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Abstract 

Models of a same system may differ greatly in 

scale and level of detail. The implications of 

this are examined, in general and more 

specifically in relation to forest growth 

models. The nature of modelling is discussed, 

distinguishing descriptive and predictive 

models, and briefly describing the concepts of 

dynamical system and state space. Through 

examples, I demonstrate limits to 

predictability that can make reliable 

predictions impossible at the individual level. 

A complete understanding of the functioning 

of a system, or its computer simulation, do 

not imply being able to predict its behaviour. 

Although detailed models are useful for 

research purposes, low-dimensional 

aggregated models are generally more 

appropriate for decision-making. 

 



   

3 Occasional Paper No. 6 

July 2010 

Introduction 

Growth models are useful as research tools, and 
for predicting outcomes in forest management. 
Their level of detail, scale, or state space 
dimensionality, varies within wide limits. We 
shall examine some characteristics and 
consequences of the scale used. Much of the 
discussion is applicable to models in general, not 
just to growth models. 

 

Models  

A model (or theory) is a partial representation of 
some aspect of “reality”. For instance, a scale 
model of a building or of an aircraft (material 
models), the manual for a DVD player (verbal 
model), or our subjective idea of the results of 
acting in a certain way in a given situation 
(mental model). Mathematical models are like 
verbal ones, but using mathematical language. 
They generally have the advantage of being less 
ambiguous. Perhaps more importantly, 
mathematical models allow the reuse of known 
recipes, rules, or previously established 
theorems, instead of having to reason starting 
from scratch each time. For making any decision 
it is necessary to employ some kind of model; it 
is the link that connects actions with 
consequences.  

“An engineer thinks that his equations are an 
approximation to reality. A physicist thinks that 
reality is an approximation to his equations. A 
mathematician doesn't care.” 

Anonymous                      

Although obviously a caricature, this quote 
reflects certain attitudes regarding the 
perception of models and theories. The last part 
is not particularly relevant here, it relates to the 
role of the mathematician, as such, in the study 
of formal relationships regardless of what they 
might represent (i.e. the development of the 
’recipes’ previously mentioned). There appear to 
be, however, differences in the way of thinking 
about the nature of models that may be 
associated with different experiences and 
traditions. One often talks of scientists 

discovering natural laws, with the implication 
that such models have an independent 
existence. On the other hand, one can argue 
that humans can not comprehend all the details 
of a reality in which everything is connected to 
everything else; they can only reason through 
representations based on artificial classifications 
and definitions, ignoring the less important 
interactions. Models would have more to do 
with the structure of the human brain than with 
the reality “out there” (assuming that such 
reality exists!). At any rate, at least for the type 
of models in which we are interested, it seems 
more appropriate to think in this way, in which it 
makes no sense to speak of a true model. 
Quoting G. E. P. Box slightly out of context, “All 
models are wrong, but some are useful.”2  

Useful for what? There is controversy about the 
superiority of various types of models (see for 
instance the special issue edited by Mohren and 
Burkhart 1994).  Part of the problem is that the 
criteria for what makes a model superior are not 
clearly specified. One of the dichotomies is the 
use of models either as research tools, or as 
management tools. In research, the use of 
models is primarily descriptive; we are 
interested in understanding the functioning of a 
system, in synthesizing previously isolated facts, 
and in generating questions to guide future 
studies. The model is a working hypothesis, and 
major advances are achieved when the 
hypothesis fails. In management, the purpose is 
primarily predictive, to predict future behaviour, 
possibly in response to alternative treatments or 
events. Precision and accuracy in forecasting 
takes precedence over qualitative explanation.  

                                                           

2
Economists have yet another view of models: they 

speak of “market failures”, it is reality which is 
wrong. 
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For example, Figure 1(a) is a mechanistic model 
that helps to understand the motion of the 
planets. It could be used to predict when it will 
become dark today. However, the empirical 
model of Figure 1(b), which has little or nothing 
to do with the functioning of the solar system, 
may be more accurate and convenient. Note in 
passing that the size and distance proportions in 
Figure 1(a) are far from real, and precisely that 
makes the model more understandable; realism 
in a model is not necessarily a virtue.  

As explained later, another aspect related to 
model use is the most appropriate level of detail 
or complexity, or the dimensionality of the state 
space in dynamic models. 

 

Dynamic Forest Growth Models 

The most traditional forest stand models are 
yield tables. These describe how volumes per 
hectare, mean diameter, dominant height, 
number of trees, or other variables, change as 
functions of time. Sufficient in many situations, 
their use is more problematic when there are 
silvicultural stand thinnings, or in other cases 
where a stand has deviated from the nominal 
trajectory provided in the table. Isaac Newton 
introduced an approach more flexible than 

modelling functions of time directly: a dynamic 
model describes the rate of change of certain 
variables that define the state of the system. 
The state trajectories are synthesized by 
integration or accumulation of the rates of 
change, represented by differential or difference 
equations (Figure 2). Other variables of interest 
can be estimated from the state at any given 
time (Luenberger 1979, Garcia 1994, Garcia 
2005b).  

A system can be represented by dynamic 
models with various levels of detail or 
resolution, which differ in the dimension of the 
state vector (number of state variables). In 
particular, the standard classification of growth 
models (Goulding 1972, Munro 1974, Vanclay 
1994) reflects differences in dimensionality 
(Garcia 1988).  Whole-stand models use a few 
aggregate variables such as basal area, 
dominant height, number of trees. Individual-
tree models, on the contrary, use tens to 
thousands of state variables, including sizes for 
each of the trees in a stand or sample plot. 
Individual-tree models may be distance-
dependent, which use tree coordinates to 
calculate competition indices (Staebler 1951, 
Newnham 1964, Mitchell 1975), or distance-

 
Figure 1: Terrestrial motion models: (a) Mechanistic, causal. (b) Empirical. 
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independent, which ignore spatial structure 
(Goulding 1972, Stage 1973). 

 

Aggregation 

With greater availability of computing power, 
there has been an increasing emphasis on the 
development of individual-tree models. There is 
a tendency to regard aggregation at the stand 
level as unnecessary and obsolete. On the other 
hand, self-thinning theories, which can be 

interpreted as two-dimensional dynamic 
models, rather imprecise for managed stands 
(Garcia 2005a), remain popular. But models of 
intermediate dimensionality are now rare in the 
research literature, although still widely used in 
forest management practice. Something similar 
has happened more recently in population 
ecology modelling (e.g. Grimm 1999), and in 
other areas such as physics, economics, and 
sociology (Garcia 2001).  

 
 

Figure 2: Example of dynamic growth model with two state variables. The arrows representing the 
rates of change for the two variables can be followed to generate a trajectory starting from any 
initial state (Garcia 2005a). 
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Because of their flexibility, conceptual simplicity, 
and the representation of interaction 
hypotheses in the most natural and intuitive 
way, individual-tree models, individual-based 
models, or multi-agent models, are particularly 
attractive as research tools. Even for these 
purposes, however, high dimensionality has 
drawbacks that may make it advisable to 
complement the individual-based models with 
aggregate models. One of the disadvantages 
might be called the “so what?” effect: observing 
the results of complex simulations is not always 
very illuminating. A reductionist approach may 
also lose sight of so-called emergent properties. 
There is a growing and confusing literature on 

these properties, that tend to be described as 
“the whole being greater than the sum of the 
parts”; in reality, they generally relate to the fact 
that correctly modelling individuals is usually 
easier than modelling the interactions between 
them. As stated by Levin and Pacala (1997): 
“individual-based models have the advantage 
that they are closer in detail to real systems; 
that advantage is also a disadvantage in that 
they retain all the details that may hide what is 
really important at broader scales”. For these 
and other reasons, there is growing interest on 
deriving aggregate models from individual-
based models (Garcia 2001).  

 
 

Figure 3: Histograms of 20 random samples of size 50 obtained from the distribution shown. 
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In the case of prediction for decision-making, 
the limitations of individual-based models are 
more serious. One relates to spatial correlations 
in the size and growth of neighbouring trees 
caused by competition, by similarities of micro-
site, or by other factors. Tree sizes not being 
independently distributed on the ground, the 
concept of size distribution used by distance-
independent models presents problems, and 
parameter estimation can have significant 
biases. It has also been found that the effects of 
micro-site often produce positive spatial 
correlations, masking any negative correlations 
due to competition, contrary to the assumptions 
in current distance-dependent models (Garcia 
2006). A second problem with the application of 
highly detailed models is that often the initial 
state is not known with sufficient precision, 
which obviously does not allow a reliable 
prediction of future states. For instance, even 
assuming independence, it is known that 
obtaining reasonable estimates of higher 
moments, or of the shape of a probability 
distribution, requires very large samples 
(Kendall and Stuart 1976). Often this high 
variability (Figure 3) is not appreciated in the 
applications, and one can be mislead as to the 
credibility of the projections. A third problem 

with the use of complex models for making 
predictions is discussed in more detail next.  

 

Limits to predictability 

This limitation of individual-based models goes 
beyond growth modelling, and has to do with 
what can and can not be predicted. To illustrate, 
think of the circles of Figure 4 as particles, balls, 
or pucks moving in the plane. An individual is 
thrust in a certain direction. It is easy to 
calculate the trajectory (Figure 4a). Now, what 
happens if we change slightly the launching 
angle? (Figure 4b). Even with an uncertainty of 
one millionth of a degree in the initial angle, the 
result becomes completely unpredictable after a 
few bounces: the “butterfly effect”, Chaos 
Theory, sensitive dependence on initial 
conditions. 

The situation in forest growth modelling might 
not be as bad as this; or perhaps it might. 
Experiments with some models suggest that 
when altering the starting diameter of one of 
the trees by a few millimetres, the difference 
increases and spreads quickly to the rest. It may 
not be possible to project individual diameters 
as well as is generally believed.  

 
 

Figure 4: Trajectories in the plane. Effect of uncertainty in the initial angle. 
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What can be done? If Figure 4 represented a 
gas, the behaviour of the whole could be 
approximated by the equation PV = kT: pressure 
times volume is proportional to temperature. 
Note that these variables are properties of the 
aggregate, they do not exist at the molecular 
level. In fact, pressure and temperature are 
related to the mean and variance of the 
velocities. For an ideal gas, Statistical Mechanics 
is able to derive the aggregate equation from 
the dynamics of the individual molecules. In 
solids, the relationships between properties of 
the ensemble and molecular properties are still 
topics of research.  

When designing a bridge or car component, in 

principle one could model the trajectory of all 
the individual molecules. In practice, one would 
probably use an average position (centre of 
gravity), and apply an aggregate model 
proposed by Isaac Newton in the seventeenth 

century: d2 x / d t2 = F / m. This is an empirical 
model, based on observations, without any 
theoretical basis. And it is an approximation, it 
fails when going too fast or too small, although 
within a certain range it is pretty good. 

 Figure 5 depicts a pinball machine. Explanation 
for the younger audience: a ball is shot through 
the channel on the right-hand side, and drops 
down the slope colliding with various objects. 

 

 
 

Figure 5: Pinball machine. Knowing its functioning does not guarantee predictability. 
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The theory is well known, there is no mystery 
about its operation, but can we predict the 
trajectory of the ball? Understanding or 
explaining does not imply being able to predict. 
Figure 6 is an even better example: Microsoft 
Pinball. It is a fairly realistic computer 
simulation; apparently it contains no stochastic 
elements, only calculations based on physical 
laws. Given the time that the keyboard space 
bar is held down, the movement of the ball is 
perfectly predetermined. Can we predict it? It is 
sometimes argued that some complex process 
model is not yet very precise because of lack of 
knowledge about the functioning of some 
components, or of the values of certain 

parameters; with further research it would 
become useful for management. In reality, a 
model can be very useful for understanding 
things better, but there are inherent limitations 
to predictability beyond a certain level.  

A final example is shown in Figure 7.  It is a 
device sometimes used in teaching probability. 
Steel bearings fall through a grid of pegs into the 
bottom compartments. It is hopeless trying to 
predict the fate of any of the balls individually. It 
is possible, however, to predict reasonably well 
the average final position, and to some extent, 
its variance. With an adequate sample it may be 
possible to get some idea of the distribution. 

 
 

Figure 6: Microsoft Pinball, a pinball computer simulation. Simulating is not predicting. 
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Conclusions 

Descriptive models, used primarily for research, 
should generally be mechanistic and detailed, 
with high dimensionality in their state space, 

although some aggregated models can also be 
useful. Detailed process models contribute 
indirectly to the improvement of management-
oriented models, but in these the priorities are 
different. For decision-making it is preferable to 
link decisions to consequences as directly as 
possible.  Contrary to what is sometimes 
thought, the management of complex systems 
requires simple models. 

 
 

Figure 7: Device for demonstrating the binomial or normal distribution. Individual-level predictions are virtually 

impossible, but some statistical summaries can be predicted. 
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