was artificially constructed in 1989 to enhance 

salmon habitat; therefore, development of the channel bed and bank, as well as near­

stream soil, is not natural. A meander bend located on the Horsefly River would 

likely be composed of sandier material. Still, the HFC remains hydrologically 

connected to the Horsefly River throughout the year, providing a year-round, off­

channel habitat for stream and riparian organisms. The dominant microhabitat for 

most of the channel was a glide, with occasional pools representing the non­

dominant habitat. The 625-m2 experimental site encompasses the channel and 

riparian zone of a single meander bend (Figure 2.4). The stream habitat here was a 

uniform glide, with a fluctuating depth of approximately 0.5 to 1.0 m between low 

and high water events. The substrate consisted of a roughly 1-m deep gravel layer 

with uniform particle size and shape designed for ideal spawning conditions. The 

majority of the riparian zone was a forest comprised of predominantly deciduous 

trees and shrubs with a diameter at breast height of less than 0.3 m. At the upstream 

portion of the study site, the forest becomes a grassy area with small shrubs, which 

was likely disturbed by the building of a temporary road to the channel and is 

currently in an early successional stage. The sampling sites located within this 

grassy area were piezmneters F and G, soil pit 1, and vegetation samples from 0 and 
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10 m on Transect 1 and 0 m on Transect 2. Terrestrial MDN deposits within the 

study site, as well as observed bear activity, were minimal; a total of five salmon 

carcasses and two piles of bear feces were recorded during the salmon spawn. 

Additional details about the study site and design can be found in Section 2.2.1. 

3.2.1.1 Macroinvertebrates 

Benthic macroinvertebrate samples were collected during each study week in 

Fall2011 (n=5) and once after break-up in May 2012 (Figure 2.6) with a Surber 

sampler (500-,um mesh size). Sampling prior to spring break-up was not possible 

due to ice cover. While avoiding salmon redds, three random samples were taken at 

a cross-section about 5 m downstream from the study site at river right, mid-stream, 

and river left by disturbing a 0.093-m2 area of the gravel bed for 1.5 minutes to a 

depth of 15 em. Precise locations were notre-sampled between weeks; therefore 

recolonization of a sampling area was not measured. Sampling procedures were 

designed to quantify benthic macroinvertebrates residing on and within streambed 

gravels. The samples were preserved with 70% ethanol (Flecker 1984), and most 

extraneous materials (i.e. substrate, algae, leaf litter) were kept in the sample to 

avoid accidentally discarding invertebrates, besides for large rocks capable of 

crushing the sample. Although Surber samplers are designed for use in water <30 

em deep (Peckarsky 1984), the stream was shallow enough for the sampler to 

function as a kicknet for this study. 

In the laboratory, macroinvertebrates were identified to the lowest practical 

taxonomical level (either genus or species) using An Introduction to the Aquatic Insects 

of North America (Merritt & Cummins 1996). Each taxon was assigned to one of the 

following functional feeding groups (FFG): collector-gatherers, collector-filters, 
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scrapers, shredders, or predators. The family Chironomidae, however, includes 

species from two FFGs and was not identified further than family level because 

accurate identification required equipment and expertise unavailable for this study. 

onsequently, chironomid FFG assignment was generalized as 90% collector­

gatherers and 10% predators, in accordance with Merritt & Cummins (1996). 

After identification, individuals were sorted into taxa groups, dried to a 

constant mass (48 hat 75° C in a drying oven), and weighed on a microbalance 

(resolution of 10-7 g). The total mass of a group was used to calculate taxa biomass 

(g/m3) per sampling week (Mason et al. 1983). 

3.2.1.2 Riparian Vegetation 

Vegetation samples were collected during three sampling weeks: pre-spawn 

(August 2011), post-spawn (October 2011), and after spring break-up (May 2012). 

This sampling schedule was selected to characterize nutrient uptake during the 

salmon spawn and after the winter. A total of six samples were taken along two 

transects at 0 m, 10m, and 20m. Transect 1 runs perpendicular to the stream at the 

top of the meander bend. Transect 2 runs parallel to the stream across the meander 

bend (Figure 2.4). From here on, locations at Transect 1 are referred to as T1-0, T1-10, 

and T1-20. Locations at Transect 2 are T2-0, T2-10, and T2-20. Three species were 

collected at each location: Common horsetail (Equisetum arvense ), Pacific willow 

(Salix Iucida), and Common dandelion (Taraxacum officinale). These species were 

chosen to represent different rooting depths and root structure. After collection, 

samples were transported to a freezer within 4 hours and remained frozen until 

laboratory analysis. 

To obtain information of annual tree growth, three tree cores were extracted 
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using an increment borer from a willow tree located centrally on the riparian 

meander bend. Cores were analyzed by UNBC's Tree Ring Lab following standard 

dendrochronological procedures. After mounting and sanding the tree cores, annual 

rings were measured to 0.001 mm using a Velmex measuring system (Stokes & 

Smiley 1968). Raw ring widths were averaged between cores and mean 

standardized chronologies were developed using the program ARSTAN to produce 

an index value (Veblen et al. 1991). 

3.2.1.3 Additional Sampling 

Soil samples were collected in May 2012 at three riparian locations at the 

study site (Figure 2.4). Soil pits were excavated to approximately 1-m deep and soil 

profiles were described by identifying horizons A, B, and C and measuring horizon 

widths (Figure 2.10). A soil horizon is a layer that is distinctly distinguishable from 

its adjacent layers. Certain soil characteristics, such as particle shape and color, were 

recorded using a Munsell® color chart. Porosity measurements performed in the 

laboratory also aided in describing the geologic material (refer to Section 2.2.3). 

Samples were extracted from each horizon, with additional samples collected where 

clay mottling was present, and frozen within 4 hours of collection. Soil sampling 

methods generally followed those of Schoeneberger et al. (2002). 

During the 2011 salmon spawn, samples of freshly dead salmon tissue and 

bear feces were collected from the study site as baseline salmon nutrient data. 

Samples were placed in a freezer within 4-hours of collection. 

3.2.1.4 Stable Isotope Analysis 

In preparation for stable isotope analysis, macroinvertebrates, vegetation, and 
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soil samples were dried to a constant mass in a drying oven (for 48 hours at 75° ) 

and samples of salmon tissue and bear feces were freeze-dried for 48 hours. Dried 

samples were crushed using a mortar and pestle and weighed into tin capsules (at a 

resolution of 10-7 g) at the University of Northern British Columbia's Central 

Equipment Laboratory. These samples were then shipped to the University of 

California-Davis Stable Isotope Facility for analysis of carbon and nitrogen stable 

isotopic signatures (b13C and b15N) using a continuous flow-isotope ratio mass 

spectrometer (dual-inlet Europa 20 / 20, PDZ Europa, Sercon Ltd., Cheshire, UK.). 

Isotope enrichment (reported in parts per thousand o/oo) was determined as follows 

(McConnachie & Petti crew 2006 ): 

%o b13C or b15N = [ (Rsample- Rstandard) I R standard ] * 1000 Eqn (3.1) 

where R is the ratio of the heavy isotope to the light isotope. A more positive b value 

is isotopically enriched, which means that the sample contains proportionally more 

of the heavy stable isotope. Final values are expressed relative to internationally 

accepted standards of V-PDB (Vienna PeeDee Belemnite) for carbon and Air for 

nitrogen (Bilby et al. 1996). For quality assurance and control, about 10% of the 

samples were randomly split into duplicates prior to submission to UC-Davis. The 

mean relative percent difference (RPD) in molar C:N ratios of duplicated 

invertebrate and vegetation samples was 1.9% . Mean RPD for duplicated soil 

samples was 29.3%. This significant difference highlights the high variability of soil 

over short spaces (Freeze & Cherry 1979). Consequently, all samples were retained 

for data analysis and values from duplicate samples were averaged. 

3.2.2 Statistical Analysis 

Dual isotope plots were created to visualize mean b13C and b15N signatures of 
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sampled organisms and materials for Fall2011 and Spring 2012 by using the 

package "ggplot2" in R (Wickham 2009). The following statistical analyses were 

performed in R using the packages "stats", "nlme", and / or "base". 

3.2.2.1 Aquatic Samples 

In order to examine temporal trends in macroinvertebrate isotopic signatures, 

autocorrelation tests were conducted using R's built-in autocorrelation function 

[acf()] to determine if b13C and b15N concentration of each species was statistically 

independent between location (river right, mid-stream, and river left) and sampling 

week (Chatfield 2004). Dependence was discovered between sampling locations, so 

the three locations were averaged by taxa per week. All data were evaluated for a 

normal distribution by observing the histogram and quantile-quantile plot (Q-Q 

plot). 

Only three insect orders (Amphipoda, Diptera, and Ephemeroptera) had 

sufficient biomass during both seasons to perform temporal analysis on stable 

isotopic signatures of b13C and b15N. Chironomidae was the only family present in 

the order Diptera, so this group will simply be referred to as chironomids from here 

on. Linear regressions were conducted to analyze MDN concentration between 

sampling week and season. Multiple and linear regressions of MDN were analyzed 

against predictor variables of mean surface water NH4 +concentration, mean 

hyporheic water NH/ concentration (from piezometers C and D), number of 

salmon, insect biomass, number of individuals per order, and surface water level 

that corresponded with each sampling period. Before analysis, all variables were 

standardized using Equation 2.5 to eliminate discrepancies between units of 

measurement and enable direct interpretation. Regression output results of p-value, 
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R-squared, and effect size were used to interpret the significance, goodness-of-fit, 

and strength of a particular model. The confidence level for statistical significance 

was set top~ 0.05. Additionally, highly significant results were identified if p ~ 

0.001. 

3.2.2.2 Diversity and Evenness of Macroinvertebrate Communities 

To better understand how the macroinvertebrate community of the HFC 

compares to that of the natural river, diversity and evenness calculations were 

evaluated with samples from the Horsefly River, taken by the B.C. Ministry of 

Environment on Oct. 4, 2011. These indices are helpful in understanding 

environmental health because a community that is highly uneven or has low 

biological diversity is less resistant to environmental stress (Peet 1974, Wittebolle et 

al. 2009). To assess community diversity, two well-known heterogeneity indices 

were computed: Shannon Diversity Index and Simpson Index. These measurements 

are based upon a combination of species richness and heterogeneity (Peet 1974). The 

Shannon Index equation, which is more sensitive to community changes in rare 

species, is computed as follows: 

L n· n· 
- (-t * ln(-t)) 

. N N 
t 

Eqn (3.2) 

The Simpson Index, which is more sensitive to changes in the most abundant 

species, is calculated as: 

I:i ni(ni - 1) 
N(N- 1) 

Eqn (3.3) 
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where: 
n; =individuals of one species; and, 
N =total number of individuals. 

In order to define these diversity indices in terms of number of species, the 

effective number of species (ENS) was computed. This measurement describes 

communities as the number of equally-common species which would produce the 

same heterogeneity as the sample (Peet 1974, Jost 2006). 

ENS= exp(H) Eqn (3.4) 

where: 
H = Shannon Index. 

Finally, a Lorenz curve was graphed to visualize population evenness of a 

community. The Lorenz graph, originally developed to measure income inequality 

(Lorenz 1905), displays a straight 45 degree line to represent perfect equality in a 

population and the Lorenz curve, which shows population evenness, or inequality 

(Figure 3.2). The Gini coefficient was calculated from the Lorenz graph, which is a 

single value (ranging from zero to one) used to describe evenness (Wittebolle et al. 

2009). 

The sampling methods employed by the Ministry of Environment 0. McLeod, 

pers. comm.) differed from this study in several ways, and, therefore, the results can 

only be used as a broad comparison between the two environments. They 

performed two kick samples for a 6-min duration by walking from one bank to the 

other. Since our method was designed to capture invertebrates residing in the 

hyporheic zone, samples were collected at three locations for 1.5 minutes each to 

allow for collection 15 em beneath the sediment surface. The microhabitat they 
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sampled was a riffle, whereas our location was a glide. However, since these indices 

are only based on the number of individuals and species, and do not factor common 

species among locations, the microhabitat type is not a variable that affects 

individual diversity and evenness values. The Ministry used a net with a mesh size 

of 400 1Jm, as compared to ours at 500 1Jm, so our results may not include 

invertebrates between 400 and 500 1Jm. Due to these differences, I would expect 

samples from the Horsefly River to contain a larger total number of invertebrates 

because of a longer sampling duration and smaller mesh size. I would also expect 

the spawning channel samples to include a greater abundance of chironomids, as 

the study design aimed to capture deeper-residing organisms. 
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Figure 3.2. A typical Lorenz curve which graphically represents the inequality in a 
population. The areas above and below the Lorenz curve, marked A and B, respectively, 
simplifies the Gini coefficient equation, which is A/ (A+B). 

3.2.2.3 Riparian Samples 

In order to examine temporal trends in vegetation isotopic signatures, 

autocorrelation tests were conducted using R's built-in autocorrelation function 

[acf()] to determine if b13C and b15N concentration of each species was statistically 

independent between the three sampling periods (Chatfield 2004). Since 

independence was identified, the b13C and b15N signatures across the six sampling 

locations were averaged between each species within a sampling period. All data 

were evaluated for a normal distribution by observing the histogram and quantile-

quantile plot {Q-Q plot). 

Linear least squares regressions were performed to test the hypothesis that 



Chapter 3. Marine-Derived Nutrient Dynamics in the Stream-Riparian Ecosystem 111 

vegetation isotope ratios will be higher with proximity to the stream. Model output 

results of p-value, R-squared, and effect size were used to interpret the significance, 

goodness-of-fit, and strength of a particular model. Additional predictor variables, 

including distance along transect, sample location, elevation, and rooting depth, 

were also applied to linear regression models in order to analyze other factors that 

may affect b13C and b15N signatures. 

Stable isotopic signatures of soil samples were also analyzed for a normal 

distribution. Subsequent linear least squares regressions of b13C and b15N signatures 

against predictor variables of depth and distance from streambank were performed. 

Since the surface elevation varied at each soil pit, depth measurements were 

standardized to meters above sea level (mASL). 

To test the relationship between vegetation isotopic signatures and NH4 + 

concentration of hyporheic water, linear regressions were performed for the Pre­

spawn, Post-spawn, and Spring periods. Isotopic signatures from Transect 2 were 

paired with NH/ concentration from nearby piezometers. Vegetation samples from 

T2-0 were tested against the average of NH4 + concentrations from sites F and G, 

which were both within 2m of the vegetation samples. T2-10 isotopes were paired 

with NH4 +from K, which was also 2m away. T2-20 isotopic signatures were 

matched with hyporheic site 0, at a distance of 3 m from the vegetation samples. 

Stable isotopic signatures and NH4 + concentration were standardized before 

statistical analysis (Equation 2.5). 

Statistical significance between spring vegetation and soil isotopes was tested 

through Pearson's product-moment correlations and linear regressions. The 

confidence level for statistical significance was set to p ~ 0.05. Additionally, highly 
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significant results were identified if p ~ 0.001. For each soil pit, isotopic signatures 

from horizon A, B, and C were tested against vegetation isotopic signatures, with 

the notion that S. Iucida isotopes will most closely correlate with horizon C and E. 

arvense and T. officinale isotopic signatures may reflect horizon A or B because of 

their shallower rooting depth. Each soil pit was paired with the closest vegetation 

transect: Soill and T2-0, Soil 2 and Tl-20, and Soil 3 and T2-20. The relationship 

between soil isotopes and hyporheic water NH4 t concentration could not be tested 

because there were not enough replicate soil observations collected. 

3.3 Results 

3.3.1 Temporal Trends of MDN 

Dual isotope plots of b13C and b15N visually display the stream-riparian food 

web components at this site and provide an estimate of trophic levels (Figures 3.3 

and 3.4). Predacious organisms of higher trophic level are located in the upper right 

corner of the graph (higher b13C and b15N) and autotrophs are located in the lower 

left (lower b13C and b15N). In the fall, the predacious subclass Hirudinea were the 

most enriched with b15N compared to all macroinvertebrate species. Riparian 

vegetation displays a lower (more negative) b13C value than the invertebrate groups. 

Vegetation b15N signatures vary widely between species, with E. arvense (Equisetum) 

exhibiting levels of b15N closer associated to those of invertebrates and salmon 

tissue. In the spring, macroinvertebrates remain enriched in b13C relative to riparian 

vegetation. 



z .... 
.0 

12 

8 

• 

0 

Chapter 3. Marine-Derived Nutrient Dynamics in the Stream-Riparian Ecosystem 113 

Vegetation 

11'-== + 

-35 -30 

Macro­
invertebrates 

-25 

Salrnon Ttssue 

Hiruni<Jae 

Amphipods 

Ephemeroptera 

- Charonom1ds 

-- EqUtsetum 

Salix 

Taraxacum 

Bear Feces 

Figure 3.3. Dual isotope plot (b13C %o and b15N %o) from all organisms and materials 
colJected during the FalJ 2011 salmon run. Isotopically enriched species are located in the 
upper right comer. Mean ± 1 SEM. 
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Figure 3.4. Dual isotope plot (b13C %o and b15N o/oo) from all organisms and materials 
collected in Spring 2012, besides for salmon tissue, collected in Fall2011, which is 
included as reference point. Mean ± 1 SEM. 

The isotopic signatures of species that were collected in both the fall and 

spring are displayed in Figure 3.5. The invertebrates Ephemeroptera and 

Chironomids exhibited clear differences in b15N and b13C concentrations between 

seasons, with both groups displaying a significant decrease in spring b15N 

signatures. T. officinale (Taraxacum) was the only group with a higher overall b15N 

signature in the spring. 

Regression analyses determined significant changes in isotopic signatures 

between seasons. pring b15N signatures were significantly lower for Equisetum (p < 
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0.05), Chironomids (p < 0.001), and Ephemeroptera (p < 0.001). Conversely, spring 

b15N signatures for Taraxacum were significantly higher (p < 0.05). Signatures of b13C 

were significantly lower in spring for Ephemeroptera (p < 0.05), but higher for 

Chironomids (p < 0.001); Table 3.1). 
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Figure 3.5. Temporal differences of vegetation and macroinvertebrate species collected in 
the fall and spring sampling periods. Units of b13C and b15N are parts per thousand (roo). 
Mean± 1 SEM. 
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Table 3.1. Statistically significant differences observed in organisms between the fall and 
spring sampling periods. 

Isotope Group p-value Effect size R-squared 

51~ Eqursetum 0.041 -3.843 0.284 

51~ Taraxacum 0.015 5.083 0.319 

515N Chironomidae 7.2e-09 -4.242 0.969 

51~ Ephemeroptera 1.2e-04 -2.3n 0.959 

513c Chlronomldae 0.001 1.987 0.663 

613c Ephemeroptera 0.009 -1.003 0.775 

"'Bold indicates an increase in isotope value from fall to spring 

3.3.2 Macroinvertebrate Assimilation of M D N 

Macroinvertebrate groups Chironomidae and Ephemeroptera had a highly 

statistically significant association between b15N signatures and both surface water 

NH/ and hyporheic water NH/. Regression analysis showed that hyporheic NH/ 

concentration increased with b15N signatures for both groups (p < 0.001). 

Simultaneously, b15N concentration of these species decreased when surface NH4 + 

increased (p < 0.001). There were no significant relationships detected between 

invertebrate isotopic signatures and the other tested predictor variables. 

3.3.3 Macroinvertebrate Diversity and Abundance 

Throughout the study, 13 different taxa from four phyla (Annelida, 

Arthropoda, Cnidaria, and Mollusca) were identified (Table 3.2). A cumulative total 

of 3,213 individual macroinvertebrates were enumerated and grouped into one of 

five functional feeding groups (FFG). Graphs of invertebrate biomass show that the 

majority of the community's biomass during every sampling week were shredders 
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(Figure 3.6). The shredder FFG was entirely composed of the species Hyalella azteca 

(referred to as amphipods for convenience). Biomass data are based on the mass of 

invertebrate groups; therefore the graphs of relative abundance (number of 

individuals in a group / total number of individuals) demonstrate a different ratio 

(Figure 3.7}. These graphs show shredders as a dominant group, but they are 

outnumbered by collector-gatherers during some weeks, particularly in the fall. The 

collector-gatherers group contained taxa from the family Chironomidae, the subclass 

Oligochaeta, and the orders Ephemeroptera and Tricoptera, but consisted primarily 

of Chironomidae. When observing the taxon most commonly identified throughout 

the study, amphipods and chironomids were discernibly the most abundant species 

(Figure 3.8). 

According to the Shannon Index and its related function, effective number of 

species (ENS), the Horsefly River has a greater diversity of species than the 

spawning channel (Table 3.3). However, results from the Simpson's Index and Gini 

coefficient indicate that the community in the spawning channel has greater species 

equality, or a similar number of individuals per species group (Table 3.3). 
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Table 3.2. Taxonomic identification and enumeration of macroinvertebrates in the 
Horsefly River spawning channel during the 2011 salmon spawn and the subsequent 
spring (labeled as Post-winter). The scientific classification of major taxonomic groups 
are identified in parentheses. Functional feeding group (FFG) classifications are as 
follows: CF (collector-filterers), CG (collector-gatherers), P (predators), SC (scrapers), and 
SH (shredders). 

Taxon FFG Pre-spawn 

Hyakno aztcca 

Diptera (order) 

Chi ronom1 dae 

Ch1ronom dae pupa 
Pupa casing 

Clttellata (class) 

SH 

CG 
CG 

Ol1gochaeta C G 
Hlrud nea P 

Ephemeroptera (order) 
Lept.of*Jebiido! 
parorepte>/)hlel»a sp. c G 
Bot!odoe CG 
untd enttfiabl e 

Plecoptera (order) P 

Tricoptera (order) 

Hydroptifidae axyechka sp. C G 
Hydropsymidoe 
arctapsyme sp. CF 

sc 
Promet~evn um.bh'icate»us SC 
unto enttfiable 

Bivalvia (class} 

Sp#loeriida-e 

Hydrozoa (class) 

CF 

Hydro sp. P 

Toa.l 

30 

13 

I 

2 

3 

59 

181 

43 

2 

89 

16 

3 

3 

10 

II 
14 

373 

135 

169 

4 

56 

20 

18 

I 

6 

10 

10 

430 

Af:dve 
~n Post-spawn 

31;5 

259 

5 

123 

28 

22 

I 

8 

2 

8 
16 

II 

7 

855 

452 

-105 

8 

63 

II 

7 

2 

7 
7 
6 

Post­
Winter 

72 

304 

61 
215 

79 
2 

IS 

8 

12 

4 

12 

5 
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Figure 3.6. Bars displaying the percent biomas~ of each FFG during each sampling 
period. The height of the bars represents weekly biomass as a percentage of the total 
biomass. The actual weight of amphipods varied from a minimum of 50.2 mg during Pre­
spawn and a maximum of 682.9 mg during Active Spawn II I. 
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Figure 3.7. Pie charts displaying the relative abundance (as a percentage) of each FFG 
during each sampling period. 

400-

-0 
.... 200-
CJ) 
.0 
E 
~ 

z 

00-

o-
I I 

Pre-spawn Act ve 
spawn I 

Taxon 

AmphiPoda 

Ch ronom1dae 

Ephemeroptera 

- Gastropoda 

Oligoctlaeta 

I I 

ActiYe Active Post-spawn Spnng 
spawn II spawn II 

Figure 3.8. The number of individuals during each sampling week for commonh 
identified taxa at the HFC. 
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Table 3.3. Shannon Index and Effective Number of Species (ENS) diversity values, along 
with Simpson's Index and Cini coefficient evenness" a lues for the Horsefly River 
spawning channel and the Horsefly River. 

Diversity Evenness 
Shannon Simpson's Gini 

Index ENS Index coefficient 

Spawning channel 
Post -spawn 1.1 33 3.1 0.789 0.745 

Spawning channel 
Fall & Spring 1.364 3.9 0 646 0.763 

Horsefly River 
Post-spawn 1.938 6.9 0.562 0.794 

3.3.4 Spatial Trends of MDN in the Riparian Zone 

S. Iucida (Salix) isotopic signatures of both b13C and () h N displayed a highly 

significant decrease as the distance from the streambank increased (p < 0.001; Table 

3.4). According to linear regression analysis, with every 1-m increment further away 

from the stream, b13C signatures decreased by 0.177~ ·oc and b1 N signatures decreased 

by 0.242( oo (Figure 3.9). Transect distance also displayed significance (p < 0.001 (b13C) 

and p < 0.05 (b1'iN)). When transects Tl and T2 were tested separately there was no 

significance detected between b1'iN and T2, indicating that distance from streambank 

is the primary variable when determining b1'iN concentration. 

Regardless of season, E. arvense b15N signatures were found to be uniform 

across the study site. However, statiscially significant b13C trends from linear 

regressions detected that with every 1-m increase from the stream bank values 

decreased by 0.085( ·oo (p < 0.05; Table 3.4). 

T. officinale isotopes were generally consistent throughout the stud) site and 

no clear trends in isotope concentration were noted with distance from the stream. 
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Rooting depth was not a significant variable in predicting isotope concentration of 

vegetation species, nor were corresponding soil isotopes or hyporheic Nll4 

concentration. Therefore, this study fails to reject the null hypothesis (IX) that there 

is not a correlation between riparian vegetation b1 N signatures and riparian 

hyporheic NH 4 concentration 

Overall, vegetation h 13C signatures were highest at site Tl-0, which was 

located directly on the streambank (Table 3.5). T1-0 exhibited significantly greater bnc 

signatures than sites T2-10 and T2-20 for all species. S. Iucida b 13C at T1-0 was 

significantly higher than all sites (except T2-0), and E. arvense b13C was greater than 

all locations (besides T1-1 0). 

Table 3.4. Variables that displa\ statistical significance in relation to terrestrial isotopic 
signatures. 

Isotope Group Variable p-value Effect size R-squared 

615N 
Distance from 

Salix Streambank 0.001 -0.242 0.457 

613c 
Distance from 

Salix Stream bank I.Oe-04 -0.178 0.529 

613c 
Distance from 

Equisetum Stream bank 0.013 -0.085 0.369 

613c Soil Depth 0.003 -1.834 0.5+1 
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Figure 3.9. Dual isotope plot of willow (S. Iucida) leaves. Each cross represents the 
average of all sampling periods at each sampling location. Units of b13C and b N are 
parts per thousand (C ·oc ). Mean ±- 1 SEM. 

Table 3.5. P-values displaying significant di fferences in b13C at all vegetation sites 
compared to site Tl-0, which was located directly on the streambank. Isotopic signatures 
were averaged between each sampling period. 

All species Salix Equisetum Taraxacum 

Tl-10 <0.05 

Tl-20 <0.05 <0.001 <0.05 

TI-0 <0.05 

TI-10 <0.05 <0.05 <0.05 <0.001 

TI-20 <0.05 <0.05 <0.05 <0.001 
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There was a significant interaction between soil signatures of b13C and depth, 

with b13C increasing by 1.834o/oo for every meter deeper below the surface (Figure 

3.10, Table 3.4). Isotopic signatures of soil b15N were statistically uniform throughout 

the study site regardless of depth, but a closer look at soil pit 1, which was located 

closest to the streambank, reveals a positive trend with depth and both b13C and b15N 

(Figure 3.11). There was no statistical significance detected with soil b15N and 

distance from streambank thereby supporting a failure to reject this component of 

the null hypothesis (VIII). 
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Figure 3.10. Box plots displaying b13C (%o) of soil horizons from three soil pits across the 
study site. Black dots represent actual b13C signatures. 
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Figure 3.11. Stable isotopic signatures of b13C (roo) and b15N (roo) at soil pit 1, which was 
located closest to the streambank. 

3.3.5 Tree Cores 

Salix sp. tree cores were dated back to the year 1956. The spawning channel 

was constructed in 1989 and ring width analysis indicates that substantial tree 

growth began in 1996, with a record growth year in 1998 (Figure 3.12). A multiple 

regression analysis of ring width indices against salmon escapement in the 

spawning channel and total annual precipitation revealed that escapement and 

precipitation on their own do not predict ring width; however the interaction 

between these terms produces a significant regression (p < 0.05). When graphing 

standardized ring widths and salmon abundance (Figure 3.13), a particularly 

synchronous relationship is evident between 1997-2000, when salmon population 

was zero in 1997 and escalates to - 25,000 the next year. Another distinct peak in ring 
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width and escapement occurred in 2006, when salmon return was nearly 20,000 

individuals. 
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Figure 3.12. Annual ring width indices for a willow tree (Salix sp.) located centrally on 
the study site between the years 1956 and 2011. The vertical red dotted line delineates the 
year the spawning channel was built, 1989. 
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Figure 3.13. Standardized values of annual willm"' tree growth, measured by ring widths, 
and salmon escapement in the Horsefl) River spawning channel since its establishment 
in 1989. 

3.4 Discussion 

3.4.1. Macroinvertebrate Community of the Horsefly River 

The invertebrate community of the spawning channel is consistent with the 

theorized structure of low order, headwater streams described in the River 

Continuum Concept (Vannote et al. 1990). Shredders and collector-gatherers 

constitute the dominant, year-round FFGs, which are fueled by terrestrial-inputs 

provided by the bordering riparian forest (Doucett et al. 1996 ). Species richness i~ 

relatively low at this site, with only 13 taxa identified, although richness \Vould 
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likely increase slightly if some groups had been identified further, such as 

invertebrates from the family Chironomidae. In comparison, the community of the 

Horsefly River contained invertebrates from 41 taxa, which decreases to 34 total taxa 

when combining species from the Chironomidae family and the genus Baetis. 

Species diversity, according to the Shannon Index, is higher in the Horsefly River, 

although the spawning channel has greater evenness, according to the Lorenz curve 

and Gini coefficient, because fewer rare taxa were identified (Table 3.3). 

Theoretically, the healthiest communities are those with a large number of species 

and a nearly even distribution. Uneven communities are less resistant to 

environmental stress because each FFG provides a critical role to whole ecosystem 

function (Peet 1974, Wittebolle et al. 2009). 

The richness and composition of an invertebrate community is highly 

dependent on the specific site, as well as sampling techniques. Temperature, 

substrate, surface flow, and microhabitat type are important variables that regulate 

species distribution (Hill & Hawkins 2014, Pingram et al. 2014, Silva et al. 2014, 

Dohet et al. 2015). The high abundance of amphipods (Hyalella azteca) defines this 

site as being more pond-like compared to the Horsefly River, which largely reflects 

the glide microhabitat of the spawning channel compared to the riffle that was 

sampled in the Horsefly River (France 1992). Insect drift from the settling pond at 

the top end of the channel may also have contributed to high amphipod abundance 

downstream. Although amphipods are widespread shredders commonly found 

throughout freshwater and marine environments (Strong 1972, Lowry & 

Springthorpe 2001), they were not observed in the Horsefly River samples and are 

not prevalent in the MDN literature. Shredders documented in other MDN studies 
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typically are from the orders Plecoptera and Tricoptera, but the only shredders at 

the spawning channel were amphipods. Most of these studies are conducted in riffle 

habitats (Honea & Gara 2009), thus examining MDN dynamics of a glide habitat 

contributes new information to a limited area of study (see Thompson 2007). 

Investigating glide and pool environments may be especially important for sockeye 

salmon conservation because they supply early habitat and nourishment for eggs 

and fry, as well as potential rearing habitat for juveniles (Fillatre Miller et al 2011). 

In the six week period between pre-spawn and post-spawn the total number 

of invertebrates increased markedly from 59 to 993 individuals, confirming the 

hypothesis that population would increase upon the arrival of salmon. The largest 

jump in community abundance and biomass occurred between weeks active spawn 

II and active spawn III (increase of 425 individuals), by which point the channel was 

at its maximum salmon capacity for this year (Figure 3.6 ). Abundance increased for 

all taxonomic and FFGs during this period, including the first appearance of 

collector-filtering organisms, specifically bivalves from the Sphaeriidae family and 

Arctopsyche sp., a Tricoptera species (Figure 3.14). Although MDN may play a role in 

increased abundance, the life history of most macroinvertebrates displays 

population growth during the summer (Hynes 1970). The daily build-up and release 

of the salmon dams was also most apparent between these weeks, with surface 

water levels fluctuating about 1 m during a day (see Section 2.2.1.1). The dams were 

composed of anything in the water column that could float downstrean1, from 

FPOM to salmon carcasses and tree branches, and constituted a dense, nutrient-rich 

food source for invertebrates and fishes to colonize and congregate. Total 

invertebrate abundance increased slightly between active spawn III and post-spawn, 
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but this increase was only observed for amphipods and chironomids. In the spring, 

most species declined in number except for chironomids, which retained high 

abundance over the winter (Figure 3.8). Significantly more chironomid pupae were 

identified in the spring, as well as over 200 pupae casings. Chironomids remain in 

their pupal stage for a short period of time, indicating that chironomid morphing 

and emergence began at the onset of spling break-up and/ or when channel ice 

thawed (Danell & Sjoberg 1977). 

The study design aimed to capture pre-spawn abundance and isotopic 

signatures of macroinvertebrates as temporal control baseline conditions. However, 

preparatory cleaning of the spawning channel, which occurred between August 8-12 

and 15-18, ending five days prior to inve1tebrate sampling, likely altered water 

chemistry (see Section 2.4.2) and may have affected pre-spawn taxa abundance. This 

activity ceased approximately 200-m upstream from my study site, where a 

temporary barrier inhibited the downstream flow of CPOM and a siphon pumped 

water and materials into an isolated settling pond (see Figure 2.2). Although the 

substrate at my study site was physically undisturbed by channel cleaning, the 

removal of upstream food sources and insect drift through siphoning may have 

displaced invertebrates, leading to initial low abundance. A high sediment to food 

ratio may also have adversely affected invertebrate density (Pingram et al. 2014). It 

is also plausible that with practice I became more effective at kick sampling during 

the sampling period, reflecting a lower abundance of invertebrates in Pre-spawn 

samples. 
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3.4.1.1 Macroinvertebrate Assimilation of MDN 

An increase in species richness was directly attributable to the presence of 

salmon at this site; however, macroinvertebrate assimilation of MDN was variable 

between species. As detailed in Chapter 2, NH4 + enrichment of stream water could 

not be directly connected to the presence or abundance of salmon, a likely result of 

rapid nitrification of surface water NH4+ (see Section 2.4.2). However, NH/ values of 
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hyporheic water were significantly reduced during the post-spawn period, 

suggesting that salmon did contribute measurable nutrients to the stream (Figure 

3.15). Accordingly, b1c;N signatures of macroinvertebrate groups Chironomidae and 

Ephemeroptera increased alongside hyporheic N114 concentration, which may 

signify MDN assimilation. This outcome results in a rejection of the null hypothesis 

(VI) that b1c;N signatures of these taxa will not be correlated with NI 14 concentration 

of hyporheic water. As well, the statistically significant negative correlation between 

Chironomidae and Ephemeroptera b1 N signatures and surface water Nl i 4 results 

in a rejection of that component of the null hypothesis (VI). The relationship 

between salmon and each FFG is described in greater detail below . 
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Figure 3.15. Boxplots displaying ammonium (NH 4 ) concentration of all h'r porheic ""ater 
samples. Active spawn includes data from three sampling"" eeks, Active spa"' n I, II, and 
III. Outliers are denoted by red dots. 
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Shredders: 

High shredder density has been reported to coincide with leaf fall in autumn 

(Hawkins & Sedell 1981, Reece & Richardson 1998), which supports this study's 

finding of increasing amphipod abundance throughout the fall and lower 

abundance in the spring. The concurrent timing of salmon spawn and vegetation 

senescence enhances microbial activity on leaves and generates a bioenergetic 

advantage for shredders by promoting rapid growth rates (Minakawa et al. 2002, Ito 

2003, Honea & Gara 2009). A trend of gradually increasing mean amphipod growth 

from Pre-spawn (7.97 mm) to Post-spawn (10.58 mm) was observed at this site. 

However, increased growth was not statistically significant, likely due to size 

variability within each sampling period (SO = 3.2-4.3 mm). 

Weekly shredder b15N signatures also increased during the fall while salmon 

were actively spawning in the channel (Figure 3.16). Additions of nitrogen and 

phosphorus to a stream stimulates microbial activity on leaf litter, and shredders 

will preferentially feed on microbially-conditioned leaves (Ito 2003). The addition of 

MDN to the stream may be indirectly reflected in increased b15N of amphipods, as 

microbes colonizing leaves can quickly assimilate salmon-derived nutrients 

(Peterson et al. 2001). However, b13C continually decreases throughout salmon 

spawn, which is contrary to the expected b13C enrichment during conditioning of 

detrital matter (Rounick & Winterboum 1986). This finding resembles Albers 

(2010)'s results of decreased b13C in post-spawn biofilms at the spawning channel. 

Thus, amphipods may also be feeding on another food source, such as biofilms or 

algae. Amphipods can exhibit plasticity when different food sources become 

available and have also been found to consume fish, macroinvertebrates, and other 
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amphipods (MacNeil et al. 1997). Throughout the study, many amphipods were 

found residing within clumps of filamentous algae attached to the substrate, which 

may also be an important year-round food source. 
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Figure 3.16. Boxplots displaying all b13C o/oo (top) and b15N o/oo (bottom) signatures from 
the shredder functional feeding group (FFG) during each sampling week. Black dots 
denote actual values. 

Contrary to the other invertebrates, amphipod mean isotopic signatures 

remained consistent between seasons, likely because the brood sampled in the fall 

was identical to the spring (Menon 1966) and possibly because their primary food 

source also remained isotopically-enriched. Therefore, amphipods fail to reject the 

null hypothesis (V) that b13C and b15N will remain the same between seasons. 

Terrestrial leaves are thought to be the preferred food source of amphipods 

(Hawkins & Sedell 1981) and at this site isotopic ratios of fresh willow leaves are 
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stable between seasons. The presence of N-fixing alders at the spawning channel 

likely provides a year-round contribution of N to forest soils Oohnson & indberg 

1992), which may stabilize b15N in willow. Helfield & Naiman (2002) found that at 

spawning sites bordered by alder, spruce b15N was similar to alder b15N and 

decreased significantly at sites without alder. 

Amphipods are not often referred to in MDN literature; however, in brown­

water streams of Western Kamchatka, amphipods were found to be an essential 

element of the salmon feedback loop. They comprised more than 88% of invertebrate 

biomass, were observed feeding directly on salmon carcasses, and composed 68-88% 

of juvenile salmonid diets (Thompson 2007). Our results of isotopically-enriched 

amphipods in the spring support the notion that they may play an important role in 

the salmon feedback loop by linking MDN from spawners to their progeny. Since 

amphipods will migrate to find the highest quality food source (Cothran et al. 2014), 

it is possible that they move to spawning grounds in the fall to locate conditioned 

leaves and then relocate to the lakes and ponds they primarily occupy (Clifford 

1991). Juvenile sockeye salmon preferentially rear in lakes (Eggers 1978), so an 

amphipod migration that mimics salmon movement may indicate an amplified 

response of the importance of amphipods to perpetuating the feedback loop. 

Collector-Gatherers: 

Chironomids were the most abundant taxa in the collector-gatherers FFG, 

comprising on average 67% of total group abundance. Aquatic earthworms, 

commonly called oligochaetes, were the second most abundant collector-gatherers, 

fo llowed by two mayfly taxa, Paraleptophlebia sp. and Baetidae. Tricopteran, or 
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caddisfly, collector-gatherers made an appearance during post-spawn sampling. 

Stable isotopic signatures were obtained for the taxa Chironomidae and 

Ephemeroptera (mayflies). Due to the small mass of these organisms, duplicate 

samples were not always possible. Therefore, taxa analysis for some samp1ing weeks 

is based upon only one data point. Conclusions based upon singular data have a 

high likelihood for error and must be interpreted cautiously. There were no clear 

trends in isotopic composition for these invertebrates during the salmon spawn, 

although pre-spawn values were not obtained (Figure 3.17). Nitrogen isotopes for 

both taxa were very similar, suggesting similar trophic enrichment from a common 

food source. However, fall b13C signatures were slightly enriched for 

Ephemeroptera, which could be an indication of differing lipid content between the 

taxa, as proteins and carbohydrates are enriched in b13C relative to lipids (Post et al. 

2007). 

In the fall, chironomids had the least enriched b13C and b15N signatures of all 

the invertebrates, indicating that these chironomids are likely not predacious and 

are mostly or entirely collector-gatherers (Figure 3.3). Chironomidae and 

Ephemeroptera b15N signatures in the fall were significantly enriched (p < 0.05) over 

spring values, suggesting that they benefitted from assimilation of salmon nutrients 

into the food web (Figure 3.5). This outcome results in a rejection of the null 

hypothesis (V). Peterson et al. (2001) found that after NH4 + -15N injections around 70-

80% of the NH4 +was directly assimilated by benthic organisms, with the rest 

removed by nitrifying bacteria. The quick removal of NH4+ from surface water could 

be a result of direct assimilation by collector-gathering organisms or indirect 

assimilation through the consumption of bacteria located among the streambed 
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gravels (Bilby et al. 1996, Webster et al. 2003). 

Chronomid 

-24-

-25-

• 
• 

-26 

-27-
• 

10-

• I • • . 8-

6-

4-
• 

I T T T I 
Active Ac1ive Active Post-spawn Spring 
spawn I spawn II spawn Ill 

I 
Adlve 
spawn I 

Ephemeraptsra 

• 
• 

i • 

I T J r 
Active Active Post~ Spnng 

spawn II spawn Ill 

... 
~ 

... 
!! 

Figure 3.17. Boxplots displaying b13C %o (top) and b15N %o (bottom) signatures from two 
species of the collector-gatherer functional feeding group (FFG). Plots on the left show 
chironomid isotopic signatures and ephemeroptera are displayed on the right. Pre-spawn 
isotopic signatures are missing for these species. Black dots denote actual values. 

A major difference between these species was the significant depletion of b13C 

in the spring for Ephemeroptera and a significant b13C enrichment for chironomids. 

Both of these results reject the null hypothesis (V) that b13C signatures will remain 

unchanged between seasons. This result, along with relatively enriched spring b15N 

signatures of Ephemeroptera, indicates that they are consuming distinctly different 

food sou rces or that their specific life histories alter tissue nutrient composition. 

During times of starvation, chironomid b13C signatures become significantly more 

enriched and, since chironomids hibernate during the winter, enriched spring ()13C 
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concurs with hibernation and subsequent starvation (Doi et al. 2007). Isotopic 

signatures also change during chironomid metamorphosis, with results of enriched 

b13C and decreased b15N in larvae, which could explain significantly lower b15N 

signatures in the spring. The slight enrichment of b15N and depletion of b13C in 

chironomid pupae relative to chironomid larvae (Figure 3.18) demonstrates the 

isotope turnover that is occurring during metamorphosis from the larval to adult 

stage (Doi et al. 2007). 
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Figure 3.18. Chironomid larvae and pupae isotopic signatures collected in May 2012. 
Increased b15N (%o) and decreased b13C (%o) in pupae are demonstrating nutrient changes 
due to metamorphosis. Black dots denote actual isotope values. 

In the spring, snowmelt, rain, and freshet induce lateral inputs from the 

riparian zone and elevates stream DOC (Holmes et al. 1996, Duff & Triska 2000, 
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Harvey et al. 2013). Lower carbon and nitrogen isotopic signatures in the spring for 

Ephemeroptera could be reflecting a greater reliance on relatively depleted 

terrestrial food sources compared to enriched autumnal MDN assimilation. Spring 

freshet also may have contributed to lower collector-gatherer b15N signatures, as 

high water levels initiated downwelling hyporheic conditions and supplied DOC, N, 

and DO creating a nitrifying environment (Chapin et al. 2011, Zametske et al. 2011, 

Heppell et al. 2014). Nitrification creates b15N-depleted N03· (Chapin et al. 2011 ), 

which may partially be the reason for decreased invertebrate b15N. 

Chironomids are a fairly common benthic invertebrate identified in MDN 

studies and appear to benefit from salmon nutrients during the salmon spawn and 

retain high abundance after the winter (Hicks et al. 2005, Lessard & Merritt 2006, 

Lessard et al. 2009, Verspoor et al. 2011, Campbell et al. 2012). They are classified as 

hyporheos, or hyporheic-dwelling organisms, and are able to avoid spawning 

mortality by retreating deeper into the substratum during redd building 

disturbances that causes some invertebrates to decrease in abundance (Lessard & 

Merritt 2006, Honea & Gara 2009). Also, chironomids have been observed feeding on 

salmon carcasses (Chaloner & Wipfli 2002), so although isotopic signatures did not 

reflect salmon predation, this taxa could have altered its feeding habits to carcass 

consumption after fall conditions reduced primary productivity (Lessard & Merritt 

2006 ). This study supports research that identifies chironomids as important 

organisms to the aquatic food web integration of MDN and their effect in providing 

source nutrients to future salmon stocks by maintaining high abundance (Chaloner 

et al. 2002b, Lessard & Merritt 2006). 
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Collector-Filterers: 

Collector-filterer abundance has been found to increase after additions of 

coarse detritus, particularly leaf litter, as a response to increased FPOM from 

shredding organisms (Richarson 1992). They also may display enriched isotopic 

signatures coinciding with salmon spawn, indicating direct or indirect MDN 

incorporation (Honea & Gara 2009). The appearance of collector-filterers during 

active spawn at the HFC could be due to the cumulative effects of nutrient sources 

from both leaf senescence and salmon spawn. 

Scrapers: 

Gastropods constituted the entire scraper FFG and were represented by two 

species, Physa sp. and Promenetus umbilicatellus. Scraper abundance remained 

relatively uniform throughout the study, with total post-spawn abundance (n=21) 

nearly matching spring (n=20), showing persistence of scrapers in this stream. The 

response of scrapers to spawning salmon produces a variable response between 

regions, including reports of no discernible response (Lessard & Merritt 2006). Some 

studies have found a lack of MDN assimilation in scrapers (Rinella et al. 2013), while 

others have observed an accumulation of MDN and increased biomass in spawning 

locations (Bilby et al. 1996, Honea & Gara 2009). 

Scraper isotopic signatures in the spring were b15N-enriched relative to all 

other taxa (Figure 3.4). Biofilms are the primary food source of these low-trophic 

order species (Anderson & Cabana 2007), which infers that either the gastropods 

and I or their food source remained enriched in MDN throughout the winter season. 

Adult Physa sp. likely spawn after spring break-up, so the brood sampled in the fall 
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would be identical to the spring, which supports the assumption of b15N 

accumulation (Clampitt 1974). Additionally, winter can induce nutritional stress, 

illustrated by an increasing C:N ratio of source materials, which is known to cause 

b15N enrichment (Dekar et al. 2009). 

Predators: 

The relative abundance of predatory invertebrates was greatly influenced by 

the high number of chironomids of which 10% were classified as predators (Figures 

3.7, 3.14). The next most prevalent predator group from the subclass Hirudinae, 

commonly known as leeches, continually increased upon the arrival of salmon and 

decreased after spawning. Predatory invertebrates are limited by their available 

prey (Richardson 1993, Honea & Gara 2009, Verspoor et al. 2011 ), thus, leech 

abundance may have fluctuated with resident fish and juvenile salmonid 

populations. Many riverine fish species will follow spawning salmon to gorge on 

salmon eggs and flesh (Cederholm et al. 1999, Moore & Semmens 2008), which likely 

were important nutrient sources for leeches. 

The weekly isotopic signatures of leeches were represented by only one data 

point, so it is difficult to conclusively discuss trends (Figure 3.19). Carbon and 

nitrogen isotopic signatures generally decreased from active spawn to post-spawn, 

which may correspond to a reduction in live salmon, as well as a reduced number of 

resident fish following the spawners. Other fishes observed in the channel during 

the fall were Redside shiners (Richardsonius balteatus), Rainbow trout (0. mykiss), and 

Kokanee salmon (0. nerka). 
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Figure 3.19. Boxplots displaying b13C %o (top) and b15N %o (bottom) signatures of 
Hirudinae (leeches) from the predator functional feeding group (FFG) during the fall 
sampling weeks. Spring isotope values were not obtained due to low abundance and 
mass. Black dots denote actual values. 

3.4.1.2 Nutrient Sources in Aquatic Systems 

The uptake and retention of salmon nutrients (MDN) were the focus of this 

study. However, they represent only one of many resource pulses to a stream that 

can enhance population productivity and growth (Richardson et al. 2010). Terrestrial 

leaf litter inputs, particularly in the fall, are an impo1iant food source to 

invertebrates with low trophic position (Wallace et al. 1999). Additionally, leaf 

leachate provides dissolved nutrients to aquatic primary producers and has been 

found to contribute 30% of total dissolved organic carbon (DOC) to a stream 

(Richardson et al. 2010). Lateral flows of groundwater can deliver DOC and 
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dissolved inorganic nitrogen (DIN) to the stream from organic soil horizons, 

especially during high precipitation, flooding, and spring break-up events 

(Wondzell & Swanson 1996b, Mei et al. 2014). Nutrients are also transported from 

upstream sources (Wipfli et al. 2007) and, in this case, water in the spawning channel 

originates in the upstream settling pond, which is rich with macrophytes and algae. 

The rationale in tracing MDN using stable isotopic analysis was that salmon 

are often migrating to oligotrophic streams and, therefore, contribute detectable 

amounts of N exceeding that of atmospheric N deposition (<5 kg ha·1 year·1
), in 

conjunction with the natural10-1Sroo b15N enrichment of marine sources relative to 

terrestrial sources (Welch & Parsons 1993). However, organisms and food sources 

can appear enriched in stable isotopes regardless of MDN presence (e.g. due to 

isotopic discrimination; Marshall et al. 2007, Staal et al. 2007), and substantial 

nutrient inputs can come from sources other than salmon (Triska et al. 1993, Helfield 

& Naiman 2002). When N is not the limiting nutrient in a system, the ability to trace 

marine-derived nitrogen can be significantly reduced owing to confounding effects 

of isotopic fractionation (Naiman et al. 2002). A nitrogen fractionation, a.k.a. 

enrichment, factor of approximately 3-4%o occurs with each successive trophic 

position (Minagawa & Wada 1984), so an organism that utilizes many N sources will 

have a b15N value that incorporates multiple sources. In most systems, however, N 

sources are limited and demand exceeds supply (Aber et al. 1989). While this 

narrows the possible N options, it remains difficult to discriminate between relative 

source contributions when there is more than one N-rich source (Marshall et al. 

2007). Since b13C signatures of a consumer reflects its' source with a smaller 

fractionation (-oAroo), they can be helpful to determine primary nutrient sources 
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(DeNiro & Epstein 1978). Although this study did not aim to identify the food 

sou rces of invertebrates, isotopic signatures of possible sources (e.g. aquatic 

autotrophs, detritus, leaf litter, bed sediments, and resident fish) would have greatly 

helped discern patterns of enrichment and the specific impact of MDN. 

3.4.2 Nutrient Uptake and Assimilation in the Riparian Zone 

Riparian plants at this site possessed distinctly different b13C and b15N 

signatures, which lends to insights of plant function and overall nutrient availability 

(Menezes 2009, Chapin et al. 2011 ). For instance, E. arvense typically were enriched in 

b15N compared to other species, which could be the result of a preference for NH4 + 

(Chapin et al. 2011). Variations in isotopic fractionation are mostly due toN 

transformations, such as nitrification, denitrification, and volatilization (Finlay & 

Kendall 2007); plants that prefer NH4 +will be isotopically enriched relative to N03-

absorbing plants because nitrification has a fairly large fractionation effect (Chapin 

et al. 2011 ). E. arvense may also display enrichment because horsetail is especially 

effective at accumulating and retaining nutrients (Husby 2013). They even act as a 

nutrient pump by delivering nutrients from the soil C horizon to its shoots above­

ground (Marsh et al. 2000). 

All terrestrial plants obtain carbon from a well-mixed atmospheric reservoir 

in the form of C02 (Ben-David et al. 1998), thus b13C variation due to the source is 

insignificant and the p resence or absence of MDN should not be a factor. Variation 

occurs from fractionation during C02 assimilation, which is primarily related to 

water use and plant growth rate (Finlay & Kendall2007, Marshall et al. 2007). S. 

Iucida consistently displayed b13 enrichment relative toT. offici'nale and E. arvense 

leaves, wh ich is an expected result when comparing long-lived perennial species 
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and annual or herbaceous species (Marshall et al. 2007). Seasonal variation in b13C 

was not detected, but there was a significant b13C enrichment in plants located 

directly on the streambank (Table 3.5). Plants that experience water stress 

discriminate against b13C, so stream-side vegetation with a reliable supply of water 

will exhibit higher (less negative) b13C signatures (Wang et al. 2010). More available 

sunlight, resulting in a greater rate of photosynthesis, may also be contributing to 

b13C enrichment at this location (Leavitt & Long 1986), as the vegetation sampled 

here was not shaded by the riparian forest. 

The nutritional value (C:N) of all sampled vegetation species decreased as fall 

progressed and were most nutritionally rich in the spring (Table 3.6). Prior to 

senescence trees will reabsorb N from the leaves, so a decrease in total Nand an 

increased C:N is to be expected (Drake et al. 2006). S. Iucida reabsorbed about 35% ± 

10.6% of leaf N between August and September 2011, whereas E. arvense absorbed 

slightly less (30% ± 12.8%) and T. officinale reabsorbed the least N (15% ± 14.1%). The 

%C inS. Iucida samples remained steady throughout seasons averaging around 46%, 

while the perennial T. officinale and E. arvense species had substantial reductions in 

%C from spring to fall, especially for E. arvense. This decreased nutritional value of 

senescent leaves amplifies the importance of the microbial-conditioning of leaf litter 

that coincides with salmon spawn for amphipod growth in the fall and winter 

energy storage. 
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Table 3.6. Stable isotopic signatures, percent of total carbon (C) and nitrogen (N), and the 
C:N ratio of sampled riparian vegetation at the Horsefly River spawning channel during 
Fall 2011 and Spring 2012. 

Species Date ~13c ~15N %C %N C:N 
Salix Iucida Aug 2011 -28.40 2.37 46.76% 2.45% 19.01 
Salix Iucida Sept 2011 -29.23 1.87 46.60% 1.60% 29.15 
Salix Iucida May 2012 -28.38 1.23 46.86% 3.88% 12.01 

Equisetum arvense Aug 2011 -29.34 10.39 30.33% 1.82% 16.84 
Equisetum arvense Sept 2011 -29.88 8.67 29.81% 1.26% 23.68 
Equisetum arvense May 2012 -30.03 6.55 39.22% 3.49% 11.17 

Taraxacum offici nate Aug 2011 -32.53 0.54 37.87% 2.52% 14.93 
Taraxacum officinale Sept 2011 -33.24 1.09 38.00% 2.15% 17.52 
Taraxacum officinale May 2012 -31 .64 5.28 43.67% 4.32% 10.05 

Salix Iucida (Pacific willow): 

S. Iucida were the only plants sampled that displayed a statistically significant 

spatial trend in b15N, specifically decreasing b15N signatures with distance from 

streambank (Table 3.4). Similar results have been used to prove the influence of 

spawning salmon on riparian vegetation (Bilby et al. 1996, Ben-David et al. 1998, 

Helfield & Naiman 2002, Hicks et al. 2005, Drake et al. 2006, Hocking & Reimchen 

2009). The reduction of b15N in inland willows suggests that less marine N reached 

these locations and potentially all b15N carne from microbial denitrification. Inland 

willows had b15N signatures between -1 and O%o, which represent standard values of 

atmospheric N assimilation (Kohl & Shearer 1980). At our site, the willow tree 

directly on the streambank had an average b15N enrichment of 57'oo relative to the 

willows 20-m inland in the fall, and 3%o in the spring. This result confirms the 
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hypothesis that near-stream vegetation will retain MDN over the winter. Similar1y, 

the near-stream willows exhibited an average b13C enrichment of nearly 4%o in the 

fall and greater than 3r'oo in the spring. This could be due to high water and sunlight 

availability (Leavitt & Long 1986, Marshal] et a1. 2007, Wang et a1. 2010), as well as 

MDN enrichment. 

The roots of Salix sp. protrude into the hyporheic zone and have been found 

to rely on groundwater throughout their growing season (Menezes 2009). Since a 

trend of decreasing b15N with distance from the streambank is only apparent in 

deep-rooted willow trees, this infers that substantial quantities of MDN is 

transferred to the near-stream riparian zone by advective hyporheic water. This 

corresponds with results reported in Chapter 2, where NH4 + concentration in 

hyporheic water also decreased with distance from the streambank and did not 

appear to infiltrate inland locations during active salmon spawn. These data support 

the rejection of the null hypothesis (VIII) that stable isotopic signatures of S. Iucida 

will not be correlated with distance from the streambank. Nitrogen isotope 

enrichment in riparian vegetation by 15N-NH4 +is substantiated by a study from 

Drake et al. (2006), where they discovered that tree roots began to absorb b15N 

within 7 days and that 37% of the 15N-NH/ tracer was contained within tree tissues 

after six months. 

From the tree ring analysis it appears that seven years after the construction 

of the spawning channel, this particular willow tree began exhibiting increased 

annual growth (Figure 3.12). Trees are capable of developing a physiological legacy 

effect that allows them to efficiently assimilate nutrients when they can depend on 

resource pulses (Drake et al. 2006), which seems to be occurring at this site. The 
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standardized values of ring width and salmon abundance also display a 

ynchronized relationship during certain years, particularly between 1997-2000, 

when salmon population was zero in 1997 and escalates to -25,000 the next year, 

and in the year 2006 when salmon return was nearly 20,000 individuals (Figure 

3.12). Recent studies have linked salmon abundance and tree ring growth (Drake & 

Naiman 2007, Reimchen & Fox 2013), however high precipitation, temperature, or 

other climate variables could also lead to increased growth (Garfinkel & Brubaker 

1980). At this site, multiple variables plausibly acted together to increase tree 

growth, as evidenced by a significant multiple regression with the interaction of 

precipitation and salmon abundance. The construction of the spawning channel may 

also have created a higher local water table, thus promoting tree growth. Lastly, the 

strength of this analysis is questionable because only one willow tree was sampled; 

however, these preliminary results provide justification to continue tree ring 

research at this site. 

Equisetum arvense (Common horsetail): 

E. arvense showed a statistically significant b15N depletion in the spring which 

could be attributed to a decrease in available N, in conjunction with greater reliance 

on associated mycorrhizal fungi. As much as 70-80% of E. arvense roots are colonized 

by arbuscular mycorrhizal fungi (Hodson et al. 2009), which supply an alternative 

source of N; plants may rely more heavily on this symbiotic relationship when N 

availability is low, thus leading to relatively depleted b15N of E. arvense in the spring 

(Chapin et al. 2011). Rinella et al. (2013) also reported lower b15N signatures of 

horsetail in the spring, as well as an apparent b15N enrichment in the fall that did not 
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vary with spawner density. Horsetail is known to be especially effective at 

accumulating and retaining nutrients (Marsh et al. 2000), which could account for its 

persistent b15N enrichment over the other plant species and may infer an 

accumulated salmon legacy effect. Carbon isotopic signatures remained the same 

between seasons, resulting in a failure to reject the null hypothesis for b13C and a 

rejection of the null hypothesis for b15N (VII). 

Taraxacum officinale (Common dandelion): 

A significant increase in b15N signatures of T. officinale in the spring 

demonstrates that herbaceous annual plants in the same area can exhibit vastly 

different nutrient assimilation techniques and that large spatial variations in nutrient 

concentration can occur in relatively close proximity (Chapin et al. 2011). This result 

supports the rejection of the null hypothesis (VII) that b15N signatures will remain 

the same between seasons. Half of the T. officinale sampling locations (3 out of 6) 

exhibited a sharp b15N increase in the spring (average of 8.21%o ± 3.51), while the 

other locations remained similar to September signatures (average increase of 0.17roo 

± 0.93). Although b15N of a single herbaceous species has been documented to vary 

by >1%o even when grown hydroponically on a known source (Robinson 2001), 

differences of this magnitude are probably due to microhabitat variation of theN 

pool. Dandelions flourish best in moist loam (Stewart-Wade et al. 2002) where 

conditions of high water content would limit DO and create denitrification 

conditions. These factors promote b13 depletion along with NH4+-b15N enrichment 

of theN pool (Marshall et al. 2007, Pinay et al. 2009). Low b13C and high b15N are 

present at three locations in the spring (T1-0, T2-10, and T2-20), which supports this 
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theory. Also, arbuscular mycorrhizal fungi is common on dandelion roots (Hodson 

et al. 2009), so the b15N depleted plants could have been in locations where N was 

low and their reliance on N from the fungi was increased. 

Soil: 

Soil isotopic signatures of b13C followed a pattern of increasing enrichment 

with depth that is commonly found across ecosystems due to microbial preference 

for the lighter isotope and subsequent accumulation of the heavy isotope in older 

soils (Figure 3.9; Ehleringer et al. 2000, Garten et al. 2007). Patterns of b15N in soil 

were less obvious because nutrient pooling and mechanisms of N uptake and 

transformations all factor into b15N signatures {Garten et al. 2007). For example, as 

with b13C, soil microbes tend to discriminate against the heavier N isotope in 

processes such as denitrification, resulting in a nitrate pool that is b15N-enriched 

(Mariotti et al. 1981). b15N enrichment can occur at localized sites, such as 

floodplains, where moisture saturation leads to low oxygen levels and higher 

denitrification rates, or near plant roots because vegetation is often preferential to 

the lighter N isotope (Nadelhoffer & Fry 1994, Naiman et al. 2002). 

A distinct variation in soil b15N signatures was observed in the deepest 

location sampled (horizon C), which was within the zone of hyporheic water 

inundation. Soil pit 1, located closest to the streambank on the upstream side of the 

meander bend, had a considerably high b15N value of 6.21 %o, compared to soil pit 2 

(3.76%o), located furthest from the streambank, and soil pit 3 (4.09%o), located on the 

downstream side of the meander bend (Figure 3.10). Given samples were taken at 

similar depths, enriched soil b15N could indicate a persistence of MDN infiltration in 
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this location close to the stream's edge. 

Carbon isotopic signatures across horizon C were nearly identical (-24.58%o ± 

o.o2roo), but the rate of change in b13C of vertical organic matter decomposition 

differed between sites. The regression coefficient between b13C abundance and the 

log C concentration were used to define rate of change (Garten et al. 2007). Soil pit 1 

b13 signatures changed at a rate of 0.64roo along the depth continuum, whereas soil 

pit 2 and 3 displayed slower changes with b13C change rates of 0.46roo and 0.53%o, 

re pectively. This greater rate of change at soil pit 1 could indicate the presence of 

MDN-enriched hyporheic water inundating deep soil horizons located near to the 

stream's edge. 

3.5 Conclusions 

The broad sample design of this study captured a few primary nutrient 

pathways linking MDN to aquatic and terrestrial food webs at the Horsefly River 

spawning channel. All macroinvertebrate FFGs displayed characteristics that could 

be positively associated with the presence of salmon and MON, including an 

increase in community biomass, species richness, and species diversity during the 

spawning period. Amphipods (shredders) and chironomids (primarily collector­

gatherers) were the most abundant taxa, with both groups combined comprising 

between 55% of total abundance in the spring and 88% during post-spawn. 

Chironomids appeared to assimilate MDN during salmon spawn, as evidenced by 

enriched b15N signatures in association with increased NH4 +concentration of 

hyporheic water beneath the streambed, which may have provided energy to help 

them maintain elevated biomass in the spring. Juvenile salmon are highly 
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dependent on chironomid larvae as a food source (Lessard & Merritt 2006) and this 

study further suggests that they provide a critical link between the MDN pulse in 

the fall and salmon fry emergence in the spring. Past studies have reported 

shredders as a group that maintains an elevated biomass throughout salmon spawn 

(Minakawa et al. 2002, Lessard & Merritt 2006, Honea & Gara 2009), but, to my 

knowledge, this is the first study in North America that identifies freshwater 

amphipods (in particular, H. azteca) as the only shredding invertebrate located in a 

spawning area. Since amphipods are known to migrate to find the highest quality 

food source (Cothran et al. 2014), it is possible that they travel to the spawning 

channel in the fall to locate microbially-conditioned leaf litter, which facilitates 

growth prior to winter (Ito 2003 ). Then they potentially relocate to ponds and lakes 

sometime after the salmon decomposition period, while maintaining an isotopically­

enriched signature over the winter. This study suggests that amphipods, as well as 

chironomids, may be particularly connected to the sockeye salmon feedback loop, as 

their seasonal migration evidently delivers an abundant, MDN-enriched food source 

from spawning grounds to the lakes where juvenile sockeye rear. 

Patterns of isotopic enrichment were variable between riparian plant species, 

which is likely the result of differing morphologies and mechanisms of N-fixation. 

The shallower rooting species of E. arvense and T. officinale did not exhibit decreasing 

b15N with distance from the streambank, nor a common temporal isotope change, 

suggesting a lack of MDN assimilation from the fall nutrient pulse. However, S. 

Iucida displayed a clear trend of decreasing b13C and b15N concentration with 

increased distance from the stream, as well as persistent isotopic enrichment 

between seasons, indicating that this deeper rooted species is assimilating MON. 
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Since riparian deposits of salmon carcasses and bear feces were not abundant at the 

experimental site, the lateral transfer of MDN through hyporheic flow appears to be 

the prominent delivery pathway and is most evident in willows <7-m from the 

streambank. This conclusion is further supported by enriched b15N found in deep, 

hyporheic-influenced soil samples located near the stream's edg . Nevertheless, 

riparian and hyporheic ecotones are boundaries, by definition, comprised of a 

mosaic of redox gradients that vary spatially and temporally (Naiman & Decamps 

1997, Boulton et al. 2010, Febria et al. 2011 ). Markedly different N pools can exist 

within close proximity, thus, this pattern of near-stream MDN enrichment would be 

more conclusive with greater spatial and temporal resolution. ontinued research of 

the mechanisms that facilitate nutrient transfer and storage within the salmon 

feedback loop will require a greater focus into the life histories and physiology of 

species that appear to provide critical linkages between salmon generations. 
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Chapter 4 

Conclusions and Man gement Implic tions 

4.1 Conclusions 

The results of this thesis demonstrate that marine-derived nutrients from 

spawning salmon are delivered to the riparian zone of an interior British Columbia 

stream via lateral hyporheic transport. Previous studies have demonstrated 

hyporheic transport of MDN (O'Keefe & Edwards 2002, Pinay et al. 2009), but this 

thesis expands on preceding knowledge by providing a seasonal component that 

identifies the assimilation and storage of MDN through multiple trophic levels 

within the stream-riparian ecosystem. The primary aims of this thesis were to: 1) 

identify the hyporheic zone at this site, 2) determine if NH4 +,presumably from 

spawning salmon, was retained in the hyporheic zone during salmon spawn and 

after the winter, 3) identify how macroinvertebrate FFGs responded to the MDN 

pulse and salmon spawn, and 4) determine if the rooting depth and distance from 

the stream of riparian vegetation had an effect on MDN concentration. Chapter 2 of 

this thesis defines the hyporheic zone at this location and discusses the 

biogeochemical factors which influence subsurface nitrogen retention and 

transformation. Chapter 3 identifies willow trees, amphipods, and chironomids as 

species which particularly benefit from spawning salmon and MON. By examining 

the temporal effect of MDN, this thesis provides evidence of an asynchronous 

exchange of nutrient subsidies between the stream and riparian zone. 

Results from Chapter 2 indicate that NH4 + concentration in riparian hyporheic 

water decreased with distance from the streambank and was not delivered to inland 
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locations during the salmon spawn. This outcome corroborates results from Chapter 

3 where the reduction in b15N of S. Iucida with distance from the streambank 

sugg sts that less marine N reached these inland locations and potentially all of the 

b15N that was detected in inland willows came from microbial denitrification. 

Shallow-rooted plants did not display a trend of decreasing b15N with distance from 

the streambank, which further confirms that the hyporheic zone is a dominant 

pathway in tran ferring nutrients from the stream to riparian zone. However, the 

extent of this nutrient delivery is limited at the Horsefly River spawning channel 

because hyporheic water is generally flowing toward the channel. Accordingly, 

hyporheic nutrient delivery in any system will be controlled by the variables which 

drive hyporheic flow, particularly hydraulic head gradients and hydraulic 

conductivity (Wondzell & Gooseff 2013). Although this study was unable to 

correlate NH4 +concentration with the arrival of spawning salmon, the corroborating 

evidence of b15N in near-stream willows suggests that salmon provide a substantial 

amount of MDN to this system. 

The vertical movement of MDN from salmon carcasses and enriched 

metabolic wastes deposited on the riparian zone and subsequently transferred to 

terrestrial vegetation has been well established (Ben-David et al. 1998, Hilderbrand 

et al. 1999, Gende et al. 2001, Klinka & Reimchen 2002, Belfield & Naiman 2006). 

However, much of this research has been performed around densely-populated bear 

habitat and in coastal forests where precipitation and nutrient leaching rates are 

high (Reimchen et al. 2002, Drake et al. 2006). Whereas, the Horsefly River is located 

in an interior sub-alpine zone, with an average annual precipitation of 517 mm 

(Burford et al. 2009). Approximately 35 mm of rain was recorded during the two 
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month sampling period in the fall of 2011. Bear activity in the experimental site was 

minimal and riparian deposits of salmon carcasses (n=S) and bear feces (n=2) were 

low in number. With these considerations, it appears that drier, interior climates 

may be less influenced by vertical nutrient leaching and more reliant on lateral 

hyporheic delivery. 

Hyporheic NH4 ' concentrations beneath the streambed were also positively 

correlated with chironomid b15N signatures, which suggests that these hyporheic­

dwelling macroinvertebrates can rapidly assimilate MDN. This nutrient subsidy in 

the fall is apparently beneficial to chironomids because their high abundance was 

retained after the winter. Previous studies have confirmed the particular ability of 

chironomids to utilize MDN and avoid spawning mortality (Hicks et al. 2005, 

Lessard & Merritt 2006, Lessard et al. 2009, Verspoor et al. 2011, Campbell et al. 

2012), however, this study presents a dominant assimilation pathway in the form of 

b15N-NH/ that may also be facilitated by hyporheic flow. 

Although shredding invertebrates commonly appear in MDN literature, the 

high occurrence of amphipods at this site provides a unique perspective. Amphipod 

biomass and abundance exhibits a rapid increase in the fall, presumably due to the 

consumption of leaf litter that has been microbially-conditioned with the aid of 

salmon nutrients, and amphipods also maintain high b15N concentration in the 

spring. Analogous to the preferred rearing habitat of sockeye salmon, amphipods 

are typically associated with lentic environments. These results, in conjunction with 

evidence of high amp hi pod predation by juvenile salmon (Thompson 2007), allow 

inference that amphipods may be particularly important to the feedback loop of 

sockeye salmon. 
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The seasonal measurements of nutrients associated with salmon in this study 

reveal reciprocal subsidies between the stream and riparian zone (Nakano & 

Murakami 2001). In the fall, an upstream delivery of MDN from spawning salmon 

was observed to increase macroinvertebrate community biomass, species richness, 

and species diversity. Simultaneously, terrestrial leaf litter fall contributed a 

compounding nutrient source to shredders, which are known to initiate nutrient 

cycling processes in the stream food web (Gra<;a 2001). Hyporheic pathways 

delivered MDN from the stream to the riparian zone, which could then be 

assimilated by near-stream vegetation. Nutrient storage is evident in the riparian 

zone over the winter, but these nutrients eventually return to the stream during 

spring freshet. This seasonal shift in nutrient fluxes is further demonstrated by the 

reversal between increased hyporheic NH4 + concentration beneath the stream in the 

fall and higher riparian hyporheic NH4 + in the spring. 

Boundaries between oxic and anoxic environments create redox gradients at 

the intersections of ecotones, root micro-sites, pockets of organic matter, and 

hotspots of bacterial assemblages (Stanford & Ward 1993, McClain et al. 2003, Claret 

& Boulton 2009, Borch et al. 2010). Redox, or electron transfer, reactions provide 

energy for biological growth, and strong redox gradients enhance biogeochemical 

activity and microbial processing (Borch et al. 2010, Rezanezhad et al. 2014). 

Nitrification and denitrification represent a tightly coupled oxidation-reduction 

(redox) reaction that facilitates rapid organic matter decomposition and an overall 

loss of nitrate from the aquatic environment (Zametske et al. 2011 ). The seasonal 

reversal of hyporheic NH4 + concentration beneath the stream and below the riparian 

could indicate the presence of a nitrification-denitrification coupling syste1n on a 
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larger time and spatial scale. This discovery highlights the importance of 

considering the entire stream-riparian ecosystem when implementing plans for 

salmon conservation and management. 

4.2 Managem nt Implications 

158 

Pacific salmon populations in the United States and Canada are displaying 

signs of stress, such as decreasing returns and inconsistent cycles. Continued 

research of these populations in their marine and terrestrial environments is 

required, as well as the implementation of conservation action plans (Nehlsen et al. 

1991, Beamish et al. 2012, Peterman & Domer 2012, Sharma et al. 2013). Salmon are 

tough and resilient species, and can immediately return to areas that have been 

blocked by dams for decades (Anderson et al. 2014). However, their physiology is 

sensitive in regards to climate change pressure, particularly warming water (Hague 

et al. 2011, Martins et al. 2011). Therefore, it is critical that we understand what 

makes a salmon's spawning and rearing habitat persistent and stable, so we may 

recognize changes in these ecosystems and implement meaningful conservation 

solutions. 

Results from this study identified that MDN support the whole 

macroinvertebrate community and provide energy for growth to deep-rooted 

riparian vegetation bordering the stream. In turn, riparian vegetation provides 

shade for spawning salmon (Naiman et al. 2002), woody debris for juvenile salmon 

habitat (Fausch & Northcote 1992), and leaf litter to support the macroinvertebrate 

population (Vannote et al. 1980, Ito 2003). MDN stored in the riparian zone over the 

winter are delivered back to the stream in the spring, activating microbial activity 
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and supplying energy for salmon fry (Nakano & Murakami 2001). These nutrients 

are recycled throughout the stream-riparian ecosystem (Wipfli et al. 2010), thus 

maintaining strong salmon returns is crucial for healthy salmon habitat. Doing this 

involves a more complete understanding of the biogeochemical interactions that link 

and support these ecosystems, as well as identifying the key reactions, elements, and 

species that are particularly critical elements of the salmon feedback loop. 

The Horsefly River spawning channel offers a unique opportunity to study 

stream-riparian food web dynamics of an interior sockeye salmon system. Gates 

along the channel and a water pump dictating flow allow for experimental control 

and manipulation. The macroinvertebrate community is relatively simple, with 

dozens, as opposed to hundreds, of specific taxa, including some FFGs that are 

represented by only one species or family. The present study, in conjunction with 

studies from Albers (2010) and Albers & Petticrew (2012, 2013), present a useful 

baseline understanding of the biogeochemical nutrient dynamics that occur because 

of salmon spawn. From this simplified framework, strong food web models can be 

developed and interpreted with the intention of discovering critical linkages that 

elucidate the resilience of salmon populations. Nitrate removal experiments could 

also be implemented (e.g. Peter et al. 2012) and the microbial assemblages that 

facilitate denitrification could potentially be identified. The results presented in this 

thesis illustrate the innate connectivity of the stream-riparian ecotone, as well as the 

resilient salmon feedback loops embedded within this landscape. 
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